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Abstract: Probabilistic (Bayesian) modeling has experienced a surge of
applications in almost all quantitative sciences and industrial areas. This
development is driven by a combination of several factors, including better
probabilistic estimation algorithms, flexible software, increased computing
power, and a growing awareness of the benefits of probabilistic learning.
However, a principled Bayesian model building workflow is far from com-
plete and many challenges remain. To aid future research and applications
of a principled Bayesian workflow, we ask and provide answers for what
we perceive as two fundamental questions of Bayesian modeling, namely
(a) “What actually is a Bayesian model?” and (b) “What makes a good
Bayesian model?”. As an answer to the first question, we propose the PAD
model taxonomy that defines four basic kinds of Bayesian models, each
representing some combination of the assumed joint distribution of all ob-
servable and unobservable variables (P), a posterior approximator (A), and
training data (D). As an answer to the second question, we propose and
discuss ten utility dimensions according to which we can evaluate Bayesian
models holistically, namely, (1) causal consistency, (2) parameter recover-
ability, (3) predictive performance, (4) fairness, (5) structural faithfulness,
(6) parsimony, (7) interpretability, (8) convergence, (9) estimation speed,
and (10) robustness. Finally, we propose two example utility decision trees
that describe hierarchies and trade-offs between utilities depending on the
inferential goals that drive model building and testing.
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1. Introduction

Probabilistic (Bayesian) modeling has seen a surge of applications in almost
all quantitative sciences and industrial areas [108, 202, 113, 62, 173, 148]. This
development is driven by a combination of several factors, including power-
ful probabilistic estimation algorithms [139, 24, 126, 229, 249], efficient post-
processing [296, 129], flexible open-source software [286, 78, 40], and increased
information processing capacity. Furthermore, these factors are coupled with a
growing awareness of the benefits of probabilistic modeling, such as inclusion
of prior knowledge [220, 205], regularization [110, 41, 27, 240], or uncertainty
quantification and propagation [142, 202, 113].

Despite these advances, creating and improving Bayesian models in the con-
text of a principled Bayesian workflow [267, 113] remains a complicated endeavor
that requires expertise in various domains; these include subject matter knowl-
edge about the system and the data it generates, statistical learning expertise,
programming and understanding of software development, as well as knowledge
of numerical approximation and simulation methods [173, 113]. Thus, to aid
future research on and applications of a principled Bayesian workflow, we ask
and provide answers to what we hold to be two fundamental questions:

1. What actually is a Bayesian model?
2. What makes a good Bayesian model?
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Table 1

Table of important symbols and their corresponding description.

Notation (Symbol) Meaning (Description)

P, A, D Joint distribution, approximator, training data
θ, y, ỹ Latent parameters, unrealized observables, realized observables
z, ξ Random state, random noise (nuisance or exogenous variables)
ϕ, ψ Quantity of interest, its model-based estimator (function of θ)
p(θ) Prior distribution of parameters
p(y | θ) Likelihood function (explicit or implicit/simulation-based)
p(θ, y) Joint distribution of parameters and observables
p(θ | y) Posterior distribution of parameters given observables
pA(θ | y) Approximate representation of posterior by approximator A
G(·), p∗(y) True data generator, true data-generating distribution
Ep[·] Expected value of a quantity with respect to density p
T,H Summary statistics of posterior, summary statistics of data

In current practice, the term Bayesian model is highly overloaded and used
to describe a wide range of objects with potentially very different properties.
Moreover, modern Bayesian models are more than just a likelihood and a prior
– rather, they resemble complex simulation programs coupled with black-box
approximators, interacting with various data structures and context variables,
embedded within iterative workflows with multiple feedback loops [199, 79, 173,
113, 267]. Thus, we aim to disambiguate and structure the different meanings of
a Bayesian model by proposing the PAD model taxonomy (see Section 2). Our
taxonomy aims to accommodate modern uses of Bayesian models and provides
an answer to Question 1. With a clear definition of Bayesian models in hand,
we describe a collection of ten utility dimensions that can be used to quantify
the goodness of Bayesian models holistically (see Section 3), thus providing
an answer for Question 2. We then continue with a discussion of importance
hierarchies and common trade-offs between utilities in Section 4 and end with
a conclusion in Section 5.

This paper started as an attempt to organize our thoughts and provide a uni-
fying and consistent language of Bayesian model building. To a certain extent,
it is inevitably opinionated. Nevertheless, we aim to be comprehensive in the
utility dimensions we discuss, such that all the goals we can sensibly ask from
a Bayesian model to achieve have their place in this paper. In contrast, due to
the large number of different topics we touch on in the process, the amount of
details and cited literature per topic are necessarily non-exhaustive. The cited
literature is only meant as a starting point for the interested reader to dive in
deeper if they wish. In terms of the target audience, we hope that this paper
will be helpful to both methodological researchers developing Bayesian models
as well as users applying Bayesian models in practice.

2. What is a Bayesian model?

As the term Bayesian model (or just model for that matter) can sustain multiple
meanings depending on context, it can prove incredibly difficult to talk about
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Table 2

List of important abbreviations and their corresponding definitions.

Abbreviation Definition Section

BNN Bayesian neural network 2.1.1
MCMC Markov chain Monte Carlo 2.3.2
HMC Hamiltonian Monte Carlo 2.3.2
VI variational inference 2.3.2
KL (divergence) Kullback-Leibler (divergence) 2.3.2
ABC approximate Bayesian computation 2.3.3
SMC sequential Monte Carlo 2.3.3
KDE kernel density estimation 2.3.3
NDE neural density estimation 2.3.3
NPE neural posterior estimation 2.3.3
SNPE sequential neural posterior estimation 2.3.4
SCM structural causal model 3.1.1
DAG directed acyclic graph 3.1.1
HDI highest density interval 3.2.2
SBC simulation-based calibration 3.2.3
ECDF empirical cumulative distribution function 3.2.3
ELPD expected log predictive density 3.3.2
ENP effective number of parameters 3.6.1
LOO-CV leave-one-out cross-validation 3.6.1
GLS global-local shrinkage 3.6.1
ENC effective number of coefficients 3.6.1
ESS effective sample size 3.8.1
MCSE Monte Carlo standard error 3.8.1
MAP (estimate) maximum a posteriori (estimate) 3.8.2

models with sufficient clarity. As we will see later, different kinds of models may
have different kinds of properties which need to be considered and prioritized by
an analyst. Without clearly communicating the essential kind of model one has
in mind, a discussion about its properties only contributes to the conceptual
entropy in quantitative research. In this section, we attempt to resolve this
issue by proposing the PAD taxonomy for Bayesian models (see Figure 1 for an
overview; see also Table 1 for a quick reference of key concepts and corresponding
notation). We will define four basic model classes and explain how they relate
to each other. While the PAD taxonomy might be applicable and useful in other
contexts, we will specifically expand on it from a Bayesian perspective.

2.1. P models

We define P models by a joint probability distribution p(y, θ) over all quanti-
ties of interest whose potential variation or uncertainty we express in terms of
probability theory. We assume that y represents all observable quantities (i.e.,
data, observations, or measurements) and θ represents all unobservable quan-
tities (i.e., parameters, latent states, or system variables) within a particular
modeling context. In most cases, the joint distribution factorizes into a likeli-
hood p(y | θ) and a prior p(θ) via the chain rule of probability:

p(y, θ) = p(y | θ) p(θ) (1)
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Fig 1. The PAD Bayesian model taxonomy defines four basic kinds of Bayesian models. Each
model kind represents a combination of the joint distribution of all random quantities (P), a
posterior approximator (A), and observed data (D).

This conceptually simple factorization serves as the basis for the common gen-
erative (forward) notation used to denote a “probabilistic recipe” for creating
synthetic data by sequentially sampling from the prior and the likelihood:

θ ∼ p(θ) (2)
y ∼ p(y | θ) (3)

The generative notation overloads the semantics of the “∼” operator, which
attains a dual meaning of “distributed as” and “sampled from”.

Not all P models are created equal, but most are built to mimic a real-world
process or a system, G, whose behavior we can observe or measure. Having some
properties that are of interest to the analyst, the opaque generator G induces
an unknown (true) data distribution p∗(y), typically available only through
finite observations ỹ ∼ p∗(y) (i.e., real-world data). Accordingly, P models strive
to encode probabilistic information about the true distribution p∗(y) and/or
structural information about the true generator G. The former means that our
model matches the statistical properties of p∗ either a priori, p(y) ≈ p∗(y), or a
posteriori p(y | ỹ) ≈ p∗(y), where p(y) and p(y | ỹ) are the prior and posterior
predictive distributions of P, respectively. The latter means that our parameters
θ correspond to some relevant (hidden) properties ϕ of G, for which we endeavor
to learn something by analyzing ỹ. We will expand on these goals in more detail
in Section 4.

P models are typically generative, that is, we can obtain pseudo-random
parameter and data draws via Monte Carlo simulations from Equation (1). The
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generative property presupposes that the prior is proper (i.e., its density function
has a finite integral) and that efficient algorithms for sampling random draws
from both p(θ) and p(y | θ) exist.

P models are the basic building blocks of all further model classes described in
the upcoming sections. Moreover, due to their generative properties, standalone
P models can be useful on their own for various forward inference tasks. These
include, for instance, exploring the stability of complex mechanistic equations
[170], testing different prior assumptions before a model sees any real-world data
[23], or venturing into computational philosophy using simulation [199]. As part
of a Bayesian workflow, the plausibility of P models can already be evaluated
through prior predictive or prior pushfoward checks [266], which ultimately aim
to determine whether the generative behavior of a P model is consistent with
the available domain expertise.

2.1.1. Non-parametric P models

In contrast to the above introduced parametric formulation, non-parametric
P models replace the finite joint model p(y, θ) with an infinite dimensional
(functional) expression [188]. Practically speaking, the number of parameters
in such models simply grows with the number of observed data points [191,
253, 188]. We may still assume that the observed data ỹ is drawn from some
unknown distribution ỹ ∼ p∗, but then place a prior p(f) over the set of all
possible generating functions f , instead of over a finite-dimensional parameter
space. The forward (generative) model is thus given by:

f ∼ p(f) (4)
y ∼ p(y | f), (5)

where the “likelihood” describes the probability of the data given a realization of
the function f . For non-parametric regression models (e.g., Gaussian processes,
[253]), the function f would also depend on additional inputs (i.e., predictors
or covariates) and is thus restricted by the problem design. The corresponding
prior typically prescribes some properties of f , for instance, smoothness or cer-
tain frequency characteristics [191], but may itself be non-analytic; still, it is
often possible to obtain random draws from the generative model and compute
marginal and conditional distributions.

In between the parametric and non-parametric worlds, we can encounter high-
dimensional P models, such as Bayesian neural networks (BNNs) [190, 148]. The
parameters θ of BNNs represent the set of trainable network weights and biases
or a subset thereof, such as the weights and biases of the last hidden layer (for
a practical overview of recent techniques, see [153]). The prior over network
weights is typically chosen out of computational convenience [93], since there is
hardly any domain expertise which can yield informative priors. The likelihood
of BNNs can also be an ostensibly simple distribution (e.g., a Gaussian) whose
parameters are obtained through a highly nonlinear transformation defined by
the computational graph of the network. Thus, even though BNNs are formally
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parametric P models, their high-dimensionality and non-linearity makes them
behave more like non-parametric P models [176].

This paper was conceptualized and written mainly with parametric P models
in mind. That said, almost all of its aspects apply to non-parametric and high-
dimensional P models as well, except, perhaps, for those that presuppose direct
interest in the P model parameters (e.g., Section 3.2). Furthermore, despite
theoretical differences [188], the practical treatment of parametric and non-
parametric P models, when trained on finite data, is not radically different in
the end. Finally, non-parametric P models commonly appear as local building
blocks in otherwise parametric P models (e.g., a latent Gaussian process as part
of an additive model; [168]), blurring the line even further.

2.1.2. Explicit vs. implicit likelihood models

Thus far, we have emphasized that both parametric and non-parametric P mod-
els can be analyzed through the lens of their generative properties. A common
denominator in such forward inference tasks is that the P model’s behavior (i.e.,
dynamic properties) may not be immediately obvious from the P model’s spec-
ification alone (i.e., static properties). Thus, simulation methods bridge the gap
between the specification and the realization of a P model [274, 131]. Indeed,
from a simulation perspective, we can further draw a distinction between explicit
likelihood (PE) models and implicit likelihood (PI) models.

PE models are characterized by a likelihood function that has a tractable
mathematical form. This means that the likelihood p(y | θ) is known analyti-
cally (e.g., Gaussian) and its value can be evaluated directly or approximated
numerically for any pair (y, θ). The same logic applies to non-parametric P mod-
els using the pair (y, f). PE models include popular statistical models, such as
(generalized) linear and additive models [134], but also (stochastic) differential
equation systems with simple statistical properties [152], finite mixture models
[55], or feedforward neural networks [124].

PI models are defined through a Monte Carlo simulation program y = g(θ, z)
and a prior p(θ), rather than directly through an analytic likelihood function
p(y | θ). The simulator g transforms its inputs θ into outputs y through a series
of latent program states z. A Monte Carlo simulator only implicitly defines the
likelihood density via the relation

p(y | θ) =
∫

p(y, z | θ) dz, (6)

where p(y, z | θ) is the joint distribution of observables y and random latent
program states z, if such a distribution exists. The above integral runs over all
possible execution paths of the simulation program for a given input θ and is
typically intractable, that is, we cannot explicitly write down the mathematical
form of the implied likelihood p(y | θ). PI models are usually built upon firm
theoretical assumptions and computational considerations aimed at providing
a faithful representation of the modeled real-world system or process. Common
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PI models include mechanistic neural models [147], particle physics simulators
[65], population genetics algorithmic models [137], or agent-based models [125],
to name just a few.

The distinction between PE and PI models is not a conceptual necessity, but
rather an emerging practical convenience. While most standard statistical mod-
els can easily be specified in terms of known density or distribution functions, the
behavior of complex computational models might be easier to emulate directly
using a simulation program. Importantly, PE and PI models necessitate the use
of different estimation methods and thus disparate modes of approximation and
inference, as we will see in later sections.

2.2. PD models

PD models are defined as the combination of a P model and observed data ỹ,
that is, they represent a tuple ( p(y, θ), ỹ ). The data can comprise any number
of measurements ỹ with an arbitrary structure (e.g., sets, time series, graphs,
etc.). Furthermore, the number of observed data sets (conditioning quantities
for the posterior) will be determined by the structure of the P model: Data on
a hundred countries represents a single data set from the lens of a multilevel
(hierarchical) model, but it comprises a hundred data sets for a single-level
(non-hierarchical) P model.

The goal of PD models is to integrate the joint distribution and the observed
data to arrive at the corresponding analytic posterior :

p(θ | ỹ) = p(ỹ | θ) p(θ)
p(ỹ) ∝ p(ỹ | θ) p(θ), (7)

where the denominator p(ỹ) =
∫
p(ỹ | θ) p(θ) dθ represents the model-implied

marginal likelihood (aka evidence) evaluated at ỹ and typically treated as a
normalizing constant due to its independence of the model parameters.

If the P model is generative, the analytic posterior exists for every ỹ that sat-
isfies the expected data structure of the P model, regardless of whether or not it
represents the true real-world generator G. In the non-representative case, the
P model is said to be misspecified. In most quantitative sciences, except perhaps
in some areas of the natural sciences, we can expect all P models to be misspec-
ified to some (non-negligible) degree. This does not prevent the corresponding
PD models from being useful, though, if they can at least express some relevant
aspects of reality captured by ỹ.

PD models represent the ideal endpoint of Bayesian inference. However, be-
cause we can rarely compute the marginal likelihood p(ỹ) analytically, we do not
have access to the actual PD model outside of textbook examples with limited
generality and applicability (i.e., for conjugate P models, [114]). In other words,
for most practically relevant and non-trivial PE and PI models, we cannot re-
trieve the analytic posterior p(θ | ỹ) and can only work with an approximate
representation through the lens of an intermediary A which we call a posterior
approximator.
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2.3. PA models

PA models are defined as the combination of a P model with a posterior ap-
proximator A, that is, they constitute a tuple ( p(y, θ), pA(θ | y) ), where the
latter denotes any algorithm capable of somehow approximating the analytic
posteriors of model-implied observations y for a given P model. Approximators
themselves exist at both an algorithmic and an implementation level, and details
on both levels can influence their behavior and performance. In the absence of
actually observed data ỹ, PA models can be useful for confirming the computa-
tional faithfulness of a workflow, for instance, via simulation-based-calibration
(SBC, [284, 208]) or assessing the adequacy of a model for answering a partic-
ular research goal [266]. Importantly, the type of P model (i.e., PE or PI) will
typically determine or necessitate the choice of a particular approximator A, as
we will see shortly.

2.3.1. What is an approximator?

More precisely, we can define an approximator as a triple A = {A, I,H}, where
A denotes the algorithmic representation (formal computer program), I denotes
the actual implementation in a concrete programming language, and H denotes
the set of admissible hyperparameters (i.e., adjustable settings or inputs) of the
approximator. The first two components of A are often entangled when talking
about approximators in general, but they require different levels of analysis. For
instance, we can determine the computational complexity of A via standard
algorithmic analysis and classify approximators according to their asymptotic
run time or memory requirements [60]. However, the latter two will also be
constrained by the particular implementation I: Parallel computing can easily
turn a scary-looking quadratic O(n2) time complexity into a negligible constant
run time in practice [60]. Thus, we deem it important to keep the distinction
between A and I explicit.1 In addition, the performance of an approximator will
heavily depend on the choice of particular hyperparameters h ∈ H and these
should be explicitly specified in any PA model.

2.3.2. Approximators for PE models

Currently, the two most commonly used approximators for PE models are
Markov chain Monte Carlo (MCMC) samplers and variational inference (VI)
methods, but there exist many more approximator classes, for example, inte-
grated nested Laplace approximation (INLA, [261, 180]) or optimal transport
applied to Bayesian inference [81, 160, 233].

1Naturally, hardware specifications will further influence the actual run time and space
requirements of any approximator, so these specifications should be taken into account when
comparing different approximators. The utility of an approximator will also be constrained
by the available hardware budget: parallelism is of little use without access to a computing
cluster.
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MCMC sampling algorithms, such as the Metropolis-Hastings algorithm [135],
Gibbs sampling [105], Hamiltonian Monte Carlo [HMC, 214], or its extension to
the No-U-Turn (NUTS) sampler [139], belong to a family of stateful algorithms
which generate a sequence of correlated draws that converge in distribution
to a stationary target distribution [108]. Generally, our goal in MCMC is to
construct a (geometrically) ergodic Markov chain on θ whose stationary distri-
bution is the posterior p(θ | y) [108]. In practice, we then sample from the chain
to obtain a finite number of random draws from the (hopefully accurate) sta-
tionary distribution pA(θ | y) and use these draws to approximate p(θ | y). More
precisely, using the posterior draws, we can efficiently approximate expectations
(e.g., mean or variance) and quantiles of the posterior marginals, but not the
posterior density itself.

The idea of approximating a complicated distribution via dependent random
draws, albeit rather straightforward in hindsight, has gradually transformed and
shaped the field of Bayesian inference. Moreover, it constitutes the main logic
behind major probabilistic programming languages such as Stan [50] or JAGS
[242]. A sampler is thus a computer program which uses computer-generated
randomness to generate draws from a (complicated) distribution, instead of
deriving or estimating its algebraic form.

Differently, variational inference (VI) methods cast the problem of posterior
inference as an optimization task. In contrast to MCMC, the resulting posterior
approximation pA(θ | y) is in the form of a tractable density instead of random
samples from the posterior. Our goal in VI is to specify a family of approximate
densities Q over the parameters θ of P. Then, we try to retrieve the density
q∗ ∈ Q which minimizes the Kullback-Leibler (KL) divergence to the analytic
posterior. Finally, we use q∗(θ) as our approximation pA(θ | y) to the analytic
posterior.

MCMC and VI methods represent the two endpoints of a trade-off between
theoretical guarantees and computational efficiency. MCMC methods enjoy the
guarantee that under certain regularity conditions [108], the obtained draws
represent the true parameter posterior p(θ | y). More precisely, the posterior ex-
pectations can be perfectly recovered if the MCMC chain is run infinitely long
and, more practically important, expectations can be efficiently approximated
already with a finite number of draws. Despite their favorable theoretical prop-
erties and major advances in recent years, MCMC algorithms are notoriously
slow, which renders estimation of some complex models or applications to re-
ally big data practically infeasible [29]. On the other hand, VI methods can be
very fast and offer a viable alternative to MCMC in applications to large data
sets or real-time inference. However, VI approximators can suffer severe loss of
posterior accuracy and, as of today, offer less guarantees for correct inference
than MCMC methods ([29], but see [322, 321]). Thus, the choice between an
MCMC or a VI approximator for a particular PA model will largely depend
on the modeling context. In addition, highly complex PE models might not be
estimable with either MCMC or VI, in which case they might be treated as
PI models in practice and tackled via simulation-based approximators, as we
discuss next.
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2.3.3. Approximators for PI models

Standard MCMC and VI solutions are not applicable to statistical inference
with PI models, since the latter lack an analytic likelihood function p(y | θ).
Accordingly, approximators for PI models leverage Monte Carlo (i.e., random-
ized) simulations for estimating the posterior based on the implicit likelihood
defined by the simulator and Equation (6).

Approximate Bayesian computation (ABC) comprises a broad family of
asymptotically correct methods for performing inference with PI models. The
core idea of ABC methods is to approximate the posterior by repeatedly draw-
ing parameters from the prior and then running the simulator with the sampled
parameters to obtain a synthetic data set. Whenever a synthetic data set is suf-
ficiently similar to an actually observed data set (as defined by a fixed similarity
criterion or a distance metric), the corresponding parameters are retained as a
draw from the target posterior, otherwise rejected (i.e., rejection sampling).

In practice, ABC methods are notoriously inefficient and hindered by various
methodological “curses”, such as the curse of dimensionality [254] or the curse
of insufficiency [193]. Several more efficient methods employ various techniques,
such as sequential Monte Carlo [SMC, 275, 165]) or ABC-MCMC [194] with
kernel density estimation (KDE) [289] to optimize sampling or correct potential
deficiencies, but the core idea of using simulations to aid real-world inference
remains invariant across methods.

Recently, machine learning and deep learning innovations have permeated
the field of simulation-based inference with the goal of scaling up or replac-
ing standard ABC methods altogether [62]. Most of these innovations require
simulation-based training of an expressive machine learning algorithm (e.g., ran-
dom forests or neural networks) which is then used as a standalone approxima-
tor [54, 126, 123, 247], in combination with an ABC routine [151] or an MCMC
sampler [136, 90, 184, 33].

For instance, neural density estimation (NDE) methods employ specialized
neural architectures for analyzing complex high-dimensional distributions [e.g.,
natural images, 72, 162, 3]. In the context of Bayesian inference, NDE methods
can approximate different components of intractable PI models and currently
represent a field of active and promising development [62, 173]. Specifically,
neural posterior estimation (NPE) methods [4, 126, 247, 123, 225, 6] involve
simulation-based training of a conditional generative neural network [e.g., nor-
malizing flows, 166, 229]. The trained network then acts as a functional that
can approximate the posterior across the entire prior predictive distribution of a
P model without any re-training, enabling amortized inference (to be explained
shortly). A shared feature between NPE methods is that they avoid MCMC
sampling altogether and can perform exact inference under certain optimal con-
ditions.

Ultimately, the utility of any simulation-based method will depend on a
combination of various factors, such as generality, domain expertise, theoret-
ical guarantees, efficiency, scalability, and software availability. The amount of
available data will once again play a crucial role in the choice of approximator.
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Fig 2. Amortized approximators incorporate a simulation-based approximation loop (training
phase) before any real data are collected. The subsequent inference phase involves no simula-
tions or further optimization and could be carried out almost instantly. The upfront training
effort therefore amortizes over arbitrarily many observed data sets from a research domain
working on the same P model family.

In this context, the distinction between amortized and non-amortized posterior
approximators becomes crucial.

2.3.4. Amortized vs. non-amortized approximators

Arguably, there are numerous ways to devise a taxonomy for the ever-growing
zoo of posterior approximators. A particularly useful and clear-cut classification
views approximators as either amortized or non-amortized, with different degrees
of amortization possible. Amortized approximators involve a costly simulation-
based optimization (training) phase which renders subsequent inference on sim-
ulated y or real data ỹ extremely efficient (see Figure 2). In other words, the
optimization/training effort amortizes over repeated inference queries (e.g., over
multiple data sets or data set sizes). Differently, non-amortized approximators
repeat all necessary computations for each data set or prior choice from scratch
and utilize hardly any pooling of computational resources (see Figure 3).

Examples of amortized approximators include the BayesFlow method [247,
245, 245, 248], sequential neural posterior estimation (SNPE) methods operating
in a single-round regime [126, 123, 80], machine learning-enhanced ABC [254],
or the pre-paid estimation method [204]. Examples of non-amortized approxi-
mators include standard explicit inference algorithms, such as MCMC or VI,
but also several common ABC methods, such as ABC-SMC [275, 165] or ABC-
MCMC [194, 289]. In addition, some neural PA models might include both amor-
tized and non-amortized components, such as multi-round SNPE methods (in-
volving a separate training phase for each data set, [228, 126, 80, 67]), likelihood
approximators or surrogates (involving MCMC sampling, [231, 184, 90, 33]), or
inference compilation methods (involving SMC, [226, 174]).
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Fig 3. Non-amortized approximators perform a separate approximation loop (dashed plate)
for each observed data set from a given research domain. Likelihood-based approximations,
such as MCMC will evaluate the likelihood, whereas simulation-based approximators, such as
ABC rejection samplers, will only use random draws from the implicit likelihood (available
through stochastic simulations). Approximation and inference are tightly intertwined and the
observed data enters the approximation loop.

Amortized approximators are typically employed to estimate implicit PA(D)2
models, but are equally applicable to explicit PA(D) models. In the former case,
their involvement often arises out of necessity, since PI models are analytically
intractable and state-of-the-art approximators, such as HMC-MCMC, are not
applicable out of the box. In the latter case, amortized approximators might be
the only resort to estimate multiple PAD models in the presence of multiple data
sets, where non-amortized approximators, despite being feasible, would demand
an inordinate amount of a researcher’s lifetime [303].

2.4. PAD models

PAD models are defined as the combination of a P model, a posterior approxima-
tor A, and observed data D, that is, they constitute a triple (p(y, θ), pA(θ | ỹ), ỹ).
Ultimately, PAD models aim to approximate the corresponding PD model
through a suitable approximator A, whereas the amount of data D, together
with the type of P model, will largely determine the choice of approximator. As
a consequence, the properties of a particular PAD model may be very different
than what is expected from studying the corresponding PA model, since the
observed data ỹ may not have been generated from P itself. This misspecified P
model case can arise for both PE and PI models and can have different conse-
quences for the validity of inference depending on the particular approximator A
[197, 28, 96, 95].

2Henceforth, parentheses in the PAD taxonomy denote an “OR relationship”. For instance,
P(D) would mean “a P or a PD model” and P(A)D would mean “a PD or a PAD model”.
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For instance, amortized approximators face the challenge of dealing with
simulation gaps [269, 224]. Simulation gaps occur when P model simulations do
not accurately represent the real behavior of the modeled system or when they
cannot adequately account for unexpected contamination of the observed data.
Simulation gaps are especially critical for amortized approximators since the
latter assume that simulations are faithful proxies of reality. Thus, simulations
from misspecified P models may lead to subsequent problems for amortized
inference on real data [269]. In these cases, the resulting pA(θ | ỹ) will not be
representative of the analytic p(θ | ỹ) and any substantive conclusions based on
the former will have little validity.

In contrast, principle limitations due to model misspecification do not ex-
ist for standard, non-amortized Bayesian approximators, such as MCMC. Un-
der certain regularity conditions, MCMC samplers guarantee that the obtained
samples represent the analytic posterior p(θ | ỹ) even when the underlying P
model is misspecified [108]. However, misspecified models might still cause con-
siderable difficulties and convergence problems for MCMC methods in practice.
Thus, any trustworthy approximator should be equipped with diagnostics sig-
naling improper convergence or invalid inference queries (see Section 3.8).

2.5. Intermediate summary I

Thus far, with our PAD taxonomy, we have defined four different classes of
Bayesian models comprising different, yet interdependent, conceptual elements.
Common to all has been the joint probability model (P), which represents the
core probabilistic and structural assumptions of a Bayesian model. In addition,
we proposed to treat the posterior approximator (A) and the data (D) as further
constituents of Bayesian models. We consider this warranted, since all three
elements not only determine the scope and validity of the substantial conclusions
derived from model-based inference but also influence which assumptions we
decide to (and could!) test and which we choose to keep untouched by reality.

3. What makes a good Bayesian model?

Below, we present a total of ten utility dimensions that, from our perspective,
capture most relevant aspects of Bayesian models as defined by our taxonomy.
For each of these dimensions, we explain (a) its definition and meaning, (b) the
reason why we deem it relevant for Bayesian model building, and (c) how to
practically measure it. The order in which we present each utility dimension does
not indicate their importance but aims to ease their presentation. We discuss
the relative importance of utility dimensions in Section 4.

3.1. Causal consistency

A common goal of scientific models is the investigation of a causal hypothe-
sis, such as the improvement a certain treatment might bring to some medical
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condition or the effect an intervention has on an outcome of interest. Most peo-
ple are aware of the widely recited folk wisdom that correlation does not imply
causation. Yet, this adage bears the seeds of a far-reaching and nowadays gen-
erally acknowledged opinion that statistics alone simply cannot solve questions
of causality [235].

While statistical inference can handle the static nature of associations in ob-
servational data, causality is a matter of changing conditions and handling these
changing conditions requires causal assumptions to build upon [236]. Moreover,
different P models may claim different degrees of causal sophistication. For
example, some PE models built only to make accurate predictions may pass
without a single mention of causality, while some mechanistic PI models may
directly embody causal functional relationships, such that an input variable x is
assumed to cause an observable y by construction or by derivation from scientific
theory. Some complex P models may even hold standard unidirectional notions
of causality inadequate, as the dynamics of certain natural systems appear to
necessitate bidirectional or hierarchical forms of causal interplay [288, 216].

The scientific methods developed around the notion of causality help us de-
termine whether a P model is a valid recipe for answering a particular causal
query in principle. Put differently, we ask whether the probabilistic structure
of a P model is consistent with a set of external causal assumptions. Thus, we
refer to this implied model utility as Causal Consistency.

In this section, we will briefly present the foundation of causal theory based on
the work of Pearl [236], as it is currently the most common causal framework.
There are adoptions and adaptations for individual fields, such as the social
sciences [210, 97] and public health research [294]. Moreover, recent Bayesian
statistics textbooks have started discussing causality as a central aspect of sta-
tistical analysis [202]. In addition, the fields of causal discovery [143, 278, 120]
and optimal experimental design [83, 88, 146] deserve a mention as well, since
they tackle problems related to causality. Finally, other promising causal frame-
works have been proposed [145] but are not discussed in detail here for reasons
of brevity.

3.1.1. Structural causal models

Pearl [236] proposes a framework to express causal assumptions and construct
requirements on probabilistic models that make them consistent with those as-
sumptions. The mathematical objects that allow for causal analysis are called
structural causal models [SCMs, 235] and they comprise structural equations
(what we express via P models), causal graphs, as well as interventional and
counterfactual logic [238]. For instance, linear regression P models, if combined
with proper causal calculus, comprise a widely used and simple form of linear
SCMs. However, vastly more complex SCM architectures are possible, such as
causal generative neural networks [167], where a causal graph is connected to a
generative adversarial network responsible for learning interventional distribu-
tions (see Section 3.1.2 for details on interventions).
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Fig 4. An example structural causal model (SCM) with three variables. The left panel depicts
the pre-intervention path diagram, whereas the right panel depicts the post-intervention path
diagram (see text for further clarification).

For the purpose of this paper, it is sufficient to discuss SCMs comprising a
set of three endogenous variables whose causal relationships are to be studied.
We refer to these variables as w, x, and y. For every endogenous variable, we
assume there exists a corresponding exogenous (noise) variable, ξw, ξx, and ξy,
respectively. Under the assumption of causal sufficiency (i.e., every exogenous
variable affects no more than a single endogenous variable), a hypothesis of
the form “x causes y” means that y is generated by a structural equation y =
gy(x, ξy) for some function gy. The corresponding causal graph is simply x → y.

To extend this example, the left panel of Figure 4 illustrates a path diagram
of the structural equations relating the endogenous variables w, x, and y, along
with the corresponding causal graph w → x → y. Importantly, any set of struc-
tural equations also encodes assumptions about the lack of causal influence. For
instance, the absence of w from the right-hand side of gy conveys the assump-
tion that y will remain invariant to changes in w, as long as variables x and ξy
remain constant.

In general, a causal graph implied by a set of structural equations will be a
directed acyclic graph (DAG). It can be constructed as follows: The variables
that appear on the right-hand side of a structural equation become the parents
of the variable that appears on the left-hand side of the structural equation.
We can understand the structural equations as encoding explicit structural as-
sumptions about the opaque (true) data generator G, which in turn implies a
(true) joint distribution of the endogenous variables, here p∗(x, y, z). This dis-
tribution is realized by first assuming a joint distribution of the noise variables,
p∗(ξw, ξx, ξy), and then propagating this uncertainty to w, x, and y through the
respective structural equations.

In P model terms, a DAG can be understood as defining a Bayesian network
for the implied joint probability distribution of the endogenous variables [235].
The conditional distribution of an arbitrary endogenous variable v is given by
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p(v | Nv), where Nv denotes a set of parent variables of v as implied by the
DAG. For the current example, this would imply a generative likelihood that
factorizes as p(w, x, y | θ) = p(y | x, θ) p(x | w, θ) p(w | θ), where θ are our P
model parameters (left unspecified in the DAG).

In our model taxonomy, a P model may or may not be consistent with the set
of causal assumptions embodied in a DAG, which constitutes a binary metric
of causal consistency. For example, consider again the simple DAG given by
x → y, with structural equation y = gy(x, ξy). The concrete approximation of
gy is part of the P model assumptions (see below), whereas adherence to the
(external) DAG implies satisfying causal consistency. For example, consider the
following linear P model

x = ξx

y = βx + ξy (8)

with unspecified distributional forms of ξx, ξy, and β for simplicity. The ap-
proximation ĝy chosen for gy is ĝy(x, ξy) = βx + ξy while ĝx(ξx) = ξx is just
the identity function. The above P model is clearly causally consistent with the
DAG x → y. In contrast, another linear P model in which we had swapped
x and y (i.e., assuming x = βy + ξx), would be causally inconsistent with the
graph x → y.

In linear P models, the regression coefficients represent path coefficients of
structural equations and thus quantify the linear “causal effects” of certain vari-
ables on others. However, even when a linear P model is causally consistent
with a given DAG, its linear functional form y = βx + ξy may still be a poor
approximation of the true (potentially highly non-linear) structural equation
y = gy(x, ξy). Thus, an equally causally consistent, but more flexible, non-linear
P model may be a better choice in the end, depending on other utility dimen-
sions. This illustrates that causal consistency, as defined here by the formal
agreement with a causal DAG, is only a necessary, but not a sufficient condition
for a P model to provide trustworthy causal inference. Further requirements will
be discussed in the context of parameter recoverability (see Section 3.2).

Causal graphs allow for an unambiguous communication of assumptions about
causal relations, but on their own, they still represent static entities. In contrast,
interventions and counterfactuals describe actions which enable us to answer
causal queries based on (a subset of) these assumptions. Below, for the sake of
brevity, we will elaborate solely on interventions (see [236] for more details of
counterfactuals).

3.1.2. Interventions

An intervention is an operation that changes the underlying structural equa-
tions, hence the corresponding causal graph. Intervening on x means setting it
to a fixed value x̃, say, administering the treatment x̃ to a patient. We denote
an intervention as do(x = x̃) or simply do(x̃) for short. The effect of an inter-
vention on the path diagram of our example three-variable SCM is shown in
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the right panel of Figure 4. An intervention do(x̃) differs from conditioning on
x̃ in the following way: The former removes the connections of node x to its
parents, whereas the latter does not change the causal graph from which data is
generated [236, 167]. If we set the value of x to some x̃, then it is no longer deter-
mined through the structural equation gx(w, ξx), that is, we have intervened in
the generative mechanism. Importantly, the interventional distribution of inter-
est, say, p(y | do(x̃)) may differ from the corresponding conditional distribution
p(y | x̃).

However, when we only have access to observational data because we cannot
intervene in the causal graph (e.g., an experiment is too expensive to perform),
our resort is to estimate conditional distributions. Thus, an important question
arises: “Which causal queries can we answer (i.e., which interventions’ effects can
we estimate) based on observational data alone?” In the language of do-calculus,
this translates to the question of whether we can circumvent the do operator and
express the interventional distribution of interest p(y | do(x̃)) via a conditional
distribution [237]. For this purpose, we can use three basic rules of do-calculus
that specify the conditions under which we can 1) ignore observations, 2) treat
interventions as equivalent to observations, and 3) ignore interventions [237].

Against this background, we say that a P model is causally consistent for
a given causal query, if that query can be answered by applying the rules of
do-calculus to the underlying DAG and all necessary conditional distributions
are part of the P model. A P model which is causally consistent with a DAG
is also causally consistent for all valid causal queries of that DAG. In practice,
however, we can rarely attain (or care about) the former but are only concerned
with causal consistency for a few queries of interest. To illustrate this point, let
us again consider the DAG w → x → y from Figure 4. The linear P model (8) is
not causally consistent with this DAG, since it does not include the structural
equation x = gx(w, ξx) but only y = gy(x, ξy). However, it is causally consistent
for the specific query p(y | do(x̃)) because, after applying the second rule of
do-calculus, we find that p(y | do(x̃)) = p(y | x̃) for this DAG. Correspondingly,
the latter conditional distribution is part of the P model in the form of y =
βx+ξy. Naturally, the conditions under which we can answer causal queries using
conditional distributions become harder to test for causal graphs containing
more than just three variables, but the underlying principles remain the same
[58].

3.2. Parameter recoverability

A central goal of Bayesian modeling is to perform parameter inference, that is,
to draw conclusions directly from the posterior of the latent parameters or other
pushforward quantities of interest. But how can we assess whether our inferences
are informative and capture all relevant layers of uncertainty? The Parameter
Recoverability dimension captures the ability of P models (and of PA models; see
Section 3.2.3) to gain information from data and perform faithful uncertainty
quantification. Moreover, recoverability is a concept where frequentist statistics
inevitably play a role, even in the context of purely Bayesian models.
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Fig 5. Three hypothetical (univariate) PD model scenarios illustrating posterior contraction
and Bayesian surprise. The leftmost panel depicts a PD model which yields both large poste-
rior contraction and large Bayesian surprise. The middle panel depicts a PD model exhibiting
both small posterior contraction and small Bayesian surprise. The rightmost panel depicts
a PD model which has zero posterior contraction (i.e., equal prior and posterior variances),
yet non-zero Bayesian surprise (i.e., owing to a different tail exponent). Posterior contrac-
tion is easier to compute and interpret, but Bayesian surprise is more general, as it captures
differences beyond second moments (i.e., variances).

For the purpose of generality, consider the task of estimating a quantity
of interest ϕ based on a P model and (yet to be realized) data y using an
estimator ψ = ψ(θ) of ϕ where θ ∼ p(θ | y). The epistemic uncertainty implied
by the posterior p(θ | y) is naturally propagated to the posterior of ψ. Based
on the implied posterior p(ψ(θ) | y), we can derive both point and uncertainty
estimates, among other things, as detailed further below.

To make this notion more concrete, let us consider a simple example. Sup-
pose we are interested in the (true) mean difference of y between two groups,
ϕ = E[y1] − E[y2], where y1 and y2 represent the responses of the two groups,
respectively. One way to estimate ϕ here is via a linear regression P model with
response vector y = (y1, y2) and pointwise likelihood

yn ∼ Normal(μn, σ)
μn = β1 × I(n ∈ C1) + β2 × I(n ∈ C2),

where I is the indicator function, C1 is the index set of observations n belonging
to Group 1, and C2 is the corresponding index set of Group 2. Then, based on
this P model, we define an estimator ψ of ϕ as ψ = β1−β2. Accordingly, ψ does
not need to be a model parameter itself but can be any pushforward quantity
computable from the parameters. The Gauss-Markov theorem tells us that the
chosen estimator ψ has the lowest sampling variance among the class of linear
unbiased estimators in case of flat priors on β1 and β2. However, the properties
of any estimator in general are not always that clear: Consider another example
where the true data generator is given by yn = f(ϕxn) + ξn, with x being
a known continuous variable, f a monotonically increasing function, and ξ an
additive error term. In the absence of knowledge about the exact form of f , we
could set up a P model with a normal likelihood that is linear in ψ,

yn ∼ Normal(ψ xn, σ).

Moreover, the properties of ψ as an estimator of ϕ will certainly depend on
the unknown function f and is likely not as favourable as in the first example.
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However, through ψ, we can at least hope to get the sign of ϕ right, which may
as well turn out to be sufficient for meeting the goals of some applications.

3.2.1. Identifiability and Information Gain

Oftentimes, we are interested in learning something about the (true) real-world
generator G through the P model-dependent quantity ψ, justified by its resem-
blance to the model-independent quantity ϕ that we assume to play a role in G.
As a first step, we need to study whether the data generated by the unknown
process enables the P model to extract any information about ψ at all. If the
data is not informative, there is no point in further studying the recoverability
of ϕ through ψ. In a frequentist sense, we say that a quantity ψ is identified
in the given P model, if all the possible values of ψ lead to unique conditional
distributions, that is, for any ψ1 �= ψ2 we have p(y | ψ1) �= p(y | ψ2) [52]. Thus,
frequentist identification implies that, in the limit of infinite data, no ambiguity
remains about possible values of ψ [178].

In a Bayesian context, the posterior captures all information about ψ gained
from the data. Thus, the posterior should be a key object for defining iden-
tifiability. Since the posterior always exists (as long as the prior is proper),
regardless of how informative the data are, the mere existence of the posterior
is not a helpful measure of identifiability [see also 181, 122, 265, 264, 25, for
discussions of Bayesian identification]. Instead, we have to define identifiability
by a juxtaposition of prior and posterior. The transition from prior to posterior
(i.e., Bayesian updating) essentially conveys a reduction in uncertainty brought
about by observing some data. Equivalently, it can be seen as communicating
the information gain achieved by accounting for the data. Thus, we expect the
posterior to be narrower (sharper) than the prior, as the opposite would imply a
loss of information through observation – a rather paradoxical scenario. In other
words, the data should be sufficiently informative of ψ, otherwise, the posterior
will just resemble the prior.

Bayesian surprise offers a way to quantify arbitrary differences between prior
and posterior. The Bayesian surprise is typically defined as the Kullback-Leibler
(KL) divergence between the two distributions

BS(ψ | y) := KL [p (ψ | y) || p (ψ)] (9)

=
∫

p (ψ(θ) | y) log
(
p (ψ(θ) | y)
p (ψ(θ))

)
dθ, (10)

but other divergence or integral metrics are also possible [212]. The Bayesian sur-
prise, as defined above, is non-negative and equals zero if and only if p (ψ | y) =
p (ψ). Henceforth, to avoid commitment to the KL divergence, we will use the
symbol D to denote any divergence with the above two properties. In information
theory, this particular form of the Bayesian surprise is called a relative entropy,
and, in Bayesian terms, represents the information gained by updating the prior
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to the posterior in units determined by the base of the logarithm.3 Accordingly,
in a Bayesian context, ψ is identified if the relative entropy is non-zero.

Further, the concept of posterior contraction provides a simpler and tractable
empirical diagnostic to assess identification and degrees of informativeness [25].
Posterior contraction formalizes the idea that the posterior should get narrower
as the amount of data increases and is computed as the ratio between posterior
and prior variance:

PC(ψ | y) := 1 −
Varp(θ|y)(ψ(θ))
Varp(θ)(ψ(θ)) . (11)

If y contains no information about ψ, then PC(ψ | y) = 0. Conversely, the more
information (i.e., uncertainty reduction) we gain from y, the larger PC(ψ | y)
becomes, up to a maximum of PC(ψ | y) = 1. The posterior contraction can
be combined with the posterior z-score (i.e., the difference between the true
parameter and its posterior mean) as an intuitive two-dimensional estimate of
the information gain that can be achieved by a P model when combined with
data D [266].

Posterior contraction compares only the second moments (i.e., the variance)
of the prior and the posterior, which means that it can be efficiently computed
from random draws of those distributions. However, relevant differences between
prior and posterior may manifest themselves only in higher moments: It is still
possible that we learn something about a distribution, for instance, about its
tail exponent or symmetry, while its variance remains largely unchanged (see
Figure 5 for an illustration).

So far, we have only considered posterior contraction and Bayesian surprise
brought about by a single data set y. Thus, Equation (10) provides only a
measure for local (i.e., per-data) information gain. Whenever we are interested
in global (i.e., in expectation over all possible observations) information gain,
then the expected Bayesian surprise (EBS) should be considered:

EBS(ψ) := Ep∗(y)
[
D [p (ψ | y) || p (ψ)]

]
(12)

=
∫

D [p (ψ | y) || p (ψ)] p∗(y) dy, (13)

or, similarly, the expected posterior contraction (EPC). Global information gain
assumes access to the distribution p∗ of real-world generator outputs and so we
can rarely compute this quantity in practice. Instead, we can obtain a Monte
Carlo estimate of Equation (13) over multiple observed data sets as an approx-
imation of the true EBS.

In many scenarios (e.g., during model development), we are interested in the
recoverability of ψ over the full generative scope of a model P, in combination
with a posterior approximator A, before collecting any data. In this case, we

3Whenever an approximation of the Bayesian surprise is intractable because it requires
access to the analytic prior and posterior densities, we can define Bayesian surprise through
an integral metric, such as the Maximum Mean Discrepancy [MMD, 127], that we can ap-
proximate efficiently from prior and posterior draws.
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will be considering the approximate posterior pA(ψ | y) and estimating the
difference between prior and approximate posterior with respect to the joint
distribution p(θ, y) implied by the P model:

EBSP,A(ψ) := Ep(θ,y)
[
D [pA(ψ | y) || p (ψ)]

]
, (14)

In other words, we assume the P model to be a good representation of p∗(y) and
evaluate the identification of ψ under this assumption for a given approximator
A. Note that approximating the expectation over p(y, θ) will be computation-
ally expensive for many PA models relying on non-amortized approximators
(i.e., ABC or MCMC), since estimating the posterior pA(ψ | y) repeatedly will
dominate almost any approach (see also Section 3.2.3). Thus, well-calibrated
amortized approximators [126, 247] can serve as remarkable catalysts for effi-
ciently quantifying global information gain for a given PA model before com-
mitting to the (costly) process of data collection.

3.2.2. Ground-truth comparisons

We have hitherto assumed that we are dealing with a black-box (true) generator
G whose actions give rise to the data-generating distribution p∗(y). Thus, we
did not require ϕ to play any actual role in the process of data generation. In
this section, we will restrict our focus to scenarios where ϕ does in fact represent
some intrinsic properties of G. Thus, we assume an unknown conditional data-
generating distribution p∗(y | ϕ) and are interested in the similarity between ϕ
and its P-model-based estimator ψ.

Obtaining the posterior of ψ for a single data set and verifying sufficient
information gain will tell us nothing about the recoverability of ϕ given a P
model, (i), because the resemblance between ϕ and its estimator ψ remains
unclear and, (ii), because we need to consider the variation in y, that is, variation
across possible data sets as well. This means that we ought to estimate the
performance of an estimator in expectation over possible data:

Ep∗(y|ϕ)[f(ϕ,ψ)] =
∫

f(ϕ,ψ | y) p∗(y | ϕ) dy, (15)

where f(ϕ,ψ | y) is some function comparing ϕ with the posterior of ψ, condi-
tional on data y (see below for examples). If the applied P model were the actual
data generator itself, then p∗(y | ϕ) would be equal to p(y | ϕ) =

∫
p(y, θ | ϕ) dθ

and we could set ψ = ϕ. In this case, ϕ could be directly estimated through
its own posterior distribution induced by ϕ(θ) with θ ∼ p(θ | y). However, in
reality, we do not know how well P represents the actual generator, and so we
continue to distinguish ϕ from its P model-based estimator ψ.

Notably, the evaluation of Equation (15) does not actually require any ob-
served data and so can be done ahead of time, before commencing any data col-
lection. Unfortunately, as for many things in Bayesian statistics, it is a lot easier
to write down the target in mathematical notation than to actually compute it:
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The integral in (15) is almost always intractable, even if the posterior of ψ itself
were analytic. Thus, in statistical practice, we approximate the integral with a
finite sum over M independently simulated data sets y1, . . . , yM ∼ p∗(y | ψ):

Ep∗(y|ϕ)[f(ϕ,ψ)]MC≈ 1
M

M∑
m=1

f(ϕ,ψ | ym) (16)

This Monte Carlo estimate is now conceptually easy to compute, but potentially
very time-consuming, since the P model needs to be fit M times, whereby each
single fit may itself demand a considerable amount of time.

In Equations (15) and (16), ϕ is held constant, which constitutes the typical
setup in simulation studies where we fix the ground-truth to a single value per
simulation instance. However, the conclusions we can draw from such studies are
naturally limited to the few investigated simulation instances (chosen ground-
truths). If the investigated instances were non-representative in reality, then we
would learn little to nothing of value from our simulations, even if the data-
generating distribution p∗(y | ϕ) itself were faithful. To consider this implied
uncertainty, we can make the criterion (15) fully Bayesian by adding a prior
p∗(ϕ) over ϕ. Thereby, we can now measure recovery in expectation over data
y and a priori plausible values of the quantity of interest ϕ:

Ep∗(y,ϕ)[f(ϕ,ψ)] =
∫ ∫

f(ϕ,ψ | y) p∗(y | ϕ) p∗(ϕ) dy dϕ, (17)

with Monte Carlo (simulation-based) approximation

Ep∗(y,ϕ)[f(ϕ,ψ)]MC≈ 1
M

M∑
m=1

f(ϕm, ψ | ym) (18)

for M ground-truth simulations, each generated according to ϕm ∼ p∗(ϕ) and
ym ∼ p∗(y | ϕm).

Point estimation One central aspect of parameter recoverability that can be
assessed in terms of expectations over the data-generating distributions is point
estimation. We write T (ψ | y) for a point estimator derived from the posterior
of ψ. Most commonly, we compute the posterior mean

∫
ψ(θ) p(θ | y) dθ, or

alternatively the posterior median or mode. Due to aleatoric uncertainty in the
data y, we cannot expect T (ψ | y) = ϕ for all y, even if the former would be the
best possible point estimator of ϕ. Instead, we can measure how far away our
estimator is from the truth via a strict distance function d on T (ψ | y) and ϕ,
such that d(T (ψ | y), ψ) = 0 holds if and only if T (ψ | y) = ϕ. Common distance
functions are the bias T (ψ | y) − ϕ, the squared error (T (ψ | y) − ϕ)2, and the
absolute error |T (ψ | y)− ϕ|. To estimate the performance of a point estimator
in expectation over the data-generating process, we would set f(ϕ,ψ | y) =
d(T (ψ | y), ψ) and then apply Equations (15) to (18). Whenever we compare
P models based on their point estimation capabilities, we would prefer the P
model with the smallest expected distance of its point estimator to the assumed
true ϕ.
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Uncertainty estimation An uncertainty estimator is defined as a parameter
region that is supposed to contain the true quantity of interest ϕ with a certain
(user-defined) probability q. We write Uq(ψ | y) to denote a q uncertainty re-
gion derived from the posterior of ψ. Common Bayesian uncertainty regions are
quantile-based credible intervals and highest density intervals (HDIs) [108]. We
say that an uncertainty region is well calibrated for a given ϕ (in a frequentist
sense) if the following equality holds:

q = Ep∗(y|ϕ)[I(ϕ ∈ Uq(ψ)] =
∫

I(ϕ ∈ Uq(ψ | y)) p∗(y | ϕ) dy, (19)

where I(ϕ ∈ Uq(ψ | y)) is the indicator function evaluating to 1 if ϕ ∈ Uq(ψ | y)
and to 0 otherwise. In other words, an uncertainty region for probability q is
well calibrated if it contains the assumed true parameter in a fraction of q data
sets. If the above property holds for every uncertainty region Uq(ψ | y), we say
that the whole posterior of ψ is well calibrated for estimation of ϕ.

Bayesian uncertainty regions are not generally designed to satisfy this fre-
quentist calibration and there is no guarantee that they will [108, 213]. Yet, it can
be a perfectly valid approach to use them even to satisfy purely frequentist goals
[103]. Interestingly, when considering expectations over (y, ϕ) ∼ p∗(y | ϕ) p∗(ϕ)
as in Equation (17), a P model will exhibit perfect calibration as long as its
generative behavior matches the unknown data generator and posterior compu-
tation is exact [284]. This property is extensively used in diagnosing the cor-
rectness of posterior approximations, a topic we will discuss in Section 3.2.3.

When comparing P models based on their uncertainty estimation of ϕ, we
would prefer the model which yields uncertainty estimates closest to the equality
in Equation (19) for some pre-selected, application-specific uncertainty regions.
For example, if we were primarily interested in well-calibrated 95% credible
intervals (perhaps more precisely stated, compatible intervals, [202]), then we
would prefer the model for which these intervals had closest to q = .95 coverage
of the assumed true ϕ. That said, for some specific analysis goals, for example in
null-hypothesis significance testing [171], over-coverage (higher than q coverage)
may be more acceptable than under-coverage, or vice versa, depending on the
assigned utility values of the corresponding Type-I and Type-II errors [267].

Sharpness Multiple P models, say P1 and P2, may provide estimators ψP1

and ψP2 that are equally well calibrated for a quantity of interest ϕ, yet their
uncertainty regions may differ in coverage [121]. This implies that calibration
alone is insufficient to describe the appropriateness of uncertainty regions: Ad-
ditionally, we need to introduce the concept of sharpness. We say that model P1
is sharper than model P2 for an uncertainty region Uq(ψ | y) with finite bounds,
if that region is better or equally well calibrated in P1 than for P2 and if the
volume of Uq(ψP1 | y) is smaller than the volume of Uq(ψP2 | y) in expectation
over the data-generating distribution:

Ep∗(y|ϕ) [Vol(Uq(ψP1 | y))] < Ep∗(y|ϕ) [Vol(Uq(ψP2 | y))] , (20)
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where Vol indicates the volume in Euclidean space. For unidimensional ϕ and
corresponding uncertainty region, say, a 95% credible interval, the volume is
simply equal to the width of the interval. Of course, depending on whether we
hold ϕ constant or assign a generating prior p∗(ϕ) to it, we can also investigate
sharpness in expectation over the joint distribution p∗(y | ϕ) p∗(ϕ), instead of
only focusing on p∗(y | ϕ). If sharpness holds for all finite-volume uncertainty
regions Uq(ψ | y), then the posterior of ψP1 is sharper than the posterior of ψP2 .
Well-calibrated uncertainty regions cannot be infinitely sharp and there exists a
sharpest model and corresponding estimator if the set of well-calibrated models
is non-empty [121]. However, in practice, we have no access to this sharpest
model. Thus, in contrast to calibration, sharpness cannot be practically com-
puted in an absolute sense, but can only be probed as a relative quantity in the
context of two or more P models.

3.2.3. Calibration of posterior approximations

So far we have primarily focused on P models in the context of parameter
recoverability and all of the estimators assumed access to the analytic posterior
p(θ | y) to obtain the analytic posterior p(ψ(θ) | y) of the estimator ψ of ϕ.
Since we do not have access to the analytic posterior in practice, our typical
estimators are based on PA models.

Correspondingly, we define the estimator ψA of ϕ via the approximate poste-
rior pA(ψ(θ) | y) of ψ obtained by the approximator A. If A were approximating
the posterior via random draws θ(s) from pA(θ | y), the approximate posterior
pA(ψ(θ) | y) would be represented by the pushforward draws ψ(θ(s)). Thus,
we can evaluate identifiability, point and uncertainty estimation, as well as the
sharpness, of a PA model by replacing ψ with ψA in the corresponding equations.
Ideally, we would like to separate the estimation of ϕ via ψ from the estimation
of ψ via ψA and we can do so if we assume that the considered P model is the
true generator itself. This is due to two related self-consistency properties. The
first one is

p(θ) =
∫ ∫

p(θ | y) p(y | θ∗) p(θ∗) dy dθ∗, (21)

which states that a P model’s prior (left-hand side) is equal to the P model’s
data-averaged posterior (right-hand side), that is, the posterior in expectation
over its own generating distribution [284]. The second one states that all un-
certainty regions Uq(ψ | y) of all pushforward quantities ψ are well calibrated,
as long the generating distribution of the assumed P model is equal to true
data-generating distribution and posterior computation is exact [284]. Writing
ψ∗ instead of ϕ to explicate the direct correspondence between the quantity of
interest and its estimator ψ, this property can be written as

q =
∫ ∫

I(ψ∗ ∈ Uq(ψ | y)) p(y | ψ∗) p(ψ∗) dy dψ∗. (22)

Both self-consistency properties are useful, but Equality (22) provides a particu-
larly convenient means to diagnose the calibration of the approximated posterior
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Fig 6. Simulation-based rank histograms (top) and corresponding empirical cumulative dis-
tribution function (ECDF) difference plots [283] (bottom) for three hypothetical quantities of
interest. The pink areas in the ECDF difference plots indicate 95%-confidence intervals under
the assumptions of uniformity and thus allow for a null-hypothesis significance test of self-
consistent calibration. Left: A well-calibrated quantity. Center: A miscalibrated quantity with
too many lower ranks indicating a positive bias in the PA model-based posteriors. Right: A
miscalibrated quantity with too many extreme ranks indicating overconfident PA model-based
posteriors (i.e., variance underestimated).

pA(ψ(θ) | y): Under perfect (self-consistent) calibration, the posterior probabil-
ity Pr(ψ∗ ≤ ψ) is uniformly distributed in the unit interval [284, 283]. If the
approximate posterior can be expressed in terms of random draws, then unifor-
mity can be tested empirically by comparing the empirical distribution of ranks

r(ψ∗, ψ(θ1:S) | ym) :=
S∑

s=1
I(ψ∗ ≤ ψ(θ(s))) for θ(s) ∼ pA(ψ(θ) | ym) (23)

over M simulated data sets to a uniform distribution, a procedure known an
simulation-based calibration [SBC, 284]. If the distribution of ranks is close
enough to uniformity (e.g., according to a frequentist null-hypothesis signifi-
cance test), we can conclude that the PA model is well calibrated for approx-
imating the P model, assuming self-consistency of P. The required uniformity
can be checked graphically, for example via histograms (top row of Figure 6)
or by plotting the empirical cumulative distribution function (ECDF) of the
ranks normalized against their expected values under uniformity (bottom row
of Figure 6), a method known as ECDF difference plots [283].

Even though self-consistency tested via SBC is a powerful tool to ascertain
the trustworthiness of a PA model if the underlying P model is well specified, it
tells us nothing about the trustworthiness of PA if P is misspecified, that is, if its
joint distribution cannot accurately represent the true data generating process
p∗(y). In the latter case, we currently have no general procedure to verify the
trustworthiness of a posterior approximation, that is, how close a PAD model
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is to the PD model it attempts to approximate (but see [197, 322] for recent
theoretical work). This is a subtly different problem than dealing with misspec-
ified PD models, whose convergence characteristics have been established under
certain regularity conditions [163, 164]. In the case of PAD models, we can only
hope that self-consistent calibration of PA implies good enough calibration in
a sufficiently large model neighborhood of P that also contains p∗. For poste-
rior approximators coming with guarantees of asymptotic correctness, such as
MCMC, this hope is probably better justified than for neural approximators that
have been shown to perform poorly under P model misspecification [269, 307].

3.3. Predictive performance

Undoubtedly, predictive performance is the central utility in most machine learn-
ing research [134] and an essential goal of computational [227] and scientific
models in general [101]. Moreover, predictive performance has recently been
elevated to an indispensable condition for reproducible quantitative research
in the social sciences [320]. In deep learning, enormous amounts of computing
resources are spent even for just a second decimal improvement in predictive
accuracy on domain benchmark data sets [116], notably at the expense of other
utilities (e.g., parsimony, see Section 3.6, or estimation speed, see Section 3.9).
In our Bayesian model taxonomy, we treat predictive performance as just one
of the ten model utilities, but we still recognize it as an important one.

In a way, predictive performance would be nothing but a special case of
parameter recoverability (see Section 3.2), if not for the fact that it targets ob-
servable variables that are comparable against observed data. This opens up the
possibility to directly evaluate predictive performance in real-world scenarios in-
stead of having to use simulations, as is often necessary for estimating parameter
recoverability. Along similar lines, predictive P(D) model comparison or aver-
aging can be seen as a form of parameter recoverability from the perspective
of mixture modeling (with the individual P models as components) or in terms
of continuous model expansion [107]. However, in practice, we approach these
challenges mainly based on predictions from separate P(A)D models to reduce
conceptual and computational costs [318].

In the following, we denote the set of “test” data to be predicted as y∗,
whereas P(A)D model “training” data continues to be denoted by ỹ. In prin-
ciple, these two data sets are allowed to fully coincide, partially overlap, or
be completely disjoint (see Section 3.3.3), and ỹ may even be empty (see Sec-
tion 3.3.2). Further, we will allow the test data to be clustered into C mutually
independent and exhaustive clusters y∗ = {y∗c}Cc=1. In most applications, both
y∗ and ỹ are associated with observed input variables (aka features, predic-
tors, or covariates), but we will keep these implicit to make the notation more
readable.

The ocean of predictive performance metrics for Bayesian models is vast and
we refer to [299] for a comprehensive overview. To illustrate some overarching
points in this article, we will focus on a few important metrics that follow the
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general form

L(y∗, ỹ) :=
C∑

c=1
l
(
Ep(θ|ỹ)[f(y∗c , θ)]

)
=

C∑
c=1

l

(∫
f(y∗c , θ) p(θ | ỹ) dθ

)
, (24)

where f(y∗c , θ) is a predictive score comparing a test data cluster y∗c with cor-
responding model-based predictions. We compute the expected predictive score
by integrating over the PD model posterior p(θ | ỹ), where l is some function
applied to each expectation before summation over clusters. Whenever we use
a PAD model, we need to approximate the above expectation over pA(θ | ỹ),
either by using random draws from pA(θ | ỹ) or by relying on an approximate
closed-form density. Below, we examine predictive performance along multiple
dimensions: absolute versus relative, prior versus posterior, and in-sample versus
out-of-sample predictive performance.

3.3.1. Absolute and relative predictive performance

Evaluating absolute predictive performance requires knowing an optimally
achievable value of the predictive metric, whereas relative predictive perfor-
mance only involves comparing multiple P(D) models’ predictions evaluated on
the same test data y∗. As an example for the former, consider the per-observation
squared difference f(y∗i , θ) = (y∗i − ŷi(θ))2 as a predictive score, where ŷi(θ) is
a P(D) model-implied prediction given parameter value θ (e.g., a single ran-
dom draw or realization from the posterior predictive distribution, see [299]).
In this case, we know that the optimal value of Equation (24) is zero. For the
sake of increased interpretability, such squared differences can be further trans-
formed to the canonical “percentage of explained variance” R2 measures which
are bounded between 0 and 1, the latter indicating optimal predictions [109].

However, optimal predictions are not achievable in practice, since even a
Bayes-optimal decision maker may elicit suboptimal predictions in the presence
of aleatoric uncertainty [134], at least when it comes to out-of-sample predictions
(see Section 3.3.3). Moreover, since we nearly never know the Bayes-optimal
decisions in practice (hence the need for predictive modeling in the first place),
the expected optimal achievable predictive performance is also unknown to us.
As a result, relative predictive performance is usually our only resort in practical
applications [299].

That said, some models produce such strikingly poor predictions that they
can be ruled out without the need to find a better model first, often via visual
predictive checks [102]. For instance, if we consider the case illustrated in Fig-
ure 7, it is immediately obvious that the normal likelihood P model (left-hand
side) is inappropriate for the given count data. As another example, consider a
P(A)D model for binary classification that achieves just 50% accuracy, equal to
random chance. Assuming a balanced data set (i.e., both classes occur with the
same frequency), we would not need a competing model to conclude that the
classifier is bad – unless our goal was to demonstrate that the two categories
cannot be possibly differentiated given the available information.
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3.3.2. Prior and posterior predictive performance

The distinction between prior and posterior predictive performance has often
led to confusion in the past and still remains a rather precarious one to discuss.
Prior and posterior predictive performance are distinguished based on whether
we evaluate predictions before or after conditioning on the training data ỹ,
respectively [183]. In other words, we either compute (or approximate) expec-
tations over the prior, p(θ), or over the posterior p(θ | ỹ). Since prior predictive
performance does not require the training data (see Equation (24)), we consider
it a utility of P(A) models, while we view posterior predictive performance as a
utility of P(A)D models. We still require the test data y∗, but it is not a part
of any model class in our taxonomy.

Statistically, the line between prior and posterior predictive performance is
thin and more quantitative than qualitative [219]. As an illustration, suppose we
observe N data points in total – then we could choose to use none, ỹ = ∅, or any
number between 1 and N for model training. For complex P models, the pre-
dictive result implied by using one or two observations for training, rather than
none at all, will be almost identical, despite everything but zero training data
technically counting as “posterior” predictive performance [219]. Yet, the met-
rics commonly applied to quantify prior and posterior predictive performance
differ not only in the amount of available training data but also in some other
non-trivial ways (to be explained below).

In general, any predictive metric should match the intended real-world pre-
diction goals. Below, we will focus on certain (log-)probability metrics, which
can be considered good general-purpose choices in the absence of any known
task-specific option [299].

Prior predictive performance The canonical metric for evaluating prior
predictive performance is the joint P model likelihood evaluated at the test
data, f(y∗, θ) = p(y∗ | θ), with C = 1 and l = identity, in which case the prior
expectation above becomes the marginal likelihood:

p(y∗) = Ep(θ)[p(y∗ | θ)] =
∫

p(y∗ | θ) p(θ) d θ. (25)

When used for model comparison, the marginal likelihood then gives rise to well-
known comparative metrics known as Bayes factors evaluated by comparing two
P models Pj and Pk as

BFjk := p(y∗ | Pj)
p(y∗ | Pk)

(26)

and posterior model probabilities over a set of J models {Pj}Jj=1 as

p(Pj | y∗) = p(y∗ | Pj) p(Pj)∑J
k=1(y∗ | Pk) p(Pk)

, (27)

where p(y∗ | Pj) denotes the marginal likelihood of P model Pj and p(Pj)
denotes the corresponding prior probability with

∑J
j=1 p(Pj) = 1, following a

closed-world assumption [21, 318].
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Although the marginal likelihood is formally an expectation and thus, in
theory, we can approximate it arbitrarily well using sufficiently many random
draws from the prior, it is practically impossible to evaluate due to its unfa-
vorable pre-asymptotic behavior for any non-trivial model [203, 299, 129]. The
main reason for this is that the parameter subset for which p(y∗ | θ) contributes
to the integral in Equation (25) (i.e., the typical parameter set implied by the
test data; [24]) is very narrow and thus we need a very high number of prior
draws to ensure sufficiently many of them occupy that narrow space. In addi-
tion, numerical issues caused by p(y∗ | θ), such as floating-point underflow, can
also be hindering.

For these reasons, the practical computation of marginal likelihoods currently
rests on bridge sampling [15] relying on posterior draws from a corresponding
PAD model [203, 129]. In contrast to estimating posterior expectations or quan-
tiles, bridge sampling requires about an order of magnitude more posterior draws
to yield reliable results [129] and is still largely missing principled convergence
diagnostics or uncertainty quantification [128], leaving room for future research.

An alternative prior predictive metric arises if one uses the log-likelihood
f(y∗, θ) = log p(y∗ | θ) as a (predictive) score instead of the likelihood itself,
which leads to the Gibbs loss [308] that, for factorizable likelihoods [39], evalu-
ates to

Gibbsp(θ)(y∗) := Ep(θ)[log p(y∗ | θ)] =
N∗∑
i=1

Ep(θ)[log p(y∗i | θ)]. (28)

The Gibbs loss is not only simpler to evaluate for exponential family models
[299] and numerically more stable than the marginal likelihood but also exhibits
better pre-asymptotic behavior for factorizable likelihoods when estimated via
prior draws since the integrands become much simpler. However, the Gibbs loss
cannot be used to obtain actual predictions because it does not evaluate to a
predictive distribution over y∗ [299].

The latter problem can be avoided by taking expectations with respect to
individual test observations y∗i first and only taking the log afterwards (C = N∗

and l = log), which leads to the expected log predictive density (ELPD) metric
[299, 296], evaluated over the prior:

ELPDp(θ)(y∗) :=
N∗∑
i=1

log p(y∗i ) =
N∗∑
i=1

logEp(θ)[p(y∗i | θ)]. (29)

Comparing equations (25) and (29), we see that the marginal likelihood con-
siders the joint predictive density of all test data y∗, while the ELPD considers
marginal predictive densities of y∗i , marginalized over all other test data. Even
though the ELPD has found wide application in the context of posterior pre-
dictive performance [296], it does not yet seem to play a noteworthy role in the
context of prior predictive performance. However, together with the Gibbs loss,
it may become a computationally favourable competitor to metrics based on the
marginal likelihood.
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Posterior predictive performance When assessing posterior predictive per-
formance, we apply the same metrics we encountered in the context of prior
predictive performance but evaluate expectations over the posterior induced by
the training data ỹ. However, the practical popularity of the metrics seems to
be reversed when it comes to posterior predictions. For example, the posterior
ELPD

ELPDp(θ|ỹ)(y∗) :=
N∗∑
i=1

log p(y∗i | ỹ) =
N∗∑
i=1

logEp(θ|ỹ)[p(y∗i | θ)] (30)

finds widespread application [296], while the “conditional marginal likelihood”

p(y∗ | ỹ) = Ep(θ|ỹ)[p(y∗ | θ)] =
∫

p(y∗ | θ) p(θ | ỹ) dθ (31)

has not yet attained wide popularity, despite having several useful properties
[219, 18, 130, 183].

The choice between prior or posterior predictive performance seems to depend
on the modeling goals for which a P model is specified. While prior predictive
performance seems to be favored for the purpose of testing scientific theories
[316, 132, 85, 130], posterior predictive performance is the perspective of choice
in almost all machine learning scenarios (but see [320]), where we first obtain a
PAD model based on training data (and perhaps only minimal prior informa-
tion) and then utilize the model in downstream predictive tasks [134].

3.3.3. In-sample and out-of-sample predictive performance

We measure in-sample predictive performance if the test data is a subset of the
training data, y∗ ⊆ ỹ, but measure out-of-sample predictive performance if test
and training data do not overlap, that is, y∗ ∩ ỹ = ∅. Whenever we evaluate
prior predictive performance, we have no training data per definition and thus
always measure out-of-sample predictions. Accordingly, the difference between
in-sample and out-of-sample predictive performance only matters in the context
of posterior predictions.

From a posterior predictive perspective, the decision between using in-sample
and out-of-sample predictive performance is based on whether or not we want
to generalize our inferences from a data set to a wider population. If a given
data set included the entire problem space, then in-sample predictive perfor-
mance would be sufficient. However, as most introductory statistical courses
teach, a data set is typically only a small sample from a much larger popu-
lation, to which we would like to extend our inferences. Thus, out-of-sample
predictive performance (aka generalization ability) is almost always what we
are after [134, 299, 296, 320]. That said, we can still learn from in-sample pre-
dictive performance, as it provides an upper bound for out-of-sample predictive
performance in expectation, such that when in-sample predictions are poor,
out-of-sample predictions are likely to be even worse [134, 296, 102].
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In the presence of only a single overall data set ytotal, estimating out-of-sample
predictions is practically realized via data splitting, such that ytotal = {ỹ, y∗}. To
reduce the dependency of the predictive results on a single realized data split, we
typically perform cross-validation by repeating the data splitting several times
(folds), evaluating out-of-sample predictions for every fold, and then aggregating
the results across folds [280, 299, 296].

The type of cross-validation scheme employed should resemble the envisioned
prediction goals for which the PD model has been created [299]. For example,
the predictive goal of time series models is usually to predict future values based
on past values, making leave-future-out cross-validation a sensible choice [46].
Regardless of the type of cross-validation employed, it involves the repeated
fitting of the same P(A) model to different data sets. Depending on the num-
ber of such refits, the individual data sizes, and the applied approximator, the
required estimation time can quickly become prohibitive for any practical use.
As such, approximate cross-validation procedures that require no or only a few
refits have proven to be highly popular in practice [296, 300, 46]. However, key
cross-validation schemes, such as leave-group-out cross-validation, cannot yet be
robustly approximated, so there is more research needed in that direction [223].

Although evaluating out-of-sample predictive performance is often our best
shot at preventing overfitting to the training data, it is not always sufficient
to fully achieve good generalization within commonly applied model-building
workflows [113]. In these workflows, we typically fit different P models to the
same data in an iterative fashion. For example, we might first compare two
models, decide which one to retain, and only then fit a third model to compare
it with the winner of the first round. Even if each model choice was based on
local out-of-sample predictive performance, subsequent results can be informed
by out-of-sample results from previous iterations, making it not strictly out-
of-sample for any future iteration steps from the perspective of the analyst’s
knowledge. As such, in an iterative workflow, local out-of-sample predictive
metrics may still lead to overfitting, but the degree to which this biases the
end results remains a topic for future research.

3.3.4. Predictions in a dynamic world

Time is one of the most precipitous sources of uncertainty and any attempt to
forecast the future with a static, time-independent P(A)D model will only be
meaningful if the opaque generator G is strictly stationary (i.e., its regulari-
ties are invariant to time). Otherwise, a P model needs to have an appropriate
temporal resolution to deliver reasonable out-of-sample predictions beyond the
empirical snapshot of the collected data. Moreover, since the precise details of
temporal shifts are extremely hard to anticipate, a P(A)D model which claims
universal predictive performance should regularly be subjected to the falsifica-
tion of time.

This brings us to an important distinction when it comes to assessing out-of-
sample predictive performance. Whenever we make our P(A)D model “blind”



Some models are useful, but how do we know which ones? 249

to certain observations in the original data set D and use these observations
to assess our-of-sample predictive performance (as we do in any form of cross-
validation, even those built for time series data [46]), we are essentially testing
the model’s ability to perform induction about the statistical regularities of
p∗(y) in a temporal snapshot determined by data collection. In such a scenario,
however, we are not probing the model’s ability to faithfully forecast the future,
since the “left-out” observations are new only from the perspective of the model,
but not from that of the modeler. Thus, cross-validation can sometimes be overly
optimistic in estimating out-of-sample predictive performance, since a sample
collected at a future date might exhibit surprisingly different properties (i.e.,
the P model would no longer be structurally faithful) than the sample currently
at hand.

Why would the empirical distribution p∗(y) change over time? One reason
can be that the hidden properties of the generator G itself may change, bring-
ing about alterations in the statistical properties of p∗(y). For instance, strong
auto-correlations in financial time series are notoriously short-lived due to feed-
back processes and market adaptation [276]. Yet another reason can be that
new sources of noise contaminate future data D in unexpected ways. For in-
stance, a sensor in a measurement device may break and yield incorrect data or
case reporting policies during an ongoing pandemic may switch between waves.
However, the P(A)D model may have no mechanism to adapt to any of these
changes and its out-of-sample predictive performance would likely suffer.

Within our model taxonomy, prediction failures due to changes in p∗(y) con-
cern misaligned assumptions about temporal invariances embodied in the P
model’s structure. One way to revise these assumptions is to include time-
varying parameters θt in the P model, with the corresponding time-invariant
parameterization being a special (and more parsimonious) case. For instance,
this can be achieved within the superstatistics framework [13], which aims to
represent heterogeneous dynamics through a superposition of multiple stochas-
tic processes at different temporal scales [195]. In any case, researchers should
bear in mind that static P(A)D models are not designed to deal with things
that move, so, as simple as it sounds, time remains a key arbiter of the quest
for universal substantial conclusions or robust predictive systems.

3.4. Fairness

Fairness in the context of model building aims to ensure that model-guided
decisions are equitable, with a specific focus on groups that differ in protected
attributes, such as sex, gender, or ethnic background [59, 9]. In a relatively
narrow sense, fairness is a primary concern for P(A)D models, as it applies to
real-world outcomes and their real-world reverberations owing to the connection
between a P model’s structure and data D. However, purely simulation-based
P(A) models are not exempt from fairness considerations, especially when used
to guide important public policies and decision support systems [48, 8, 218]. In
the following, due to its predominant share in the literature, we will examine
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the fairness of P(A)D models from two different perspectives, namely, from the
perspectives of psychometric measurement and predictive modeling.

3.4.1. Measurement fairness

In psychometric measurement theory, the aim is to estimate people’s scores on
latent psychological traits, for example, general intelligence, creativity, or apti-
tude for university programs [76]. In the model-based literature of psychometric
measurement, namely Item Response Theory (IRT; [290, 82, 42]), two major
aspects of fairness have received considerable attention.

First, we need to ensure that the observable features (i.e., items) have been
selected and administered in a fair way [200, 36, 5]. This aspect does not appear
to be immediately model-based, since it concerns the data collection process
as well as causal assumptions about the latent traits’ influence on the item
responses [36]. However, some of its requirements can be checked via P(A)D
models in the form of differential item functioning (DIF) analysis [140, 222].
When investigating DIF, the item parameters ζi of item i are allowed to vary
across groups g and their P(A)D model’s posteriors are compared to verify their
statistical equivalence. That is, we aim to examine whether p(ζi | ỹ, g) ≈ p(ζi |
ỹ, g′) holds for all pairs of considered groups g and g′ and all items i.

Second, we need to estimate the latent traits of all individuals with a similar
degree of uncertainty [43]. In the context of P(A)D models, this means that the
posterior of trait ηj for person j has approximately the same entropy across
all individuals being compared, that is, H(ηj | ỹ) ≈ H(ηj′ | ỹ) for all pairs of
individuals j and j′. This turns out to be a difficult, sometimes even unachievable
goal: Due to floor and ceiling effects arising in almost all psychometric tests, the
resulting information is non-uniform across the latent trait space in non-linear
IRT models [290, 48, 43]. As a result, more extreme latent trait scores will be
estimated less precisely than more average scores. As a partial remedy, one may
try to ensure that the information gain about all individuals’ trait scores at least
exceeds a minimal, application-specific threshold [43].

3.4.2. Predictive fairness

What we term predictive fairness has its origins in the field of machine learning
[258, 9]. We will define predictive fairness directly on PD models because there is
no hope that a P model can yield fair decisions for all possible training data; after
all, training data may themselves be biased against protected groups [258, 9].
And while we define it as a utility of PD models, it also automatically pertains
to a corresponding PAD model, unless the posterior has a simple analytic form.

Mathematically, for individual-level decisions, we consider a PD model-spe-
cific decision rule d(x | x̃, ỹ) that outputs a decision for each admissible vector of
attribute values x given training data D = (x̃, ỹ) consisting of observed attribute
values x̃ and corresponding decision-relevant outcomes ỹ in a supervised learning
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context. If we consider only binary decisions to simplify notation, we can write
the decision rule as

d(x | x̃, ỹ) :=
{

1 if r̄(x | x̃, ỹ) > τ

0 otherwise
(32)

with
r̄(x | x̃, ỹ) :=

∫
r(x, θ) p(θ | x̃, ỹ) dθ (33)

being a real-valued (expected) risk score of x that is obtained as an expectation
over the PD model’s posterior p(θ | x̃, ỹ). The decision (e.g., whether to give
someone a loan or release a defendant while they await trial) is then made by
comparing the risk score against a pre-defined threshold τ . The conditional risk
score r(x, θ) determines how the P model and its parameters θ are used for
assessing risk. For example, the risk score could be the mean of the PD model’s
predictive distribution given feature value x and parameter value θ:

r(x, θ) :=
∫

y p(y | x, θ) dy. (34)

Conditional risk scores do not necessarily have to rely on the predictive dis-
tribution. Rather, they may also be based on latent model quantities, such as
psychometric trait scores obtained from IRT P(A)D models [290, 82, 42], which
bridges the gap between measurement and predictive fairness.

There are different classes of predictive fairness criteria considered in the
literature, among others anti-classification [35, 59] and classification parity [59,
19] (also known as statistical parity; [57]). Even within these classes, criteria are
partially incompatible and neither of them can actually ensure universal fairness,
but we can still learn from their limitations [59, 57, 9, 19]. In the context of such
criteria, we differentiate between protected attributes xp (e.g., sex, gender, or
ethnic background) and other, unprotected attributes xu such that x = (xp, xu).
Anti-classification requires that protected attributes xp (or their proxies; [35])
are not used in model-based decisions at all, which mathematically translates
to

d(x | x̃, ỹ) = d(x′ | x̃, ỹ) for all x, x′ with xu = x′
u. (35)

In our PAD model taxonomy, this can simply be realized by using a PD model
with p(θ | x̃, ỹ) = p(θ | x̃u, ỹ) and conditional risk score r(x, θ) that is inde-
pendent of xp as well. Anti-classification approaches have two main drawbacks.
First, protected attributes can often be predicted fairly well from unprotected
attributes, which makes it impossible to be completely agnostic about them
[89]. Second, empirical risk distributions (after removing all unfair risk influ-
ences) may differ across values of xp, such that ignoring the latter may actually
lead to unfair decisions against the groups one originally attempted to protect
[59].

Differently, classification parity comprises a class of fairness criteria that re-
quires the population distribution of certain decision metrics to be the same
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across all values of the protected attributes [59, 19]. Using demographic parity
[89] as an example, we would require that the decision’s distribution itself, as
implied by the distribution of attributes x in the considered population, to be
independent of the protected attributes:

p(d(x | x̃, ỹ) | xp) = p(d(x | x̃, ỹ)). (36)

Contrary to anti-classification, we usually have to incorporate the protected
attributes into the P model in the first place to ensure any kind of classifica-
tion parity [19]. In the context of psychological tests, for example, this could
be achieved by imposing group-specific norms of comparison [263]. Yet, classi-
fication parity does not guarantee universal fairness either, whenever the true
risk score distribution (after removing all unfair risk influences) varies between
groups defined by the protected attributes [59].

The shortcomings of these predictive fairness definitions highlight that re-
quiring a certain outcome – the decision itself (anti-classification) or aspects
of its population distribution (classification parity) – to be independent of the
protected attributes may be insufficient. Towards the goal of achieving fairness
through a PD model, the underlying P model needs to be causally consistent
(see also Section 3.1) in a way that considers how the protected attributes xp

relate to the causal graph that includes all the valid, unprotected attributes xu

and the outcome y [35]. In addition, the training data D needs to be represen-
tative of the true (unbiased) outcome distribution p∗(y). It goes without saying
that these are complicated, application-specific tasks that require contributions
from various scientific fields and considerable domain expertise.

What is more, fair decisions, regardless of their modeling context, need to
take into account that the same decision may affect different people (and their
surroundings) differently and that these differences may be related to both pro-
tected and unprotected attributes. More formally, we need to consider the de-
cision d(x | x̃, ỹ) in a context C(x) that only together determine the output of
a utility function U(d(x | x̃, ỹ), C(x)), which offsets all possible gains and losses
caused by the decision. Obtaining such a function could steer a decision towards
fairness as quantified by equal utility outcomes across protected groups.

At an even higher level, we should consider taking sufficient precaution that
(anticipated) political decisions or societal processes triggered by anonymous
modeling results do not lead to unfair treatment of protected groups. However,
such considerations may come into conflict with the principle of scientific free-
dom, in which case a careful ethical analysis of the specific situation becomes
mandatory.

3.5. Structural faithfulness

In most data analysis scenarios, we have a reasonable amount of qualitative
prior knowledge about the data structure and the data generating process, even
if we don’t know the precise analytic relation between the two. In particular,
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this knowledge concerns the scales of variables to be modeled, the dependen-
cies between observations, as well as physical constraints, such as symmetries
or invariances. The Structural Faithfulness utility captures how well a P model
incorporates such knowledge. Structural faithfulness is at the core of statistical
modeling, be it Bayesian or otherwise, as it determines the probability distri-
butions we assign to our observed and unobserved variables, the parameters we
add to our P models, and the assumptions we can justifiably make to simplify
reality.

Moreover, we can roughly distinguish between probabilistic structure and
functional structure, which are related to the modeler’s degree of ignorance
regarding the problem at hand. Purely statistical models aim to capture the
probabilistic structure of p∗(y), without making reference to functional struc-
ture of the hidden generator G. Non-deterministic mechanistic models, on the
other hand, aim to capture the functional structure of G (usually represented
by physical constraints), such that the probabilistic structure of p∗(y) can be
reproduced or explained. For instance, when we study the dynamics of a phe-
nomenon via stochastic differential equations, functional faithfulness refers to
the mathematical form of the differential equation and probabilistic faithfulness
refers to the fidelity of the stochastic assumptions.

To us, it remains unclear how to measure structural faithfulness in an absolute
sense and we see it primarily as a relative metric. What is more, structural
faithfulness consists of multiple components that may each favor a different P
model. For example, model P1 might take a known symmetry into account that
model P2 ignores, while P2 might assign a more appropriate distribution to a
response variable than P1 does. In this case, none of the two P models would
actually be more structurally faithful than the other, at least not uniformly so.

3.5.1. Variable scales

The scale of a variable determines not only what information it represents
but also how it should ideally be treated within a P model. For example, if
the response variable consists of count data without a known or practically
reachable upper bound, we should model this data via an appropriate (un-
bounded) discrete distribution (e.g., Poisson, or some of its generalizations) to
sensibly capture the aleatoric (irreducible) uncertainty in those count responses
[302, 99, 313]. What is more, this ensures that the variables’ natural boundaries
are respected (e.g., lower bound of zero for count data), such that the corre-
sponding model predictions cannot go beyond the data space that is possible
in reality (see Figure 7 for an illustration). As another example, if our response
variable is ordinal, that is, it consists of discrete ordered categories without
guarantees that the categories can be considered equidistant, we should model
such data via an ordinal distribution [201, 179, 49]. The same points hold also
for predicting variables even if they are not explicitly modeled with a distri-
bution [44, 115]. Failure to consider the variable scales in P models can have
detrimental consequences for the validity of the obtained results [115, 44, 179].
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Fig 7. Posterior predictive checks [102] of epilepsy treatment data [287]. The response vari-
able is the number of epileptic seizures of patients in a given time interval, that is, a count
variable without a known upper bound. Results are shown for three PAD models with dif-
ferent likelihoods (shown as facets) and posteriors approximated via MCMC in Stan [286].
Histograms indicate observed data and each black line indicates one draw from the poste-
rior predictive distribution of the corresponding PAD model, smoothed via continuous density
estimation. For Poisson and negative-binomial likelihoods, posterior predictions are in fact
counts but are still displayed as smoothed continuous densities to ease readability and compa-
rability across facets. As is clearly visible on the left-hand side, the PAD model with normal
likelihood predicts a lot of theoretically impossible negative counts and can neither predict the
spike at counts close to zero, nor the heavy right tail.

Equivalently, respecting the intrinsic scales of all quantities included in a P
model can help to avoid unreasonable parameter estimates or implausible (or
worse, impossible) predictions.

3.5.2. Probabilistic structures

Observed data often exhibits specific probabilistic structures that can be in-
ferred from (qualitative) understanding of the data-generating process. For ex-
ample, if we collect psychometric data from multiple students in the same class,
it is highly unlikely that the data points will be mutually independent (e.g.,
because students share the same teacher, rooms, peers, etc.). This situation is
prototypical for the application of multilevel models, which aim to capture such
dependencies [110, 12, 40, 41]. Multilevel models treat such dependencies of
observations belonging to the same group as equivalent to variation between
groups [110]. In other words, if there were no variation between groups, there
would be no structural dependency of observations within groups (at least none
elicited by this grouping structure).

There are three major types of structural dependence between groups that
can be expressed as multilevel models: exchangeable, directed, and undirected
[260, 100, 103], illustrated schematically in Figure 8.

Exchangeable groups are the most common assumption in multilevel models
and imply that (before seeing any data) we hold the same prior beliefs about
each of the groups but assume they are all drawn from the same population (e.g.,
students within classes, classes within schools, schools within cities, etc.). In the
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Fig 8. Graphs illustrating common probabilistic structures. Rectangles depict nested parame-
ters within a given probabilistic structure. Circles depict the corresponding hyperparameters.
(a) Exchangeable parameters; (b) Conditionally dependent parameters with a directed (e.g.,
temporal) dependency structure. (c) Conditionally dependent parameters with bidirectional
(e.g., spatial) dependency structure.

most simple case (i.e., two-level structure, univariate and normally distributed
parameters), we would specify a univariate normal prior for each group indexed
by i and group parameter φi as

φi ∼ Normal(μ, σ), (37)

where μ and σ are the mean and standard deviation parameters shared across
groups, respectively. Typically, we would estimate the across-group parameters
from the data along with the group-specific parameters φi themselves.

In directed dependency structures, adjacent groups are assumed to have di-
rected influence on each other in a way that group i can affect group j, but not
vice versa. The most common example is temporal autocorrelation where a vari-
able at time i can potentially be influenced by a variable at time i−1 [278, 103].
For a univariate Gaussian random walk, we would formalize this assumption
with the following prior

φi ∼ Normal(φi−1, σ). (38)

In undirected dependency structures, the influence of adjacent groups can go
both ways, with spatial autocorrelation being the most common example [22,
106, 211]. For example, in (spatial) conditional autoregressive (CAR) structures
[22], we could write down the prior on the group coefficients as

φi ∼ Normal

⎛⎝ 1
|Ni|

∑
j∈Ni

φj , σ

⎞⎠ , (39)

where Ni is the set of groups that are neighbours of group i. Importantly, a
shared feature of these dependency structures is that they are agnostic towards
the underlying causal mechanisms – their purpose is purely to accurately rep-
resent the inherent probabilistic structure of the observed data [106, 312, 103].

But what if the data-generating process suggests a certain kind of depen-
dency for which we find no empirical support? For example, shall we retain a
grouping term of classes even if the PAD model suggests close to zero variation
between groups? There are good arguments for both choices. On the one hand,
excluding such a term implies a simpler model with higher parsimony [11] (see
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also Sections 3.6), although the increase in parsimony will be quite small due to
the partial pooling property of multilevel models induced by their hierarchical
priors if there is a sufficient number of groups [110, 138]. On the other hand,
including the term sets a good example for future replications and applications
of the same P model, in the same or different contexts. That is, if someone
applies this P model to a new data set, they may very well find the between-
group variation under question to be non-zero, thus justifying the inclusion of
the corresponding grouping term.

3.5.3. Physical constraints

In the domains of physics and natural sciences, we tend to have strong prior
knowledge about the functional P model structure in the form of known hard
constraints such as symmetries, invariances, or conservation laws [292, 251, 157,
7]. For example, a harmonic oscillator expressed by the second-order differential
equation

ẍ(t) = k x(t), (40)

with functional solution x, second derivative ẍ, as well as constant k, represents
an isolated system that is energy conserving [187].

Similar to a harmonic oscillator, most physical hard constraints can be ex-
pressed via differential equations whose direct inclusion in a P model is computa-
tionally demanding if we do not have access to an analytic solution [62, 173, 282].
Accordingly, building a more flexible, data-driven P model as a surrogate is a
computationally attractive choice [173, 47]. Still, even for such a surrogate, it
remains beneficial to incorporate known physical constraints to eliminate the
need to learn them directly from data. This is likely to increase the model’s
data efficiency, that is, the amount of data required by the model to achieve a
certain predictive goal [251, 173]. The discussion about physics-informed model-
ing is particularly prominent in core areas of high-dimensional machine learning,
such as neural networks that tend to be very data-hungry [251], but in princi-
ple applies to all P models created for representing data with known physical
constraints.

3.6. Parsimony

Parsimony refers to the formal simplicity of a Bayesian model; some might define
it as the conceptual or mathematical elegance of the underlying interpretative
framework. Here, we view parsimony as a quantifiable property of a Bayesian
model. We treat it also as a relative quantity – it is always possible to propose
a more complex model (or possibly a simpler one) which is equally consistent
with the available data.

Within our PAD framework, we will distinguish two types of parsimony: P-
parsimony and A-parsimony. P-parsimony characterizes the formal simplicity of
a P model and should be measurable from the structure of the joint distribution



Some models are useful, but how do we know which ones? 257

Fig 9. P models of different complexity applied to a data set D of 11 observations follow-
ing a quadratic relationship in expectation. Left: Most parsimonious, linear model with a
3-parameter likelihood y ∼ Normal(β0 + β1x, σ). This model is too simple for the data.
Center: Slightly less parsimonious, quadratic model with a 4-parameter likelihood y ∼
Normal(β0 + β1x + β2x2, σ). This model’s complexity is just right for the data. Right: Least
parsimonious, linear interpolation model between adjacent points that has as many parame-
ters as observations in the data (1 intercept and 10 linear slopes). This model is too complex
for the data. Shaded areas indicate 95% credible intervals of the regression line for models
where this uncertainty can be computed.

p(y, θ). A-parsimony characterizes the simplicity of an approximator and should
be measurable through the interface of A. The former is directly related to the
theoretical appeal of a P model’s probabilistic assumptions; the latter is directly
associated with the usability of an approximator.

3.6.1. P-parsimony

In many real-world modeling scenarios, we have limited data and strive for P
models that can capture all relevant latent properties with as little data as pos-
sible (see Figure 9 for a simple illustration). One particular aspect of this goal
is captured by the dimensionality of the parameter space, whereby higher par-
simony simply means lower parameter dimensionality. Canonical examples for
high parsimony are physical simulators defined by complex (white-box) forward
models with intractable likelihoods [62]. The latter are informed by strong sub-
ject matter knowledge and are thus able to maintain low parameter dimension-
ality (e.g., consider the harmonic oscillator Equation (40), which only requires
a single parameter to describe highly non-linear, non-monotonic behavior). On
the other end of the spectrum are neural network models that tend to use simple
likelihoods (e.g., Gaussian or categorical), but are characterized by an extremely
high parameter dimensionality and large compositions of non-linear transforma-
tions, such as GPT-3 featuring 175 billion parameters [92]. In a way, we need to
compensate for our lack of a priori knowledge (or inability/unwillingness to use
it) by applying less parsimonious models that replace more restrictive model
structures with a heightened hunger for data.

The motivation for parsimony is related to other utilities as well, since more
parsimonious P(A)D models tend to require less data to achieve the same re-
duction in epistemic uncertainty (parameter recoverability; Section 3.2) and
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predictions (predictive performance; Section 3.3), and tend to be easier to com-
prehend in real-world applications (interpretability; Section 3.7). Still, we can
construct chaotic models – where minimal changes in the parameters lead to
strong changes in the predictions – that are highly parsimonious, yet uninter-
pretable and extremely flexible in terms of the function space they can approx-
imate [239]. However, most P models applied in current practice do not exhibit
such chaotic behavior.

Despite its intimate connection to other utilities, we think that parsimony
deserves to be a utility in its own right, harmonized with Occam’s razor: Given
two models, and other things being equal, one should choose the more parsi-
monious one [31]. Increasing the parsimony of a model (or a scientific theory,
for that matter) implies making more restrictive assumptions (i.e., reducing the
function space that can be theoretically approximated by the model), thus in-
creasing its falsifiability: We can more easily create situations where the model
is wrong. Furthermore, in applied settings, sparser models may lead to more
efficient data collection and more economical measurement designs (i.e., fewer
variables to measure or less acquisition trials in design optimization) [234]. Nev-
ertheless, the strive for parsimony may not always be a useful guide to our
scientific exploration, if the aesthetics of parsimonious P models make us blind
for potentially more appropriate (e.g., in terms of other utilities), but less par-
simonious representations. For example, the strive for parsimony may be one of
the factors that has stalled the scientific progress in the foundations of physics
during the past decades [141].

Effective number of parameters There are different ways to measure par-
simony, with simply counting the number of parameters4 of a P model being the
most straightforward approach. For simple models, such as linear regression, this
measure of parsimony matches the concept of degrees of freedom (DoF) in fre-
quentist statistics. In the same way, the DoF concept becomes awkward even for
slightly more complex models [150], the former is not a generally useful measure
of parsimony either [239]. The reason for this is that, from a Bayesian perspec-
tive, any prior information on a parameter increases a P model’s parsimony,
such that the effective number of parameters (ENP), might be substantially
smaller than the nominal number of parameters [296]. The same mechanism
also underlies the difficulty in computing the DoF of test statistics in frequen-
tist multilevel models, because random effects distributions are equivalent to
priors [138].

There are several ENP measures in the literature [277, 309, 296, 240], often
defined in the context of information criteria. For the information criterion based
on leave-one-out cross-validation (LOO-CV), ENP is measured as the sum of
the differences between the pointwise log predictive densities of the full posterior

4More precisely, we have to count the minimal number of unconstrained parameters that
can be invertably transformed to the space of the original model parameters. For example, a
simplex parameter vector of length K is equivalent to only K − 1 unconstrained parameters
because the K-th one is determined by the sum-to-one constraint.
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and the pointwise log predictive densities of the LOO posteriors [296]:

ENPLOO =
N∑

n=1
(log p(yn | y) − log p(yn | y−n))

=
N∑

n=1

(
log

∫
p(yn | θ) p(θ | y) dθ − log

∫
p(yn | θ) p(θ | y−n) dθ

)
.

(41)

The notation y−n indicates that the n-th data point in y has been excluded. As
more parameters are added to the model, the in-sample predictive performance
represented by log p(yn | y) grows more quickly than the out-of-sample pre-
dictive performance represented by log p(yn | y−n) such that the sum of their
pointwise differences grows. This provides an intuition why ENPLOO can be
considered a measure of parsimony. Its concrete interpretation as an effective
number of parameters is inspired by the following observation: When using very
wide or even completely flat priors over all parameters, ENPLOO will roughly
coincide with the nominal number of parameters, but becomes smaller than the
latter in the presence of prior information [296].

Bayesian LOO-CV can usually be computed efficiently via importance sam-
pling without any model refitting, and so can ENPLOO be computed without
any actual refitting [296, 300]. For a large number of observations N , ENPLOO
can be asymptotically approximated by the sum of the full posterior variances
over the pointwise log-likelihood values, which is the ENP estimate used in the
widely applicable information criterion (WAIC) [309]:

ENPLOO ≈ ENPWAIC =
N∑

n=1
Varp(θ|y) [log p(yn | θ)] (42)

Intuitively, as the number of parameters grows, so does the epistemic uncer-
tainty in the posterior, which leads to an increase in the variance of poste-
rior predictive quantities, such as log p(yn | θ). The WAIC approximation of
LOO-CV performance can be quite unreliable so using ENPLOO is highly rec-
ommended whenever possible [296]. What becomes apparent in these equations
is that parsimony, at least when measured through these ENPs, may depend
on the specifically realized data ỹ, and as such needs to be defined over PD
models. This is specifically true for models with hierarchical priors, where the
amount of hierarchical shrinkage (i.e., the influence of the hierarchical priors)
is data-dependent [110]. Practically, the posterior integrals in (41) and (42) for
PAD models are efficiently approximated via Monte Carlo estimates based on
posterior draws from an approximator [296].

The huge advantage of these ENP measures is that they do not need to be
aware of the internal structure of a P model, but only require its predictive
outputs in the form of pointwise log-likelihood values. However, the need for
the latter has the drawback that ENP measures do not work natively with PI

models due to their lack of tractable likelihoods; unless one has learned not only
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Fig 10. Hypothetical scenario with three P models of descending complexity: P1, P2, and P3.
The most complex model P1 can account for the broadest range of observations at the cost
of diminished sharpness of its marginal likelihood; in contrast, the simplest model P3 has the
sharpest marginal likelihood which concentrates onto a narrow range of possible data. Even
though the observed data ỹ is well within the generative scopes of models P1 and P2 too, the
simplest model P3 has the highest marginal likelihood at ỹ among the three candidates and is
therefore favored from a marginal likelihood perspective. However, the higher relative marginal
likelihood of the simplest model P3 is a poor proxy of its predictive performance for new data
sets, as it assigns close to 0 density to the new data set ỹnew, suggestive of overfitting. The
model P2, whose marginal likelihood is closest to the data-generating distribution p∗, would
have been favored, had ỹnew instead of ỹ been used for computing the associated Bayes factors.

the model’s posterior but also its likelihood density during training [314]. What
is more, if the model includes residual dependencies between observations, the
pointwise (log-)likelihood may not be available, even if the joint likelihood is
analytic [39].

Prior P-parsimony In the above-described ENP definitions, we integrate
over the posterior distribution and so, in this sense, measure posterior parsi-
mony. This naturally raises the question of whether we can define measures of
prior parsimony as well. In a Bayesian setting, prior parsimony is automati-
cally embodied in the marginal likelihood (sometimes called Bayesian evidence)
[158, 189, 183], which we already encountered in our discussion on prior pre-
dictive performance (see Section 3.3.2). As a reminder, we obtain the marginal
likelihood by marginalizing the joint P model over its prior

p(y) = Ep(θ) [p(y | θ)] =
∫

p(y | θ) p(θ) dθ. (43)

Accordingly, we can interpret the marginal likelihood as the expected probabil-
ity of generating data y from a P model when we randomly sample from the
prior p(θ). Through the prior’s role as a weight on the likelihood, the marginal
likelihood encodes a probabilistic version of Occam’s razor by penalizing the
prior complexity of a P model [158, 189].

However, the marginal likelihood is not an explicit measure of parsimony;
rather, it represents an implicit relative quantity which combines prior parsi-
mony with the ability of a P model to fit the data by considering its entire
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generative scope (see Figure 10). Following [189, Chapter 28], we can illustrate
the above conflation by assuming that the posterior of a P(A)D model is well
represented by a (multivariate) Gaussian. In this case, the marginal likelihood
can be approximated as:

p(y) ≈ p(y | θMP) × p(θMP) det(H(θMP)/2π)− 1
2 , (44)

where θMP is the posterior mode and H(θMP) is the Hessian of the likelihood
evaluated at θMP. The multiplicand p(θMP) det(H(θMP)/2π)− 1

2 is termed an
Occam factor and represents the factor by which a P(A)D model’s parameter
space contracts as the prior is updated to the posterior based on the informa-
tion contained in D. Thus, under the Gaussian assumption, the magnitude of the
Occam factor is an explicit measure of prior complexity (i.e., inverse prior parsi-
mony) related to the information gain a P model can achieve over its generative
scope [189, 183]. Consequently, a P model with a vague prior will incur a larger
penalty by the Occam factor than a different P model with a sharper prior,
provided that both models share the same likelihood. However, if the Gaussian
assumption is inadequate, the approximation of Equation (44) can sustain a
large error and may no longer be useful. Unfortunately, we are not aware of a
more general decomposition of the marginal likelihood into a prediction factor
and a parsimony factor, as is the case with ENPLOO.

A closely related concept is the principle of Minimum Description Length
[MDL, 255, 133], which views parsimony through the lens of information the-
ory. In the MDL framework, a probabilistic model represents a coding scheme
designed to describe the data ỹ. Accordingly, a parsimonious P model provides
a concise description of the data in terms of code length (relative to a compet-
ing P model). Note, that MDL is not a unique measure, but rather an umbrella
framework for deriving measures of parsimony/complexity in various application
contexts (see [133] for a comprehensive exposition). For instance, in a Bayesian
context, one can show [133] that a canonical measure of description length for
model P is given by

DL = − log
∫

p(y | θ) p(θ) dθ, (45)

which we recognize as the negative logarithm of the marginal likelihood intro-
duced in Equation (43). In this way, MDL not only highlights the theoretical
connection between Bayesian model comparison and information theory but also
provides a principled way for deriving new measures of prior parsimony in future
basic research.

Sparsity-inducing priors Another perspective on P-parsimony is provided
by sparsity-inducing priors, especially global-local shrinkage (GLS) priors [293,
26, 291]. These priors will shrink redundant coefficients towards values close to
zero, inducing sparsity in the posterior.5 GLS priors can be applied in many

5Shrinkage priors will not shrink coefficients exactly to zero but only close to it. Thus,
such coefficients remain in the regression equation but exert a minimal impact on predictions.
If desired, exact sparsity can be achieved in a second step via a variable selection procedure
[241, 53, 234].
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model classes, including linear and generalized linear models, non-linear and
non-parametric function estimation, time series, as well as deep neural networks
[293, 118, 26, 268]. Here, we focus our discussion on Gaussian linear models
as this case is most intuitive and theoretically best understood. Given a linear
regression model in its simplest form, GLS priors are defined on the K regression
coefficients βk as follows:

βk ∼ Normal
(
0, λ2

kτ
2) , λk ∼ p(λk), τ ∼ p(τ), (46)

where λk denotes the local scale parameter unique to each coefficient and τ
denotes the global scale parameter that is shared across all coefficients. The
choice of the hyperpriors p(λk) and p(τ) determines the specific properties of
the GLS prior, leading to, for example, the horseshoe [51, 240] or the R2D2
prior [325, 1]; see [293] for a comprehensive overview.

The implied posterior of the coefficients has a highly interesting relationship
with the maximum likelihood (ML) estimate β̂k that can be obtained from
the same likelihood and data but under the assumption of flat priors on the
coefficients. Concretely, and assuming that the ML estimate exists, the posterior
mean Eθ|y(βk) can be computed as follows [240, 1]:

Ep(θ|y)[βk] = (1 − κk)β̂k, (47)

with
κk = 1

1 + akλ2
kτ

2 . (48)

Here, ak is some constant that depends on the response’s and the k-th predictor’s
scales. Accordingly, the smaller λk and τ , the stronger the shrinkage of βk to
zero, relative to the ML estimate β̂k. Conversely, the larger λk and τ , the closer
the posterior mean of βk will be to β̂k. Given these properties, κk are called
shrinkage factors [240, 1].

The model leading to the ML estimate has K coefficients, which are all
counted fully when it comes to determining the number of parameters (see
above). Since the posterior mean βk implied by the GLS prior is equal to
(1 − κk)β̂k, we see that summing over all (1 − κk) terms can be considered
a measure of the effective number of coefficients [ENC, 240]:

ENCGLS =
K∑

k=1

(1 − κk). (49)

In contrast to the above ENP measures, ENCGLS is essentially limited to lin-
ear models. What is more, ENCGLS only considers regression coefficients, not
necessarily all P model parameters (e.g., it ignores the residual standard de-
viation σ). These are not the only differences between these measures though.
Even though both are derived as generalizations of simply counting parameters,
the ENC measures focus on posterior variance (which is explicit in the defini-
tion of ENPWAIC), while ENCGLS focuses on the posterior mean. Thus, they
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consider different aspects of the posterior when measuring parsimony. Studying
the relationships between these measures more closely would be an interesting
endeavor for future research.

3.6.2. A-parsimony

As we discussed in Section 2.3 concerning PA models, posterior approximators
can range from relatively simple optimization algorithms to high-dimensional
parametric models (e.g., neural networks) which themselves can be viewed as
standalone P models (e.g., Bayesian neural networks). The notion of A-parsi-
mony intends to capture our intuition that these different approximators have
varying degrees of complexity. Here, we propose a very straightforward defini-
tion of A-Parsimony: The cardinality of the hyperparameter space H available
for fine-tuning through the implementation interface I of the underlying math-
ematical algorithm A. For instance, the widespread use of MCMC in Bayesian
inference is partly because probabilistic programming languages provide rela-
tively simple interfaces, which abstract away a staggering multitude of hyper-
parameters of complex MCMC samplers [e.g., NUTS, 139]). On the other hand,
neural approximators [e.g., 249, 126] inherit the vast hyperparameter spaces of
deep neural networks and are thus currently still rather challenging to apply or
fine-tune [301].

A-parsimony is not only relevant for the usability of approximators, but also
plays an important and limiting role in comparison or benchmarking studies
assessing the relative performance of different approximators. Suppose we wish
to compare approximator A1 having no hyperparameters with approximator A2
having a single continuous hyperparameter h ∈ [0, 1], in the context of some P
model. A comparison of approximators must naturally be based on some met-
ric (or a set of metrics) q(A,P) which quantifies the approximation quality of
A with respect to a given P model (e.g., the distance between corresponding
PD and PAD models or the estimation speed of the approximator). However,
even for the simple scenario outlined above, it is not clear how to systemati-
cally carry out such a comparison due to the presence of hyperparameters. One
approach would be to approximate the average approximation quality given
by

∫ 1
0 q(A2(h),P) p(h)dh of A2 and compare it to q(A1,P). Another approach

would be to seek the best approximation quality given by maxh∈[0,1] q(A2(h),P)
and compare it to that of q(A1,P). Needless to say, the difficulty of ranking and
benchmarking approximators with large hyperparameter spaces drastically in-
creases, which makes A-parsimony a key limiting factor as well as a desirable
utility to improve upon.

Finally, A-parsimony is related to robustness (see Section 3.10) and con-
vergence (see Section 3.8), as the presence of multiple hyperparameters raises
the question of how to choose hyperparameter settings which i) lead to stable
results and ii) generalize to various applications of a PA(D) model. For some ap-
proximator classes (most notably, MCMC) and P models (e.g., linear models),
empirical guidelines and theoretical considerations may suggest relatively robust
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default choices. For newer approximator classes (e.g., neural density estimators)
or more exotic applications, some form of sensitivity analysis or hyperparameter
search might be necessary to ensure sufficient robustness or generalizability.

3.7. Interpretability

Interpretability of a P(A)(D) model can be qualitatively defined as “the degree to
which a human can understand the cause of a [model-based] decision” [206] or as
“the degree to which a human can consistently predict the model’s result” [159].
A more precise, perhaps even mathematical, definition is difficult to provide
given the context and expertise-dependent nature of interpretability, but there
is progress in this direction [73]. In any case, achieving interpretability will help
us understand why a P(A)(D) model behaves the way it does (e.g., in terms of
predictive performance; see Section 3.3). Such understanding can have not only
profound epistemological, but also far-reaching ethical and social implications
[232, 73, 209].

According to [209], we can distinguish between intrinsic and post-hoc inter-
pretability. The former is related to the intelligibility of the P(A)(D) model itself
(i.e., its structure and parameters), whereas the latter is related to the explain-
ability of the PAD model’s results using auxiliary methods, such as permutation
feature importance for neural networks [317] or random forests [149]. However,
there is a conceptual ambiguity regarding the term in the recent literature.
Some accounts use explainability as a synonym for interpretability in general
[209], while others use explainability to refer solely to post-hoc interpretability
[38]. In our PAD model taxonomy, we view only intrinsic interpretability as a
utility of the P(A)(D) model. Differently, post-hoc interpretability is a utility
of an explanator that is applied to the original PAD model’s results – in fact,
the explanator may just be another, more interpretable P(A)(D) model that is
used as a surrogate [38]. Accordingly, the following discussion focuses only on
intrinsic interpretability, to which we hitherto refer simply as interpretability.

P model interpretability relates to the general meaning of its parameters, so
it makes sense to differentiate between the interpretability of PI and PE models
since the two model classes often put different demands on the epistemic value
of their parameters. Further, as we will see below, there are P models whose
interpretability can be influenced by both data D and approximator A. As such,
it can be necessary to further distinguish the interpretability of P, PD, and PAD
models.

3.7.1. Interpretability of PI models

In PI models, most parameters correspond to real-world quantities or emergent
properties, whose meaning can be understood independently of the PI model
that is used to estimate them (see Section 2.1). For example, in a harmonic
oscillator [187], the object’s mass that serves as a parameter carries a meaning
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independent of the differential equation that describes the oscillator’s behav-
ior. As such, while the transformations performed to generate data from an PI

model are highly non-linear and often not analytically tractable [62], the inter-
pretability of PI models tends to be high (at least in the eyes of domain experts
in the field).

However, even for domain experts, it can be exceptionally challenging to pre-
dict the generative behavior of a high-dimensional PI model given a particular
parameter configuration. This can be the case, even when a P model has a
small number of readily interpretable parameters. Consider, for instance, the
prototypical logistic map equation [198] given by

yt+1 = ρ yt (1 − yt) (50)

and having only a single parameter ρ ∈ [0, 4] which can be interpreted as growth
rate in population dynamics modeling [281]. Despite its beguilingly simple form,
the logistic map is known to develop chaotic behavior as the parameter ρ varies
in the range from approximately ρ ≈ 3.56995 to ρ ≈ 3.82843. The model’s gener-
ative behavior in this range is characterized by a periodic phase, intercepted by
bursts of aperiodic fluctuations. And even though such behavior can be gener-
ally abstracted and described for a single parameter, for instance, with the help
of bifurcation diagrams [119], it can quickly become less amenable to high-level
descriptions when it results from the interaction of two or more parameters [10].
Unsurprisingly, Bayesian analysis of PD or PAD models based on an underly-
ing chaotic PI model has long been recognized as a challenging endeavor [20],
requiring sophisticated approximators with surrogate likelihoods [279].

As alluded to above, the interpretability of high-dimensional PI models will
often depend on whether we focus on individual parameters and their functional
role for data generation in isolation (i.e., first-order interpretability) or try to
understand interactions between parameters as well as their joint contribution
to the generation of y (i.e., higher-order interpretability). Accordingly, even for
complex PI models with dozens of parameters, we may still retain relatively high
first-order interpretability through the theoretical embedding of each individual
parameter, but higher-order interpretability may suffer, since multiple parame-
ters can act similarly on y and interact in surprising ways due to non-linearity.
For instance, the compartmental model of the early COVID-19 pandemics in
Germany set up by [246] has 34 free parameters, each of which has a direct
isolated interpretation, for instance, infection rate, number of initially exposed
people, weekly modulation, or probability of detection. However, the exact in-
terplay between these parameters in determining the actual reported number
of daily cases might not be immediately obvious from the understanding of
individual parameters alone or from the model equations themselves.

Finally, the higher-order interpretability of PI models may change once they
have been connected to data due to dependencies between parameters. Often-
times, we choose a prior p(θ) which factorizes into independent components,
reflecting our assumption of disentanglement or independent generative factors
of variation. However, the resulting PD or PAD models will rarely conserve inde-
pendence in their joint posteriors (e.g., due to loss of information or an inherent
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lack of disentanglement in the inverse model). A canonical example would be a
strong posterior correlation between two parameters with initially independent
priors, indicating that the parameters do not fulfil orthogonal functional roles
for generating the data.

3.7.2. Interpretability of PE models

In PE models, the parameters do not need to correspond to real-world quanti-
ties or mechanisms. Rather, their meaning can often only be understood within
the PE model they are part of [112]. The archetypal PE model is linear regres-
sion, where a regression coefficient β describes the linear relationship between a
predictor variable and the response whilst holding all other predictors constant.
As such, β has a clear meaning to an analyst with some statistical knowledge,
provided that the measurement scales of predictor and response variables make
sense for the task at hand. However, the requirement to hold all other predictors
constant becomes impossible to fulfil if the predictors cannot be varied inde-
pendently from each other, for example, because they are correlated in purely
observational data or because some of them constitute interactions between al-
ready included predictors. As such, even for as few as four or five predictors,
interpretability of their joint contribution becomes highly challenging unless
predictors are mutually independent [209].

The use of non-linear, monotonic transformations in PE models, such as link
functions in generalized linear models [215] or non-linear activation functions
in neural networks [272] further complicates the interpretability of an origi-
nally linear predictor structure. For example, when using the logarithmic link
(equivalently, the exponential response/activation function), the originally addi-
tive relationships become multiplicative, resulting in exponential growth, which
is much harder to comprehend for humans [304]. This then reduces the inter-
pretability of the PE model’s parameters from both their signs and magnitudes
to only their signs. If one were to apply non-monotonic transformations, the
interpretability of the parameters’ signs would be lost as well. In addition to
non-linear transformations of the whole linear predictor term, every structural
deviation from a (latent) linear structure further reduces interpretability. For
example, interactions, polynomial terms, hierarchical structure [110], Gaussian
processes [311, 253], or splines [98, 315] all make interpretation of a PE model’s
parameters harder, if not impossible in some cases.

The interpretability of a PE model may also be affected by the data utilized
for parameter estimation. Accordingly, PD models may differ in their inter-
pretability even if their underlying PE model is the same. For example, when
employing shrinkage priors for high-dimensional linear PE models with lots of
irrelevant predictors, the posterior of most regression coefficients will shrink to
values very close to zero, effectively eliminating the corresponding predictors
from the regression equation [240, 325] (see also Section 3.6.1). If only a few
coefficients are substantially different from zero, the interpretability of the re-
sulting PD model would be much higher than that of the original PE model.
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Finally, an approximator A may create a situation where a PA(D) model’s
interpretability deviates from that of the underlying P(D) model. However, that
may only happen if the posterior approximation pA(θ | y) is qualitatively differ-
ent from its analytic counterpart p(θ | y) due to an incomplete posterior explo-
ration. A common case arises when the analytic posterior is multi-modal but the
approximator collapses to a single mode [104]. Notably, mode collapse represents
a case where the interpretability of the PAD model may be higher than that of
the underlying PD model, at the cost of other utilities, such as predictive perfor-
mance (see Section 3.3). An example of an PE model class that produces highly
multi-modal posteriors are artificial neural networks [104, 77, 148]. While the
interpretability of the underlying PE model is usually low [38, 324, 323], some
of their PAD models can exhibit much higher interpretability if they are steered
in the right direction [324, 323].

The above-described notions of interpretability are largely qualitative. While
some attempts at a quantitative treatment have been made [73], we are not
aware of any sufficiently general definition that allows for a more objective,
quantitative comparison between P(AD) models with respect to their inter-
pretability. Thus, we hope that our PAD model taxonomy may inspire more
focused research on the quantification of interpretability.

3.8. Convergence

Convergence is a utility of PA and PAD models which rely on complex approx-
imators, such as MCMC, variational inference, or neural density estimators. As
explained in Section 2.3, approximators provide certain guarantees under spe-
cific assumptions, such as infinite draws in the case of MCMC [108] or infinite
training and representational capacity in the case of neural density estimators
[249, 245, 269]. In practice, however, modelers cannot wait a lifetime of infinity
for approximators’ promises to come true; for the time being, we need to work
with finite posterior draws and non-convex optimization objectives teeming with
local optima.

Thus, our convergence utility pertains to the relative distance between a
particular (finitely instantiated) PA(D) model and the optimal PA(D) model
attainable under perfect conditions for A. For the above definition to be use-
ful, we need a proxy measure of how close the current approximation is to the
optimal approximator outcome. We call such measures convergence diagnostics
and they are indispensable for ascertaining the validity of PA(D) models. Ide-
ally, good convergence diagnostics should also indicate that the approximation
is close to the analytic posterior, but only within the space of distributions the
approximator can reach. Accordingly, the relation between convergence and an-
alytic posterior approximation is only indirect for approximators that may be
asymptotically biased [319, 70]. Below, we briefly detail common convergence
diagnostics for different types of approximators.
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Fig 11. Graphical convergence checks of two parameters μ and σ. Left: Traditional trace plots.
Right: ECDF difference plots with 99%-confidence envelopes [283]. Both kinds of plots use
the same posterior draws, but only the rightmost ECDF difference plot highlights that Chains
1 and 4 have some mixing problems for σ. Example draws obtained from the bayesplot R
package [102].

3.8.1. Convergence diagnostics for Markov chain Monte Carlo

Convergence diagnostics are fundamentally important for posterior approxima-
tors that rely on MCMC since these approximators can be arbitrarily bad before
full convergence [172]. Thus, all model-based inference relies on the quality of
the approximation being close enough to the analytic posterior with respect to
some minimally required precision. For a quick graphical check, trace plots or
ECDF difference plots [283] can be used, as illustrated in Figure 11.

In terms of numerical approaches, three related classes of MCMC convergence
diagnostics are applied in today’s practice, namely scale reduction factor R̂,
effective sample size (ESS) and Monte Carlo standard error (MCSE) [111, 61,
256, 91, 108, 74, 297]. They all provide convergence measures for univariate
quantities of interest ψ = ψ(θ) that are functions of the P model’s parameters θ
(see also Section 3.2). There is not a single “global” R̂, ESS, or MCSE measure
for ψ, but one for each summary statistic T (ψ) of ψ, where T can be any
posterior expectation or quantile [297]. As such, for example, a set of S posterior
draws ψ(s) might yield a very precise estimate for the posterior mean of ψ, while
at the same time, the estimates of some tail quantiles of ψ (e.g., 5% and 95%
quantiles) have much less precision [297]. Accordingly, each of these convergence
measures is a function of the quantity of interest ψ and the summary statistic
T , computed from the S posterior draws ψ(s).

Broadly speaking, the scale reduction factor R̂ compares the between-chain
variance B = B(fT (ψ)) to the within-chain variance W = W (fT (ψ)):

R̂T (ψ) :=

√
B(fT (ψ)) + W (fT (ψ))

W (fT (ψ)) , (51)

where the dependence of B and W on T is realized by an appropriate transfor-
mation fT (ψ) that is applied to each posterior draw ψ(s) before the variances are
computed, usually on split chains [108, 297, 45]. We can conclude that conver-
gence has been reached if R̂ ≈ 1, that is, if the within-chain variance dominates
the between-chain variance.
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The ESS estimates the number of independent draws that contain the same
amount of information about T (ψ) as the S dependent posterior draws obtained
via an MCMC approximator. As a result, we usually see ESS < S, although the
opposite can also happen in case of antithetic (negatively auto-correlated) chains
[297]. We can obtain the ESS from all autocorrelations ρt = ρt(fT (ψ)) of lag t
of the chains as

ESST (ψ) := S

1 + 2
∑∞

t=1 ρt(fT (ψ))
, (52)

where, in practice, we would truncate the infinite sum at some finite value [117].
In modern versions of ESS, ρt implicitly depends also on R̂ to take variation
across chains into account [108, 297]. In case of independent draws, we have
pt = 0 such that ESS = S.

The MCSE describes how much (reducible) uncertainty in T (ψ) remains due
to the fact that we only have a finite set of dependent MCMC draws for esti-
mation [91, 74, 108, 297]. If T represents an expectation, we can write down the
corresponding MCSE schematically as an overall variance V = V (fT (ψ)) across
the S draws divided by the corresponding ESS [91, 297]:

MCSET (ψ) :=

√
V (fT (ψ))
ESST (ψ) . (53)

MCSE estimates for quantiles need to be computed a little differently and are
provided in [297].

Ideally, we should define convergence of MCMC as reaching or undercutting
the maximal MCSE that we find minimally acceptable for the given summary of
interest T (ψ). However, The MCSE is scale-dependent as it has the same scale
as T (ψ), which requires an understanding of how much of an error is acceptable
for a certain quantity, in the context of a particular model and research question.
This inherently makes MCSE harder to use in practice and hence the scale-free
alternatives R̂ and ESS are often preferred [297].

All of the above measures are univariate in the sense that they only con-
cern a univariate T applied to a univariate ψ. Recently, a more comprehensive
measure, called R∗ [172], has been developed that measures convergence in a
multivariate way across multiple model parameters or quantities of interest. It
is able to detect non-convergence in the joint posterior that may be overlooked
by only investigating convergence of a small, non-exhaustive set of univariate
quantities [172]. This is achieved by training an expressive machine learning
model (i.e., random forest) to predict chain indices from posterior draws. If the
predictive performance of the machine learning model on (unseen) test draws
does not exceed chance level, we can assume that the MCMC chains have con-
verged.

In addition to all these sampler-agnostic convergence metrics, there are also
few sampler-specific metrics. Most notably, this concerns divergent transitions
in Hamiltonian Monte-Carlo (HMC) [24], where every occurring divergent tran-
sition in the Markov chain may bias the MCMC results and indicate difficulties
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of the sampler with exploring the target posterior. Divergent transitions tend to
occur in regions of high curvature of the explored posterior; regions that most
other MCMC samplers struggle to explore as well, only that they fail more
silently compared to HMC [24].

3.8.2. Convergence diagnostics for optimization-based algorithms

Many classes of posterior approximators are based on optimization algorithms.
The simplest of such approximators aim to find a single point estimate to ap-
proximate the analytic posterior, namely the posterior mode, also known as
maximum a posteriori (MAP) estimate [108, 189]. Variational inference (VI)
approximators also use optimization, but instead of finding the MAP, they aim
to find a parametric distribution (e.g., a multivariate Gaussian) that approxi-
mates the analytic posterior as closely as possible [94, 252, 30, 310]. The op-
timization then targets the parameters of this parametric distribution (e.g.,
the means and standard deviations in Gaussian mean-field VI). Expectation
propagation [EP, 221, 207, 298] and integrated Laplace approximation [INLA,
261, 180, 262] work in a conceptually similar fashion, but the structure of their
parametric approximators and their target distributions are different (e.g., for
INLA, the conditional posteriors of the parameters, instead of their joint poste-
rior). Again, highly similar in terms of their use of optimization, neural approx-
imators (e.g., invertible neural networks; [4, 249]), use optimization to find the
neural network parameters that yield the best posterior approximation within
the generative scope of the network [230, 185, 126, 229, 249, 269] (but see Sec-
tion 3.8.5 for specifics in diagnosing convergence of amortized neural approxi-
mators).

Regardless of how optimization is applied for posterior approximation, the
aim is always to find a single point in a potentially high dimensional space
that leads to the best approximation of the analytic posterior within the set
of realizable approximations. Accordingly, all traditional convergence criteria
for iterative point optimization apply. That is, for non-stochastic optimization
algorithms (e.g., gradient-decent or L-BFGS; [217]), small absolute or relative
changes in the point estimate, small absolute or relative changes in the target
function, or small absolute or relative closeness of the target function’s gradient
to zero (if the gradient is available) [217, 286], would indicate convergence. For
stochastic optimization algorithms (e.g., stochastic gradient-decent or more so-
phisticated versions, such as Adam; [217, 161]), measuring convergence becomes
less straightforward due to the stochasticity in the objective’s trajectories. If the
step size is held constant, they yield a Markov chain around the target point,
once the algorithm comes close enough, instead of converging directly to the
target [250, 84]. The latter implies that MCMC convergence diagnostics, in par-
ticular R̂, can be applied to diagnose convergence of stochastic optimization
algorithms [70].
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3.8.3. Convergence diagnostics for sequential Monte Carlo

Sequential Monte Carlo (SMC; aka particle filtering) comprises a heterogeneous
class of posterior approximators for PD models whose underlying P models
can be expressed in the form of a sequence of conditional distributions (i.e.,
time series P models) [75, 68]. Most SMC samplers can be shown to provide
asymptotically correct inference as the number of draws (particles) approaches
infinity [64]. However, empirical convergence diagnostics in the pre-asymptotic
regime appear to be relatively scarce still [63, 175, 64]. Perhaps this is because
SMC approximators consist of multiple iteratively applied components [64], each
with their own pre-asymptotic behavior requiring their own local convergence
diagnostics: To assess the convergence of importance sampled (IS) particles at a
given step, ESS estimates for weighted samples [169, 326] or variance measures
driven by the number of siblings per particle (i.e., the number of particles with
the same ancestor node at step zero) [175] can be applied. The trustworthiness
of the IS weights themselves could be diagnosed via the Pareto-k-diagnostic of
Pareto-smoothed importance sampling (PSIS; [300, 46]), although we are not
aware this has been tried so far in the context of SMC (for a closely related
application, see [46]). Convergence of MCMC kernels that are part of many
SMC algorithms [64] could be assessed via MCMC convergence diagnostics (see
Section 3.8.1). While each of these diagnostics may be locally informative for
a given SMC component at a given step, whether and how they convey global
convergence to the target joint posterior remains to be studied further.

3.8.4. Convergence diagnostics for approximate Bayesian computation

The standard ABC rejection algorithm [259, 71, 285, 243] requires a distance
function which quantifies the difference between simulated data y (generated
from a P model with a particular parameter configuration θ) and observed data
ỹ. Further, it needs a tunable tolerance level ε according to which the algorithm
rejects a fraction of 1− ε simulated parameter values. The algorithm then keeps
the remaining parameter values as random draws from an approximate posterior
pε(θ | y).

The ESS of standard ABC rejection samplers is thus typically equal to
(1 − ε)S, with S denoting the total simulation budget, since vanilla ABC sam-
plers perform independent sampling. However, this does not mean that their
sampling efficiency is particularly appealing, especially for high-dimensional P
models. That is because ABC samplers notoriously suffer from the curse of di-
mensionality: Most simulated data sets from a high-dimensional P model will
be rejected and so it becomes challenging to obtain enough random draws from
pε(θ | y) for a reasonable reduction of the MCSE.

More sophisticated ABC algorithms, such as ABC-SMC [275, 165] or ABC-
MCMC [194, 289] alleviate some of these issues and inherit the convergence
diagnostics of SMC and MCMC. However, whenever hand-crafting of distance
functions and summary statistics of the data H(ỹ) (i.e., dimensionality reduc-
tion) is involved, ABC algorithms can converge at best to pA(θ | H(ỹ)). This
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Fig 12. Detecting model misspecification (i.e., simulation gaps) with amortized neural ap-
proximators [269]. A summary (aka embedding) network H transforms the typical generative
set T (P) of a P model (i.e., the finite set of “in-distribution” data simulations that a P model
typically generates) into the typical set of a simple distribution (e.g., multivariate Gaussian).
Discrepancies between the model-implied data distribution p(y) and the true data distribution
p∗(y) manifest themselves as detectable anomalies, causing potential posterior errors by the
inference network F . We can detect these anomalies via standard our-of-distribution (OOD)
detection techniques.

issue does not exist whenever H(ỹ) is a sufficient summary statistic, but it can
potentially lead to overestimation of V (fT (ψ)) if H(ỹ) results in considerable
loss of information about the parameters θ.

Recent work on ABC focuses on building robust ABC approximators and
exploring the possibility of utilizing hand-crafted summary statistics as a key
element of misspecification analysis and error correction [95, 196]. A related line
of work suggests comparing posterior moments recovered by differently config-
ured ABC approximators as an empirical diagnostic [96]. It remains an inter-
esting open question whether similar “ensemble approaches” can be generalized
to other approximators for simulation-based inference, such as amortized neural
surrogates [249, 126, 231] or ABC with learned summary statistics [56, 151].

3.8.5. Convergence diagnostics for amortized approximators

In contrast to MCMC-based approximators, there are no standard convergence
diagnostics for amortized approximators yet, as the latter are grounded in di-
verse, and still fast-evolving theoretical frameworks. However, whenever we em-
ploy neural posterior approximators, we can resort to convergence checks used
commonly in deep learning applications [124]; see also Section 3.8.2.

Since most modern neural architectures are trained using some form of sto-
chastic gradient-based optimization, optional stopping (i.e., discontinuation of
training once the cost function does not improve over some tolerance period)
and other convergence heuristics can be used to determine when a neural ap-
proximator has reached a stable local minimum of its cost function. That said,
due to the nature of non-convex optimization, simply assessing local conver-
gence is not enough for trusting PA(D) models coupled with amortized neural
approximators.



Some models are useful, but how do we know which ones? 273

Moreover, amortized neural approximators require simulations to be faithful
proxies of reality and might yield arbitrarily bad posterior approximations when
confronted with data that are atypical under the assumed P model [269]. The
latter case is also known as a simulation gap and it occurs when a P model does
not accurately represent the behavior of the modeled real-world system (i.e.,
when the model is misspecified). Consequently, amortized approximators must
be able to detect simulation gaps and potential posterior errors, so that they
can warn users about suspicious input data and resulting inference.

Generally, there are two broad types of empirical convergence diagnostics we
need to utilize in the context of amortized neural approximators: those of a PA
model and those of a PAD model. Model-agnostic tools, such as different variants
of SBC (see Section 3.2.3), are only applicable to PA models, as they assume that
we have access to the actual data-generating parameters. On the other hand,
if the neural approximator is a generative neural network [247, 126], the latent
space can be used as a source of convergence information for the PA model. For
instance, flow-based networks [162, 229] are trained to transform an intractable
posterior into a simple base distribution from which random draws can be easily
obtained. Thus, convergence of the PA model can generally be determined by a
divergence between the prescribed and the learned base distribution.

Unfortunately, neither of the above PA diagnostics can tell us whether the
corresponding PAD model will be able to yield faithful estimation due to poten-
tial discrepancies between the simulation model and reality (see above). Thus,
further diagnostics are necessary to promote the trustworthiness of amortized
posteriors. One such diagnostic is the maximum mean discrepancy [MMD, 127]
between summary statistics of simulated and real data which tells us whether
the observed data belongs to the typical generative set of the simulator or not
[269, cf. Figure 12]. As the field of simulation-based inference is still in its in-
fancy, we expect a rapid development of convergence diagnostics for amortized
approximators in the future.

3.9. Estimation speed

For non-amortized approximators (cf. Figure 3), we can define Estimation Speed
as the time from the start of running the approximator A of a PAD model (or a
particular instance of a PA model) until convergence, defined by approximator-
specific convergence diagnostics (see Section 3.8). In certain cases (see Section 4),
it may be sensible to define estimation speed less strictly as the time until
termination of the approximator run after which useful results are obtained,
without necessarily having achieved convergence. For a given PAD model, es-
timation speed tends to vary by several orders of magnitude across different
classes of approximators. For example, MAP estimators, VI, or other (non-
amortized) optimization-based approximators, will usually require a fraction of
what sampling-based approximators such as MCMC or SMC need [261, 40].
When considering estimation speed in isolation, there is no doubt that “faster is
better”. However, to obtain faster approximators, we often have to give up accu-
racy or asymptotic guarantees of the resulting posterior approximation [94, 319].
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Thus, increasing speed by changing the approximator class may have an adverse
effect on other utilities of PA(D) models, specifically on parameter recoverability
and predictive performance (see Sections 3.2 and 3.3).

Within a given class of approximators, hyperparameter choices can greatly
affect the estimation speed as well [139, 319, 249]. As an example, consider
static HMC where the number of leapfrog steps per Markov transition has to
be chosen a priori [139, 24]. On the one hand, if the number of leapfrog steps is
too small, MCMC draws will be highly auto-correlated and thus more draws are
required to achieve convergence. On the other hand, if the number of leapfrog
steps is too large, a lot of computation time is wasted by unnecessary leapfrog
steps; or auto-correlation might even get worse again when the HMC sampler
eventually makes a so-called “U-turn” to come back to its starting point [139].
Such problems due to hyperparameter choice can be mitigated by automatically
tuning hyperparameters in a “warm-up” phase or adapting them on the fly,
conditional on the local geometry of the approximated analytic posterior. For
example, when using the No-U-turn sampler [NUTS, 139], a generalization of
HMC, the number of leapfrog steps is adaptive. It removes the requirement for
the user to choose this hyperparameter manually and may even have better
estimation speed than optimally tuned, static HMC [139].

The above definition of estimation speed is straightforward but can be mis-
leading in practice if convergence is not achieved (or unachievable) within a
given run of A until its termination, such that A has to be restarted [113].
A typical reason is sub-optimal choices of A’s hyperparameters, for example,
if the leapfrog step size in HMC is too large leading to divergent transitions
whose occurrence implies irrecoverable non-convergence for the current approx-
imator run [24]. Thus, estimation speed in practice may be strongly affected
by an approximator’s ability to run reliably out of the box without much tun-
ing. Tuning demand can be reduced by adapting hyperparameters automatically
on the fly or by having only a small number of sensitive hyperparameters (see
Section 3.10). The latter property can further be understood as determining
approximator parsimony (see Section 3.6.2).

A manually but skilfully tuned approximator A1 might beat an auto-tuned
approximator A2 in terms of estimation speed when considering only the final,
converging run. However, the overall time (including failed runs) it can take to
get A1 to this optimal state may easily more than offset its final speed advan-
tage. As a result, in an honest comparison of practical estimation time, it may
be A2 that comes out ahead by a substantial margin. Along similar lines, the
particular P model implementation may be more or less favourable for different
approximators, which can also strongly affect estimation times [24, 297, 16, 66].

Sometimes, the reason for an approximator’s termination without conver-
gence may also lie in the computational environment, for example, time or
memory constraints on a computing cluster that limit the resources available
for a single job. For example, if the estimation of a PA(D) model takes longer
than expected, estimation might be terminated prematurely, in the worst case
leaving no intermediate result to restart from. In this scenario, even if the sec-
ond run would then be successful, we still had to deal with at least a doubled
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estimation time. Accordingly, both the predictability of the expected resource
requirements and the small variance in resources between repeated runs of the
same PA(D) model can imply substantial practical speed improvements.

3.9.1. Sampling efficiency

For sampling-based approximators, convergence in terms of reaching a given
MCSE value (for given quantities of interest and summary statistics), is strongly
application-dependent, and so is the estimation speed associated with it (see also
Section 3.8.1). For more general comparisons of sampling-based approximators,
the concept of sampling efficiency is easier to handle and we define it as the
average ESS per unit time (for a given quantity of interest ψ and summary
statistic T ):

EffT (ψ) = ESST (ψ)
tend − tstart

, (54)

where tstart and tend are the start and end times of the approximator run,
respectively. While most approximators, even optimization-based ones, can be
used to obtain posterior draws upon convergence [261, 94], we restrict the class of
sampling-based approximators to those that return only posterior draws as their
immediate endpoint instead of the parameters of (closed-form) density functions.
MCMC, SMC, and rejection sampling are the most important members of this
class [259, 108, 64].

Within a class of sampling-based approximators, say MCMC, the same con-
vergence diagnostics, in particular the same ESS, can be applied to all competi-
tors, which simplifies comparisons [16, 66]. Here it is important to not only use
the same implementation for these diagnostics across all approximators, but also
to ensure that this implementation follows the current state-of-the-art of diag-
nostic development [295]. Otherwise, comparisons may be biased by outdated
diagnostics. Additionally, one needs to verify empirically that the obtained sta-
tionary distribution for a given PAD model is the same for all the compared
approximators. Otherwise, sampling efficiency will be misleading since at least
one approximator would not have estimated the analytic posterior of the under-
lying PD model well enough. Comparisons between approximators belonging to
different sampling-based classes may require even more care to ensure that ESS
diagnostics across classes are comparable, for example, when comparing MCMC
with SMC approximators.

Whenever we are performing sampling efficiency comparisons for PA instead
of PAD models, we not only have, in principle, an infinite number of data sets
as a basis for comparison but can utilize SBC to falsify the correctness of the
achieved stationary distributions (see Section 3.2.3). However, when we investi-
gate sampling efficiency on a set of simulated data sets, different data-generation
scenarios should be studied, since well-specified P models may have different ef-
ficiency than misspecified P models.

When studying sampling efficiency, the same practical caveats apply as for
estimation speed in general. For instance, to achieve a comparison that is ecolog-
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ically valid for real-world situations, we have to investigate practical sampling
efficiency that considers both optimized and non-optimized P model implemen-
tations, as well as failed or prematurely terminated approximator runs.

3.9.2. Estimation speed of amortized approximators

Amortized approximators, such as the pre-paid estimation method [204] or neu-
ral density estimation methods [247, 126], require a slightly modified view on
estimation speed, since they tend to split inference into two phases (cf. Figure 2).
Convergence in the context of amortized neural approximators typically happens
before any posterior draws have been obtained [303, 123], so the primary compu-
tational load falls into the upfront simulation-based training phase. In contrast,
the computational cost of applying a pre-trained amortized approximator to
obtain thousands of posterior draws or perform density estimation on real data
is typically negligible and only a matter of seconds even for high-dimensional
posteriors [247]. In this way, amortized approximators can be extremely useful
for studying the (global) information gain (see Section 3.2.1) or calibration (see
Section 3.2.3) as part of the parameter recoverability utility of PA models, since
these demand inference on many, potentially thousands of data sets simulated
from the underlying P model.

Due to the properties of amortized approximators, we can modify the defi-
nition of estimation speed as the time until convergence of the training phase
plus the time for obtaining a sufficient number of posterior draws on real data
to reduce the MCSE beyond a pre-defined threshold. In this context, estimation
speed will greatly depend on the simulation time, that is, the computational cost
of performing a sufficient number of model simulations. Some amortized meth-
ods make it possible to further subdivide estimation speed into three parts:
simulation time, training time, and inference time,6 for instance, when using
BayesFlow in an offline training regime [249] or when applying sequential neu-
ral estimators [126] with the prior as a sole proposal distribution throughout
training.

In any case, estimation speed for amortized approximators will be dominated
by the time spent before obtaining posterior draws. Accordingly, it is often
important to determine the break-even point between an amortized and a non-
amortized method, that is, after how many observed data sets does the training
effort amortize in terms of ESS per unit time? Naturally, this break-even point
will heavily depend on the modeling context. For some P models, the break-
even point between neural estimation and ABC can occur after as few as 5 or
even fewer observed data sets [245], but it can also occur only after as many
as dozens when comparing different neural approximators [247]. In addition,
amortized neural samplers can often yield independent posterior draws upon
convergence [247, 123, 126], so their sampling efficiency during the inference

6Other amortized approximators, such as the pre-paid method [204], only entail a simula-
tion phase and an inference phase.
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phase (cf. Figure 2) will be generally superior to non-amortized approximators
(i.e., stateful samplers) yielding dependent draws.

Importantly, comparisons between amortized and non-amortized approxima-
tors (but also comparisons within the same A class) should take implementation
factors into account. For instance, the estimation speed of neural approxima-
tors will be greatly enhanced by using GPU parallelization and even standard
ABC rejection samplers can be quite efficient when run on a computing cluster
with hundreds of nodes [165]. For simulation-based inference, the implementa-
tion of the simulation model presents a further potential bottleneck, which can
be alleviated via parallelization, model reformulation reducing the algorithmic
complexity of the simulator, or calibration of large-scale simulators via sim-
pler surrogates [186]. In addition, recent hybrid methods employ a mixture of
amortized and non-amortized components, such as amortized likelihood ratio
approximators within non-amortized MCMC [136] or neural likelihood surro-
gates [231]. These hybrid methods blur the distinction between amortized and
non-amortized methods and render the definition of estimation speed even more
challenging. The dependence on these various implementation factors should
make us wary of comparisons between approximators in terms of estimation
speed and appreciate the challenges of building scalable PA(D) models.

3.10. Robustness

A common question that arises when we discuss substantive conclusions derived
from model-based inference is how fragile these conclusions are with respect to
crucial aspects of P, A, or D. Can we “break” the analysis by a barely perceptible
change in the data or by using a slightly different approximator? Or are the
main results of the analysis largely impervious to such seemingly unsubstantial
changes? The Robustness utility attempts to answer such questions by measuring
how much a PA, PD, or PAD model’s implications change as we (systematically)
perturb some of its components.

In the above definition, we use the term “component” very generally. It can
refer to (structural) aspects of the P model, most notably, to priors or their
hyperparameters [69, 154, 244, 17, 86, 87, 257] or to aspects of the likelihood
function [17, 34]. It can also refer to the choice of data D, for example, the
percentage of left-out observations [154, 219, 300, 296], or to hyperparameters
of the posterior approximator A [139, 249, 75, 319]. Thus, the term essentially
refers to any aspect in which a P(A)(D) model can be sensibly modified.

More formally, we want to investigate the sensitivity (inverse robustness) of
the posterior of some quantity ψ = ψ(α) with respect to some variable α which
exerts a potential influence on a component of interest. If we are only interested
in investigating the sensitivity of a specific (point) summary of the posterior,
we convey this by writing T (ψ(α)) for an arbitrary summary statistic T .

For example, we can study likelihood or prior sensitivity by power-scaling
the respective components of the P model, that is, replacing the joint model
p(y | θ) p(θ) with p(y | θ)α p(θ) or p(y | θ) p(θ)α, respectively [219, 144, 28, 154].



278 P.-C. Bürkner et al.

Of course, one can also choose to power-scale only parts of the likelihood or
parts of the joint prior. Although it is just one of many ways to systematically
perturb a P model, power-scaling is a popular approach due to its simplicity
and natural integration with existing workflows [28, 154].

Regardless of the exact perturbation method, we can define (local) sensitivity
as a measurable distance (represented by a function f) between the results of
the current P(A)(D) model at value α0 and an alternative value α1 that implies
a different P(A)(D) model, diverging from the original one only in the choice
of α [154, 257]:

Senα(T (ψ), α0, α1) := f(T (ψ(α0)), T (ψ(α1)). (55)

For example, if T were a posterior expectation or a quantile of some univariate
quantity ψ and α were a hyperparameter of the prior p(ψ) = p(ψ | α), then f
could simply be the absolute difference between these expectations or quantiles
as implied by α0 and α1, respectively. This definition can further be generalized
to sets of alternative α values in the neighborhood of α0 [257].

If α can be perturbed continuously (e.g., using power-scaling) and if T (ψ(α))
is differentiable at α0, we may also define sensitivity as a function of the deriva-
tive of T (ψ(α)) evaluated at α0 [154, 244]:

Senα(∇T (ψ), α0) := f

(
d T (ψ(α))

dα

∣∣∣∣
α=α0

)
. (56)

The latter definition has the advantage that no further value α1 has to be
chosen, but it has a smaller range of applicability and potentially more difficult
interpretation. In both of the above definitions, we can always choose f such that
the sensitivity is non-negative with a value of 0 indicating complete insensitivity.

For complex models, small amounts of sensitivity are almost always expected
but may not practically matter. Accordingly, we would say that T (ψ(α) is prac-
tically sensitive with respect to α if

Senα(T (ψ), α0, α1) > δ (or Senα(∇T (ψ), α0) > δ) (57)

for some chosen threshold δ that depends on the sensitivity measure and the
modeling context [154]. For example, let T denote a posterior mean and ψ denote
a standardized effect size that we would deem sensitive if a change exceeds
δ = 0.2 standard deviation units. Then, the results would be practically sensitive
to the given perturbation, if changing α from α0 to α1 implied |T (ψ(α0)) −
T (ψ(α1))| > 0.2.

When evaluating practical sensitivity related to hyperparameter choice within
a class of posterior approximators, robustness is highly desirable, since approx-
imators should ideally converge to the same target (see Section 3.8). What is
more, as PA models grow in complexity, analyses based on a single approximator
may gain trustworthiness by some form of multiverse analysis employing multi-
ple approximators [305]. However, it is currently unclear how to systematically
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weigh the relative contribution of different approximators when trying to ag-
gregate results from multiverse analysis, since some approximators might yield
very poor posterior approximations and thus skew any substantial conclusion.

Differently, when it comes to perturbations in P model assumptions or the
observed data, neither practical sensitivity nor insensitivity is desirable per se.
Rather, we would like results to be practically robust to perturbations if (a)
the perturbations affect only nuisance components of the P(A)D models that
are equally justifiable within the given context, or (b) if the perturbations are
so small that they could very well have occurred due to uncontrolled or uncon-
trollable influences. In contrast, when different P model assumptions represent
competing substantive theories of interest, we want the corresponding P(A)D
models to be sensitive to these assumptions.

Examples for (a) include different choices of non-equivalent likelihood families
that have an overall similar complexity (e.g., Log-Normal vs. Gamma distribu-
tion for continuous positive data) or different P(A)D models that are capable of
similar predictive performance (see Section 3.3), in case the latter is not already
the quantity of interest itself. Examples for (b) include adding small amounts
of noise to the data [192], leaving out a small subset of the data [300, 296],
or slightly changing prior hyperparameters when the goal is to specify weakly
informative priors [154]. As the magnitude of the perturbations increases, we ex-
pect results to become practically sensitive to these perturbations and observed
insensitivity would then be a reason for concern. For example, if drastically in-
creasing the amount of data would not reduce the posterior standard deviation
of ψ, this would be an indication of empirical non-identifiability ([112]; see also
Section 3.2.1) or an error in our model code [113].

Another type of sensitivity, arising in modeling dynamic systems, is sensitiv-
ity to initial conditions [182, 271], which in our taxonomy can be understood
as part of PI models. Sensitivity to initial conditions, popularly known as the
butterfly effect, implies that an arbitrarily small change in initial conditions can
result in considerably different subsequent system states (or observed trajecto-
ries). Moreover, this type of sensitivity can be considered as a hallmark of deter-
ministic chaos [271]. In the context of dynamic models, the so-called Lyapunov
exponent can measure a model’s sensitivity to initial conditions [14]. Lyapunov
exponents characterize the rate of exponential divergence from perturbed ini-
tial conditions and the maximal Lyapunov exponent can be used to summarize
the overall sensitivity of a model into a single number [155]. For more details
on dynamic systems and deterministic chaos, we refer the interested readers to
[271, 32].

3.11. Intermediate summary II

In the preceding sections, we have proposed to focus on ten general utility di-
mensions pertaining to the different Bayesian model classes within our PAD
model taxonomy. Table 3 summarizes the applicability of each utility dimen-
sion to each model class; the justification for this classification can be gathered
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Table 3

Applicability of the ten utility dimensions for each model class of the PAD-taxonomy.

P PA PD PAD

Causal Consistency ✓ ✓ ✓ ✓
Parameter Recoverability ✓ ✓ ✗ ✗
Predictive Performance ✗ ✗ ✓ ✓
Fairness ✗ ✗ ✓ ✓
Structural Faithfulness ✓ ✓ ✓ ✓
Parsimony ✓ ✓ ✓ ✓
Interpretability ✓ ✓ ✓ ✓
Convergence ✗ ✓ ✗ ✓
Estimation Speed ✗ ✓ ✗ ✓
Robustness ✗ ✗ ✓ ✓

from the treatment of individual utilities. Throughout, we have tried to elu-
cidate the rather diverse facets of these utilities compactly, while providing a
comprehensive list of references for the interested readers. We believe that con-
siderations regarding these utilities are already implicit in much of the applied
Bayesian literature. However, besides disambiguation of core concepts, a major
goal of collecting these utilities has been to stimulate their explicit consideration
in Bayesian workflows. In the following section, we will highlight the interactions
between some of these utilities and discuss their relative importance in terms of
application-dependent utility hierarchies.

4. Utility hierarchies and trade-offs

For comprehensive Bayesian model comparison across all utility dimensions, we
need a thorough understanding of how the latter relate to each other. Thus, we
begin by highlighting important connections between selected utilities. Some
connections have been discussed already in different places in Section 3, but we
summarize some of them here again for the reader’s convenience.

4.1. Interplay between utilities

Predictive performance and parameter recoverability Any modeling
goal can be summarized by a set of quantities whose inferred model-based ap-
proximations are then used in subsequent decision-making. These quantities of
interest may be manifest (observable) or latent (unobservable), leading either to
a focus on predictive performance (observable quantities) or parameter recov-
erability (latent quantities). Statistically, these two utilities can be evaluated
similarly by comparing model-based approximations with their real-world or
ground-truth counterparts. However, despite the statistical similarity in eval-
uation, prioritizing either of the two leads to substantially different modeling
workflows, as detailed further below.
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Parameter recoverability and convergence Both parameter recoverabil-
ity and convergence aim to quantify the difference between model-based results
and some ideal theoretical target that we want to approximate as best as pos-
sible. However, the two utilities differ in what the ideal target is. For parameter
recoverability, it is a known ground-truth from which the data D was implic-
itly or explicitly generated. For convergence, it is the best possible posterior
approximation that a particular approximator A can achieve for a given PD
model. Indeed, these utilities are different for two main reasons. First, even the
analytic posterior of a PD model may perform very poorly in terms of param-
eter recovery, for example, when D contains too little information relative to
the complexity of P. Second, for biased approximators, the ideal convergence
target is not even the analytic posterior itself but rather the “closest possible”
distribution within the scope of A.

Convergence and estimation speed In most cases, convergence determines
the definition of estimation speed by defining the latter as the time from the
start of running the approximator to convergence. While this definition usually
works well, there are some scenarios where it falls short. First, sometimes we
may want to define estimation speed less strictly as the time until termination
of the approximator run after which useful results can be obtained. This def-
inition can be sensible especially when the goal is to achieve good predictive
performance. If that goal was already achieved with a formally non-convergent
model, there may be no need to bother with convergence anymore. Second,
when using amortized approximators, we split the approximation process into
a time-intensive training step and a subsequent inference step, which is then
almost instant. In this context, convergence can be easily defined only for the
training step, while estimation speed has clear definitions both for the training
and inference step.

Causal consistency and fairness Fairness is not detached from causal con-
siderations. For example, measurement fairness aims to ensure that the items
in a test battery measuring a psychometric construct relate to this construct in
the same way for all groups differing in protected attributes. In the associated
causal graph, the causal effect of the latent construct on the measured items
should be conditionally independent of the protected attributes given the un-
protected attributes. However, fairness considerations reach beyond causality,
as they carry important ethical, political, and societal aspects that causal mod-
eling alone cannot appropriately account for (i.e., questions of fact vs. questions
of value).

Causal consistency and structural faithfulness Both causality and struc-
tural faithfulness aim to represent an empirical phenomenon or the character-
istics and constraints of an assumed stochastic process as closely as possible
via an adequate P model. However, they differ in what aspects of the process
they try to encompass. Causal consistency focuses on the specification of condi-
tional independence between (sets of) variables given (sets of) other variables.
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This structure is then reflected in the P model’s probabilistic factorization with-
out referring to specific distributions or functional forms. Differently, structural
faithfulness deals with the details of the P model itself, for example, what func-
tional forms connect the conditionally dependent variables or which probability
distribution they follow.

Structural faithfulness and parsimony Changing structural faithfulness
affects parsimony although in different directions depending on the kind of P
models being considered and how structural faithfulness is increased. For ex-
ample, when adding physical constraints such as symmetries, parsimony is in-
creased along with structural faithfulness as the model does not have to learn
the constraints from data. In contrast, when modeling additional probabilis-
tic structures (e.g., of time and space), parsimony is usually decreased as new
parameters have to be added to the P model to account for these structures.

Parsimony and interpretability Higher parsimony is often associated with
higher interpretability. However, there are notable expectations. For example, a
highly regularized P model (e.g., through continuous shrinkage priors) may be
considered highly parsimonious in terms of the effective number of parameters,
but at the same time remain largely opaque because the parameter dimen-
sionality itself remains high. As another example, low dimensional yet highly
non-linear systems may feature directly interpretable parameters (e.g., growth
rate in logistic map models), but their joint influence on the system’s behavior
may be very hard to understand without the aid of model simulations.

4.2. Utility trees

Having highlighted some key connections between utilities, we will now move
on to evaluating the utilities’ relative importance depending on the goal of
inference. We will differentiate between a utility hierarchy, where one utility
is strictly more important than another, and a utility trade-off, where we can
achieve a gain of one utility at the cost of a loss of another. Utility hierarchies,
utility trade-offs, as well as the relative importance of different utilities, are
inevitably application-specific and contingent on the particular modeling goals.

The first branching point in ranking the different utilities is whether we are
interested in observable or latent quantities for subsequent decision-making,
leading to what we call observable and latent inferential goals. This distinc-
tion is equivalent to focusing on either predictive performance or parameter
recoverability as a primary utility. Related binary perspectives have been put
forward, for example, as the difference between two “statistical cultures” [37] or
the prediction-explanation dilemma [320, 273]. However, the distinction between
the two goals has not been discussed in the context of explicit model utilities.
Below, we present two utility trees defining hierarchies and trade-offs for the
two kinds of inferential goals.

The way we would like to see these utility trees being used in practice is
that analysts (a) build and improve their models in a way that respects utility
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Fig 13. Utility tree for model-based inference of observable quantities (prediction).

hierarchies and (b) talk explicitly about the utility trade-offs they have been
making in the process. This should enable users of the models and consumers
of statistical inference to understand which model-building decisions have been
made, why they have been made, and how they affect the trustworthiness of
model-based decisions.

4.3. Utility tree for observable inferential goals

The workflow for observable inferential goals centers around the predictive per-
formance of PAD models as a central utility. This is the prevalent perspective on
modeling in machine learning research. Given its practical nature, this perspec-
tive would require a practically usable representation of a posterior distribution
from which predictions can subsequently be obtained, hence the focus on PAD
models. Below, we discuss our proposed model utility tree for observable infer-
ential goals (see Figure 13).

4.3.1. Primary utilities

Fairness The fact that predictive performance is the central utility under this
perspective does not mean that it would be the sole or even the most important
utility to consider. Rather, on the top of the utility hierarchy, we need to check
whether the predictive goals concern certain aspects related to fairness. If they
do, our PAD model needs to satisfy the fairness criteria agreed upon in the
corresponding domain, otherwise, it would be considered invalid from an ethical
and/or legal perspective (see Section 3.4), regardless of how good its predictive
performance is. If fairness concerns do not apply to the particular PAD model,
the fairness utility can be circumvented.
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4.3.2. Secondary utilities

The secondary level of our predictive utility tree includes (in addition to predic-
tive performance itself), estimation speed, interpretability, and robustness (in
alphabetical order) as utilities across which trade-offs can be made. Notably, we
do not require convergence of the PAD here and view estimation speed simply
until termination of the approximator, regardless of whether or not convergence
had been reached (see Section 3.9). While the three additional central utilities
may exhibit trade-offs among each other, increasing them may in particular
justify (some) reduction in predictive performance.

Estimation speed If achieving high predictive performance requires either
a very high dimensional parameter space (e.g., as in a neural network) or the
repeated evaluation of a complex simulator (e.g., in a differential equation-based
mechanistic PI model), then estimation speed will exhibit a trade-off with pre-
dictive performance. In other words, PAD models with easy-to-evaluate or easy-
to-simulate likelihoods may obtain faster posterior approximation, but may also
yield worse predictive performance. Whenever estimation speed becomes pro-
hibitive for the practical application of a PAD model, the context may justify
the use of another P model, even if the latter sacrifices (some) predictive per-
formance. The same logic can justify using approximators that speed up the
approximation of a PAD model, even at the expense of losing (some) predictive
performance (e.g., using VI instead of MCMC-based approximators; see [29] or
Section 2.3).

Interpretability Interpretability is often higher in P models with lower pa-
rameter dimensionality and linear structure (see Section 3.7). However, depend-
ing on the complexity of the real data generator, low-dimensional and/or lin-
ear(ish) models may have worse predictive performance than higher-dimensional
and/or more non-linear models. Yet, even if predictive performance is the main
goal, it may still be legitimate (or even legally required) to use a more inter-
pretable PAD model, even at the cost of some predictive performance.

Robustness A PAD model yielding high predictive performance on some test
data may yield surprisingly poor predictions on slightly modified data (e.g., ad-
versarial attacks on deep neural networks, see [2]). In a similar vein, a PAD
model that is well predicting given some reasonable initial values of an approxi-
mator A may deliver worse predictions for some other (equally reasonable) initial
values [177]. Both of these sensitivity types are not desirable and it can be le-
gitimate to sacrifice (some) predictive performance for an increase in robustness
against small perturbations.

4.3.3. Tertiary utilities

At the third level of the predictive performance tree, we find supporting util-
ities that may serve as proxies for the central utilities. Specifically, these in-
clude causal consistency, convergence, parameter recoverability, parsimony, and
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structural faithfulness (in alphabetical order). Tertiary utilities are often easier
to evaluate and available “early” in the model-building workflow, for example,
when they are only requiring a P model instead of a PAD model. Using these
utilities can thus help speed up the model-building process. However, these
supporting utilities should only guide final modeling choices whenever multiple
models are equally justifiable with respect to primary and secondary utilities.

Causal consistency If the quantities of interest are purely predictive, en-
forcing a P model to satisfy causal consistency (or even thinking about a causal
graph in the first place) is not required and may even have detrimental effects
on predictions [202]. In other words, for predictions, it would usually be entirely
irrelevant how the association between two variables came to happen, as long
as the input variables are predictive of the outcome variables. However, causal
consistency can still be a supporting utility to reduce the a priori admissible
model space by ruling out variables or interactions, as well as related P model
terms, for which a causal graph implies a lack of relation to the target vari-
ables (i.e., no path between covariates and target, regardless of path direction).
Considering a genetic association study as an example, we can rule out gene
areas that only encode genes whose effects are known and understood to have
no plausible relationship to the phenotypes being predicted [306].

Convergence Convergence is not strictly required in the predictive utility
tree, since a non-converged PAD model may still exhibit satisfactory predictive
performance. That said, achieving convergence will likely imply an improvement
in central utilities as well. Not only is this true for predictive performance itself,
but also for robustness. For instance, a non-converged PAD model may vary
arbitrarily from another non-converged PAD model, whereas we can expect
them to be (more) similar upon convergence, at least for approximators that
have the potential to explore the full posterior (see Section 2.3). Accordingly,
before studying central utilities that may be costly to evaluate, we can use
convergence as a shortcut to rule out PAD models with low potential to score
high in those central utilities.

Parameter recoverability Parameter recoverability can indirectly enhance
predictive performance since nearly non-identifiable P models and poorly cal-
ibrated PA models can be discarded early in a model-building workflow. Such
models can neither yield good predictions, nor trustworthy uncertainty repre-
sentation, as some information gain is necessary to achieve posterior predictions
that are different from prior predictions (see Section 3.2.1). However, strict pa-
rameter recoverability still plays a secondary role for the central goal of achieving
good predictions. For instance, highly over-parameterized P models may achieve
zero Bayesian surprise (i.e., no difference between prior and posterior) for a large
fraction of their parameters, but still yield reasonable predictions based on the
few identifiable parameters [246].

Parsimony In addition to having aesthetical value in itself (see Section 3.6),
parsimony as a supporting utility bears close relations to estimation speed, in-
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terpretability and predictive performance: More parsimonious models tend to
be (a) faster to estimate, at least when comparing P models that are nested (i.e.,
one model is a special case of the other), (b) more interpretable, as fewer pa-
rameters have to be considered simultaneously, and (c) less prone to overfitting
(although they may be prone to underfitting). Some forms of parsimony (both
plain number of parameters and a priori effective number of parameters; see
Section 3.6.1) are available before running any approximator. Correspondingly,
we can utilize parsimony as an a priori proxy for the central utilities.

Structural faithfulness Structural faithfulness comprises several P model
characteristics that we ideally know and understand before running any ap-
proximator: variable scales, probabilistic symmetries, and physical constraints
(see Section 3.5). Structural faithfulness is related to multiple central utilities.
Most importantly this concerns predictive performance, as structurally faithful
models are more likely to predict more accurately while requiring less data and
showing better uncertainty calibration [251, 312]. But structural faithfulness is
also related to estimation speed (for the better or worse; [110, 40]) as well as
robustness, for example, small perturbations of the training data [192]. Accord-
ingly, we can also treat structural faithfulness as a proxy for central utilities to
reduce the a priori considered model space to (sufficiently) structurally faithful
models.

4.4. Utility tree for latent inferential goals

The utility tree for latent inferential goals centers around the parameter recov-
erability of P or PD models as the central utility. Modeling goals following this
perspective are almost entirely of theoretical, epistemic nature, and so the ap-
proximator is not itself part of the modeling goal. Yet, in practice, we will still
almost always rely on PA and PAD models for practical evaluation, hence the
indispensable role of the approximator. Below, we discuss our proposed model
utility tree for latent inferential goals (see Figure 14).

4.4.1. Primary utilities

Fairness Once again, on top of the hierarchy, we find fairness for ethical
and/or legal reasons whenever the modeling context has fairness-related im-
plications (see Section 3.4). First, at an individual (person-specific) level, we
need to ensure that estimated latent parameters are fair with regard to individ-
uals of protected groups. Second, at a more general (person-unspecific) level, we
need to keep in mind how our inferences about latent parameters might trigger
political decisions or societal processes affecting protected groups.

Causal consistency Next, we need to ensure that the P model is causally
consistent with the assumed, and theoretically justified, causal graph (see Sec-
tion 3.1). We argue that thinking about causal consistency is required for any
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Fig 14. Utility tree for model-based inference of latent quantities (e.g., parameter estimation).

latent modeling goal. Even if studies do not engage in (sufficient) causal anal-
ysis, and then correctly state that their results cannot be interpreted causally,
there remains the (perhaps implicit) wish that a causal claim would be possible.
What is more, even a pure measurement goal (e.g., estimating intelligence or
personality traits without the need to relate latent parameters to each other)
would need a causal model to decide and justify which observable variables to
use for the estimation of the latent variables [156]. Finally, even if one might
find a latent inferential goal that would be honestly satisfied with association
only, causal analysis and discussion would still be required to prevent people
from interpreting results causally.

Convergence Convergence of PAD models is a prerequisite for any practi-
cally trustworthy result of a latent inferential goal because we have no external
validation criterion available during inference on real data as we would have
when considering observable inferential goals. In fact, before convergence, pos-
terior approximations may be almost arbitrarily incorrect, regardless of the kind
of approximator being used (see Section 3.8). Specifically, for asymptotically
biased approximators (e.g., VI), the approximated posterior upon convergence
may still be a bad representation of the analytic posterior if the expressive scope
of the approximator is limited. But even in such cases, a converged approxima-
tor is more likely to be closer to the analytic posterior than an arbitrary, non-
converged approximator, and so the former is to be treated as more trustworthy.
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4.4.2. Secondary utilities

When it comes to inferential goals, parameter recoverability is the central utility
of the secondary hierarchy. However, except for the identification sub-utility, it
cannot be studied directly on real data because knowledge of the ground-truth
is missing (see Section 3.2). As a result, many studies on parameter recover-
ability occur in the form of simulations or, if possible, mathematical analysis.
This also concerns studying trade-offs with other central utilities, namely, es-
timation speed, interpretability, and robustness. These remain instrumentally
the same as for observable inferential goals and can reveal trade-offs with pa-
rameter recoverability for the same reason as for predictive performance (see
Section 4.3.2).

4.4.3. Tertiary utilities

Due to the lack of ground-truth latent parameters at real-data inference time,
the tertiary, supporting utilities not only aim at speeding up model building
but may also function as observable proxies of parameter recoverability. These
supporting utilities are parsimony, structural faithfulness, and predictive per-
formance. The reason for the relevance of the former two is the same as for
observable inferential goals (see Section 4.3.3), and so only predictive perfor-
mance requires separate explanation and justification.

Predictive performance The relation between predictive performance and
parameter recoverability is complicated and using the former as an observable
proxy for the latter in a valid way requires great care [273, 270]. Most impor-
tantly, we should not choose causally inconsistent P models, even if they predict
better [202, 270]. Fortunately, when taking the here-presented hierarchy of util-
ities seriously, this danger is banished by giving causal consistency priority over
almost all other utilities for latent inferential goals. Within the class of causally
consistent P models, it seems that using predictive performance as a proxy
for parameter recoverability in (converged) PAD models represents a valid ap-
proach [270]. For example, we can utilize predictive performance to determine
whether an extra probabilistic structure (e.g., accounting for potential temporal
or spatial dependencies; see Section 3.5.2) is worth including or not [39]. This
affects the balance between structural faithfulness and parsimony, which in turn
serve as proxies for parameter recoverability. As another example, the choice of
likelihood functions driven by predictive performance can be used to improve
parameter recoverability in the context of regression P models [270].

5. Conclusion

We proposed answers to two fundamental questions of Bayesian modeling,
namely (1) “What actually is a Bayesian model” and (2) “What makes a good
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Bayesian model”? Ultimately, we hope that both of these questions and the an-
swers we provided will aid in thinking and talking about Bayesian models, as
well as enhance the overarching model-building process, regardless of the specific
methods and fields of application.

As an answer to the first question (Section 2), we proposed the PAD model
taxonomy that defines four different kinds of Bayesian models as subsets of the
triple of joint distribution of all involved variables (P), the training data (D),
and the posterior approximator (A). In this way, we put forward our view that
modern Bayesian models are more than just likelihood and prior, but comprise
a variety of “external components” that influence, and, in turn, are influenced
by, the goals and the results of any statistical analysis.

As an answer to the second question (Sections 3 and 4), we first argued that
there are ten utility dimensions along which we can evaluate Bayesian mod-
els, namely, (1) causal consistency, (2) parameter recoverability, (3) predictive
performance, (4) fairness, (5) structural faithfulness, (6) parsimony, (7) inter-
pretability, (8) convergence, (9) estimation speed, and (10) robustness. Then,
we proposed two utility trees that embody utility hierarchies and trade-offs
depending on the particular inferential goals. We hope that our list of utility
dimensions and structure of possible inferential goals is exhaustive (up to us-
ing synonyms and regrouping sub-utilities differently). However, it may as well
become incomplete in the future, as new ideas are born and rapidly developed,
and we will be happy to incorporate these into our taxonomy.
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