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Abstract: Nested sampling (NS) computes parameter posterior distribu-
tions and makes Bayesian model comparison computationally feasible. Its
strengths are the unsupervised navigation of complex, potentially multi-
modal posteriors until a well-defined termination point. A systematic liter-
ature review of nested sampling algorithms and variants is presented. We
focus on complete algorithms, including solutions to likelihood-restricted
prior sampling, parallelisation, termination and diagnostics. The relation
between number of live points, dimensionality and computational cost is
studied for two complete algorithms. A new formulation of NS is presented,
which casts the parameter space exploration as a search on a tree data
structure. Previously published ways of obtaining robust error estimates
and dynamic variations of the number of live points are presented as special
cases of this formulation. A new online diagnostic test is presented based on
previous insertion rank order work. The survey of nested sampling methods
concludes with outlooks for future research.
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1. Context

Nested Sampling (NS, Skilling, 2004) is a Monte Carlo algorithm for computing
an integral over a model parameter space. In the context of Bayesian infer-
ence of analysing some data D, the integrand is the likelihood function L(D|θ),
which is marginalised over the parameters θ according to the prior probabil-
ity density π(θ) dθ, which gives a measure of the parameter space. Integrals
over the posterior density L(D|θ) × π(θ)dθ allow insightful statements about
what model parameters regions are probable or improbable. The integral over
the entire parameter space, Z =

∫
L(D|θ)π(θ)dθ, is known as the marginal

likelihood or Bayesian evidence. The Bayes factor is the ratio of marginalised
likelihoods of two different models, ZM1/ZM2. Multiplied by the model prior
odds, the resulting posterior odds can be interpreted as the relative evidence
among these two models, given the observed data. Selecting models using the
Bayes factor can be performed based on empirical scales (e.g., Jeffreys, 1998;
Kass and Raftery, 1995) or calibrated on false decision rates (e.g., Veitch and
Vecchio, 2008; Buchner, 2019). The computation of marginal likelihoods is thus
generally important for science with parametric probabilistic models (Evans,
2007). In practice, the computation of posteriors and the integral is achieved
with Monte Carlo algorithms.

Exploring, navigating and integrating these parameter spaces can exhibit the
following challenges (classification in priv. comm. with F. Beaujeau):
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• (P) Peculiar shapes such as non-ellipsoidal (e.g., from non-Gaussian pro-
files) and non-convex posterior contours (e.g., bananas).

• (M) Multiple, well-separated modes, when several peaks in the posterior
with comparable probability exist. One can define these by contours form-
ing non-connected sets.

• (D) High dimensionality (here: intermediate: d ∼ 10, high: d > 30). High-
dimensional spaces incur the curse of dimensionality and geometric intu-
ition breaks down.

• (I) High information gain makes the posterior a very small portion (e.g.,
e−10000) of the prior volume, that needs to be identified. A useful measure
of how much the likelihood updates the prior is the information gain:
H =

∫
log π(θ)

L(D|θ)×π(θ)π dθ.
• (T) Phase transitions are surprising and abrupt changes of the accessible

parameter space X with increasing likelihood L, i.e., when g = d logL
d logX is

not an up-concave function (Skilling et al., 2006). A illustrating example is
the spike-and-slab likelihood, where a Gaussian is summed with another,
much wider, co-centred Gaussian (σ2

2 � σ2
1). Between the centre and scales

of order σ1, g decreases quadratically approximately as −(x−μ)2/σ2
1 , but

then slows its decrease and becomes almost constant between σ1 and σ2,
where the “spike” (σ1) occupies a tiny region on top of the wide slab
(σ2). Therefore, the parameter space accessible at a given L increases first
very slowly with decreasing logL, then extremely rapidly, analogous to the
volume expansion of water as it is heated to water vapor (Skilling et al.,
2006). Such phase transitions commonly occur when a subdominant model
component becomes relevant after a dominant component is constrained,
for example in mixture models. Likelihood plateaus can be considered
extreme phase transitions.

Naturally, a given problem can exhibit any combination of these challenges.
Nested sampling (introduced in § 3) addresses these challenges. It makes

computing Z practical for a wide variety of problems. Posterior samples are
simultaneously computed by NS. Beyond the application to Bayesian inference,
NS has been applied as a general integration algorithm (e.g., Murray et al.,
2006; Pártay, Bartók and Csányi, 2010; Malakar and Knuth, 2011; Goggans,
Henderson and Cao, 2014; Birge, Chang and Polson, 2012) and to compute
entropies (Malakar and Knuth, 2011; Brewer, 2017).

2. Review methodology

This review presents NS methods developed over the last 15 years. We conducted
a systematic literature review to find works on nested sampling. We used four
sources: (1) Google Scholar was searched with the terms “nested sampling” (in-
cluding quotes) in Sep 2017. Of the 6080 search results of which we consider the
first 260 (ranked by relevance by Google Scholar). We excluded results on the
unrelated nested sampling technique for soil measurements by removing publi-
cations by one author from the query -“PC Mahalanobis” and further manually
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removed results. (2) Google Scholar citations of Skilling’s original 2004 Nested
Sampling paper were searched with the search query “nested sampling”1 in
September 2017. This yielded 420 search results which we all considered. (3)
The NASA Abstract Database System was initially searched with the query
"nested sampling". This gave 1215 results, many of which are simple applications
of nested sampling without methodological contributions, mostly from astro-
physics. We thus limit our search to the arXiv classes (arxiv_class:"stat.*"
OR arxiv_class:"math.*" OR arxiv_class:"physics.*"), where papers de-
veloping statistical methods and algorithms are (cross-)posted. This yields 78
results, all of which were considered. (4) Works previously known to the first
author were also included. Out of those four queries we consider works with
novel contributions to any aspect of nested sampling methods.

Some restrictions are necessary to focus the content. Firstly, we limit our-
selves to inference problems over continuous parameter spaces. NS does not
require the space to be continuous, only that a prior is defined from which can
be sampled. The “objects” considered can be of categorical nature or of vary-
ing dimensionality (e.g., Brewer, 2014). Furthermore, the review does not go
into depth on probability theoretical analyses of NS. This is mathematically in-
volved and already covered elsewhere, to which we refer the interested reader in
sections 3.2 and 4. We exclude works which merely apply nested sampling in a
previously published form to a new problem without modifications of any aspect
of an existing algorithm, and further exclude works which do not describe the
specific method they use.

The review made clear that NS is developed in communities with limited com-
munication. The first sections introduce NS from the view points of Bayesian
practitioners (3.1), statisticians (3.2), physicists (3.3) and computer scientists
(3.4). Using the language of each group these sections attempt to allow experts
to exchange their ideas better. The focus of this review are techniques for imple-
menting the components of NS, enumerated in section 3.5, in such a way that
they efficiently address the PMDIT challenges. Section 4 gives an introduction
to the integration procedure, and references convergence proofs. Termination
criteria are discussed in § 4.3, followed by a discussion of the computational
complexity in § 4.4. Diagnostics to determine the correctness and quality of a
NS run are presented in § 4.5, including a new test. Sampling methods for use
inside NS are extensively reviewed, including methods based on random walks
(§ 5.1), rejection sampling (§ 5.2), and hybrids (§ 5.3). Section 6 then discusses
variations of NS, which soften the hard likelihood constraint, vary the number of
live points and parallelise the algorithm. In § 7, a simple numerical experiment
demonstrates some of the behaviours of NS implementations.

The survey of techniques presented helped inform design decisions for our
own open-source NS implementation. UltraNest 2 is a high-performance general
purpose nested sampling library for models written in the Python, C, C++,
Fortran, Julia or R programming languages, with a focus on reliability. We

1exact query link
2https://johannesbuchner.github.io/UltraNest/

https://scholar.google.co.nz/scholar?start=180&q=nested+sampling&hl=en&as_sdt=2005&sciodt=0,5&cites=5274326748389338138&scipsc=1
https://johannesbuchner.github.io/UltraNest/
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document the design decisions for UltraNest in the relevant sections.

3. Introduction to nested sampling

We present introductions aimed at different audiences, with the goal of enabling
different groups to translate between their languages used. The sections present
an introduction NS from the perspective of a Bayesian practitioner (§ 3.1),
theoretical statistician (§ 3.2), physicist (§ 3.3) and computer scientist (§ 3.4).
The components of NS are then identified in § 3.5.

3.1. Conceptual introduction

To get started, a reference version of the algorithm is introduced. The the-
oretical background, justifications and variations are discussed in subsequent
sections. While the algorithm is not limited to continuous priors, to understand
the concepts, it can help to first consider a parameter space with uniform priors.
For example, V =

∫
π(θ) dθ can intuitively be associated with a volume. Some

implementations also prefer this approach, and support nonuniform, including
dependent, priors by inverse transforming with the cumulative prior distribution
(see Appendix A).

NS is an integration algorithm that provides both the posterior samples and
the marginal likelihood Z. The approach is akin to Lebesgue integration, which
requires keeping track of the height (the likelihood) and the volume. Lets con-
sider that we want to compute the marginal likelihood over a d-dimensional
continuous parameter space. Figure 1 illustrates the procedure described below.

Initialisation Sample randomly from the prior N live points (e.g., N = 400)
and evaluate the likelihood function at each point.

Shrinkage Remove the live point with the lowest likelihood, L1 (the worst
fit), which becomes the first dead point. Considering that each point represents
1/N of the total volume, this reduces the volume by a factor of approximately
δV = 1/N . Three more estimators of the removed volume are common: Con-
sidering that the samples split the volume in a uniformly sampled fashion by
the sampled L thresholds, the volume δV of the removed shell, L > Lmin, is a
random variable drawn from a Beta(1, N) distribution. This distribution can be
randomly sampled, or the geometric mean δV = 1 − exp

(
− 1

N

)
and arithmetic

mean δV = 1
N+1 considered as estimators. This is discussed further in § 4.2. For

all but the smallest N , the discrepancy between these estimators is negligible in
practice. For pedagogical simplicity, δV = 1

N is adopted in this work. With one
point removed, the remaining volume is V = 1 − 1

N , i.e., the volume shrank by
the factor (N − 1)/N .
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Fig 1. Top left: A complicated likelihood function is defined over a two-dimensional parameter
space. NS begins by evaluating N = 5 random points. Top center: Each live point (circle)
defines a likelihood contour. The lowest likelihood point (red cross) becomes a dead point. It
is replaced by a new, live point (blue circle), sampled randomly from the prior but above the
contour defined by the dead point. Top right: After a few iterations, the live points concentrate
in a small volume at the likelihood peak. Bottom panels (top is linear, bottom is logarithmic):
For each iteration, a dead point is placed with its likelihood and the prior volume estimated
by geometric shrinkage. The prior volume of the sequence shrinks exponentially from right
to left. Vertical bars represent the likelihood shell removed, and are coloured consistent with
the contours shown in the other panels. The bar area is the posterior weight, and the sum of
the bars gives the marginal likelihood Z. The gray dashed curve indicates the true volume-
likelihood relation for this function. In the bottom log-log plot, the phase transition is marked,
which corresponds to the transition from the wide, shallow yellow regions to the high and
steep orange regions in the upper panels.

Likelihood-restricted prior sampling (LRPS) A new, independent live
point is sampled randomly from the prior, but it is required that its likelihood
exceeds L1. This step is called likelihood-restricted prior sampling, LRPS, also
known as constrained sampling or constrained simulation. Section 5 extensively
discusses LRPS methods. Any region with likelihoods below L1 is not considered
any further, and we have again N live points within a volume.

Iterations We repeat replacing live points (shrinking and LRPS steps), which
continuously increases the likelihood threshold and shrinks the volume by ap-
proximately a constant factor. Put in another way, removing the lowest point of
N automatically chooses likelihood thresholds such that the volume decreases
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by a constant factor, at least on average. NS scans the prior from the worst
to best likelihood. The progression by constant shrinkage factors reduces the
remaining volume exponentially.

Termination After i iterations the remaining volume is exponentially small,
Vi =

(
1 − 1

N

)i, with a high likelihood threshold selecting live points close to the
best-fit parameter peak(s), i.e., the likelihood of the remaining points is flat.
Further ΔVi ×Li contributions to Z are thus negligible and the integration can
be stopped. The algorithm has converged in the sense that iterating further
would not significantly alter the result. Other termination criteria are discussed
in § 4.3.

Integration Removing a point at iteration i reduced the volume Vi = (1− 1
N )i

by ΔVi = Vi−Vi−1 = (1− 1
N )i× 1

N . This can be envisioned as a shell of prior vol-
ume being peeled off. The “level height” for this integration contribution is just
the likelihood of the dead point, Li. Accordingly, each dead point is assigned the
unnormalised weight ΔVi ×Li, and the integral Z is simply: Z ≈

∑
i ΔVi ×Li,

with an error estimate available. The remaining live points at termination can
also be included, with their likelihoods multiplied by the remaining volume dis-
tributed equally among them, Vi/N . The weighted dead points are approximate
samples from the posterior, and can for convenience be resampled proportional
to ΔVi × Li into unweighted posterior samples.

Properties Figure 1 illustrates some important aspects of this procedure.
Firstly, NS defines an initialisation and termination point, and can thus run
without the user in the loop. It performs a global exploration of the parameter
space. This makes NS robust to identify and characterise multiple modes. The
scanning from the entire volume to progressively smaller regions is done by an
ever-increasing L threshold. The shrinkage is done by constant factors, which
means the L level is increased dynamically. This handles heavy and light tailed
distributions equally well. Additionally, it traverses phase transitions, such as
from the yellow plateau to the orange base of the modes in Figure 1. This
phase transition is highlighted in the bottom panel of Figure 1, where first the
likelihood stays approximately constant as the volume shrinks, then increases
rapidly, making the logX − logL curve non-concave.

The volume-likelihood plot in the second-to-bottom panel of Figure 1 shows
that much of the space in this simple example has a very low likelihood, which
contributes little to the integral. NS needs to traverse this space, sometimes for
a long time, until the bulk of the posterior is reached.

The geometric discovery of new points is done based on the prior. The like-
lihood function is queried as an oracle for a binary decision, namely, whether
a suggested new point is inside or outside. In this geometric sampling of the
prior space, NS does not require likelihood function gradients, making it easy
to integrate with complex, numerical likelihoods from legacy codes.

Finally, NS terminates unsupervised, when the remaining live points occupy
a tiny prior volume, which contributes vanishingly little to the integral.
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To summarise, NS is an attractive algorithm framework for Bayesian inference
because

1. it explores the parameter space globally,
2. it handles multi-modal distributions and phase transitions well,
3. it initialises and terminates at a well-defined point without cumbersome

supervision, and
4. it provides both the marginal likelihood and posterior samples.

3.2. Viewpoint for theoretical statisticians

To solve the d-dimensional integral of the joint distribution of θ and D,

Z =
∫

· · ·
∫

P (D|θ) × π(θ) dθ1 · · · dθd, (1)

NS transforms it into a one-dimensional integral. The survival function of a
likelihood-restricted prior is (Chopin and Robert, 2007a, 2010):

X(Lmin) = pr{L(D|θ) > Lmin}

=
∫
L(D|θ)>Lmin

π(θ) dθ

Then a “sorting” of the prior space via the likelihood function is achieved by
the inverse:

Z =
∫ 1

0
Lmin(X) dX (2)

At first glance, this conceptual transformation has not achieved anything, be-
cause the relevant multi-dimensional spaces cannot be identified with Lmin in
all but the most trivial functions.

Instead, NS chooses the L levels such that the corresponding X can be es-
timated. Note that the inverse of X, Lmin(X), is a monotonically increasing
function. It is visualised in the bottom panel of Figure 1. Suppose θ1, . . . , θN
are i.i.d. samples from the prior, and their likelihood is L1, . . . , LN . By defi-
nition, the survival function of these likelihood samples is X. Therefore, the
probability integral transform of the samples, X(L1), . . . , X(LN ) is i.i.d. stan-
dard uniform distributed. The implication is that points sampled from the prior
generate L levels uniform in the prior volume X. Lets assume the samples were
indexed so that L1 = min{L1, . . . , LN}. Then by the properties of order statis-
tics of a collection of uniform random variables, the corresponding X1 follows
X(L1) ∼ Beta(N, 1) (Skilling, 2004). Section 4.2 below discusses alternatives
for this step with different assumptions.

Setting Lmin = L1 and repeating the sampling procedure with the prior
restricted to L(D|θ) > Lmin induces nested sampling. The recursion tracks
an ever-shrinking X with an ever-increasing likelihood threshold Lmin. Within
the restricted prior space, X(L2), . . . , X(LN ) are also uniformly distributed,
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specifically from X(Lmin) to unity. The sequence of sampled Xi thus has the
property Xi+1/Xi ∼ Beta(N, 1), with X1 = 1. This makes estimators such as
Z =

∑
i (Xi−1 −Xi) × Li computable. Section 4 discusses convergence proofs

and construction of unbiased integral estimators for X, Z and logZ.
Above, only a very brief introduction of the ideas involved in NS was given.

We refer to interested reader to Chopin and Robert (2010) and Schittenhelm and
Wacker (2020), for more formal introductions, to Walter (2017) for an analysis
of the Monte Carlo point process occurring in the sequence of finite ordered
points used to track shrinkages by sampling from one likelihood threshold to
the next, and Salomone et al. (2018) for connections to Sequential Monte Carlo.

The popularity of Markov Chain Monte Carlo (MCMC) makes it worthwhile
to draw comparisons between the two iterative Monte Carlo algorithms. From
a starting point, Random Walk Metropolis MCMC constructs a sequence of
points. For choosing the next point, a proposal or transition kernel needs to be
defined, and the Metropolis acceptance rule either chooses the proposed point
or the current point as the next point, proportional to the posterior probability
ratio. If chains are run infinitely long, the distribution of chain points converges
to the posterior distribution. The performance of MCMC with finite chains cru-
cially depends on the transition kernel, and many methods have been proposed.
Similarly, the performance of NS crucially depends on the LRPS, and many
methods have been proposed.

The MCMC and NS algorithms can also be qualitatively compared by their
emergent behaviour in typical applications. MCMC typically exhibits an ini-
tial phase where it attempts to identify the posterior bulk. In this phase, the
posterior density is typically rapidly increasing by orders of magnitude. This
initial phase is followed by exploration of the posterior, where the chain begins
to converge, and the number of effectively independent samples is proportional
to the length of the chain.

We can also identify three emerging phases the NS algorithm exhibits. Ini-
tially, the volume is large and the live points vary by many orders of magnitude,
including many bad fits, so that the dead points receive weights ΔViLi that are
ultimately negligible. Because the live points vary in their likelihood value by
many orders of magnitude, if the algorithm were terminated in these iterations,
all of the posterior weight would be concentrated in the most likely point found
so far Z ≈ LiVi/N . Where the volume is still substantial and likelihoods are
high, so that Li × Vi is maximal, the posterior bulk is reached, which we can
identify as a second phase. Here, multiple points receive comparable weights
ViLi, i.e., the posterior becomes resolved into multiple posterior samples. Be-
cause NS needs to track the shrinkage, it cannot rapidly skip ahead to this phase
like MCMC, and therefore (but see § 6.2) the phase of identifying the posterior
bulk can take many iterations (proportional to the information gain (Skilling,
2004)). Finally, NS exhibits a phase where the likelihoods are high and very close
to the maximum likelihood, but the volume has become very small. Therefore,
most points receive a small weight and the posterior bulk has been passed. Here
NS differs from MCMC in that continuing the run does not linearly increase the
effective sample size. Section § 3.4 and § 6.2 discuss methods for bulking the
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posterior samples with additional iterations.

3.3. Viewpoint for physicists

Many Monte Carlo algorithms stem from analogies to physical systems. To give
an example (from Skilling, 2012; Habeck, 2015), consider several gas particles
in a box. The position and velocities of all particles then completely describe
the microstate, or configuration θ of the system. If the particles are rolling
under gravity within a (perhaps strangely shaped) basin, the total potential
energy of the system E(θ) can be identified. This is the analogy to the negative
log-likelihood, E(θ) = − logL. NS initially generates random particle configura-
tions. The hottest configuration (highest E(θ)), with energy ε is selected. New
configurations θ′ accessible with a lower energy state E(θ′) ≤ ε than the current
energy limit are generated, for example by jittering the particles.

Iteratively replacing the hottest configuration by a cooler configuration cor-
responds to a cooling schedule. Monte Carlo cooling schemes are known from
simulated annealing (e.g., Kirkpatrick, Gelatt and Vecchi, 1983) and parallel
tempering (Swendsen and Wang, 1986). NS differs here by choosing the cooling
schedule adaptively, and that it explores a truncated basin geometrically rather
than a smoothed basin proportionally. During the cooling process, it can occur
that the energy changes very little, while the volume keeps decreasing, followed
by an abrupt change of behaviour where the energy increases rapidly. Such phase
transitions (see e.g., Raghavan and Cohen, 1975, for physics background) are
problematic in simulated annealing because it considers the magnitude of energy
changes. In contrast, because NS progresses with constant speed in volume and
considers only the order of the live points, it traverses phase transitions without
issue (Skilling, 2004). For plateaus, see § 4.5.2.

NS considers an isolated system with a maximum energy (microcanonical
view) rather than the ensemble average (canonical view). More explicitly, Habeck
(2015) identified several terms from statistical mechanics in the NS procedure,
as follows: The volume of configurations X, with less energy than a threshold
ε, is

X(ε) =
∫ ε

−∞
g(E)dE,

where the density of states at energy E is (see also Cameron and Pettitt, 2014):

g(E) =
∫

δ(E −E(θ))π(θ)dθ

In probability terms, g(E) describes the distribution of negative log-likelihood
values marginalised over the prior, with X(ε) its cumulative probability dis-
tribution. The logarithm of X can then be identified as the microcanonical
entropy SG(E) = logX(E), while the logarithm of g is the surface entropy
SB(E) = log g(E). A microcanonical temperature can then be defined as TG =
X(E)/g(E). The total energy of all configurations, the partition function Z,
is defined as Z =

∫
e−βE(θ)π(θ)dθ with β = 1, which is evaluated by NS as
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Fig 2. NS exploration presented as a tree. The root node presents the entire volume, with
likelihood zero. Each node represents a point sampled from the prior, restricted to be above
the likelihood threshold of its parent node. In this presentation, the nodes are also ordered
from left to right by likelihood value. Each outgoing edge splits the volume associated with the
parent and donates its child a volume of 1

N
where N is the number of parallel edges.

Z =
∫
e−Eg(E)dE, i.e., over the energy levels. For more details, see Habeck

(2015) and Cameron and Pettitt (2014).
The generation of new configurations can also be considered in analogy with

physical systems. In this case, each configuration is considered a particle, which
inhabits an energy potential. The acceleration of a particle in an energy basin
can be motivated as in the development of Hamiltonian Monte Carlo (HMC,
Neal et al., 2011). HMC constructs trajectories using the potential energy, which
can be considered Keplerian orbits (Betancourt, 2017) of random orientation. NS
and HMC analogies differ in two important ways. HMC trajectories conserve the
total energy, partitioned into potential and kinetic energy. This tends to explore
only a narrow range of potential energies, set by the number of dimensions,
and limits HMC’s exploration of new configurations (such as distant basins).
In contrast, NS scans potential energies from hottest to coolest, and generates
configurations at all energy levels. The second difference is that NS searches for
new configurations regardless of their energy, so long as they fulfil the energy
threshold. Thus, the particles receive no acceleration, and the exploration is
purely geometric. We refer the reader to Nielsen (2013); Martiniani et al. (2014);
Habeck (2015); Baldock et al. (2016) for formulations of NS based on statistical
mechanics, and for billard-like walks, to § 5.1.3.

3.4. Viewpoint for computer scientists

In computer science, to quickly narrow down a search space, divide-and-conquer
algorithms such as binary search or k-d trees are frequently employed. Often,
algorithms are closely identified with a specific data structure that fully rep-
resents the state at any time. It can be insightful to investigate the properties
of such data structures. In this section, we identify such a data structure, and
phrase NS as an algorithm operating on it. The representation makes resuming
an existing NS run, parallelisation and dynamically varying the number of live
points trivial, and avoids a special treatment of the final phase of the algorithm.
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Fig 3. Search operation: The breadth-first search iterates in order of likelihood (from left to
right). The number of live points N is the size of the node list, and corresponds to the number
of parallel edges (here: three before the red dashed line, four after). The volume is reduced,
the node assigned a posterior weight, and the integral updated.

Algorithm 1 NS as a breadth-first search algorithm.

1 func t i on NS−BFS:
2 g iven root node ( r ep r e s en t i ng the p r i o r volume )
3
4 l e t Q be a l i s t , s o r t ed by l i k e l i h o o d value
5 add a l l c h i l d r en o f root node to Q
6
7 Z = 0
8 V_remaining = 1
9 pos t e r i o r_po in t s = [ ]

10 pos te r i o r_we ight s = [ ]
11
12 whi le Q i s not empty :
13 Nl ive = length o f Q
14 obta in and remove next node from Q
15
16 # opt i ona l :
17 node_expanding_agent ( node , Q, Z , V_remaining )
18
19 removed_fract ion = 1 / Nl ive
20 remain ing_fract ion = 1 − removed_fract ion
21 V_dead = V_remaining ∗ removed_fract ion
22 weight = V_dead ∗ node . l i k e l i hood_va lue
23
24 add node to po s t e r i o r_po in t s
25 add weight to pos te r i o r_we ight s
26 Z += weight
27 V_remaining ∗= remain ing_fract ion
28
29 add a l l c h i l d r en o f node to Q
30 return Z , pos te r i o r_po int s , pos t e r i o r_we ight s

We adapt breadth-first search on a tree structure (see Figure 2). The search
starts from an initial node and keeps a sorted list of nodes yet to be explored.
Initially, the NS tree is a lone root node representing the full prior volume. Next,
we consider sampling N random points inside that volume. This is represented
by adding N child nodes of the root node, and illustrated in Figure 2. We assign
the child nodes their likelihood value. A simple breadth-first search algorithm
starts from the root node, keeps a list of “open” nodes, and repeatedly explores
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Fig 4. Insertion operation: Adding a child node (right) to the tree means LRPS sampling
under the likelihood threshold of that parent node (left).

Algorithm 2 Exploration agent corresponding to constant-N nested sampling.

1 func t i on classic_node_expanding_agent :
2 g iven node # current node
3 given Q # current l i s t
4 g iven Z # current i n t e g r a l e s t imate
5 g iven V_remaining # volume l e f t to be exp lored
6 Lmax = ( l a s t node in Q) . l i k e l i hood_va lue
7 frac_remaining = Lmax ∗ V_remaining / Z
8
9 i f f rac_remaining > 0.001 and node has no ch i l d r en :

10 new_node = LRPS( node . l i k e l i hood_va lue )
11 add new_node as a ch i l d o f node

the one with the lowest likelihood value until the list is empty. The remaining
volume, integrated likelihood and posteriors are also computed. This is presented
in Algorithm 1, and illustrated in Figure 3.

The formulation in Algorithm 1 is elegant, because it unifies the nested sam-
pling phase and the remainder integration: During the remainder integration,
none of N parallel nodes have children, each removed node shrinks that volume
by (N − 1)/N , leading to equal weights in this phase.

This procedure would soon run out of nodes to explore, so an agent is needed
which adds children to nodes. Figure 4 illustrates that adding a child to a node
means LRPS sampling a new point using the parent’s likelihood as the threshold.
The simplest formulation with a constant number of live points adds a single
child node to each node being passed, and stops when the remaining volume is
negligible. This agent is shown in Algorithm 2. In general, an arbitrary number
of agents can add children to arbitrary nodes in the tree.

This formulation implies that resuming an interrupted run is trivial, if the
tree is kept. Also, several NS runs as specified in Algorithm 1 and 2 can run
independently in parallel. For merging, all that is needed is to merge the root
nodes, and run only the integration of Algorithm 1 for the final result. The
formulation also suggests a procedure for converting previously sampled points
with their thresholds into a tree: a LRPS sampled point can be attached as a
child to nodes with likelihood above or equal the used sampling threshold.

3.5. Components of nested sampling implementations

To discuss NS in a structured fashion, we identify components of nested sam-
pling implementations. These are illustrated in Figure 5. The core (centre)
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Fig 5. Components of a nested sampling im-
plementation.

is a NS sampler which keeps a set of
live points, and the likelihood con-
straint defined by the most recent
dead point. At each iteration, the low-
est live point may be replaced by
a LRPS, which uses the application-
specific likelihood function and prior
space definition provided by the user.
The dead point is passed to the NS
integrator, which weighs these dead
points to form a posterior sample, and
estimates the marginal likelihood Z
(see formulas in § 3). The following
sections discuss the individual compo-
nents, including the integrator (§ 4),
the termination criterion (§ 4.3), the
LRPS variants (§ 5) and samplers
(§ 6).

4. Integration

4.1. Theory

NS was introduced in Skilling (2004);
Skilling et al. (2006). Convergence
and unbiasedness was discussed and
proven in Evans (2007); Chopin and
Robert (2010); Skilling (2009); Kee-
ton (2011). Making advances to anal-
yse NS theoretically has been the fo-
cus of a few publications (e.g., Kha-
narian and Alvarez, 2013). We refer
the interested reader to Walter (2017), which makes connections to the math-
ematical theory of rare event simulation and the last particle algorithm, and
Salomone et al. (2018), which draws connections to Sequential Monte Carlo,
nearly considering NS as a special case of that framework. Birge, Chang and
Polson (2012) presents a generalisation of NS and connects it to path and bridge
sampling, while Polson and Scott (2014) discusses connections to, among oth-
ers, slice sampling. Chopin and Robert (2007a) and Feroz et al. (2013, appendix
C) prove that posterior samples from nested sampling approximate the true
posterior for continuous and discontinuous functions, respectively.

4.2. Estimators

NS rests on being able to estimate the volume (shrinkage) at each iteration, and
that the LRPS samples faithfully. LRPS issues are discussed in § 5, while for the
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Fig 6. NS error estimation with K-fold cross-validation: Four integrators are invoked, which
each are made oblivious to some of the root children (colours). The spread of integration
results provides an error estimate.

discussion here, it is assumed that the LRPS is sampling perfectly. This case
is called the idealised algorithm in Guyader, Hengartner and Matzner-Løber
(2011), and perfect nested sampling in Higson et al. (2017).

NS rests on being able to estimate the volume (shrinkage) at each iteration.
Only in special circumstances the volumes are known precisely (Chopin and
Robert, 2008). In general they can only be estimated. Casting the volume shrink-
age as a Poisson process yields the volume shrinkage estimator δV = 1

N (Huber
and Schott, 2010; Guyader, Hengartner and Matzner-Løber, 2011). Based on
this approach, Walter (2015) derived an unbiased estimator of Z. Chopin and
Robert (2007a); Evans (2007) and Skilling (2009) discussed whether the ulti-
mate goal is to obtain an unbiased estimator with minimal variance of logZ or
Z (see also Keeton, 2011). Skilling (2009) argued that because Bayes factors and
posterior odds ratios interpreted on log-scales are the goal, unbiased estimators
of logZ should be sought.

Integral estimators rely on estimating the compression ratio at each itera-
tion. In the order statistics approach of Skilling (2004), they obtain Vi+1/Vi ∼
Beta(N, 1), and estimate a geometric log-volume progression as log Vi+1/Vi =
−1/N . The mean of the Beta distribution gives δV = 1

N+1 , which differs from
the unbiased estimator above. Even if not optimal, a slightly biased estimator is
suitable for Bayesian inference if its bias is negligible relative to its root-mean-
square error. This is the case for the above estimators and their differences,
when N � 1, e.g., N = 100 (Salomone et al., 2018). For theoretical and online
error analyses of the estimators, we refer the reader to the above works.

The termination of the iterative procedure can also induce a bias (Walter,
2015). Walter (2015) explores the use of families of estimators, each correspond-
ing to a different random termination, to remove this bias.

The finite resolution of the N live points leads to a noisy exploration and
likelihood fluctuations (Higson et al., 2018). This can be practically and ele-
gantly addressed by sub-sampling (first proposed by Higson et al., 2018). In the
tree formulation of § 3.4, some of the root children can be unlinked in a boot-
strapping or K-fold fashion. This is illustrated in Figure 6. In the tree search
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formulation one could have several integrators which see only some of the root
children, and use the spread of integration results (posterior and logZ) to mea-
sure the uncertainty. The shrinkage volume can be randomly generated at each
step (using a Beta(1, N) distribution, Skilling et al., 2006), which then also leads
to a distribution of estimators. Incorporating the two sources of variance with
sampling yields realistic uncertainty also for single NS runs (Higson et al., 2018).

4.3. Termination criteria

The question arises when to terminate nested sampling. In the tree formulation
(§ 3.4), this means when agents should stop inserting new children nodes into
the tree.

Monte Carlo integration techniques have intrinsic limitations in integrating
black-box functions. The spike-and-slab problem illustrates this. In Figure 1,
we illustrate a small, high peak (spike) and a wider ridge (slab). If the spike
is very narrow, it can go unseen by random samples, which will focus on the
wider slab. However, if the spike is very high, it will be crucial for the integral.
As John Skilling puts it: “It is impossible to find a flag pole in the Atlantic
ocean”. NS integration with sparse sampling may pass the likelihood threshold
that separates the spike and slab without ever placing live points into the spike.
Thus, a spike will likely go undetected if it is smaller than Vi/N (Pártay, Bartók
and Csányi, 2010). However, if the spike is located on the peak of the slab, then
NS will find it, unless it terminates too early.

For less perverse likelihoods, sensible termination can be determined at run-
time. Skilling et al. (2006) proposed simultaneously estimating the information
gain (H, also employed in an error estimate) during the run and estimating
the minimum number of iterations needed to pass the bulk of the posterior as
HN . Similarly, the sample entropy was considered as a termination criterion.
Alternatively, Skilling et al. (2006) suggests comparing the dead point integral
Zi =

∑
i LiδVi with the largest possible live point contribution Zlive = Lmax×Vi,

and terminating when the ratio becomes very small, Zlive/Zi < ε, with ε � 1,
for example ε = 10−3. This is also the agent behaviour implemented in Algo-
rithm 2. This can be further refined with Zlive = Vi

N

∑N
j=1 Lj , trapezoid rule

integration, or bootstrapping, but in practice is not more reliable.
A variety of other termination criteria have been considered. For example,

Schöniger et al. (2014) proposes terminating when the LRPS becomes extremely
inefficient. Low efficiencies caused by complex degeneracies, can indicate that
the model could benefit from reparametrisation (see Papaspiliopoulos, Roberts
and Sköld, 2007, for a similar situation with MCMC). Baldock et al. (2016)
suggests monitoring the temperature (HMC momenta, see below § 5.1.3).

The problem of yet unidentified, hidden peaks cannot be addressed in a gen-
eral and reliable way with information available during the run. Therefore run-
ning a few iterations longer than seemingly needed is most effective in practice.
This is what the ε remainder fraction criterion effectively does.

Termination can also be addressed with domain knowledge and reparametri-
sation. Some likelihoods have absolute upper bounds. For example, in a Gaus-
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sian likelihood with measurements di with fixed uncertainties σi fitted with an
arbitrary model m, the weighted sum of squared deviations, χ2, is positive:
−2 × logL = χ2 =

∑
i

(
m(i,θ)−di

σi

)2
> 0. The likelihood bound directly gives

upper bounds on Zlive of future iterations.

4.4. Complexity scaling

We can now consider the computational complexity of NS integration. This
depends on (1) the information gain of the posterior compared with the prior
(I), which determines the shrinkage necessary to reach the bulk of the posterior,
(2) the number of live points, which determines the shrinking per iteration,
and (3) the computational complexity of the LRPS per NS iteration to find a
reliable new point, which is subject to peculiar degeneracies (P), multi-modality
(M) and dimensionality (D) issues.

The NS complexity scales linearly with the number of live points O(N), due
to the slower shrinkage (Skilling, 2004). Beyond this, the scaling of the LRPS
method can be arbitrarily hampered by complex posterior shapes that need to
be navigated until a new independent sample is obtained. Assuming the latter
scales linearly with dimensionality d, Skilling (2009) gives the cost scaling of
NS as O(d2). In practice, Handley, Hobson and Lasenby (2015a) demonstrate a
scaling of O(d3) for their implementation. This makes NS perhaps less attractive
for very high-dimensional problems with many thousands of parameters such as
fitting large hierarchical Bayesian models or neural networks. However, Javid
et al. (2020) demonstrate that neural networks can be fitted, and NS is attractive
because the global exploration avoids choosing overly complex networks.

However, the relation between cost and live points is more complex. While
convergence slows with the number of live points, some LRPS methods work
more efficiently the more live points, as they help map out the likelihood con-
straint and can identify the approximate neighbourhood where new points are
likely successful (see § 5). Following Allison and Dunkley (2014), this is illus-
trated with the ellipsoidal rejection sampling technique (discussed further in
§ 5.2) for the case of ellipsoidal, mono-modal likelihoods. For this, the LRPS
cost per iteration is empirically found In Appendix B to scales as:

O(Cell) = exp
{(

6.83 × d1.9

N

)3/4}
(3)

The exponential increase becomes crucially important when the number of live
points is small. This likely encodes the curse of dimensionality, and the inherent
limitations of rejection techniques. Equation 3 suggests that the number of live
points for ellipsoidal sampling should not be lower than 7 × d2.

The total cost is obtained from the per-iteration cost and the number of
iterations needed. Shrinking from the prior volume Vp until a low fraction ε of
a target posterior volume Vt requires i = N × ln Vp

Vt×ε iterations (see § 3.1). The
ratio H = ln Vp

Vt
here is the information gain from the prior to the posterior.
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Fig 7. Number of likelihood evaluations on Gaussian-like likelihood functions. The blue curves
show two cases with different information gain changes with dimensionality. Both cases indi-
cate a low cost at d < 30 dimensions for ellipsoidal NS under optimal conditions (likelihood
with ellipsoidal contours). Red curves illustrate the shallower, polynomial scaling of step sam-
plers.

Combining the acceptance rate formula of eq. 3 and the number of iterations i,
and the sampling of the initial N live points, Allison and Dunkley, 2014 obtain
the total nested sampling cost as:

C = N + i× Cell = N + N × ln Vp

Vt × ε
× Cell (4)

The factor Vp/Vt is problem-specific. It is not easy to study the scaling with
dimensionality, as varying the dimensionality implies analysing a different prob-
lem. Here we consider two cases: (A) If new parameters are added, and they are
all updated with the same information gain, then Vp/Vt = Kd. This increases
the cost of C to O(N×Cell×d). (B) If adding new parameters only redistributes
the same information, then Vp/Vt = K remains constant with dimensionality,
and thus the cost is of order O(N × Cell). For these two cases, the total costs
C are plotted in Figure 7, with N = 400. The normalisations are arbitrary and
cannot be compared. Ellipsoidal NS clearly works best in d < 30 dimensions.
This agrees with our practical experience with the MultiNest ellipsoidal sam-
pling implementation, which begins to break down close to that dimensionality.
For comparison, the aforementioned d2 scaling of a MCMC LRPS algorithm is
also shown as red lines, with an arbitrarily chosen base cost added. Interest-
ingly, the above analysis suggests that for ellipsoidal problems, a d2 scaling is
possible with ellipsoidal sampling if the live points are increased quadratically.
However, the optimistic case where the likelihood indeed has elliptical contours
was analysed, while for other cases, the cost may be higher.

In practice, the computational cost is specific to the model structure as well.
Thus numerical testing is required (see for example Figure 15 in Pitkin et al.
(2017) and Figure 6 in Trassinelli and Ciccodicola, 2020). Finally, the discovery
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of likelihood peaks is also regulated by N (see § 4.4). Because of this, running
NS with very small N does not necessarily give useful “quick look” results.

4.5. Correctness diagnostics

How can a complete NS implementation (including integrator, LRPS, sampler,
termination criterion) be evaluated for correctness? We can divide in two cate-
gories of tests, following Stokes, Tuyl and Hudson (2016).

4.5.1. Outside-in: Application to known functions

Firstly, the NS implementation can be applied to test problems with known
properties. The simplest case is likelihood functions where the integral Z is an-
alytically known (e.g., Preuss and von Toussaint, 2007). The main limitation
here is that analytic likelihood functions often do not resemble real-world prob-
lems. A further problem is that often, for example, when choosing a Gaussian
likelihood expression, the integral is dominated by a narrow range of likelihood
values. Thus, the LRPS and integration are therefore potentially only tested
on a low number of iterations. This can be improved by choosing heavy-tailed
distributions. An extreme case is L = min(θ−1, e100) with θ defined over the
unit interval, which makes all dead points yield approximately equal weights.

Secondly, the LRPS can be tested in isolation. Buchner (2014) proposed a
LRPS test that verifies that the shrinkage caused by the LRPS behaves as
expected (1−1/N). This is based on likelihood functions where one can analyt-
ically compute the volume enclosed at a given likelihood X(L). For example, in
a Gaussian likelihood, the circular likelihood contours can be identified with an
ellipsoid. Then, from a sequence of likelihoods obtained from repeated LRPS,
volume shrinkages can be computed and compared to expectations. If the like-
lihood of the found point is systematically lower or higher, then the LRPS
is noticeably incorrect. This can be applied to many posterior shapes, includ-
ing multi-modal Gaussians. A particularly sensitive test is the hyper-rectangle
L = maxi ||θi− 1

2 ||−1, because its shape is far from Gaussian and exhibits many
corners in high dimensions. Importantly, this test is independent of the tail
weight, as the likelihood only enters in NS weighting of points. It can also be
applied in very high dimensions to tune LRPS parameters.

4.5.2. Inside-out: Diagnostics at or after run-time

The second group of tests tries to notice during the NS run when assumptions
are broken.

Likelihood functions with plateaus can cause problems in nested sampling
(Skilling et al., 2006; Schittenhelm and Wacker, 2020). This is because the or-
dering of the prior space is not available, and a large volume is associated with a
vanishing likelihood interval in eq. 2. Therefore, if two live points have the exact
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same likelihood, this should cause alarm. To address this, Fowlie, Handley and
Su (2021) proposed a small modification to the nested sampling algorithm itera-
tions to remove all live points with Lmin without replacement before replenishing
the live point set to size N .

One assumption is that the LRPS samples correctly according to the con-
strained prior. Stokes, Tuyl and Hudson (2016) proposed tests for uniformity in
2-dimensional problems. Firstly, they count the empty cells in a segmentation,
and compare them with a Bayes factor to uniform expectation. Secondly, they
develop an equi-distribution test that measures the concentration of samples
with an entropy, and compares that to a uniform expectation. Finally, they
visualise deviations from uniformity with quantile-quantile plots. These tests
however appear limited to very low-dimensional problems.

Higson et al. (2018, 2019) contributed visualisations of the uncertainty in the
inference, in particular of the posterior distributions. This is achieved by sub-
sampling (see § 4.2) completed nested sampling runs, and plotting the spread
of posteriors. Relatedly, they propose diagrams of volume (logX) vs. parameter
value (θi), which allows insight into the structure of the parameter space, and
how the LRPS replaces samples.

Higson et al. (2019) further proposes testing the variance between multiple
independent NS runs to the variance expected from sub-sampling a single run.
Here, one can check the expectation for each parameter θi, a combination f(θ),
or logZ. Excess variance can occur when the LRPS is sampling imperfectly, and
its samples and shrinkages are correlated. Higson et al. (2019) also considered
the expectations between only two runs, when the computation is very costly.

Finally, Fowlie, Handley and Su (2020) pointed out that if the samples re-
turned from the LRPS are independent and perfectly distributed according to
the constrained prior, then where they are inserted into the sorted live points
list should be uniformly distributed. They proposed an insertion order test to
check this condition. The insertion order of each new sample is collected. The
order distribution is tested with a Kolmogorov-Smirnov (KS) test every N iter-
ations, and for the full run. Fowlie, Handley and Su (2020) demonstrates that
this works well to detect problematic runs in practice on toy problems. Alterna-
tively, the insertion order test could also be used as a quality indicator. When
the test triggers, the sample collection is reset. Then the number of iterations
until the test triggers can be interpreted similar to an auto-correlation length
in random walk MCMC algorithms. However, the samples collection likely still
needs to be truncated occasionally, so that a recent addition of poor samples is
not diluted by a preceding high number of good samples. A limitation here is
that the KS test as typically implemented is only valid for continuous variables.
Fowlie, Handley and Su (2020) show that the rounding to integers makes the
distribution non-uniform, and the test is less sensitive than it could be.

We propose an improvement of the power of the test with a statistic suitable
for testing whether discrete numbers are uniformly distributed. We begin with
the Wilcoxon-Mann-Whitney U test Mann and Whitney (1947), which tests two
sequences of observations, of length n1 and n2. For each observation in the first
sequence, the number of smaller and equal observations in the second sequence
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Table 1

Performance comparison of KS test and U test. In the left table, the integers are distributed
from 0 to N × Coverage, in the right table they are distributed with probability pi ∝ iSlant.

The fraction of tests reporting a 3σ significance (p < 0.0027) is reported on the right. The U
test fractions are higher in almost all cases.

N Coverage KS test U test
1000 0.9 1.00000 0.99723
1000 0.96 0.13472 0.19984
1000 0.98 0.01416 0.02627
400 0.9 1.00000 0.69506
400 0.96 0.02344 0.04745
400 0.98 0.00589 0.00926
100 0.9 0.07364 0.07745
100 0.96 0.00988 0.00771
100 0.98 0.00593 0.00383

N Slant KS test U test
1000 0.9 0.31010 0.44932
1000 0.96 0.01864 0.02873
1000 0.98 0.00505 0.00728
400 0.9 0.06385 0.11478
400 0.96 0.00635 0.01084
400 0.98 0.00343 0.00425
100 0.9 0.01205 0.01653
100 0.96 0.00419 0.00363
100 0.98 0.00335 0.00281

is recorded (“wins”, W ), as well as the number of equal observations (“ties”, T ).
Then the U statistic is:

U = W + 1
2T

Then U is normal distributed with mean

mU = n1 × n2

2
and standard deviation

σ =

√√√√n1n2

12

(
n + 1 −

k∑
i=1

t3i − ti
n(n− 1)

)

with ti the number of observations that share order i and n = n1 +n2. In other
words, z = U−mU

σU
is approximately standard normal and should rarely exhibit,

for example, |z| > 3, a 3σ excursion.
Lets now imagine that the second sequence is a very large sample of reference

points (n2 = N ×M with M � 1). They are uniformly spread from 0 to N − 1,
thus each order is represented by M samples. The first sequence of observations
are the collected insertion orders, Oi. These are integers ranging from 0 to N−1.
In that case, a observed insertion order O will have M ties and O × M wins.
The test statistic becomes:

U = M ×
n1∑
i=1

(
Oi + 1

2

)

The mean becomes mU = 1
2×n1×N×M while the standard deviation simplifies

because M � 1 and n2 � n1, to σ =
√

n1

12 ×N ×M . Cancelling out M which
occurs in U , mU and σ, we find that

z =
(∑n1

i=1
2Oi+1

N

)
− n1√

n1/3
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is standard normal distributed. This is easy to numerically confirm by sampling
n1 integers sampled uniformly in [0, N) and plotting the z values. We make
two important remarks: Firstly, in this form, the U test allows N to vary from
iteration to iteration. Secondly, the sign of the z statistic indicates the direction
of the bias.

Now the sensitivity of the KS test and the U test (both two-sided) can be
compared. For reasonable numbers of live points, two scenarios are considered
in Table 1: In the first simulation (top), generated insertion orders are truncated
to only cover the range 0 to �N × C	, with C < 1. In the second simulation
(bottom), generated insertion orders are simulated from a mildly slanted power
law distribution, with order i more likely at the low end. We simulated 100, 000
samples of size N = 1000, 400, 100 and apply the KS and U tests. The fraction
of tests reporting a 3σ deviation are compared in Table 1. In general, the U test
has a higher detection rate. However, when the detection rate is already high
(> 50%), or very close to the expected false positive rate, the KS test sometimes
performs similarly or better. However, these are less interesting edge cases. Ad-
ditional to being more sensitive, the U test is slightly simpler to implement, as
only 2O+1

N and the number of samples n1 need to be accumulated, instead of
entire histograms.

The test can be applied in three different ways: (1) on the full run as in
Fowlie, Handley and Su (2020), (2) every N iterations (Fowlie, Handley and
Su, 2020), probably with a Bonferroni correction, and (3) accumulate until |z|
exceeds a predefined threshold. For example, when simulating 107 iterations
with uniform insertion order, resetting the accumulation statistic when |z| > 4
leads to segment lengths no shorter than 105.5. If shorter segments are regularly
produced, or more specifically, if the number of segments of a NS run is larger
than the number of iterations divided by 105.5, this is an indication that the
run is biased. This option avoids selecting a chunk size to apply the test.

5. Likelihood-restricted prior sampling (LRPS)

LRPS is the crux of NS. Empirical statements about what NS can or cannot do
are at the mercy of the LRPS implementation. This section tries to convey that
a large diversity of solutions are possible and have been considered.

LRPS is supposed to deliver an independent, new point sampled from the
likelihood-restricted prior. This can be difficult to achieve perfectly. However, in
practice, and as elaborated in Salomone et al. (2018) with theoretical arguments,
good NS results can be achieved also with mildly correlated points.

5.1. Local step algorithms (MCMC-based)

A new point can be sampled from the prior with MCMC (Skilling, 2004). Typ-
ically, either the recently deceased point, or a random point are chosen as the
start of a random walk, or more generally, invariant move steps with respect to
the constrained prior. A new point is proposed, and accepted if it exceeds the



Nested sampling methods 191

Fig 8. LRPS methods. At an iteration for the example from Figure 1, different methods
for finding a new live point are illustrated. Left panel: Region sampling methods construct
regions based on the live points (white circles) to approximate the unknown likelihood contour
(grey). Rejection sampling based on these contours becomes inefficient if the contours are too
large, and problematic for NS integration if it misses a region (e.g., the top left tail). The
enlargement is intentionally chosen too small here. Right panel: Local step methods start
Metropolis random walks (coloured lines) from a live point (white circle). Steps outside the
likelihood contour are rejected. If the step proposal is good and the number of steps large, a
new point (blue circle) is reached that is independent of the starting point.

current likelihood threshold. In flat priors, this makes the random walk a purely
geometric exploration. Such random walks are illustrated in the right panel of
Figure 8. The random walk proceeds for a number of steps, after which the final
point is returned to the NS sampler as a (nearly) independent sample.

Any random walk MCMC solution to LRPS needs (1) a step proposal, (2) a
recipe for adapting the proposal to the continuous shrinking as NS progresses
and (3) the number of steps. Unfortunately, the literature often lacks these
implementation details which severely limits the usefulness of numerical com-
parisons.

5.1.1. Leveraging live point knowledge

To craft a good step proposal, two properties can be leveraged: Firstly, the
current live points are already distributed at least approximately according to
the current contour, and trace out the relevant space and its geometry, if they
have been sampled faithfully from the prior up to the current iteration. This
assumption is certainly justified for the initial live points, which are drawn
directly from the prior. Secondly, the behaviour of the contour changes little
from iteration to iteration, as the volume shrinks by a small fraction, so that
very similar problems have to be solved in sequence.

The second property is leveraged by reusing optimised proposals between
iterations, for example if the previous iteration’s acceptance rate was low, the
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proposal is shrunk before use in the next iteration (e.g., Sivia and Skilling,
2006). However, such adaptions do not maintain detailed balance. To address
this, Salomone et al. (2018) suggest a warm-up NS run with adaptive proposals
turned on and stored for each iteration, and followed by a final run that uses
these proposals, now without adaptations.

The first property is leveraged by many authors by estimating the sample
covariance from the live points (Veitch and Vecchio, 2010; Schuet, Timucin
and Wheeler, 2011) or determining the principal directions (Nikolic, 2009) to
understand size and orientation of the current space.

More sophisticated procedures are necessary to handle multi-modality. Mar-
tiniani et al. (2014) pre-computes a database of minima and performs an ex-
change move, whereby the MCMC can swap between them. Taking advantage
of the live points, Handley, Hobson and Lasenby (2015b) performs iterative
Jarvis-Patrick clustering (Jarvis and Patrick, 1973) and then estimates covari-
ances based on the member points of each cluster, obtaining a local covariance
used for walks started from members of that cluster. MCMC schemes originally
intended for unimodal distributions can be extended to handle multiple modes
by applying a clustering algorithm to the live points, overlaying the cluster
points by subtracting cluster means from member points, and to derive the pro-
posal from the shifted points (e.g., their sample covariance). Then the MCMC
algorithm begins its chain from a random live point as its starting point.

5.1.2. Sampling by vicinity

The first fully specified proposal was presented in Sivia and Skilling (2006). A
multi-dimensional Gaussian is used, starting from the dead point. If the num-
ber of accepts a dominates the number of rejects r, the standard deviation is
increased by a factor of exp(1/a), otherwise decreased by a factor of exp(1/r).
Brewer, Pártay and Csányi (2011) prefers a heavy-tailed, highly multi-scale
proposal to avoid adaptation at the current iteration. Numerous other MCMC
proposal distributions have been applied (e.g., Liu et al., 2016; Beaton and Xi-
ang, 2017; Polido, Jablonski and Lépine, 2013). A Gaussian random walk is
illustrated with blue lines in the right panel of Figure 8.

Another solution comes from Veitch and Vecchio (2010), who uses a Student-t
distribution with 2 degrees of freedom proposal scaled to 10% of the covariance
of live points, estimated every 10 iterations. However, 10% of steps use a pro-
posal inspired by differential evolution: two additional live points are selected,
and the difference vector added to the current point. These attempt to address
multi-modal distributions; however, they observe that for a specific problem even
with 1000 MCMC chain steps, LRPS artefacts remain. For higher efficiency in
intermediate or high dimensional problems, Gibbs (Murray et al., 2006) and
component-wise proposals along the principal components Nikolic (2009) have
been proposed. Trassinelli (2016) primarily uses per-parameter MCMC propos-
als with a uniform distribution, but also includes a crossover step to combine
live points. This work does not verify the correctness of their implementation.
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A later publication by the same author includes MCMC proposals that do not
preserve detailed balance (Trassinelli, 2019, their first high-failure recovery pro-
cedure).

To incorporate knowledge of the problem parameter space geometry, Javid
(2019) introduced proposals along spherical arcs and wrapping of circular pa-
rameters.

Moss (2020) deforms the proposal space to flatten peculiar shapes and bring
multi-modal distributions together. A neural network is optimised to transform
the live points with least information loss to a standard Gaussian distribution.
Sampling from that simpler surface can be more efficient, and if proposals con-
sider the space compression by the non-linear flow via the Jacobian, samples
from the (restricted) prior can be obtained. This method appears to be very
promising and general, but also complex to implement and train correctly in
practice.

5.1.3. Sampling by direction

Betancourt (2011) derived Constrained Hamiltonian Monte Carlo (CHMC),
the straightforward application of Hamiltonian Monte Carlo to likelihood con-
strained prior sampling. For simplicity, we describe its behaviour in a suitable
parametrisation where the prior is flat. Then CHMC makes straight steps of
length ξ in a chosen direction until the step violates the constraint. There, it re-
flects off the boundary, i.e. the momentum vector reverses normal to likelihood
(constraint) gradient, and continues. This technique thus requires a step size
and a computable likelihood gradient. Galilean Monte Carlo (GMC; Skilling,
2012) adds a reverse step to CHMC upon rejection of the reflection, so that the
chain succeeds more often. This technique is related to reflections discussed in
Neal (2003). Demonic Nested Sampling (Habeck, 2015) softens the likelihood
contours by storing excess likelihood (energy) in a demon. This means that a
MCMC procedure then tends to turn away from the border without requiring
the use of gradients. When gradients are available, Demonic Nested Sampling
can store the CHMC velocity vector, and solve a combined momentum-position
space. Baldock et al. (2017) also presents a HMC-based nested sampling ex-
tension, and compares GMC with a CHMC version that stores the momentum
of each live point, finding them to outperform simpler random walk MCMC
algorithms (see also Nielsen, 2013).

Another procedure is the sampling from an existing point along a line. Here,
three families of such algorithms are presented, all of which are available in
UltraNest:

1) In slice sampling (Neal, 2003), parameter space axes are iterated through
for the proposal direction. Uniform sampling is achieved by choosing distant
bounds, sampling uniformly between them and shrinking the bound towards
that side for every reject until a sample is accepted (Handley, Hobson and
Lasenby, 2015b). The slice sampling random walk is illustrated with green lines
in the right panel of Figure 8. For non-uniform priors, an additional step is
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needed, by sampling the height of the prior distribution with an auxiliary vari-
able. For flat priors, or placing slices through a reparameterised space which
make the prior flat, the likelihood function is used as an oracle (above the like-
lihood threshold, or not). The NS literature often remains vague which exact
variant of slice sampling is implemented. A positive example is PolyChord, which
proposes along principle axis after the next (Handley, Hobson and Lasenby,
2015b). The principle axis are obtained from the sample covariance matrix of
live point cluster where the walk has started (see § 5.1.1).

2) In hit-and-run Monte Carlo (HARM, Turchin, 1971; Smith, 1984), a ran-
dom direction is instead chosen in each step. The algorithm variant with bound
shrinkage was presented explicitly by Kiatsupaibul, Smith and Zabinsky (2011)
and is most closely related to slice sampling. Such a walk is illustrated with pink
lines in the right panel of Figure 8. Even in complicated geometries, HARM is
highly effective in mixing and scales well with dimensionality (see Collins et al.,
2013; Kiatsupaibul, Smith and Zabinsky, 2011, and references therein), Collins
et al. (2013) also show that it outperforms slice sampling. Stokes, Tuyl and
Hudson (2017) tested this technique for NS with non-convex surfaces, albeit in
low dimensions.

3) Drawing the direction by choosing another random live point. For ex-
ample, Stokes, Tuyl and Hudson (2017) uses a simplex-inspired walk to take
advantage of the distributions of live points. Pitkin et al. (2017) combines of
several proposals including uniform local step proposals, differential evolution,
and affine-invariant ensemble sampling MCMC (Goodman and Weare, 2010).
The affine-invariant ensemble sampler is a popular choice for a MCMC proposal,
because it does not need tuning. This appears as a natural choice for NS, which
already maintains a population of points. However, in practice, this proposal
performs well primarily in Gaussian shapes, and Huijser, Goodman and Brewer
(2015) demonstrate that in high dimensions, the sampler population collapses
into a lower-dimensional plane.

Many more geometric random walk algorithms exist and appear a-priori suit-
able for LRPS in NS. For example, see the survey by Vempala (2005).

5.1.4. Number of steps for independence

All aforementioned methods require the number of steps until a new, supposedly
independent point is found. How to chose the number of steps? This is surely
dependent on at least P/D issues. A simple technique is to observe the change
of Z in a series of NS runs with increasing number of steps (e.g., Higson et al.,
2019).

Alternatively, that the live points are already uniformly distributed suggests
a simple tuning criterion. If the local MCMC chain has not progressed further
than the typical distance between two live points, it has likely not stepped far
enough (Salomone et al., 2018). A simple auto-tuning method is thus to in-
crease/decrease the number of steps for the next iteration when that criterion
is reached/not reached. For the typical live point distance, UltraNest’s imple-
mentation of HARM auto-tune method (“adapt=move-distance”) uses a mean
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Mahalanobis distance of all pairs of live points. Salomone et al. (2018) empha-
sises that for conserving detailed balance, a fresh run with no adaptation has
to be performed with a predefined number of steps, i.e., at least as many as
auto-tuning determined.

In CHMC and Galilean Monte Carlo, the reflections can lead to cycles that
do not explore more of the parameter space with increasing number of steps.
To address a similar problem in HMC, Hoffman and Gelman (2014) proposed
to construct forward and backward HMC trajectories only until they turn back
(No U-turn sampler, NUTS). Detailed balance is preserved by randomly con-
sidering going forward or backwards while iteratively doubling the number of
steps. A U-turn can be identified when the end point vectors show a positive dot
product. A point is then sampled from the trajectory, with acceptance probabil-
ities determined by the total energy (target probability and step momentum).
Variants of NUTS may be an interesting research direction for Demonic Nested
Sampling extensions.

To transfer this approach to NS, Griffiths and Wales (2019) developed the
No Galilean U-Turn Sampler (NoGUTS). In the case of CHMC and Galilean
Monte Carlo under a flat prior, the momentum remains constant and the target
probability is either a constant or zero. Therefore, the trajectories are straight
until boundary reflections. This simplifies the problem compared with NUTS.
However, the constant shrinkage of the sampling space in NS leads to biases if
simple step size adaptations are employed (Griffiths and Wales, 2019).

To allow good resolution of the sampling space and not stepping out of the
boundary too often, Skilling (2012) recommends tuning the step size so that
most steps are accepted. This however means that most of the steps constitute
the progression of a straight line and contain little additional information. A
comparative study of the mixing quality of NoGUTS, HARM and slice sampling
in different problems remains unstudied as of yet.

5.2. Region sampling algorithms (non-MCMC)

The safest way to sample from the prior under a likelihood constraint is to sam-
ple randomly from the prior and reject the point if the likelihood constraint is
not fulfilled. This rejection sampling requires a good proposal function to be ef-
ficient. In the case of LRPS, the support of the proposal function corresponds to
a parameter space region. For correctness, it must fully contain the (unknown)
likelihood contour, i.e., the support of the likelihood-restricted prior. If a por-
tion of the parameter space is left out, as illustrated in Figure 8, the volume
ratio Vi+1/Vi will be overestimated. However, the Z estimate can be over or
underestimated, depending on the likelihood in the left-out region relative to
the constructed region. The methods presented in this section try to reconstruct
this likelihood contour itself, or at least a super-set of it.

Mukherjee, Parkinson and Liddle (2006) compute the smallest bounding el-
lipsoid that contains all live points, and expands this by a factor (∼ 1.7). The
left panel of Figure 8 illustrates such an ellipsoid wrapping the live points. It-
eratively samples are drawn from the ellipsoid and their likelihood is evaluated
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(rejection sampling). This method thus has two parameters: The number of live
points, which helps trace out the parameter space, and the enlargement fac-
tor. If the ellipsoid is not expanded enough, regions of the parameter space are
never sampled, if it is expanded too much, the rejection sampling is inefficient.
The choice of the enlargement is model and dimension-dependent. Beyond ap-
proximating the minimum-volume bounding ellipsoid with a scaled covariance
metric, more advanced constrained optimisation algorithms yield smaller vol-
umes (Rollins, 2015). Why would ellipsoids be preferred over, say, a box (used
in Obrezanova et al., 2007; Möller et al., 2013)? In the high-data regime, likeli-
hood functions tend to become elliptical distributions (such as a multi-variate
Gaussian), which have ellipsoidal contours (see e.g., Wilks, 1938).

If the problem presents multi-modality, the space between modes makes the
rejection sampling very inefficient. Therefore, Shaw, Bridges and Hobson (2007)
cluster the live points with recursive k-means and employs ellipsoid sampling
for each cluster. In contrast, Theisen and Jülich (2013) increases the number of
clusters when the sampling efficiency drops below a threshold. Feroz and Hob-
son (2008) further consider x-means, g-means and pg-means for the clustering
and uses x-means in the end. The algorithm chooses the end points of the major
axis of the ellipsoid enclosing the live points, and attempts a k-means clustering
with two clusters. Live points are assigned to one of the two clusters, and used
to construct enclosing ellipsoids. If the two ellipsoids describe the live points
better than a single ellipsoid around all live points, the clustering is accepted.
This procedure is recursively repeated, until convergence. The condition when
a split is accepted needs to be defined, and a variety of criteria are tested in
Shaw, Bridges and Hobson (2007); Feroz and Hobson (2008); Feroz, Hobson and
Bridges (2009), including information criteria. The perhaps simplest is to con-
sider whether the volume is decreased by at least a certain factor, and whether
the ellipsoids are sufficiently apart. The MultiNest algorithm has these criteria
as parameters additional to the ellipsoid enlargement factor. The left panel of
Figure 8 illustrates the multiple-ellipsoids clustering.

Feroz and Hobson (2008) also considers adaptive enlargement factors that
decrease with iteration and ellipsoid volume, but these are ultimately not used
in the MultiNest algorithm presented in Feroz, Hobson and Bridges (2009). The
use of multiple ellipses is also useful for approximating peculiar shapes. The
efficiency has made MultiNest a popular algorithm, with multiple implementa-
tions and interfaces, including PyMultiNest (Buchner et al., 2014) for Python,
RMultiNest (Buchner, 2015) for R, an unnamed Mathematica implementation
(Gervino, Mana and Palmisano, 2016), DIAMONDS for C++ (Corsaro and De
Ridder, 2014), JAXNS for the jax GPU programming language (Albert, 2020),
nestle (Barbary, 2016) and, derived from the latter, dynesty Speagle (2020), also
for Python.

To avoid choosing an enlargement factor for every problem, Buchner (2014)
estimates it from the live points by cross-validation. If some random subset
of live points were unknown, would we construct a region large enough sample
them? If not, the enlargement is insufficient and must be increased. After several
cross-validation rounds, a large-enough enlargement is found. As a specific ex-
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ample, the RadFriends algorithm Buchner (2014) turns every live point into the
centre of an ellipsoid, whose shape determined by the choice of distance metric.
While the original RadFriends used spheres, Buchner (2019)’s MLFriends uses
the covariance of live points to define the ellipsoids, leading to substantial speed
improvements. The left panel of Figure 8 illustrates the region constructed by
MLFriends. Clusters are naturally defined by checking which live points are con-
tained in other live points’ ellipsoids. Subtracting the cluster means from each
live point, and taking the resulting covariance improves the geometry further,
without requiring a dedicated clustering algorithm.

5.3. Hybrid methods

Hybrid methods combine the region reconstruction with MCMC sampling. These
reduce the number of likelihood evaluations by excluding space that is very likely
outside the contour, while retaining the dimensionality scaling of MCMC algo-
rithms.

Feroz and Hobson (2008) combined MultiNest with the MCMC proposal of
Sivia and Skilling (2006) of 20 steps and tested problems in up to 100 dimensions.
Interestingly, they find that using a proposal tuned with local covariances is
inferior. Such hybrid combinations are available in dynesty (Speagle, 2020).

Different to MultiNest’s x-means, Trassinelli (2019) explores Gaussian mix-
ture method and the mean-shift clustering method with MCMC, but lacks nu-
merical comparisons to judge any improvements over previous publications, both
for the proposal and clustering method.

The UltraNest package can combine two region construction methods, ML-
Friends and a single ellipsoid. The former works well in low dimensions and with
multiple clusters, while the latter works well for Gaussian-like likelihoods. The
enlargement factors are estimated in both cases with bootstrapping. New points
are only considered when they fall within both region constructions. Step sam-
pling methods can then take advantage of both regions to pre-filter proposed
points to avoid model evaluations.

6. Nested sampling variations

In standard NS, the sampler maintains a fixed number of live points. This
involves identifying the lowest likelihood point and replacing it with LRPS,
thereby increasing the likelihood threshold monotonically. The following sub-
sections look at variations of this scheme, including soft likelihood constraints
(§ 6.1), varying the number of live points (§ 6.2) and possibilities for paralleli-
sation (§ 6.3) of the algorithm.

6.1. Softening the hard likelihood constraint

LRPS methods deal with a hard likelihood threshold, and thus can only test
whether a point is acceptable or not. Points which turn out to be below the
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contour are discarded, and it is difficult to know when a random walk trajectory
approaches the contour. At the same time, when LRPS methods mistakenly
exclude parameter space the shrinking is accelerated, while slow LRPS sampling
(such as too short random walks) can cause points not to move enough, leading
to slowed shrinkage. To address these problems, methods have been developed
which relax the problem by avoiding a hard contour.

Importance sampling draws from an analytic shape to approximate the un-
known probability distribution of interest and reweighs the samples. Impor-
tance Nested Sampling (INS, Chopin and Robert, 2007b; Chopin and Robert,
2008; Chopin and Robert, 2010) applies the same concept by generalising nested
sampling in this fashion. Feroz et al. (2013) employed this concept with multi-
ellipsoidal sampling, and demonstrates that the use of otherwise discarded sam-
ples leads to a substantially more precise logZ estimate. Indeed, the INS es-
timator can somewhat correct for the incorrect LRPS sampling of MultiNest
in some difficult problems (Buchner, 2014; Feroz et al., 2013). However, Nelson
et al. (2020) demonstrate in an application to exoplanets that both the standard
NS and INS estimators in MultiNest can show substantial scatter between runs
beyond their uncertainties even in the correct model (see their appendix A9,
Figure 7 and 8). Indeed, the scatter between runs can be an indicator that the
LRPS is unreliable (see § 4.5.2).

In Diffusive Nested Sampling (Brewer, Pártay and Csányi, 2011) the likeli-
hood contours created by shrinkages are reversibly explored. Particles are not
only allowed to traverse within the current likelihood constraint, but to also to
move up (down) in likelihood levels to a more (less) constrained prior. The levels
used are not based on all likelihoods found. Instead a low number (dozens) of
levels are maintained. Within these levels, the sampled points are used to esti-
mate the average likelihood across the volume. This implies that relatively crude
MCMC proposals can be employed as LRPS procedures, as it is only required
that the level averages ultimately converge to the true value.

The up/down move of Diffusive Nested Sampling is achieved stochastically
with a Metropolis proposal. Thus Diffusive Nested Sampling turns the entire
nested sampling exploration into a MCMC process with arbitrary precision.
Having NS as a MCMC process makes it appealing for theoretical (convergence)
analysis. However, it also requires the use of MCMC convergence diagnostics to
determine the end point of a run, which is not as well-defined as with standard
nested sampling.

Demonic Nested Sampling (Habeck, 2015) softens the likelihood contours by
storing excess likelihood (energy) in a demon variable. This can be combined
with Hamiltonian Monte Carlo to store momenta, and also delivers diagnostics
about the state of the run through the temperature evolution (see also Baldock
et al., 2017).

Beyond improving LRPS, the likelihood constraint may need to be softer
because the exact likelihood cannot be computed. For likelihood-free inference,
where only a stochastic but unbiased estimate of the likelihood is available,
Mikelson and Khammash (2020) present an NS variant.
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6.2. Varying the number of live points

The original formulation of NS considered a population of live points of fixed
size. Upon finding disjoint clusters of live points, Feroz and Hobson (2008)
proposed to split the nested sampling run into separate, independent runs. This
procedure is adopted to prevent the loss of modes and increases the number
of live points to N in each (potentially unequally sized) mode. The volume
associated with each sub-run needs to be estimated, which is done numerically
in MultiNest. However, although following papers adopt the same procedure,
the problem and prevention loss of modes is not clearly demonstrated, and no
test problem examples in the literature are known to be prone to this issue.

A major slowdown of NS is that it needs to systematically progress from the
entire prior to the potentially extremely small posterior, and this can take many
iterations. This is in contrast to, for example, MCMC, which can head quickly
towards the posterior mass concentration, or even be started in favourable loca-
tions. In some problems, especially if one is confident only one posterior mode
is present, it may therefore be efficient to try to accelerate this “finding” phase
in NS.

To address this, Dynamic Nested Sampling was proposed by Higson et al.
(2017). First, NS is run with a fixed, low number of live points. Then, an empir-
ical CDF of the posterior weights is built, and an empirical CDF indicating the
fraction of the prior volume remaining above each dead point. These two CDFs
are linearly combined with ratios 1:3. Then, the 10% and 90% quantiles, L10%
and L90%, are sought which contain most of the CDF. A new NS run is started
from L10%, by creating N ′ live points sampled by the LRPS at that threshold.
This NS run is then continued until L90%. The new and original NS runs are
merged, and the CDF procedure repeated until some criterion is met, such as
the logZ uncertainty. Higson et al. (2017) demonstrate efficiency gains on toy
and real-world problems. This effectively employs an ad-hoc linear scalization
to optimize a multi-objective plan.

Considering the tree formulation presented in Section 3.4, we can also inter-
pret Dynamic Nested Sampling as repeatedly running a tree search, and adding
child nodes. The more general view is that multiple agents could operate on the
tree and until each of their convergence criteria are met. We term this scheme
Reactive Nested Sampling, because an agent analyses the tree and reacts to its
state. For example, the Dynamic NS agent selects nodes just above L10%, adds
children to them and continues these new branches until the some criterion is
reached (L > L90%). In UltraNest’s implementation, three agents analyse the
tree and react by adding children: Firstly, the effective sample size criterion is
improved by randomly sampling nodes based on their posterior weights (Higson
et al., 2017). Secondly, the sampling uncertainty is improved by randomly sam-
pling nodes based on the information loss of leaving it out (see Speagle, 2020).
Thirdly, improvements to the Z uncertainty are primarily limited by phases
with few live points, as the uncertainty on logZ is σ =

√∑
i

1
N2

i
(Higson et al.,

2017). Therefore, the strategy identifies the minimum N required to reach the
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targeted logZ uncertainty, and enforces that throughout the run. Speagle (2020)
analysed the uncertainty estimations for different live point addition procedures.

As far as we can tell, there is no wrong way to insert new children, so agents
can aggressively optimize towards their criteria. Therefore, computer science
concepts such as intelligent agents and game theory (e.g., minimax algorithms)
can be considered. That said, running NS initially with, to give an extreme
example, N = 1, is not advisable. This is in part because multiple modes will
not be explored, but also because some LRPS procedures can substantially
benefit from having a few live points, so that they can build, for example, a
covariance matrix to estimate the current geometry or at least its rough scale.

6.3. Parallelisation

Taking advantage of multiple processing units can be achieved in several levels:

Parallelisation within the likelihood function The conceptionally sim-
plest parallelisation is to use multiple computing cores within the likelihood
function, for example to process large data sets or evaluate complex models.
This requires no changes to the basic NS algorithm. Related here is Graff et al.
(2012)’s approach of training a neural network to emulate the likelihood func-
tion during a NS run to avoid evaluating the costly likelihood function when
the network accuracy is sufficient.

Parallelisation of the LRPS when its efficiency is low Inefficient searches
for new live points can be parallelised by letting multiple cores perform LRPS
independently by worker processes (e.g., Feroz, Hobson and Bridges, 2009). The
first successful draw is accepted and returned to the main process. Then the
parallelisation is restarted with the subsequent threshold. This method is easy
to implement, as it requires little communication and no modification of other
NS components.

If an iteration simultaneously yields successful draws from multiple workers,
they can be accepted in order if they exceed the consecutive thresholds. Ultra-
Nest allows each processor to advance its MCMC chain in parallel. When the
required number of steps is reached in one of the chains, the sample is accepted
and the likelihood threshold raised. The workers then find the last point in their
chain which fulfils the new likelihood threshold, and resume from there. This
avoids discarding the entire chain.

Parallelisation by adding and removing several live points at once
This allows parallel searches for new samples (Burkoff et al., 2012; Henderson
and Goggans, 2014; Martiniani et al., 2014). This is quantitatively tested for
example in Baldock et al. (2017), in addition to LRPS parallelisation. Nielsen
(2013) presents a modification of NS, where the number of removed live points
is selected to optimally divide the space based on the likelihood distribution of
live points.
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Parallelisation by multiple independent runs with the same PRNG
seed When attempting to draw a higher point, as many samples are drawn
from the constrained prior (via region sampling) as the number of processes
(Rollins, 2015). Each process however only evaluates the likelihood of the p-
th sample, corresponding to its ID p. Upon likelihood evaluation, each process
distributes the result to the others and decides locally for each sample whether
to accept or reject. Therefore, each process has the same nested sampling run
but the likelihood evaluations scale well with the number of processes.

Parallelisation with multiple independent runs Multiple, independent
runs can be merged later (Skilling, 2009; Henderson, Goggans and Cao, 2017).
Compared with the previous method, this has a higher number of effective live
points, and thus a higher accuracy. The drawback of independent runs is that
they cannot share information about the parameter space geometry. The bene-
fit of independent runs is that systematic errors can be explored (Higson et al.,
2019). Griffiths and Wales (2019) take this approach to the embarrassingly par-
allel extreme, with 20,000 independent runs with only one live point each. They
then identify runs that landed in the same mode using a specialised algorithm,
and unify those runs, with the number of runs proportional to the mode proba-
bility. The Diffusive Nested Sampling uses a similar parallelisation approach by
letting its walkers explore mostly independently (Brewer, Pártay and Csányi,
2011, B. Brewer, priv. comm).

Analysing similar datasets simultaneously Buchner (2019) noticed that
when similar datasets are analysed, their likelihood contours at a given iteration
are similar. Computation can be reduced by drawing in the joint likelihood
contour. This is most useful in large surveys of similar data or with Monte Carlo
simulated data under the same input parameters, when model evaluations are
costly. It could also be used to vary mildly the prior and likelihood assumptions
(T. Enßlin, priv. comm.), or the data preparation.

Similarly, existing NS runs can be updated with a different likelihood func-
tion, by reusing the successfully proposed live points until the live point order
diverges significantly. With similarity between live point ordering measured by
the normalized Kendall tau distance, such a warm start is implemented in Ul-
traNest.

7. Numerical experiment

We briefly demonstrate numerically some aspects discussed. To that end, we
choose a toy problem with analytic integral, which demonstrates some aspects
of high-dimensional, highly informative problems.

r1 = 10−11

w1 = 0.4 × r1

r2 = r1/40
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Fig 9. Likelihood contours of the diamond ring toy problem. A Gaussian shell (light green)
is placed on a larger Gaussian shell. This is an example of a small spike on a slab. Note the
small scales (10−11) compared with the prior bounds [−1, 1].

w2 = w/40

d1 =
√
x2 + y2
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√
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(
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]

L = N1 + 100 ×N2

The parameter space is two-dimensional, with x and y a priori uniform between
−1 and +1. The likelihood is visualised in Figure 9. The distance d from the
ring radius r is compared with the width w using a Gaussian likelihood. The
Gaussian shells make MCMC proposals difficult, as they have to slowly wander
along the shell. Two Gaussian shells are added, with ratios 1 : 100, making this
a spike-and-slab problem. The posterior is very narrow compared with the prior
range, requiring many NS iterations until the posterior is found.

We run NS with a fixed, relatively low number of live points (N = 100). First,
the number of MCMC steps in a LRPS method is tested. We choose HARM,
with the number of steps per NS iteration ranging from 1 to 64. We also add
the auto-tune method presented in Section 5.1.3. Figure 10 shows the run. In
the top panel, the auto-tuning method rises twice, namely when the two shells
are encountered and have to be navigated. Before, the number of steps could
be tuned to low values, allowing it to be orders of magnitudes more efficient
than using a safe number of steps throughout. The bottom panel of Figure 10
presents the accumulated integral estimate. The final logZ estimate between
the NS runs vary stochastically in their final estimate, on a scale comparable to
the uncertainty. The error bars are relatively large because of the small N , but
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are in acceptable (< 2σ) agreement with the analytic value (dashed horizontal
line). The accumulated logZ shows a plateau near iteration 5500. This is the
phase transition when the small “diamond” spike is being discovered on top of
the larger ring (slab). If runs had stopped before, based on a fixed computing
budget or because the live points appear similar, the additional probability
would not have been discovered.

At the same time, the parameter space also becomes difficult to navigate
along the thin ring. The small euclidean distances traversed cause the auto-tune
method to increase its number of steps (grey curve rises in the top panel). The U
test is presented in the middle panel. The curves vary mostly stochastically, not
detecting strong deviations even for the shortest MCMC step numbers. These
curves look substantially different, depending on what accumulation bandwidth
is chosen (here: 1000 iterations), indicating that the insertion order does not see
problems with the sampling. This agrees with the mutually consistent logZ esti-
mates (error bars in bottom panel), which are usually very sensitive to incorrect
LRPS sampling.

Taking these results together, one may want to run HARM with at least 4
steps until the likelihood corresponding to iteration 5000, and subsequently with
200 steps.

The efficiency in extracting effective samples of various methods is compared
in Figure 11. To avoid giving a strong geometric advantages to region-based
methods, low N are deliberately chosen. MultiNest and MLFriends perform sim-
ilarly within a factor of three (blue, orange cross). As remarked above, HARM
auto-tune (yellow cross) is substantially more efficient than HARM with a large,
fixed number of steps per iterations (green cross).

With Dynamic Nested Sampling, started with N = 50, and iteratively adding
50 live points, dynesty can efficiently extract more and more effective samples
(blue curve in Figure 11). The Reactive NS methods developed here are used
with an agent that selects points based on posterior weights, and expands their
parent nodes. This is applied to MLFriends and HARM auto-tune (red and
yellow curves, respectively). Interestingly, the curve for MLFriends rises super-
linearly with likelihood cost. MLFriends scales in this problem inversely with the
number of live points. This is because the sampling region can be approximated
better, leading to smaller rejection rates. Of course, this is only possible because
of the low dimension of this problem. MLFriends scales better than MultiNest
here, because the ellipsoid clustering is a poor description of the Gaussian shells.
There are of course problems where the converse is true, such as L-shaped likeli-
hood contours, where MultiNest substantially outperforms MLFriends. Interest-
ingly, also HARM auto-tune scales steeply with likelihood evaluations. More live
points mean the mean distance between them is smaller, therefore the number
of steps needed to reach a new point is smaller.

The Diffusive Nested Sampler DNest4 shows approximately a linear scaling
(purple curve in Figure 11). The number of likelihood evaluations needed is
higher than for the other methods. For comparison, we also include a MCMC
method, using the slice sampler zeus (Karamanis and Beutler, 2020). This shows
a linear scaling (grey curve) after an initial phase where the posterior needs
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Fig 10. Number of MCMC steps. Five runs on the toy problem are shown using HARM
(Hit-and-Run Monte Carlo) method. Top panel: Number of steps per new sample. This is
varied in the auto-tuning method. Middle panel: z-score of the U test computed in a rolling
window of 1000 iterations. Bottom panel: Integral estimates. Between iteration 5000 and
6000, a phase transition can be observed where initially the integral estimate plateaus and
then rapidly increases again. The dashed line is the true value.

to be identified. The efficiency of extracting posterior samples in this case is
substantially higher in NS methods, because the MCMC auto-correlation is
exceptionally poor. The computational cost comparison in this problem is not
representative of high-dimensional problems, where the ranking of methods may
be different and even reversed.

The bottom panel of Figure 11 compares the integral estimates. Here, the
MultiNest estimate is off, as it excludes the true value within its very small error
bars. MLFriends and HARM methods agree with the analytic value within 2σ.
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Fig 11. Efficiency comparison of different LRPS methods, some using Dynamic NS or
Reactive NS. Top panel: Effective number of samples extracted (upper left is better than
lower right). MCMC, after an initial phase of identifying the posterior, scales approximately
linearly. MLFriends (orange) and auto-tuning HARM (green) show the steeper increase in
samples per computation cost. Bottom panel: Integral estimate, relative to analytic value.
The error bar and shaded ares show 1σ uncertainty estimates, when available.

The dynamic and reactive nested sampling runs retain substantial uncertainties
even with many likelihood evaluations. This is because new live points are not
added to the initial phase of the run, causing the shrinkage estimates to remain
uncertain. DNest4 initially shows convergence to the true value, but this trend
is not improving later. DNest4 does not report uncertainties.

The MLFriends (for low-d) and HARM auto-tune (for low and high-d) meth-
ods appear promising. They are implemented in the UltraNest Python package,
with support for massively parallel computing on clusters.

8. Summary

This review has surveyed the nested sampling literature across many subfields,
and compiled proposed ideas and concepts. We have described the problem types
nested sampling is suitable for, and laid out the practical difficulties implemen-
tations need to solve. To summarise:



206 J. Buchner

1. Nested sampling is a practically useful algorithm for Bayesian model com-
parison and parameter inference. It globally explores the parameter space.
This is important in problems with potentially complex, multi-modal like-
lihoods. The exploration can largely proceed unsupervised and without
problem-specific tuning until a well-defined convergence point. Nested
sampling has some limitations to scale to very high dimensional and highly
informative problems.

2. This review highlighted the diversity of NS variants have been devel-
oped. These include: NS without any MCMC (such as MultiNest and
MLFriends), using MCMC within NS, and running NS as a MCMC chain
(Diffusive Nested Sampling). A relatively recent development is to inte-
grate HMC more deeply, and adapting geometric random walk algorithms
such as hit-and-run and slice sampling.

3. Diagnostics and visualisations of the quality and correctness of runs have
improved substantially in the last few years.

9. Future research

Much of the literature is involved with the application of nested sampling to
specific problems, evaluating its quality, and also proposing new NS variants
and implementations. Beyond this, we see the need for systematic theoretical
and practical evaluations in the future:

1. Investigating the theoretical foundations with an extended Sequential
Monte Carlo framework seems particularly promising. Given that NS mu-
tates only one particle, it should be investigated what theorems can be
transferred to such an extended framework.

2. Systematic numerical comparisons of a wide range of problems across the
PMDIT space are needed to judge the capabilities and limitations of NS
variants, including the LRPS methods and their tuning parameters.

Appendix A: On encoding prior distributions

The unit hypercube transformation, u → θ, is a way to encode priors by
parametrising them in natural probability units, ui ∈ [0, 1]. In factorised priors,
the transformation is achieved with inverse cumulative distribution functions,
θi = F−1(ui). It is convenient as constant-energy trajectories are straight, and
sampling from geometrical shapes can be achieved without an additional re-
jection. For this reason, some (but not all) popular NS implementations let
users specify priors via unit hypercube transformations, and in many exam-
ples demonstrate only factorised priors. This has lead some to believe that NS
requires hypercubes and factorised priors. Here we clarify that neither is the
case.

Firstly, NS can proceed as long as a LRPS method and a likelihood are
defined. If the prior space is not R

d, but arbitrary “objects”, a simple exam-
ple includes Metropolis samplers that perturb the sample following the prior
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density. Indeed, such generic treatments are possible in DNest4 (Brewer and
Foreman-Mackey, 2018). This includes allowing the dimensionality to vary, as
demonstrated in Brewer (2014).

Secondly, we demonstrate two real-world cases where dependent priors can
be encoded in NS with unit hypercube transformations. Consider a correlated
Gaussian prior, defined by mean μ and covariance Σ. The transform from a
unit interval u ∈ [0, 1] to an uncorrelated, standard normal prior can be encoded
through inverse cumulative distribution functions, zi = F−1(ui). Secondly, the
transform from a standard normal prior to a general Gaussian is performed
with an affine transform, θ = Az +μ, where Σ = AAT . Therefore, a correlated
sample is obtained. This approach is not limited to multi-variate Gaussians. For
example, a Student-t would work the same and can receive a degrees of freedom
parameter. The generalisation of this approach are copula models (e.g., Nelsen,
2007).

As a general approach, it can be useful to first transform one variable, and
then iteratively consider the conditional cumulative distribution of the next
given the previous. This iterative conditional approach can also be applied if a
non-analytic prior is only available as a multi-dimensional histogram or samples
s.

Often, procedures from random number generation can be adapted. As an
example, consider the problem of encoding fractions into the parametrisation.
This occurs for example when trying to fit for the elemental abundance of some
physical object, where the relative fractions must sum to one. In some cases,
it may be worthwhile to fit for an absolute parameter, such as the total mass
of that element, if that is closer to the observable, and obtain fractions from
the posterior. However, this requires placing priors on the masses, which may
be difficult. Lets therefore assume we want to assume that the fractions each
receive uniform priors, but simultaneously must sum to unity. The appropriate
distribution for this scenario is the flat Dirichlet distribution with α = 1. To
obtain prior samples using a hypercube transformation, we obtain independent
gamma variables zi ∼ Gamma(α, 1), i.e., zi = − log ui, and obtain the fraction
variables as θi = zi/

∑
i zi. More sophisticated transformations may be chosen

to improve LRPS efficiency (Betancourt, 2012).
We comment in passing that state-of-the-art HMC frameworks use simi-

lar transformations internally to avoid trajectories exceeding the prior support
(Carpenter et al., 2017).

Appendix B: Ellipsoidal sampling efficiency for ellipsoidal
likelihoods

The computational cost of ellipsoidal nested sampling (Mukherjee, Parkinson
and Liddle, 2006) in the case of ellipsoidal likelihood contours is numerically
explored, following Allison and Dunkley (2014). Different to their fixed enlarge-
ment treatment, here we determine the enlargement needed for rejection sam-
pling: We generate N points from a hypersphere of dimension d. In a bootstrap-
ping scheme, we randomly leave points out (Buchner, 2016) and compute from
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Fig 12. Acceptance rate for ellipsoidal rejection sampling. These measure the inverse excess
volume of the constructed ellipsoids to reliably sample the posterior. More live points lead to
tighter ellipsoids and higher acceptance rates. Increasing the number of dimensions decreases
the acceptance rate. The dashed curve shows the empirical approximation of eq. 3, with the
same colours as the data points for each dimensionality.

the remainder a sample covariance matrix. This is used to construct an ellipsoid,
enlarged by the factor needed to recover all left-out points. This is repeated 50
times, and the largest enlargement factor stored. The ellipsoid volume ratio of
the original sphere and the constructed ellipsoid gives the acceptance rate of
ellipsoidal rejection sampling.

Figure 12 presents the acceptance rate α as a function of N and d. Error bars
indicate the standard deviation across 40 independently computed α. Figure 12
shows that the acceptance rate increases with the number of live points N ,
but decreases with dimensionality. Figure 12 suggests that acceptance rates of
50% can be maintained when d doubles if N increases five-fold. When N is
much smaller than the dimensionality, this method breaks down dramatically.
The data points can be empirically described (dashed curves) by the following
formula:

α =
(
1.07 − log d1/3

)
× exp

{
−
(

6.83 × d1.9

N

)3/4}
(5)

The first term decreases the acceptance rate only mildly with dimensionality,
and is therefore neglected in the cost scaling computations. The average cost,
i.e., the number of model evaluations needed, is Cell = 1/α.
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