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Abstract: We consider the problem of estimation in Hidden Markov mod-
els with finite state space and nonparametric emission distributions. Effi-
cient estimators for the transition matrix are exhibited, and a semiparamet-
ric Bernstein-von Mises result is deduced. Following from this, we propose a
modular approach using the cut posterior to jointly estimate the transition
matrix and the emission densities. We first derive a general theorem on
contraction rates for this approach. We then show how this result may be
applied to obtain a contraction rate result for the emission densities in our
setting; a key intermediate step is an inversion inequality relating L1 dis-
tance between the marginal densities to L1 distance between the emissions.
Finally, a contraction result for the smoothing probabilities is shown, which
avoids the common approach of sample splitting. Simulations are provided
which demonstrate both the theory and the ease of its implementation.
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1. Introduction

Hidden Markov models (HMMs) are a broad and widely used class of statisti-
cal models, enjoying applications in a variety of settings where observed data
is linked to some ordered process, for which an assumption of independently
distributed data would be both inappropriate and uninformative. Specific ap-
plications include modelling of weather [3, 35], circadian rhythms [34], animal
behaviour [18, 38], finance [43], information retrieval [47, 54], biomolecular dy-
namics [32], genomics [60] and speech recognition [50].

In this paper, we consider inference in finite state space HMMs. Such models
are characterised by an unobserved (latent) Markov chain (Xt)t≥1 taking values
in [R] = {1, 2, . . . , R} with R < ∞, evolving according to a transition matrix
Q. Conditionally on Xt = j, Yt ∼ Fj where Fj is the emission distribution with
associated density fj . These models generalise independent mixture models,
which are obtained as a special case when the Xt are independent and identically
distributed. Here we assume that R is known so that the parameters in such
models are then Q and F = (F1, . . . , FR).
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Most of the work on HMMs considers parametric models, where the emissions
are assumed to admit densities in a parametric class {fθ : θ ∈ Θ} where Θ ⊂ Rd

for some d < ∞, see for instance [11, 20, 23]. However such an assumption leads
to inference which is strongly influenced by the choice of the parametric family
{fθ : θ ∈ Θ}. This problem has been often discussed in the literature, see for
instance [50], [21] or [60], especially but not solely in relation to clustering or
segmentation. In the seminal paper [24], the authors show identifiability under
weak assumptions on the emissions, provided the transition matrix is of full
rank, paving the way for estimation of semiparametric models. In [4], it is shown
further that the number R of hidden states may be identified. In [6, 33] and
[16], frequentist estimators of Q and f = (f1, . . . , fR) respectively have been
proposed using spectral methods, showing in particular that Q can be estimated
at the rate 1/

√
n. Frequentist estimation of the emission densities has also been

addressed using penalised least squares approaches [15] and spectral methods
[16]. However, no results exist on the asymptotic distribution of frequentist
estimators for Q, nor on efficient estimation for Q.

Although Bayesian nonparametric estimation methods have been considered
in practice in Hidden Markov models, see for instance [60] or [21], little is known
about their theoretical properties. While [57, 58] established posterior consis-
tency under general conditions on the prior and refined the analysis to derive
posterior concentration rates on the marginal density of � successive observa-
tions, g�Q,F, no results exist regarding the properties of Bayesian procedures
when seeking to recover the parameters Q and F, or other functionals of Q,F
which are often of interests in HMMs. For instance, when interests lie in cluster-
ing or segmentation, the quantities of interest are the smoothing probabilities,
being the conditional distribution of the latent states given the observations.
In [16], the authors obtain rates of convergence for frequentist estimators of
the smoothing probabilities, but their result requires either a sup-norm conver-
gence for the estimator f̂ or splitting the data into two parts, with estimation
of f based on one part of the data and estimation of the smoothing probabil-
ities based on the other part of the observations. In this paper we intend to
bridge this gap, concentrating on Bayesian semiparametric methods while also
exhibiting non-Bayesian, semiparametric efficient estimators of Q.

We first construct a family of priors Π1 on (Q,F) which we show in Theorem 2
leads to an asymptotically normal posterior distribution for

√
n(Q − Q̂), of

variance V detailed therein. Here Q̂ is a frequentist estimator, exhibited in
Theorem 1, for which

√
n(Q̂ − Q∗) converges in distribution to N(0, V ), with

Q∗ being the frequentist true parameter under which the data is assumed to be
generated. Consequently, Bayesian point estimates associated to such posteriors,
such as the posterior mean, enjoy parametric convergence rates to Q∗ and,
importantly, credible regions for Q are asymptotically confidence regions. In
Theorem 3, we then refine this construction to obtain a scheme for which V is the
optimal variance for semiparametric estimation of Q, i.e. it is the inverse efficient
Fisher information. Semiparametric Bernstein-von Mises properties are highly
non trivial results and correspondingly sparse in the literature, moreover in [13,
14, 22, 51] a number of counterexamples are exhibited, where semiparametric



Efficiency and cut posterior in semiparametric HMMs 1817

Bernstein-von Mises results do not hold. Since this property is crucial to ensure
that credible regions are also confidence regions and thus robust to the choice
of the prior distribution, it is important to study and verify it.

Our approach to obtaining these results follows the ideas of [27], extend-
ing their work on mixtures to the more complex HMM setting. In particular,
the construction of Q̂ (together with the prior on Q,F) is based on a para-
metric approximation to the nonparametric emission model, with the property
that estimation in this model with appropriately ‘coarsened’ data leads to a
well-specified parametric model for estimation of Q. Once we reduce to such a
parametric model, we have asymptotic normality of the corresponding MLE as
in [9] as well as Bernstein-von Mises for the posterior as in [17], although the
intuition that our ‘coarsened’ data is less informative translates to an inefficient
asymptotic variance V . We then show that we can construct efficient estimators
of Q by adjusting the degree of coarsening with the sample size, similar to the
approach of [27]. The proof techniques in our context are however significantly
more complex, since the notions of Fisher information and score functions are
much less tractable in hidden Markov models (see for instance [19]).

The prior distributions Π1(dQ, dF) considered above, which lead to the
Bernstein-von Mises property of the posterior on Q, rely on a crude modelling
of the emission densities and are therefore not well behaved as far as the esti-
mation of F is concerned. To overcome this problem, we adapt in Section 4 the
cut posterior approach (see [8, 12, 36, 42, 49]) to our semiparametric setting.
Cut posteriors were originally proposed in the context of modular approaches
to modelling, where a model is assembled from a number of constituent models,
each with its own parameters θi and data Yi. In the usual construction, the cut
posterior has the effect of ‘cutting feedback’ of one of the (less reliable) data
sources Yi on the other parameters (associated to more reliable data).

Our approach, though also modular, departs from this setting in that we use a
single data source but wish to choose different priors for different parts of the pa-
rameter. We consider a conditional prior Π2(dF|Q), then combine Π1(dQ|Y1:n)
with the conditional posterior Π2(dF|Q,Y1:n) to produce a joint distribution
over Q and F. In this way, we construct a distribution over the parameters
which is not a proper Bayesian posterior, but which simultaneously satisfies
a Bernstein-von Mises theorem for the posterior marginal on Q, and is well-
concentrated on the emission distributions and other functionals such as the
smoothing probabilities. Through this construction, we manage to combine the
“best of both worlds” in the estimation of the parametric and nonparametric
parts. We believe that this idea could be used more generally in other semipara-
metric models.

As previously mentioned, the existing posterior concentration result in the
semiparametric HMMs covered only the marginal density g�Q,F of a fixed number
� of consecutive observations, see [57]. A key step in obtaining posterior con-
traction rates on the emission distributions F is an inversion inequality allowing
us to deduce L1 concentration of the posterior distribution of the emission dis-
tributions from concentration (at the same rate) of the marginal distribution
of the observations. This is established in Theorem 4, from which we derive
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contraction rates for the cut-posterior on f in Theorem 5. This inversion in-
equality is of independent interest and can be used outside the framework of
Bayesian inference. We finally show in Theorem 6 that these results lead to pos-
terior concentration of the smoothing distributions, which are the conditional
distributions of the hidden states given the observations, building on [16] but
refining the analysis so that we require neither sup-norm contraction rate on
the emissions f , nor a splitting of the data set in two parts.

Organisation of the paper The paper is organised as follows. In Section 2,
we introduce the model and the notions involved, together with a general strat-
egy for inference on Q and f based on the cut posterior approach. In Section 3,
we study the estimation of Q, proving asymptotic normality of the posterior
and asymptotic efficiency. In Section 4, the cut posterior approach is studied,
posterior contraction rates for f are derived together with posterior contraction
rates for the smoothing probabilities. Theoretical results from both sections are
then illustrated in Section 5. The proofs for the efficiency of the estimation of
Q (Proposition 1), for the inversion inequality (Theorem 4), and for the conver-
gence of the smoothing probabilities (Theorem 6), are presented in Section 6.
The other proofs are deferred to the appendix. The appendix also contains a
general contraction rate theorem for cut posteriors, together with an exposition
of relevant results in the literature and further details of simulations.

2. Inference in semiparametric finite state space HMMs

In this section we present our strategy to estimate Q and F = (F1, . . . , FR),
based on a modular approach which consists of first constructing the marginal
posterior distribution of Q based on a first prior Π1 on (Q,F), and then com-
bining it with the conditional posterior distribution of F given Q and Y1:n based
on a different prior Π2(dF|Q).

2.1. Model and notation

Hidden Markov models (HMMs) are latent variable models where one observes
Y1:n = (Yt)1≤t≤n whose distribution is modelled via latent (non-observed) vari-
ables X1:n = (Xt)1≤t≤n ∈ [R]n which form a Markov chain. In this work we
consider finite state space HMMs:

Yt|Xt
ind∼ FXt , PQ(Xt = r|Xt−1 = s) = Qrs, r, s ≤ R, t ≥ 1 (1)

and the number of states R is assumed to be known throughout the paper.
The parameters are then the transition matrix Q = (Qrs)r,s≤R of the Markov

chain and the emission distributions F = {Fr}r≤R, which represent the condi-
tional distribution of the observations given the latent states. For a transition
matrix Q we denote by pQ its invariant distribution (when it exists).

Throughout the paper we denote by F∗ = {F ∗
r }r≤R and Q∗ respectively

the true emission distributions and the true transition matrix. The aim is to
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X1 ∼ pX1 X2 ∼ QX1,· X3 ∼ QX2,·

Y1 ∼ FX1 Y2 ∼ FX2 Y3 ∼ FX3

· · ·

Fig 1. Visual representation of data generating process of HMM.

make inference on F∗, Q∗, and some functionals of these parameters, using like-
lihood based methods and in particular Bayesian methods. We assume that the
distributions F ∗

j , j = 1, . . . , R are absolutely continuous with respect to some
measure λ on Y ⊂ Rd, d ≥ 1 and we denote by f∗

1 , . . . , f
∗
R their corresponding

densities.
When the latent states (Xt)t≥1 are independent and identically distributed on

[R], the parameters are not identifiable unless some strong assumptions are made
on the Fj ’s, see [5]. However, in [24], it is proved that under weak assumptions on
the data generating process, both Q and F are identifiable up to label swapping
(or label switching). More precisely, let P

(�)
Q,F be the marginal distribution of �

consecutive observations from model 1 with parameters Q and F, so that

P
(�)
Q,F(dy1:�) =

R∑
i1,...,i�=1

pQ(i1)
�−1∏
t=1

(
Qit,it+1Fit(dyt)

)
Fi�(dy�). (2)

Under assumptions of ergodicity, pQ exists and is unique. For example, this
holds under the assumption Qij > 0 for all i, j ∈ [R], see for instance equation
(1) in [25]. Denote by Q = ΔR

R ⊂ [0, 1]R×R the R− fold product of the R − 1
dimensional simplex and let P be the set of probability measures on Rd. Consider
the following assumption:

Assumption 1. (i) The latent chain (Xt)t≥1 has true transition matrix Q∗ =
(Q∗

ij) satisfying detQ∗ 	= 0.
(ii) The true emission distributions {F ∗

r }Rr=1 are linearly independent.

From [24], if Assumption 1 holds, then for any Q ∈ Q and any F1, . . . , FR ∈
P, if P(3)

Q,F = P
(3)
Q∗,F∗ then Q = Q∗ and F = F∗ up to label swapping. By “up

to label swapping,” we precisely mean that there exists a permutation τ of [R]
such that τQ = Q∗ and τF = F∗, where τQ = (Qτ(r),τ(s), r, s ∈ [R]) and
τF = (Fτ(1), . . . , Fτ(R)). The requirement for such a permutation τ is unavoid-
able, since the labelling of the hidden states is fundamentally arbitrary. Corre-
spondingly, the results which follow will always be given up to label swapping. In
a slight abuse of notation, we will sometimes interchange F and f = (f1, . . . , fR),
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the latter being the densities of F with respect to some measure λ in a dominated
model.

The likelihood associated to model (1), when (Fr)r∈[R] are dominated by a
measure λ, is then given by

Ln(Q,F) = g(n)(Q,F)(y1, . . . , yn) =
R∑

i1,...,in=1
pQ(i1)

n−1∏
t=1

Qit,it+1fit(yt)fin(yn).

(3)
Extension to initial distributions different from the stationary one is straight-
forward, under the exponential forgetfulness of the Markov chain which holds
under our assumptions below, see Section C.5.

If Π is a prior on Q × FR, with F = {f : Rd → R+ :
∫
f(y)dλ(y) = 1}

being the set of densities on Rd with respect to λ, then the Bayesian posterior
Π(·|Y1:n) is defined as follows: for any Borel subset A of Q×FR, we have

Π(A|Y1:n) =
∫
A
Ln(Q,F)Π(dQ, dF)∫

Q×FR Ln(Q,F)Π(dQ, dF)
. (4)

This posterior is well defined as soon as pQ exists Π− almost surely, which
holds for instance when Π(mini,j Qij > 0) = 1, which implies that the transition
matrix is ergodic Π− almost surely by the earlier remarks. Throughout the paper
we consider the parameterisation of Q given by Q̃ = (Qrs, r ∈ [R], s ∈ [R − 1])
so that for each r we have QrR = 1 −

∑
s<R Qrs. Hence, specification of the

matrix Q amounts to specification of the (R)× (R− 1) matrix Q̃ ∈ Q̃ for which∑R−1
s=1 Qrs ≤ 1 for all r, and we will identify Q with Q̃ (and Q with Q̃) when

making statements about asymptotic distributions.
It will be helpful to consider that the stationary HMM (Xt, Yt)t≥1 arises as

the restriction to {t ≥ 1} of a process (Xt, Yt)t∈Z indexed by t ∈ Z, where
the (Xt)t∈Z and the (Yt)t≤0 are not observed. This is possible to define by
considering the reversal of the latent chain.

We use P∗ to denote the joint law of the variables (Xt, Yt)t∈Z under the sta-
tionary distribution associated with the parameters Q∗,F∗. Estimators, given
a sample of size n, are then understood to be random variables which are mea-
surable with respect to the σ-algebra generated by the observations (Yt)1≤t≤n.

2.2. Cut posterior inference: A general strategy for joint inference
on Q and f

In Section 3.1 below we construct a family of prior distributions Π1 on Q ×
FR such that the associated marginal posterior distribution of Q satisfies a
Bernstein-von Mises theorem centred at an asymptotically normal regular es-
timator Q̂. Specifically, this means that with probability going to 1 under P∗,

‖Π1( min
τ∈SR

√
n(τQ− Q̂) ∈ (·)|Y1:n) −N(0, V )‖TV = oP∗(1) (5)
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and
min
τ∈SR

√
n(τ Q̂−Q∗) ⇒∗ N(0, V ), (6)

where ⇒∗ denotes convergence in distribution under P∗ and where SR is the set
of permutations of [R].

However, the choice of Π1 which we require for this control over Q leads to
a posterior distribution on F which is badly behaved, see Section 3. In order to
jointly estimate well both Q and F, we propose the following cut posterior ap-
proach. Consider a second conditional prior distribution Π2(dF|Q) which leads
to a conditional posterior distribution of F given Q,Y1:n of the form

Π2(dF|Q,Y1:n) = Ln(Q,F)Π2(dF|Q)∫
FR Ln(Q,F)Π2(dF|Q)

.

The cut posterior is then the probability distribution on Q×FR given by

Πcut(d(Q,F)|Y1:n) = Π1(dQ|Y1:n)Π2(dF|Q,Y1:n). (7)

Note that, if Π2(dF|Q) = Π1(dF|Q), then Πcut(d(Q,F)|Y1:n) is a proper pos-
terior distribution and is equal to Π1(d(Q,F)|Y1:n). The motivation behind the
use of the cut posterior Πcut(d(Q,F)|Y1:n) is to retain the good behaviour of
Π1(dQ|Y1:n) in terms of estimating Q, while being flexible in the modelling of
F to ensure that the posterior distribution over both F and Q (and functionals
of these parameters) are well behaved.

Adapting the proof techniques from [29] to posterior concentration rates for
cut posteriors, we derive in Section 4 contraction rates for cut posteriors in
terms of the L1 norm of g(3)

Q,F − g
(3)
Q∗,F∗ , where g

(3)
Q,F is the density of P(3)

Q,F with
respect to the dominating measure λ. We show that, under suitable conditions
and choice of εn = o(1), Πcut(‖g(3)

Q,F − g
(3)
Q∗,F∗‖1 ≤ εn|Y1:n) = 1 + oP∗(1).

To derive cut posterior contraction rates in terms of the L1 norm of f − f∗,
we prove in Section 4.2 an inversion inequality in the form

R∑
r=1

‖fr − f∗
r ‖1 � ‖Q−Q∗‖ + ‖g(3)

Q,F − g
(3)
Q∗,F∗‖L1 ,

which is also of independent interest.
We also derive cut-posterior contraction rates for the smoothing probabilities

(pQ,F(Xi = ·|Y1:n))i=1,...,n in Section 4.3. In contrast with [16], concentration
rates for (pQ,F(Xi = ·|Y1:n))i=1,...,n do not require a splitting of the data into
2 groups, nor do they require to to have a control of fr − f∗

r in sup-norm. We
can avoid these difficulties thanks to the Bayesian approach as is explained in
Section 4.3.

In our implementation of the cut posterior, we adopt a nested MCMC ap-
proach of the kind detailed in [12] and [36], see Section 5 for details.

In the following section, we present Π1 and show that the associated marginal
posterior distribution Π1(dQ|Y1:n) is asymptotically normal in the sense of
Equation (5).
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3. Semi - parametric estimation of Q: Bernstein-von Mises property
and efficient estimation

The prior Π1 is based on a simple histogram prior on the f1, . . . , fR. For the sake
of simplicity, we present the case of univariate data; the multivariate case can
be treated similarly. Without loss of generality, we assume that the observations
belong to [0, 1] and note that, if Y = R, we can transform the data to [0, 1] via
some C1 diffeomorphism φ prior to the analysis. The prior relies on a partition
of the space [0, 1] into finitely many intervals {I1, I2, . . . }, and transforming
the data is equivalent to constructing a prior based on the corresponding par-
tition {φ−1(I1), φ−1(I2), . . . } of R. The construction of Π1 is analogous to the
construction considered in [27].

Let M ∈ N with M ≥ R and consider IM = (I(M)
m ,m ≤ κM ) a partition

of [0, 1] into κM bins, with κ(·) : N → N a strictly increasing sequence. Given
IM , we consider the model of piece-wise constant densities as the set, FM , of
densities with respect to Lebesgue measure, in the form:

fω =
κM∑
m=1

ωm

|I(M)
m |

1
I
(M)
m

, min
m

ωm ≥ 0,
κM∑
m=1

ωm = 1, (8)

where |I(M)
m | denotes the length of interval I(M)

m . For instance, one could consider
a sequence of dyadic partitions with κM = 2M . Such partitions are admissible for
sufficiently large M in the sense we detail below, and are used for the empirical
investigation of Section 5.

The parameters for this model are then Q and ω(M) = (ωmr)r=1,...,R
m=1,...,κM

, the
latter of which varies in the set

ΩM = {ω(M) ∈ [0, 1]κM×R ;
κM∑
m=1

ωmr = 1,∀r ∈ [R]}.

Through (8), we identify each ω(M) ∈ ΩM with a vector of emission densities
fω(M) ∈ FR

M , and thus a prior distribution ΠM over the parameter space Q ×
ΩM is identified with a prior distribution Π over Q × FR

M . The corresponding
posterior distribution is denoted ΠM (·|Y1:n) and is defined through (4).

Throughout this section, we write ωr := (ωmr,m ≤ κM ) and we denote by
M(IM ) the hidden Markov model associated with densities of the form (8).
Note that, for all M > 0, M(IM ) is of dimension (κM − 1)RR(R− 1) < ∞.

A key argument used in [24], to identify Q∗ from g
(3)
Q∗,f∗ , is to find a partition

IM for some M > 0 such that the matrix

F∗(IM ) :=

⎛
⎜⎜⎜⎜⎝

F ∗
1 (I(M)

1 ), · · · , F ∗
1 (I(M)

κM )
F ∗

2 (I(M)
1 ), · · · , F ∗

2 (I(M)
κM )

... · · · ·
...

F ∗
R(I(M)

1 ), · · · , F ∗
R(I(M)

κM )

⎞
⎟⎟⎟⎟⎠

has full rank. We call such a partition an admissible partition.



Efficiency and cut posterior in semiparametric HMMs 1823

Definition 1. A partition IM is said to be admissible for f∗
1 , . . . , f

∗
R if the rank

of F∗(IM ) is equal to R.

Remark 1. Although we are using piece-wise constant functions to model the
emission densities, we do not assume that the f∗

r , r ∈ [R] are piece-wise constant
and the simplified models M are not meant to lead to good approximation of
the emissions densities. However, as far as the parameter Q is concerned, the
likelihood induced by such a model is not misspecified but instead corresponds to
a coarsening of the data. Specifically, it corresponds to the likelihood associated
to observations of Y (M)

i = (1
I
(M)
1

(Yi), · · · ,1I
(M)
κM

(Yi)); for such observations this
simplified model leads to a well-specified likelihood. Note also that, although
we are modelling densities with respect to Lebesgue measure, we do not require
F ∗
r to have density with respect to Lebesgue measure since the quantities of

importance are the probabilities F ∗
r (IM)

m ), r ∈ [R], m ∈ [κM ].
This particular coarsening was introduced in the context of mixtures by [27].

It is not at all obvious how other types of coarsening can be found, which are
associated with well-specified parametric models for the coarsened data and the
parameter of interest Q.

3.1. Asymptotic normality and Bernstein-von Mises

In this section, we study the asymptotic behaviour of the marginal posterior
distribution of Q under model M(IM ), together with the asymptotic normality
of the maximum likelihood estimator Q̂n,M in this model. As mentioned in
Remark 1, the likelihood associated to model M(IM ) is given by

Ln(Q,ω(M)) =
R∑

i1,...,in=1
pQ(i1)

(
n−1∏
t=1

Qit,it+1fωit
(Y (M)

t )
)
fωin

(Y (M)
n ), (9)

with the abuse of notation fωit
(Y (M)

t ) =
∑κM

m=1
ωmitY

(M)
t (m)

|I(M)
m |

for t = 1, . . . , n.
In other words, our likelihood becomes one of a hidden Markov model with

finite state space and multinomial emission distributions. Under P∗, the coars-
ened observations Y

(M)
1:n arise from a hidden Markov model with multinomial

emission distributions, governed by parameters ω∗
(M) and transition matrix Q∗,

with ω∗
mr = F ∗

r (I(M)
m ). We write θ = θ(M) := (Q,ω(M)) for the parameter of

M(IM ), and suppress the superscript on θ when the dependence on M is clear.
Asymptotic normality of the maximum likelihood estimator (MLE) of para-

metric finite state space hidden Markov models was considered for instance in
[9], who showed that the MLE was asymptotically normal with covariance ma-
trix given by the inverse of the Fisher information matrix, which is given by the
limiting covariance matrix of the score statistics; see Lemma 1 of [9].

Let JM (θ) be the Fisher information matrix associated to the likelihood (9):

JM (θ∗) = lim
n→∞

E∗
[
−D2 logLn(Q∗, ω∗

(M))
]

n
,
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as defined in [9]. We also write JM [Q,Q], JM [ω, ω], and JM [Q,ω] to denote the
sub-matrices corresponding to the second derivatives with respect to (Q,Q),
(ω, ω) and (Q,ω) respectively.

The following theorem demonstrates that asymptotically normal, parametric-
rate estimators of the transition matrix exist, although such estimators may not
have optimal asymptotic variance.

Theorem 1. Let M > 0 and IM be an admissible partition for F∗, and let
Q̂n,M = Q̂

(M)
n (Y1:n) be the MLE in model M(IM ), given observations Y1:n.

Grant Assumption 1, and assume also that the transition matrix Q∗ is irre-
ducible and aperiodic, and that ω∗

mr > 0 for all m ∈ [κM ] and all r ∈ [R]. We
then have (up to label-swapping)

√
n(Q̂n,M −Q∗) ⇒∗ N(0, J̃−1

M ),

where J̃−1
M is positive definite and

J̃−1
M = (J−1

M )[Q,Q] = JM [Q,Q] − JM [Q,ω]JM [ω, ω]−1JM [ω,Q].

The main difficulty in the proof of Theorem 1 is showing that the Fisher
information matrix JM is invertible.

Proof. The model M(IM ) is a regular parametric HMM, hence using Theorem
1 of [9], we establish asymptotic normality of the MLE for the parameter θ =
(Q,ω(M)) as soon as JM is invertible. We prove invertibility of JM in Section C.1,
then projecting onto the Q co-ordinates gives the result.

To derive the Bernstein-von Mises Theorem associated to model M(IM ), we
need the following assumption on the prior distributions on Q and ω(M):

Assumption 2. (i) The prior ΠQ on Q has positive and continuous density on
Q.

(ii) The prior on ω(M) has positive and continuous density with respect to
Lebesgue measure.

Theorem 2. Let M > 0, IM be an admissible partition for f∗, and let ΠM be
a prior satisfying Assumption 2. Grant Assumption 1, and assume also that
that the transition matrix Q∗ is irreducible and aperiodic, and that ω∗

mr > 0 for
all m ∈ [κM ] and all r ∈ [R]. We then have (up to label-swapping)

‖ΠM (
√
n(Q− Q̂n,M ) ∈ (·)|Y1:n) −N(0, J̃−1

M )‖TV = oP∗(1).

As with the proof of Theorem 1, parametric results apply as soon as the
Fisher information matrix is seen to be invertible.

Proof. Inspecting the proof of Theorem 1 of [9], we see (for θ = (Q,ω(M)),
JM = JM (θ∗) the Fisher information and ln = log gn the log-likelihood) that

√
n(θ̂ − θ∗) = n− 1

2 J−1
M ∇θln(θ∗) + oP∗(1),
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which up to oP∗(1) is equal to the Tn of [17] at which their Bernstein-von Mises
result (Theorem 2.1) is centred. Then this result implies the total variation
convergence, in P∗-probability, of the posterior to the given normal distribution,
by considering the marginal posterior on Q. We remark further that the MLE
θ̂ is regular, which follows from the characterisations of Fisher information in
Lemmas 1 and 2 of [9], the expansion of the MLE above, and an application
of Le Cam’s third lemma (Example 6.7 of [55]) along the lines of the proof of
Lemma 8.14 in [55].

An interesting feature of Theorems 1 and 2 is that they essentially only
require that IM is an admissible partition of F∗. For a given partition, this is
an assumption on F∗, and indeed the choice of the partition is important. Note,
however, that under Assumption 1 and, for instance, if the (Lebesgue) densities
f∗
r are positive and continuous, then for all sequences of embedded partitions

(IM )M with radius going to 0 there exists an M such that IM is admissible for
F∗. More discussion is provided in Section 5.

Combining Theorems 1 and 2, we see that credible regions for Q, based on the
posterior associated to ΠM , are also asymptotic confidence regions. Their size
may not be optimal however, even asymptotically. To ensure that such credible
regions have optimal size while being asymptotic confidence regions, we would
require that J̃−1

M is the best possible (asymptotic) variance, but this is not true
in general; while J̃−1

M is the efficient covariance matrix for the estimation of Q
in model M(IM ), it is not necessarily the semiparametric efficient covariance
matrix for the estimation of Q in model (3). The existence of an efficient esti-
mator of Q in the semiparametric hidden Markov model, with likelihood (3),
has not been established, although the fact that

√
n-convergent estimates of Q

exist in the literature (see Section C.1) indicate that semiparametric efficient
estimation of Q should be possible.

In the following section we construct an efficient estimator for Q and a prior
leading to an efficient Bernstein-von Mises theorem.

3.2. Efficient estimation

In [27], in the context of semiparametric mixture models with finite state space,
the authors also consider the prior model (8) for the emission distributions.
They derive for fixed M a Bernstein-von Mises theorem similar to Theorem 2
and they show that, if we let M = Mn increase to infinity sufficiently slowly
as n → ∞, and if the corresponding partitions IMn are embedded with radius
going to 0, then J̃Mn converges to the efficient semiparametric Fisher matrix for
the mixture weights. This allows them to define an efficient estimator, whose
value given n observations is the maximum likelihood estimator in the histogram
model with Mn bins.

In this section we prove a similar result, however the proof is significantly
more involved than in the case of mixture models. To study the theory on
efficient semiparametric estimation of Q in the semiparametric HMMs, we follow
the approach of [46]. We first prove the LAN expansion in local sub-models,
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which allows us to describe the tangent space, and then we prove that J̃M
converges to J̃ as M goes to infinity where J̃ is the semiparametric efficient
Fisher information matrix for Q. Throughout Section 3.2 we assume that the
F ∗
r have density f∗

r with respect to Lebesgue measure on [0, 1] and that the
following holds:

Assumption 3. For all i, j ∈ [R], Q∗
ij > 0.

3.2.1. Scores and tangent space in the semiparametric model

We begin by exhibiting the local asymptotic normality (LAN) expansion for our
model, following the framework of [46]. As is usual in semiparametric efficiency
arguments, this involves identifying the score functions and LAN norm along
one-dimensional sub-models passing through the true parameter; see Chapter
25 of [55] for discussion in the iid setting. Since these sub-models are themselves
parametric, this identification can be made by following the framework of [19],
who considered asymptotic normality in the context of parametric HMMs. A
more thorough treatment, alongside a recollection of the relevant definitions and
results in [46], is provided in [48], we aim to give an overview.

The first step is to exhibit a LAN expansion for the semiparametric model
we consider. The parameter space is Θ = Q×FR and we consider the tangent
space, in the sense of Definition 1 of [46], at the parameter (Q∗, f∗) as

H = {(a,h), a ∈ RR×(R−1), h = (hr)Rr=1, hr ∈ Hr},

where Hr = Hr(f∗
r ) = {hr ∈ L2(f∗

r ) :
∫
hrf

∗
r = 1, ‖hr‖∞ < ∞}, and where we

use the parameterisation Q̃ defined in Section 2.1. Write

θn(a,h) =
(
Q∗ + a√

n
, f∗

1 (1 + h1√
n

), . . . , f∗
R(1 + hR√

n
)
)
.

Then θn(a,h) is a perturbation of the parameter θ∗ = (Q∗, f∗) along the path
characterised by a given element (a,h) ∈ H. Consider the sub-model

Θa,h = {θt = (Q∗ + ta, (f∗
r (1 + thr) : r ∈ [R])) , |t| ≤ ε},

for some ε (depending on a,h) sufficiently small that Θa,h ⊂ Θ. Then, for given
a,h and for sufficiently large n, the perturbed parameters θn(a,h) are elements
of Θa,h. This means that, for each a,h, we can make an asymptotic expansion
of the log-likelihood ratio between θn(a,h) and θ∗ by considering the likelihood
in the sub-model Θa,h. To this end, we expand the gradient of the log-likelihood
�
(a,h)
n (t), in Θa,h at t0 = 0 as

1√
n
∇t�

(a,h)
n (t0) = 1√

n

n∑
k=1

Δ(a,h)
k,∞ + oL2(P∗)(1),

where
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Δ(a,h)
k,∞ = Δ(a,h)

k,∞ (Y−∞:k) = E∗[φ(Xk−1, Xk, Yk)|Y−∞:k]

+
k−1∑

i=−∞
(E∗[φ(Xi−1, Xi, Yi)|Y−∞:k] − E∗[φ(Xi−1, Xi, Yi)|Y−∞:k−1]) ,

(10)

and where, writing arR = −
∑

s ars and Qr,R = 1 −
∑

s Qrs,

φ(Xk−1, Xk, Yk) =
R∑

r=1

R∑
s=1

1{Xk−1 = r,Xk = s} ar,s
Q∗

r,s

+
R∑

s=1
1{Xk = s}hs(Yk).

(11)
These formulae arise as an application of the results of Section 6.1 of [19] to the
(parametric) model Θa,h.

We note that the contribution of the first term of the right hand side of (11),
which may be rewritten as

R∑
r=1

R−1∑
s=1

(
1{Xk−1 = r,Xk = s}

Q∗
rs

− 1{Xk−1 = r,Xk = R}
Q∗

rR

)
ars,

to the expression defined in (10) is precisely the score function for estimation
in the model Θa,0, in which the emission densities are fixed and known. We
see that this is equal to aTSQ∗(Y−∞:k), for SQ∗ the score at Q∗ in the R ×
(R − 1)-dimensional parametric model with known emissions and unknown Q.
Specifically, SQ takes the form

SQ∗(r, s)(Y−∞:k)

=
P∗(Xk−1 = r,Xk = s|Y−∞:k)

Q∗
rs

−
P∗(Xk−1 = r,Xk = R|Y−∞:k)

Q∗
rR

+
k−1∑

i=−∞

{
P∗(Xi−1 = r,Xi = s|Y−∞:k) − P∗(Xi−1 = r,Xi = s|Y−∞:k−1)

Q∗
rs

−
P∗(Xi−1 = r,Xi = R|Y−∞:k) − P∗(Xi−1 = r,Xi = R|Y−∞:k−1)

Q∗
rR

}
,

(12)

where we index with (r, s) ∈ [R] × [R − 1] for convenience sake, but consider
SQ∗ as a vector of length R(R− 1).

We then rewrite (10), substituting also the expression in (11) as

Δ(a,h)
k,∞ = aTSQ∗ +

R∑
r=1

{
P∗(Xk = r|Y−∞:k)hr(Yk)

+
k−1∑

i=−∞
(P∗(Xi = r|Y−∞:k) − P∗(Xi = r|Y−∞:k−1))hr(Yi)

}
.

(13)
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To set notation for what follows, we will denote the rth summand of the
above display, for a given direction hr, as

Hr(hr)(Y−∞:k) := P∗(Xk = r|Y−∞:k)hr(Yk)

+
k−1∑

i=−∞
(P∗(Xi = r|Y−∞:k) − P∗(Xi = r|Y−∞:k−1))hr(Yi).

(14)

The above discussion means that, through a Taylor expansion, we can write

�n(θn((a,h))) − �n(θ∗) = 1√
n

∞∑
k=1

Δ(a,h)
k,∞ − 1

2n

(
− d2

dt2
|t=t1�

(a,h)
n (t)

)

= Δn,(a,h) −
1
2‖(a,h)‖2

H + oP∗(1),

with t1 ∈ (0, n−1/2) and by choosing ‖(a,h)‖2
H the Fisher information at t = 0

in the model Θa,h, which is defined in [19] as the L2 norm1 of Δ(a,h)
0,∞ . We

have Δn,(a,h) = 1√
n

∑∞
k=1 Δ(a,h)

k,∞ , is linear in (a,h) and satisfies Δn,(a,h) →
N(0, ‖(a,h)‖2

H), by the discussion directly preceding Theorem 2 in [19]. We also
used above the local uniform convergence of the second derivative of the score to
the Fisher information matrix at t = 0 in Θa,h, which is guaranteed by Theorem
3 of [19].

The preceding discussion shows that our model is LAN, which is the first
step in understanding efficient estimators of a parameter of interest. In our
case, the parameter of interest will be vn(Pn,θn(a,h)) = Q, which has ‘derivative’
v̇(a,h) = a ∈ Rp in the sense of [19], with p = R(R− 1).

Following what precedes, we apply the convolution theorem also described
in [46], and originally proven in [56]. This theorem essentially states that the
limiting law of a regular estimator is lower bounded by that of a Gaussian ran-
dom variable, whose covariance matrix is the covariance of the efficient influence
function, which is itself characterised by the tangent space and the parameter
‘derivative’ v̇.

The arguments are similar to those used in the iid setting, see for instance
Section 25 of [55]. The finer details of the application of [55] to our context
are given in [48]. This essentially involves identifying influence functions v̇Tb
for estimation of one-dimensional functions bTQ at bTQ∗, as we vary b ∈ Rp.
By considering the elements for which a = 0, we first find that v̇Tb is in the
orthogonal complement (with respect to the LAN norm on H) of the linear
span of the scores in the models Θ0,h, which is the span of the Hr(hr) as we
vary r and hr ∈ Hr. Write A for the projection onto this space, and write

S̃Q = SQ −ASQ (15)

1The L2 norms of all Δ(a,h)
k,∞ coincide by stationarity.
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for the projection of the score function SQ onto the orthogonal complement of
this space, which we call the efficient score. By making further standard argu-
ments, we find that the influence function v̇Tb has variance bT J̃−1b, where J̃ is
the covariance matrix of the efficient score S̃Q∗ , which is the efficient information
matrix. By varying b, this characterises the optimal limiting covariance matrix
as J̃−1, the inverse efficient information matrix.

In the following section, we show that J̃M converges to J̃ when M goes
to infinity and that, if Mn is a sequence going to infinity slowly enough, the
sequence of estimators (Q̂n,Mn)n≥1 is asymptotically efficient and the posterior
distributions ΠMn(dQ|Y1:n) satisfy the efficient Bernstein-von Mises theorem.

3.2.2. Approximation by the models M(IM )

To prove that J̃M converges to J̃ , we require some additional assumptions on
the true generating process and the partitions:

Assumption 4. For all r = 1, . . . , R, the densities f∗
r are continuous, (Lebesgue)

almost-everywhere positive, linearly independent and

∀r, s ≤ R 0 < inf
x

f∗
r (x)
f∗
s (x) < sup

x

f∗
r (x)
f∗
s (x) < ∞.

We also consider a sequence of partitions with vanishing radius.

Assumption 5. The sequence (IM )M≥R of partitions is embedded, and

max
m≤κM

Vol(I(M)
m ) → 0, as M → ∞,

where Vol(A) denotes the Lebesgue measure of A.

Assumption 5 is directly under the control of the practitioner, and is verified
for instance by considering nested dyadic partitions, as is done in Section 5.
Assumption 4 is an assumption on the data generating process, although is
very common in the context of semiparametric efficiency. Note also that, under
Assumptions 4 and 5, there exists M0 > 0 for which IM0 is admissible for f∗.

In Proposition 1, we show that the efficient Fisher information matrix is
precisely the limit of J̃M . To do this, we first define the efficient scores S̃

(M)
Q∗

for the histogram models, whose covariance matrix will be J̃M , analogously to
what was done in Section 3.2.1 in the context of the full semiparametric model.

Recall, from Remark 1, that the likelihood in the model with piece-wise con-
stant emissions corresponds to a likelihood of a HMM with multinomial emis-
sion distributions and observations Y

(M)
i = (1

I
(M)
1

(Yi), · · · ,1I
(M)
κM

(Yi)), and so
we emphasize in our notation that the scores in M(IM ) depend only on these
summaries. A straightforward adaptation of the earlier presentation then leads
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us to define the score functions for Q in M(IM ) by

S
(M)
Q∗ (r, s)(Y (M)

−∞:k)

=
P∗(Xk−1 = r,Xk = s|Y (M)

−∞:k)
Q∗

rs

−
P∗(Xk−1 = r,Xk = R|Y (M)

−∞:k)
Q∗

rR

+
k−1∑

i=−∞

{
P∗(Xi−1 = r,Xi = s|Y (M)

−∞:k) − P∗(Xi−1 = r,Xi = s|Y (M)
−∞:k−1)

Q∗
rs

−
P∗(Xi−1 = r,Xi = R|Y (M)

−∞:k) − P∗(Xi−1 = r,Xi = R|Y (M)
−∞:k−1)

Q∗
rR

}
.

(16)

for (r, s) ∈ [R]× [R− 1]. For the model IM , the perturbations on the emissions
vary in

Hr,M := {h =
κM∑
m=1

αm1Im(y), αm ∈ R,

∫
hf∗

r,M (y)dy = 0}.

and we then define, for hr ∈ Hr,M ,

Hr,M (hr)(Y (M)
−∞:k) = P∗(Xj = r|Y (M)

−∞:k)hr(Yk)

+
k−1∑

i=−∞

(
P∗(Xi = r|Y (M)

−∞:k) − P∗(Xi = r|Y (M)
−∞:k−1)

)
hr(Yi).

(17)

Following again the arguments of Section 3.2.1, we write AM for the projection
onto the space spanned by the Hr,M (hr), and finally define

S̃
(M)
Q∗ = S

(M)
Q∗ −AMS

(M)
Q∗ ,

whose covariance matrix is J̃M , the efficient Fisher information matrix for the
model M(IM ).

The convergence of S̃(M)
Q∗ to S̃Q∗ is then established by a martingale argument.

To show convergence of the projection operators AM to A is more involved; we
use a deconvolution argument which shows that boundedness in the space of
the nuisance scores Hr(hr) implies boundedness of the hr in the index space
Hr (and likewise for Hr,M (hr),Hr,M ). These intermediate arguments, and the
proof of the following results, are in Section 6.

Proposition 1. Grant Assumptions 1, 3–5. Then

S̃
(M)
Q∗ → S̃Q∗ , M → ∞

where the convergence is in L2(P∗). Moreover, we have J̃M → J̃ as M → ∞
where J̃ ≥ J̃M is the efficient information for estimating Q in the full data
model, and is invertible.
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From Proposition 1, we deduce the following result.

Theorem 3. Let Q̂n = Q̂
(Mn)
n where Mn → ∞ sufficiently slowly. Then under

Assumptions 1, 3–5, Q̂n is a P∗-regular estimator and satisfies (up to label-
swapping) √

n(Q̂n −Q∗) ⇒∗ N(0, J̃−1)

where J̃ is the variance of the efficient score function, as defined in Proposi-
tion 1. In particular, Q̂n is an efficient estimator of Q in the full semipara-
metric model. Moreover, for Πn a sequence of priors placing its mass on mod-
els M(IMn) respectively, and satisfying Assumption 2, we have (up to label-
swapping) that∥∥∥Πn(

√
n(Q− Q̂n)|Y1:n) −N (0, J̃−1)

∥∥∥
TV

= oP∗(1).

4. Cut posterior contraction

In what follows, we study contraction rates for the cut posterior Πcut(·|Y1:n)
defined in Section 2.

4.1. Concentration of marginal densities g
(�)
Q,f

In this section, we present Proposition 2 which controls Πcut(‖g(�)
Q,f − g

(�)
Q∗,f∗‖ ≤

εn|Y1:n). This result follows from Theorem 7, which is an adaptation of the
general approach of [29] and is of independent interest; see Section B for full
details.

For the sake of simplicity, we consider a prior in the form Π2(df |Q) = Π2(df);
extension to the case where the prior Π2 depends on Q is straightforward from
Section B. Note that, in any case, the conditional posterior on f given Q depends
on Q through the likelihood.

Hence, similarly to [57], we consider the following assumptions used to verify
the Kullback-Leibler condition.

Assumption 6. Let εn, ε̃n > 0 denote two sequences such that ε̃n ≤ εn = o(1)
and nε̃2n → ∞. Assume that the prior Π2 on FR satisfies the following conditions:

A. There exists CΠ2 > 0, depending on the choice of prior Π2 and a sequence
Sn ⊂ FR, such that Π2 (Sn) � exp

(
−CΠ2nε̃

2
n

)
and such that, for all f ∈ Sn,

there exists a set S ⊂ Y and functions f̃1, . . . , f̃R satisfying, for all 1 ≤ i ≤ R

and for CR,Q = 4 + log( 2R
minij Q∗

ij
) + 104 R2

(minij Q∗
ij)5

,

∫
S

[
|f∗

i (y) − fi(y)|2

f∗
i (y) +

∣∣f∗
i (y) − f̃i(y)

∣∣2
f̃i(y)

]
λ(dy) ≤ ε̃2n;

∫
S

f∗
i (y) max

1≤j≤R
log

(
f̃j(y)
fj(y)

)
λ(dy) ≤ ε̃2n;
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Sc

f∗
i (y) max

1≤j≤R
log

(
f∗
j (y)
fj(y)

)
λ(dy) ≤ CR,Qε̃

2
n;∫

Sc

[f̃i(y) + f∗
i (y)]λ(dy) ≤ ε̃2n.

B. For all constants C > 0, there exists a sequence (Fn)n≥1 of subsets of FR

and a constant C ′ > 0 such that

Π2 (Fc
n) = o

(
exp

(
−Cnε̃2n

))
, and N

( εn
12 ,Fn, d

)
� exp

(
C ′nε2n

)
,

where N
(
εn
12 ,Fn, d

)
is the εn

12 -covering number of Fn with respect to d(f, f̃) =
max

i=1,...,R
‖fi − f̃i‖L1 .

Proposition 2. Let (Yt)t≥1 be observations from a finite state space HMM with
transition matrix Q and emission densities f = (fr)r=1,...,R. Grant Assump-
tions 1–5, and consider the cut posterior obtained by choosing Π1 as the prior
ΠM of Theorem 2 associated to the admissible partition IM , and Π2 such that
Assumption 6 is verified for suitable εn, ε̃n satisfying nε2n � logn. Then, for
any Kn → ∞,

Πcut({(Q, f) : ‖g(3)
Q,f − g

(3)
Q∗,f∗‖L1 > Knεn}|Yn) = oP∗(1),

up to label-swapping.
Remark 2. Given Proposition 2, we may use the results of [57] to derive pos-
terior contraction rates for a number of priors Π2. We explore the case that Π2
is a (product of) Dirichlet process mixture of normals in Section 4.4, as this is
a popular choice for density estimation.
Remark 3. We could also choose Π1 = Π1,n equal to ΠMn for some Mn → ∞
sufficiently slowly to give the refined control over the marginal cut posterior on
Q as described in Theorem 3.

4.2. Concentration of emission distributions

Proposition 2 applies the general contraction result of Theorem 7 to obtain an
estimation result for the marginal distribution of the observations. Given that
we already have control over the transition matrix in this setting when using Π1
as a histogram prior, it remains to establish concentration rates for the emission
distributions. Theorem 4 allows us to translate a rate on a marginal distribution
into a corresponding rate on the emission distribution.
Theorem 4. Let the HMM satisfy the assumptions of Proposition 2, and let
g
(3)
Q∗,f be the marginal density for three consecutive observations under the pa-

rameters (Q∗, f). Then there exists a constant C = C(f∗, Q∗) > 0 such that, for
sufficiently small ‖g(3)

Q∗,f − g
(3)
∗ ‖L1 ,

R∑
r=1

‖fr − f∗
r ‖L1 ≤ C‖g(3)

Q∗,f − g
(3)
∗ ‖L1 .
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Remark 4. Theorem 4 provides an inversion inequality from L1 to L1, which
has interest in both Bayesian and frequentist estimation of emission densities.
It is the first such result for the L1 distance, with Theorem 6 of [15] estab-
lishing a similar inequality in the L2 case. Given that the testing assumptions
of Theorem 7 (and more generally, of results based on [29]) are much more
straightforward to verify for the L1 distance, our result has particular interest
in the context of Bayesian (or pseudo-Bayesian) settings.

Using Proposition 2 and Theorem 4 together with Theorem 2, we easily
deduce the following.

Theorem 5. Let Y1:n be distributed according to the HMM with parameters
Q∗ and f∗, and grant Assumptions 1–5. Let Π1 = ΠM and let Π2 satisfy
Assumption 6. Then, for εn as in Proposition 2 and any Kn → ∞, we have
(up to label-swapping)

Πcut({‖Q−Q∗‖ >
Kn√
n
, max
r=1,...,R

‖fr − f∗
r ‖L1 > Knεn}|Y1:n) = oP∗(1),

and
‖Πcut(

√
n(Q− Q̂n,M ) ∈ (·)|Y1:n) −N(0, J̃−1

M )‖TV = oP∗(1).

4.3. Concentration of smoothing distributions

When clustering data, the smoothing distribution P∗(Xk = x|Y1:n) is often of
interest. Our final main result concerns recovery of these probabilities using a
(cut) Bayesian approach, establishing contraction of the posterior distribution
over these smoothing distributions in total variation. We do so by combining
novel arguments with the inequality given in Proposition 2.2 of [16]. We recall
the notation θ = (Q, f).

Theorem 6. Grant the assumptions of Theorem 5, together with

max
r∈[R]

‖
√

f∗
r ‖1 < ∞, (18)

and assume that

Π2(max
i

‖fi‖L2 > eγnε
2
n |Q) ≤ C ′e−2γnε2n ; max

i
‖f∗

i ‖L2 ≤ eγnε
2
n ; (19)

for some constants γ,C ′ > 0. Then, for εn as in Proposition 2 for which nε3n → 0
and for any Kn → ∞, we have (up to label swapping)

Πcut(‖Pθ(Xk = x|Y1:n) − P∗(Xk = x|Y1:n)‖TV > Knεn|Y1:n) = oP∗(1).

Remark 5. The requirement that nε3n → 0 is used in the proof, although we
expect that this condition is not fundamental and it may be possible to weaken
with appropriate proof techniques. It is not clear if assumption (19) is crucial,
although it is anyway very weak and satisfied, for instance, by choosing a prior
Π2 for which EΠ2(‖fr‖2

L2) < ∞ for all r.
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4.4. Example: Dirichlet process mixtures of Gaussians

In this section, we show that Assumption 6 is verified when Π2 is a Dirichlet
process mixture of Gaussians. We use the results of Section 4 of [57], in which
Assumption 6 is verified for f∗ = (f∗

r )Rr=1, with each f∗
r in the class

P(β, L, γ) = {f ∈ F : log f is locally β − Hölder with derivatives lj = (log f)(j)

and |lkβ
(y) − lkβ

(x)| ≤ r!L(y)|y − x|β−kβ when |x− y| ≤ γ},

and satisfying weak tail assumptions which we give in Assumption 8. Here
β > 0, L is a polynomial function, γ > 0 and kβ = �β� − 1 for �·� the usual
ceiling operator.

The following result, which is a corollary of Theorem 4.3 of [57], shows that,
for prior choices satisfying Assumption 9, the conditions of Theorem 5 are
verified with

εn = n− β
2β+1 log(n)t, (20)

where t > t0 ≥
(
2 + 2

γ + 1
β

)(
1
β + 2

)−1
.

Corollary 1. Let Y1:n be distributed according to the HMM with parameters Q∗

and f∗, and grant Assumptions 1–5. Let Π1 = ΠM and let the prior Π2 on FR

take the form of an R− fold product of Dirichlet process mixtures of Gaussians,
in which the base measure α and variance prior Πσ satisfy Assumption 9. Sup-
pose further that the true emission distributions (f∗

i )Ri=1 satisfy Assumption 8
and that, for each i, f∗

i ∈ P(β, L, γ). Then Theorems 5 and 6 hold with εn as
in (20), where t > t0 ≥

(
2 + 2

γ + 1
β

)(
1
β + 2

)−1
.

Proof. The proof follows from [57] who showed that Assumption 6 is verified
under the stated assumptions with λ(dy) the Lebesgue measure, appropriately
chosen Bn, ε̃n = n− β

2β+1 log(n)t0 with t0 as in the statement, and εn as in the
statement.

The rate n− β
2β+1 is minimax optimal for the classes P(β, L, γ) under iid sam-

pling assumptions, see [45]. Although not proved here, we strongly believe the
rate εn to be minimax up to logn factors, since an iid sampling assumption
corresponds to estimating f1, . . . , fR after observing X1:n, Y1:n which is easier
than estimating f1, . . . , fR from Y1:n only. We thank the anonymous reviewer
for pointing this out to us.

Remark 6. It is also possible to verify the conditions of Proposition 2 in the
case of a countable observation space, again by following the example set out in
[57]. In this case, Assumption 6 is verified with λ(dy) the counting measure
on N by using a Dirichlet process prior on the emissions whose base measure
satisfies a tail condition, and under a tail assumption on the true emissions. In
this case, a parametric rate up to log factors is obtained.
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5. Practical considerations and simulation study

In this section, we discuss the practical implication of the method and results
described in the previous sections2. As described in Section 2.2, we consider a
cut posterior approach where Π1 is based on a histogram prior on the emission
distributions and where Π2 is a Dirichlet process mixture of normals for the
emission densities. We first describe the implementation of Π1(Q|Y1:n).

5.1. MCMC algorithm for Q

We first define the construction of the partition IM . In Section 3, it is de-
fined as a partition on [0, 1] (or more generally on [0, 1]d), but this is eas-
ily generalized to a partition of R (or Rd) via an appropriate C1 diffeomor-
phism φ. In this section we restrict ourselves to dyadic partitions, i.e. I(M)

m =
(φ−1((m − 1)2−M ), φ−1(m2−M )), m = 0, · · · , 2M − 1, where φ : R −→ [0, 1] is
a C1 diffeomorphism.

Recall that, for Theorems 1 and 2 to be valid, we merely require that I(M) =
(I(M)

m ,m ≤ 2M−1) is admissible and that, for all r ≤ R,m ≤ 2M−1, F ∗
r (I(M)

m ) >
0. Interestingly Theorem 3 does not restrict the choice of φ, but restricts the
choice of M . In practice, however, the choice of M and φ matters and more
details are provided below.

Once IM is chosen, we consider a prior on Q,ωM (suppressing the M hence-
forth) and, for the sake of computational simplicity, we consider the following
family of Dirichlet priors:

∀i ≤ R, Qi· = (Qij , j ∈ [R]) ∼ D(γi1, · · · , γiR)
ωi· = (ωim,m ∈ [2M ]) ∼ D(βi1, · · · , βi2M ).

We then use a Gibbs sampler on (Q,ω,X) where given X, Y1:n,

Qi·
ind∼ D(γi1 + ni1, · · · , γiR + niR), nij =

n∑
t=2

1Xt−1=i,Xt=j

ωi·
ind∼ D(βi1 + N

(i)
0 , · · · , βi2M + N

(i)
2M−1), N (i)

m =
n∑

t=1
1
Yt∈I

(M)
m ,Xt=i

,

and the conditional distribution of X given Q,ω, Y is derived using the forward-
backward algorithm (see [44] or [23]). To overcome the usual label-switching
issue in mixtures and HMMs, we take the approach of Chapter 6 of [44] which
deals with MCMC in the mixtures setting, in which the authors propose rela-
belling relative to the posterior mode as a post-processing step (with likelihood
computed also with forward-backward).

2Code is provided at https://github.com/dm1729/HMMs .

https://github.com/dm1729/HMMs 
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In our simulation study, we have considered R = 2 hidden states with tran-
sition matrix and emission distributions

Q∗ =
(

0.7 0.3
0.2 0.8

)
, F ∗

1 ∼ N (−1, 1), F ∗
2 ∼ N (1, 1).

We have considered data of size n = 1000, 2500, 5000, 10000, obtained by
restricting a single simulated data set of size 10000. To study the effect of M
we run our MCMC algorithm targeting Π1(·|Y1:n) with κM = 2, 4, 8, 16, 64, 128
bins.

We took γij = βij = 1 so that independent uniform priors over the simplex
were used for rows of the transition matrix and the histogram weights, and chose

φ(y) =
{

(1 + e−y)−1 |y| > 3
ζ + ηy |y| ≤ 3

with ζ, η ∈ R chosen so that φ is continuous. The sigmoid y �→ (1 + e−y)−1

is a popular transformation from R to [0, 1]. However, its steep gradient near
y = 0 means that a uniform partition of [0, 1] is mapped to a partition of R

concentrated tightly around y = 0. This in turn leads to an over-coarsening
of the data, with many data points lying in the two unbounded bins of the
partition which extend to ±∞. The linear interpolation in the range |y| ≤ 3 is
thus intended to provide more discrimination between data points lying in this
interval, which includes the vast majority (approx 97.5%) of the data.

We ran the MCMC for 150000 iterations for each binning, discarding 10000
iterations as burn-in and retaining one in every twenty of the remaining draws,
for a total of 7000 posterior draws.

The fitted distributions for Q under the priors Π1, with varying M , are
shown in Figures 2, 3, 4 and 5, and demonstrate Theorems 2 and 3 as we detail
below. To make an additional comparison with a typical Bayesian nonparametric
approach, we also fitted a model with a prior Π′, which uses Dirichlet priors on
the transition matrix as in Π1 and Dirichlet process mixtures of Gaussians to
model the emission densities. We defer further details of Π′ to Section 5.2 as
it is more relevant as a comparison with Π2, since both have a much higher
computational cost in comparison to Π1. In Figure 6, we compare distributions
for the transition matrix under Π′(·|Y1:n) with the distribution under Π1(·|Y1:n)
for a selection of values of M , but we emphasize the large difference in compute
time.

Even when κM = 2, the posterior distribution under the prior Π1, as n
increases, looks increasingly like a Gaussian, though its variance is quite large.
For slightly larger values of κM , this Gaussian shape is preserved but with lower
variance, demonstrating Proposition 8 which states that the Fisher information
grows as we refine the partition. However, we can also see that taking κM too
large leads to erroneous posterior inference, which may simply be biased (for
instance when n = 5000 and we take κM = 64) or lose its Gaussian shape entirely
(for instance when n = 1000 and κM ∈ {64, 128}). This demonstrates that
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Fig 2. Posterior draws for Q under priors Π1 with κM ∈ {2, 4, . . . , 128} bins when n = 1000.

Fig 3. Posterior draws for Q under priors Π1 with κM ∈ {2, 4, . . . , 128} bins when n = 2500.

Fig 4. Posterior draws for Q under priors Π1 with κM ∈ {2, 4, . . . , 128} bins when n = 5000.
The dotted orange line is the reference mean, taken when κM = 4. The dashed green lines
are the bounds of the 90% credible set when κM = 8.
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Fig 5. Posterior draws for Q under priors Π1 when n = 10000, when using κM ∈
{2, 4, . . . , 128} bins.

Fig 6. Posterior draws for Q under priors Π1 (for κM ∈ {2, 4, 8, 16, 32}) and Π′ (DP Mixture
line) when n = 2500 (top) and n = 10000 (bottom).
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the requirement of Theorem 3, that Mn → ∞ sufficiently slowly, has practical
consequences and is not merely a theoretical artefact.

While the latter issue (of a non-Gaussian shaped posterior) is easily diagnosed
by eye, the former issue (of a biased, Gaussian-like posterior) is somewhat more
worrisome, as the bias cannot be so easily identified when one does not have
access to the true data generating process. In Figure 6, we see preliminary
empirical evidence that this problem of bias may also be present when taking a
fully Bayesian approach based on the prior Π′, indicating that our approach may
work better than a fully Bayes approach if Mn can be tuned well. We emphasize
however that this simulation study is very limited in scope, and is only intended
to demonstrate our results rather than to make conclusive comparisons.

For the histogram prior Π1, we propose the following heuristic to tune κM

after computing the posterior for a range of different numbers of bins. For a small
number of bins (say κM = 4), take the posterior mean as a reference estimate
(say Q̂0), which should have low bias and moderate variance. For higher κM

values, compare Q̂0 κM -specific posterior mean and the 1 − α credible sets Cα,
for α = 0.05, 0.1 say. We consider that κM is not too large if Q̂0 is well within
the bounds of Cα. We have added some further markings to Figure 4 which
illustrate this approach.

We emphasize that it is most important not to refine the partition too quickly,
so even when adopting this heuristic one may wish to favour lower values of κM .
When fitting Π2 as discussed in Section 5.2, we used posterior draws based on
one possible refinement, in which κM = 4 for n = 1000, κM = 8 for n ∈
{2500, 5000} and κM = 16 for n = 10000 – see Figure 7.

5.2. MCMC algorithm for {fr}R
r=1

After simulating draws from the marginal posterior Π1 of Q, we then use a Gibbs
sampler to target the cut-posterior distribution Π2(f |Q,Y ), for which the prior
Π2(f |Q) is a Dirichlet mixture as follows. For each hidden state r (whose labels
are fixed after relabelling in Section 5.1), we use independent dirichlet Process
mixtures of normals to model fr:

fr(y) =
∫

φσ(r)(y − μ)P (r)(dμ), P (r) iid∼ DP (M0,N (μc, σ
2
c )), (21)

with M0 = 1, μc = 0 and σ2
c = 1. The kernels φσ are centred normal distri-

butions with variance v = σ2, and v(r) is equipped with an InvGamma(ασ, βσ)
prior3. Note that the scale parameter σ is fixed across μ’s for each r. The MCMC
procedure will rely on the following stick breaking representation of (21) involv-
ing mixture allocation variables s(r) = (s(r)

i )i≤n and stick breaks (V (r)
j )j∈N

3We remark that Proposition 1 verifies the conditions of Proposition 2 under an inverse
gamma prior on the standard deviation. We have instead adopted in our simulations the
common practice of placing an inverse gamma prior on the variance for computational conve-
nience.
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Fig 7. Cut posterior mean and pointwise 90% credible bands for emissions when refining the
partition with n = 2500 (top), n = 5000 (middle) and n = 10000 (bottom), each with C = 10
interior iterations. See top plot of Figure 8 for n = 1000.
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associated to a vector of weights (W (r)
j )j∈N:

Yi|X, μ, s, σ,W
iid∼ φσ(r)(· − μ(Xi)

si ); si|V,X, μ, σ2 indep∼ W (Xi),

W
(r)
j = V

(r)
j

∏
i<j

(1 − V
(r)
i ); X ∼ MarkovChain(Q) (22)

V
(r)
j

iid∼ β(1,M0); μ
(r)
j ∼ N (μc, σ

2
c ); v(r) ∼ InvGamma(ασ, βσ).

In order to approximately sample from the corresponding posterior, we re-
place the above prior with the Dirichlet-Multinomial process (see Theorem 4.19
of [30]) with truncation level Smax = �√n�, in which W is instead sampled from
a Dirichlet distribution with parameter

α =
(

M0

Smax
,
M0

Smax
, · · · , M0

Smax

)
. (23)

This truncation level is suggested as a rule of thumb in the remark at the end of
Section 5.2 of [30]. Further details on implementation can be found in Section E.

Nested MCMC For the ith draw from the cut posterior, we would ideally
sample first Qi from Π1(·|Y ), and then fi = (fir)r from Π2(·|Qi, Y ). For the first
step, we used Algorithm SA1 with burn in and thinning. However, we encounter
difficulty when simulating from Π2(·|Qi, Y ), as the Qi changes when i changes,
and so an MCMC approach effectively needs to mix i by i. In order to achieve
this, we run a nested MCMC approach (see [49]) in which, for each i, an interior
chain of length C is run, taking the final draw from the interior chain as our ith
global draw.

Concerns about the computational cost of nested MCMC have been ex-
pressed, especially when there is strong dependence between the two modules
(in our case, representing the transition and emissions) as in Section 4.2 of [40].
However, we found little improvement beyond C = 10 interior iterations, see
Figure 8. We expect that this is down to the well localised posterior Π1(·|Y ) on
Q which means that the Qi, and hence the targets Π2(·|Qi, Y ), don’t vary too
much i by i. Plots of the posterior mean when C = 10 are detailed in Figure 7.
Since we used the thinned draws of Q from Π1, we ran 7000 such interior chains.

When using such a small number of iterations for the interior chain, nested
MCMC is not costly compared to other cut sampling schemes (see e.g. Table
1 of [40]). We further suggest that the computational cost compared to fully
Bayesian approaches with fixed targets is not as high as it may seem, given
that the use of such interior chains should, at least partially, subsume the need
for thinning. Indeed running such interior chains with a fixed target for each i
would be precisely the same as thinning. A more detailed development of this
idea can be found in Section 4.4 of the supplement to [12].

Comparison to fully Bayesian approach As mentioned in Section 5.1, we
also consider the fully Bayesian model with prior Π′ as a means of comparison.
The prior Π′ independently places a Dirichlet prior on the rows of the transition
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Fig 8. Cut posterior mean and pointwise 90% credible bands for emissions with n = 1000
and four bins. Top: C = 10 interior iterations; Bottom: C = 100 interior iterations.

matrix as discussed beforehand Π1, as well as a Dirichlet process mixture prior
over the emission densities as discussed earlier in this section for Π2.

In the implementation of Π′, we ran the MCMC for 70000 iterations, discard-
ing the first 10000 as burn-in and thinning at a rate of one in ten observations.
This was chosen so that we had an approximate matching with the computa-
tional cost of 7000 iterations of the cut posterior, each with 10 interior iterations.
We plot the resulting emission densities in Figure 9. In comparison to Figure 7,
the pointwise bands seem to capture the ground truth more accurately. We re-
mark however that Theorem 5 only provides guarantees on L1 concentration
and so the plots will not entirely reflect the theory; L1 credible sets are rather
less easily visualised. We also emphasize our earlier comment from Section 5.1,
that the simulation study is limited in scope, and is not intended to provide
conclusive comparisons with other approaches.

6. Proofs of main results

We first prove Proposition 1.

6.1. Proof of Proposition 1: Convergence of the scores

Throughout this section, Assumptions 1–5 are assumed to hold.
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Fig 9. Posterior mean and pointwise 90% credible bands for emissions, with n = 2500 (top)
and n = 10000 (bottom) under fully Bayesian posterior with prior Π′.

Recall that

Hr = {h ∈ L2(f∗
r dx),

∫
h(x)f∗

r dx = 0},

and

Hr,M = {h =
κM∑
m=1

αm1Im(y), αm ∈ R,

∫
hf∗

r,M (y)dy = 0}.

Define P to be the space spanned by the nuisance scores {H(h) : h = (hr)r≤R, hr

∈ Hr} in the full semiparametric model, and also PM to be the space spanned
by the nuisance scores {HM (hM ) : hM = (hr,M )r≤R, hr,M ∈ Hr,M} in the
histogram models M(IM ). Here H(h) = (Hr(hr) : r ∈ [R]) with Hr as in
Equation (14), and also HM (hM ) = (Hr,M (hr) : r ∈ [R]) with Hr,M as in
Equation (17). Denote also G�

M = σ(Y (M)
t : t ≤ �) and G� = σ(Yt : t ≤ �), for

� ∈ Z.
To prove Proposition 1, we prove convergence of sequences of nuisance scores

in PM to nuisance scores in P, and also convergence of the score functions S(M)
Q∗

to SQ∗ . Recall that the scores SQ∗ in the model with known emissions are given
by (12), with the scores S

(M)
Q∗ associated to data Y (M) being given by (16).

Proof of Proposition 1. Write AM for the orthogonal projection onto PM and
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A for the orthogonal projection onto P. Define

S̃
(M)
Q∗ := S

(M)
Q∗ −AMS

(M)
Q∗ , and S̃Q∗ := SQ∗ −ASQ∗ .

To prove Proposition 1, it is enough to prove that S̃
(M)
Q∗ converges to S̃Q∗ . A

major difficulty here is to prove the convergence of AMS to AS in L2(P∗), with
S ∈ L2(P∗), because, contrary to the mixture model case considered in [27], the
sets PM are not embedded.

In Lemma 3, we prove using a martingale argument that S
(M)
Q∗ converges to

SQ∗ in L2(P∗) as M goes to infinity. Then

‖S̃(M)
Q∗ − S̃Q∗‖L2 ≤ ‖S(M)

Q∗ − SQ∗‖L2+‖AM (SQ∗ − S
(M)
Q∗ )‖L2+‖(A−AM )SQ∗‖L2

= ‖(A−AM )SQ∗‖L2 + o(1).

We now prove that ‖(A − AM )S‖L2 = o(1), for all S ∈ L2(P∗). As mentioned
earlier, the non trivial part of this proof comes from the fact that the sets PM

are not embedded. Hence we first prove that the set PM is close to the set P̃M ,
where

P̃M = {H(hM ), hM = (hr,M )r≤R, hr,M ∈ Hr,M}.
More precisely, we prove in Lemma 1 below that AMS − ÃMS = oL2(1), where
ÃM is the projection onto P̃M . Since the partitions are nested, the P̃M are
nested; reasoning as in [27], we then obtain that (ÃMS)M∈N is Cauchy, and so
converges to some ÃS. Then, arguing as in [27], we identify ÃS with AS in
Lemma 5. The argument involves first showing that Ã is a projection onto a
subspace of P, and then showing that elements of P are well approximated by
elements of P̃, by approximating the corresponding hr ∈ L2

0(f∗
r ) by histograms

(hr,M )M∈N. This terminates the proof of Proposition 1.

Lemma 1. For any element S ∈ L2(P∗),

|AMS − ÃMS|2 = o(1).

Proof. As will appear in the proof, a key step is Lemma 2 which says that,
for any sequence hM bounded in L2, if HM (hM ) = oL2(1), then hM = oL2(1).
Lemma 4 also applies for L2 bounded sequences, and implies that, for any
bounded sequence hM , (HM −H)(hM ) = oL2(1).

To prove that AMS − ÃMS = oL2(1), we decompose

AMS − ÃMS = AMS − ÃMAMS + ÃMAMS − ÃMS.

We first prove that ÃMAMS−AMS = oL2(1), and then that ÃM (AMS−S) =
oL2(1). Define hM such that AMS = HM (hM ); we have that ‖HM (hM )‖2 ≤
‖S‖2. Also, by Lemma 4 and using the fact that orthogonal projections onto a
space minimize the L2 distance to that space (which includes H(hM )),

‖ÃMAMS −AMS‖2 ≤ ‖(H −HM )(hM )‖.
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Suppose now that, along a subsequence, ‖hM‖2 → ∞. Then, along this sub-
sequence, HM (hM )

‖hM‖2
= HM ( hM

‖hM‖2
) → 0 in L2 and we can apply Lemma 2 to

conclude that hM

‖hM‖2
→ 0 in L2 along this subsequence, when in fact this sub-

sequence has constant unit L2 norm. We thus get a contradiction and con-
clude that supM‖hM‖2 is bounded. Then, by Lemma 4, we have that AMS =
HM (hM ) = H(hM ) + oL2(1). Thus ‖(HM − H)(hM )‖2 → 0 and ‖ÃMAMS −
AMS‖2 = o(1).

We now control ÃM (AMS − S). Considering ÃM (S − AMS) = H(h̃M ) for
some h̃M = (h̃r,M , r ∈ [R]) and h̃r,M ∈ L2

0(f∗
r ) in model M , we have

‖ÃMS − ÃMAMS‖2
L2 = 〈S −AMS, ÃM (S −AMS)〉

= 〈S −AMS,H(h̃M )〉 = 〈S −AMS,HM (h̃M )〉︸ ︷︷ ︸
=0 as (S−AMS)⊥HM (h̃M )

+RM ,

where
|RM | ≤ ‖S‖2‖(H −HM )(h̃M )‖2 → 0,

with the convergence following as before using Lemma 2 and the boundedness of
‖H(h̃M )‖L2 by ‖S‖L2 . Thus ÃM (AMS − S) = oL2(1) and Lemma 1 is proved.

Lemma 2. Fix r ∈ {1, . . . , R}. Let hM = (hr,M , r ∈ [R]) be a sequence of step
functions on the partitions of model M(IM ) with ‖hM‖ =

∑
r‖hr,M‖L2 ≤ 1 and

hr,M ∈ Hr,M . Then

HM (hM ) L2(P∗)→ 0 =⇒ hM
L2(P∗)→ 0.

Proof. Assuming HM (hM ) → 0, Lemma 6 implies that, for all k ≥ 0,

Dk(hM ) :=
R∑

r=1

0∑
k′=−k

hr,M (yk′)P∗(Xk′ = r|Y−k:0) = oL2(1).

For shortness sake we write g∗ = g
(2)
Q∗,F∗ and we will abuse notation and write

yj := y−j for j ∈ N, so y1 is y−1 etc. Expanding D1(hM ), we thus have that

∑
r

hr,M (y0)f∗
r (y0)

∑
s

p∗sQ
∗
srf

∗
s (y1)

g∗(y0, y1)

+
∑
r

hr,M (y1)f∗
r (y1)

g∗(y0, y1)
p∗r

∑
s

f∗
s (y0)Q∗

rs

L2(P∗)−→ 0.

Since, for any function H,

E∗

[
H2(Y0, Y1)
g∗(Y0, Y1)2

]
=

∫
[0,1]2

H2(y0, y1)
g∗(y0, y1)

dy1dy0 ≥ ‖H‖2
2

‖g∗‖∞
,
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and, since ‖g∗‖∞ ≤ maxr ‖f∗
r ‖∞ < ∞ by continuity, we obtain∑

r

hr,M (y0)f∗
r (y0)

∑
s

p∗sQ
∗
srf

∗
s (y1)

+
∑
r

hr,M (y1)f∗
r (y1)p∗r

∑
s

f∗
s (y0)Q∗

rs

L2(dy2)→ 0.
(24)

Note further that the family of functions of y1 given by y1 �→ (
∑

s p
∗
sQ

∗
srf

∗
s (y1))kr=1

is linearly independent. Consider now a partition Ī1, Ī2, . . . , ĪR of [0, 1] such that

Frj =
∫
Īj

f∗
r (y1)dy1, r, j ∈ {1, . . . R},

defines a matrix F = (F ∗
rj) of rank R. Such a partition always exists by

Lemma 17. Define also

Arj =
∫
Ij

∑
s

p∗sQ
∗
srf

∗
s (y1)dy1, r, j ∈ {1, . . . R},

with A = (Arj), define Dp = diag(p∗1, . . . , p∗R) (which is invertible under As-
sumption 3) and recall Q∗ = (Q∗

sr). Then we can write AT = FTDpQ
∗ and

note that A also has rank R. Now, integrating the y1 coordinate out of Equa-
tion (24), we get, for all j = 1, . . . k,∑

r

hr,M (y0)f∗
r (y0)︸ ︷︷ ︸

h̃r,M

Arj = −
∑
r

∫
Īj

hr,M (y1)f∗
r (y1)p∗rdy1︸ ︷︷ ︸

BM (r,j)

∑
s

f∗
s (y0)Q∗

rs

+ oL2(dy0)(1).

Let h̃M = (h̃r,M )Rr=1, hM = (hr,M )Rr=1 and BM = (BM (r, j))rj . Then the pre-
ceding display may be rewritten as

h̃M (y0) = −(AT )−1BT
MQ∗︸ ︷︷ ︸

B0,M

f∗(y0) + oL2(dy0)(1). (25)

Now, from its definition, (BM )M is a bounded sequence in a finite dimen-
sional space and so converges to some B along a subsequence. Working on this
subsequence, we then get the limit

h̃M (y0)
L2(dy0)→ −(AT )−1BTQ∗︸ ︷︷ ︸

B0

f∗(y0) := h̃(y0).

Consider now D2(hM ), which again vanishes under our assumptions and by
Lemma 6, and take the limit in M along the subsequence where we just estab-
lished convergence. As before, abuse notation by replacing Y−k by Yk for k ∈ N.
Expanding and multiplying through by joint marginals, we get at the limit∑

r

(B0f∗(y0))r
∑
s1,s2

p∗s2Q
∗
s2s1Q

∗
s1rf

∗
s2(y2)f∗

s1(y1)
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+
∑
r

(B0f∗(y1))r
∑
s1,s2

p∗s2Q
∗
s2rQ

∗
rs1f

∗
s1(y0)f∗

s2(y2)

+
∑
r

(B0f∗(y2))r
∑
s1,s2

p∗rQ
∗
rs1Q

∗
s1s2f

∗
s1(y1)f∗

s2(y0) = 0. (26)

Rewriting (26) into matrix products, we obtain∑
s1

[f∗(y2)TDpQ
∗]s1f∗

s1(y1)(Q∗B0f∗(y0))s1

+
∑
s1

[B0f∗(y1)]s1(Q∗f∗(y0))s1(f∗(y2)TDpQ
∗)s1

+
∑
s1

[f∗(y2)TBT
0 DpQ

∗]s1f∗
s1(y1)(Q∗f∗(y0))s1 = 0.

By linear independence of the the set of functions {f∗
s (y1)}s=1,...,R, we have

that, for all s1, the coefficients vanish so that, for all s1, we get

[f(y2)TDpQ
∗]s1(Q∗B0f(y0))s1 +

∑
r′

B0r′s1(Q∗f∗(y0))r′(f∗(y2)TDpQ
∗)r′

+ [f∗(y2)TBT
0 DpQ

∗]s1(Q∗f∗(y0))s1 = 0.

We can now repeat the argument, instead viewing the expression as a linear
combination of the linearly independent set of functions {f∗

s (y2)}s=1,...,R. Ex-
panding what precedes for each s1, we get∑

r

f∗
r (y2)p∗rQ∗

rs1(Q
∗B0f∗(y0))s1 +

∑
r,r′

B0r′s1(Q∗f∗(y0))r′(f∗
r (y2))p∗rQ∗

rr′

+
∑
r

f∗
r (y2)(BT

0 DpQ
∗)rs1(Q∗f∗(y0))s1 = 0,

so that, for each r, s1 we get that

p∗rQ
∗
rs1(Q

∗B0f∗(y0))s1 +
∑
r′

B0r′s1(Q∗f∗(y0))r′p∗rQ∗
rr′

+ (BT
0 DpQ

∗)rs1(Q∗f∗(y0))s1 = 0.

Expanding in terms of the linearly independent functions {(Q∗f∗)r
(y0)}r=1,...,R, we get∑

r′

prQ
∗
rs1(Q

∗B0Q
∗−1)s1r′(Q∗f∗)r′(y0) +

∑
r′

B0r′s1(Q∗f∗(y0))r′p∗rQ∗
rr′

+
∑
r′

1s1=r′(BT
0 DpQ

∗)rr′(Q∗f∗(y0))r′ = 0,

which then gives, for each r, r′, s1, that

p∗rQ
∗
rs1(Q

∗B0Q
∗−1)s1r′ + B0r′s1p

∗
rQ

∗
rr′ + 1s1=r′(BT

0 DpQ
∗)rr′ = 0.
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In particular, setting s1 = r′ we get that, for all r, r′,

p∗rQ
∗
rr′(Q∗B0Q

∗−1)r′r′ + B0r′r′p
∗
rQ

∗
rr′ + (BT

0 DpQ
∗)rr′ = 0.

By Assumption 3, Q∗
ij > 0 ∀i, j and so we can divide through to get

(BT
0 DpQ

∗)rr′
Q∗

rr′
= p∗ra(r′),

for some a depending on r′ alone. Write Da for the diagonal matrix whose
diagonals are the a(r′). Then

(BT
0 DpQ

∗)rr′ = p∗rQ
∗
rr′a(r′) = (DpQ

∗Da)rr′ .

Equivalently, we can write BT
0 = (DpQ

∗)Da(DpQ
∗)−1. Recalling the earlier

definition of B0, we had
B0 = −(AT )−1BTQ∗,

with each column of B expressible as the integral over Īj , with respect to y1,
of Dph̃(y1) = DpB0f∗(y1), and thus expressible as B = DpB0F . We can then
substitute into the previous display to see that

B0 = −(AT )−1FTBT
0 DpQ

∗.

The expression of A as AT = FTDpQ
∗ allows us to write

B0 = −Q∗−1D−1
p (FT )−1FTBT

0 DpQ
∗ = −Q∗−1D−1

p BT
0 DpQ

∗ = −Da.

This means that BT
0 = −Da = (DpQ

∗)Da(DpQ
∗)−1. So Q−1DaQ

∗ = −Da

which gives
a(r)Q∗

rs = −Q∗
rsa(s).

Taking r = s and dividing through by Q∗
rr gives ar = 0 for all r, hence B0 = 0

and h̃ = 0. This means h̃m(y0) → 0 in L2(dy0) and so hr,M → 0 in L2(fr(y0)dy0),
and so in L2(P∗) under Assumption 4, which is what we wanted to show.

Lemma 3. For S
(M)
Q∗ , SQ∗ , as in (16) and (12), and for any choice of j, we

have that
S

(M)
Q∗ (Y (M)

−∞:j) → SQ∗(Y−∞:j)

in L2(P∗).

Proof. Without loss of generality we take j = 0. We first show that we can,
uniformly in M , truncate the series in (16) to an arbitrary degree of accuracy.
We prove that, uniformly in M ,∑

j≤−J

P∗(Xj−1 = a,Xj = b|G0
M ) − P∗(Xj−1 = a,Xj = b|G−1

M ) = oL2(P∗)(1),

(27)
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as J goes to infinity. Using Lemma 19, we have that there exists ρ < 1 and
C > 0 such that, for all j ≤ −1 and for all M ,∥∥∥∥∥P∗(Xj−1 = a,Xj = b|G0

M ) − P∗(Xj−1 = a,Xj = b|G−1
M )

∥∥∥∥∥
L2(P∗)

≤ Cρ−j .

Analogous results hold with G0,G1 in place of G0
M ,G1

M . Therefore, for all ε > 0,
there exists J(ε) > 0 for which

∑
j≤−J(ε)

∥∥∥∥∥P∗(Xj−1 = a,Xj = b|G0
M ) − P∗(Xj−1 = a,Xj = b|G−1

M )

∥∥∥∥∥
L2(P∗)

+

∥∥∥∥∥P∗(Xj−1 = a,Xj = b|G0) − P∗(Xj−1 = a,Xj = b|G−1)

∥∥∥∥∥
L2(P∗)

< ε.

It now suffices to prove for all j that

P∗(Xj−1 = a,Xj = b|Gl
M ) L2(P∗)→ P∗(Xj−1 = a,Xj = b|Gl). (28)

Firstly, we show that, for each � = −1, 0, the G�
M form an increasing sequence

of σ-algebras G�
M ⊂ G�

M ′ for M < M ′, and that the limiting σ-algebra G�
∞ :=

σ
(⋃

M∈N G�
M

)
is equal to Gl. We suppress the dependence on �, since the proofs

for each case are the same. For the sake of presentation, we code the coarsened
observations Y (M)

i as their projection onto the left endpoint of whichever interval
of the partition IM contains Yi: Y (M)

i = ej if Yi ∈ I
(M)
j = (ej , ej+1).

To see that the GM form a filtration, we wish to show that every set in GM is
also in GM+1. Every set in these σ− algebras is generated by the preimages of the
left endpoints of intervals under Y M

i for some i. Suppose the partition IM+1 is
obtained from IM by splitting one bin. The events {Y M

i = ej}, for j = 1, . . . ,M
and ej the endpoint of bin j, generate GM . For the split bin, if we split bin M
in IM into bins M and M + 1 in IM+1, then we can express {Y M

i = ej} =
{Y M+1

i = ej} for j < M and {Y M
i = eM} = {Y M+1

i = eM}∪{Y M+1
i = eM+1}.

Hence we can express these events as events in GM+1, and by induction the
argument remains true for any nested sequence of intervals.

To see that each GM ⊂ G it suffices to note that {Y M
i = ej} = {Yi ∈

[ej , ej+1)} ∈ G. This shows that G∞ ⊂ G. To show that G ⊂ G∞, note that the
Borel σ− algebra on [0, 1] is generated by the sets (t, 1]. So it suffices to check
that the sets {Yi > t} are in G∞, as these sets generate G. But, for all t ∈ (0, 1),
there exists a sequence ej(t,M) ≤ t converging to t and such that ej(t,M)+1 > t
also converges to t. Thus {Y M

i > t} = {Yi ≥ ej(t,M)+1} increases to {Yi > t}
and {Yi > t} = limM{Y M

i > t} ⊂ G∞. Therefore, the conditional probabilities
appearing in the histogram score expression (16) form a bounded martingale
in L2 with G�

∞ = G�, � = −1, 0. The L2 martingale convergence theorem them
implies that (28) holds for any j, �, and Lemma 3 is proved.

The proofs of the following results, which are used in the proofs of Lemmas 1
and 2, are deferred to Section C of the appendix.
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Lemma 4. If hM = (hr,M )r≤R with supM

∑
r‖hr,M‖L2(f∗

r ) ≤ L < ∞, then

HM (hM ) = H(hM ) + oL2(P∗)(1).

Lemma 5. Let ÃM P̃M , A, P be as in the statement of Lemma 1. Then, if
Ã := limM→∞ ÃM , we have Ã = A.

Lemma 6. Let hM be a sequence of step functions on the partitions of model
M(IM ) with ‖hM‖ =

∑
r‖hr,M‖L2 ≤ 1, such that hr,M ∈ L2

0(f∗
r ). For any

k ≥ 0,

HM (hM ) L2(P∗)→ 0 =⇒
R∑

r=1

0∑
k′=−k

hM (yk′)P∗(Xk′ = r|Y−k:0)
L2(P∗)→ 0.

6.2. Proof of Theorem 4

The proof of Theorem 4 works by contradiction. If there exists no C > 0 such
that, for all f with ‖g(3)

Q,f − g
(3)
Q,f∗‖L1 sufficiently small,

‖g(3)
Q,f − g

(3)
Q,f∗‖L1∑R

r=1‖fr − f∗
r ‖L1

≥ C,

then there exists a sequence of emission densities f(n) such that ‖g(3)
Q,f−g

(3)
Q,f∗‖L1 =

o(1) and

lim inf
n

‖g(3)
Q,fn − g

(3)
Q,f∗‖L1∑R

r=1‖fn
r − f∗

r ‖L1
= 0.

For j = 2, 3, r ∈ [R], and f(n) as above, set

Δn,j =
‖g(j)

Q,f(n) − g
(j)
Q,f∗‖L1∑R

r=1‖fn
r − f∗

r ‖L1
; hn

r = fn
r − f∗

r∑R
r=1‖fn

r − f∗
r ‖L1

,

and write hn = (hn
r : r ∈ [R]).

Since lim infn Δn,3 = 0, there exists a subsequence φ1(n) such that Δφ1(n),3 →
0, which implies also that Δφ1(n),2 → 0 since Δn,2 ≤ Δn,3. We have by assump-
tion that ‖g(j)

Q,f(φ1(n)) − g
(j)
Q,f∗‖L1 → 0, and by applying Lemma 7 we can find a

further subsequence φ2(φ1(n)) such that f(φ2(φ1(n))) → f∗ in L1. For notational
convenience we write Δn,j for the terms Δφ2(φ1(n)),j along this subsequence, and
in general any index with n is now interpreted as being along this subsequence.
Since

∑R
r=1‖fn

r − f∗
r ‖L1 → 0, Δn,2 → 0 implies that∑

r,s

(PQ∗)rs(f∗
r (y1)hn

s (y2) + hn
r (y1)f∗

s (y2)) = oL1(1),
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where P = diag(p∗1, . . . , p∗R). Partition I1, . . . , IR such that F∗, as defined in
Lemma 7, has rank R. Define also Hn = (Hn

ir)ir =
∫
Ii
hn
r (y)dy. We have, for

any integrable function G and any i ∈ [R], that∫
R

∫
R

|G(y1, y2)|dy1dy2 ≥
∫
R

∫
Ii

|G(y1, y2)|dy1dy2 ≥
∫
R

∣∣∣∣
∫
Ii

G(y1, y2)dy1

∣∣∣∣ dy2,

which implies in particular that∑
r,s

(PQ∗)rs(F ∗
irh

n
s (y2) + Hn

irf
∗
s (y2)) = oL1(1).

This gives us
(F∗)T (PQ∗)hn = −HT

n (PQ)f∗ + oL1(1).

The sequence Hn is bounded, and so converges to some H0 along a subsequence
φ3(n) which we pass to. Then, since F∗ is of rank R, we may write

hn = −((F∗)T (PQ))−1(H∗)T (PQ)︸ ︷︷ ︸
=B1

f∗ + oL1(1),

and so hn
r → (B1f∗)r in L1 for each r = 1, . . . , R. Next, since we have that

Δn,3 → 0 in L1, we get∑
r,s,t

(PQ)rsQst(f∗
r (y1)f∗

s (y2)hn
t (y3) + f∗

r (y1)hn
s (y2)f∗

t (y3)

+ hn
r (y1)f∗

s (y2)f∗
t (y3)) = oL1(1).

Replacing hn
r by its limit (B1f∗)r, we get that, for Lebesgue-almost-all y1, y2, y3∑

r,s,t

(PQ)rsQst(f∗
r (y1)f∗

s (y2)(B1f∗)t(y3) + f∗
r (y1)(B1f∗)s(y2)f∗

t (y3)

+ (B0f∗)r(y1)f∗
s (y2)f∗

t (y3)) = 0

Under Assumption 4, we have continuity of f∗ and so in fact the above display
holds for all y1, y2, y3. This expression is of the form of Equation (26) in the
proof of Lemma 2, and the same proof techniques show that B1 = 0 and hence
‖hn‖ = oL1(1). This yields the desired contradiction as

∑R
r=1‖hn

r ‖L1 = 1 for
all n ∈ N. We conclude that no subsequence can exist for which Δn,3 → 0, and
hence that lim infn→∞ Δn,3 > 0, which terminates the proof of Theorem 4.

The proof of Theorem 4 uses the following result, which we prove in Sec-
tion C.6 of the appendix.

Lemma 7. Consider a sequence of densities f (n) such that g
(3)
Q∗,f (n)

L1(dy3)→

g
(3)
Q∗,f∗ . Then f (n) L1(dy)→ f∗ along a subsequence.
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6.3. Proof of Theorem 6

To prove Theorem 6, we make use of Lemma 21 which allows us to approximate
the MLE by an estimator which does not depend on the observation for which
we control the respective smoothing probability. Intuitively, this result says that
a single observation does not influence our MLE too much.

Proof of Theorem 6. The starting point of the proof is Proposition 2.2 of [16].
Let θ = (Q, f) and ‖Q − Q∗‖ ≤ Mn/

√
n so that Qi,j ≥ q̄/2 > 0 with q̄ =

mini,j Q
∗
i,j <

1
2 , under Assumption 3. Set ρ = 1 − q̄/(1 − q̄), then

Δk := ‖Pθ(Xk = ·|Y1:n) − P∗(Xk = ·|Y1:n)‖TV ≤ C∗

q̄

[
ρk‖μQ − μ∗‖ + ‖Q−Q∗‖

+
n∑

�=1

q̄ρ|�−k|

c∗(Y�)
max

s
|fs(y�) − f∗

s (Y�)|
]
,

where c∗(y) = minr∈[R]
∑

s∈[R] Q
∗
rsf

∗
s (y) ≥ q̄

∑
s f

∗
s (y), and C∗ is a constant

depending only on Q∗, f∗. Throughout the proof, we reuse C∗ to denote a generic
constant depending only on Q∗, f∗. First, for any Kn → ∞, if

Bn = {θ, ‖Q∗ − Q̂‖ ≤ Kn√
n

; max
s

‖f∗
s − f̂s‖L1 ≤ Knεn} ∩ {max

r
‖fr‖2 ≤ eγnε

2
n},

for γ defined in (19), then Theorem 5 together with condition (19) gives Πcut

(Bc
n|Y1:n) = oP∗(1). Recall also that nε2n → ∞, so that, for zn > 0,

Πcut(Δk > znεn|Y1:n) ≤ Πcut({Δk > znεn} ∩Bn|Y1:n) + oP∗(1).

Since ‖Π1(dQ|Y1:n)−φn(Q|Y1:n)dQ‖TV → 0, where φn(Q|Y1:n) is a Gaussian
density centred at the MLE of variance J̃−1/n, we have ‖Πcut − Π̃cut‖TV =
oP∗(1), where Π̃cut is the measure φn(Q|Y1:n)dQΠ2(df|Q,Y1:n). Moreover, on
Bn,

Δk ≤ C∗Kn√
n

+
n∑

�=1

q̄ρ|�−k|

c∗(Y�)
max

s
|fs(Y�) − f∗

s (Y�)|. (29)

To prove Theorem 6, we thus need to control the sum in (29) under the posterior
distribution. In [1], the authors use either a control in sup-norm of f̂s − f∗

s , or
split their data into a training set used to estimate f∗, and a test set used to
estimate the smoothing probabilities. We show here that, with the Bayesian
approach, we do not need to split the data in two parts nor do we need a sup-
norm control. We believe that our technique of proof might still be useful for
other approaches.

We split the sum in (29) into |� − k| ≤ Tn and |� − k| > Tn, where Tnεn
converges arbitrarily slowly to 0. We first control, for all r ∈ [R] and any zn > 0
going to infinity,

Π̃cut

⎡
⎣Bn ∩

⎧⎨
⎩ ∑

|�−k|≤Tn

ρ|�−k||fr(Y�) − f∗
r (Y�)|

c∗(Y�)
≥ znεn

∑
|�−k|≤Tn

ρ|�−k|/2

⎫⎬
⎭
∣∣∣∣∣∣Y1:n

⎤
⎦
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≤
∑

|�−k|≤Tn

Π̃cut

[
Bn ∩

{
|fr(Y�) − f∗

r (Y�)|
c∗(Y�)

≥ znεnρ
−|�−k|/2

}∣∣∣∣Y1:n

]
.

(30)

To bound (30), we need to study the quantities πn,�(z)=Πcut [Bn ∩An(z; �)|Y1:n],
where z > 0 and

An(z; �) =
{
|fr(Y�) − f∗

r (Y�)|∑
s f

∗
s (Y�)

> zεn

}
.

Write Ln(Y1:n, θ) =
∑

s fs(Y�)L−�(θ, s), where L−�(θ, s) depends on Y −�
1:n and is

given by

L−�(θ, s) = L(y1:�−1, θ)Pθ(X� = s|Y1:�−1)L(y�+1:n|X� = s, θ).

Note that

L(y�+1:n|X� = s, θ) =
∑
s′

Qss′L(y�+1:n|X�+1 = s′, θ)

∈
[
q̄

2
∑
s′

L(y�+1:n|X�+1 = s′, θ),
∑
s′

L(y�+1:n|X�+1 = s′, θ)
]
,

and also that Pθ(X� = s|Y1:�−1) ∈ [ q̄2 , 1], which together implies, denoting
L̄−�(θ) = maxs L−�(θ, s), that

L−�(θ, s) ∈
[
q̄2

4 L̄−�(θ), L̄−�(θ)
]
.

This implies that the cut posterior mass of An(z, �) ∩Bn is bounded as

Πcut(An(z; �) ∩Bn|Y1:n)

≤ 4
q̄2

∫
Bn

1An(z;�)(fr)L̄−�(θ)(
∑

s fs(Y�))Π2(df|Q)φn(Q|Y1:n)dQ∫
Bn

L̄−�(θ)(
∑

s fs(Y�))Π2(df|Q)φn(Q|Y1:n)dQ
.

(31)

Applying Lemma 21, we also have, uniformly in � ∈ [k − Tn, k + Tn] ∩ N,
‖φn(Q|Y1:n)dQ − φn(Q|Y −�

1:n)dQ‖TV → 0, where φn(Q|Y −�
1:n) is a Gaussian cen-

tred at the estimator defined in Lemma 21 and also of variance J̃−1/n, which
depends only on Y −�

1:n . Hence, with

Π̃(�)
cut(A|Y1:n) =

∫
A
Ln(Y1:n, θ)Π2(df)φ(Q|Y (−�)

1:n )dQ
Dn(�) ,

where Dn(�) =
∫
Bn

L̄−�(θ)(
∑

s fs(Y�))Π2(df)φn(Q|Y −�
1:n)dQ, we have

max
|�−k|≤Tn

‖Π̃(�)
cut(·|Y1:n) − Π̃cut(·|Y1:n)‖TV = oP∗(1).



1854 D. Moss and J. Rousseau

Hence, it suffices to control each summand of (30) with Π̃cut replaced by
Π̃(�)

cut. We first focus on lower bounding the denominator Dn(�). Writing Ωn =
{
∑

s fs(Y�) ≥
∑

f∗
s (Y�)/2}, it is immediate that

Dn(�) ≥
∫
Bn

L̄−�(θ)1ΩnΠ2(df)φn(Q|Y −�
1:n)dQ

(∑
s

f∗
s (Y�)/2

)
.

We will show that we can replace the above bound with a bound in probability,
in which the integrand does not feature the indicator 1Ωn . This is similar in
spirit to concentration results based around the framework of [29] (including
our own Theorem 7), where a key ingredient of the proof is to lower bound the
denominator by a suitable quantity. We have that

P∗

(∫
Bn

L̄−�(θ)1ΩnΠ2(df)φn(Q|Y −�
1:n)dQ) < 1

2

∫
Bn

L̄−�(θ)Π2(df)φn(Q|Y −�
1:n)dQ

)

= P∗

(∫
Bn

L̄−�(θ)1Ωc
n
Π2(df)φn(Q|Y −�

1:n)dQ ≥ 1
2

∫
Bn

L̄−�(θ)Π2(df)φn(Q|Y −�
1:n)dQ

)

≤ 2E∗

[
E∗

[∫
Bn

L̄−�(θ)1Ωc
n
Π2(df)φn(Q|Y −�

1:n)dQ∫
Bn

L̄−�(θ)Π2(df)φn(Q|Y −�
1:n)dQ

∣∣∣∣Y −�
1:n

]]

≤ 2E∗

[∫
Bn

L̄−�(θ)P(Ωc
n|Y −�

1:n)Π2(df)φn(Q|Y −�
1:n)dQ∫

Bn
L̄−�(θ)Π2(df)φn(Q|Y −�

1:n)dQ

]
.

Now, we can bound the probability in the integrand by

P∗(Ωc
n|Y −�

1:n) = P∗

(∑
s

fs(Y�) <
1
2
∑
s

f∗
s (Y�)|Y −�

1:n

)

= P∗

(∑
s

(f∗
s (Y�) − fs(Y�)) ≥

∑
s

f∗
s (Y�)/2

∣∣∣∣Y −�
1:n

)

≤ 2
∫ ∑

s|f∗
s (y�) − fs(y�)|∑

sf
∗
s (y�)

f∗(y�|Y −�
1:n)dy�.

We can bound the conditional density by f∗(y�|Y −�
1:n) ≤

∑
s f

∗
s (y�), so that

P∗(Ωc
n|Y −�

1:n) ≤ 2
∑
s

‖f∗
s − fs‖L1 ≤ 2RKnεn,

which in turns implies that

P∗

(∫
Bn

L̄−�(θ)1ΩnΠ2(df)φn(Q|Y −�
1:n)dQ <

1
2

∫
Bn

L̄−�(θ)Π2(df)φn(Q|Y −�
1:n)dQ

)
≤ 4RKnεn.
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Thus, on this event of probability at least 1 − 4RKnεn, we can bound the
denominator as

Dn(�) ≥ 1
4
∑
s

f∗
s (y�)

∫
Bn

L̄−�(θ)Π2(df)φn(Q|Y −�
1:n)dQ︸ ︷︷ ︸

=:M(Y −�
1:n)

, (32)

and so, on this event,

Π̃(�)
cut(An(z; �) ∩Bn|Y1:n)

≤ 16
q̄2

∫
Bn

1An(z;�)(
∑

s fs(Y�))L̄−�(θ)Π2(df)φn(Q|Y −�
1:n)dQ∑

s f
∗
s (Y�)M(Y −�

1:n)

≤ 16
q̄2

[ ∫
Bn

1An(z;�)(
∑

s |fs(Y�) − f∗
s (Y�)|)L̄−�(θ)Π2(df)φn(Q|Y −�

1:n)dQ∑
s f

∗
s (Y�)M(Y −�

1:n)︸ ︷︷ ︸
J1

+
∫
Bn

1An(z;�)L̄−�(θ)Π2(df)φn(Q|Y −�
1:n)dQ

M(Y −�
1:n)︸ ︷︷ ︸

J2

]
.

Now, using E∗[J1] = E∗[E∗[J1|Y −�
1:n ]], together with the fact that f(y�|Y (−�)

1:n )dy�
≤

∑
s f

∗
s (y�)dy�, as well as the bound on ‖fs − f∗

s ‖L1 on Bn, we obtain

E∗[J1] ≤ E∗

[∫
Bn

∑
s‖fs − f∗

s ‖1L̄−�(θ)Π2(df)φn(Q|Y −�
1:n)dQ

M(Y −�
1:n)

]
≤ RKnεn.

To bound J2, note that 1An(z;�) ≤ |fr(Y�) − f∗
r (Y�)|/(zεn

∑
r f

∗
r (Y�)), so that

J2 ≤
∫
Bn

|fr(Y�) − f∗
r (Y�)|L̄−�(θ)Π2(df)φn(Q|Y −�

1:n)dQ
zεnM(Y −�

1:n)
∑

s f
∗
s (Y�)

,

and bounding as before with J1, we obtain E∗[J2] ≤ RKn

z . This implies that

P∗

⎡
⎣ ∑
|�−k|≤Tn

Π̃(�)
cut(An(ρ−|�−k|/2zn; �) ∩Bn|Y1:n) > ε

⎤
⎦

≤
∑

|�−k|≤Tn

P∗

[
Dn(�) ≤ c∗(Y�)M(Y −�

1:n)
4

]
+ Tn

16RKnεn
εq̄2 +

∑
|�−k|≤Tn

ρ|�−k|/2Kn

εzn

� TnKnεn
ε

+ Kn

znε
.

Recall that Tn ≤ ε2[Knεn]−1 and zn ≥ Kn/ε
2, so that the above bound becomes

P∗

⎡
⎣ ∑
|�−k|≤Tn

Π̃(�)
cut(An(ρ−|�−k|/2zn; �) ∩Bn|Y1:n) > ε

⎤
⎦ ≤ c1ε, (33)

for some constant c1 independent on n and ε.
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Returning to the original goal of bounding (29), and having now bounded
the sum over |�− k| ≤ Tn, we study the sum over |�− k| > Tn. For this, we will
bound the sum under Π̃cut defined previously. First note that

P∗
[
∃�, c∗(Y�) ≤ e−Lnnε

2
n

]
≤ n

∫
c∗(y)≤e−Lnnε2n

R∑
s=1

p∗sf
∗
s (y)dy

≤ n

∫
c∗(y)≤e−Lnnε2n

√
c∗(y)e−Lnnε

2
n/2dy

≤ C∗ne−Lnnε
2
n/2,

where we use that c∗(y) ≥
∑

s p
∗
sf

∗
s (y), and that √c∗ is L1 bounded by some C∗

from condition (18). As soon as Lnnε
2
n ≥ L0 logn with L0 large enough, which is

possible since nε2n � logn by assumption, we have P∗
[
∃�, c∗(Y�) ≤ e−Lnnε

2
n

]
=

o(1) and we can bound c∗(Y�) ≥ e−Lnnε
2
n for all �. Next, we define

Ān(�) =

⎧⎨
⎩θ;

∑
|�−k|>Tn

ρ|�−k||fr(Y�) − f∗
r (Y�)| ≤ znεne

−Lnnε
2
n

⎫⎬
⎭ .

We write

Π̃cut(Bn ∩ Āc
n(�)|Y1:n) =

∫
Bn∩Āc

n(�) e
�n(θ)−�n(θ∗)Π2(df)φn(Q|Y1:n)dQ∫

Bn
e�n(θ)−�n(θ∗)Π2(df)φn(Q|Y1:n)dQ

=: Nn(Ān(�)c)
Dn

,

where we write the denominator as Dn and write Nn(Ān(�)c) for the numerator.
Using Lemma 9 which shows that P∗[Dn < e−Lnnε

2
n ] � L−1

n , together with
φn(Q|Y1:n) � nR(R−1)/2, we obtain, with probability greater than 1−O(1/Ln),
and with Ln going arbitrarily slowly to infinity,

Π̃cut(Bn ∩ Ān(�)c|Y1:n) ≤ eLnnε
2
n

∫
Bn

1Ān(�)ce
�n(θ)−�n(θ∗)Π2(df)φn(Q|Y1:n)dQ

≤ C∗e
2Lnnε

2
nnR(R−1)/2

znεn

∑
|�−k|>Tn

ρ|�−k|
∫
Bn

|fr(Y�)−f∗
r (Y�)|e�n(θ)−�n(θ∗)Π2(df)dQ

≤ C∗e
3Lnnε

2
n

∑
|�−k|>Tn

ρ|�−k|
∫
Bn

|fr(Y�) − f∗
r (Y�)|e�n(θ)−�n(θ∗)Π2(df)dQ,

where, in the final line, we again use that logn � nε2n to consolidate the expo-
nential. This implies that Π̃cut(Bn ∩ Ān(�)c|Y1:n) is controlled under P∗ as

P∗
[
Π̃cut(Bn ∩ Ān(�)c|Y1:n) ≥ 2/Ln

]
≤ o(1)

+ P∗

⎡
⎣ ∑
|�−k|>Tn

ρ|�−k|
∫
Bn

|fr(Y�) − f∗
r (Y�)|e�n(θ)−�n(θ∗)Π2(df)dQ >

e−3Lnnε
2
n

Ln

⎤
⎦
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≤ P∗

⎡
⎣ ∑
|�−k|>Tn

∫
Bn

|fr(Y�) − f∗
r (Y�)|e�n(θ)−�n(θ∗)Π2(df)dQ >

ρ−Tne−3Lnnε
2
n

Ln

⎤
⎦

+ o(1)

≤ C∗Lnρ
Tne3Lnnε

2
n

Ln

∑
|�−k|>Tn

∫
Bn

EQ,f [|fr(Y�) − f∗
r (Y�)|]Π2(df)dQ + o(1)

≤ C∗Lnρ
Tne3Lnnε

2
n

R∑
s=1

∫
Bn

∫
fs(y)(fr(y) + f∗

r (y))dyΠ2(df) + o(1)

≤ C∗Lnρ
Tne3Lnnε

2
n

∑
s

∫
Bn

‖fs‖2(‖fr‖2 + ‖f∗
r ‖2)Π2(df) + o(1)

≤ C∗ρ
Tne4Lnnε

2
n + o(1) = o(1), (34)

with the final equality holding as soon as Tn log(1/ρ) ≥ 5nLnε
2
n. We recall

that, in order to establish Equation (33) earlier in the proof, we required that
Tnεn → 0 arbitrarily slowly. We thus use the assumption nε3n → 0 to choose Tn

so that both conditions may hold simultaneously.
Finally, combining (34) with (33) and (29), and since Kn and Ln can be

chosen to go arbitrarily slowly to infinity and nε2n � logn, we obtain that, for
any zn going to infinity,

Πcut(Δk > znεn|Y1:n) = oP∗(1),

which terminates the proof.

7. Conclusion and discussion

In this paper we use the cut posterior approach of [36] for inference in semipara-
metric models, which we apply to the nonparametric Hidden Markov models. A
difficulty with the Bayesian approach in high or infinite dimension is that it is
difficult (if not impossible) to construct priors on these complex models which
allow for good simultaneous inference on a collection of parameters of interest,
where good means having good frequentist properties (and thus leading to some
robustness with respect to the choice of the prior). As mentioned in Section 1,
a number of examples have been exhibited in the literature where reasonable
priors lead to poorly behaved posterior distributions for some functionals of
the parameters. We believe that the cut posterior approach is an interesting
direction to pursue in order to address this general problem, and we demon-
strate in the special case of semiparametric Hidden Markov models that it leads
to interesting properties of the posterior distribution and is computationally
tractable.

Our approach is based on a very simple prior Π1 on Q, f used for the estima-
tion of Q based on finite histograms with a small number of bins. This enjoys
a Bernstein-von Mises property, so that credible regions for Q are also asymp-
totic confidence regions. Moreover, by choosing M large (but not too large), we
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obtain efficient estimators. Proving efficiency for semiparametric HMMs is non
trivial and our proof has independent interest. Another original and important
contribution of our paper is an inversion inequality (stability estimate) com-
paring the L1 distance between g

(3)
Q,f1 and g

(3)
Q,f2 and the L1 distance between f1

and f2. Finally, another interesting contribution is our control of the error of
the estimates of the smoothing probabilities using a Bayesian approach, which
is based on a control under the posterior distribution of

1
n

n∑
i=1

|fr(yi) − f∗
r (yi)|∑

r f
∗
r (yi)

,

despite the double use of the data (in the posterior on fr and in the empirical
distance above). It is a rather surprising result, which does not hold if fr is
replaced with f̂r constructed using y1, . . . , yn, unless a sup-norm bound on f̂r −
f∗
r is obtained.

Section 5 demonstrates clearly the estimation procedures and highlights the
importance of choosing a small number of bins in practical situations. Here,
there remains open the question of how to choose this number in a principled
way, and an interesting extension of the work would follow along the lines of
the third section of [27], in which the authors produce an oracle inequality to
justify a cross-validation scheme for choosing the number of bins.

Finally, the paper deals with the case where R is known. This assumption is
rather common both in theory (see for instance the works of [26], [16] or [7]) and
in practice (for instance in genomic applications as in [60]). The identifiability
results of [4] and [24] do show that R can be identified as well, leaving open the
possibility to jointly estimate R, together with Q and f. We leave this direction
of research for future work.

Appendix A: Proofs of main results

In the following section, we detail the proofs of Theorem 3 and Proposition 2.

A.1. Proof of Theorem 3

The proof of Theorem 3 follows from Proposition 1 and Lemma 8.

Lemma 8. Let (IM )M be a sequence of embedded partitions, let M be such that
IM is admissible for f∗, and grant Assumptions 1, 3 and 4. Then the matrix

J̃M+1 − J̃M

is positive semi-definite.

Proof. Consider the MLE for θ = (Q(θ), ωM (θ)) for parameters in Q × ΩM in
the model with partition IM .

By the remarks at the end of the proof of Theorem 1, the MLE is regular.
This means that, for all parameter sequences θn of the form θ0 + n− 1

2h with
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h ∈ [−H,H] for some fixed H,
√
n(θ̂(n) − θn) converges in distribution under

Pθn to a variable, say Z, of fixed distribution, say μZ . Explicitly, this means
that for Borel sets A we have

Pθn

(√
n(θ̂(n) − θn) ∈ A

)
→ μZ(A) as n → ∞.

Here θn is a sequence of parameters in Q×ΩM . However, any likelihood-based
estimator depends on the observations only through the probabilities of each bin
assignment, by considering the multinomial model with the count data. Thus, we
can replace Pθn with any law from the full semiparametric model for which the
transition matrix Qn is the same and the functions fn have the corresponding
ωM (θn) as the bin assignment probabilities, and the above convergence remains
true.

Since IM+1 is made by splitting bins in IM , a collection of weights ω(M+1) =
(ω(M+1)

m : m ≤ κM+1) for the partition IM+1 is identified with weights ω(M) for
the partition IM . We set ω(M+1)

m =
∑

m′∈ChM (m) ω
(M)
m′ , where ChM (m) satisfies

I
(M)
m =

⋃
m′∈ChM (m) I

(M+1)
m′ . This implies that the MLE for the model M(IM )

may be obtained by maximising the likelihood in model M(IM+1) subject to the

constraint that the quantities ω
(M+1)
m′

|I(M+1)
m′ |

coincide for all m′ ∈ Ch(m). Regularity

of the constrained MLE within IM+1 is then inherited from its regularity as a
global MLE in IM, by the preceding discussion.

Moreover, its asymptotic variance, which is given by the inverse Fisher infor-
mation J̃−1

M for the model with partition IM , is lower bounded by the inverse
Fisher information for the model with partition IM+1 by Lemma 11, hence
J̃−1
M − J̃−1

M+1 is positive semi definite.

Proof of Theorem 3. We have, by inspecting the part of the proof of Lemma 8
concerning regularity, that under any sequence of the form Pn

∗ = Pθ∗(a,h), where
θ∗(a,h) = (Q∗+ a√

n
, f∗

r (1+ 1√
n
hr) : r ∈ [R]) with a ∈ RR(R−1) and hr ∈ L2

0(f∗
r ),

RM,n := dBL

(
Pn
∗

(√
n
(
Q̂(M)

n − (Q∗ + a√
n

)
)
∈ ·

)
, μM

)
→ 0,

where μM is Gaussian of covariance equal to J̃−1
M by Theorem 1. Here dBL

is the bounded Lipschitz metric which metrizes weak convergence. By tak-
ing Mn → ∞ sufficiently slowly, we have RMn,n → 0 also. Since, for any
t ∈ RR(R−1), (tT J̃Mnt)−1 is decreasing by Lemma 8 and bounded below by
(tT J̃ t)−1 the efficient variance, it converges and the limit is equal to (tT J̃ t)−1

by Proposition 1. This implies weak convergence of the measures μMn to μ,
the centred Gaussian measure whose variance is J̃−1, and applying the triangle
inequality in the metric dBL proves the first claim.

For the Bernstein-von Mises result, we have from Theorem 2 that∥∥∥ΠM (
√
n(Q− Q̂n)|Y1:n) −N (0, J̃−1

M )
∥∥∥
TV

= R̃M,n,
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where R̃M,n → 0 in P∗− probability as n → ∞. Refining the sequence from
before, so that Mn → ∞ sufficiently slowly that we additionally have R̃Mn,n →
0, and noting that J̃Mn → J̃ , we get∥∥∥ΠMn(

√
n(Q− Q̂n)|Y1:n) −N (0, J̃−1

∞ )
∥∥∥
TV

≤
∥∥∥ΠMn(

√
n(Q− Q̂n)|Y1:n) −N (0, J̃−1

Mn
)
∥∥∥
TV

+
∥∥N (0, J̃−1) −N (0, J̃−1

Mn
)
∥∥
TV

= oP∗(1).

A.2. Proof of Proposition 2

The proof of Proposition 2 is a direct consequence of the following result, which
shows that Theorem 7 applies to semiparametric HMMs of the type described
in Section 2.2. For the construction of Π1, a C1 diffeomorphism φ is implicitly
used (if necessary) in order to consider histograms on [0, 1]

Proposition 3. Let (Yt)t≥1 be observations from a finite state space HMM with
transition matrix Q and emission densities f = (fr)r=1,...,R. Consider the cut
posterior based on Π1 associated to the partition IM and Π2.

(i) Under Assumptions 1–5, Assumption 7 is satisfied with Tn = {Q; ‖Q−
Q∗‖ ≤ zn/

√
n}, with zn → ∞ sufficiently slowly and φn the restriction to Tn of

the Gaussian density centered at Q̂n,M with variance J̃−1
M /n.

(ii) Choosing Π2 such that Assumption 6 is verified for suitable εn, ε̃n with
nε2n � logn, the assumptions of Theorem 7 are verified for the same εn and any
Kn → ∞.

Proof. (i) The idea of the proof is as follows: We know from Theorem 2 that
Π1(·|Y1:n) is close in total variation distance to the normal distribution centred
at the estimator Q̂. Then the restriction of this distribution to a ball of radius
zn, centred at Q∗, where Mn → ∞ slowly, will be close in total variation to the
original normal distribution with high probability as n → ∞.

Let p1,n be the normal density of variance J̃−1
M /n centred at Q̂, where Q̂ is the

estimator from Theorem 2. Let p2,n be the restriction of this normal density to
{Q : ‖Q−Q∗‖ ≤ zn/

√
n} where zn → ∞. Fix ε > 0 and choose n large enough

that P∗(‖Q̂ − Q∗‖ > cx′
n/

√
n) < ε where 1 > c > 0 is a constant. Let p3,n be

the density obtained by restriction of p1,n to {Q : ‖Q̂−Q∗‖ ≤ (1 − c)zn/
√
n}.

Then, for sufficiently large n, we have with probability exceeding 1− ε that the
support of p3,n is a subset of the support of p2, in which case

‖p1,n − p2,n‖L1 ≤ ‖p1,n − p3,n‖L1 .

But the variance of p1,n is of the order O(n−1) and zn → ∞ so, as n → ∞,
the support of p3,n approaches the support of p1,n and ‖p1,n − p3,n‖L1 → 0.
But then ‖p1,n − p2,n‖L1 → 0. Thus, with probability exceeding 1 − ε, we have



Efficiency and cut posterior in semiparametric HMMs 1861

that ‖p1,n − p2,n‖L1 → 0 as n → ∞. Since ε > 0 is arbitrary, we conclude
‖p1,n − p2,n‖L1 = oP∗(1).

Taking φn = p2,n as above, for any zn → ∞, we verify Assumption 7 for any
εn for which nε2n � logn.

(ii) This is a consequence of Theorem 3.1 in [57]. The choice of Tn also
provides verification of the hypothesis of Lemma 3.2 of [57] and establishes
the required control on KL divergence described in (35). To satisfy the testing
assumption (36), it suffices to note that, for large enough n, Tn is a subset of
{Q : Qi,j ≥

Q∗
ij

2 ∀i, j ≤ R} under Assumption 3.

Appendix B: General theorem for cut posterior contraction

In this section, we present a general theory for contraction of cut posteriors,
which is developed in the style of the usual theory for Bayesian posteriors of
[29]. The main result of this section is Theorem 7, from which Proposition 2
follows.

Consider a general semiparametric model in which there is a finite dimen-
sional parameter ϑ and an infinite-dimensional parameter η. Suppose we wish to
estimate the pair (ϑ, η) governing the law Pn

ϑ,η of a random sample Y1:n ∈ Yn.
Assume the data is generated by some true distribution Pn

∗ = Pn
ϑ∗,η∗ and con-

sider the following two models:
Model 1: Consider a model T ×F1 on pairs (ϑ, η) such that ϑ∗ ∈ T but for

which we do not require that η∗ ∈ F1. Consider a joint prior Π1 over this space
yielding a marginal posterior on ϑ given by

Π1(dϑ|Y1:n) =
∫
F1

Π1(dϑ, dη|Y1:n).

Model 2: Consider a model on η, conditional on ϑ, with a prior Π2(·|ϑ). We
denote the parameter set for η by F2 and we assume that η∗ ∈ F2. We obtain
in this model, a conditional posterior distribution Π2(dη|Y1:n, ϑ).

Definition 2. The cut posterior on (ϑ, η) is given by

Πcut(dϑ, dη|Y1:n) = Π1(dϑ|Y1:n)Π2(dη|ϑ, Y1:n).

Write Pn
ϑ,η for the law of the observations Y1:n. Define for some � > 0 and

some loss function d(·, ·) on P�
ϑ,η,

B�(ε) = {(ϑ, η) : d(P�
ϑ,η,P

�
ϑ∗,η∗) < ε}, M, ε > 0,

with Bc
� (ε) its complement. Define also the Kullback-Leibler neighbourhoods of

Pn
∗ = Pn

ϑ∗,η∗ as

Vn(Pn
∗ , ε) = {(ϑ, η) : K(Pn

ϑ∗,η∗ |Pn
ϑ,η) < nε2},

where K(Pn
ϑ∗,η∗ |Pn

ϑ,η) = En
∗ log dPn

ϑ∗,η∗
dPn

ϑ,η
is the Kullback-Leibler divergence.
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We now present a general theorem to characterize cut-posterior contraction
result, in the spirit of the now classical result of [29]. Our main additional
assumption for the cut setup is that we have sufficiently good control over Π1,
similar to the kind established in Section 2 in the HMM setting, which we detail
now.

Denote by π1(·|Y1:n) the marginal posterior density of ϑ with respect to some
measure μ1 on T , associated to the prior Π1 on ϑ, η.

Assumption 7. For all sequences zn → ∞ there exist Tn ⊂ T with ϑ∗ ∈ Tn,
εn = o(1), and a non-negative, random function φn on Tn with supp(φn) ⊂ Tn,
such that

‖π1(·|Y1:n) − φn(·|Y1:n)‖L1(μ) = oPn
∗ (1),

and
μ(Tn)En

∗

(∫
Tn

φ2
n(ϑ)μ(dϑ)

)
= O(zn),

and ∃K > 0 such that

Pn
∗ [ sup

ϑ∈Tn

φn(ϑ) > eKnε2n ] = o(1)

Assumption 7 is mild, and holds for instance if φn is a Gaussian distribution
with mean ϑ̂ and variance i∗/n for some semi definite matrix i∗, where ϑ̂−ϑ∗ =
OPn

∗ (1/
√
n). In this case, Tn = {‖ϑ − ϑ∗‖ ≤ Kn/n} with Kn → ∞ arbitrarily

slowly, since we have

En
∗

(∫
Tn

φ2
n(ϑ)μ(dϑ)

)
� nd/2, vol(Tn) � n−d/2Kd/2

n ,

sup
ϑ∈Tn

φn(ϑ) � nd/2 = o(eKnnε
2
n),

as soon as nε2n � logn.

Theorem 7. Let Assumption 7 hold with nε2n → ∞, and assume that there
exists C > 0 such that, for any ϑ ∈ Tn, sets Sn(ϑ) ⊂ F2 satisfying⋃

ϑ∈Tn

{ϑ} × Sn(ϑ) ⊂ Vn(Pn
∗ , εn), inf

ϑ∈Tn

Π2(Sn(ϑ)|ϑ) ≥ e−Cnε2n . (35)

Assume also that there exist Ln → ∞, F2,n(ϑ) ⊂ F2 and ψn : Yn −→ {0, 1}
such that

sup
ϑ∈Tn

Π2(F2,n(ϑ)c|ϑ) ≤ e−Lnnε
2
n , set Un =

⋃
ϑ∈Tn

{ϑ} × F2,n(ϑ),

En
∗ψn = o(1), sup

(ϑ,η)∈Un

d(Pn
ϑ,η,P

n
ϑ∗,η∗ )>Knεn

En
ϑ,η(1 − ψn) ≤ C ′e−2Lnnε

2
n , (36)

for some Kn,K > 0. Then, as n → ∞,

Πcut(Bc
� (Knεn)|Y1:n) = oPn

∗ (1).
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Remark 7. Typically Kn = O(
√
Ln), when the tests (36) are constructed as

a supremum of local tests. Given some Ln → ∞ for which the conditions are
satisfied, we can choose Ln → ∞ arbitrarily slowly, and consequently we can
choose Kn → ∞ arbitrarily slowly.

The proof of Theorem 7 which we present below is a rather simple adapta-
tion of [29]. As in [30], we have simplified the common Kullback-Leibler neigh-
bourhood assumption involving variances of the log-likelihood ratio using the
technique of Lemma 6.26 therein.

Remark 8. By placing an additional assumption on neighbourhoods for higher-
order Kullback-Leibler variations, the assumption on the existence of the se-
quence Ln → ∞ can be replaced with an assumption that Ln = L for a con-
stant L > 1 + C – the proof is similar but uses a different (though standard)
technique for proving the evidence lower bound. In this case, we can choose Kn

a constant.

Proof of Theorem 7. The proof is an adaptation of the proof on posterior con-
traction rates, as in [29]. Under Assumption 7, it suffices to prove the claim
when we replace the cut posterior Πcut with the distribution

Π̃(dϑ, dη) = φn(ϑ)μ(dϑ)Π2(dη|ϑ, Y1:n).

Write also B̄� = Bc
� (Knεn) ∩ (Tn ×FR), the subset of Bc

� (Knεn) on which Π̃ is
supported, and δn = μ(Tn).

Writing Jn(ϑ) for the random variable Π2(B̄�|ϑ, Y1:n), we have Jn(ϑ) =
Nn(ϑ)
Dn(ϑ) where

Nn(ϑ) =
∫
B̄�

eln(ϑ,η)−ln(ϑ∗,η∗)Π2(d(η|ϑ);

Dn(ϑ) =
∫
F2

eln(ϑ,η)−ln(ϑ∗,η∗)Π2(d(η|ϑ).

Write also Π̃(B̄�|Y1:n) = Π̃(B̄�|Y1:n)ψn +Π̃(B̄�|Y1:n)(1−ψn)1Ωc
n

+Π̃(B̄�|Y1:n)
(1−ψn)1Ωn , where Ωn = {supϑ∈Tn

φn(ϑ) ≤ eKnε2n}. By the testing assumption,
the first term vanishes in probability, while the second term vanishes under
Assumption 7. For the remaining term, we have, for L̃n → ∞ to be chosen
later, that

1Ωn(1 − ψn)
∫
Tn

Jn(ϑ)φn(ϑ)μ(dϑ)

≤
∫
Tn

1{Dn(ϑ)≤e−(C+L̃n)nε2n}φn(ϑ)μ(dϑ) (I1)

+(1 − ψn)
∫
Tn

1ΩnNn(ϑ)e(C+L̃n)nε2nφn(ϑ)μ(dϑ), (I2)
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using the fact that Jn(ϑ) ≤ 1. We can bound E∗[I1] as

E∗[I1] ≤
(∫

Tn

P∗{Dn(ϑ) ≤ e−(C+L̃n)nε2n}μ(dϑ)
) 1

2
[
E∗

(∫
Tn

φ2
n(ϑ)μ(dϑ)

)] 1
2

,

by an application of Cauchy-Schwartz. Now, noting that by Lemma 9 and under
the assumption of sufficient prior mass on the Sn(ϑ), we have for any L̃n → ∞
that

P∗{Dn(ϑ) ≤ e−(L̃n+C)nε2n} = O(L̃−1
n ),

and so

E∗[I1] �
√

δnL̃
−1/2
n

(∫
Tn

φ2
n(ϑ)μ(dϑ)

) 1
2

= o(1)

under Assumption 7, by taking zn = o(L̃n). We bound E∗[I2] by

E∗[I2] ≤ e(C+L̃n)nε2nE∗

(∫
Tn

∫
B̄�

[eln(ϑ,η)−ln(ϑ∗,η∗)(1 − ψn)φn]Π2(d(η|ϑ)μ(dϑ)
)

≤ e(C+L̃n)nε2n
(∫

Tn

∫
B̄�

Eϑ,η[(1 − ψn)φn1Ωn ]Π2(d(η|ϑ)μ(dϑ)
)
.

Using Fubini’s theorem again, alongside the assumption on type II errors and on
the sieves, and the deterministic bound on φn(ϑ) over Ωn from Assumption 7,
we bound what precedes by

≤ e(K+C+L̃n)nε2n
(∫

Tn

∫
B̄�

Eϑ,η[(1 − ψn)(1η∈F2,n(ϑ)

+ 1η∈F2,n(ϑ)c)]Π2(d(η|ϑ)μ(dϑ)
)

≤ e(K+C+L̃n)nε2n

{(∫
Tn

∫
B̄�

C ′e−Lnnε
2
nΠ2(d(η|ϑ)μ(dϑ)

)
+

∫
Tn

e−Lnnε
2
nμ(dϑ)

}

≤ e(K+C+L̃n)nε2n
(
C ′e−Lnnε

2
n + e−Lnnε

2
n
)
.

Choosing L̃n = o(Ln), we get the required convergence.

Lemma 9 provides the lower bound on the denominator used in the proof of
Theorem 7. The proof is standard but we include it for completeness, it follows
almost exactly the proof of Lemma 6.26 in [30].

Lemma 9. Let An(ϑ) = {Dn(ϑ) ≥ Π2(Sn(ϑ)|ϑ)e−nL̃nε
2
n} where L̃n → ∞ and

Sn(ϑ) is such that there exists Tn with⋃
ϑ∈Tn

{ϑ} × Sn(ϑ) ⊂ V0(P0, εn).

Then
sup
ϑ∈Tn

P∗(An(ϑ)c) = O(L̃−1
n ) = o(1)

as n → ∞.
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Proof. We show that, for each ϑ, with P∗-probability tending to one,∫
F2

eln(ϑ,η) − eln(ϑ∗,η∗)Π2(d(η|ϑ) ≥ Π2(Sn(ϑ)|ϑ)e−nMnε
2
n ,

for any Mn → ∞. It suffices to show the above equation holds when we restrict
the integral to Sn(ϑ) ⊂ F2, for which we have {ϑ} × Sn(ϑ) ⊂ Vn(P∗, εn). By
dividing both sides by Π2(Sn(ϑ)|ϑ), we see that it suffices to show that, for any
probability measure ν supported on Sn = Sn(ϑ), that∫

Sn

eln(ϑ,η) − eln(ϑ∗,η∗)dν(η) ≥ e−nMnε
2
n .

By applying the logarithm to both sides and using Jensen’s inequality, it suffices
to show that, with high P∗ probability,

Z :=
∫
Sn

ln(ϑ, η) − ln(ϑ∗, η∗)dν(η) ≥ −nMnε
2
n.

Arguing as in [30], we obtain

P∗(Z < −nMnε
2
n) = O(M−1

n ) = o(1)

as n → ∞ for any Mn → ∞. Since the bound does not depend on ϑ and
uses only that {ϑ} × Sn(ϑ) ⊂ V0(P0, εn), we obtain the desired bound on the
supremum.

Appendix C: Proofs of technical results

Section C is devoted to a number of technical proofs which are required the
main results, but are reasonably standard in their approach.

In Section C.1, we prove that the Fisher information matrix is invertible for
general, discrete state-space, discrete observation HMMs. This is necessary to
apply the results of [9] and [17] in the proofs of Theorems 1 and 2.

In Section C.2, we gather some properties of the Fisher information matrix,
showing a Cramér-Rao bound for estimation in HMMs, and showing a local
uniform convergence result for the expected information from n observations.

In Section C.3, we collect technical lemmas used for the deconvolution argu-
ment which forms the key part of the proof of Theorem 3.

In Section C.4, we state a result which implies the existence of an admissible
partition.

In Section C.5, we gather some results from [19] concerning the ‘forgetting’
of the hidden chain.

In Section C.6, we collect technical lemmas which feature in the proofs of
Theorems 4 and 6
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C.1. Non-singularity of Fisher Information

In what follows, we establish invertibility of the Fisher Information matrix for
general multinomial Hidden Markov models.

Proposition 4. Consider a multinomial HMM with latent states Xt ∈ {1, . . . , R}
and discrete observations Yt taking values in the set of basis vectors of Rκ, which
we denote {e1, . . . , eM}. Denote by Q ∈ RR×R the transition matrix of (Xt), and
let Ω ∈ Rκ×R be the matrix whose R columns ωr = (ωmr)Mm=1 are the emission
probabilities for the rth state, with r ∈ [R].

Denote θ = (Q,Ω) ∈ Rp the HMM parameter, and write J(θ) for the Fisher
Information matrix with entries given by

J(θ)ij = − lim
n→∞

Eθ

[
∂2

∂θi∂θj
log pθ(Y1, . . . , Yn)

]
︸ ︷︷ ︸

−Jn(θ)ij

.

Then, if Q,Ω have rank R, J is non-singular.

The idea of the proof is to exhibit estimators with L2 risk of order n−1/2.
We then show that the local asymptotic minimax result of [28] implies that the
existence of such estimators guarantees a non-singular Fisher information. We
use the spectral estimators proposed in [6], the control of which is established
in [48].

Proof of Proposition 4. By an application of the van Trees inequality, analo-
gously to the derivation preceding Theorem 16 of [28], we obtain for the HMM
that (for p the parameter dimension)

∫
Bp(0,1)

E
(n)
θ∗+ch/

√
n

[(
UT (θ̂(n) − (θ∗ + ch√

n
))
)2

]
q(h)dh

≥ UT

(
n

c2
Jq + n

∫
Bp(0,1)

1
n
Jn(θ∗ + ch√

n
)q(h)dh

)−1

U,

which holds for any vector U . Here Jn is the joint Fisher information for n
observations as in Proposition 12, and q is a density on Rp such that Jq :=∫
RP ∇q∇qT

1{q>0}
q

dx is non-singular. Rescaling, we get that, for any vector U ,

∫
Bp(0,1)

E
(n)
θ∗+ch/

√
n

[(√
nUT (θ̂(n) − (θ∗ + ch√

n
))
)2

]
q(h)dh

≥ UT

(
1
c2

Jq +
∫
Bp(0,1)

1
n
Jn(θ∗ + ch√

n
)q(h)dh

)−1

U.
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Taking a limit in n and applying Lemma 12 stated below gives that the limit
inferior of the left hand side is at least

lim
n

UT

(
1
c2

Jq +
∫
Bp(0,1)

1
n
Jn(θ∗ + ch√

n
)q(h)dh

)−1

U = UT

(
1
c2

Jq + J(θ∗)
)−1

U.

Call the matrix on the right hand side which we invert Jc. It is indeed in-
vertible for sufficiently large c, since Jq is invertible and the set of invertible
matrices is open. Denote its matrix square root by J

1
2
c . Now suppose ∃V ∗ such

that (V ∗)TJ(θ∗)V ∗ = 0. Then, by writing V = J
− 1

2
c U , we get

sup
‖U‖=1

UTJ−1
c U = sup

‖U‖
=0

UTJ−1
c U

UTU

= sup
‖V ‖
=0

V TV

V TJcV
≥ V ∗TV ∗

V ∗TJcV ∗
= Ac2,

with A a fixed constant not depending on c. Taking the limit as c → ∞ gives
that (upper bounding also the averaging over the law qdh by the supremum
over h)

lim inf
c→∞

sup
‖U‖=1

lim inf
n→∞

sup
‖h‖<1

E
(n)
θ∗+ch/

√
n

[(√
nUT (θ̂(n) − (θ∗ + ch√

n
))
)2

]
= +∞,

or equivalently,

lim inf
c→∞

sup
‖U‖=1

lim inf
n→∞

sup
‖θ−θ∗‖< c√

n

E
(n)
θ

[(√
nUT (θ̂(n) − θ)

)2
]

= +∞,

which contradicts the local uniform bound of Proposition 5.

The following proposition establishes the existence of an estimator with suit-
able risk, as required for the arguments of Proposition C.1.

Proposition 5. Let θ = (Q,Ω) be the parameter for the HMM described in
Proposition 4 and let θ∗ be such that the identifiability conditions of Assump-
tion 1 hold. Then there exists an estimator θ̂ such that, for any ε > 0 sufficiently
small, we have, as n → ∞,

sup
‖θ−θ∗‖<ε

Eθ‖θ̂ − θ‖2
2 ≤ C

n
(1 + o(1)),

up to label-swapping.

Proof. Let θ̂ be the spectral estimator constructed in [48]. We have that

Eθ‖θ̂ − θ‖2
2 =

∫ ∞

0
tPθ(|θ̂ − θ‖ > t)dt.
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Setting t = Cx√
n

we get

Eθ‖θ̂ − θ‖2
2 =

∫ ∞

0

C2x

n
Pθ(‖θ̂ − θ‖ >

Cx√
n

)dx.

The bound of Lemma 10 is valid for x ≥ 1, and so

Eθ‖θ̂ − θ‖2
2 ≤ C2

n
+ C2

n

∫ ∞

0
xe−x2

dx ≤ 3C2

2n .

Since the bound is valid on a small neighbourhood around θ, it holds in supre-
mum over that neighbourhood.

C.1.1. Construction of spectral estimators

Spectral estimation of HMMs has been addressed by a number of previous works
[1, 2, 6, 7, 16, 33]. In [1], the authors exhibit estimators for emissions in para-
metric HMMs with a

√
n rate in probability, but we require convergence in

expectation. In [16], a convergence in expectation is shown but the rate con-
tains a logarithmic factor which is not sufficient for our use in the proof of
Proposition C.1. In [2], the authors exhibit estimators for which the concen-
tration is sub-Gaussian, which would permit integration to an in-expectation
bound, but their work only concerns two-state HMMs. We defer the details of
the construction to [48]. The final result which we arrive at in the reference is
as follows:

Lemma 10 (Spectral Estimators). Recall θ = (Q,Ω) and let θ̂ = (Q̂, Ω̂) to be
the spectral estimator detailed in [48]. Then there exists a τ ∈ SR such that, for
all ε > 0 small enough,

sup
‖θ−θ∗‖<ε

Pθ( max
i=1,...,R

‖θ̂i − τθi‖ >
Cx√
n

) ≤ e−x2
,

for some C = C(R,Q).

C.2. Fisher Information and asymptotic lower bound

The following result gives a lower bound on the asymptotic variance of regular
estimators and is used in the proof of Lemma 8.

Lemma 11. Let θ̂n be a regular estimator in the histogram model M(IM )
with M fixed. Let Z denote the random variable whose law is equal to the limit
distribution of the scaled and centred estimates

√
n(θ̂n−θ∗) under P∗ as n → ∞.

Then
Cov(Z) ≥ J(θ∗),

where J(θ) is the Fisher information matrix at the parameter θ.
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Proof. Consider estimation of the one-dimensional parameter λT θ. Recall from
Lemma 12 that for any sequence θn → θ, we have J(θ) = limn→∞

1
nJn(θn), with

Jn the joint Fisher information for n observations, as defined in Lemma 12.
We follow the arguments of Gill and Levit [31]. Let π be a fixed prior density

on [−1, 1] and J(π) = E[(log π(θ))′2]. For a given H > 0, let π(H,n) be the
rescaling of this prior to the interval A = [θ0 − n− 1

2H, θ0 + n− 1
2H] for given

H > 0. Then, applying the van Trees inequality, we get

E[λT θ̂n − λT θ]2 ≥ 1
EλTJn(θ)λ + nJ(π)/H2 ,

where the left hand expectation is taken over the joint law of the parameter
and the data given the parameter (with the parameter distributed according to
π(H,n)) and the expectation in the denominator is over θ having that law also.
Dividing through gives

E[
√
n(θ̂n − θ)]2 ≥ 1

1
nEλ

TJn(θ)λ + J(π)/H2 .

Taking first n → ∞, then H → ∞, we obtain the result, applying also
Lemma 12 to get convergence of the expectation term in the denominator to
the Fisher information.

The previous result requires the following convergence property of the Fisher
information matrices. We also use it in the proof of Proposition C.1.

Lemma 12. Let θn → θ. Denote Jn = J
(M)
n the Fisher information for n

observations in the model with M bins given by

Jn(θ) = Eθ[−∇2
θ logLn(θ)],

and J the Fisher information for the model. Then

1
n
Jn(θn) → J(θ).

When θn = θ the result is simply the definition of J . The interest is hence in
establishing local uniform convergence.

Proof. Theorem 3 of [19] establishes the result in the case of observed informa-
tion4,

− 1
n
∇2

θln(θn) → J(θ),

a.s. under Pθ. Moreover, the Fisher and Louis identities [41] show that bound-
edness of the complete observed information and complete scores (which take
simple forms) implies boundedness of the observed information. Write Y = [M ]N
and μ for the counting measure on this space with associated densities pθ(y). We

4The result as stated in the reference conditions on the value X0 = x0 – the general
statement follows and can be found explicitly in Theorem 13.24 in [20].
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have since the observed information is bounded and pθn(y) → pθ(y) pointwise
and so in L1(μ) by Scheffé’s lemma [52],

1
n
Jn(θn) =

∫
Y
− 1
n
∇2

θln(θn)pθn(y)dμ(y)

=
∫
Y
− 1
n
∇2

θln(θn)pθ(y)dμ(y) + o(1)

= J(θ∗) + o(1).

C.3. Technical results for the deconvolution argument

Here, we collect the technical results required to prove Lemma 2.
Let us recall some notation for what follows. For r ∈ {1, . . . , R}, and g ∈

L2(f∗
r ), define

Hr,M (g) = g(y0)P∗(X0 = r|G0
m)+

−1∑
j=−∞

g(yj)(P∗(Xj = r|G0
M )−P∗(Xj = r|G−1

M )),

and define Hr(g) similarly but with the conditioning being on the sigma algebras
G0 and G−1. Then define, for g = (g1, . . . , gr),

HM (g) =
∑
r

Hr,M (gr); H(g) =
∑
r

Hr(gr).

These are the score functions in the sub-models with fixed transition matrix,
and emission densities varying along the path characterised by g.

Our first technical result allows us to eliminate certain terms when we make
the main deconvolution argument. We recall G� = σ(Y−∞:�).

Lemma 13. For g ∈ Hr and j < k ≤ 0, we have

E∗[g(Yj)P∗(Xj = r|G0)|Yk:0] = 0.

Proof. We first note that

E∗[g(Yj)P(Xj = r|G0)|Yk:0] = E∗[g(Yj)1Xj=r|Yk:0]
= E∗[E∗[g(Yj)1Xj=r|Yk:0, Xj ]|Yk:0],

by using usual properties of conditional expectations. Given Xj , Yj and Xj are
conditionally independent of Yk:0 and thus E∗[g(Yj)1Xj=r|Y0, Xj ] = E∗[g(Yj)
1Xj=r|Xj ]. Since Xj has values in the discrete set [R], we can explicitly write
the conditional expectation as

E∗[g(Yj)1Xj=r|Xj ] =
R∑

r′=1
E∗[g(Yj)1Xj=r|Xj = r′]1Xj=r′

= E∗[g(Yj)|Xj = r]1Xj=r
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But, since g ∈ L2(f∗
r dx) has zero expectation against the emission distribution

for state r, the right hand side vanishes and hence so does its expectation given
Yk:0.

In the following section, we relate the score functions HM in the binned
model to score functions H in the full model, where the perturbation g is in the
‘direction’ of a histogram.

C.3.1. On the difference HM −H

Lemma 14. If hM = (hr,M )r≤R with supM

∑
r‖hr,M‖L2(f∗

r ) ≤ L < ∞, then

HM (hM ) = H(hM ) + oL2(1).

Proof. We have, for each r,

Hr,M (hr,M ) = hr,M (y0)P∗(X0 = r|G0
M )

+
−1∑

j=−∞
hr,M (yj)(P∗(Xj = r|G0

M ) − P∗(Xj = r|G−1
M ));

Hr(hr,M ) = hr,M (y0)P∗(X0 = r|G0)

+
−1∑

j=−∞
hr,M (yj)(P∗(Xj = r|G0) − P∗(Xj = r|G−1)).

(37)

We will show that Hr,M (hr,M )−Hr(hr,M ) = oL2(1). Let ε > 0 be arbitrary, and
J = J(L, ε) > 0 be such that 2LρJ−1 < ε

3 (1 − ρ). Then Lemma 19 implies that

∥∥∥∥ −J∑
j=−∞

hr,M (yj)(P∗(Xj = r|G0) − P∗(Xj = r|G−1))

+
−J∑

j=−∞
hr,M (yj)(P∗(Xj = r|G0

M ) − P∗(Xj = r|G−1
M ))

∥∥∥∥
L2(P∗)

≤ 2ε
3 .

We have now reduced the problem to the case where the sums in (37) are over
j > −J . Since ‖hM‖L2 = O(1), to show convergence of the remaining difference
between Hr,M and Hr, it suffices to show that P∗(Xj = r|G�

M ) → P∗(Xj = r|G�)
in L∞(P∗) for � = 0, 1 and −J ≤ j ≤ 0.

We use Lemma 18. Let K > J . We then obtain, for all j ≥ −J and � = 0,−1,

P∗(Xj = r|G�) =
R∑

s=1
P∗(Xj = r|Y−K:�, XK = s)P∗(X−K = s|G�

∞)

=
R∑

s=1
P∗(Xj = r|Y−K:0)(1 + O(ρj+K))P∗(X−K = s|G�

∞)
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=
(
1 + O(ρj+K)

) R∑
s=1

P∗(Xj = r|Y−K:0)P∗(X−K = s|G�
∞)

=
(
1 + O(ρj+K)

)
P∗(Xj = r|Y−K:0).

Similarly, P∗(Xj = r|G�
M ) = (1 + O(ρj+K))P∗(Xj = r|Y (M)

−K:0). Then

sup
Y−∞:0

|P∗(Xj = r|G�
M ) − P∗(Xj = r|G�)|

≤ sup
Y−∞:0

|P∗(Xj = r|G�
M ) − P∗(Xj = r|Y (M)

−K:�)|

+ sup
Y−∞:0

|P∗(Xj = r|Y (M)
−K:�) − P∗(Xj = r|Y−K:�)|

+ sup
Y−∞:0

|P∗(Xj = r|Y−K:�) − P∗(Xj = r|G�)|.

By choosing K sufficiently larger than J , we have seen that the first and third
terms are small, and bounded above by ε

9JL uniformly in j ≥ −J . It remains to
bound the second term. We have

|P∗(Xj = r|Y (M)
−K:�) − P∗(Xj = r|Y−K:�)|

= P∗(Xj = r)

∣∣∣∣∣P∗(Y (M)
−K:�|Xj = r)
P∗(Y (M)

−K:�)
− P∗(Y−K:�|Xj = r)

P∗(Y−K:�)

∣∣∣∣∣ .
We write

P∗(Y (M)
−K:�|Xj = r) =

∑
x−K ,...,x�

1xj=r

�∏
t=−K

fω∗
xt

(Yt)P∗(X−K:� = x−K:�|Xj = r),

and similarly for Y−K:�. The true emissions f∗
r are continuous functions on the

compact set [0, 1], hence they are uniformly continuous and hence are approxi-
mated in L∞([0, 1]) by the histograms fω∗

r
with ω∗

r = (
∫
Im

f∗
r (y)dy : m ∈ [κM ]).

Since there are a fixed number of such terms, we can choose M large enough
that, for each j, the preceding display is bounded above by ε

9JL . Putting every-
thing together and using Hölder’s inequality, we get that

‖Hr,M (hr,M ) −Hr(hr,M )‖L2(P∗) ≤ ε.

The general case follows by summing over r, which concludes the proof.

C.3.2. Deconvolution argument

The next lemma essentially provides a reduction of the deconvolution argument.

Lemma 15. Let hM be a sequence of step functions on the partition IM with
‖hM‖ =

∑
r‖hr,M‖L2 ≤ 1, such that hr,M ∈ Hr,M . For any k ≥ 0,

HM (hM ) L2(P∗)→ 0 =⇒
R∑

r=1

0∑
k′=−k

hM (yk′)P∗(Xk′ = r|Y−k:0)
L2(P∗)→ 0.
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Proof. For notational simplicity, we will write, for any index j and σ-algebra G,

hM (Yj)P∗(X0|G) =
∑
r

hr,M (Yj)P∗(X0 = r|G).

By Lemma 14, we have HM (hM ) L2(P∗)→ 0 ⇐⇒ H(hM ) L2(P∗)→ 0. Denote
by Y k the vector (Y−∞:k). Note that H(hM )(Y−∞:0) = GM (Y 0) has the same
distribution as GM (Y j) ∀j ≤ 0, by stationarity of the latent chain. Define

D
(M)
0 (h(M), J) =

0∑
j=J

GM (Y j) =
0∑

j=J

hM (Yj)P∗(Xj |G0)

+
J−1∑

j=−∞
hM (Yj)(P∗(Xj |G0) − P∗(Xj |GJ−1))

= oL2(1).

Using Lemma 13 with k = 0 to eliminate the terms which condition on G0, we
obtain

E∗(D(M)
0 (h(M), J)|Y0) = hM (Y0)P∗(X0|Y0) −

J−1∑
j=−∞

E(hM (Yj)P∗(Xj |GJ−1)|Y0)

= oL2(1).

Using Lemma 19, we obtain, for a particular ρ < 1 which does not depend
on M , that

J−1∑
j=−∞

E∗(hM (yj)P∗(Xj |GJ−1)|Y0)

=
J−1∑

j=−∞
E∗(hM (yj)P∗(Xj |GJ−1))

︸ ︷︷ ︸
=0

+O(ρJ ) = O(ρJ ),

with the right-hand sum vanishing because the E∗(hM (yj)P∗(Xj |GJ−1)) = 0,
by Lemma 13. The term O(ρJ ) is uniform in M since ‖hM‖L2(P∗) ≤ 1, and by
choosing J large enough this term can be made arbitrarily small. We conclude
that

hM (y0)P∗(X0|Y0) = oL2(1),
as M → ∞. By instead applying Lemma 13 with k < 0, we can argue similarly
that, for all k ≥ 0,

D
(M)
k (hM ) :=

R∑
r=1

0∑
k′=−k

hM (yk′)P∗(Xk′ = r|Y−k:0) = oL2(1).
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C.3.3. On the convergence on ÃM

The proof of the following result is very similar to the proof of Lemma 1 in [27],
which used that the spaces of score functions for mixture models were nested
to show convergence.

Lemma 16. Let ÃM P̃M , A, P be as in the statement of Lemma 1. Then
A = Ã := limM→∞ ÃM .

Proof. We have by the arguments of [27] that for any S ∈ L2(P∗) (ÃMS)M
is Cauchy, as the spaces P̃M are nested. By completeness of L2(P∗), we then
establish convergence to some element ÃS ∈ L2(P∗). Since ÃM are projections,
Ã is also a projection onto its image, which is some subspace

P̃ ⊂ Cl
( ⋃

M∈N

P̃M

)
.

Recall that P is defined as the closure of the linear span of the H(h) functions,
as in the statement of Lemma 1. By definition, P is closed and, since P̃M ⊂ P
for all M , we must have Cl

(⋃
M∈N P̃M

)
⊂ P. We show that any element in

H(h) ∈ P can be written as the L2 limit of some sequence in
⋃

M∈N P̃M . First,
choose a sequence hM → h in L2(P∗) such that ‖hM‖L2 ≤ 2‖h‖L2 for all M ,
which is possible under Assumption 5. We now wish to show that, for all
r ∈ [R],

(hr,M (y0) − hr(y0))P∗(X0 = r|G0)

+
−1∑

j=−∞
(hr(yj) − hr,M (yj))(P∗(Xj = r|G0) − P(Xj = r|G−1)) (38)

vanishes in L2. By Lemma 19, we can choose J sufficiently large negative that

J∑
j=−∞

(hr(yj) − hr,M (yj))(P∗(Xj = r|G0) − P∗(Xj = r|G−1)) < ε

2 .

Since ‖hr,M‖L2 ≤ 2‖hr‖L2 , J can be chosen so that the above holds uniformly
in M .

To control the finitely many remaining terms, it suffices to note the L∞

boundedness of the probabilities and the L2 convergence of hM to h, and so, for
M sufficiently large, the remaining finite sum is bounded by ε

2 , hence (38) has
L2 norm at most ε. Since ε was arbitrary, we conclude that P ⊂ P̃, and so the
two spaces coincide and A = Ã as claimed.

C.4. Admissible partitions

The following lemma is well-known in the identifiability literature. We recall it
here for completeness.
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Lemma 17. Let F ∗
1 , . . . , F

∗
R be linearly independent distribution functions on

[0, 1]. Then there exists a partition I1, . . . , IR of [0, 1] which is admissible in the
sense of Definition 1.

C.5. Forgetting of the hidden chain

The following results are from [19]. Recall that q̄ = minij Q
∗
ij > 0 under As-

sumption 3. The first result quantifies the exponential forgetting of the hidden
chain.

Lemma 18 (Douc et al. 2004, [19]). For all s ∈ [R], k, k′ ∈ Z, and j ≥ k, we
have

sup
Yk:k′

‖P∗(Xj = ·|Xk = s, Yk:k′) − P∗(Xj = ·|Yk:k′)‖TV ≤ ρj−k,

where ρ = 1−2q̄
1−q̄ .

The second of these results follows from applying Equation (20) of [19] to both
the known-emission model and the submodels on the emissions. It in particular
ensures that the score functions we consider are well-defined.

Lemma 19 (Douc et al. 2004, [19]). For h ∈ L2(P∗), j ≤ 0, r, s ∈ [R], and for
P∗− almost all Y−∞:0,

|P∗(Xj−1 = s,Xj = r|Y−∞:0) − P∗(Xj−1 = s,Xj = r|Y−∞:−1)| ≤ ρ−j−1

and

|h(Yj){P∗(Xj = r|Y−∞:0) − P∗(Xj = r|Y−∞:−1)}| ≤ |h(Yj)|ρ−j−1,

where ρ = 1−2q̄
1−q̄ . In particular, by integrating the square of both sides, we have

‖h(Yj){P∗(Xj = r|Y−∞:0) − P∗(Xj = r|Y−∞:−1)}‖L2(P∗) ≤ ‖h‖L2(P∗)ρ
−j−1.

Lemmas 18 and 19 remain true when replacing Y by Y (M), the coarsened
data. The choice of ρ is made independently of M , as it only depends on the
transition matrix Q∗, which is the same in all histogram models as it is in the
semiparametric model.

C.6. Technical results for the proofs of Theorems 4 and 6

We employ the following lemma (Lemma 7 of the main text) in the proof of
Theorem 4 to eliminate certain terms.

Lemma 20. Consider a sequence of emissions f (n) such that g(3)
Q∗,f (n) → g

(3)
Q∗,f∗

in L1(dx3). Then f (n) L1

→ f∗ along a subsequence.
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Proof. Write P = diag(p∗). Since ‖g(3)
Q∗,f (n) − g

(3)
Q∗,f∗‖L1 = o(1), ‖g(2)

Q∗,f (n) −
g
(2)
Q∗,f∗‖L1 = o(1) and∑

r,s

(PQ∗)rs(f (n)
r (y1)fn

s (y2) − f∗
r (y1)f∗

s (y2)) = oL1(1).

Construct a partition I1, . . . IR of R such that F ∗
ir =

∫
Ii
f∗
r dy is of rank R and

define F
(n)
ir =

∫
Ii
f

(n)
r (y)dy. Then we get, for all i,∑

r,s

(PQ∗)rs(F (n)
ri f (n)

s (y) − F ∗
rif

∗
s (y)) = oL1(1).

Since g
(3)
Q∗,f (n) → g

(3)
Q∗,f∗ , Theorem 2.3 of [58] establishes weak convergence of the

emissions, which then implies Fn → F∗ and so

(F∗)T (PQ∗)f (n) = (F∗)T (PQ∗)f∗ + oL1(1),

which implies f (n) = f∗ + oL1(1).

In the proof of Theorem 6, we use the fact that the approximating distribution
for the posterior Π1(·|Y1:n) can be chosen to not depend on the observation Y�.
The difficulty in the proof compared to the iid setting arises from the dependence
structure, but, by the exponential forgetting (Lemma 18), we can prove that the
1/

√
n scaled joint score functions coincide up to o(1) terms, and hence so do

the
√
n− scaled MLEs.

Lemma 21. Grant Assumptions 1–5, let θ̂ = (Q̂, ω̂) denote the MLE in the
model with admissible partition IM and define θ̂−� = (Q̂−�, ω̂−�) by

ˆθ−� = θ∗ + J−1
M√
n
l
(−�)
θ (Y −�

1:n), (39)

where Y −�
1:n = (Y1, . . . , Y�−1, Y�+1, . . . , Yn) and

l−�
θ (Y (−�)

1:n ) =
�−1∑
i=1

lθ(Yi|Y1:i−1) +
n∑

i=�+1

lθ(Yi|Y (−�)
1:i−1). (40)

Let Ln ⊂ [n] be an index set whose cardinality satisfies |Ln| log|Ln| = o(n).
Then, for all ε > 0,

P∗(∃l ∈ Ln :
√
n|Q̂(−l) −Q∗| > ε) → 0,

as n → ∞
Proof. We may write the log-likelihood for the parameter θ = (Q,ω) as

lθ(Y1, . . . , Yn) =
n∑

i=1
lθ(Yi|Y1:i−1), (41)
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where the i = 1 term is the unconditional likelihood. Note that (40) corresponds
to the log-likelihood based on observing Y

(−�)
1:n . Standard arguments for showing

asymptotic normality (see e.g. [9]), using Taylor expansions of the derivative of
the expression (41), give

√
n(θ̂ − θ∗) = J−1

M√
n
∇θ∗ lθ∗(Y1:n) + Rn,

for Rn = OP∗(supθ̄∈[θ∗,θ̂]‖ 1
nD

2
θ̄
lθ̄(Y1:n) + JM‖), the error in approximating the

Fisher Information with the negative log-likelihood. The uniform law of large
numbers for the observed information as given in Theorem 3 of [19], together
with the consistency of the MLE (see e.g. [39]), then implies that Rn = oP∗(1).

For the estimator θ̂(−�), we have, for each l ∈ L, by the definition in (39),
that

√
n(θ̂−� − θ∗) = J−1

M√
n
∇θ∗ l−�

θ∗ (Y −�
1:n).

Hence
√
n(θ̂−� − θ̂) = J−1

M√
n

(∇θ∗ l−�
θ∗ (Y −�

1:n) −∇θ∗ lθ∗(Y1:n)) −Rn

Note that the Rn term does not depend on �, and vanishes in P∗− probability.
We will show that, for each � ∈ Ln, P∗

[
1√
n
(∇θ∗ l−�

θ∗ (Y −�
1:n) −∇θ∗ lθ∗(Y1:n)) > ε

]
=

o(|Ln|−1), so that a union bound implies

P∗(∃l ∈ Ln : 1√
n

(∇θ∗ l−�
θ∗ (Y −�

1:n)−∇θ∗ lθ∗(Y1:n)) > ε) ≤ |Ln|oP∗(|Ln|−1) = oP∗(1),

from which the result follows. The argument is based on the exponential for-
getting properties, and the expansion of the score considered in [19]. For the
full log-likelihood (41), we have through the Fisher identity as in [19] that the
log-likelihood of θ given Y1:n and X0 = x, denoted ln(θ,X0 = x), has gradient
at θ = θ∗ given by

1√
n
∇θ∗ ln(θ,X0 = x) = 1√

n

n∑
k=1

Δk,0,x,

with

Δk,0,x = Eθ∗

[
k∑

i=1
∇θ∗ log(QXi−1,XiωXi,Yi)|Y0:k, X0 = x

]

− Eθ∗

[
k−1∑
i=1

∇θ∗ log(QXi−1,XiωXi,Yi)|Y0:k−1, X0 = x

]
,

which can be seen by writing the log-likelihood as a telescoping sum and using
the Fisher identity to write each term as a conditional expectation of the full
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likelihood. We can do the same for the likelihood without Y �: define

Δ(−�)
k,0,x = Eθ∗

[
k∑

i=1
∇θ∗ log(QXi−1,XiωXi,Yi)|Y −�

0:k , X0 = x

]

− Eθ∗

[
k−1∑
i=1

∇θ∗ log(QXi−1,XiωXi,Yi)|Y
(−�)
0:k−1, X0 = x

]
.

We remark that the term Δ(−�)
l,0,x = 0 which corresponds to the missing contribu-

tion from Y l in the expansion of the likelihood. Then we can write

1√
n
∇θ∗ l(−�)

n (θ,X0 = x) = 1√
n

∑
k<�−1

Δ(−�)
k,0,x+ 1√

n

�+1+Ln∑
k=�+1

Δ(−�)
k,0,x+ 1√

n

∑
k>Ln

Δ(−�)
k,0,x.

The first sum remains unchanged compared to the expression without the miss-
ing data point. Lemma 8 of [19] shows that we may replace the Δk,0,x by Δk,0
where the latter is defined conditioning only on the Y0:k – the same argument
made there shows the analogous result for the Δ(−�)

k,0,x with respect to the anal-
ogously defined Δ(−�)

k,0 . We note that, under Assumptions 3 and 4, the Δk,0

and Δ−�
k,0 are bounded uniformly in X(·), Y(·), and so, for any Ln = o(

√
n) to be

chosen later, we have that for some constant C > 0 depending on Q∗ and w∗,

P∗

[
1√
n

�+1+Ln∑
k=�+1

Δ(−�)
k,0 (θ) − 1√

n

�+1+Ln∑
k=�

Δk,0(θ) > CLn/
√
n

]
= 0

It remains to control the difference between the remaining contributions for suit-
ably chosen Ln. Similarly to what is done in [19], we define Δk,m by conditioning
instead on Ym:k. Write Δk,m as a telescoping sum:

Δk,m = Eθ∗ [∇θ∗ log(QXk−1,Xk
ωXk,Yk

)|Ym:k]

+
k−1∑

i=m+1
Eθ∗ [∇θ∗ log(QXi−1,XiωXi,Yi)|Ym:k]

− Eθ∗ [∇θ∗ log(QXi−1,XiωXi,Yi)|Ym:k−1].

Then their equation (19) states that, for k > m > m′, 5

‖Eθ∗ [∇θ∗ log(QXi−1,XiωXi,Yi)|Ym:k] − Eθ∗ [∇θ∗ log(QXi−1,XiωXi,Yi)|Ym′:k]‖
≤ 2Cρi−m−1

∗ ,

where ρ∗ ∈ (0, 1) is a constant which depends on θ∗ alone. Furthermore, their
equation (20) states that

‖Eθ∗ [∇θ∗ log(QXi−1,XiωXi,Yi)|Ym:k] − Eθ∗ [∇θ∗ log(QXi−1,XiωXi,Yi)|Ym:k−1]‖
≤ 2Cρk−i−1

∗ .

5Their result is only stated for m < 0, but by stationarity extends to all m ∈ Z.
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Combining the above two displays in the same way as Lemma 10 of [19], we
have, for a suitable constant C(Q∗, ω∗) that

‖Δk,0 − Δk,�+1‖L2(P∗) ≤ C(Q∗, ω∗)ρ
(k−�−1)/2−1
∗

1 − ρ∗
.

Arguing similarly for the case of Δ−�
k,0, we see that

‖Δ−�
k,0 − Δ−�

k,�+1‖L2(P∗) ≤ C(Q∗, ω∗)ρ
(k−�−1)/2−1
∗

1 − ρ∗
.

The Δ−�
k,�+1 = Δk,�+1 as the conditioning excludes Y� in either case, and so the

above displays combine to give

‖Δ−�
k,0 − Δk,0‖L2(P∗) ≤ 2C(Q∗, ω∗)ρ

(k−�−1)/2−1
∗

1 − ρ∗
.

Applying Minkowski’s inequality then gives that∥∥∥∥∥ ∑
k>�+1+Ln

(Δ−�
k,0 − Δk,0)

∥∥∥∥∥
L2(P∗)

= O(ρLn/2
∗ ).

Choosing Ln = 2M log|Ln| for sufficiently large M > 0 we have ρ
Ln/2
∗ =

e(log|Ln|)(M log ρ∗) = |Ln|M log ρ∗ = o
( 1
n

)
. Therefore we finally obtain that for

all l = o(n/ log n)

P∗(
1√
n

(∇θ∗ l−�
θ∗ (Y −�

1:n) −∇θ∗ lθ∗(Y1:n)) > ε) ≤ 1/n

and, since |Ln| = o(n), the claim is proved.

Appendix D: Assumptions required for the application of
Theorem 5 to Dirichlet process mixtures

In this section, we detail the assumptions required for Proposition 1.
We will need the following assumptions on the behaviour of the emissions,

which are assumptions (T1)–(T3) of [57].

Assumption 8. (i) There exist positive constants M0, τ0, γ0 such that, for all
1 ≤ i ≤ R and all y ∈ R,

f∗
i (y) ≤ M0 exp(−τ0|y|γ0).

(ii) For all 1 ≤ i, j ≤ R there exist constants Ti,j ,Mi,j , τi,j , γi,j < γ0 such
that

f∗
i (y) ≤ f∗

j (y)Mi,j exp(τi,j |y|γi,j ), |y| ≥ Ti,j .

(iii) For all 1 ≤ i ≤ R, f∗
i is positive and there exists ci > 0 and ylowi < yhighi

such that f∗
I is non-decreasing on (−∞, ylowi ), bounded below by c > 0 on

(ylowi , yhighi ), and non-increasing on (yhigh,∞).
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We will further require the following assumptions on the choice of prior, which
are Assumptions (G1) and (S1)–(S3) of [57]. These assumptions are verified by
standard choices of Gaussian base measure and inverse gamma prior on the
standard deviation.

Assumption 9. (i) α(R \ [−y, y]) � exp(−C1y
a1) for y large enough and some

C1, a1 > 0
(ii) B. σ ∼ Πσ where Πσ is an Inverse Gamma distribution.

Condition (ii) of Assumption 9 on Πσ can be relaxed; we essentially Πσ to
admit a Lebesgue density πσ which behaves like an inverse – Gamma near 0 and
has tails bounded by some power of 1/σ near infinity (see for instance [37]).

Appendix E: Details on MCMC algorithms used in Section 5

E.1. MCMC Algorithm for Π1

In this section we describe the algorithm (Algorithm SA1) used for the simula-
tion study in Section 5. SR denotes the symmetric group of order R and where
we use subscripts to refer to algorithm iterations. In our R implementation, used
the RHmm package [53] for the forward-backward algorithm in the simulation of
the hidden states and computation of the log likelihood, and the gtools package
[59] for generation of permutations and Dirichlet draws. In our python imple-
mentation, we used the JAX package [10] to write both the forward-backward
algorithm and the MCMC6.

Algorithm SA1: Algorithm for MCMC draws targeting posterior of Q.
Input : Binned data Y (M) ∈ [κM ]n, number of hidden states R, prior parameters γ,

β, iterations I, initial hidden states value Xinit

Output: List of I draws of Q
Initialise X1 = Xinit

for i = 1, . . . , I + b do
Draw transition matrix Qi ∼ P (Q|Xi), histogram weights ωi ∼ P (ω|Xi, Y ),
hidden states Xi+1 ∼ P (X|Y,Qi, ωi)

end
Compute iMAP = arg maxi log Π1(Qi, ωi|Y )
for i = 1, . . . , I do

τi = arg minτ∈SR
d
(
((τ)Qi,

(τ)ωi), (QiMAP
, ωiMAP

)
)

end
return

{(τi)Qi

}I

i=1

E.2. MCMC Algorithm for Π2

In Algorithm SA2, we detail the MCMC procedure we implement in R and
python/JAX. Once again, we make use of the forward-backward algorithm to

6All code is documented at https://github.com/dm1729/.

https://github.com/dm1729/
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simulate latent states, allowing us to exploit the simple structure of the full
likelihood. One key difference is that our algorithm requires allocation to a
bivariate latent space (with total number of states RSmax) involving both the
HMM hidden state and the Dirichlet mixture component. Since the forward
backward algorithm is O(NK2) with K the number of states and N the number
of samples, and since we take Smax = �

√
N�, the overall implementation is

O(N2). The GPU capability of JAX code is of particular help here, as the
computations for the forward-backward algorithm with a large number of states
involve large matrices.

E.3. MCMC Algorithm for Π′

The MCMC algorithm of Π′ is obtained by modifying Algorithm SA2 to remove
the interior loop over c = 1, . . . , C and sampling a transition matrix Q from the
conditional distribution given the latent states, as in Algorithm SA1, at the
beginning of each outer loop over i. As with Algorithm SA2, the complexity is
O(N2) and so using it to target the marginal posterior on Q is much slower
than using Π1, as discussed in Section 5.

Algorithm SA2: Algorithm for MCMC draws targeting cut posterior of
emissions. Within the loop over c, we adopt the convention W 0

i = Wi−1
and W 0

i−1 = W0 etc.
Input : Data Y ∈ RN , Thinned transition matrix list (Qi)i=1,...,Ĩ , number of

hidden states R, prior parameters M0, ασ , βσ, μc, σ2
c , interior iterations C,

initial hidden state value Xinit, truncation level Smax.
Output: List of Ĩ draws of {fr}Rr=1

Initialise X0 = Xinit; variances v(r) iid∼ InvGamma(ασ , βσ); weights
W (r) = (W (r)

1 , . . . ,W
(r)
Smax

) ∼ Dir(α) with α = α(M0, Smax) as in (23); allocation
variables S0 = (S01, . . . , S0n) as in (22)

for i = 1, . . . , Ĩ do
for c = 1, . . . , C do

Sample locations (μc,(r)
i1 , . . . , μ

c,(r)
iSmax

)r=1,...,R from P (μc
i |S

c−1
i ,Xc−1

i , Y )
Sample variances (vc,(r)i )r=1,...,R from P (vci |S

c−1
i ,Xc−1

i , μc
i , Y )

Sample weights (W c,(r)
i,1 , . . . ,W

c,(r)
i,Smax

)r=1,...,R from P (W c
i |S

c−1
i ,Xc−1

i )
Sample latents (Sc

i , X
c
i ) from P (Sc

i ,Xc
i |μc

i , v
c
i ,W

c
i , Y,Qi)

end
Store (μi, vi,Wi, Si) = (μC

i , vCi ,WC
i , SC

i )
end
for i = 1, . . . , Ĩ do

Compute f
(r)
i from (μi, vi,Wi, Si) by evaluating (an approximation of) (21)

end

return
{
f
(r)
i

}Ĩ

i=1
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