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Abstract: The second-order, small-scale dependence structure of a
stochastic process defined in the space-time domain is key to prediction
(or kriging). While great efforts have been dedicated to developing models
for cases in which the spatial domain is either a finite-dimensional Eu-
clidean space or a sphere, counterpart developments on a generalized linear
network are practically non-existent. To fill this gap, we develop a broad
range of parametric, non-separable space-time covariance models on gener-
alized linear networks. For the important subgroup of Euclidean trees, we
develop models by the space embedding technique, in concert with the gen-
eralized Gneiting class of models and 1-symmetric characteristic functions,
and by the convex cone and scale mixture approaches. We give examples
from each class of models and investigate the geometric features of these
covariance functions near the origin and at infinity. We also reveal connec-
tions between different classes of space-time covariance models on Euclidean
trees. We conclude the paper by investigating the performance of maximum
likelihood estimators of certain proposed models in a simulation study.
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1. Introduction

1.1. Background

Despite its wide variety of applications in different scientific disciplines, including
environmental (see for example, [34, 9, 33, 25]), neurological [19, 3], ecological [2]
and social sciences [2, 4], the study of a random process observed on a network is
a relatively new area in spatial statistics. Observations that are closer together
in space tend to be more alike than observations far apart [32]. Thus, the small-
scale (covariance) structure of a geostatistical process is usually assumed to be
a function of distance between spatial locations. On a network, it is possible
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that two sampling sites are close together in the sense of Euclidean distance,
but are far apart within the network. Under such a circumstance, it is more rea-
sonable to use the alternative metric when modeling the dependence structure.
However, merely replacing the Euclidean distance in a standard geostatistical
model with the shortest path within the network may lead to an invalid (not
positive definite) covariance function on the network, and thus result in negative
prediction variances [34].

In a finite-dimensional Euclidean space, the well-known Bochner’s theorem [6]
fully characterizes the class of stationary continuous covariance functions as
Fourier transforms of finite, nonnegative measures. Though this powerful theo-
rem provides a sufficient and necessary condition for positive definiteness, closed-
form Fourier inversions do not always exist. Schoenberg’s result [29], on the
other hand, is Fourier transform free. It reveals the one-to-one relationship be-
tween isotropic covariance functions and completely monotone functions in a
Hilbert space. Quite a few non-separable parametric spatio-temporal covariance
functions have been developed based on Bochner’s and Schoenberg’s theorems;
see, for example, [10, 16]. [35]’s kernel convolution-based approach can also be
generalized into the space-time domain [28].

Covariance functions receive special attention due to the fact that a Gaus-
sian random process is completely determined by its first- and second-order
moments [26]. Although a broad range of classes of space-time covariance mod-
els are available in Euclidean space [13] and a thorough review has recently been
given by [26], corresponding results for pure spatial linear networks are few and
far between – a recent exception being [1] – and space-time results on networks
are non-existent apart from the recent work of [27]. To fill this gap, we provide
an abundance of non-separable, parametric, and Fourier-free space-time covari-
ance models on generalized linear networks. These models are based on the
techniques of space embedding, convex cone property of covariance functions,
and the scale mixture approach. Our proposed models have appealing features,
e.g. some incorporate directionality into modeling (on Euclidean trees), and
some have computational efficiencies that may be exploited for large-scale data.
We also identify a connection between two distinct types of models, which is
of theoretical interest, and compare and contrast our models with those of [27].
Mathematical and technical details are placed into Supplement A.

1.2. Parametric space-time covariance models

Let {Z(s; t) : (s, t) ∈ D × R} denote a univariate, real-valued, continuously-
indexed stochastic process on the product space of a spatial domain D and a
temporal domain R. In the literature, the spatial domain is usually taken to be
either a finite-dimensional Euclidean space (D = R

n) or a unit sphere (D = S
n)

[26]. In contrast, we consider a random process on a generalized linear network
(D = G) whose definition will be given in the subsequent section. Assume that
the first two moments of the random process exist and that the mean structure
μ(s; t), which measures the global scale space-time variability, can be fixed as
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a constant, i.e. μ(s; t) ≡ μ, or modeled as a linear combination of covariates
of interest, i.e. μ(s; t) = x(s; t)′β. The second-order, small-scale dependence
structure, commonly described by a parametric covariance function, is key to
space-time prediction (or kriging) and regression-type parameter estimation and
is the main focus of this paper. We do not distinguish between Gaussian and
non-Gaussian processes unless necessary since the covariance function plays an
important role in either situation.

To be consistent with the recent literature, we let C denote the covariance
function where C(s1, s2; t1, t2) := Cov(Z(s1; t1), Z(s2; t2)), (si, ti) ∈ D×R, i =
1, 2. From the definition, C is symmetric, i.e., C(s1, s2; t1, t2) = C(s2, s1; t2, t1).
Moreover, a covariance function must be positive definite, meaning that

N∑
i=1

N∑
j=1

aiajC(si, sj ; ti, tj) ≥ 0 (1.1)

for any finite collections of {ai}Ni=1 ⊂ R and {(si, ti)}Ni=1 ⊂ D × R. Functions
which fail to satisfy this condition are likely to lead to negative prediction vari-
ances and undefined probability densities. Whenever a function C satisfies the
symmetry and positive definiteness conditions, we call it a valid covariance func-
tion.

In geostatistics, a common assumption made by practitioners is second-order
stationarity, which requires that the overall mean is constant and that the co-
variance function depends on the spatial locations only through their relative
positions. Moreover, in Euclidean space, a covariance function is called isotropic
if it is a function of the Euclidean norm of the difference between locations.
Unlike its counterpart in Euclidean space, the definition of stationarity is less
clear on networks [1]. Nevertheless, a space-time covariance function is said to
be isotropic within components if C(s1, s2; t1, t2) = f(d(s1, s2); |t1 − t2|) for
some function f : [0,∞) × [0,∞) → R, where d : D × D → [0,∞) is a dis-
tance metric [1] which satisfies (1) d(s1, s2) = d(s2, s1), for any s1, s2 ∈ D;
(2) d(s1, s2) = 0 if and only if s1 = s2, and |t1 − t2| is the absolute difference
between times. We call such an f a radial profile function. We work with ei-
ther the covariance function or the radial profile function, denoting both by C,
when the context causes no confusion. By assuming isotropy, the model guaran-
tees that the covariance function is fully symmetric [16] since C(s1, s2; t1, t2) =
C(s1, s2; t2, t1) = C(s2, s1; t1, t2) = C(s2, s1; t2, t1) = f(d(s1, s2); |t1 − t2|), for
any s1, s2 ∈ D and t1, t2 ∈ R.

When it comes to spatio-temporal covariance models, assuming separability is
a convenient starting point [28]. Specifically, a space-time model is separable if it
can be written as a product or a sum of pure spatial and pure temporal models,
i.e., C(s1, s2; t1, t2) = CS(s1, s2) × CT (t1, t2) or C(s1, s2; t1, t2) = CS(s1, s2) +
CT (t1, t2), for all space-time coordinates (s1, t1), (s2, t2) ∈ D × R. Given that
CS and CT are valid covariance functions on D and R, the product or the sum is
valid on D×R. It has been argued that the class of separable covariance models
is severely limited due to the lack of space-time interaction [13], and that in
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many cases it implies “unphysical dependence among process variables” [26].
We therefore consider non-separable covariance functions only in this paper.

1.3. Overview and contributions

In this paper, we adopt both the space embedding technique and the scale
mixture approach to construct a broad range of valid space-time covariance
functions on generalized linear networks and/or Euclidean trees. The rest of the
paper is organized as follows. Section 2 reviews preliminaries about generalized
linear networks equipped with two distance metrics: resistance distance and
geodesic distance. Section 3 gives sufficient conditions for constructing isotropic
space-time covariance models by space embedding on arbitrary generalized lin-
ear networks and then on an important subgroup – Euclidean trees. Besides de-
riving space-time covariance functions on directed Euclidean trees based on the
scale mixture approach and the convex cone property in Section 4, we also show
that the exponential tail-down model [33] is the one and only that is directionless
(i.e. isotropic) and is thereby a bridge between models in Section 3 and Section 4.
In Section 5, we investigate the performance of maximum likelihood estimators
of proposed covariance functions and compare different models based on likeli-
hood, in a simulation study. Section 6 concludes the paper with discussion.

2. Preliminaries

2.1. Generalized linear networks

A network, also called a graph, is a collection of vertices (nodes) joined by
edges [23] and is denoted by the pair (V, E). A linear network is the union of
finitely many line segments in the plane where different edges only possibly
intersect with each other at one of their vertices (see Fig. 1). It is useful to
associate each edge with a positive real number, which is called the weight.
Weights can be physical edge lengths, strengths, etc. The space-time covariance
functions in our paper are defined on generalized linear network, i.e. a triple
G = (V, E , {ξe}e∈E), whose definition was introduced by [1] and is revisited
below.

Definition 2.1. A triple G = (V, E , {ξe}e∈E) which satisfies conditions (I)–(IV)
is called a graph with Euclidean edges.

(I) Graph structure: (V, E) is a finite simple connected graph, meaning that
the vertex set V is finite, the graph has no self-edges or multi-edges, and
every pair of vertices is connected by a path.

(II) Edge sets: Each edge e ∈ E is associated with a unique abstract set, also
denoted by e. The vertex set V and all the edge sets are mutually disjoint.

(III) Edge coordinates: For each edge e ∈ E and vertices u, v ∈ V joined by e,
there is a bijective mapping ξe defined on the union of the edge set e and
vertices {u, v}, i.e. e ∪ {u, v}, such that ξe maps e onto an open interval
(e, e) ⊂ R and {u, v} onto endpoints {e, e}, respectively.
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Fig 1. Examples of networks. The right panel is a directionless tree.

(IV) Distance consistency: Define dG(u, v) : V×V → [0,∞) as the length of the
shortest path on vertices of a weighted graph where the weight associated
with each edge e ∈ E is defined as e−e. Then, the following equality holds:

dG(u, v) = e− e

for every e ∈ E connecting two vertices u, v ∈ V.

In our work, we assume that the topological structure of G does not evolve
over time (e.g. when considering applications on stream networks, it takes a
relatively long time for a stream to change its course. Thus, it is reasonable to
assume G is stable during a short time window.). Any arbitrary site s on such
a network G is denoted as s ∈ G = s ∈ V ∪

⋃
e∈E . Graphs with Euclidean edges

extend the notion of traditional linear networks by including graphs which do
not have a planar representation in R

2 (see, e.g., Fig. 3 of [1]). We use the terms
generalized linear networks and graphs with Euclidean edges interchangeably
in this paper. Any tree-like graph (V, E) is planar and can be constructed as a
graph with Euclidean edges easily. We call such a graph a Euclidean tree and
denote it by T . Vertices of a Euclidean tree connected with only one edge are
called leaves.

2.2. Distance metrics

Let Φ(D, d) denote the class of radial profile functions such that for any f ∈
Φ(D, d),

N∑
i=1

N∑
j=1

aiajf
(
d(si, sj)

)
≥ 0, (2.1)

for any finite collection {ai}Ni=1 ⊂ R and {si}Ni=1 ⊂ D. For any f ∈ Φ(D, d), we
say that f is positive definite on D with respect to distance d. When the space
domain is a finite-dimensional Euclidean space D = R

n, for any x,y ∈ R
n,
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where x = (x1, . . . , xn)′ and y = (y1, . . . , yn)′, let dp be the standard lp norm
with dp(x,y) = ‖x − y‖p = (

∑n
i=1 |xi − yi|p)1/p, 1 ≤ p < ∞. When the space

domain is a real Hilbert space H, the norm, denoted by ‖ · ‖H is induced by the
inner product < ·, · >, such that ‖x‖H := √

< x,x >, x ∈ H.
A generalized linear network G comes along with two distance metrics: one is

the standard length of shortest path, a.k.a. geodesic distance or stream distance,
denoted by dG,G ; the other is resistance distance dR,G . dR,G is defined as the
variogram of an auxiliary random field YG : dR,G(s1, s2) := Var(YG(s1)−YG(s2)),
∀s1, s2 ∈ G, whose formal construction is given by [1] and we provide a brief
introduction in Supplement A. The resistance metric is an extension of the one
in electrical network theory from pairs of vertices to any points on the graph.
Both metrics satisfy the two conditions mentioned in Section 1.2 (i.e. symmetry
and identifiability) and have the relationship given in Proposition 2.1, which is
a portion of Proposition 4 of [1]:

Proposition 2.1. For a graph with Euclidean edges G, dR,G(s1, s2) ≤
dG,G(s1, s2), ∀s1, s2 ∈ G. Equality holds if and only if G is a Euclidean tree.

Since, by Proposition 2.1, dR,T = dG,T , henceforth we let d·,T denote either
one.

3. Isotropic space-time models by space embedding

In this section, we adopt the space embedding technique to transform the
abstract, less familiar spatial domain, G, to simpler, well-studied spaces, e.g.
Hilbert and Euclidean spaces, and build isotropic space-time models from there.

We follow the definition of isometric spaces given by [1] and [20]. Define a
distance space as a pair (D, d), where D is a non-empty set and the function d
is specified in Section 1.2.

Definition 3.1. A distance space (D, d) is said to be g-embeddable in a Hilbert
space (H, ‖ · ‖H) if g : [0,∞) → [0,∞), and there exists a mapping i : D → H
such that

g
(
d(s1, s2)

)
= ‖i(s1) − i(s2)‖H, s1, s2 ∈ D.

If function g is the identity map, we say (D, d) is isometrically embeddable in H.

3.1. Hilbert space embedding of generalized linear network

Our first main contribution is based on the square-root embedding result of
a graph with Euclidean edges into a Hilbert space proved by [1] and restated
below.

Theorem 3.1 (Square-root embedding, Anderes et al.). Given G a graph with
Euclidean edges, there exists a Hilbert space H and a mapping i : G → H such
that √

dR,G(s1, s2) = ‖i(s1) − i(s2)‖H
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for all s1, s2 ∈ G. In the special case in which G is a Euclidean tree, the above
result also holds for the geodesic distance.

The so-called Gneiting class of covariance functions has been especially pop-
ular in space-time geostatistical modeling [26] and will be the building block of
the isotropic covariance functions given in this section. Despite some discrep-
ancy in the literature, here a function ϕ : [0,∞) → R is said to be completely
monotone on [0,∞) if ϕ is continuous on [0,∞), infinitely differentiable on
(0,∞) and (−1)jϕ(j)(t) ≥ 0 over (0,∞) for every integer j ≥ 0, where ϕ(j) de-
notes the jth derivative of ϕ and ϕ(0) = ϕ. A nonnegative continuous function
ψ(t) : [0,∞) → R with completely monotone derivative is called a Bernstein
function. In analogy to the definition of positive definite functions, we recall
that for a distance space (D, d), a continuous function f : D → R is called
conditionally negative definite (see for example in [20]) on D with respect to d
if

N∑
i=1

N∑
j=1

aiajf
(
d(si, sj)

)
≤ 0, (3.1)

for any finite collections of {ai}Ni=1 ⊂ R and {si}Ni=1 ⊂ D, given
∑N

i=1 ai = 0.
For such a function we write f ∈ CND(D, d).

We are now ready to formulate and prove our first main result. Denote the
generalized Gneiting class of continuous functions by Gα, where

Gα(d, u) = 1
ψ(d)αϕ

(
u

ψ(d)

)
, d, u ≥ 0,

with ψ and ϕ being strictly positive and continuous. Theorem 3.2 in [20] provides
sufficient conditions for Gα to be positive definite over the product space of a
quasi-metric space and a finite Euclidean space, which extends [16]’s results in
Euclidean spaces and will be applied directly on G × R.

Theorem 3.2 (Generalized Gneiting class, an application of Menegatto et al.).
Let Gα be the function defined above with ϕ(·) being completely monotone. As-
sume that a ∈ (0, 1] and α ≥ 1/2. Then for any pairs (s1, t1), (s2, t2) ∈ G × R,
where G is equipped with the resistance distance dR,G , the following statements
are true:

(a) the function C(dR,G(s1, s2); |t1 − t2|) := Gα(dR,G(s1, s2), |t1 − t2|2a) is a
valid covariance function over G × R provided that ψ ∈ CND(G, dR,G);

(b) the function C(dR,G(s1, s2); |t1 − t2|) := Gα(dR,G(s1, s2), |t1 − t2|2a) is a
valid covariance function over G × R provided that ψ := g ◦ h, where g is
a positive Bernstein function and h is a nonnegative valued function such
that h ∈ CND(G, dR,G);

(c) the function C(dR,G(s1, s2); |t1 − t2|) := Gα(dR,G(s1, s2)b, |t1 − t2|2a) is a
valid covariance function over G × R provided that b ∈ (0, 1] and ψ is a
positive Bernstein function.

Moreover, when G is a Euclidean tree, the above results hold for dG,G as well.
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Proof. The symmetry of the functions defined in all three parts is obvious. A
distance space (D, d) defined in this paper is also a quasi-metric space in [20],
while the converse is not necessarily true. Therefore, parts (a) and (b) of The-
orem 3.2 are direct applications of [20]’s work to the case where the dimension
of the Euclidean space is 1 and the quasi-metric space is (G, dR,G). By Theo-
rem 3.1, (G, dR,G) is square root-embeddable in a Hilbert space H. Notice that
(G,

√
dR,G) is again a distance space and thus isometrically embeddable into

H by Definition 3.1. Statement (c) follows in concert with Theorem 3.2 (iii)
in [20]. When G is a Euclidean tree, Proposition 2.1 gives that dR,G = dG,G ,
which completes the proof.

Each part (a)–(c) of Theorem 3.2 provides researchers an easy-to-implement
method for constructing valid space-time covariance functions on a general-
ized linear network. Let us digress for a moment and consider a pure spatial,
isotropic random process Z(s) defined on (G, dR,G) with an overall constant
mean μ. Similar to the conclusion in geostatistics, the semivariogram, defined
as γ(dR,G(s1, s2)) := 1

2V ar(Z(s1) − Z(s2)) is conditionally negative definite,
i.e. γ ∈ CND(G, dR,G). This result holds for dG,G as well when G is Euclidean
tree. Following the previous notation, let Cov(Z(s1), Z(s2)) = C(s1, s2) =
f(dR,G(s1, s2)). Then by definition, there exists the following relationship

γ
(
dR,G(s1, s2)

)
= f(0) − f

(
dR,G(s1, s2)

)
, (3.2)

for all s1, s2 ∈ G, between γ and f . Hence, given any radial profile f ∈ Φ(G, dR,G),
we can construct γ based on (3.2), which belongs to CND(D, dR,G). For exam-
ples of the class Φ(G, dR,G), we refer to [1]. Note that statements (a)–(c) are not
exclusive. For instance, ψ(t) = tλ + β, for t ≥ 0 with 0 < λ ≤ 1, β > 0 is a
positive Bernstein function (given in Table 1) and also belongs to CND(T , d·,T )
(see Lemma A1 in Supplement A). When b = 1 in (c), both (a) and (c) give the
same subclass of valid covariance functions on T × R. A similar construction
based on the functional form by [16] (i.e. Gα in our work) can be found in [27],
where the spatial distance is re-scaled by the temporal distance, under certain
condition.

In addition to constructing valid covariance functions on G×R, we also inves-
tigate the geometric features of marginal functions whose definition will be given
shortly, near the origin and at infinity. It has been discussed in [11] that spa-
tial and temporal marginals, defined as fS(d) := f(d, 0) and fT (u) := f(0, u),
respectively (where f denotes the space-time radial profile function), play a
significant role in selecting an appropriate and physically meaningful class of
covariances in applications. By comparing empirical covariance functions with
estimated ones, any obvious disagreement would indicate model misspecifica-
tion [31].

It is clear that the covariance function, as well as both marginal functions,
constructed by Theorem 3.2 are continuous at the origin since ψ and ϕ are
continuous on [0,∞). Although Lévy-Khinchin’s formula [5] characterizes the
class of conditionally negative definite functions in R

n, analogous results in the
distance space (D, d), especially (G, dR,G), have not been obtained, as far as



498 J. Tang and D. Zimmerman

Table 1

Examples of completely monotone functions ϕ(t) and positive Bernstein functions
ψ(t), t ≥ 0.

Function Parameters Function Parameters
ϕ(t)=exp(−ctν ) c > 0, 0 < ν ≤ 1 ψ(t)=(κtλ + 1)β κ > 0, 0 ≤ β ≤ 1, 0 < λ ≤ 1

ϕ(t)=exp(ctν ) c > 0, ν < 0 ψ(t)= log(κtλ+β)
log(β) κ > 0, β > 1, 0 < λ ≤ 1

ϕ(t)=( 2
exp(ct1/2)+exp(−ct1/2)

)ν c > 0, ν > 0 ψ(t)=tλ + β 0 < λ ≤ 1, β > 0

ϕ(t)=(1 + ctγ )−ν c > 0, ν > 0, 0 < γ ≤ 1 ψ(t)=β − exp(−κt) κ > 0, β > 1

we know. Hence, we defer marginal results related to CND(G, dR,G) for future
research and investigate properties of marginals pertaining to the covariance
functions by Theorem 3.2(c) only.

Proposition 3.3. Let C(dR,G(s1, s1); |t1− t2|) := Gα(dR,G(s1, s2)b, |t1− t2|2a),
where α ≥ 1/2, a ∈ (0, 1], b ∈ (0, 1], ϕ is completely monotone and ψ is
a positive Bernstein function. Then the spatial fS and temporal fT marginal
functions, i.e., fS(d) = Gα(db, 0) and fT (u) = Gα(0, u2a), are non-increasing
over [0,∞).

Proposition 3.4. Let C(dR,G(s1, s1); |t1− t2|) := Gα(dR,G(s1, s2)b, |t1− t2|2a),
where α ≥ 1/2, a ∈ (0, 1], b ∈ (0, 1], ϕ is completely monotone and ψ is a pos-
itive Bernstein function. Then the spatial marginal function fS(d) = Gα(db, 0),
is convex on (0,∞).

Proofs of Proposition 3.3 and 3.4 are given in Supplement A. Note that the
temporal marginal function fT does not share the convexity property in general.
Justified by Proposition 3.3, space-time covariance functions constructed by
Theorem 3.2(c) satisfy the physical law [32] which says observations that are
closer in space and time have higher correlation. The asymptotic behavior of
the model, e.g. limd→∞ Gα(db, u2a) for fixed u and limu→∞ Gα(db, u2a) for fixed
d, depends on the asymptotic behavior of ψ and ϕ, respectively, thus does not
present a unified conclusion, in general.

We list a few examples of completely monotone functions and positive Bern-
stein functions in Table 1, which can be found in [16, 21, 5]. More completely
monotone functions can be built by constructive tools, such as the property that
the class of functions is closed under addition and multiplication [21]. We show
the application of Theorem 3.2 by a couple of examples.
Example 1. Consider the completely monotone function and the Bernstein func-
tion from the first row of Table 1. To avoid the model being overly complicated,
assume α = 1

2 , a = 1 and write the geodesic distance between sites as d and
the time lag as u throughout. The space-time covariance function C0 given by
Theorem 3.2(c) may be written as follows:

C0(d;u) = 1
(κdbλ + 1)β/2

exp
(
−c

(
u2

(κdbλ + 1)β

)ν)
,

where c > 0, 0 < ν ≤ 1, κ > 0, 0 ≤ β ≤ 1, 0 < λ ≤ 1 and 0 < b ≤ 1. Since b and
λ appear only as the product bλ, and both have the same support, i.e. (0, 1],
henceforth to avoid an identification issue we use b instead of bλ.
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Imitating Example 1 from [16], consider the pure spatial covariance function
CS [1] on (G, dR,G): CS(d) = (κdb + 1)−δ, where κ > 0, 0 < b ≤ 1 and δ ≥ 0. By
the Schur product theorem [30], it follows that the product of C0 and CS also
defines a valid space-time covariance function on G×R. After reparameterization
(i.e. let τ = β

2 + δ), we have

C(d;u) = 1
(κdb + 1)τ exp

(
−c

(
u2

(κdb + 1)β

)ν)
, (3.3)

where c > 0, 0 < ν ≤ 1, κ > 0, 0 ≤ β ≤ 1, τ ≥ β
2 and 0 < b ≤ 1. We call β

the space-time interaction parameter since when β = 0, the covariance function
becomes separable. The spatial and temporal marginals, as well as the covariance
function itself, all decay to zero as d → ∞ and/or u → ∞, which indicates the
same variability in the spatial and temporal components in the sense discussed
by [13] (visualizations of marginal functions, along with the covariance surface
can be found in Suppplement B). We will come back to the model given by (3.3)
later.
Example 2. Let ϕ(t) = ( 2

exp(ct1/2)+exp(−ct1/2) )
ν and ψ(t) = tλ + 1, where t ≥ 0

with parameters c > 0, ν > 0, and 0 < λ ≤ 1. Then Theorem 3.2(c) gives
another valid space-time covariance function:

C(d;u) = 2ν

(dbλ + 1)α

{
exp

(
c

ua

(dbλ + 1)1/2

)
+exp

(
−c

ua

(dbλ + 1)1/2

)}−ν

, (3.4)

where 0 < a ≤ 1, α ≥ 1/2, 0 < b ≤ 1, c > 0, ν > 0, and 0 < λ ≤ 1. Again, λ only
appears as a multiplier of b and both have the same support, i.e. (0, 1], so we
will drop λ. The asymptotic behaviors of (3.4), and its corresponding marginals,
are the same as in Example 1.

3.2. l1 embedding of Euclidean trees

Now, we focus on a subclass of generalized linear networks G: the Euclidean
trees T . In addition to the square-root embedding result which holds for any
G, [1] provides another space embedding result for T only, which is restated
below.

Theorem 3.5 (l1 embedding, Anderes et al.). Let T be a Euclidean tree with m
leaves, where m ≥ 3. Then (T , d·,T ) is isometrically embeddable into (Rn, ρ1),
where n = �m

2 � and ρ1 is the l1 norm, such that there exists a mapping i : T →
R

n satisfying: d·,T (s1, s2) = ρ1(i(s1) − i(s2)), for any s1, s2 ∈ T .

The l1 embedding result comes directly from the proof pertaining to The-
orem 4 in [1]. Meanwhile, the positive definite functions on (Rn, ρ1) are es-
sentially the same as α-symmetric (here α = 1) characteristic functions in R

n

by Bochner’s theorem, which have been extensively studied by [7, 15, 36] and
will play a fundamental role in constructing space-time covariance functions on
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T ×R. Before we dive into our second main contribution, we give the definition of
linear isometric embedding due to [36]. The term linear is added to distinguish
from Definition 3.1.

Definition 3.2. Suppose that Li is a linear space, and a function ρi : Li →
[0,∞) exists, that satisfies ρi(cx) = |c|ρi(x), for any scalar c and x ∈ Li,
i = 1, 2. The pair (L1, ρ1) is said to be linearly isometrically embeddable in
(L2, ρ2) if there is a linear operator A : L1 → L2 such that ρ1(x) = ρ2(Ax) for
all x ∈ L1. If either of (L1, ρ1) and (L2, ρ2) is linearly isometrically embeddable
in the other, we call these spaces linearly isometric.

Being slightly different from (2.1), let Φ(Rn, ρ) denote the class of functions
such that for any f ∈ Φ(Rn, ρ),

∑N
i=1

∑N
j=1 aiajf(ρ(xi−xj)) ≥ 0, for any finite

collection {ai}Ni=1 ⊂ R and {xi}Ni=1 ⊂ R
n. For any such f and ρ, we say that

f ◦ ρ is positive definite on R
n.

Lemma 3.6. Consider (Rn, ρ1) and (Rn, ρ2), where ρ1 is the l1 norm and
ρ2(x) =

∑n
i=1

1
ci
|xi| with {ci}ni=1 being fixed positive scalars, for x ∈ R

n. Then
we have Φ(Rn, ρ1) = Φ(Rn, ρ2).

Proof. Let A be the diagonal matrix with elements c1, . . . , cn on the main diago-
nal. Then for all x ∈ R

n, we have ρ1(x) =
∑n

i=1 |xi| =
∑n

i=1
1
ci
|cixi| = ρ2(Ax).

By Definition 3.2, (Rn, ρ1) and (Rn, ρ2) are linearly isometric. Lemma 3.6 then
follows from Lemma 2(2) in [36].

Let θ denote the vector of covariance parameters and Θn the parameter space
with subscript n emphasizing that the dependence relates to R

n. The theorem
below gives a general framework for constructing valid space-time covariance
functions on T × R by l1 embedding.

Theorem 3.7 (Metric models). Suppose that T is a Euclidean tree with m
leaves, where m ≥ 3. Define n = �m/2�. If fθ ∈ Φ(Rn+1, ρ1), where θ ∈ Θn+1,
then C(d·,T ;u) := fθ(d·,T

α + u
β ), where α, β > 0 and θ ∈ Θn+1, is a valid

covariance function on T × R.

Proof. Let α = c1 = · · · = cn and β = cn+1 in ρ2, from Lemma 3.6. It follows
that if fθ(ρ1(x)) = fθ(

∑n+1
i=1 |xi|) is positive definite on R

n+1 for θ ∈ Θn+1, then
fθ ◦ ρ2 = fθ(

∑n
i=1 |xi|
α + |xn+1|

β ) is also positive definite on R
n+1 given α, β > 0,

in addition to θ ∈ Θn+1. In concert with Theorem 3.5, there exists a mapping
i : T → R

n such that
N∑
i=1

N∑
j=1

aiajC
(
d·,T (si, sj); |ti − tj |

)

=
N∑
i=1

N∑
j=1

aiajfθ

(
d·,T (si, sj)

α
+ |ti − tj |

β

)

=
N∑
i=1

N∑
j=1

aiajfθ

(
ρ1(i(si) − i(sj))

α
+ |ti − tj |

β

)
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=
N∑
i=1

N∑
j=1

aiajfθ

(∑n
k=1 |i(si)k − i(sj)k|

α
+ |ti − tj |

β

)

≥ 0,

for any finite collection {ai}Ni=1 ⊂ R and points {si}Ni=1 ⊂ T , where α, β > 0
and θ ∈ Θn+1.

The scaling parameters, α and β, make the spatial and temporal distances
comparable. In the literature, d·,T

α + u
β has been called the space-time distance

and the models given by Theorem 3.7 have been called metric models [13]. Com-
bining Theorem 3.7 with the sufficient conditions of 1-symmetric characteristic
functions given by [7, 15], we have Corollary A1 given in Supplement A.

In Euclidean space, metric models have received criticism for their equal
treatment of the space and time dimensions. Nevertheless, metric models are
still considered one of the basic classes of spatio-temporal covariance functions
[18], and their flexibility can be extended when coupled with the convex cone
property [17]. When such a model would perform well is, as for other models, a
data-driven model selection question.

We end this section with an explicit example, by applying Theorem 3.7 to a
1-symmetric characteristic function.
Example 3 (Powered linear with sill models). The parametric model given by the
following corollary belongs to the family of metric models and has the powered
linear with sill representation.

Corollary 3.8. Suppose that T is a Euclidean tree with m leaves, where m ≥ 3.
Then C(d·,T ;u) := (1 − (d·,T

α + u
β )ν)δ+, where δ ≥ 2�m

2 � + 1, α, β > 0 and
ν ∈ (0, 1], is a valid covariance function on T × R.

Proof. Let f(x) := (1 − xν)δ+, where x ≥ 0. It is clear from [36] that f ◦ ρ1 is
positive definite on R

n, given δ ≥ 2n−1 and ν ∈ (0, 1], for any positive integer n.
Therefore, f(d·,T

α + u
β ) = (1 − (d·,T

α + u
β )ν)δ+ with δ ≥ 2�m

2 � + 1, ν ∈ (0, 1] and
α, β > 0 is positive definite on T × R by Theorem 3.7.

The powered linear with sill model given by Corollary 3.8 is continuous near
the origin. Both marginals, as well as the covariance function itself, monotoni-
cally decay to zero. By direct calculation, one can show that both spatial and
temporal marginal functions are convex near the origin. One feature of this
model is that it has compact support, i.e. it reaches zero when the space-time
distance is sufficiently large. This property is appealing for modeling large scale
space-time datasets. [27] also included covariance models with compact support
for the case of Euclidean trees with a given number of leaves.

4. Space-time models on directed Euclidean trees

Instead of working with heavily mathematically involved functions, the kernel
convolution-based (or moving average) models tackle the problem from another
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perspective. According to [35], a large class of stationary covariance functions
on the real line can be obtained by constructing a random process {Z(x) : x ∈
R}, which convolves a square-integrable kernel function g(·) over a white noise
process Y (x) defined on R

1 as: Z(x) =
∫∞
−∞ g(s − x)dY (s), x, s ∈ R. When

Y (x) is Brownian motion, the induced covariance function is valid and can be
shown to be Cov(Z(x), Z(x+h)) = C(x, x+h) =

∫∞
−∞ g(x)g(x−h)dx, x, h ∈ R.

The kernel convolution-based approach allows considerable flexibility and can
be generalized to nonstationary [14], space-time [28] and tree-like network [33]
settings. Details of the latter generalization are given below.

4.1. Tail-up and tail-down models

The space-time covariance functions given in the previous section are isotropic,
which might not always be an appropriate assumption due to the fact that
some networks are directed in nature. For instance, in streams, flow direction is
yet another important factor, in addition to shortest path length (geodesic dis-
tance), that researchers should take into consideration when modeling physical
processes. Variables that move passively downstream, e.g. chemical particles,
and variables that may move upstream, e.g. fish and insects [33] may need to be
modeled differently. Especially for the former, we may want to allow the corre-
lation between locations that do not share flow to be small or even zero. Based
on the kernel convolution approach, [34, 33] introduce the unilateral tail-up (i.e.
CTU ) and tail-down (i.e. CTD) covariance models on streams, which manage to
handle these two scenarios differently. For detailed discussion of the models, we
refer readers to [33]. Here, we only give the most necessary background, which
will later become essential components in our space-time covariance functions
on tree-like networks. Despite the similarity between [27] and some of our work,
models proposed in the former cannot incorporate the important geographical
feature, directionality of the network.

The dendritic structure of streams guarantees that condition (I) in Defini-
tion 2.1 holds. Since every tree-like network is planar, we follow the prescription
of [1] by letting each edge set e ∈ E be the interior of the corresponding line
segment in R

2 and letting V be the set of endpoints of the line segments. More-
over, let the bijection ξe preserve the path-length parameterization of each line
segment. Thus, conditions (I)–(IV) in Definition 2.1 are satisfied and a stream
equipped with stream distance, denoted by (T , d·,T ), is a (directed) Euclidean
tree. Note that models built in this section can apply to any directed Euclidean
tree, which we call a stream for convenience.

Depending on the flow direction, the tail-up and tail-down models also assume
there exists a single most downstream location, which is called the outlet (see
for example Fig. 2). Let the index set of all stream segments be denoted by
A, and let the index set of stream segments that are upstream of site si ∈ T ,
including the segment where si resides, be denoted by Ui ⊆ A. Two sites si and
sj are said to be “flow-connected” if they share water, i.e. if Ui ∩ Uj �= ∅, and
are “flow-unconnected” if the water at one location does not flow to the other,
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Fig 2. Directed Euclidean tree with outlet (in red) superimposed. s1 and s2 are flow-connected,
while s2 and s3, and s1 and s3 are flow-unconnected.

i.e. if Ui ∩ Uj = ∅. Equivalently, two sites are called flow-connected if and only
if one is on the path of the other downstream to the outlet. The pure spatial
tail-up and tail-down models are given below, where the unilateral kernel g(x)
is nonzero only when x > 0.

• Tail-up models:

CTU (s1, s2) =
{
π1,2

∫∞
d

g(x)g(x− d)dx if s1, s2 are flow-connected
0 if s1, s2 are flow-unconnected,

where d is the stream distance between sites s1 and s2 (i.e. d·,T (s1, s2))
and π1,2 is a weight defined as follows. Let Ω(x) be a positive additive
function such that Ω(x) is constant within a stream segment, but is the
sum of each segment’s value when two segments join at a junction, follow-
ing the flow direction. Then the weight π1,2 =

√
Ω(s1)
Ω(s2) ∧

√
Ω(s2)
Ω(s1) ensures

a constant variance of the process. In the literature, there exist different
weighting schemes, see [9, 34], and they have been proven equivalent [33].

• Tail-down models:

CTD(s1, s2)

=
{∫ −d

−∞ g(−x)g(−x− d)dx if s1, s2 are flow-connected∫ −a∨b

−∞ g(−x)g(−x− |b− a|)dx if s1, s2 are flow-unconnected,

where d has the same as in tail-up models and a, b represent the distances
from each site to the nearest junction downstream of which it shares flow
with the other site (see for example Fig. 2). When s1, s2 ∈ T are flow-
unconnected, d = a + b.
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Commonly used kernels on streams can be found in [33]. Obviously, a non-
trivial tail-up covariance function cannot be isotropic as the covariance is always
zero when sites are flow-unconnected, while a tail-down model is a function of
a and b, in general. It has been shown by [34, 33] that when the kernel is expo-
nential, i.e. g(x) = θ1 exp(−x/θ2) for x ≥ 0, θ1, θ2 > 0, the tail-down model is
a function of the geodesic distance d·,T alone, regardless of flow-connectedness.
Before introducing our next main contribution in terms of space-time covariance
functions, we prove that the exponential kernel is the one and only which makes
the tail-down model depend on d·,T alone, or in other words, isotropic.

Theorem 4.1. A tail-down model is isotropic, such that there exists a function
fTD, CTD(s1, s2) = fTD(d·,T (s1, s2)) for any s1, s2 ∈ T , if and only if the
kernel is exponential.

The proof of Theorem 4.1 is nontrivial and left to Supplement A. When the
kernel is exponential, the isotropic tail-down model can be written as

CTD(s1, s2) = θ0 exp
(
−d·,T (s1, s2)/θ2

)
, s1, s2 ∈ T , (4.1)

where θ0, θ2 > 0. (4.1) also appears in [1], where all isotropic covariance functions
are developed by space embedding, as a valid covariance function on (G, dR,G).
Therefore, Theorem 4.1 shows that the exponential tail-down covariance func-
tion is the only bridge which connects pure spatial covariance functions on
Euclidean trees constructed by space embedding and kernel convolution, and
will later help us find the linkage of space-time models constructed by different
approaches as well.

4.2. Convex cone and scale mixture models

4.2.1. Convex cone

Stemming from the convex cone property of the class of positive definite func-
tions, Theorem 4.2 provides easy to implement, yet practically important, ways
to construct space-time covariance functions on directed Euclidean trees.

Theorem 4.2. The functions given below are valid space-time covariance func-
tions on a directed Euclidean tree:

C(s1, s2; t1, t2) = CTD(s1, s2)CT1(t1, t2) + CTU (s1, s2) + CT2(t1, t2) (4.2)
C(s1, s2; t1, t2) = CTU (s1, s2)CT1(t1, t2) + CTD(s1, s2) + CT2(t1, t2) (4.3)
C(s1, s2; t1, t2) = CTU (s1, s2)CT1(t1, t2) + CTD(s1, s2)CT2(t1, t2), (4.4)

where the tail-up CTU and the tail-down CTD models are defined in Section 4.1,
and CT1 and CT2 are valid temporal covariance functions.

Proof. The symmetry condition holds trivially as each component on the right
hand side of (4.2)–(4.4) is symmetric. According the Schur product theorem [30],
CTD(·, ·)CT1(·, ·), CTU (·, ·)CT1(·, ·), and CTD(·, ·)CT2(·, ·), are positive definite
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on T ×R. The remaining results then follow easily from the definition of positive
definiteness.

In Euclidean space, (4.2) and (4.3) are called product-sum models [12]. Un-
less CT1 = CT2 in (4.4), covariance functions given in Theorem 4.2 are non-
separable. Similar to the variance components model in [33], these functions
allow high autocorrelation among sites that are flow-connected, and small but
significant autocorrelation among sites that are flow-unconnected, at fixed tem-
poral components. If we further assume that the number of observations over
time on each site is the same, then substantial computational efficiency can be
gained by exploiting the covariance matrix structure; details are discussed in
Supplement A.
Example 4. Consider the isotropic exponential tail-down model, CT1 being a
cosine function which captures potential seasonal fluctuations, and CT2 expo-
nential as well. For the tail-up spatial component, we adopt a Mariah kernel [33],
which specifies g(x) = 1

2
1

1+x/θ1
, for x ≥ 0 with θ1 > 0. After reparameterization,

expression (4.4) from Theorem 4.2 gives the valid space-time model as

C(s1, s2; t1, t2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π1,2
2

log(d/θ1+1)
d/θ1

cos
(

u
θ2

)
+ 1

2 exp
(
−
(

d
θ3

+ u
θ4

))
s1, s2 are flow-connected, d > 0

1
2 cos

(
u
θ2

)
+ 1

2 exp
(
− u

θ4

)
d = 0

1
2 exp

(
−
(

d
θ3

+ u
θ4

))
otherwise,

where θ1, . . . , θ4 > 0 and the weight π1,2 is defined in Section 4.1. The model
above contains a metric sub-model which is a function of the space-time distance,
i.e. d

θ3
+ u

θ4
.

4.2.2. Scale mixture models

We conclude the theoretical development of space-time models with a clever
trick [26], which gives the so-called scale mixture model. The trick can trace
back to the second stability property of covariance functions given by [8].

Theorem 4.3. Let C0(s1, s2; t1, t2; a) be a space-time covariance model on
G × R, a be a parameter where a ∈ Θa ⊂ R, and μ(·) a positive measure on
the set Θa. Then

C(s1, s2; t1, t2) =
∫

Θa

C0(s1, s2; t1, t2; a)dμ(a),

(si, ti) ∈ G × R, i = 1, 2, is a valid covariance model on G × R given that the
integral exists for every pair of space-time coordinates.

Theorem 4.3 can be proved by the definition of positive definiteness directly,
which we will skip here. Any valid space-time model that satisfies the condition
can be chosen as the integrand, and we emphasize its application on directed
Euclidean trees in the following corollary.



506 J. Tang and D. Zimmerman

Corollary 4.4. Suppose that CS(·, ·) is a pure spatial covariance function on
a directed Euclidean tree T and CT (·, ·) is a pure temporal covariance function.
Parameter a has the support Θa ⊂ R, and μ(·) is a positive measure on the
set Θa. Then

C(s1, s2; t1, t2) =
∫

Θa

CS(s1, s2; a)CT (t1, t2; a)dμ(a), (si, ti) ∈ T ×R, i = 1, 2,

is a valid space-time covariance function on T ×R given that the integral exists.

The proof of Corollary 4.4 follows from Theorem 4.3 in concert with the
fact that the separable space-time function CS(s1, s2; a)CT (t1, t2; a) is a valid
covariance function on T × R. We illustrate the use of Corollary 4.4 by two
examples, one of which shows an interesting linkage between space-embedding
models and scale mixture models due to Theorem 4.1.
Example 1 (Revisited). Following Example 4 in [12], consider an exponential
tail-down model as the spatial component (CS), a cosine function as the tempo-
ral component (CT ) and a half-normal probability density function (μ′), which
are parameterized as follows:

CS(d; a) = exp
(
−a2

θ1
d

)
, CT (u; a) = cos

[
a(2θ2u)

]
, μ′(a) = 2√

π
exp

(
−a2),

where a > 0, θ1 > 0, θ2 ∈ R. According to Corollary 4.4,

C(d;u) =
∫ ∞

0
exp

(
−a2

θ1
d

)
cos

[
a(2θ2u)

] 2√
π

exp
(
−a2)da, (4.5)

is a valid space-time covariance model on directed Euclidean tree. Using the
result from [24]:

∫∞
0 exp(−x2) cos(cx)dx =

√
π

2 exp(− c2

4 ), c ∈ R, (4.5) can be
simplified as

C(d;u) = 1√
1 + d

θ1

exp
(
− θ2

2u
2

1 + d
θ1

)
, θ1 > 0, θ2 ∈ R. (4.6)

Observe that the model given by (4.6) is a special case of (3.3) in Example 1,
where κ = 1/θ1, c = θ2

2, ν = b = β = 1, and τ = 1/2.

Lemma 4.5. Assume that the scale mixture space-time covariance function is
isotropic, that CS is an exponential tail-down model and CT depends on the
time lag u only. Then CT (0; a) ≥ 0 for a ∈ Θa is a sufficient but not necessary
condition for the spatial marginal function fS(d) := C(d; 0) to be convex on R

+.

Proof. Let C(d;u) :=
∫
Θa

exp(−a2

c d)CT (u; a)dμ(a). Suppose that the measure
μ(·) and the temporal covariance function CT are smooth enough to allow in-
terchanging the order of differentiation and integration. Then

fS
′′(d) =

∫ ∞

0

a4

c2
exp

(
−a2

c
d

)
CT (0; a)dμ(a) ≥ 0,



Space-time covariance models on networks 507

given that CT (0; a) ≥ 0 for all a ∈ Θa. However, this condition is not necessary
since we have shown in Example 1 Revisit that when CT (u; a) = cos[a(2θ2u)],
the scale mixture covariance model is essentially a special case of Example 1
and by Proposition 3.4, the spatial marginal is always convex on (0,∞).

Apart from the sufficient condition provided in Lemma 4.5, convex cone and
scale mixture models do not share unified geometric features.
Example 5. Again, let the spatial component be an exponential tail-down model
with a slightly different parameterization: CS(d; a) = exp(− a

θ1
d), where a, θ1 >

0. Then consider a non-degenerate temporal covariance function CT (u; a) =
exp(− a

θ2
uθ3), where a, θ2 > 0 and θ3 ∈ (0, 2] [37]. Let μ be a Gamma distribution

whose density function is specified as f(a) = θ
θ4
5

Γ(θ4)a
θ4−1e−θ5a for a ∈ (0,∞),

with θ4, θ5 > 0. By Corollary 4.4,

C(d;u) =
(

1
d
θ1

+ uθ3
θ2

+ 1

)θ4

, (4.7)

where θ1, θ2, θ4 > 0, and θ3 ∈ (0, 2] is a valid space-time covariance function
on Euclidean trees. The model given by (4.7) extends the metric model in Sec-
tion 3.2 since it is a function of d

θ1
+ uθ3

θ2
. The covariance function is continuous

at the origin and monotonically decays to 0 as d → ∞ and/or u → ∞. The spa-
tial marginal is convex on (0,∞), but this is not necessarily so for the temporal
marginal.

5. Simulation study

In this section, we examine the performance of models that were introduced in
previous sections via a simulation study. Streams and rivers are important to
humans and many plants and animals [33], and a tree-like stream network is
naturally a Euclidean tree with the geodesic distance. We chose 50 sites from
the northeastern region of Clearwater River basin in central Idaho (Fig. 3) for
the purpose of our analyses. Stream lines of the study region were downloaded
from the National Stream Internet (NSI) dataset (https://www.fs.fed.us/rm/
boise/AWAE/projects/NationalStreamInternet/NSI_network.html). Obser-
vations were integrated with the network object using the STARS (Version 2.0.7)
toolset in ArcGIS (Version 10.7.1). A Spatial Stream Network (.ssn) object was
then created, from which we extracted the topological structure of the network
using the SSN package (Version 1.1.12) in R. We considered observations simu-
lated at those 50 sites, or at subsets of those sites, at either 5 or 10 consecutive,
equally-spaced points in time (for simplicity, we refer to these time points as days
hereafter). The subsets of sites were chosen in two ways, so that the expansion
from 25 to 50 sites conformed to either an increasing-domain or fixed-domain
asymptotic regime. For the former, we chose 25 sites in the “interior” of the
spatial network domain, so that their spatial extent overlapped with, but was
considerably smaller than, the spatial extent of the 50 sites. For the latter, we

https://www.fs.fed.us/rm/boise/AWAE/projects/NationalStreamInternet/NSI_network.html
https://www.fs.fed.us/rm/boise/AWAE/projects/NationalStreamInternet/NSI_network.html


508 J. Tang and D. Zimmerman

Fig 3. Delineated stream lines of the Clearwater River basin, with (Left) 50 observation
sites; (Middle) 25 observation sites (fixed-domain); (Right) 25 observation sites (increasing-
domain), represented by black circles, in the northeastern region superimposed.

chose the 25 sites systematically by sorting the sites by their upstream distances
from the outlet and then alternatively deleting and keeping sites. This results
in a sample similar in spatial extent but smaller in size than the original sam-
ple. Simulation results from the 50 sites × 10 days case are given in Sects. 5.1
and 5.2, and the rest can be found in Supplement C.

For each simulation, we generated 1000 realizations of multivariate normal
random vectors z with mean 0 (assumed known), no nugget effect, and true
covariance functions defined by different space-time models with details given
in the following subsections. We investigated our proposed models’ performance
from two perspectives: (1) comparing the likelihood across different models;
and (2) comparing maximum likelihood estimates (MLEs) of unknown covari-
ance parameters to their true values. For the latter, two descriptive summary
statistics, mean absolute error (MAE) and root mean squared error (RMSE),
were used. We used the function optim in R with method “L-BFGS-B” to solve
the following non-linear minimization problem to obtain the MLEs:

θ̂ = arg min
θ∈Θ

l(θ) = log |Σ(θ)| + zTΣ−1(θ)z. (5.1)

5.1. Scenario 1: isotropic true model

In this scenario, we consider the true covariance model as given in Example 1
(i.e., (3.3)) with the following parameter specification: c = 1, ν = 1, κ = 1,
β = 0.5, τ = 1 and b = 0.5. To each realization from the true model, we fit
models from Example 1 with κ and ν fixed at their true values, Example 1
assuming β = 0 (i.e., a separable covariance model) and with κ and ν fixed at
their true values, Example 4 (including flow-direction when the underlying true
model is directionless) and Example 5. The weight function π1,2 in Example 4
was computed based on the accumulated drainage area, which is information
supplied with the stream lines from the NSI dataset. Estimation results from
the fit of the true model are summarized in Table 2.

The MLEs in Table 2 are quite close to their true counterparts, based on
median, mean, MAE and RMSE. Furthermore, and not surprisingly, Example 1
has the highest likelihood 98.9% of the time, followed by the separable model,
1.1%, of the simulations. The model given by Example 4, which is the only model
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Table 2

Summary of maximum likelihood estimates in Example 1.
Min. 1st Qu. Median Mean 3rd Qu. Max. 2.5% 97.5% True MAE RMSE

c 0.7763 0.9439 0.9993 1.0062 1.0599 1.3200 0.8588 1.1871 1.0000 0.0678 0.0856
β 0.0100 0.3857 0.5039 0.5087 0.6254 1.0000 0.1414 0.9257 0.5000 0.1485 0.1881
τ 0.6713 0.9166 0.9946 1.0032 1.0770 1.4808 0.7935 1.2753 1.0000 0.0980 0.1238
b 0.2915 0.4560 0.5065 0.5142 0.5683 0.8264 0.3682 0.6823 0.5000 0.0653 0.0823

Fig 4. Histograms of estimated model parameters for (top) fixed-domain 25 sites × 10 days
and (bottom) 50 sites × 10 days, in Example 1. Vertical dashed lines represent the true values.

to incorporate flow direction, never had the highest likelihood. The means of
the MLE’s are consistently slightly larger than their medians, which is due to
slight positive skewness in the empirical distribution of the MLE’s.

Histograms of estimated parameters in Example 1 under 50 sites × 10 days
and fixed-domain 25 sites × 10 days against the true values are provided in
Fig. 4. There are no concerns regarding non-consistent parameter estimability
(with Example 1).

5.2. Scenario 2: a model that incorporates flow direction

As a counterpart, we considered a second simulation experiment. For this one,
the true model is based on Example 4, which incorporates flow direction and has
the following parameter specification: θ1 = 1, θ2 = 1, θ3 = 0.1 and θ4 = 0.1. We
fit the same models as were fitted in Scenario 1. While Example 4 has the high-
est likelihood among all 1000 realizations this time, the MLEs do not perform as
well and details can be found in Supplement C. We also considered other cases
of Example 4 in which the TU model was exponential or spherical; however,
there was no substantial improvement in the estimates of θ1. The heavy tail
in the distribution of estimates of θ1 (spatial component from the TU model)
could be due to the fact that the data are “unbalanced,” in the sense that only
201 out of the 1225 pairs of sites (about 16%) are flow-connected (see Fig. 5
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Fig 5. Flow-connected pairs (in dark) among 50 observation sites.

for an illustration). Therefore, the spatial component, which distinguishes be-
tween flow-connected and flow-unconnected pairs, cannot be reliably estimated.
Note that for some stream network datasets the imbalance could tilt the other
way, i.e., there could be too few flow-unconnected pairs. Such imbalances would
appear to be a potential challenge for practitioners who implement covariance
models like Example 4.

5.3. Parameter estimability

Non-consistent estimability of parameters under fixed-domain sampling is a
known issue for spatial covariance models in Euclidean and spherical domains
[38, 39]. To our knowledge, it has not yet been determined if it is a concern for
space-time covariance models that have been proposed, regardless of the spa-
tial domain (Euclidean, spherical, or network). The aforementioned increasing-
domain and fixed-domain sampling schemes allow us to investigate this issue for
the two models included in this simulation study. Table 3 and Table 4 present,
for both numbers of sampling times, the interquartile ranges of the empirical
distribution of maximum likelihood estimates of all parameters in both models
decrease as the number of sites increases from either a compact 25-site design
or the equal-spatial-extent 25-site design to the 50-site design. (We measure dis-
persion using interquartile ranges rather than variances or ranges because the
empirical distributions of some parameter estimates are quite positively skewed.)
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Table 3

Interquartile ranges of maximum likelihood estimates of Example 1 under different numbers
of sites and time points combination.

50 sites 25 sites (fixed-domain) 25 sites (increasing-domain)
5 days 10 days 5 days 10 days 5 days 10 days

c 0.1822 0.1160 0.2336 0.1450 0.2470 0.1557
β 0.3611 0.2397 0.7575 0.5299 0.5548 0.3438
τ 0.2328 0.1604 0.6162 0.5578 0.3083 0.2236
b 0.1593 0.1123 0.6826 0.5924 0.2094 0.1406

Table 4

Interquartile ranges of maximum likelihood estimates of Example 4 under different numbers
of sites and time points combination.

50 sites 25 sites (fixed-domain) 25 sites (increasing-domain)
5 days 10 days 5 days 10 days 5 days 10 days

θ1 3.6221 2.7637 16.8395 7.6570 6.3256 5.1076
θ2 0.0729 0.0232 0.1071 0.0325 0.1012 0.0313
θ3 0.1007 0.0554 1.7970 1.3519 0.1400 0.0700
θ4 0.3257 0.2877 0.4118 0.3301 0.4033 0.3179

These results indicate that there is no empirical evidence of non-consistent es-
timability of parameters under fixed-domain spatial sampling for the two mod-
els.

6. Discussion

This article presented a collection of tools to build valid non-separable space-
time covariance models on generalized linear networks, and on an important
subclass, Euclidean trees. We studied examples obtained by each constructive
method and investigated the performance of maximum likelihood estimators
of some covariance parameters. We have not yet provided guidance on how to
choose the most suitable candidate model for an arbitrary data set, but under-
standing the underlying physical process [16] and matching geometric features
of theoretical covariance functions to the empirical space-time covariance sur-
face [13] would be helpful when we apply the models on real-world data. We
also notice that in the simulation study, some maximum likelihood estimators
have heavier tails than others. It has been argued that when prediction is the
goal, model estimation is just a means to an end [26]. [38] also showed that it is
the consistency of certain quantity (i.e. combination of parameters) in Matérn
class, instead of individual parameters, that plays an more important role in
spatial prediction. Nevertheless, the study of parameter estimability under in-
fill and increasing domain asymptotics on a network is an open question that
needs to be addressed and requires special attention. Though we emphasized
the decisive role of valid covariance functions in geostatistical models, they also
allow direct extension to space-time log Gaussian Cox processes on generalized
networks [22, 1], which we leave for future investigation.
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