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Abstract: We develop a statistical inference method for an optimal trans-
port map between distributions on real numbers with uniform confidence
bands. The concept of optimal transport (OT) is used to measure distances
between distributions, and OT maps are used to construct the distance. OT
has been applied in many fields in recent years, and its statistical proper-
ties have attracted much interest. In particular, since the OT map is a
function, a uniform norm-based statistical inference is significant for visu-
alization and interpretation. In this study, we derive a limit distribution of
a uniform norm of an estimation error for the OT map, and then develop
a uniform confidence band based on it. In addition to our limit theorem,
we develop a bootstrap method with kernel smoothing, then also derive
its validation and guarantee on an asymptotic coverage probability of the
confidence band. Our proof is based on the functional delta method and
the representation of OT maps on the reals.
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1. Introduction

We consider the framework of optimal transport (OT) and develop a statistical
inference method on an OT map used in the concept. Specifically, we consider
the Monge problem; for probability measure P and Q on R, we consider the
following optimization problem

min
T∈T (P,Q)

∫
R

h(|x− T (x)|)dP (x), (1)
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where h : R → R is a nonnegative convex function (where h(r) = r or h(r) = r2

in most applications) and T (P,Q) is a set of measurable maps T : R → R such
that P (T−1(A)) = Q(A) for any measurable A ⊂ R. Let T0 ∈ T (P,Q) be an
OT map which is the minimizer of the problem (1). Our goal is the statistical
inference on the OT map from samples: we construct a confidence band for T0
based on samples independently generated from P and Q, respectively. To this
end, we develop estimators for the OT map estimator and derive a limiting
distribution of their estimation error.

OT is a general framework to measure the distance between probability mea-
sures, and has attracted attention in a wide range of fields related to data
analysis, such as social science, statistics, machine learning, and image analysis
[ACB17, Gal18, TGR21]. For a general textbook, see [V+09, PC+19, Vil21].
The formulation of OT is given by the Monge problem (1) or the Kantorovich
problem related to the Wasserstein distance [Kan60], in which the OT map
plays an important role. OT plays a major role in modern data science due to
its flexible extensibility and adaptability to high-dimensional data.

Statistical analysis for OT has played an important role in the usage of OT
with finite samples, which are useful in assessing the uncertainty of estimated
elements of the OT framework. The most representative analysis examines the
sample complexity of estimation methods for OT. One of the typical interests
is the problem of estimating the sum of optimized transport costs, which corre-
sponds to the Wasserstein distance or its variants, and numerous studies have
proposed optimal estimation methods [WB19, GCB+19, NWR22]. In recent
years, several studies [HR21, DGS21] have developed estimation methods for
OT maps and also investigated their theoretical accuracy. On the other hand,
statistical inference for OT, i.e., statistical tests and confidence sets, has also
attracted attention. In addition to inference methods on OT costs and distances
[dBL19, SM18, OI23], [GKRS22a, SGK23, MBNWW23] propose inference meth-
ods on OT maps in several settings.

Despite the importance, the statistical inference for OT maps is still a devel-
oping issue, even when the sample is one-dimensional. This is because that OT
maps are functions and hence it is nontrivial to handle its uncertainty properly
in a function space. In particular, when investigating a global shape of an OT
map (e.g., monotonicity) in some application fields, it is necessary to examine
errors of the OT map estimator in the uniform norm sense, which is a nontrivial
challenge.

In this paper, we develop a framework of confidence bands for an OT map
between two unknown one-dimensional distributions. Specifically, we develop a
uniform confidence band that measures the OT map considering all input points
in its support. A uniform confidence band has the following advantages. First,
it allows us to study the global shape of the OT map to be estimated. This ad-
vantage can not be achieved by arranging pointwise confidence intervals, which
generally results in highly discontinuous curves. Second, it can be visualized on
a plot and hence is easy to interpret, in contrast to confidence intervals based on
the L2-norm, which cannot be easily visualized. Our approach is to use kernel
smoothing on the distribution functions, and then perform a bootstrap scheme
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with kernel smoothing on the estimated distributions in order to construct a
confidence band. As a theoretical contribution, we derive the asymptotic distri-
bution of the estimation error in order to validate our confidence band.

Our contributions can be summarized as follows:

• We develop the statistical inference on OT maps by proposing the uniform
confidence bands that are computationally tractable. Coverage probabili-
ties of the proposed bands are theoretically validated, and our simulations
support the validity.

• The uniform confidence bands allow us to study a global property of func-
tions, which can investigate complex hypotheses on OT maps. Our real-
data experiments with population data demonstrate that our method rig-
orously tests a hypothesis whether the population pyramid changes faster,
by examining a difference in shape between the OT map and a linear func-
tion.

As a technical contribution, we derive a simple asymptotic representation of
the OT map estimation error as a linear sum of estimation errors for cumulative
distribution functions. From this, we can apply the functional delta method to
the representation, thereby obtaining the asymptotic distribution of the OT
map estimation error.

1.1. Related studies

Optimal transport has been actively studied in recent years. For a comprehensive
review or textbook, see [V+09, PC+19, Vil21]. It is known that there are several
variations of the OT problem, such as the entropic regularization [Cut13] or a
low-dimensional projection named slicing [BRPP15]. Since there are numerous
papers on OT, we refer to only a few that are relevant to our study.

Many studies have examined the sample complexity of the problem of esti-
mating elements of OT from observed samples.

A typical estimation target is a sum of optimized transport costs. In the
setting of one-dimensional data, [BL19] gives a comprehensive analysis for the
statistical properties of OT costs. [Dud69, WB19, MNW21] studied the estima-
tion of the cost and reported that an optimal convergence rate of the estimation
error is slow depending on the dimension of data, i.e., there is the curse of dimen-
sionality. Related to this curse, [NWR22, GCB+19, LFH+20, Lei20] reported
that the curse can be reduced by introducing the low-dimensional projection or
the entropic regularization to the OT problem. The estimation error of an OT
map is also a target of intense study. [HR21] has shown that an estimation error
of OT maps also suffers from the curse of dimensionality of data, as is the case
for the sum of costs. Similarly, entropic regularization and other techniques have
been shown to mitigate this rate [DGS21, MBNWW21, PNW21, DNWP22].

For statistical inference, it is also a concern to derive limiting distributions
of an error of estimators. Importantly, when data are multi-dimensional, it is
not easy to obtain the limiting distributions relevant to the OT problem. There-
fore, statistical inference is performed for the OT problem when the data are
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one-dimensional or discrete, or when some types of regularization are intro-
duced. For a limiting distribution of estimating a sum of transportation costs,
[MC98, RGTC17, DBCAMRR99, DBGU05] studied the one-dimensional case,
and [SM18, BCP19, TSM19, KTM20, OI23] studied the discrete data case.
[MNW19, dBGSL24, dBSLNW23, GKRS22b, MBW22, IOH22] investigated a
case with the regularization. [DR23] constructs a confidence interval based on
the OT distance in the problem of estimating density functions. This situation
is similar to the limiting distribution of estimating OT maps. [GKRS22a] de-
veloped a statistical inference method on an OT map for the regularized OT
problem case, and [SGK23] derived a limiting distribution of an estimator for
an OT map with a setting of semi-discrete data. [MBNWW23] investigated the
availability of limiting distributions in the multi-dimensional case and derived
a pointwise convergence to a limiting distribution under certain conditions.

1.2. Notation

A cadlag function is a right continuous function whose limits from the left exist
everywhere. D[a, b] denotes the space of all cadlag functions z : [a, b] → [−1, 1]
equipped with the uniform norm. For a topological space Ω, BL1(Ω) denotes the
space of Lipschitz functions h : Ω → [−1, 1] with Lipschitz constants bounded
by one. ‖ · ‖ denotes the Euclidean norm. ‖f‖∞ = supt |f(t)| denotes the sup-
norm. �∞(F) denotes the set of all uniformly bounded real functions on R. δx
is the Dirac measure at x. With an event E, 1{E} is an indicator function.

For a distribution function F : Ω → [0, 1] with a support Ω ⊂ R and p ∈
[0, 1], F−1(p) := inf{x ∈ Ω : p ≤ F (x)} denotes a quantile function of F .
Given probability measures P and Q on a support Ω ⊆ R

d, we define a set of
transport maps T (P,Q), which is a set of maps such that T�P := P (T−1(·)) = Q.
For random sequences Xn and Ym, the notation (Xn, Ym) = oP⊗Q(1) means
(Xn, Ym) converges to (0, 0) in P ⊗ Q-probability as n,m → ∞ and possibly
other conditions on n and m (see Section 2.1 below). d−→ means convergence in
distribution. For non-random sequences of reals {xn}n∈N and {yn}n∈N, xn 
 yn
denotes limn→∞ xn/yn → c with some c ∈ (0,∞).

For any non-negative integer, β and open set U ⊆ R, Cβ(U) is the space of
all bounded continuous real-valued functions that are s-times differentiable on
U . This can be extended to the notion of Hölder space: Cβ(U) is the space of
functions f ∈ C�β�(U) (�β� is the integer part of β) whose �β�-th derivative is
Hölder continuous with exponent β−�β�, that is, there is some constant C > 0
such that for all x, y ∈ U , |D�β�(x) −D�β�(y)| ≤ C|x − y|β−�β� holds. We say
that a function f is (continuously) differentiable on [a, b] if there is a small ε > 0
such that f is (continuously) differentiable on (a− ε, b + ε).

1.3. Paper organization

Section 2 gives the optimal transport problem and its associated statistical in-
ference problem. Section 3 develops a uniform confidence band of the OT map
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as our proposed methodology. Section 4 shows theoretical guarantees of the
developed confidence band with an outline of the proof. Section 5 conducts a
numerical simulation to show the experimental validity of the proposed confi-
dence band. Section 6 handles a real data analysis to demonstrate the usefulness
of our method. Section 7 finally concludes our study.

2. Problem setting

2.1. Optimal transport problem with samples

We consider the setup with d = 1. Let FP and FQ be distribution functions of P
and Q, respectively. We shall make an assumption that FP is continuous, which
guarantees a solution to the OT map problem (1) of the form (see e.g. [Vil21,
Remarks 2.19]):

T0(x) = F−1
Q ◦ FP (x). (2)

Throughout the paper, we will only consider the values of the OT map T0 on a
closed interval [a, b]. For simplicity, we make an abuse of notation and treat T0
and members of T (P,Q) as functions on [a, b].

Suppose that we observe n i.i.d. samples X1, . . . , Xn ∼ P and m i.i.d. samples
Y1, . . . , Ym ∼ Q. For simplicity, we assume that n and m follow the following
asymptotic that often appears in nonparametric two-sample tests: with some
κ ∈ (0, 1):

n/(n + m) → κ. (3)

Our goal with this problem is to infer the true OT map T0 using the samples.
Specifically, we construct an estimator of T0 based on the sample, as well as the
following statistical inference.

2.2. Statistical inference via confidence band

We aim to develop an estimator for the OT map T0 and conduct statistical
inference for T0 from n observations. Specifically, with pre-specified α ∈ (0, 1),
we will develop a set C(α) = {[c(x), c(x)] | x ∈ [a, b]} with some functions
c(x), c(x) depending on the n samples and m samples and shows that

P(T0 ∈ C(α)) = 1 − α + o(1),

as n,m → ∞ with the limit ratio (3).
Importantly, our interest is a confidence interval using the sup-norm, rigor-

ously, our theory will show that T0(x) ∈ [c(x), c(x)] holds for every x ∈ [a, b] with
the asymptotic probability 1 − α. The sup-norm is useful for intuitive analysis
because it provides visualization in a functional space, whereas several common
norms, e.g., the L2-norm, cannot be visualized on a plot.
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3. Methodology

In this section, we describe our methodology for constructing a confidence band
for the OT map. First, we propose a kernel estimator for the OT map (Sec-
tion 3.1). We then construct a confidence band based on this estimator and a
bootstrap scheme (Section 3.2).

3.1. Kernel estimator for OT map

Suppose that we observe the samples X1, . . . , Xn ∼ P and Y1, . . . , Ym ∼ Q. We
estimate density and distribution functions from the samples, then use them to
construct an estimator for the OT map T0.

First, we define a kernel density estimator. As a preparation, we define a
kernel function K : R → R, which should be a positive function and satisfy∫
K(t)dt = 1. There are several common choices: the Gaussian kernel, the

Epanechinikov kernel, and so on (for an overview, see [Sil86]). Then, we de-
fine density estimators as

f̂P (x) := 1
nrn

n∑
i=1

K

(
x−Xi

rn

)
and f̂Q(y) := 1

mrm

m∑
j=1

K

(
y − Yj

rm

)
,

where rn, rm > 0 are bandwidth parameters dependent on n and m, respectively.
Second, we define estimators for distribution functions FP and FQ with K(x) :=∫ x
−∞ K(u)du as follows:

F̂P (x) :=
∫ x

−∞
f̂P (u)du = 1

n

n∑
i=1

K

(
x−Xi

rn

)
and

F̂Q(y) :=
∫ y

−∞
f̂Q(u)du = 1

m

m∑
j=1

K

(
y − Yj

rm

)
.

Since f̂P and f̂Q are strictly positive by the positive property of the kernel K,
F̂P and F̂Q are strictly increasing function and hence invertible.

We define an estimator for the OT map T0 using the kernel estimators. Using
the form (2), we define the kernel smoothed estimator for the OT map T0:

T̂n,m(x) = F̂−1
Q ◦ F̂P (x).

This estimator has several advantages. First, we can achieve a smooth esti-
mation, and hence a smooth confidence band, for any input x. Second, we can
guarantee the asymptotic validity of the uniform confidence band using smooth-
ness. Third, as will be shown later, we can develop a bootstrap method with
kernel smoothing for practical use and show its convergence. We will compare
this kernel-based approach with a pointwise estimator using empirical distribu-
tions in Remark 2.
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3.1.1. Assumption

For the kernel estimation, we give the following assumptions on the distribution
functions FP , FQ, and the kernel K:

Assumption 1. FP and FQ are differentiable on R. For some β ≥ 0, the
densities fP := F ′

P and fQ := F ′
Q satisfy fP , fQ ∈ Cβ(R). Further, the kernel

K is of order > β + 1/2, that is,
∫
K(u) = 1 and

∫
ujK(u)du = 0 holds for

j = 1, 2, . . . , s for s > β+1/2. Also, the bandwidth parameter is rn 
 n−1/(2β+1).

These conditions are widespread in density estimation using kernel methods.
Regarding the order of the kernel, for example, [Tsy08] describes a method to
construct kernels of arbitrary order using Legendre polynomials. The setup of
the bandwidth parameter is commonly used as well, which is designed to balance
bias and variance in density function estimation. See [Tsy08] for details.

Remark 1 (Choice of kernels and bandwidth). The choice of the kernel K and
bandwidth rn in Assumption 1 is one of the methods used to implement under-
smoothing, which is common in constructions of confidence bands as summarized
in Section 5.7 of [Was06]. In our design, we increase the order of the kernel K
from β to β + 1/2 while keeping the bandwidth as n−1/(2β+1), the usual choice
that leads to optimal rates of convergence in kernel density estimation. This
approach with the larger order kernels follows Corollary 2 of [GN07], which in
turn allows us to utilize the functional delta method in the proof of our main
theorem below.

We further put the following assumption on a density function.

Assumption 2. fQ is positive on [F−1
Q (FP (a)), F−1

Q (FP (b))] and K has bounded
variation.

We remark that Assumption 2 is more flexible than assuming that fQ is
positive on R as it allows distributions that are supported on a proper subset
of R, such as gamma or chi-squared distributions.

3.2. Construction of confidence band

We develop our methodology to construct a confidence band for T0 based on
the estimator T̂n,m.

3.2.1. Bahadur representation of estimation error

Our basic strategy is a Gaussian approximation of the estimation error T̂n,m(x)−
T0(x). Specifically, we investigate the following scaled estimation error

√
n + m sup

x

∣∣T̂n,m(x) − T0(x)
∣∣

sκ(x) , (4)
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then show that it converges in distribution to a limiting Gaussian process as
n,m → ∞, where sκ(x) is a standard deviation of T̂n,m(x)−T0(x). To achieve the
Gaussian limit of (4), the following asymptotic linear form, named the Bahadur
representation, plays an important role:

Proposition 1 (Bahadur Representation). Suppose that Assumption 1 and 2
hold. Then, for any x ∈ [a, b], we have

√
n + m

(
T̂n,m(x) − T0(x)

)
=

√
n + m

n

n∑
i=1

ψ̂(Xi, x) +
√
n + m

m

m∑
j=1

ζ̂(Yj , x) + oP⊗Q(1), (5)

where

ψ̂(Xi, x) := 1
fQ(T0(x))

[
K

(
x−Xi

rn

)
− FP (x)

]
,

and

ζ̂(Yj , x) := 1
fQ(T0(x))

[
FP (x) −K

(
T0(x) − Yj

rm

)]
.

Since we assume that Q has a density fQ that is nowhere zero, the repre-
sentation holds for all x ∈ [a, b]. With this asymptotic linear representation, we
can guarantee the existence of Gaussian processes in the limit. See Theorem 3
below for a formal result.

3.2.2. Plugin-estimator for standard deviation

To use the limiting Gaussian process in practice, we should derive several val-
ues. First, we consider the standard deviation term sκ(x) of T̂n,m(x) − T0(x)
appearing in (4). In view of (5), we consider the following form of the standard
deviation as

sκ(x) = 1
fQ(T0(x))

√(
1
κ

+ 1
1 − κ

)
FP (x)(1 − FP (x)),

in which FQ(T0(x)) = FQ(F−1
Q (FP (x))) = FP (x) plays an important role using

the continuity of FQ. In practice, we do not know FP , FQ, and fQ, so it is im-
possible to compute sκ(x). Instead, we estimate sκ(x) by the plug-in estimator:

ŝn,m(x) = 1
f̂Q(T̂n,m(x))

√(
n + m

n
+ n + m

m

)
F̂P (x)(1 − F̂P (x)).

Note that the plug-in estimator always exists by the positivity of f̂Q. The fol-
lowing result shows its consistency:
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Lemma 2. Suppose that Assumption 1 and 2 hold. Then, we have the following
convergence:

sup
x∈[a,b]

∣∣∣∣ ŝn,m(x)
sκ(x) − 1

∣∣∣∣ P⊗Q−−−→ 0. (6)

3.2.3. Bootstrap approach with kernel smoothing and confidence band

We approximate the Gaussian process for which (4) converges by a distribution
generated by a bootstrap method. Specifically, we develop a bootstrap method
with kernel smoothing which newly generates samples from the estimated distri-
bution functions F̂P and F̂Q by the smooth kernels. In the bootstrap scheme, we
sample X∗

1 , . . . , X
∗
n ∼ F̂P and Y ∗

1 , . . . , Y
∗
m ∼ F̂Q. Define bootstrap distribution

functions F̂ ∗
P (x) := n−1∑n

i=1 1{X∗
i ≤ x} and F̂ ∗

Q(y) := m−1∑m
j=1 1{Y ∗

j ≤ y}.
Then, we consider the bootstrap estimator for the OT map T0 as

T̂ ∗
n,m := F̂ ∗−1

Q (F̂ ∗
P (x))

Note that X∗
i and Y ∗

j are not subsamples of the dataset, but are generated from
F̂P and F̂Q. This approach is more suitable when we apply the functional delta
method to validate a confidence band in our proof.

Using the distribution of the bootstrap estimator T̂ ∗
n,m, we derive quantiles

of the distribution of the bootstrap version of the estimation error. Let P̂n

and Q̂m denote the conditional probability given X1, . . . , Xn and Y1, . . . , Ym,
respectively. For any α ∈ (0, 1) define

q̂n,m(1 − α) := the (1 − α)-quantile of
√
n + m sup

x

∣∣T̂ ∗
n,m(x) − T̂n,m(x)

∣∣
ŝn,m(x) ,

under P̂n,m := P̂n ⊗ Q̂m. Then, we propose the bootstrap confidence band

C(α)
n,m(x) :=

[
T̂n,m(x) ± ŝn,m(x)q̂n,m(1 − α)√

n + m

]
, x ∈ [a, b] (7)

Note that except for the bandwidth rn, this confidence band is computed in a
data-driven way. Also, we will later propose a method to select rn based on the
observed samples.

Remark 2 (Comparison with a pointwise confidence interval). Another nat-
ural approach is to construct a pointwise confidence interval for the OT map
by plugging in the empirical distributions. To complement the main study, we
present in Section A.4 a methodology for constructing a pointwise confidence
interval, along with proof of its asymptotic validity and its empirical evalua-
tions. Compared to this pointwise approach, our main proposed kernel-based
method has several advantages. First, it produces smooth confidence bands,
which benefit interpretability. In contrast, pointwise confidence intervals based
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on the empirical distributions are riddled with discontinuities and can be diffi-
cult to interpret. Second, the uniform confidence band can be used to infer the
OT map across the whole domain. For instance, a 95%-level uniform confidence
band has asymptotically 95% chance to cover the true OT map over the do-
main. In contrast, a 95%-level pointwise confidence interval never contains all,
but asymptotically only 95% of the true OT map.

Remark 3 (Relation to ROC curves). We discuss a relation of the confidence
band for OT maps to that for ROC (receiver operating characteristic) curves.
ROC curves have a similar form FP ◦ F−1

Q and its confidence analysis has been
developed by [HHZ08]. As a point of distinction between our study and the
existing work, we develop the confidence band whose width differs for each
input x ∈ [a, b]. Rigorously, we have introduced the standard deviation sκ(x)
and its estimator, then our confidence band achieves the adaptive widths for
each input x. This result is in contrast to the confidence band by [HHZ08] for
ROC curves, which has a constant width independent of x.

4. Theoretical result

In this section, we present the main theoretical contributions of this paper,
namely the bootstrap consistency (Theorem 3) and the asymptotic validity of
the confidence band C(α)

n,m (Corollary 4).
We first state the theorems in Section 4.1, and then provide an outline of the

proof of Theorem 3 in Section 4.2. The full proofs of the theorems can be found
in Appendix C and D.

4.1. Validity of confidence band

We start with a consistency result of the bootstrap estimator. Notice the inclu-
sions of the supremums on the left-hand sides of (8) and (9), which are essential
for obtaining a uniform confidence band of T0.

Theorem 3 (Bootstrap consistency). Suppose that the distribution functions
FP and FQ satisfy Assumption 1 and 2. Then, there are independent Brownian
bridges G1 and G2 such that for any x0 > 0, the followings holds as n,m → ∞
and n/(n + m) → κ:

√
n + m sup

x

∣∣T̂n,m(x) − T0(x)
∣∣

ŝn,m(x)
d−→ sup

x
|Zκ(x)|, (8)

and

P̂n,m

(
√
n + m sup

x

∣∣T̂ ∗
n,m(x) − T̂n,m(x)

∣∣
ŝn,m(x) ≤ x0

)
P⊗Q−−−→ P

(
sup
x
|Zκ(x)| ≤ x0

)
,

(9)
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where

Zκ(x) = 1
fQ(T0(x))sκ(x)

[√
1/κG1(FP (x)) −

√
1/(1 − κ)G2(FQ(x))

]
=
√

1/κG1(FP (x)) −
√

1/(1 − κ)G2(FP (x))√
(κ−1 + (1 − κ)−1)FP (x)(1 − FP (x))

, (10)

is a Gaussian process with unit variance for any x ∈ R.

This theorem implies that the supremum values of both the scaled estima-
tion error by the kernel estimator and the estimation error by the bootstrap
estimator converge in distribution to the supremum of the same Gaussian pro-
cess. In essence, the convergence (8) is the intermediate result on the estimation
error of the kernel method, and the convergence (9) additionally provides the
convergence of the bootstrap method.

Based on this result, we show the asymptotic validity of the proposed confi-
dence band:

Corollary 4 (Asymptotic Validity of Bootstrap Confidence Band). Consider
the proposed confidence band C(α)

n,m in (7). Then, under Assumption 1 and 2, the
bootstrap confidence band C(α)

n,m is asymptotically uniformly consistent at level
1 − α, that is, it holds that

P

(
T0(x) ∈ C(α)

n,m(x),∀x ∈ [a, b]
)
→ 1 − α,

as n,m → ∞ and n/(n + m) → κ.

This result shows that our confidence bands are asymptotically valid in a
uniform sense, that is, the OT map T0 is included in our confidence band for
every input x simultaneously with the probability.

4.2. Proof outline of Theorem 3

Our proof consists of two parts: the first is the convergence of the estimated
distributions by the kernel of the developed bootstrap method, and the second
is the convergence of an application of the functional delta method. The details
are described below.

4.2.1. Convergence of estimated distributions

As a preparation, we first derive limiting Gaussian processes of the distributions
F̂P , F̂Q, F̂ ∗

P , and F̂ ∗
Q.

We first describe the analysis of the distributions F̂ ∗
P and F̂ ∗

Q by the boot-
strap method with kernel smoothing. Rigorously, the central limit theorem in
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[KMT76] shows that there exists a Browninan bridge G1 such that the following
holds for every δ > 0:

P̂n

(
sup
x

∣∣∣√n + m(F̂ ∗
P (x) − F̂P (x)) −

√
1/κG1(FP (x))

∣∣∣ > δ

)
P -a.s.−−−−→ 0,

as n → ∞. This shows that the error F̂ ∗
P (x) − F̂P (x) by the bootstrap with

kernel smoothing converges to the Brownian bridge with the proper scaling in
the uniform norm sense. For technical reasons in further proof, we also derive
the convergence in the sense of bounded Lipschitz metrics, that is, we obtain

sup
h∈BL1(�∞(F))

∣∣∣Enh(
√
n + m(F̂ ∗

P − F̂P )) − Eh(
√

1/κG1 ◦ FP )
∣∣∣ P -a.s.−−−−→ 0,

as n → ∞. Here, we denote by En the expectation with respect to P̂n. Similarly,
we can obtain a similar limiting statement for the error F̂ ∗

Q(x) − F̂Q(x) by the
other distribution by the bootstrap.

Next, we also analyze the error by the estimated distributions F̂P and F̂Q by
the kernel method. We apply the seminal analysis on the convergence of kernel
convolutions [GN07] and obtain the following joint convergence:

√
n + m(F̂P − FP , F̂Q − FQ) d−→ (

√
1/κG1 ◦ FP ,

√
1/(1 − κ)G2 ◦ FQ),

as n → ∞. Here, G1 and G2 are some independent Brownian bridges.

4.2.2. Functional delta method

We study the convergence of the estimator T̂ ∗
n,m by using the above convergence

results of the distributions and the representation (2) of the OT map. To the
aim, we use the functional delta method (see Appendix B for a brief exposition).

Formally, we define a functional φ : D[a, b] ×D[a, b] → D[a, b] as

φ(u, v) = (v−1 ◦ u(·)),

which implies that T̂ ∗
n,m = φ(F̂ ∗

P , F̂
∗
Q), T̂n,m = φ(F̂P , F̂Q), and T0 = φ(FP , FQ).

Then, we shall make a first-order approximation φ(F̂P , F̂Q) − φ(FP , FQ) ≈
φ′(F̂P −FP , F̂Q−FQ). Thus it is important to first derive the Hadamard deriva-
tive φ′.

Lemma 5. Let [a, b] satisfy the conditions in Proposition 6. Define the func-
tional φ : D[a, b]×D[a, b] → D[a, b] by φ(u, v) = v−1 ◦ u. Then, φ is Hadamard
differentiable at (FP , FQ). Denoting T0 = F−1

Q ◦ FP , the Hadamard derivative
of φ at (FP , FQ) is given by

φ′(u, v) = 1
fQ ◦ T0

[u− v ◦ T0] . (11)
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We slightly extend this derivative for the design of confidence bands. Define
a functional Ψ : D[a, b] ×D[a, b] → D[a, b] as

Ψ(u, v) = (v−1 ◦ u(·))/sκ(·).

Using Lemma 5, we derive its derivative as

Ψ′(u, v) = (u(·) − v ◦ T0(·))/((fQ ◦ T )(·)sκ(·)).

Note that we have added the term sκ(·), which determines the scale of the
confidence band.

Finally, we apply the functional delta method (Lemma 10 in Appendix) and
study the limit of the estimation error of the estimator F̂ ∗

P as
√
n + m(T̂ ∗

n,m − T̂n,m)(·)/sκ(·) =
√
n + m(Ψ(F̂ ∗

P , F̂
∗
Q) − Ψ(F̂P , F̂Q))

d−→ Ψ′(
√

1/κG1 ◦ FP ,
√

1/(1 − κ)G2 ◦ FQ)
= Zκ,

where Zκ is defined in (10). By a similar discussion, we also prove that the
estimation error T̂n,m − T0 of the kernel estimator also converges to the same
Gaussian process. In addition, we give evaluations of several plug-in estimators
such as ŝn,m(·), then obtain the statement of Theorem 3.

5. Simulation

5.1. Simulation design

To support our asymptotic validity results, we perform a Monte Carlo simula-
tion to evaluate the coverage probabilities of the confidence bands. For 1,000
iterations, we sample from two different probability distributions: X1, . . . , Xn ∼
N(0, 1) and Y1, . . . , Ym ∼ Gamma(5, 0.5), where n ∈ {100, 200, . . . , 2000} and
m = n/4 (that is, κ = 0.2). In each iteration, we use 2,500 bootstrap samples
to construct (1 − α)-level uniform confidence bands on the interval [−2.5, 2.5],
where α ∈ {0.01, 0.05, 0.10}. The true OT map can be directly computed as
T0 = F−1

Q ◦ FP where FP and FQ are the distribution function of N(0, 1)
and Gamma(5, 0.5), respectively. The Gaussian kernel is used for the uniform
confidence bands with various smoothness parameters β ∈ {0.5, 1.0, 1.4} and
rn = 1

2n
−1/(2β+1); so if we assume that the density functions are in Cβ(R), then

Assumptions 1 and 2 are satisfied.
To evaluate our confidence bands, we estimate the coverage probability as the

proportion of 1000 runs in which T0(x) is contained in the confidence band for
all x ∈ [−2.5, 2.5]. Additionally, we assess the confidence bands by calculating
the median of the bands’ average widths.
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Table 1

Evaluations of our (1−α)-level uniform confidence bands of the optimal transport map from
N(0, 1) to Gamma(5, 0.5) based on 1,000 pairs of samples from each distribution. The table
displays the median of average widths and the coverage probabilities of the confidence bands

on [−2.5, 2.5].

1 − α n m Average width Coverage probability

0.90
200 50 29.13 0.656
700 175 10.85 0.866

2000 500 6.23 0.932

0.95
200 50 35.67 0.668
700 175 12.26 0.888

2000 500 7.68 0.960

0.99
200 50 40.94 0.737
700 175 15.13 0.951

2000 500 10.77 0.989

Fig 1. Plots of the coverage probabilities (left) and the median of average widths (right) of
the simulated uniform confidence bands on [−2.5, 2.5] as functions of sample size n.

5.2. Result and discussion

The median of per-iteration average widths and the coverage probabilities over
x ∈ [−2.5, 2.5] for β = 0.5 and n = 200, 700 and 2000 are shown in Table 1.
From the table, we can see that the coverage probabilities approach the nominal
probabilities (1−α), and the widths become smaller as n increases. In particular,
when n = 2000 and α = 0.90 or 0.95, the coverage probabilities are slightly larger
than the nominal probabilities.

The plots in Figure 1 illustrate the coverage probability and median of av-
erage width as functions of n. These plots lead us to the same conclusion: as n
increases, the average coverage probabilities approach the nominal probabilities,
and the width of the band decreases.

We now examine the uniform confidence bands of a specific sample with
β = 0.5, 1.0 and 1.4 (recall Assumption 1 that β+0.5 must be less than the order
of the Gaussian kernel, which is 2). The plots of the true optimal transport maps,
their kernel estimates, and the uniform confidence bands are shown in Figure 2.
We observe that for x > 1.8, the estimated transport map (the red curve)
remains significantly distant from the actual transport map (the black curve).
This disparity arises due to the heavier right tail of Gamma(5, 0.5) compared to
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Fig 2. Examples of (1 − α)-level uniform confidence bands on [−2.5, 2.5], for three different
values of α and three different values of the bandwidth parameter β, based on specific samples
of size 200, 700 and 2000.

that of N(0, 1). Consequently, there is an inadequate number of sample points
on the right tail of N(0, 1) to estimate the transport map between the two
distributions.

As β increases, the kernel bandwidths increase and the confidence bands
become smoother. Note that if the actual density functions are rougher than
Cβ(R), the kernel estimate and the confidence band might be too smooth.

6. Real data analysis

As an application, we use our confidence bands to assess the uncertainty of our
estimate of the transport map of the distribution of ages of death in 2001 to
those in 2021. The data of the age of deaths from 12 countries were taken from
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Fig 3. Analysis of the distribution shifts in ages of death from the year 2001 to 2021 using
our uniform confidence bands.

the Human Mortality Database [Max23]. For each country, let us simply denote
the dataset from the year 2001 by X, and those from the year 2021 by Y . Let
|X| = n and |Y | = m. Assume that the observed age of deaths in 2001 and 2021
are sampled from two separate continuous probability distributions. Then there
is some uncertainty in our estimate due to randomness in the sampling.

To construct the estimators and confidence bands at level 1 − α, we use
the Gaussian kernel. Our choices of bandwidths are guided by our theory in
Section 3. Recall from Assumption 1 that rn ≈ n−1/(2β+1) where β + 0.5 must
be less than the order of the kernel. Since the Gaussian kernel is of second
order, any β < 1.5 is permissible. In particular, we choose β = 1.25 so that
2β + 1 = 3.5; this leads to our choices of kernel bandwidths rn = 2n−1/3.5 for
X, and rm = 2m−1/3.5 for Y . With these bandwidths, we use the method in
Section 3 to construct a kernel estimate of the optimal transport map and a
95% uniform confidence band for each country.

The plots of our estimates and confidence bands for 12 countries are shown in
Figure 3. The kernel estimate of the optimal transport map is the black curve,
showing the correspondence between the age of deaths in 2001 and 2021. The
identity function is the red dashed line. The estimate lying above the identity
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function indicates a shift in mortality towards higher ages. From these estimates
and the confidence bands, we observe the most significant age shifts in Portugal
(from 30 to 45) and Japan (from 30 to 40). Other countries also show minor age
shifts, except for Norway, New Zealand, Luxembourg, and the USA, where we
cannot confidently assert an upward shift in ages.

7. Conclusion

In this paper, we develop a method to construct uniform confidence bands for
the optimal transport maps based on two samples from two unknown continu-
ous distributions. First, we use a kernel to estimate the densities, and then we
use the empirical bootstrap to construct the confidence bands. We show that
our confidence bands are asymptotically valid, meaning that they contain the
actual OT map on an interval with a probability that approaches the nominal
coverage probability. We perform simulations to verify the validity of our confi-
dence bands. As an application, we apply our confidence bands to analyze the
shift in life expectancy across 12 countries from the year 2001 to 2021.

There are a couple of directions for future research. Firstly, our delta method
and bootstrap procedure rely on first-order approximations. Exploring higher-
order approximations would be an improvement worth considering. Secondly,
our choice of kernel bandwidth directly follows from the theory of kernel den-
sity estimation, which, in practice, may not be sample-efficient in achieving
consistency. This raises another research problem of finding a bandwidth search
procedure that can achieve consistency more efficiently than the one presented
in this paper.

Appendix A: Pointwise confidence intervals via the empirical
distributions

In certain situations, one might wish to construct a confidence interval for the
value of the optimal transport at a specific point. Our approach to constructing
such an interval follows closely to that of confidence bands, as the interval can
be seen as a specific instance of confidence bands that covers only a single
point. One key distinction is that, with only a single point, there is no need to
estimate the standard deviation, and consequently removing the necessity for
kernel density estimation.

A.1. Methodology

We first develop an empirical estimator for T0. We denote P̃n := n−1∑n
i=1 δXi

and Q̃m := m−1∑m
j=1 δYi as empirical measures with the observations. With

the empirical distribution functions F̃P (x) = n−1∑n
i=1 1{Xi ≤ x} and F̃Q(y) =

m−1∑m
j=1 1{Yj ≤ y}, we define a plug-in estimator as the OT map from F̃P
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to F̃Q:

T̃n,m(x) = F̃−1
Q ◦ F̃P (x).

A.2. Bahadur representation

Proposition 6 (Bahadur Representation of 1D Transport Map). Suppose that
there exists an interval [a, b] such that: (i) FQ is continuously differentiable on
the interval [F−1

Q (FP (a)), F−1
Q (FP (b))], (ii) fQ = F ′

Q is nonzero on
[F−1

Q (FP (a)), F−1
Q (FP (b))]. Then, for any x ∈ [a, b], we have

√
n + m

(
T̃n,m(x) − T0(x)

)
=

√
n + m

fQ(T0(x))

⎡⎣ 1
n

n∑
i=1

1
{
Xi ≤ x

}
− 1

m

m∑
j=1

1
{
Yj ≤ T0(x)

}⎤⎦+ oP⊗Q(1)

=
√
n + m

n

n∑
i=1

ψ(Xi, x) −
√
n + m

m

m∑
j=1

ζ(Yj , x) + oP⊗Q(1), (12)

where

ψ(Xi, x) := 1
fQ(T0(x))

[
1
{
Xi ≤ x

}
− FP (x)

]
,

and

ζ(Yj , x) := 1
fQ(T0(x))

[
1
{
Yj ≤ T0(x)

}
− FP (x)

]
.

Moreover, the oP⊗Q(1) term does not depend on the choice of x.

The conditions on FQ imply that FQ is continuous on [F−1
Q (FP (a)),

F−1
Q (FP (b))], which implies FQ ◦ T0 = FQ ◦ F−1

Q ◦ FP = FP on [a, b].
We derive an asymptotic representation of the estimation error T̃n,m(x) −

T0(x).

Proof of Lemma 5. For t ≥ 0, let ut → u and vt → v be functions in D[a, b]
such that FP,t = FP + tut and FQ,t = FQ + tvt are in D[a, b] for each t. To
compute the Hadamard derivative, we consider the difference quotient:

F−1
Q,t ◦ FP,t − F−1

Q ◦ FP

t
=

F−1
Q,t ◦ Ft −G−1 ◦ Ft

t
+

F−1
Q ◦ FP,t − F−1

Q ◦ FP

t
(13)

We now apply the Taylor approximation for F−1
Q . Since F ′

Q is continuous and
nonzero on [F−1

Q (FP (a)), F−1
Q (FP (b))], it follows from the inverse function theo-

rem that F−1
Q is differentiable on [FQ(F−1

Q (FP (a))), FQ(F−1
Q (FP (b)))] =

[FP (a), FP (b)] and we have

F−1
Q (FP,t(x)) = F−1

Q (FP (x) + tut(x))
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= F−1
Q (F (x)) + 1

fQ(F−1
Q (FP (x)))

tut(x) + o(tut(x)).

As ‖ut‖∞ ≤ 1, we have o(tut(x)) = o(t) independent of x. From this, we ap-
proximate the second term on the right in (13).

F−1
Q ◦ FP,t − F−1

Q ◦ FP

t
= 1

fQ ◦ F−1
Q ◦ FP

ut + o(1), (14)

as t → 0. From [vdV98, Lemma 21.3], the Hadamard derivative of the quantile
function Q �→ F−1

Q at Q is v �→ − v◦F−1
Q

fQ◦F−1
Q

. From this, we use Taylor’s formula
again to obtain:

F−1
Q,t ◦ FP,t = F−1

Q ◦ FP,t −
v ◦ F−1

Q ◦ FP,t

fQ ◦ F−1
Q ◦ FP,t

t + o(t).

Therefore, the first term on the right of (13) is

F−1
Q,t ◦ FP,t − F−1

Q ◦ FP,t

t
= F−1

Q ◦ FP,t −
v ◦ F−1

Q ◦ FP,t

fQ ◦ F−1
Q ◦ FP,t

+ o(1). (15)

Combining (14) and (15) and the continuity of v ◦F−1
Q and g ◦F−1

Q , we conclude
the convergence in the Hadamard sense, that is, it holds that

lim
t→0

F−1
Q,t ◦ FP,t − F−1

Q ◦ FP

t
= 1

fQ ◦ F−1
Q ◦ FP

[
u− v ◦ F−1

Q ◦ FP

]
= 1

fQ ◦ T [u− v ◦ T ] .

Proof of Proposition 6. We first recall that FQ has a nonzero derivative at
F−1
Q (FP (x)) for any x ∈ [a, b]; this implies that FQ is locally invertible at

F−1
Q (FP (x)), and so FQ(T0(x)) = FQ(F−1

Q (FP (x))) = FP (x). This allows us to
simplify the Hadamard derivative (11) evaluated at ui(x) = 1{Xi ≤ x}−FP (x)
and vj(y) = 1{Yj ≤ y} − FQ(y) as follows:

φ′(ui, vj)(x)

= 1
fQ(T0(x))

[
1
{
Xi ≤ x

}
− FP (x) − 1

{
Yj ≤ F−1

Q (FP (x))
}

+ FQ(T0(x))
]

= 1
g(T0(x))

[
1
{
Xi ≤ x

}
− FP (x) − 1

{
Yj ≤ T0(x)

}
+ FP (x)

]
= ψ(Xi, x) − ζ(Yj , x).

Using the functional delta method (Lemma 9) and the linearity of φ′, we arrive
at the final approximation.

√
n + m

(
T̃n,m(x) − T0(x)

)
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=
√
n + m

(
φ(F̃P,n, F̃Q,m) − φ(F,G)

)
=

√
n + mφ′(F̃P,n − FP , F̃Q,m − FQ) + oP⊗Q(1)

=
√
n + m

n

n∑
i=1

ψ(Xi, x) +
√
n + m

m

m∑
j=1

ζ(Yj , x) + oP⊗Q(1).

A.3. Gaussian approximation theorem

With the Bahadur representation (12), we can easily develop a Gaussian approx-
imation on the estimation error. If FQ an interval [a, b] satisfy the conditions in
Proposition 6, we obtain the following representation of the error on [a, b]:

√
n + m

(
T̃n,m(x) − T0(x)

)
=

√
n + m

n

n∑
i=1

ψ(Xi, x) −
√
n + m

m

m∑
j=1

ζ(Yj , x) + oP⊗Q(1) (16)

Note that the two processes are independent, since {Xi}nt=1 and {Yj}mj=1 are
mutually independent.

We consider Gaussian limits of the terms in (16). In view of Proposition 6,
Donsker’s theorem tells us that there exist two independent Brownian bridges
G1 and G2 such that the following convergences of D[a, b] functions hold under
the uniform norm:

1√
n

n∑
i=1

ψ(Xi, x) = 1
fQ(T0(x))

1√
n

n∑
i=1

[1{Xi ≤ x} − FP (x)]

d−→ 1
fQ(T0(x))G1(FP (x)),

and

1√
m

m∑
j=1

ξ(Yj , x) = 1
fQ(T0(x))

1√
m

m∑
j=1

[1{Yj ≤ T0(x)} − FP (x)]

d−→ 1
fQ(T0(x))G2(FP (x)),

on [a, b]. Recalling the sample size condition n/(n + m) → κ, we have the
following convergence to a Gaussian process:

√
n + m(T̃n,m(x) − T0(x))

=
√
n + m

n

n∑
i=1

ψ(Xi;x) −
√
n + m

m

m∑
j=1

ζ(Yj ; ·) + oP⊗Q(1)

d→ 1
fQ(T0(x))

[√
1/κG1(x) −

√
1/(1 − κ)G2(FP (x))

]
.
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We remark that the covariance function of G1 ◦ FP and G2 ◦ FP are can be
written explicitly:

Cov (G1(x),G1(x′)) = Cov (G1(x),G2(x′))
= min{FP (x), FP (x′)} − FP (x)FP (x′).

A.4. Bootstrap for pointwise confidence intervals

Recall the empirical distribution functions F̃P,n(x) = n−1∑n
i=1 1{Xi ≤ x} and

F̃Q,m(y) = m−1∑m
j=1 1{Yj ≤ y}. We define a plug-in estimator as the optimal

transport map from P̃n to Q̃m:
Let X∗

1 , . . . , X
∗
n ∼ P̃n and Y ∗

1 , . . . , Y
∗
m ∼ Q̃m. Define the bootstrap distribu-

tion function F̃ ∗
P,n(x) := n−1∑n

i=1 1{X∗
i ≤ x} and F̃ ∗

Q,m(y) :=
m−1∑m

j=1 1{Y ∗
j ≤ y}. The bootstrap transport map is then given by T̃ ∗

n,m(x) :=
F̃ ∗−1
Q,m(F̃ ∗

P,n(x)).

Theorem 7. Let Φ be the distribution function of the standard normal distri-
bution. If FQ is continuously differentiable at F−1

Q (FP (x)) and the derivative
fQ(F−1

Q (FP (x))) is nonzero, then

sup
x0

∣∣∣P̃ ∗
n,m

(√
n + m(T̃ ∗

n,m(x) − T̃n,m(x)) ≤ x0

)
− Φ (x0/σT (x))

∣∣∣ P⊗Q−−−→ 0, (17)

where σT (x) = (fQ(T0(x))−1
√

(κ−1 + (1 − κ)−1)FP (x)(1 − FP (x)).

Proof of Theorem 7. With σP (x) :=
√

FP (x)(1 − FP (x)) and σQ(x) :=√
FQ(x)(1 − FQ(x)), we will show the weak conditional convergences of the

bootstrap empirical distributions:

sup
x0

∣∣∣P̃n

(√
n[F̃ ∗

P,n(x) − F̃P,n(x)] ≤ x0) − Φ(x0/σP (x)
)∣∣∣ P−→ 0, (18)

and

sup
x0

∣∣∣Q̃m

(√
m[F̃ ∗

Q,m(x) − F̃Q,m(x)] ≤ x0) − Φ(x0/σQ(x)
)∣∣∣ Q−→ 0. (19)

Observe that the variance of F̃ ∗
P,n(x) − F̃P,n(x) is

σ2
P̃n

:= F̃P,n(x)(1 − F̃P,n(x)) = σ2
P + oP (1).

Applying the Berry-Esseen on
√
n[F̃ ∗

P,n(x) − F̃P,n(x)] with respect to the em-
pirical distribution P̃n, there is a constant A > 0 such that

sup
x0

∣∣∣P̃n

(√
n[F̃ ∗

P,n(x) − F̃P,n(x)] ≤ x0) − Φ(x0/σ
2
P̃n

(x)
)∣∣∣
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≤
A
∑n

i=1|F̃ ∗
P,n(x) − F̃P,n(x)|3

n3/2σ2
P̃n

≤ A

n1/2σP̃n

= A

n1/2σP
+ oP (1).

We now find an upper bound of |Φ(x0/σP̃n
(x))−Φ(x0/σP (x))| via the method

of calculus on the function σ �→ Φ(x0/σ). By the boundedness of the Gaussian
density, there is a constant B such that

sup
x0

∣∣∣∣∂Φ(x0/σ)
∂σ

∣∣∣∣ ≤ B

σ
.

It follows from the mean value theorem that

|Φ(x0/σP̃n
(x)) − Φ(x0/σP (x))| ≤ B

min{σP̃n
(x), σP (x)} |σP̃n

(x) − σP (x)| P−→ 0,

which allows us to conclude (18). The convergence (19) follows analogously.
For any cadlag function Λ, define a random function ZΛ(x) ∼ N (0,Λ(x)(1−

Λ(x))). By the weak law of large number,
√
n[F̃P,n(x) − FP (x)] d−→ ZFP

(x), (20)

and
√
m[F̃Q,m(x) − FQ(x)] d−→ ZFQ

(x). (21)

Consider the functional φ(u, v) = v−1 ◦ u. From Lemma 5, the Hadamard
derivative of φ at (FP , FQ) is φ′(u, v) = (u − v ◦ T )/fQ ◦ T . We now apply
the delta method for bootstrap Lemma 10 on φ: from (18), (19), (20), (21)
and n/(n + m) → κ, we have that

√
n + m(φ(F̃ ∗

P,n, F̃
∗
Q,m) − φ(F̃P,n, F̃Q,m)) =

√
n + m(T̃ ∗

n,m − T̃n,m) converges in distribution to

φ′(
√

1/κZFP
,
√

1/(1 − κ)ZFQ
) = 1

fQ ◦ T0

(√
1/κZFP

−
√

1/(1 − κ)ZFQ
◦ T0

)
= 1

fQ ◦ T0

(√
1/κZFP

−
√

1/(1 − κ)ZFQ◦T0

)
= 1

fQ ◦ T0

(√
1/κ−

√
1/(1 − κ)

)
ZFP

,

conditional to X1, . . . , Xn in probability. In other words, the convergence (17)
holds true.

Corollary 8 (Asymptotic Validity of the Bootstrap Confidence Interval). For
any α ∈ (0, 1), let α′ := α/2 and define

q̃n,m(1−α′) := the (1 − α′)-quantile of
√
n + m

(
T̃ ∗
n,m(x)−T̃n,m(x)

)
under P̃n,m.
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Then, for any x ∈ R such that FQ is continuously differentiable at F−1
Q (FP (x))

and the derivative fQ(F−1
Q (FP (x))) is nonzero, the bootstrap confidence band for

T0(x):

C(α)
n,m(x) :=

[
T̃n,m(x) ± q̃n,m(1 − α′)√

n + m

]
,

is asymptotically consistent at level 1 − α, that is,

P

(
T0(x) ∈ C(α)

n,m(x)
)
→ 1 − α,

as n,m → ∞ and n/(n + m) → κ.

Proof of Corollary 8. For notational convenience, denote ΦT,x(x0) :=
Φ(x0/σT (x)). Recall from (17) that the sequence P̃n,m(

√
n + m(T̃ ∗

n,m(x) −
T̃n,m(x)) ≤ x0) converges in P ⊗ Q-probability to Φ (x0/σT (x)). By passing
along any subsequence and a further subsequence, we can assume that the con-
vergence is P ⊗Q-almost surely.

The almost-sure convergence of the distribution functions implies the almost-
sure convergence of the corresponding quantile functions [vdV98, Lemma 21.2].
In particular, q̃n,m(1 − α′), which is the 1 − α′-quantiles of

√
n + m

(
T̃ ∗
n,m(x) −

T̃n,m(x)
)
, converges P⊗Q-a.s. to Φ−1

T,x(1−α′). It follows from Slutsky’s theorem
that

√
n + m

(
T̃n,m(x) − Tn,m(x)

)
− q̃n,m(1 − α′) converges in distribution to

ZT (x) − Φ−1
T,x(1 − α′), where ZT ∼ N (0, σ2

T ). Therefore, as n,m → ∞ and
n/(n + m) → κ,

P

(
T0(x) ≥ T̃n,m(x) − q̃n,m(1 − α′)/

√
n + m

)
= P

(√
n + m

(
T̃n,m(x) − Tn,m(x)

)
≤ q̃n,m(1 − α′)

)
→ P

(
ZT ≤ Φ−1

T,x(1 − α′)
)

= ΦT,x(Φ−1
T,x(1 − α′))

= 1 − α′.

Similarly, by the symmetry of ZT ,

P

(
T0(x) ≤ T̃n,m(x) + q̃n,m(1 − α′)/

√
n + m

)
= P

(√
n + m

(
T̃n,m(x) − Tn,m(x)

)
≥ −q̃n,m(1 − α′)

)
→ P

(
ZT ≥ −Φ−1

T,x(1 − α′)
)

= P

(
ZT ≤ Φ−1

T,x(1 − α′)
)

= 1 − α′.

We conclude that P

(
T0(x) ∈ C(α)

n,m(x)
)
→ 1 − 2α′ = 1 − α.
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Table 2

Evaluations of our (1 − α)-level pointwise confidence intervals of the optimal transport map
from N(0, 1) to Gamma(5, 0.5) based on 1,000 pairs of samples from each distribution. The
table displays the median of average widths and summary of the coverage probabilities of the

pointwise confidence intervals over [−2.5, 2.5].

1 − α n m Average width Pointwise coverage probabilities
Minimum Maximum Average

0.90
200 50 3.35 0.008 0.865 0.73
700 175 2.44 0.362 0.881 0.83

2000 500 1.62 0.774 0.889 0.86

0.95
200 50 3.93 0.01 0.924 0.79
700 175 2.84 0.341 0.942 0.88

2000 500 1.94 0.81 0.945 0.92

0.99
200 50 4.93 0.003 0.979 0.84
700 175 3.63 0.365 0.986 0.93

2000 500 2.55 0.847 0.99 0.97

Fig 4. Plots of the average of the coverage probabilities (left) and the median of average
widths (right) of the simulated pointwise confidence intervals over [−2.5, 2.5] as functions of
sample size n.

A.5. Simulation

To validate our asymptotic intervals, we perform Monte Carlo simulation with
the same design as in Section 5.1 for three sample sizes: n = 200, 700 and 2000.
For each x ∈ [−2.5, 2.5], the estimated coverage probability at point x is the
proportion of 1000 runs in which our confidence interval at x contains T0(x).
Table 2 displays the summary statistics for the pointwise coverage probabilities
and the medians of average widths of the intervals across x ∈ [−2.5, 2.5].

For small sample sizes (n = 200 and n = 700), the minimum coverage prob-
abilities are much smaller than the nominal probabilities (1 − α), whereas the
maximum coverage probabilities are close to the nominal probabilities. And as
the sample size increases, both the minimum and maximum coverage probabili-
ties converge to the nominal probabilities. Of course, the widths of the confidence
intervals decreases as n increases and 1 − α decreases.

In Figure 4, we plot the average coverage probability and the median of
average width as a function of n. From the plots, we see that the average coverage
probability converges to the nominal probability as n increases. However, the
convergent is very slow for 1 − α = 0.90 and 0.95. Ss discussed in Section 5.2,
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Fig 5. Examples of (1 − α)-level pointwise confidence intervals over [−2.5, 2.5], for three
different values of α, based on specific samples of size 200, 700 and 2000.

this is attributed to the insufficient number of sample points from the right tail
of N(0, 1), which hinders the estimation of the transport map between the two
distributions.

The cause of the sub-optimal coverage probability becomes more apparent
when examining the individual confidence intervals (Figure 5). We can see that
for larger values of x, our plug-in estimator (the red curves) remains significantly
distant from the true transport map (the black curves). Consequently, this dis-
crepancy causes the confidence intervals to fail in capturing the transport map
accurately.

Appendix B: Mathematical tools

B.1. Functional delta method

Consider stochastic processes Xn and T with values in a normed linear space D
and a function φ : D → E where E is another normed linear space. The functional
delta method provides a way to turn the weak convergence of a sequence of
stochastic processes an(Xn − T) into that of an (φ(Xn) − φ(T)). The idea is
to realize that the latter can be written as an

(
φ(T + a−1

n hn) − φ(T)
)

where
hn = an(Xn − T). With sufficient differentiability condition on φ we expect
this sequence to converge to φ′(T) as an → ∞. To rigorously obtaining the
convergence, we need the notion of Hadamard differentiable functions.

Definition 1 (Hadamard Derivative). A function φ : D → E is Hadamard
differentiable at T ∈ D if there exists a continuous linear map φ′

T
: D → E such

that for any ht, h ∈ D satisfying ht → h in D as t → 0, we have∥∥∥∥φ(T + tht) − φ(T)
t

− φ′
T
(h)
∥∥∥∥
E
→ 0, as t → 0.

In this case, we say that φ′
T

is the Hadamard derivative of φ at T.
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If φ is Hadamard differentiable then one can obtain the convergence of stochas-
tic processes under φ—this is essentially the statement of the functional delta
method.

Lemma 9 ([vdV98, Theorem 20.8]). Let D and E be normed linear spaces. Let
Xn,X and T be stochastic processes with values in D such that an(Xn−T) d−→ X.
Let φ : D → E be Hadamard differentiable at T. Then,

an (φ(Xn) − φ(T)) d−→ φ′
T
(X). (22)

If, in addition, φ′
T

is continuous on D. Then,

an (φ(Xn) − φ(T)) = φ′
T

(an(Xn − T)) + oP(1).

B.2. Functional delta method for bootstrap

In this work, we use the bootstrap procedure to estimate the distribution of
stochastic processes of type an (φ(Xn) − φ(T)). Let P̃n be the empirical dis-
tribution based on the sample X1, . . . , Xn and X

∗
n be the bootstrap estimator

based on a bootstrap sample X∗
1 , . . . , X

∗
n ∼ P̃n. In view of (22), the asymptotic

consistency of the bootstrap distribution requires that:

an (φ(Xn) − φ(T)) d−→ φ′
T
(X) and an (φ(X∗

n) − φ(Xn)) P|P̃n−−−→ φ′
T
(X), (23)

where P|P̃n−−−→ denotes the convergence in probability, conditionally given X1, . . . ,
Xn in distribution, which can be formally written in terms of the bounded
Lipschitz metric:

sup
h∈BL1(E)

|En [h (an(φ(X∗
n) − φ(Xn))] − E [h (φ′(T))]| P−→ 0,

where En is the expectation with respect to P̃n and BL1(E) is the space of
Lipschitz functions h : E → [−1, 1] with Lipschitz constants bounded by one.

The first convergence in (23) can be obtained via the functional delta method,
and the second convergence can be obtained using the following lemma:

Lemma 10 ([vdV98, Theorem 23.9]). Let D and E be normed linear spaces. Let
Xn,X and T be stochastic processes with values in D such that an(Xn−T) d−→ X

and an(X∗
n −Xn) P|P̃n−−−→ X. Let φ : D → E be Hadamard differentiable at T. If X

is tight, then

an (φ(X∗
n) − φ(Xn)) P|P̃n−−−→ φ′

T
(X).

Appendix C: Full proof of Theorem 3

Proof of Theorem 3. We divide the proof into seven steps.



Uniform confidence band for OT map on 1D data 541

Step 1. Find the stochastic limits of
√
n + m(F̂ ∗

P (x) − F̂P (x)) and√
n + m(F̂ ∗

Q(x) − F̂Q(x)) in the uniform norm We use the result from
[KMT76, Theorem 3] which states that, for any iid sequence U1, . . . ∼ PU where
PU is the uniform random distribution on [0, 1] and An(t) = n−1∑n

i=1 1{Ui ≤
t}, there is a Brownian bridge G1 such that

PU

(
sup

0≤t≤1

∣∣√n(An(t) − t) −G1(t)
∣∣ > δ

)
−→ 0, (24)

as n → ∞, for any δ > 0.
Conditional on X1, . . . , Xn, F̂P is a non-random continuous function. So

we can apply the above result with Ui = F̂P (X∗
i ) and t = F̂P (x), yield-

ing An(t) = n−1∑n
i=1 1{Ui ≤ F̂P (x)} = n−1∑n

i=1 1{F̂P (X∗
i ) ≤ F̂P (x)} =

n−1∑n
i=1 1{X∗

i ≤ x} = F̂ ∗
P (x). The fact that (24) holds for all sequences

X1, . . . , Xn allows us to obtain the P -almost sure convergence:

P̂n

(
sup
x

∣∣∣√n(F̂ ∗
P (x) − F̂P (x)) −G1(F̂P (x))

∣∣∣ > δ

)
P -a.s.−−−−→ 0.

From [HHZ08, Lemma A.1], we have supx|F̂P (x)−FP (x)| P -a.s.−−−−→ 0. By the uni-
form continuity of the Brownian bridge, we have P

(
supx|G1(F̂P (x)) −

G1(FP (x))| > δ
) P -a.s.−−−−→ 0. Consequently, we have

P̂n

(
sup
x

∣∣∣√n(F̂ ∗
P (x) − F̂P (x)) −G1(FP (x))

∣∣∣ > δ

)
P -a.s.−−−−→ 0.

From the condition n/(n+m) → κ as n,m → ∞, we apply Slutsky’s lemma and
obtain (

√
1/κ −

√
(n + m)/n) supx G1(FP (x)) → 0 in probability independent

of X1, . . . , Xn. Therefore, we have

P̂n

(
sup
x

∣∣∣√n + m(F̂ ∗
P (x) − F̂P (x)) −

√
1/κG1(FP (x))

∣∣∣ > δ

)
P -a.s.−−−−→ 0. (25)

Using a similar argument, we obtain

Q̂m

(
sup
x

∣∣∣√n + m(F̂ ∗
Q(x) − F̂Q(x)) −

√
1/(1 − κ)G2(FQ(x))

∣∣∣ > δ

)
Q-a.s.−−−−→ 0,

where G2 is another independent Browninan bridge.

Step 2. Convert the convergences in the uniform norm to those in
the bounded Lipschitz metric Recall that BL1(�∞(F)) denotes the space
of Lipschitz functions h : �∞(F) → [−1, 1] with Lipschitz constants bounded by
one. For any h ∈ BL1(�∞(F)), we have |h(

√
n + m(F̂ ∗

P − F̂P )) − h(
√

1/κG1 ◦
FP )| ≤ supx|

√
n + m(F̂ ∗

P (x)−F̂P (x))−
√

1/κG1(FP (x))|. Consequently, it holds
that

P̂n

(
sup
x

∣∣∣√n + m(F̂ ∗
P (x) − F̂P (x)) −

√
1/κG1(FP (x))

∣∣∣ > δ

)
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≥ P̂n

(
|h(

√
n + m(F̂ ∗

P − F̂P )) − h(
√

1/κG1 ◦ FP )| > δ
)
.

Define an event Sδ,n,m = {h(
√
n + m(F̂ ∗

P − F̂P )) − h(
√

1/κG1 ◦ FP ) > δ}.
Denoting by En the expectation with respect to P̂n, Jensen’s inequality yields
that ∣∣∣Enh(

√
n + m(F̂ ∗

P − F̂P )) − Eh(
√

1/κG1 ◦ FP )
∣∣∣

≤ EnE

∣∣∣h(
√
n + m(F̂ ∗

P − F̂P )) − h(
√

1/κG1 ◦ FP )
∣∣∣

≤ 2P̂n(Sδ,n,m) + δP̂n(Sc
δ,n,m)

≤ 2P̂n(Sδ,n,m) + δ,

where we used the fact that h is bounded by one in the second to last inequality.
From (25), we have P̂n(Sδ,n,m) → 0 for any arbitrary δ; therefore, by taking
supremum over all h ∈ BL1(�∞(F)), there is a Brownian bridge G1 such that

sup
h∈BL1(�∞(F))

∣∣∣Enh(
√
n + m(F̂ ∗

P − F̂P )) − Eh(
√

1/κG1 ◦ FP )
∣∣∣ P -a.s.−−−−→ 0. (26)

Similarly, letting Em be the expectation with respect to Q̂m, there is a Brownian
bridge G2 such that

sup
h∈BL1(�∞(F))

∣∣∣Emh(
√
n + m(F̂ ∗

Q − F̂Q)) − Eh(
√

1/(1 − κ)G2 ◦ FQ)
∣∣∣ Q-a.s.−−−−→ 0.

(27)

Step 3. Prove the convergence of the sequence
√
n + m(F̂ ∗

P−F̂P , F̂
∗
Q−F̂Q)

in the bounded Lipschitz metric Now we will show that

sup
h∈BL1(�∞(F)2)

∣∣∣En,mh
(√

n + m(F̂ ∗
P − F̂P , F̂

∗
Q − F̂Q)

)
− Eh

(√
1/κG1 ◦ FP ,

√
1/(1 − κ)G2 ◦ FQ

)∣∣∣ P⊗Q-a.s.−−−−−−→ 0. (28)

Consider any arbitrary h ∈ BL1(�∞(F)2). For any w ∈ �∞, define hw
1 , h

w
2 ∈

BL1(�∞) by hw
1 (·) = h(·, w) and hw

2 (·) = h(w, ·). Denoting En,m the expectation
with respect to the empirical distribution P̂n,m, we have∣∣∣En,mh

(√
n + m(F̂ ∗

P − F̂P , F̂
∗
Q − F̂Q)

)
− Eh

(√
1/κG1 ◦ FP ,

√
1/(1 − κ)G2 ◦ FQ

)∣∣∣
≤
∣∣∣En,mh

(√
n + m(F̂ ∗

P − F̂P , F̂
∗
Q − F̂Q)

)
− En,mEh

(√
1/κG1 ◦ FP ,

√
n + m(F̂ ∗

Q − F̂Q)
)∣∣∣

+
∣∣∣En,mEh

(√
1/κG1 ◦ FP ,

√
n + m(F̂ ∗

Q − F̂Q)
)
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− Eh
(√

1/κG1 ◦ FP ,
√

1/(1 − κ)G2 ◦ FQ

)∣∣∣
≤ sup

w∈�∞(F)

∣∣∣Enh
w
1
(√

n + m(F̂ ∗
P − F̂P )

)
− Ehw

1 (
√

1/κG1 ◦ FP )
∣∣∣

+ sup
w∈�∞(F)

∣∣∣Emhw
2
(√

n + m(F̂ ∗
Q − F̂Q)

)
− Ehw

2 (
√

1/(1 − κG2 ◦ FQ)
∣∣∣

≤ sup
h1∈BL1(�∞(F))

∣∣∣Enh1
(√

n + m(F̂ ∗
P − F̂P )

)
− Eh1(

√
1/κG1 ◦ FP )

∣∣∣
+ sup

h2∈BL1(�∞(F))

∣∣∣Emh2
(√

n + m(F̂ ∗
Q − F̂Q)

)
− Eh2(

√
1/(1 − κ)G2 ◦ FQ)

∣∣∣ .
Using (26) and (27), the last expression converges P ⊗Q-a.s. to zero uniformly
over h ∈ BL1(�∞(F)2) as n,m → ∞. Thus taking the supremum over such h
yields (28) as desired.

In addition, under the required conditions on fP , fQ and K, we can use
Corollary 2 of [GN07] to obtain

√
n(F̂P −FP ) d−→ G1 ◦FP and

√
m(F̂Q−FQ) d−→

G2 ◦ FQ. Consequently, we obtain
√
n + m(F̂P − FP , F̂Q − FQ) d−→ (

√
1/κG1 ◦ FP ,

√
1/(1 − κ)G2 ◦ FQ). (29)

Step 4. Apply the delta method for bootstrap With (28) and (29), we
can now apply the delta method for bootstrap (see Appendix B.2 for a brief
exposition). Define a functional Ψ : D[a, b] ×D[a, b] → D[a, b]

Ψ(u, v) = (v−1 ◦ u(·))/sκ(·).

We recall from (11) that the Hadamard derivative of Ψ at (FP , FQ) is

Ψ′(u, v) = (u(·) − v ◦ T0(·))/((fQ ◦ T )(·)sκ(·)).

Using Lemma 10 on Ψ, the sequence
√
n + m(Ψ(F̂ ∗

P,n, F̂
∗
Q,m) − Ψ(F̂P , F̂Q)) =

√
n + m(T̂ ∗

n,m − T̂n,m)(·)/sκ(·)

weakly converges to

Ψ′(
√

1/κG1 ◦ FP ,
√

1/(1 − κ)G2 ◦ FQ)

=
(√

1/κG1 ◦ FP −
√

1/(1 − κ)G2 ◦ FQ ◦ T0

)
/((fQ ◦ T0)sκ)

=
(√

1/κG1 ◦ FP −
√

1/(1 − κ)G2 ◦ FP

)
/((fQ ◦ T0)sκ)

= Zκ,

under the bounded Lipschitz metric. More precisely, denoting Ẑn,m :=√
n + m(T̂ ∗

n,m − T̂n,m)/sκ, we have

sup
h∈BL1(�∞(F))

∣∣∣En,mh(Ẑn,m) − Eh(Zκ)
∣∣∣ P⊗Q−−−→ 0, (30)
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Step 5. Prove that the sequence P̂n,m(supx

∣∣Ẑn,m(x)
∣∣ ≤ x0) converges

to P(supx|Zκ(x)| ≤ x0) in P ⊗ Q-probability From (30), we consider the
supremum over the set of functions h that are of the form h(f) = h̃(supx|f(x)|)
for some h̃ ∈ BL1[0,∞), which results in

sup
h̃∈BL1[0,∞)

∣∣∣En,m

[
h̃
(
sup
x

∣∣Ẑn,m(x)
∣∣)]− E

[
h̃
(
sup
x
|Zκ(x)|

)]∣∣∣ P⊗Q−−−→ 0.

By scaling, we can extend the supremum to BLM [0,∞), the set of bounded
Lipschitz functions with the Lipschitz constants bounded by M > 0. Given any
ε and δ > 0, there exists n,m large enough so that

P
(

sup
h̃∈BLM [0,∞)

∣∣∣En,m

[
h̃
(
sup
x

∣∣Ẑn,m(x)
∣∣)]− E

[
h̃
(
sup
x
|Zκ(x)|

)]∣∣∣ > δ/2
)
≤ ε.

Fix x0 > 0. For a sufficiently large M , we can find two functions h̃L, h̃U ∈
BLM [0,∞) such that h̃L(x) ≤ 1{0 ≤ x ≤ x0} ≤ h̃U (x) and E[h̃U (supx|Zκ(x)|)−
h̃L(supx|Zκ(x)|)] < δ/2. It follows that, with a probability greater than 1 − ε,

P̂n,m

(
sup
x

∣∣Ẑn,m(x)
∣∣ ≤ x0

)
− P

(
sup
x
|Zκ(x)| ≤ x0

)
≤ En,m

[
h̃U

(
sup
x

∣∣Ẑn,m(x)
∣∣)]− E

[
h̃L

(
sup
x
|Zκ(x)|

)]
≤ E
[
h̃U

(
sup
x
|Zκ(x)|

)]
− E
[
h̃L

(
sup
x
|Zκ(x)|

)]
+ δ/2

≤ δ/2 + δ/2 = δ.

Similarly, we have

P̂n,m

(
sup
x

∣∣Ẑn,m(x)
∣∣ ≤ x0

)
− P
(
sup
x
|Zκ(x)| ≤ x0

)
≥ −δ.

Therefore, we have the convergence in P ⊗Q-probability for each x0 > 0:

P̂n,m

(
sup
x

∣∣Ẑn,m(x)
∣∣ ≤ x0

)
P⊗Q−−−→ P

(
sup
x
|Zκ(x)| ≤ x0

)
.

Step 6. Use Lemma 2 to approximate sκ by ŝn,m and finish the proof
of (9) Let Ẑ∗

n,m :=
√
n + m(T̂ ∗

n,m − T̂n,m)/ŝn,m. So we have to show that

P̂n,m

(
sup
x

∣∣Ẑ∗
n,m(x)

∣∣ ≤ x0

)
P⊗Q−−−→ P

(
sup
x
|Zκ(x)| ≤ x0

)
. (31)

First, observe that

P̂n,m

(
sup
x

∣∣Ẑ∗
n,m(x)

∣∣ ≤ x0

)
= P̂n,m

(
sup
x

∣∣Ẑn,m(x)
∣∣ · ∣∣∣∣ sκ(x)

ŝn,m(x)

∣∣∣∣ ≤ x0

)
.
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This is where we use Lemma 2. For arbitrarily small ε, δ, δ′ > 0, there are
sufficiently large n,m such that, with P ⊗Q-probability greater than 1− ε, the
following inequalities hold simulteneously: first,

P̂n,m

(
sup
x

∣∣Ẑn,m(x)
∣∣ ≤ x0(1 − δ)

)
≤ P̂n,m

(
sup
x

∣∣Ẑ∗
n,m(x)

∣∣ ≤ x0

)
≤ P̂n,m

(
sup
x

∣∣Ẑn,m(x)
∣∣ ≤ x0(1 + δ)

)
,

which is a result of (6). Second, we have∣∣∣∣P̂n,m

(
sup
x

∣∣Ẑn,m(x)
∣∣ ≤ x0(1 − δ′)

)
− P

(
sup
x
|Zκ(x)| ≤ x0(1 − δ′)

)∣∣∣∣ < δ/2,

and lastly,∣∣∣∣P̂n,m

(
sup
x

∣∣Ẑn,m(x)
∣∣ ≤ x0(1 + δ′)

)
− P

(
sup
x
|Zκ(x)| ≤ x0(1 + δ′)

)∣∣∣∣ < δ/2.

By the continuity of the distribution function of supx|Zκ(x)| (Lemma 11), we can
choose δ′ sufficiently small that |P(supx|Zκ(x)| ≤ x0(1− δ′))− P(supx|Zκ(x)| ≤
x0(1− δ′))| < δ/2. Combining the above inequalities yields the following bound
with P ⊗Q-probability greater than 1 − ε,∣∣∣∣P̂n,m

(
sup
x

∣∣Ẑ∗
n,m(x)

∣∣ ≤ x0

)
− P

(
sup
x
|Zκ(x)| ≤ x0

)∣∣∣∣ < δ,

which implies (31).

Step 7. Prove (8) using the functional delta method Starting with (29),
it follows from the functional delta method (Lemma 9) that

√
n + m

(
T̂n,m − T0

sκ

)
=

√
n + m(ψ(F̂P , F̂Q) − ψ(FP , FQ))

d−→ ψ′
F,G

(√
1/κG1 ◦ FP ,

√
1/(1 − κ)G2 ◦ FQ

)
= Zκ.

From (6), we have sκ/ŝn,m
P⊗Q−−−→ 1 under the uniform norm, so it follows from

Slutsky’s theorem that

√
n + m

(
T̂n,m − T0

ŝn,m

)
d−→ Zκ.

The continuous mapping theorem yields

√
n + m sup

x

∣∣∣∣∣ T̂n,m(x) − T0(x)
ŝn,m

∣∣∣∣∣ d−→ sup
x
|Zκ(x)|,

as desired.
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Appendix D: Additional results and proofs

Proof of Proposition 5. The proof is analogous to that of Proposition 6. As-
sumption 1 and 2 guarantee that FQ satisfies the conditions in Proposition 6. In
addition, under Assumption 1, we have the following weak convergences under
the uniform norm which is due to [GN07, Corollary 2]:

√
n(F̂P − FP ) d−→ G1 ◦ FP and

√
m(F̂Q − FQ) d−→ G2 ◦ FQ,

for some Brownian bridges G1 and G2. This allows us to apply the functional
delta method. The rest of the proof follows as in the proof of Proposition 6.

Proof of Lemma 2. Denote

Ân,m =
√

(n + m)(n−1 + m−1)F̂P (1 − F̂P )

and

Aκ =
√

(κ−1 + (1 − κ)−1)FP (1 − FP )

for notational convenience. Since fQ is uniformly bounded above and Aκ is uni-
formly bounded away from zero on [a, b], the function s is uniformly bounded
away from zero on [a, b], so it suffices to show that supx∈[a,b]|ŝn,m(x)−sκ(x)| P⊗Q−−−→
0. Now we split the difference into two terms:

ŝn,m(x) − sκ(x) =
[

Ân,m(x)
f̂Q(T̂n,m(x))

− Ân,m(x)
fQ(T0(x))

]
+
[
Ân,m(x) −Aκ(x)

fQ(T0(x))

]
. (32)

For the first term in (32), we write

Ân,m(x)
f̂Q(T̂n,m(x))

− Ân,m(x)
fQ(T0(x)) =

Ân,m(x)
[
fQ(T0(x)) − f̂Q(T̂n,m(x))

]
fQ(T0(x))f̂Q(T̂n,m(x))

.

The conditions on K, rn and the uniform continuity of fQ on [a, b] imply
supx∈R|f̂Q(x) − fQ(x)| Q-a.s.−−−−→ 0 (see [BR78] and [Sil86, p. 72]). Consequently,
f̂Q ◦ T̂n,m is uniformly bounded away from zero P ⊗Q-a.s. Combining this with
a simple observation that Ân,m is uniformly bounded above, it suffices to show
that

sup
x∈[a,b]

∣∣∣f̂Q(T̂n,m(x)) − fQ(T0(x))
∣∣∣ P⊗Q-a.s.−−−−−−→ 0.

We split f̂Q ◦ T̂n,m − fQ ◦ T0 as follows:

f̂Q ◦ T̂n,m − fQ ◦ T0 = {f̂Q ◦ T̂n,m − fQ ◦ T̂n,m} + {fQ ◦ T̂n,m − fQ ◦ T0}.

For the second term on the right, we use the Bahadur representation (Propo-
sition 6) on [a, b], which allows us to obtain the convergence in probability
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T̂n,m
P⊗Q−−−→ T0 of functions in C[a, b] under the uniform norm. Since the map-

ping T0 �→ g◦T0 is continuous in C[a, b], it follows from the continuous mapping
theorem that fQ ◦ T̂n,m

P⊗Q−−−→ fQ ◦ T0. In other words,

sup
x∈[a,b]

|fQ(T̂n,m(x)) − fQ(T0(x))| P⊗Q−−−→ 0.

For the first term, we use supx∈R|f̂Q(x) − fQ(x)| Q-a.s.−−−−→ 0 which implies the
convergence supx∈[a,b]|f̂Q(T̂n,m(x)) − fQ(T̂n,m(x))| P⊗Q-a.s.−−−−−−→ 0.

Now we consider the second term in (32). From [HHZ08, Lemma A.1], we
have supx|F̂P (x)−FP (x)| P -a.s.−−−−→ 0. From this, we split the numerator as follows:

Ân,m −Aκ = 1
Ân,m + Aκ

[
(κ−1 + (1 − κ)−1)(F̂P − FP )

+ (κ−1 + (1 − κ)−1)(FP − F̂P )(FP + F̂P )

+
{
(n + m)(n−1 + m−1) − (κ−1 + (1 − κ)−1)

}
F̂P (1 − F̂P )

]
.

On the closed interval [a, b], the sequence Ân,m + Aκ is uniformly bounded
away from zero, and FP + F̂P and F̂P (1 − F̂P ) are uniformly bounded above.
Combining these with the fact that fQ ◦T is also uniformly bounded away from
zero on [a, b], we obtain

sup
x∈[a,b]

∣∣∣∣∣ Ân,m(x) −Aκ(x)
fQ(T0(x))

∣∣∣∣∣ P -a.s.−−−−→ 0.

We also need a result on the continuity of the distribution function of the
suprema of Gaussian processes.

Lemma 11. Let Z = {Z(t) : t ∈ I} be a tight Gaussian process with EZ(t) = 0
and EZ2(t) = 1 for all t ∈ I. Then the distribution function x0 �→ P(supt|Z(t)| ≤
x0) is continuous.

Proof of Lemma 11. We use an anti-concentration inequality for the suprema
of Gaussian processes [CCK14, Lemma A.1]:

sup
x0∈R

P

(∣∣∣∣sup
t∈I

|Z(t)| − x0

∣∣∣∣ ≤ ε

)
≤ 4ε

(
1 + E

[
sup
t∈I

|Z(t)|
])

,

which implies the continuity of the distribution function at any x0 ∈ R.

Proof of Corollary 4. For notational convenience, denote ‖Zκ‖[a,b] =
supx∈[a,b]|Zκ(x)|. Recall from (9) that the sequence P̂n,m(

√
n+m supx|T̂ ∗

n,m(x)−
T̂n,m(x)|/ŝn,m(x) ≤ x0) converges in P ⊗Q-probability to P(‖Zκ‖[a,b] ≤ x0). By
passing along any subsequence and a further subsequence, we can assume that
the convergence is P ⊗Q-almost surely.
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The almost-sure convergence of the distribution functions implies the almost-
sure convergence of the corresponding quantile functions [vdV98, Lemma 21.2].
Thus, the sequence of quantile functions q̂n,m of

√
n+m supx|T̂ ∗

n,m(x)−T̂n,m(x)|/
ŝn,m(x) converges P⊗Q-a.s. to the quantile function qZ of ‖Zκ‖[a,b] at the conti-
nuity points of qZ. Let 1−α be one of those continuity points. Then, q̂n,m(1−α)
converges P ⊗ Q-a.s. to qZ(1 − α), and it follows from Slutsky’s theorem that√
n + m supx|T̂n,m(x)−Tn,m(x)|/ŝn,m(x)− q̂n,m(1−α) converges in distribution

to ‖Zκ‖[a,b] − qZ(1 − α). Therefore,

P

(
T0(x) ∈

[
T̂n,m(x) ± ŝn,m(x)q̂n,m(1 − α)/

√
n + m

]
,∀x ∈ [a, b]

)
= P

(
√
n + m sup

x

∣∣T̂n,m(x) − Tn,m(x)
∣∣

ŝn,m(x) ≤ q̂n,m(1 − α)
)

︸ ︷︷ ︸
R̂n,m(1−α)

→ P
(
‖Zκ‖[a,b] ≤ qZ(1 − α)

)
= 1 − α, (33)

where the last equality holds because of the continuity of the distribution func-
tion of ‖Zκ‖[a,b] (Lemma 11). With (33), we will show that the convergence (33)
holds for all α ∈ (0, 1). As qZ(1 − α) is a monotone function of α, it has only
countably many discontinuities. Consequently, given any α ∈ (0, 1) and any
ε > 0, there exist continuity points αL, αU ∈ (0, 1) such that αL < α < αU and
max{αU − α, α − αL} < ε/2. Since the convergence (33) holds for αL and αU ,
we can find sufficiently large n and m such that |R̂n,m(1−αL)− (1−αL)| < ε/2
and |R̂n,m(1 − αU ) − (1 − αU )| < ε/2. So we must have

R̂n,m(1 − α) ≤ R̂n,m(1 − αL) ≤ 1 − αL + ε/2 ≤ 1 − α + ε,

and similarly,

R̂n,m(1 − α) ≥ R̂n,m(1 − αU ) ≥ 1 − αU − ε/2 ≥ 1 − α− ε,

which shows that R̂n,m(1 − α) → 1 − α for all α ∈ (0, 1) as desired.
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