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Abstract: The Mann–Whitney-type stochastic shift P(Y > X) has long
been used as a scale-free alternative to the mean difference in measuring the
distance between two populations. It has recently been recast as a causal es-
timand, but only in standard settings where confounders are fully captured.
We study the Mann–Whitney treatment effect (MWTE) in randomized tri-
als with non-ignorable non-compliance, where the treatment received is con-
founded by unknown factors. First, we define and estimate a local MWTE
on the compliers via the standard principal-stratification approach with
randomization status as an instrumental variable (IV). Then, we derive
sensitivity bounds for the local effect estimand when key IV assumptions
such as exclusion restriction and monotonicity are violated. Finally, we
study the asymptotic operating characteristics of the local MWTE esti-
mator in testing the treatment effect. Analytic bounds on the asymptotic
relative efficiencies show that this IV-based test is likely superior to stan-
dard intent-to-treat tests under location-shift alternatives. The proposed
methodology is applied to the famous National Job Training Partnership
Act Study as an illustration.
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1. Introduction

The past three quarters of a century has seen an enduring popularity of the rank-
based Wilcoxon–Mann–Whitney (WMW) test, initially proposed by Wilcoxon
(1945) with its statistical properties explained later by Mann and Whitney
(1947). Compared with the standard t-test, the WMW test makes no distribu-
tional assumptions, is robust against outliers, and may even gain efficiency un-
der heavy-tailed distributions. Besides testing, the statistic has also been used
to quantify treatment effect as measured by the stochastic shift P(Y1 > Y0),
where Yk is a (continuous) outcome from group k (k = 1, 0) (Halperin, Gilbert
and Lachin, 1987; McGraw and Wong, 1992; Cliff, 1993; Grissom, 1994; Hauck,
Hyslop and Anderson, 2000; Kraemer and Kupfer, 2006; Acion et al., 2006;
Brumback, Pepe and Alonzo, 2006; Newcombe, 2006a,b; Zhou, 2008; Kieser,
Friede and Gondan, 2013). We refer to this parameter as the Mann–Whitney

465

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/23-EJS2209
mailto:lmao@biostat.wisc.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


466 L. Mao

treatment effect (MWTE), as it is the estimand of Mann and Whitney (1947)’s
version of the statistic.

The causal meaning of the MWTE is made precise in a series of recent papers
that recast it under the counterfactual framework of causal inference (Rubin,
1978). Let Y (k) denote the potential outcome under treatment arm k, where
k = 1 indicates the active treatment and k = 0 indicates the control. Then, the
causal MWTE is defined by

τg = P
{
Yi(1) ≥ Yj(0)

}
, (1)

where i and j index independent units. It is oftentimes transformed into the
Mann–Whitney odds τg/(1 − τg), i.e., the odds of having a greater outcome
under the treatment against the control, for better interpretation. As a rank-
based estimand, the MWTE is unaffected by the scale of the outcome as it is
invariant under monotone transformation. As a result, it is more robust against
outliers than is the traditional average treatment effect (ATE).

Studies on the causal MWTE have only just begun to emerge. For randomized
trials, Fay et al. (2018) investigated the properties of τg and its relationship with
the unidentifiable, subject-level P{Y (1) ≥ Y (0)}. For non-randomized studies
with measured confounders, Wu et al. (2014) used a functional response model
to estimate τg. Viewing the estimation of τg as a semiparametric problem, Mao
(2018) studied both the inverse probability weighted and doubly robust meth-
ods. More recently, Zhang et al. (2019) extended the MWTE to censored out-
comes and proposed various inferential strategies. To our knowledge, inference
on the MWTE with unknown confounding has not yet been considered in the
literature.

A common case of unknown confounding is non-compliance in randomized
controlled trials (RCTs). Indeed, participants in an RCT, whether in a socio-
logical or medical setting, often violate their randomization status and choose
their own treatment. A standard approach to addressing the self-selection bias
is to follow the intent-to-treat (ITT) principle, by analyzing data according to
the randomization status rather than the treatment received. The ITT analysis
produces valid estimates of the causal effect of treatment assignment (or policy),
as well as unbiased tests of the sharp null hypothesis on the treatment effect
itself (Robins and Greenland, 1996). To quantify the latter, a complementary
approach is to use the randomization status as an “instrumental variable” (IV)
to the treatment received. The IV (or Wald) estimator, studied in detailed in
the seminal paper by Angrist, Imbens and Rubin (1996), provides a valid esti-
mate of the local ATE on the compliers, i.e., those who would comply with the
assignment no matter which group they are assigned to.

To accommodate non-compliance in WMW analysis, the ITT approach would
be the easiest, but not necessarily the best. Like the case with ATE, it would
only allow us to estimate the stochastic shift caused by randomization, not by
the treatment. Even in testing, the ITT may be suboptimal as it places equal
weights on compliers and non-compliers, who may show different treatment
effects. For better interpretation and possible improvement in efficiency, there
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is an interest in an alternate IV approach to WMW analysis, one that emulates
Angrist, Imbens and Rubin (1996)’s approach to the ATE.

We aim to develop this approach. In Section 2, we define the local MWTE,
re-express it as a contrast of marginal distributions on the compliers, and con-
struct a simple nonparametric plug-in estimator using the standard results of
Imbens and Rubin (1997). We further develop estimable sensitivity bounds for
the local MWTE when randomization has a direct effect on the outcome or when
defiers exist in the population, both violating key assumptions needed for point
identification. We also explore the identification of the MWTE on the overall
population, with or without extra assumptions. In Section 3, the asymptotic
power of the IV-based WMW test is derived explicitly under additive treatment
effects and compared with the ITT-based WMW test and t-test. It is shown that
the IV-based WMW test tends to outperform the standard tests in realistic sce-
narios. The empirical performance of the estimation and testing procedures is
evaluated by simulations in Section 4. Section 5 demonstrates our methods on
real data from the National Job Training Partnership Act Study. Concluding
remarks in Section 6 summarize the present work and discuss future research
topics.

2. Estimation and sensitivity analysis

2.1. Definition and estimation

Let Z = 1, 0 denote the randomized treatment assignment. Use A(z) to denote
the potential treatment under assignment z (z = 1, 0). Under the Stable Unit
Treatment Value Assumption (SUTVA) (Rubin, 1978), the observed treatment
and outcome are A = ZA(1)+(1−Z)A(0) and Y = AY (1)+(1−A)Y (0), respec-
tively. Throughout, we assume that the distributions of the Y (k) are absolutely
continuous with respect to the Lebesgue measure on R.

According to the compliance status of each subject, the population is divided
into four sub-populations, or four principal strata (Frangakis and Rubin, 2002).
These are compliers, with A(z) = z; always-takers, with A(z) = 1; never-takers,
with A(z) = 0; and defiers, with A(z) = 1−z (z = 1, 0). Unless noted otherwise
(such as in Sections 2.2 and 2.3), we proceed under the following standard
assumptions (Angrist, Imbens and Rubin, 1996).

(A1) (Exclusion Restriction) Treatment assignment has a causal effect on the
outcome only through the treatment received. In other words, if Y (z, k)
denotes the potential outcome under assigned treatment z and received
treatment k (z = 1, 0; k = 1, 0), then Y (z, k) = Y (k) almost surely.

(A2) (Randomization) {Y (1), Y (0), A(1), A(0)} ⊥⊥ Z.
(A3) (Relevance of Instrument) Treatment assignment has a non-trivial effect

on the treatment received, i.e., P{A(1) = 1} �= P{A(0) = 1}.
(A4) (Monotonicity) There are no defiers, i.e., A(1) ≥ A(0) almost surely.

Assumption (A4) leaves us with only three compliance classes. Use C = 0, 1,
or 2 to indicate the always-taker, complier, or never-taker, respectively. Then,



468 L. Mao

we can define the local MWTE by

τc = P
{
Yi(1) ≥ Yj(0) | Ci = Cj = 1

}
, (2)

where i and j index independent units. Similarly to τg defined in (1), τc quantifies
the treatment effect by stochastic shift, only restricted to the sub-population of
compliers. That is, τc is the probability of a complier under treatment having a
greater outcome than another under control.

It is clear from (2) that τc is a functional only of the marginal (potential)
outcome distributions on the compliers. Let νkc denote the cumulative distri-
bution function of Y (k) given C = 1, i.e., νkc = [Y (k) | C = 1] (k = 1, 0). Here
and in the sequel, we use [X | C] to denote the conditional distribution of a
random variable X given an event C. Then, the local MWTE can be expressed
as τc =

∫
ν0c(y)ν1c(dy).

The observed data consist of a random n-sample (Zi, Ai, Yi) (i = 1, . . . , n) of
(Z,A, Y ). Based on the observed data, we can construct a nonparametric plug-
in estimator for τc by estimating the νkc along the lines of Imbens and Rubin
(1997). The idea is intuitively illustrated by the diagram in Fig. 1. Clearly, both
randomized groups are mixtures of the principal strata in the form of

ω1(·) = pcν1c(·) + paν1a(·) + pnν0n(·),
ω0(·) = pcν0c(·) + paν1a(·) + pnν0n(·),

(3)

where pa = P(C = 0), pc = P(C = 1), pn = P(C = 2), ν1a = [Y (1) | C = 0],
and ν0n = [Y (0) | C = 2]. Because of the randomization assumption (A2),
(pa, ν1a) and (pn, ν0n) can be identified and estimated empirically from the ran-
domized control and treatment groups, respectively (and so can we estimate
pc = 1 − pa − pn given (A4)). Meanwhile, we can also identify and empirically
estimate the distributions of the “per-protocol” groups μz = [Y | A = Z = z]
(z = 1, 0). Although the per-protocol groups consists of subjects with unob-
served compliance status, we can nevertheless tease out the complier distri-
butions from the mixtures. Indeed, since (pa + pc)μ1 = paν1a + pcν1c and
(pn + pc)μ0 = pnν0n + pcν0c, we have that ν1c(·) = (1 + ρa)μ1(·) − ρaν1a(·)
and that ν0c(·) = (1+ρn)μ0(·)−ρnν0n(·), where ρa = pa/pc and ρn = pn/pc. We
can thus construct estimators ν̂kc for νkc (k = 1, 0) by replacing the unknown
quantities with their empirical analogs. Then the local MWTE is estimated by
the plug-in τ̂c = M(ν̂1c, ν̂0c), where M(η1, η2) =

∫
η2(y)η1(dy). We call M the

MW functional, which will play a bigger part in the sensitivity analysis. The
asymptotic normality of τ̂c and its variance can be derived via the functional
delta method. The details can be found in the Supplementary Materials.

2.2. Bounds under exclusion restriction

When the Exclusion Restriction (ER) assumption (A1) is violated, randomiza-
tion itself has a direct effect on the outcome. In that case, the notation Y (k)
is no longer adequate to capture the variety of the potential outcomes. We
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Fig 1. A schematic illustration of the composition of the randomized groups by compliance
class and potential outcome type (c: compliers; a: always takers; n: never takers). Dotted
lines represent latent, unobservable boundaries.

instead revert to the notation Y (z, k) for z, k ∈ {1, 0} defined in the state-
ment of (A1). Let νzz,c = [Y (z, z) | C = 1], νz1,a = [Y (z, 1) | C = 0], and
νz0,n = [Y (z, 0) | C = 2] (z = 1, 0). Due to randomization direct effects, we now
have that ν11,a �= ν01,a and ν10,n �= ν00,n; See Figure S1 in the Supplementary
Materials for a diagrammatic illustration similar to Fig. 1.

For the compliers, it is impossible, without unrealistic assumptions, to dis-
entangle the treatment effect from that of randomization. We thus re-define
the local MWTE in this case by τER

c = M(ν11,c, ν00,c), which is the combined
stochastic shift by the treatment and randomization. Let ν∗ER

zc denote the esti-
mand (i.e., asymptotic limit) of ν̂zc (z = 1, 0) and let τ∗ER

c denote that of τ̂c.
We first quantify the biases of the ν∗ER

zc with regard to νzz,c, and then use them
to bound the bias of τ∗ER

c with regard to τER
c . In order to precisely characterize

the conditions for attainment of the bounds, we need the following definition on
a rank order for measures on the real line.

Definition 2.1. Let η1 and η2 be two Borel measures on R. We say that η1 is
ranked lower than η2, denoted η1 � η2 or η2�η1, if the support of η1 lies entirely
to the left of that of η2.

When applied to probability measures, the relation η1 � η2 can viewed as a
strengthened stochastic order in the sense that P(X1 < X2) = 1 with Xk ∼ ηk
(k = 1, 2). In fact, η1 � η2 is equivalent to M(η1, η2) = 0 or M(η2, η1) = 1.

Theorem 2.1 (Simple bounds for τER
c without ER). Under (A2)–(A4), we

have that

ν∗ER
1c = ν11,c + ρa(ν11,a − ν01,a), and ν∗ER

0c = ν00,c + ρn(ν00,n − ν10,n).

Therefore,

−(ρa + ρn + ρaρn) ≤ τ∗ER
c − τER

c ≤ ρa + ρn + ρaρn. (4)

The upper bound in (4) is attained if and only if ν01,a �ν00,c �ν11,a, ν00,n �ν11,c �
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ν10,n, and ν01,a � ν00,n � ν11,a � ν10,n. The lower bound is attained if and only if
� in the above rank orders is replaced by �.

By (4), the maximum bias of τ̂c increases with the non-compliance rates.
Under fixed non-compliance rates, maximum bias is achieved when ν11,a is well
separated from ν01,a, and ν10,n from ν00,n, as a result of randomization direct
effects on the non-compliers. We can easily estimate the bounds in (4) and derive
their asymptotic distributions, based on which confidence intervals for τER

c can
be constructed. See the Supplementary Materials for details.

Angrist, Imbens and Rubin (1996) established a similar result to (4) on the
bias of the local ATE estimator in terms of the non-compliance rates and the
average randomization direct effect on the non-compliers. In their case, how-
ever, it is not easy to construct bounds similar to (4) in terms of only the
non-compliance rates except when the range of the outcome can be bounded
(Horowitz and Manski, 2000; Blanco, Flores and Flores-Lagunes, 2013).

The bounding interval in (4) has a radius greater than the overall non-
compliance rate and may thus be too wide to be useful in practice. For sharper
bounds, we seek instead to characterize the identification region (Manski, 2003)
for τER

c . To that end, we first consider the identification regions for the νzz,c
(z = 1, 0). It is clear that the only constraint on νzz,c is that it is mixed within
μz as a component probability measure with a known (i.e., identifiable) mixing
proportion. More formally,

ν11,c ∈ V
{
μ1, (1 + ρa)−1} and ν00,c ∈ V

{
μ0, (1 + ρn)−1}, (5)

where V(μ, r) = {ν : ν is mixed in μ with proportion r}.
For two distribution functions η1 and η2, recall that η2 is stochastically greater

than η1, denoted by η1 � η2, if η1(y) ≥ η2(y) for all y ∈ R. Equipped with the
partial order �, V(μ, r) as a space of distributions always has a greatest and a
least element. These are the upper and lower truncated distributions of μ cut
off at its (1 − r)th and rth quantiles, respectively.

Lemma 2.1. Given V(μ, r), let V(μ, r)(dy) = r−1I{y > μ−1(1 − r)}μ(dy) and
V(μ, r)(dy) = r−1I{y ≤ μ−1(r)}μ(dy). Then, we have that V(μ, r),V(μ, r) ∈
V(μ, r) and that V(μ, r) � ν � V(μ, r) for all ν ∈ V.

The stochastic-order bounds on the identification regions (5) for the νzz,c can
then be utilized to characterize the identification region for τER

c . This is possible
because the MW functional M is monotonic with respect to the partial order
of its arguments in the sense that

η1 � η2 ⇒ M(η1, η) ≤ M(η2, η) and M(η, η1) ≥ M(η, η2)

for probability measures η, η1, and η2.
The following theorem summarizes the results on the identification region for

τER
c . The fact that every point within the bounds in (2.2) is attainable can be

justified through the bilinearity of M and the convexity of the identification
regions for the νzz,c. The bounds themselves can be estimated by replacing the
proportions and distribution functions with their sample analogs.
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Theorem 2.2 (Identification region for τER
c without ER). Let ν11,c = V{μ1, (1+

ρa)−1}, ν11,c = V{μ1, (1 + ρa)−1}, ν00,c = V{μ0, (1 + ρn)−1}, and ν00,c =
V{μ0, (1 + ρn)−1}. Then, the identification region for τER

c is

M(ν11,c, ν00,c) ≤ τER
c ≤ M(ν11,c, ν00,c).

More generally, the identification regions for the νzz,c in (5) and Lemma 2.1
shed light on a testable implication of the ER assumption.

Proposition 2.1 (A testable implication of ER). Under (A2)–(A4), a testable
implication of (A1) is

νzz,c � νzc � νzz,c (z = 1, 0). (6)

Given these stochastic orders, (A1) can be informally checked by plotting
ν̂zc(y) against the estimated νzz,c(y) and νzz,c(y). Under a sound ER assump-
tion, ν̂zc(y) should be uniformly sandwiched between its bounding functions.
Otherwise, the assumption may be violated. Huber and Mellace (2015) took a
similar approach to testing the ER, but they focused on the implied inequalities
on the mean without exploiting the full strength of (6).

2.3. Bounds under violation of monotonicity

When the Monotonicity assumption (A4) is violated, there are defiers in the
population. As a result, the observed non-compliers in the randomized groups
are no longer pure samples of always-takers or never- takers but are rather
contaminated with defiers (see Figure S2 in the Supplementary Materials for a
schematic illustration). Use C = −1 to indicate a defier and write pd = P(C =
−1). In this case, the true compliance class probabilities pa, pn, pc, and pd are
no longer fully identified. Nonetheless, they are constrained by the identifiable
proportions p∗a = P(C = −1, 0), p∗n = P(C = −1, 2), and p∗c = 1 − p∗a − p∗n
(i.e., estimands of the estimators for pa, pn, and pc in Section 2.1, respectively)
through

p∗a = pa + pd, p∗n = pn + pd, and p∗c = pc − pd. (7)

Let ν∗Dkc denote the estimand of ν̂kc (k = 1, 0) and τ∗Dc the estimand of τ̂c.
Write νkd = [Y (k) | C = −1] (k = 1, 0). The following theorem gives the biases
of the ν̂kc, based on which the bias of τ̂c can be bounded.

Theorem 2.3. Under (A1)–(A3), we have that

ν∗Dkc = νkc + λ(νkc − νkd), (8)

where λ = pd/(pc − pd). Furthermore, if pc > pd, then

(1 + λ)−2(τ∗Dc − λ2) ≤ τc ≤ (1 + λ)−2(τ∗Dc + 2λ + 2λ2). (9)

The lower bound in (9) is attained if and only if ν1c � ν0d � ν1d � ν0c; the upper
bound is attained if and only if the reverse order is true.
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The identity in (8) strengthens Proposition 3 of Angrist, Imbens and Rubin
(1996), which expresses the bias of the local ATE in terms of λ in a similar
form. According to (9), the length of the bounding interval tends to zero with
τ∗Dc → τc when λ ↓ 0 (i.e., pd ↓ 0). To obtain estimable bounds for τc, we can
use the identifiable constraints in (7) to bound λ and exploit the monotonicity
of the bounds in (9) as functions of λ. Write ρ∗a = p∗a/p

∗
c and ρ∗n = p∗n/p

∗
c .

Corollary 2.1 (Simple estimable bounds for τc without Monotonicity). Suppose
that pc > pd, we have that

(1 + λmax)−2(τ∗Dc − λ2
max

)
≤ τc ≤ (1 + λmax)−2(τ∗Dc + 2λmax + 2λ2

max
)
, (10)

where λmax = ρ∗a ∧ ρ∗n. The upper and lower bounds in (10) are attained if
and only if papn = 0 and the rank-order conditions for the attainment of the
corresponding bounds in Theorem 2.3 are satisfied.

Additional discussions about the global MWTE can be found in the Supple-
mentary Materials.

3. Hypothesis testing

In this section, we study the operating characteristics of the hypothesis test
based on τ̂c in comparison with standard testing procedures. Specifically, we
consider the following tests on the treatment effect based on (a) the ITT or
IV estimator for the ATE (A-ITT or A-IV, respectively, which turn out to be
asymptotically equivalent); (b) the ITT estimator for the MWTE (WMW-ITT)
(i.e., the standard WMW test under the ITT principle); and (c) our estimator
τ̂c for the local MWTE (WMW-IV). Throughout the section, we assume that
(A1)–(A4) hold.

3.1. Null and alternative hypotheses

The ITT tests are based on contrasts between ω1 and ω0, while the IV tests on
those between ν1c and ν0c. Under the sharp null hypothesis

H0 : Y (1) = Y (0) almost surely,

we have that ν1c = ν0c regardless of the mechanism underlying compliance.
By (3), equality of the complier distributions also implies ω1 = ω0 for the ITT
tests. As a result, all tests are valid under H0. In fact, sharpness of the null is also
in a sense necessary for their validity. This is because any scenario outside H0
can lead to a non-zero effect size in the presence of non-compliance, whether it be
ATE or MWTE. To see this, suppose that P{Y (1) �= Y (0)} > 0. Without loss of
generality, assume that P{Y (1) > Y (0)} > 0. If the compliers are precisely those
for whom Y (1) > Y (0), then we must have that ν0c ≺ ν1c, that is, ν0c � ν1c
but ν0c �= ν1c. This yields a strictly positive non-centrality parameter, and thus
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incorrect type I error, for each of the four tests. By the same token, it is clear
that each test is consistent against the alternative hypothesis

HA : Y (1) > Y (0) almost surely.

Instead of a generic subject in the general population, we could also formulate
H0 and HA on a generic complier. This change of perspective, however, would
have no substantive impact on our subsequent discussion, as treatment effects
manifest themselves only on the compliers (those on the always- and never-
takers are unobservable given their unmovable treatments; see Fig. 1). As a
result, an overall effect affects the test behavior only through the implied effect
on the compliers.

3.2. Pittman efficiency under location-shift models

To compare the power of the tests, we evaluate their asymptotic efficiency under
a sequence of “contiguous” alternatives HA,n ⊂ HA that approaches H0 as n
increases to infinity (see, e.g., Ch. 12 of van der Vaart, 1998). To recapitulate the
idea of contiguity, suppose in a general context we are interested in testing H0 :
θ = 0 against HA : θ > 0 for some parameter θ. Moreover, suppose that Tn is a
regular estimator for some transformation f(θ) of θ such that

√
n{Tn−f(θ)}/σ̂

converges weakly to the standard normal distribution under every θ, where σ̂2

is a consistent variance estimator. Then, a two-sided asymptotic level-α (0 <
α < 1) test can be constructed by rejecting H0 if |√n{Tn − f(0)}/σ̂| > z1−α/2,
where z1−α/2 = Φ−1(1−α/2) and Φ(·) is the cumulative distribution function of
the standard normal distribution. To evaluate the asymptotic power of the test,
consider a sequence of continuous alternatives HA,n : θ = n−1/2h with h > 0. It
can be shown that the power function under HA,n converges to Φ(ζh− z1−α/2),
where ζ = σ−1

0 |ḟ(0)| and σ2
0 is the limit of σ̂2 under H0. Here and in the sequel,

ġ(x) = dg(x)/dx for a generic function g. The quantity ζ2, called the Pittman
efficiency, is inversely proportional to the sample size needed to achieve a certain
power under a fixed θ > 0 and is an intrinsic characteristic of the test. As a
result, the ratio of ζ2 between two tests is commonly used to measure their
asymptotic relative efficiency (ARE).

For A-ITT, A-IV, WMW-ITT, and WMW-IV, the test statistics are Tn =∫
y{ω̂1(dy) − ω̂0(dy)}, p̂−1

c
∫
y{ω̂1(dy) − ω̂0(dy)},M(ω̂1, ω̂0), and M(ν̂1c, ν̂0c),

respectively, where ω̂k(y) (k = 1, 0) and p̂c are empirical estimates of ωk(y) and
pc, respectively. Standard variance estimators are used for the σ̂2. In particular,
that for M(ν̂1c, ν̂0c) is provided in Section S1.1 of the Supplementary Materi-
als. Consider the contiguous alternatives under a location-shift treatment effect
model

HA,n : Y (1) = Y (0) + n−1/2h, h > 0. (11)

Meanwhile, assume that the joint distribution of {C, Y (0)} does not change
with n. Under this set-up, denote ν = paνa + pcνc + pnνn, where ν is the distri-
bution of Y (0), νa = [Y (0) | C = 0], νc = [Y (0) | C = 1], and νn = [Y (0) | C = 2].
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Lemma 3.1. Under the contiguous alternatives HA,n in (11), the Pittman ef-
ficiencies of the four tests under consideration are

ζ2
A-ITT = ζ2

A-IV = q(1 − q)p2
c

var{Y (0)} ,

ζ2
WMW-ITT = 12q(1 − q)p2

c

{∫
ν̇c(y)ν̇(y)dy

}2

,

ζ2
WMW-IV =

q(1 − q)p2
c{
∫
ν̇c(y)2dy}2

var[νc{Y (0)}] ,

where q = P(Z = 1), ν̇(y) = dν(y)/dy and ν̇c(y) = dνc(y)/dy are the densities
of the overall and complier outcome distributions, respectively.

Remark 1. The three Pittman efficiencies share a common factor q(1 − q),
derived from the treatment-control randomization ratio (maximized under 1:1).
Between the three, WMW-IV will be more efficient if ν̇c(y) has heavy tails,
giving rise to a large integral of the squared density. The WMW-ITT test will
benefit similarly from heavy-tailed distributions, but will also depend on the
overlap between ν̇c(y) and ν̇(y). These qualitative arguments will be made more
precise in Sections 3.3 and 3.4.

Remark 2. A major challenge in deriving the Pittman efficiency for WMW-IV
lies in the asymptotic null variance of τ̂c, which, unlike the standard WMW test
statistic, is not distribution-free. In fact, uncertainty in τ̂c comes from both the
random observations within each principal stratum and the random sizes of the
strata (see Fig. 1). The two sources of variation are quantified and combined
using weak convergence theory for empirical processes indexed by random sam-
ple sizes (see, e.g., Ch. 3.5 of van der Vaart and Wellner, 1996). The details of
the proof can be found in Section S1.9 of the Supplementary Materials.

Because the A-ITT and A-IV tests are asymptotically equivalent by Lem-
ma 3.1, we shall refer to them indiscriminately using the generic term “t-test”
and use ζ2

t to denote their common Pittman efficiency. To compare the rela-
tive efficiency of WMW-IV against WMW-ITT and the t-test, it is crucial to
bound var[νc{Y (0)}], the denominator of ζ2

WMW-IV. For precise statement of the
attainment conditions for the bounds, we need the following definition.

Definition 3.1. For two probability measures η1 and η2 on the real line, we say
that η1 halves η2, denoted by η1 � η2, if there exist two sub-probability measures
η∗ and η∗ such that η2 = η∗ + η∗, η∗(R) = η∗(R) = 2−1, and η∗ � η1 � η

∗.

Lemma 3.2. We have that

12−1pc ≤ var
[
νc
{
Y (0)

}]
≤ 12−1(3 − 2pc),

with upper bound attained if and only if νc � νc̄ and lower bound attained if and
only if νc̄ � νc, where νc̄ = (pa+pn)−1(paνa+pnνn) is the pooled null distribution
for the non-compliers.
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3.3. Comparing WMW-IV versus WMW-ITT

We consider the ARE between WMW-ITT and WMW-IV in two scenarios. In
the first, non-compliance is at random (i.e., uninformative) so that νc = νc̄;
in the second, non-compliance is so strongly informative that νc and νc̄ are
completely separated. We also give a universal lower bound for the ARE.

Theorem 3.1 (ARE between WMW-ITT vs WMW-IV). Under the contiguous
alternatives HA,n in (11), the following results hold.

(a) If νc = νc̄, then
ζ2
WMW-ITT
ζ2
WMW-IV

≡ 1.

(b) If νc and νc̄ are disjointly supported, then for all pc ∈ (0, 1),

p3
c ≤ ζ2

WMW-ITT
ζ2
WMW-IV

≤ p2
c(3 − 2pc) < 1. (12)

The first equality is attained if and only if νc̄ � νc and the second equality
is attained if and only if νc � νc̄.

(c) The lower bound in (12), along with its necessary and sufficient attainment
conditions, is universal (i.e., holds without the disjointness condition).

Hence, WMW-IV is as efficient as WMW-ITT when the non-compliers are
identically distributed with the compliers, and is strictly more efficient when the
two distributions are disjointly supported. Furthermore, in the latter scenario,
the efficiency gain of WMW-IV increases with the non-compliance rate by (12).
The ranges of the ARE in the two scenarios are graphed in Figure S3 of the
Supplementary Materials. For “intermediate” cases, simulation studies suggest
that WMW-IV still tends to outperform WMW-ITT (see Section 4).

Remark 3. For completeness we have provided the Pittman efficiency and
ARE values for all pc over (0, 1). It is implicitly understood, however, that the
asymptotic formulas are accurate in finite samples only when pc is not too small,
say pc ≥ 0.5. Their accuracy becomes suspect under weak instruments with very
small pc (see, e.g., Burgess, Small and Thompson, 2017; Zhao et al., 2020). In
that case, non-asymptotic evaluations may instead be preferable (Fieller, 1954;
Nelson and Startz, 1990).

3.4. Comparing WMW-IV versus t-test

The relative efficiency between the rank-based WMW-IV and the scale-based
t-test depends on two factors. One is the shape of the outcome distribution ν,
in particular the heaviness of its tails. The other is the structure and rate of
non-compliance. The former has been studied thoroughly for various choices of ν
under perfect compliance. For instance, the ARE ranges from 3/π for the light-
tailed normal distribution to 3/2 for the heavier-tailed Laplace (i.e., double ex-
ponential) distribution (see, e.g., Ch. 14 of van der Vaart, 1998). By Lemma 3.1,
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it is easy to see that these results carry over to the case when non-compliance
is at random.

Proposition 3.1. Under contiguous alternatives HA,n in (11), if νc = νc̄, then,
regardless of pc,

ζ2
t

ζ2
WMW-IV

≡
[
12var

{
Y (0)

}]−1
{∫

ν̇(y)2dy
}−2

,

which is identical to the ARE under perfect compliance.

In the case with informative non-compliance, we consider a simple symmetric
non-compliance model (SNM) in order to obtain explicit results regarding the
dependence of the ARE on the compliance rate. To be specific, let

C =

⎧⎨
⎩

0, if Y (0) < −c(ν, pc)
1, if |Y (0)| ≤ c(ν, pc)
2, if Y (0) > c(ν, pc)

(13)

where c(ν, pc) = ν−1{2−1(1 + pc)} and ν is a symmetric distribution about
zero. This model is plausible when, for example, the sickest patients always take
the treatment while the healthiest never take it (possibly due to unpleasant
side effects). This exemplifies a common situation where the compliers are the
“typical” ones in the population with the non-compliers tending to be more
extreme.

Under the SNM, we can use Lemma 3.1 to express the ARE comparing the
t-test against WMW-IV in terms of ν and pc. To study the impact of non-
compliance in particular, we consider the standardized ARE, namely, the ratio
between the AREs with and without non-compliance under the same ν.

Theorem 3.2. Under the contiguous alternatives HA,n in (11) and the sym-
metric non-compliance structure (13), we have that

ζ2
t

ζ2
WMW-IV

(ν, pc) = 12−1p4
c(3 − 2pc)

[
var

{
Y (0)

}]−1
{∫ c(ν,pc)

−c(ν,pc)
ν̇(y)2dy

}−2

, (14)

where (ζ2
t /ζ

2
WMW-IV)(ν, pc) is the ARE under outcome distribution ν and com-

pliance rate pc. In addition, if the outcome distribution is unimodal, i.e., ν̇(·) is
non-increasing on [0,∞), then the standardized ARE, denoted by

R(ν, pc) = (ζ2
t /ζ

2
WMW-IV)(ν, pc)

(ζ2
t /ζ

2
WMW-IV)(ν, 1) ,

is strictly increasing in pc and satisfies

p4
c(3 − 2pc) < R(ν, pc) ≤ p2

c(3 − 2pc) < 1 (15)

for all pc ∈ (0, 1).
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The following proposition further elucidates the attainment conditions for
the upper bound in (15).

Proposition 3.2. Under the conditions of Theorem 3.2 with a unimodal ν, the
following statements are equivalent:

(a) R(ν, p∗c) = p∗c
2(3 − 2p∗c) for some p∗c ∈ (0, 1);

(b) R(ν, pc) = p2
c(3 − 2pc) for all pc ∈ (0, 1);

(c) ν is the a uniform distribution, i.e.,

ν̇(y) = (2c)−1I(−c ≤ y ≤ c) almost everywhere

for some c > 0.

According to Theorem 3.2 and Proposition 3.2, under the SNM with a uni-
modal outcome distribution, non-compliance always plays to the advantage of
WMW-IV against the t-test. The least favorable case for WMW-IV is the uni-
form distribution, for which the relative efficiency gain under compliance rate
pc compared to perfect compliance is p−2

c (3− 2pc)−1. In all other scenarios, the
relative gain is strictly greater than that for every 0 < pc < 1. A graphical
illustration is presented in Figure S4 of the Supplementary Materials.

Using formula (14), we can derive the raw (i.e., non-standardized) ARE
(ζ2

t /ζ
2
WMW-IV)(ν, pc) as a function of pc under various choices of ν. Table 1 lists

the derived functions under the distributions considered in Ch. 14 of van der
Vaart (1998). The derivations are straightforward, if somewhat tedious, and
are relegated to the Supplementary Materials. When pc = 1, the table reduces
to Table 14.2 of van der Vaart (1998) in the standard setting. Some example
functions are plotted in Fig. 2 to better visualize the different trends across
different ν.

4. Simulation studies

We first assessed the estimation of the local MWTE τc. We generated data by

Y (1) = Y (0) + θ, where Y (0) ∼ N(0, 1), (16)

under the symmetric non-compliance structure described in Section 3.4. Let
ν be the standard normal distribution and pc = 68%. Under this set up, a
subject is an always-taker if Y (0) < −1, a never-taker if Y (0) > 1, and a com-
plier if |Y (0)| ≤ 1. For θ = 0, 0.2, 0.5, the true values of the local MWTE are
τc = 0.500, 0.599, 0.732, respectively. We evaluated the performance of τ̂c in
terms of bias, standard error, and confidence interval estimation. The results
are summarized in Table 2. It can be seen that the estimator is virtually un-
biased, even for sample size as small as n = 200. The standard error estimator
described in Section S1.1 of the Supplementary Materials accurately reflects the
variations in the estimator. Finally, the empirical coverage probability of the
95% confidence interval closely approximates the nominal rate.
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Table 1

Asymptotic relative efficiency between WMW-IV and the t-test under the
symmetric non-compliance model with different outcome distributions ν.

Efficiency
Distribution (WMW-IV/t-test)

Logistic
π2(3 − p2

c)2

36p2
c(3 − 2pc)

Normal
3[2Φ{

√
2Φ−1( 1+pc

2 )} − 1]2

πp4
c(3 − 2pc)

Laplace
3(2 − pc)2

2p2
c(3 − 2pc)

Uniform p−2
c (3 − 2pc)−1

td (d > 2)
12B(1/2, d + 1/2)2[2F2d+1{

√
2 + d−1F−1

d ( 1+pc
2 )} − 1]2

(d− 2)B(1/2, d/2)4p4
c(3 − 2pc)

3
4 (1 − y2) ∨ 0

27g(pc)2{3g(pc)4 − 10g(pc)2 + 15}2

2000p4
c(3 − 2pc)

Fd(·) denotes the cumulative distribution function of td (t-distribution with
d degrees of freedom); B(·, ·) is the beta function; g(pc) denotes the unique
root of (2 − y)(1 + y)2 = 2 + 2pc in [0, 1].

Table 2

Simulation results for estimation of the local MWTE.

n τc Bias SE SEE CP
200 0.500 0.007 0.080 0.078 0.952

0.599 0.008 0.084 0.085 0.961
0.732 0.008 0.094 0.089 0.948

500 0.500 0.001 0.048 0.049 0.972
0.599 0.003 0.053 0.053 0.970
0.732 0.002 0.057 0.056 0.966

1000 0.500 0.002 0.035 0.034 0.966
0.599 0.000 0.037 0.037 0.972
0.732 0.001 0.041 0.040 0.970

2000 0.500 −0.003 0.024 0.024 0.953
0.599 −0.001 0.025 0.026 0.946
0.732 0.000 0.028 0.029 0.948

SE, empirical standard error of the estimator; SEE,
empirical average of the standard error estimator;
CP, empirical coverage rate of the 95% confidence
interval. Each entry is based on 2,000 replicates.

Next, we assessed the empirical power of WMW-IV, WMW-ITT, and the
t-test compared theoretically in Section 3. We first generated data under the
location-shift Gaussian symmetric non-compliance model. The set-up is similar
to that of the first set of simulations, except that we vary the compliance rate
over 90%, 80%, 70%, 60%. The empirical power under a range of location-shift
treatment effect θ are scatter-plotted in Fig. 3, overlaid with the theoretical
asymptotic power functions. It can be seen that the empirical power agrees
with the theoretical values fairly well. As suggested by Theorems 3.1 and 3.2,
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Fig 2. The raw (i.e., non-standardized) ARE comparing the t-test versus WMW-IV as a
function of pc under the symmetric non-compliance model with different outcome distribu-
tions.

the relative efficiencies of WMW-IV over WMW-ITT and t-test increase with
the non-compliance rate. At 60% compliance rate, for example, the WMW-IV
enjoys substantially higher power than WMW-ITT, followed by the t-test. The
lead widens as pc reduces further to 50%, 40%, 30% and 20% (see Figure S5 of
the Supplementary Materials), though the asymptotic power function becomes
less accurate at the lowest of compliance rates (see Remark 3).

We also conducted simulations to evaluate the power of the three tests outside
the symmetric non-compliance model. Specifically, we generated outcome data
under a mixture distribution with three Gaussian components, corresponding
to the three principal strata of always-takers, compliers, and never-takers, with
potentially different locations. Let ν = 0.15νa+0.70νc+0.15νn (so that the com-
pliance rate is 70%), where νc = N(0, 1), νa = N(−s, 1), and νn = N(s, 1) with
s = 0, 1, 2, and 3. Fig. 4 provides a graphical illustration of the mixture distri-
butions with different separation distances of the three components. Empirical
power of the three tests were computed under the location-shift model (16) as
a function of θ. The results are plotted in Fig. 5. At s = 0, the three com-
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Fig 3. Empirical and theoretical power for WMW-IV, WMW-ITT, and the t-test under the
Gaussian symmetric non-compliance model with sample size n = 2000. Dashed lines: theo-
retical power function; triangular points: empirical power based on 2,000 replicates. Black:
WMW-IV; Red: WMW-ITT; Blue: t-test.

ponent distributions are identical, leading to random non-compliance. In this
case, as established in Theorem 3.1(a) and Section 3.4, WMW-IV and WMW-
ITT are asymptotically equivalent, with relative efficiency against the t-test the
same as that under perfect compliance. In this case with the Gaussian distri-
bution, the relative efficiency is 3/π (see, e.g., Table 14.2 of van der Vaart and
Wellner (1996)) with the t-test slightly more powerful than the other two. This
minor advantage of the t-test is reflected, though barely distinguishable, in the
empirical power curves in first panel of Fig. 5. However, as s increases (i.e.,
non-compliance becoming more informative), WMW-IV again becomes more
powerful than WMW-IV and the t-test.

5. A real example

The Job Training Partnership Act (JTPA) was enacted in 1982 to fund federal
training programs to prepare youths and economically disadvantaged adults
in the U.S. for (re-)entry into the workforce. The effectiveness of the training
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Fig 4. Graphical illustration of mixture distributions of the form ν = 0.15νa+0.70νc+0.15νn,
where νc = N(0, 1), νa = N(−s, 1), and νn = N(s, 1) with s = 0, 1, 2, and 3.

programs was subsequently evaluated in the National JTPA Study, a large-scale
randomized controlled trial involving more than twenty thousand participants.
To illustrate the proposed methodology, we analyze a study cohort consisting of
11,204 of adult participants. This dataset was previously analyzed by Abadie,
Angrist and Imbens (2002) using quantile regression models.

Among the participants, 7,484 were randomized to the treatment group
(Z = 1) and were offered job training. However, 2,683 (35.8%) of them chose
not to engage. The remaining 3,720 participants were randomized to the control
group (Z = 0) and were excluded from job training for a period of 18 months.
However, 54 (1.5%) of them managed to get training elsewhere. Thus, the es-
timated compliance rate is p̂c = 1 − 35.8% − 1.5% = 62.7%. The outcome Y
is the sum of earnings in 30 months. The average earning in the randomized
treatment group is $16,200 and that in the control group is $15,040.

We first use the methods described in Sections 2.1 and 3 to estimate the
local MWTE and to test the treatment effect in various subgroups defined by
gender, race, ethnicity, and age. The results are summarized in Table 3. For ease
of interpretation, we focus on the local MW odds (i.e., τc/(1 − τc)), estimated
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Fig 5. Empirical power (based on 2,000 replicates) for WMW-IV, WMW-ITT, and the t-test
under outcome distributions illustrated in Fig. 4.

based on τ̂c. For comparison, we also compute the ITT MW odds. It can be seen
that the ITT effects are attenuated versions of the corresponding local treatment
effects. Overall, compliers going through job training are 1.15 − 1 = 15% more
likely to earn more than those without training (p < 0.001). The local effect is
also significant (at the 0.05 level) in most of the subgroups, except for males
and Hispanics (the latter likely due to small sample size). In particular, there
is a notable difference in treatment effect between females and males. Among
complying females, the trained are 22% more likely to have a higher income than
the untrained; whereas among complying males, the trained are only 10% more
likely to have a higher income than the untrained. Similar differential effects are
observed between the younger and older age groups.

In keeping with the theoretical results about their relative efficiency by The-
orem 3.1, the p-values produced by WMW-IV are consistently more significant
than those by WMW-ITT across the subgroups. The t-test on the original scale
of the outcome ($) yields comparable results to WMW-IV. However, a log-
transformation of the outcome, i.e., log(1 + Y ), leads to substantial power loss.
This shows that the performance of the t-test is rather sensitive to the outcome
scale.
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Table 3

Estimation and testing of treatment effect in different subgroups of the JTPA study.

MW Odds p-value (10−2)
Subgroup N(pc) ITT Local (95% CI) IV ITT t t (log)

Overall 11,204 (63%) 1.11 1.15 (1.07, 1.24) <0.1 0.1 <0.1 2.3
Female 6,102 (64%) 1.16 1.22 (1.11, 1.35) <0.1 0.1 0.1 0.7

Male 5,102 (61%) 1.07 1.10 (0.98, 1.23) 7.0 16.6 5.0 67.8
AA 2,909 (59%) 1.11 1.17 (1.00, 1.36) 2.8 9.6 2.5 50.5

Non-AA 8,295 (64%) 1.11 1.15 (1.06, 1.25) <0.1 0.4 0.4 2.4
Hisp 1,225 (69%) 1.13 1.15 (0.94, 1.41) 11.4 28.4 30.9 51.8

Non-Hisp 9,979 (62%) 1.11 1.15 (1.07, 1.25) <0.1 0.2 0.1 2.9
<30 yr 4,926 (63%) 1.13 1.20 (1.08, 1.34) <0.1 0.3 0.7 2.1
≥30 yr 6,278 (62%) 1.09 1.12 (1.01, 1.23) 1.4 9.3 2.3 32.0

AA: African American; Hisp: Hispanic.
IV: WMW-IV; ITT: WMW-ITT; t: t-test on income; t (log): t-test on log-transformed
income.

Next, we use the methods proposed in Section 2 for sensitivity analyses of
the local MWTE under violated assumptions and of the unidentifiable global
MWTE. In particular, Theorem 2.2 and Corollary 2.1 are used to bound the
local MW treatment odds under violations of Exclusion Restriction (ER) and
Monotonicity, respectively. (In this context, ER means that the offering of job
training affects future earnings only through the subject’s decision whether to
take it; Monotonicity means that no subject would refrain from training when
assigned to it and take it when assigned otherwise.) The results are summarized
in Table S1 of the Supplementary Materials. The bounding intervals for both
the local treatment effect under violated ER and the global treatment effect are
rather wide. This is because both types of bounds are functions of the overall
non-compliance rate, which in this case is substantial (37.3%). In contrast, the
bounding intervals for the local treatment effect under violated Monotonicity
are fairly tight due to a small proportion of always-takers (1.5%; cf. λmax =
ρa ∧ ρn in Corollary 2.1). These bounds suggest that our conclusions about the
beneficial effects of job training on the compliers are largely robust to possible
contamination by defiers.

Finally, we use the graphical procedure suggested in Proposition 2.1 to assess
the plausibility of the ER assumption. The estimated cumulative distribution
functions for the compliers and their associated bounds are plotted in Fig. 6.
Since the estimated functions are well within the bounds implied by the ER
assumption, we conclude that no evidence yet exists to refute the absence of
randomization direct effects.

6. Discussions and extensions

Under standard IV assumptions for randomization, we have developed estima-
tion and inference procedures, along with sensitivity analysis techniques, for the
local MWTE to address non-compliance. Moreover, the IV-based WMW test is
shown asymptotically superior to standard WMW-ITT test and t-test in some
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Fig 6. The estimated outcome cumulative distributions for the compliers and their bounding
regions implied by the Exclusion Restriction assumption according to Proposition 2.1. (The
lower bound in the left panel is visually indistinguishable from the estimated curve due to the
low proportion of always-takers (1.5%).)

scenarios, especially under high rates of informative non-compliance. Our work
extends the classical IV approach of Angrist, Imbens and Rubin (1996) from
the ATE to MWTE. It provides empirical researchers with an alternative tool
for causal inference in the presence of non-ignorable non-compliance.

When the treatment is available only to those assigned to it, non-compliance
can only be one-sided as those assigned to the control have no means to cross
over. In that case, it can be shown that our MWTE on the compliers is also
the MWTE on the treated. On other occasions, there may be multiple treat-
ment groups with graduated doses, such as under the“randomized encourage-
ment design” (West et al., 2008), where the Monotonicity assumption would
mean that a subject receiving “encouragement” (i.e., some incentive to take the
treatment, say, job training) would at least take as much treatment as he/she
otherwise would without encouragement. To extend our approach, we can divide
the treatments into two groups based on a cutoff dose, calculate the two-group
local MWTE estimate τ̂c (the multi-treatment Monotonicity carries over to the
dichotomized version), and, at the end, perform a Kruskal–Wallis-type joint test
for all possible cutoffs using the robust (co)variances of the τ̂c discussed in Sec-
tion 2.1. Although this overall test is expected to be valid under the sharp null,
its causal interpretation is suspect because the compliers are defined differently
for different cutoffs. A consistent definition would be challenged by identifiabil-
ity issues inherent in non-compliance between multiple treatments. Some details
are offered in the Supplementary Materials.

The “mixture-data” approach of Section 2.2 underlies a number of existing
sensitivity bounds for the ATE and quantile treatment effect (QTE) (see, e.g.,
Imai, 2008; Blanco, Flores and Flores-Lagunes, 2013; Flores and Flores-Lagunes,
2013; Huber and Mellace, 2015; Blanco et al., 2020; Mao, 2022). However, our
study appears to be the first to apply this idea (Manski, 2003, Ch. 4) to Mann–
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Whitney-type estimand. As a byproduct, we have exploited the ER-implied
stochastic-order constraints to check the validity of the assumption (see Propo-
sition 2.1 and Fig. 6). Compared with the weaker inequalities on the mean
(Huber and Mellace, 2015), the stochastic order is more holistic and may be
better at detecting violations.

To make the sensitivity analysis more precise, it helps to quantify the uncer-
tainty in the empirical bounds. While we have derived the confidence intervals
for the bounds in (4) (see Supplementary Materials), doing so for those in The-
orem 2.1 and Corollary 2.2 would be more difficult, as they are “intersection
bounds” involving the infimum or supremum of functions or scalers (Imbens
and Manski, 2004; Stoye, 2009; Chernozhukov, Lee and Rosen, 2013; Kaido,
Molinari and Stoye, 2019). For those of which we do have the means to calcu-
late the variances, we can use the bound estimates to test the treatment effect.
Unlike the tests studied in Section 3, however, the power of tests on the bounds
will depend not only on the effect size and compliance rate, but also the degree
to which the identifying assumptions are violated (e.g., the magnitude of ran-
domization effect or the proportion of defiers), which determines how far the
true bounds are from the effect size.

An intriguing question remains as to whether WMW-IV is universally more
powerful than WMW-ITT under location-shift alternatives. Yet a universal
lower bound for the ARE between the two tests may not be straightforward. On
the other hand, our approach can be easily applied to other nonparametric tests
based on, e.g., the (local) QTE (Doksum, 1974; Firpo, 2007; Rosenbaum, 2013;
Bickel and Doksum, 2015). To do so, we only need to replace the MW func-
tional M(η1, η0) =

∫
η0(y)η1(dy) with, e.g., the quantile difference functional

Q(η1, η0) = η−1
1 (π) − η−1

0 (π) (0 < π < 1), and use its functional derivative
(along the lines of Section S1.9 of Supplementary Materials) to derive Pittman
efficiency results similar to Lemma 3.1. Some initial results are described in our
recent work (Mao, 2022).

We have considered estimation and testing of the local MWTE in a com-
pletely nonparametric setting. In practice, pre-treatment variables such as par-
ticipant demographics may be utilized to improve the efficiency and robustness
of inference (see, e.g., Abadie, Angrist and Imbens, 2002; Tchetgen Tchetgen
et al., 2015; Tchetgen Tchetgen and Wirth, 2017; Wang and Tchetgen Tchet-
gen, 2018). Let Xi and Xj denote the covariates associated with (independent)
subjects i and j, respectively. Following the probability index model (PIM; a
standard regression model for the MWTE) (Thas et al., 2012), we could specify
the following (structural) model for the local MWTE on the compliers:

P
{
Yj(a) ≥ Yj

(
a′
)
| Ci = Cj = 1,Xi,Xj

}
= g

{
γ
(
a−a′

)
+βT(Xi−Xj)

}
, (17)

where γ and β are regression coefficients for the treatment and covariates, re-
spectively, and g(·) is a suitable link function, e.g., g(x) = exp(x)/{1+exp(x)}.
Unlike the standard PIM, the outcomes (and conditioning variables) on the left
hand side of (17) are not fully observed. As a result, we may need weights such
as employed in the regression of local quantile treatment effect (Abadie, Angrist
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and Imbens, 2002) to fit the latent model with observed data. The use of such
weights in a pairwise regression setting has not been explored in the literature.
This will be our future work.
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