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Abstract: The Lorenz regression estimates the explained Gini coefficient,
a quantity with a natural application in the measurement of inequality of
opportunity. Assuming a single-index model, it corresponds to the Gini co-
efficient of the conditional expectation of a response given some covariates
and it can be estimated without having to estimate the link function. How-
ever, it is prone to overestimation when many covariates are included. In
this paper, we propose a penalised bootstrap procedure which selects the
relevant covariates and produces valid inference for the explained Gini coef-
ficient. The obtained estimator achieves the Oracle property. Numerically,
it is computed by the SCAD-FABS algorithm, an adaptation of the FABS
algorithm to the SCAD penalty. The performance of the procedure is en-
sured by theoretical guarantees and assessed via Monte-Carlo simulations.
Finally, a real data example is presented.
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1. Introduction

The purpose of the Lorenz regression developed by [10], consists in estimating
the explained Gini coefficient, measuring the inequality of an economic outcome
Y which can be attributed to a set of covariates X = (X1, . . . , Xp)ᵀ. We assume
that 0 < E[Y ] < ∞, where E[·] is the expected value. The Gini coefficient of Y
is defined as

GiY := 2C[Y, FY (Y )]
E[Y ] ,

where FY (·) is the cumulative distribution of Y and C[·, ·] is the covariance
between the random variables Y and FY (Y ). The Gini coefficient is a measure
of the inequality of Y . In some applications, it might be interesting to measure
the inequality of Y that is attributable to X. One way to formalize this idea is
to consider the Gini coefficient of the conditional expectation of Y given X.

Throughout this paper, we assume the single-index model

E[Y |X = x] = H(xᵀθ0), (1)

where H is a strictly increasing function and θ0 is a vector of weights, normalized
in order to ensure identifiability. The explained Gini coefficient is defined as

GiY,X := max
θ

2C[Y, Fθ(Xᵀθ)]
E[Y ] (2)

= 2C[H(Xᵀθ0), FH(H(Xᵀθ0))]
E[H(Xᵀθ0)]

, (3)

where Fθ(·) is the cumulative distribution function (CDF) of Xᵀθ and
FH(H(Xᵀθ0)) is the CDF of H(Xᵀθ0). In the economic literature, the objective
function in (2) is called the concentration index of Y with respect to Xᵀθ. This
representation opens the door to an estimation procedure that does not depend
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on H(·). Let (Xᵀ
i , Yi)ᵀ

i=1,...,n be an i.i.d sample sharing the same distribution as
(Xᵀ, Y )ᵀ. The weight vector θ0 and GiY,X are consistently estimated with

θ := arg max
θ

1
n2

n∑
i=1

n∑
j=1

Yi 1{Xᵀ
i θ ≥ Xᵀ

j θ}, (4)

GiY,X := 2
n2

n∑
i=1

n∑
j=1

Yi

Y
1{Xᵀ

i θ ≥ Xᵀ
j θ} −

n + 1
n

, (5)

where Y denotes the empirical mean of (Y1, . . . , Yn)ᵀ and 1{·} denotes the indi-
cator function. Equation (4) yields a special case of the monotone rank estimator
introduced by [3] in the context of the single-index model. Equation (3) is inter-
esting for interpretation purposes. It indicates that the explained Gini coefficient
is the Gini coefficient of H(Xᵀθ0). The explained Gini coefficient therefore mea-
sures the inequality of the conditional expectation of Y given X, assuming a
single-index model with strictly increasing link function H(·).

Facing large micro-datasets covering hundreds of covariates, the Lorenz re-
gression may face several issues. First, the objective function in (4) is non-
differentiable, which complicates the numerical solution. [10] proposed a genetic
algorithm but its performance may be altered in datasets of large dimension.
Another issue is overfitting. In large datasets we might expect some covariates
to be irrelevant but, at the same time, to bear some empirical correlation with
the response. Much like the R2 in linear regression, the estimated explained
Gini coefficient never decreases as one keeps introducing new covariates. Facing
a sparse model, where some of the elements of θ0 are equal to 0, an estimation of
the full model will lead us to overestimate the explained Gini coefficient. These
concerns echo the justifications underlying the use of penalised regressions. In-
deed, these procedures provide proper inference of the model parameters and
automatic selection of the covariates, even in a situation where the number of
covariates is large. Procedures based on the SCAD penalty ensure a strong sta-
tistical guarantee: the oracle property of the estimator. We refer the reader to
[6] for the original procedure and to [11] for an adaptation to the single-index
model.

In this paper, we present a penalised Lorenz regression combined with a pairs
bootstrap procedure. The proposed methodology presents several advantages.
First, it makes it possible to include many covariates without inducing an over-
estimation of the explained Gini coefficient. Second, the penalisation leads to
a selection of the relevant covariates. Finally, the pairs bootstrap allows one to
construct confidence intervals for the explained Gini coefficient without having
to estimate the link function H(·) of the single-index model, see Equation (1)
for the definition of the model. The proposed procedure comes with statistical
and numerical guarantees. Through the use of a SCAD penalty, the estimator
achieves the oracle property. On the numerical side, we adapt the FABS algo-
rithm proposed by [15] to a SCAD penalty. Hence, we benefit from a procedure
enjoying good theoretical properties as well as a fast and efficient algorithm to
obtain estimates. From the viewpoint of the estimation of a single-index model,
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the most obvious competitor is the penalised maximum smoothing rank corre-
lation (PMSRC) estimator proposed by [11]. Compared to this procedure, the
advantage of the penalised Lorenz regression consists in the fact that it exploits
more information contained in the data. At the level of the response, it uses the
observation values, and not only the ranks. It is therefore expected to provide a
better tradeoff between flexibility and efficiency. This point is confirmed by the
favourable simulation results displayed in Section 4.2.

The Lorenz regression methodology has a natural application in the estima-
tion of inequality of opportunity (IOP). This concept embodies the idea that
inequalities in an economic advantage, e.g. earnings, are unfair if and only if they
are generated by variables over which individuals have no control, so-called cir-
cumstances. As pointed out in [14], the measurement of IOP is characterized
by a two-stage nature. First, the advantage variable is fitted in an economet-
ric model where the economic advantage is the response variable and circum-
stances are covariates. Second, the estimated model is used in combination with
a measure of inequality in order to evaluate the extent of IOP. Blending these
two stages harmoniously remains an issue in the literature. The first stage is
often a log-linear regression, see for example [1] and [7]. A recent approach
measures IOP with the Gini coefficient of fitted values obtained via machine
learning methods, see for example [2]. Interestingly, this method produces an
automatic selection of the relevant circumstances and does not rest on a re-
strictive parametric model. However, as discussed in [5], it is prone to lead to
a biased estimation of IOP because of the absence of robustness of the Gini
coefficient with respect to the derivation of the fitted values. Also, the method
comes without an inferential procedure. [5] propose a debiased estimator and a
valid inference procedure based on orthogonal moments. In practice, the debi-
ased estimator boils down to the empirical concentration index of the economic
advantage with respect to the fitted values. This finding unveils a new advantage
of our procedure. In the assumed single-index model, the estimated explained
Gini coefficient corresponds to the debiased estimator proposed by [5]. By as-
sumption, 1{Xᵀ

i θ ≥ Xᵀ
j θ} = 1{H(Xᵀ

i θ) ≥ H(Xᵀ
j θ)}. Hence (5) is an estimator

of the concentration index of the economic advantage with respect to the fitted
values, where the fitted value of observation i is H(Xᵀ

i θ).
This paper is organized as follows. In Section 2, we present the penalised

bootstrap Lorenz regression and provide asymptotic results for the estimated
covariate weights and for the explained Gini coefficient. The theoretical frame-
work considered in this paper hinges on a series of conditions on the penalty
function, which include the SCAD but exclude the LASSO. We also provide a
small discussion of these two methods in our context. The numerical algorithms
are presented in Section 3. We recall the main ideas underlying the FABS al-
gorithm and present the SCAD-FABS algorithm more thoroughly, for which we
derive convergence properties. Similarly to the FABS algorithm, we show that
each solution along the SCAD-FABS path is a δ-approximate solution to the pe-
nalised programme. In practice, the FABS algorithm is used to fit the penalised
bootstrap Lorenz regression with the LASSO penalty. The SCAD-FABS algo-
rithm is used when the SCAD penalty is considered. Throughout this paper, we
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call these two methods PLR-LASSO and PLR-SCAD respectively. Simulation
results assessing the performance of the procedure are displayed in Section 4.
A comparison of the PLR-SCAD with the PLR-LASSO is first provided in
Section 4.1. In Section 4.2, we provide a broader comparison with the PMSRC.
Section 4.3 illustrates the asymptotic properties of the procedure and Section 4.4
evaluates the performance of the confidence intervals. We confront the method
to real data in Section 5. A robustness analysis and an assessment of computing
time are provided in Sections 5.2 and 5.3 respectively. Finally, a discussion on
the method is provided in Section 6.

2. The penalised bootstrap Lorenz regression

This section develops as follows. First, we introduce the penalised Lorenz regres-
sion programme and provide asymptotic results for the estimated weight vector
and explained Gini coefficient. Second, we turn to the bootstrap procedure and
the choice of the regularisation parameter.

Given n i.i.d samples (Xᵀ
i , Yi)ᵀ

i=1,...,n, the penalised Lorenz regression solves
the following optimization programme

θ̂ := arg max
θ,‖θ‖=1

{
Gn(θ) −

p∑
k=1

pλ(|θk|)
}
, (6)

where pλ(·) is a nonconcave penalty function, λ > 0 is a penalty parameter and
‖ · ‖ denotes the L2-norm of a vector. The non-penalised objective function is a
smooth approximation of the objective function displayed in (5). It is given by

Gn(θ) := 1
n2

n∑
i=1

n∑
j=1

YiK

(
Xᵀ

i θ −Xᵀ
j θ

h

)
, (7)

where K(·) is the integral of a kernel function and h is its corresponding band-
width. In essence, (6) is an adaptation of the programme characterizing the
PMSRC estimator. The difference lies in the original objective function. While
the PMSRC is an adaptation of the maximum rank correlation estimator in-
troduced by [9], (6) is related to the monotone rank estimator proposed by [3].
In both cases, the idea consists in combining smoothing techniques and penal-
isation with the double advantage of facilitating the estimation procedure and
avoiding overfitting.

The theoretical results of this section hold for a class of penalty functions,
satisfying a number of conditions. One member of this class is the SCAD penalty.
It satisfies

p′λ(x) =

⎧⎪⎨⎪⎩
λ if x ≤ λ
aλ−x
a−1 if λ < x ≤ aλ

0 if x > aλ

(8)
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where x > 0, a > 2 is an arbitrary constant and, for a differentiable function
f(·), f ′(x) = df(x)/dx. Without loss of generality, we order the covariates such
that {1, . . . , s} are active and {s+1, . . . , p} are non-active. Let θ0 = (θAᵀ

0 , θIᵀ
0 )ᵀ

be the vector of unknown weights. The vector θA0 is related to the s active
covariates, while θI0 = 0 corresponds to the non-active part. In Theorem 2.2, it
will also be useful to write ϑ0 = (θ0,1, . . . , θ0,s−1)ᵀ, i.e. θA0 = (ϑᵀ

0 , θ0,s)ᵀ.
Call f(·) the joint density of X and g(·) the density of Z = Xᵀθ0. Also,

denote by FY,X(·) and FY,Z(·) the joint distribution functions of (Y,Xᵀ)ᵀ and
(Y,Z)ᵀ respectively. We will use the following regularity conditions in order to
prove the main results.

(RC1) X is bounded with compact support X . Also, we denote the compact
support of Z by Z.

(RC2) H(Xᵀθ0) has finite first and second moment and H(·) is twice contin-
uously differentiable.

(RC3) g(·) is twice continuously differentiable. Also, for each l = 1, . . . , p and
m < l, the joint density of (X l, Z)ᵀ is four-times continuously differen-
tiable and the joint density of (X l, Xm, Z)ᵀ is three-times continuously
differentiable.

(RC4) κ(·) is a density function with compact support [−1, 1] such that κ(−1)=
κ(1) = 0, and satisfying

∫
vlκ(v)dv = 0 for l = 1, 2 and

∫
vqκ(v)dv �= 0

for some q ≥ 3. Also, κ(·) is twice continuously differentiable. Denote
by K(·) the CDF related to κ(·).

(RC5) nh6 → 0 and nh5(log(h−1))−1 → ∞.
(RC6) pλ(·) has piecewise continuous second derivatives and bounded third

derivatives.
(RC7) E[Y Fθ(Xᵀθ)] has a unique maximum with respect to θ. Also, the second

derivative of the function θ �→ Fθ(xᵀθ) is continuous with respect to x
and θ.

(RC1)–(RC5) are standard conditions to obtain strong consistency results
for a kernel density estimator and its first and second derivatives, and for the
numerator of a Nadaraya-Watson estimator, as in the works of [16], [13] and
[12]. (RC6) is necessary to perform Taylor expansions of the objective function
displayed in (6) and is satisfied for the SCAD. Finally, (RC7) is needed to ensure
the local consistency of θ̂. The first part of this assumption is proven under mild
conditions in Theorem 1 from [3].

Theorems 2.1 and 2.2 are adaptations of Theorems 1 and 2 from [11] to our
context. Their proofs are deferred to Appendix A.

Theorem 2.1. Let (Xᵀ
i , Yi)ᵀ

i=1,...,n be i.i.d random vectors satisfying Equa-
tion (1) with H(·) strictly increasing, ‖θ0‖ = 1, and E[Y 2

i ] < ∞. If
maxk{p′′λ(|θ0,k|)} → 0 and (RC1)–(RC7) hold, then there exists a local max-
imizer θ̂ of Equation (6) such that

‖θ̂ − θ0‖ = Op(n−1/2 + an),

where an := max{p′λ(|θ0,k|) : θ0,k �= 0}.
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With the SCAD penalty, an = 0 with a proper choice of λ. This allows
us to obtain a

√
n-consistent estimator for the coefficient vector θ0. This is an

advantage over the LASSO penalty, where the convergence rate is Op(n−1/2+λ).
Define next

b := [p′λ(|θ0,1|)sign(θ0,1), . . . , p′λ(|θ0,s−1|)sign(θ0,s−1)]ᵀ − p′λ(θ0,s)
θ0,s

ϑ0. (9)

Theorem 2.2. Let (Xᵀ
i , Yi)ᵀ

i=1,...,n be i.i.d random vectors satisfying Equa-
tion (1) with H(·) strictly increasing, ‖θ0‖ = 1, θ0,s > 0 and E[Y 2

i ] < ∞.
Assume that an = 0 and

lim inf
n→∞

lim inf
x→0+

p′λ(x)/λ > 0.

If λ → 0 and
√
nλ → ∞ as n → ∞, and (RC1)–(RC7) hold, then the

√
n-

consistent local maximizers θ̂ = (θ̂Aᵀ, θ̂Iᵀ)ᵀ of Theorem 2.1, where θ̂A = (ϑ̂ᵀ, θ̂s)ᵀ

estimates θA0 and θ̂I estimates θI0, satisfy

1. Sparsity: P (θ̂I = 0) → 1, as n → ∞.
2. Asymptotic normality:

√
n[ϑ̂ − ϑ0 + Σ−1b] d→ N(0,Σ−1ΩΣ−1ᵀ), where Σ

is an invertible (s − 1) × (s − 1) matrix defined in (29), b is a vector of
dimension s− 1 defined in (9) and Ω is an (s− 1)× (s− 1) matrix defined
in (30).

With the SCAD penalty, as λ → 0 and in light of Equation (8), each com-
ponent of the vector b is set to 0. In that case, the penalised Lorenz regression
enjoys two major properties. The first is the property of sparsity, which indicates
that the estimated weights attached to the non-active covariates are set to zero
with a probability tending to one. The second is the asymptotic normality of
the estimated weight vector related to the active covariates. The convergence
rate is the same as what one would obtain with the monotone rank estimator
of [3] computed on the active set of covariates. The selection process does not
lead to any loss of efficiency. Hence, our estimator enjoys the oracle property.
Finally, notice that due to the constraint ‖θ̂‖ = 1, the last active covariate can
be viewed as a function of the others, namely θ̂s =

√
1 − ϑ̂ᵀϑ̂. As a consequence,

the asymptotic normality is obtained on ϑ̂ rather than on θ̂A.
An estimator ĜiY,X for the explained Gini coefficient is obtained by plugging

θ̂ into Equation (5), where θ̂ is the
√
n-consistent estimator of Theorem 2.2.

Theorem 2.3 establishes the asymptotic normality of ĜiY,X . Its proof is deferred
to Appendix A.

Theorem 2.3. Let (Xᵀ
i , Yi)ᵀ

i=1,...,n be i.i.d random vectors with 0 < E[Yi] < ∞.
If the conditions of Theorem 2.2 hold, then

√
n[ĜiY,X − GiY,X ] d→ N(0, σ2

ζ ),
where σ2

ζ := V [ζi] and ζi is defined in Equation (31).

As in Theorem 2.2, we achieve the same rate of convergence as an unpenalised
procedure undertaken on the set of active covariates. In the penalised procedure,
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the asymptotic normality and unbiasedness comes from the estimated index
being itself asymptotically normal and unbiased. This, in turn, stems from the
use of an unbiased penalty function, i.e. the SCAD. In this construction, an
alternative would be to use the debiased LASSO introduced by [20]. However,
a more general comment is worth making. From [5], it appears that we could
accommodate for some bias in the estimation of the index. This is due to the
construction of ĜiY,X , that uses the index only through its ordering structure.
Following this route, it would be possible to relax the requirements on the
estimation of θ0. Interestingly, one of the conditions on the estimated index
would be that the sign of the difference in the estimated index converges in
probability to the sign of the difference in the true index. Thanks to Theorem 2.1,
it is easy to show that this is satisfied, even for the LASSO. In light of this, the
LASSO is another candidate to provide an unbiased estimation of the explained
Gini coefficient.

Even though the variance is difficult to estimate in practice, the asymptotic
normality of the estimated explained Gini coefficient opens the door to a hybrid
bootstrap procedure where the quantiles of the normal distribution are used and
the variance is estimated via bootstrap. Section 4.3 evaluates the asymptotic
normality of the estimated explained Gini coefficient for several sample sizes,
while section 4.4 compares different bootstrap procedures. To anticipate slightly
the discussion, the conclusion will be that the hybrid bootstrap produces the
best performance.

The proposed bootstrap procedure is described in Algorithm 1. In a nut-
shell, the idea consists in constructing training bootstrap resamples (X∗ᵀ, Y ∗)ᵀ

drawn with replacement from the pairs (Xᵀ
i , Yi)ᵀ, and validation bootstrap sam-

ples (X̃∗ᵀ, Ỹ ∗)ᵀ corresponding to the out-of-bag (OOB) samples, i.e. the data
unused in the construction of the training samples. As we know from bootstrap
aggregating techniques, the size of the validation samples will be approximately
of n

e , where e is Euler’s number. The training samples are then used to obtain
samples of bootstrap estimators for θGi and for GiY,X on a grid of λ values. The
validation samples can then be used to determine an optimal λ. At the end of
the procedure, one has at disposal samples of bootstrap estimates Ĝi

∗
(λ) that

one can use to produce confidence intervals.
The choice of the regularisation parameter λ is of great importance. An opti-

mal value should strike the balance between under- and over-penalisation and,
hence, between underfit and overfit of the explained Gini coefficient. As we have
just stated, the bootstrap procedure offers a first method to select it: λOOB is
the value of λ which performs best in terms of explained Gini coefficient in the
out-of-bag resamples. Another possibility lies in the use of a BIC-like criterion,
as proposed in [11]. Formally, λBIC is obtained as the value of λ which maximizes

BICλ := log(ĜiY,X;λ) − kλ
log(n)

2n ,

where kλ is the number of covariates selected using λ. Also, we write ĜiY,X;λ
in order to acknowledge the dependence of the estimated explained Gini coef-
ficient on λ through θ̂. As the simulation results from Section 4 and the real
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Algorithm 1: Bootstrap procedure
Data: (Xᵀ,Y)ᵀ ∈ R

n×(p+1), where X denotes the matrix of covariates and Y is the
response vector.

for b = 1 to B do
Generate the training bootstrap sample (X∗ᵀ

b ,Y∗
b )ᵀ ∈ R

n×(p+1)

Obtain θ̂∗b (λ) by solving Equation (6) on (X∗ᵀ
b ,Y∗

b )ᵀ via the SCAD-FABS
algorithm from Section 3, using a λ sequence;

Plug θ̂∗b (λ) and (X∗ᵀ
b ,Y∗

b )ᵀ into Equation (5) and denote the estimator Ĝi
∗
b (λ);

Generate the validation bootstrap sample (X̃∗ᵀ
b , Ỹ∗

b )ᵀ ∈ R
ñb×(p+1);

Plug θ̂∗b (λ) and (X̃∗ᵀ
b , Ỹ∗

b )ᵀ into Equation (5) and denote the estimator G̃i
∗
b (λ)

end
Obtain λOOB as the solution to maxλ OOB-score(λ) := 1

B

∑B
b=1 G̃i

∗
b (λ);

For each λ, retrieve Ĝi
∗
(λ) := (Ĝi

∗
1(λ), . . . , Ĝi

∗
B(λ))ᵀ ∈ R

B

data example from Section 5 indicate, λOOB tends to select fuller models, while
λBIC favours sparser ones. In practice, the user might decide between these
two options by balancing the OOB-scores attained at λOOB and λBIC with the
simplicity of the models that they induce.

3. The SCAD-FABS algorithm

The FABS has been developed by [15] to solve penalised problems with differen-
tiable but typically non-convex loss functions and the adaptive LASSO penalty.
Its fundamental logic resembles the coordinate-descent algorithm of [8]. Indeed,
it starts with a very large value for λ, imposing full sparsity, and then allows at
each step the penalty parameter to relax. Hence, it produces a whole solution
path ranging from high to low sparsity. For each λ, the optimization problem
is solved using a coordinate-descent algorithm. To facilitate the comparison, we
review the construction of the FABS algorithm in a pure LASSO setting. Then,
we introduce the SCAD-FABS algorithm and present its convergence properties.

3.1. The FABS algorithm

For a grid of penalty parameters, the FABS solves

min
θ

Q(θ) := L(θ) +
p∑

k=1

pλ(|θk|), (10)

where Q(·) is the objective function and L(·) is a general loss function. We focus
here on a pure LASSO setting, where p′λ(x) = λ. At each iteration, only one
coefficient is updated by a fixed amount. A backward step is undertaken if this
operation reduces the value of the objective function. Otherwise, the iteration
consists in a forward step. For a given index k, the update is of the form

θt+1 = θt − sign(θtk)1kε (backward step) (11)
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θt+1 = θt − sign
(
∇kL(θt)

)
1kε (forward step) (12)

where θt (θt+1) represents the vector of coefficients at iteration t (t+ 1), 1k de-
notes the vector of size p taking value 1 at the kth component and 0 everywhere
else, ε is the step size of the algorithm and ∇ is the gradient vector. The FABS
uses a first-order Taylor expansion of L(θt+1) around θt to determine which
coordinate should be updated. Formally, the coordinate in t + 1 is determined
as follows

k = arg min
l∈At

{
−∇lL(θt)sign(θtl )

}
(backward step)

k = arg max
l=1,...,p

|∇lL(θt)| (forward step)

where At := {k ∈ {1, . . . , p} : θtk �= 0}. Finally, λt is updated as follows

λt+1 = λt (backward step)
λt+1 = min{λt, Lt,t+1

ε } (forward step) (13)

where Lt,t+1
ε := L(θt)−L(θt+1)

ε . The update rule for λt generates a path of values
for the regularisation parameter that is a decreasing step function. For a given
value, the algorithm minimizes the objective function by searching for the best
direction. However, at some iteration, the objective function can no longer be
decreased with this value of the regularisation parameter. Hence, λt needs to
make a jump, and the process is reiterated to search for the best direction that
minimizes the objective function with this new value of the regularisation pa-
rameter. Therefore, (13) ensures that an update occurs only when the objective
function can no longer be improved using λt. Then, λt+1 is chosen such that
Q(θt+1, λt+1) = Q(θt, λt+1).

3.2. The SCAD-FABS algorithm

The SCAD-FABS solves the minimization problem displayed in (10) using the
SCAD penalty function. The vector θt+1 is obtained according to Equations (11)
and (12). The form of the forward and backward steps is therefore the same as
in the FABS. Also, the index k is chosen optimally, based on Taylor expansions.
In a backward step, a Taylor expansion of the objective function around θt gives

Q(θt+1) = Q(θt) −∇kQ(θt)sign(θtk)ε + O(ε2).

The index of the updated coefficient at iteration t + 1 is then given by

k = arg min
l∈At

{
−∇lQ(θt)sign(θtl )

}
.

In a forward step, the Taylor expansion gives

Q(θt+1) = Q(θt) − |∇kL(θt)|ε + p′λ(|θtk|)ε + O(ε2),
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where p′λ(|θtk|) is defined according to Equation (8) for |θtk| > 0 and p′λ(|θtk|) is
set to λ if θtk = 0. For k /∈ At, the result is obtained with a Taylor expansion of
the loss while, for k ∈ At, the result is obtained using a Taylor expansion of the
loss and of the penalty, combined with Lemma 3.1. The index of the updated
coefficient is obtained as

k = arg max
l=1,...,p

{
|∇lL(θt)| − p′λ(|θtl |)

}
.

Note that the choice of the direction differs from the FABS. The reason is the
following. Since the derivative of the LASSO penalty is constant, coupled with
the fact that only one coefficient is updated by a fixed amount, the penalty part
does not play a role in the Taylor expansion of the FABS in Section 3.1. Using
a SCAD penalty, this no longer applies and the whole objective function must
be considered.

The update rule for λt follows the same spirit as in the original FABS. An
update is conducted when the objective function can no longer be improved
using λt, i.e. Q(θt+1, λt) > Q(θt, λt). Consider a forward update on coefficient
k. Using a Taylor expansion of pλt(|θt+1

k |) around |θtk|, it approximately holds

Q(θt+1, λt) > Q(θt, λt) ⇔ L(θt) − L(θt+1) < p′λt(|θtk|)ε.

This occurs when⎧⎪⎨⎪⎩
λt > Lt,t+1

ε if |θtk| ≤ λt

λt > 1
a

[
(a− 1)Lt,t+1

ε + |θtk|
]

if λt < |θtk| ≤ aλt

Lt,t+1
ε < 0 if |θtk| > aλt.

(14)

Notice that, in the last case, λt plays no role since p′λt(|θtk|) = 0 and, hence,
should not be updated. We now focus on the form of the update. In the event of
an update, λt+1 is chosen to ensure approximately Q(θt+1, λt+1) = Q(θt, λt+1),
which happens whenever

λt+1 = λt+1
A := Lt,t+1

ε if |θtk| ≤ λt+1 (15)

= λt+1
B := 1

a

[
(a− 1)Lt,t+1

ε + |θtk|
]

if λt+1 < |θtk| ≤ aλt+1. (16)

Using Equation (15), we choose λt+1 = λt+1
A if |θtk| ≤ λt+1

A . Using Equations (15)
and (16), we choose λt+1 = λt+1

B if |θtk| > λt+1
A and λt+1

B ≤ |θtk| ≤ aλt+1
B . It is

easy to prove that this boils down to choosing λt+1 = max{λt+1
A , λt+1

B }. The
situation |θtk| > aλt+1

B implies Lt,t+1
ε < 0 and can be disregarded due to the

loss improvement check introduced in the SCAD-FABS algorithm, presented in
Algorithm 2. Taking our last results together with Equation (14), the update
rule for λt becomes

λt+1 =
{

min
(
max{λt+1

A , λt+1
B }, λt

)
if |θtk| ≤ aλt

λt otherwise.
(17)
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Algorithm 2: The SCAD-FABS algorithm
Data: (Xᵀ,Y)ᵀ ∈ R

n×(p+1)

Initialization: start from the empty solution and compute
k = arg max

l=1,...,p
|∇lL(0)|;A0 = {k}

θ0 = −sign(∇kL(0))1kε

λ0 = 1
ε
[L(0) − L(θ0)]

Backward step: for each iteration t, compute
k = arg min

l∈At

{
−∇lQ(θt)sign(θtl )

}
Δk = −sign(θtk)1k

If L(θt + Δkε) − L(θt) − εp′λt(|θtk|) < 0, take a backward step. Then
θt+1 = θt + Δkε
λt+1 = λt

Otherwise, take a forward step.
Forward step: set Bt = {1, . . . , p} and compute

k = arg max
l∈Bt

{
|∇lL(θt)| − p′λ(|θtl |)

}
If L (θt − sign (∇kL(θt))1kε) > L(θt), set Bt = Bt\{k} and return to the
computation of the index k to be updated. Otherwise, set

θt+1 = θt − sign
(
∇kL(θt)

)
1kε

λt+1 =
{

min
(
max{λt+1

A , λt+1
B }, λt

)
if |θtk| ≤ aλt

λt otherwise.
Stopping rule: Update t → t + 1, repeat the backward and forward
steps and stop when λt+1 ≤ 0 or Bt = ∅. The final iteration is then
given by T = t.

Notice the presence of a loss improvement check in the forward step. This
step is unnecessary in the classical FABS algorithm as proposed by [15]. Indeed,
an increase in the loss would imply Lt,t+1

ε < 0, which would cause λt+1 < 0 and
the algorithm would stop. In the SCAD-FABS, updates on coefficients whose
amplitude exceeds aλt do not yield updates on λt. Hence, one needs to ensure
that these coefficients are not updated if they yield an increase in the loss.

We use the FABS and the SCAD-FABS algorithms in order to solve (6). We
use the notations PLR-LASSO and PLR-SCAD to refer to the two methods
respectively. The loss function is given by L(θ) = −Gn(θ). As suggested by [6],
we set a = 3.7. For the PLR-LASSO, we use h = n−1/5.5 and ε = 0.01. For the
PLR-SCAD, the bandwidth and step size are given by h∗ = ch and ε∗ = cε,
where c > 0 is a constant. With a simple adaptation of Theorem 2 in [15], it is
easy to show that the solution path of the PLR-LASSO would not be influenced
by the choice of c. However, this is not the case for the PLR-SCAD. As we
explain below, the choice of c can therefore be used to highlight the algorithmic
differences between the two methods.

The difference between the FABS and the SCAD-FABS algorithms stems
from the fact that they entail different marginal penalty rates. Take any coeffi-
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cient θtk, the marginal penalty rate in the FABS is defined as p′λt
(|θtk|) = λt. In

the SCAD-FABS, it is given by

p′λt(|θtk|) =

⎧⎪⎨⎪⎩
λt if |θtk| ≤ λt (region 1)
aλt−|θt

k|
a−1 if λt < |θtk| ≤ aλt (region 2)

0 if |θtk| > aλt (region 3).

At the first iteration, both algorithms coincide since, for all k = 1, . . . , p, one has
θ0
k = 0 and p′λ0(|θ0

k|) = λ0. This stays true as long as all coefficients lie in region
1. To put this differently, the difference between the SCAD-FABS and the FABS
kicks in as soon as a first coefficient enters region 2. Depending on the choice
of bandwidth and step size, this may happen close to the beginning or to the
end of the algorithm. To illustrate this, consider a generic coefficient at the first
iteration θ0

k = 0 and set ε∗ = cε and h∗ = ch. One can ask the question: keeping
λt = λ0 constant, how many consecutive forward updates nfwd would it take
on θtk in order to reach the second region? Recall that λ0 = (L(0) − L(θ0))/ε∗.
It is easy to show that the loss function L(·) is independent on the choice of c.
Also, the magnitude of θtk after nfwd forward updates is equal to nfwdε

∗. The
coefficient θtk enters the second region as soon as |θtk| > λ0, which happens if

c >
1
ε

√
L(0) − L(θ0)

nfwd
. (18)

The smaller the value of nfwd, the sooner the PLR-SCAD and PLR-LASSO
paths will differ. In the applications, we choose a grid of values of nfwd. For each
value on the grid, we choose

c = 1
ε

[√
L(0) − L(θ0)

nfwd
+ 


]
,

where 
 is a small positive constant based on machine precision. For a fixed
value of nfwd, notice that the couple (ε∗, h∗) is unaffected by a multiplication of
ε and h by the same constant. We therefore recover the property of the FABS
that the path is determined only by the ratio between ε and h. In conclusion,
the FABS and SCAD-FABS algorithms depend on a common parameter, i.e.
the ratio between ε and h. The SCAD-FABS is more general than the FABS,
as it depends on a further tuning parameter materialized by nfwd. With a large
enough value of nfwd, the paths obtained by both algorithms coincide, as illus-
trated in Section 4.1.

3.3. Properties of the SCAD-FABS algorithm

Throughout this section, we assume that L(·) has bounded second-order deriva-
tives. The proofs of the following results are deferred to Appendix B. Lemma 3.1
indicates that a forward step always increases the amplitude of the updated co-
efficient. As long as no backward step is taken, the solution path is therefore
monotone.
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Lemma 3.1. Let k ∈ At be updated via a forward step. Then, θt+1
k = θtk +

sign(θtk)ε, i.e. sign(∇kL(θt)) = − sign(θtk).

The SCAD-FABS exploits the differentiability of the loss and penalty func-
tions through Taylor expansions. As such, it produces approximation errors.
Lemmas B.2, B.3 and B.4, presented in Appendix B, show that the approxi-
mation error is of order O(ε2), where we remind the reader that ε is the step
size of the algorithm. Proposition 3.2 implies that the objective function never
increases from t to t + 1, up to an approximation error of order ε2. This stems
from the fact that λt is updated whenever it becomes impossible to improve the
score further with that value of the regularisation parameter.

Proposition 3.2. The SCAD-FABS algorithm ensures Q(θt+1, λt+1) ≤
Q(θt, λt). More precisely, if k is the index of the updated coefficient, then it
holds

Q(θt+1, λt+1) < Q(θt, λt) − dtkε
2

2(a− 1) (backward step)

Q(θt+1, λt+1) ≤ Q(θt, λt) − ctkε
2

2(a− 1) , (forward step)

where dtk and ctk ∈ [0, 1].

In the remaining of this section, we show that the SCAD-FABS enjoys the
same δ-optimality property as the FABS. A candidate is called a δ-approximate
solution if it satisfies the KKT conditions associated to the constrained opti-
mization problem, up to a tolerance δ. We adapt the definition introduced by
[15] to the SCAD penalty.

Definition 3.3. The parameter vector θ = (θ1, . . . , θp)ᵀ is called a δ-approx-
imate solution with regularisation parameter λ if the following two conditions
are met

|∇lQ(θ, λ)| ≤ δ if θl �= 0
|∇lL(θ)| ≤ p′λ(|θl|) + δ if θl = 0.

In what follows, the path refers to the collection of iterations {t = 1, . . . , T :
λt+1 < λt}, where T is the last iteration.

Theorem 3.4. Every solution θt, with t = 1, . . . , T , along the SCAD-FABS
path is a δ-approximate solution with regularisation parameter λt and δ = mε,
where m is the upper bound of the second-order derivatives of L(·).

Theorem 3.4 shows that any point along the SCAD-FABS path is a δ-ap-
proximate solution, with δ proportional to the step size ε. The SCAD-FABS
algorithm enjoys therefore the same optimality condition as the FABS. As ε → 0,
the KKT conditions are recovered and each point along the path converges to
a stationary point of (10).
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4. Monte-Carlo simulations

In this section, we evaluate the performance of the penalised Lorenz regression
combined with the proposed bootstrap procedure by means of Monte-Carlo sim-
ulations. As a first step, we focus on the quality of the estimation of the weight
vector and of the explained Gini coefficient, and on the performance of model
selection. In Section 4.1, we compare the PLR-SCAD with the PLR-LASSO
and illustrate the convergence of the former to the latter when nfwd increases.
Section 4.2 provides a more thorough comparison, including the PMSRC. We
evaluate the impact of changes in the explained Gini coefficient and in the sam-
ple size. In Section 4.3, we evaluate the consistency and asymptotic normality
of the estimated explained Gini coefficient. Finally, we turn to the coverage of
the confidence intervals in Section 4.4.

Throughout the simulations, we will use the following data generating process
(DGP)

Yi = Q(Fθ0(X
ᵀ
i θ0))εi,

where i = 1 . . . , n and ‖θ0‖ = 1. Q(·) is the quantile function of the lognormal
distribution, with parameters tailored to ensure an expected value of 2400 and
an explained Gini coefficient of 0.15. This choice is justified by the popular use
of the lognormal distribution in empirical work concerning income distributions,
see [4]. Two scenarios are considered for the distribution of X. In a first case,
X follows a multivariate normal distribution with mean 0, unit variance and
a correlation matrix following an AR(1) process with correlation parameter
ρ = 0.3. In a second case, X follows a multivariate Student distribution with 3
degrees of freedom, mean 0, variance of 3 and the same correlation matrix as
before. The variable εi is a lognormal noise with mean 1 and a variance set to
ensure that V [Yi]/V [H(Xᵀ

i θ0)] = 3/2. Concerning the kernel, we use

K(u) =

⎧⎪⎨⎪⎩
0 if u < −1
9
8u− 5

8u
3 + 1

2 if u ∈ [−1, 1]
1 if u > 1,

which corresponds to a fourth-order kernel constructed from an Epanechnikov
kernel, and which matches the conditions required by the theory. As mentioned
previously, we set h = n−1/5.5, ε = 0.01 and use the grid (5, 20, 50, 1000) for the
values of nfwd. In Section 4.1, we display the results of the whole grid in order
to provide a comparison between the PLR-LASSO and PLR-SCAD methods.
In Sections 4.2 to 4.4, the constant nfwd is chosen from the grid as the value
that maximizes the OOB-score (bootstrap procedure) or that maximizes the
BIC criterion (BIC procedure).

We consider two setups. The first is low-dimensional with n = 100 and p = 20
(Setup 1) while the second is high-dimensional with n = 100 and p = 120
(Setup 2). In both cases, s = 5 of the covariates are active and the weight
vector is θ0 = (−

√
3

5 , 3
5 , 0, 0,−

√
7

5 , 1
5 ,

√
5

5 , 0ᵀ)ᵀ, where 0ᵀ is a vector of zeroes
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of size 13 in Setup 1 and of size 113 in Setup 2. Unless specified otherwise,
we sample M = 400 different datasets from the proposed DGPs and, for each
simulation run, B = 400 bootstrap resamples are used.

The accuracy of the estimation is evaluated by the square-root of the empir-
ical mean squared error (MSE) of the explained Gini coefficient, defined as

RMSE.Gini :=

√√√√ 1
M

M∑
m=1

(ĜiY,X;m − GiY,X)2,

where ĜiY,X;m is the estimated explained Gini coefficient in simulation run m
and GiY,X is the true value. We also compute the empirical mean of the L2-
distance between the estimated weight vector and the true weight vector, i.e.

Distance.θ := 1
M

M∑
m=1

‖θ̂m − θ0‖,

where θ̂m is the estimated weight vector in simulation run m. In order to assess
the performance of the model selection, we compute the false positive rate (FPR)
and false negative rate (FNR), defined as

FPR = 1
M

M∑
m=1

(
1

p− s

p∑
k=1

1{θ̂m,k �= 0, θ0,k = 0}
)

FNR = 1
M

M∑
m=1

(
1
s

p∑
k=1

1{θ̂m,k = 0, θ0,k �= 0}
)
.

4.1. Comparison of the PLR-SCAD and the PLR-LASSO

Tables 1 and 2 provide a comparison of the PLR-SCAD and the PLR-LASSO in
terms of estimation accuracy and of quality of the selection process respectively.
The regularisation parameter λ is either selected using the BIC-like criterion
or the bootstrap procedure. As a first general comment, the results obtained
with the PLR-SCAD and nfwd = 1000 are extremely similar, often identical, to
those obtained with the PLR-LASSO. This illustrates the argument made in
Section 3.2. As nfwd increases, the path provided by the PLR-SCAD converges
to the path provided by the PLR-LASSO.

We move to an analysis of Table 1. Focusing on the PLR-LASSO, a clear
pattern emerges. For both metrics of estimation accuracy, the bootstrap yields
better results in the low sparsity setup (Setup 1), while the BIC performs best in
the situation of high sparsity (Setup 2). In almost all cases, and for all values of
nfwd, the PLR-SCAD outperforms the PLR-LASSO in terms of estimation of θ0.
This is not surprising as the switch from the LASSO to the SCAD penalty yields
better statistical guarantees concerning the weight vector θ0, as highlighted by
Theorem 2.2. Turning to the estimation of the explained Gini coefficient, the
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Table 1

SCAD vs LASSO: accuracy of the estimation.
PLR-SCAD PLR-LASSO

nfwd 5 20 50 1000

RMSE.Gini expressed in %
Setup 1 Normal BIC 1.48 1.49 1.51 1.52 1.52

Bootstrap 1.50 1.52 1.46 1.47 1.47
Setup 1 Student BIC 1.57 1.57 1.60 1.62 1.62

Bootstrap 1.50 1.57 1.50 1.51 1.51
Setup 2 Normal BIC 1.46 1.47 1.46 1.46 1.46

Bootstrap 1.53 1.48 1.88 1.59 1.58
Setup 2 Student BIC 1.52 1.63 1.72 1.72 1.72

Bootstrap 1.77 1.73 1.91 1.81 1.81

Distance.θ
Setup 1 Normal BIC 0.24 0.25 0.27 0.29 0.29

Bootstrap 0.27 0.25 0.23 0.26 0.26
Setup 1 Student BIC 0.26 0.26 0.29 0.31 0.31

Bootstrap 0.29 0.27 0.25 0.29 0.29
Setup 2 Normal BIC 0.30 0.29 0.36 0.37 0.37

Bootstrap 0.34 0.29 0.33 0.37 0.37
Setup 2 Student BIC 0.36 0.33 0.42 0.42 0.42

Bootstrap 0.41 0.34 0.41 0.43 0.43

situation is less clear. This echoes the discussion following Theorem 2.3. As
the estimation of the explained Gini coefficient uses the index only through its
ordering structure, the LASSO could already provide a good estimation per-
formance. Still, in our experiments, one can always find at least one value of
nfwd for which the PLR-SCAD outperforms the PLR-LASSO, both using the
bootstrap and using the BIC. For Setup 1, the value nfwd = 50 yields the best
performance whereas for Setup 2, it is nfwd = 5. This indicates that a suitable
value of nfwd should be data-driven.

The quality of the selection process is assessed by the FPR and FNR, dis-
played in Table 2. For the PLR-LASSO, the bootstrap procedure yields a high
FPR and low FNR, while the contrary goes for the BIC. With a low FNR,
the bootstrap procedure is therefore optimal at detecting the active covariates.
This explains why it performs best in a scenario of low sparsity. In contrast,
the BIC procedure has a low FPR. It is therefore suitable at ruling out the
non-active covariates and it performs best in the scenario of high sparsity. The
PLR-SCAD outperforms the PLR-LASSO when the BIC criterion is used, both
in terms of FPR and FNR. More specifically, the value nfwd = 20 is optimal
in terms of FPR and the value nfwd = 5 is optimal in terms of FNR. For the
bootstrap procedure, the situation is less clear. For Setup 1, one cannot find
a value of nfwd that outperforms the PLR-LASSO both in terms of FPR and
FNR. However, the PLR-SCAD yields a better tradeoff. For most values, we
observe a slightly larger FNR but a substantially lower FPR. For Setup 2, the
PLR-SCAD outperforms the PLR-LASSO for most values of nfwd.
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Table 2

SCAD vs LASSO: accuracy of the selection.
PLR-SCAD PLR-LASSO

nfwd 5 20 50 1000

FPR
Setup 1 Normal BIC 1.83 1.45 2.22 2.28 2.28

Bootstrap 18.48 12.55 16.48 25.50 25.10
Setup 1 Student BIC 2.62 2.55 4.03 4.18 4.18

Bootstrap 20.95 13.70 19.43 27.15 26.73
Setup 2 Normal BIC 0.84 0.50 0.71 0.70 0.70

Bootstrap 2.56 2.32 11.27 6.13 6.10
Setup 2 Student BIC 1.41 0.98 1.25 1.24 1.24

Bootstrap 3.72 3.04 11.46 6.51 6.51

FNR
Setup 1 Normal BIC 12.75 13.95 13.20 14.70 14.70

Bootstrap 5.60 6.00 4.15 3.05 3.05
Setup 1 Student BIC 12.55 13.20 13.25 14.55 14.55

Bootstrap 6.30 7.75 4.65 4.95 4.95
Setup 2 Normal BIC 14.7 18.70 20.90 21.3 21.3

Bootstrap 12.6 12.85 7.05 12.3 12.3
Setup 2 Student BIC 16.20 18.45 23.45 23.60 23.60

Bootstrap 16.50 15.30 11.25 16.15 16.15

4.2. Comparison with competitors

We now compare the performance of the PLR-SCAD and of the PLR-LASSO
with that of the PMSRC, obtained either via the procedure proposed by [11], de-
noted as PMSRC (LP), or using the FABS algorithm of [15], denoted as PMSRC
(FABS). In both cases, the optimal regularisation parameter is obtained via the
BIC-like criterion proposed by [11]. All the results that follow were obtained
on the Gaussian scenario. The results obtained on the Student distribution are
relegated to Appendix C.

We start the comparison with a baseline, where the sample size is fixed to
n = 100 and the explained Gini coefficient is set to GiY,X = 0.15. Table 3
provides the results obtained with the different estimation procedures on both
setups. The first two columns evaluate the estimation accuracy for the explained
Gini coefficient (RMSE.Gini expressed in percentages) and for the parameter
vector (Distance. θ) respectively. The last two columns assess the quality of the
selection process through the FPR and FNR. In line with the results outlined in
Table 2, the procedures where the penalty parameter is selected via the BIC are
well performing where ruling out the non active covariates (low FPR), at the cost
of a poorer selection performance for the active ones (high FNR). A relatively
clear ranking emerges. The PLR-SCAD performs best, followed by the PLR-
LASSO. The PMSRC obtained with the FABS algorithm yields a performance
close to the PLR-LASSO in Setup 1. However, it yields inferior results in Setup 2.
The PMSRC obtained with the procedure of [11] yields the worst performance.
At the other side of the tradeoff, and as we already discussed, the PLR-SCAD
and the PLR-LASSO based on the bootstrap offer good performance in terms of
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Table 3

Comparison of the estimation procedures – Gaussian scenario with n = 100 and
GiY,X = 0.15

PLR-SCAD PLR-LASSO
nfwd 5 20 50 1000

RMSE.Gini expressed in %
Setup 1 Normal BIC 1.48 1.49 1.51 1.52 1.52

Bootstrap 1.50 1.52 1.46 1.47 1.47
Setup 1 Student BIC 1.57 1.57 1.60 1.62 1.62

Bootstrap 1.50 1.57 1.50 1.51 1.51
Setup 2 Normal BIC 1.46 1.47 1.46 1.46 1.46

Bootstrap 1.53 1.48 1.88 1.59 1.58
Setup 2 Student BIC 1.52 1.63 1.72 1.72 1.72

Bootstrap 1.77 1.73 1.91 1.81 1.81

Distance.θ
Setup 1 Normal BIC 0.24 0.25 0.27 0.29 0.29

Bootstrap 0.27 0.25 0.23 0.26 0.26
Setup 1 Student BIC 0.26 0.26 0.29 0.31 0.31

Bootstrap 0.29 0.27 0.25 0.29 0.29
Setup 2 Normal BIC 0.30 0.29 0.36 0.37 0.37

Bootstrap 0.34 0.29 0.33 0.37 0.37
Setup 2 Student BIC 0.36 0.33 0.42 0.42 0.42

Bootstrap 0.41 0.34 0.41 0.43 0.43

FNR at the cost of a higher FPR. Table 10 in Appendix C displays the results
obtained with the Student distribution and offers similar conclusions.

In the baseline scenario, the variance of the error term was set to ensure
V [Yi]/V [H(Xᵀ

i θ0)] = 3/2. In the following two scenarios, we use the same value
for the variance but we change the value of the explained Gini coefficient. Either
we decrease it to GiY,X = 0.05, effectively decreasing the strength of the signal,
or we increase it to GiY,X = 0.25, effectively increasing the strength of the sig-
nal. Table 4 gathers the results from these two scenarios. When GiY,X = 0.05,
the signal is extremely low and the PMSRC performs the best. Since it does not
use the value of the response vector but only the ranks, it is more robust to ex-
treme noise level. When GiY,X = 0.25, the PMSRC obtained with the procedure
of [11] yields the poorest performance. In terms of estimation, all the remain-
ing procedures offer similar results. Interestingly however, they yield different
tradeoffs in terms of model selection. The PLR fitted using the BIC criterion
performs the best in terms of FPR, while the PLR fitted using the bootstrap
procedure yields the lowest FNR. The PMSRC obtained with the FABS offers a
middleground with relatively low FPR and FNR. The results obtained with the
Student distribution are displayed in Table 11 in Appendix C and offer similar
interpretations. Notice however that in the GiY,X = 0.25 situation, the PLR
obtained with the bootstrap procedure stands out as the best performer.

As a last comparison, we focus on Setup 2 and evaluate the performance of
the procedures as the n/p ratio changes. Recall that the number of covariates
is p = 120 and, in the baseline, the sample size is n = 100. We now examine
the performance using n = 50 and n = 200. The results are gathered in Ta-
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Table 4

Comparison of the estimation procedure – Gaussian scenario with n = 100 and
GiY,X ∈ {0.05, 0.25}.

Setup 1 Setup 2
GiY,X θ0 FPR FNR GiY,X θ0 FPR FNR

Low explained Gini coefficient (GiY,X = 0.05)
PLR-SCAD (BIC) 1.67 0.77 26.25 29.85 3.50 1.08 7.80 54.10

PLR-SCAD (Bootstrap) 1.80 0.79 48.45 23.40 4.42 1.06 26.79 39.80
PLR-LASSO (BIC) 1.58 0.74 30.03 26.35 2.80 1.00 7.59 50.80

PLR-LASSO (Bootstrap) 1.80 0.79 49.27 22.70 4.28 1.06 25.43 42.15
PMSRC (FABS) 1.29 0.83 9.23 52.35 1.37 1.06 1.51 73.50

PMSRC (LP) 1.34 0.90 5.30 62.65 1.28 1.08 1.25 76.90

High explained Gini coefficient (GiY,X = 0.25)
PLR-SCAD (BIC) 2.16 0.19 0.00 12.95 2.05 0.19 0.00 13.95

PLR-SCAD (Bootstrap) 2.14 0.14 9.62 0.60 2.06 0.16 2.73 1.90
PLR-LASSO (BIC) 2.19 0.20 0.48 10.35 2.15 0.25 0.14 14.30

PLR-LASSO (Bootstrap) 2.12 0.15 18.80 0.35 2.02 0.21 4.73 2.20
PMSRC (FABS) 2.15 0.15 3.97 2.35 2.16 0.22 0.47 9.35

PMSRC (LP) 2.43 0.26 1.63 13.10 2.48 0.32 0.40 22.20

Table 5

Comparison of the estimation procedure – Gaussian scenario and Setup 2 with
n ∈ {50, 200}.
n = 50 n = 200

GiY,X θ0 FPR FNR GiY,X θ0 FPR FNR
PLR-SCAD (BIC) 2.13 0.56 1.15 35.50 1.05 0.17 0.21 8.20

PLR-SCAD (Bootstrap) 2.84 0.61 10.44 23.15 1.07 0.19 1.22 5.20
PLR-LASSO (BIC) 2.35 0.66 1.31 41.95 1.07 0.21 0.40 8.60

PLR-LASSO (Bootstrap) 2.92 0.68 13.12 24.20 1.07 0.23 1.49 6.25
PMSRC (FABS) 3.50 0.75 0.77 54.30 1.10 0.22 0.68 7.90

PMSRC (LP) 4.47 0.86 0.39 65.45 1.21 0.27 0.29 18.00

ble 5 and are compared with the baseline, see Table 3. When n = 50, the n/p
ratio decreases and this has several consequences on what a suitable procedure
should yield. First, the ability to extract information from the data becomes
crucial. This explains why the performance gap between the PLR and the PM-
SRC increases. Second, it becomes increasingly important to keep a low FPR.
Therefore, the performance gap between the PLR fitted with the BIC and the
PLR fitted with the bootstrap procedure also increases. Notice finally that the
PLR-SCAD remains superior to the PLR-LASSO. Moving to the n = 200 sce-
nario, the n/p ratio increases and all the procedures, except PMSRC (LP), offer
a similar estimation accuracy. In terms of model selection, we observe the same
tradeoff as before. The results obtained with the Student distribution are shown
in Table 12 in Appendix C and offer similar conclusions.

4.3. Asymptotic properties of the PLR-SCAD

In what follows, we provide an assessment of the asymptotic properties of the
PLR-SCAD, using the SCAD-FABS on Setup 1 with multivariate Gaussian
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Fig 1. Consistency of the PLR-SCAD on Setup 1.

covariates. These results were obtained using M = 2000 datasets from the
proposed DGP. Figure 1 displays the performance of the BIC and bootstrap
procedures for sample sizes ranging from 50 to 1000. The left side of the figure
shows the evolution of the FNR (solid lines) and of the FPR (dashed lines) with
an increasing sample size. The decay of the FPR is expected due to the property
of sparsity stated in Theorem 2.2. The figure displays a similar decay for the
FNR. Therefore, as the sample size increases, the PLR-SCAD tends to identify
correctly both the active and the non-active sets. The figure also confirms that
the BIC criterion yields the best performance for the identification of the zero
coefficients (best FPR). On the other hand, the bootstrap procedure is the best
at correctly identifying the active set (best FNR). Concerning the explained
Gini coefficient, the right hand side of the figure indicates that both procedures
yield a consistent estimator and follow very close trajectories in terms of root
mean squared error. The asymptotic normality obtained in Theorem 2.3 is con-
firmed by Figure 8, which shows a qqplot and a histogram of ĜiY,X , obtained
on samples of size 1000. This figure is relegated to Appendix C.

4.4. Coverage of the confidence intervals

We construct 95%-confidence intervals for the explained Gini coefficient using
three different methods: the basic bootstrap, the percentile bootstrap and the
hybrid bootstrap. The basic bootstrap is based on bootstrapping the whole
distribution of ĜiY,X . The hybrid bootstrap uses the asymptotic normality and
only bootstraps the asymptotic variance. Finally, the percentile bootstrap is
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obtained by plugging the quantiles of the bootstrap distribution of ĜiY,X . More
precisely, (1−α)-level confidence intervals for the explained Gini coefficient are
given by

CIBasic :=
[
2ĜiY,X − qĜi∗Y,X ;1−α

2
; 2ĜiY,X − qĜi∗Y,X ;α2

]
,

CIPercentile :=
[
qĜi∗Y,X ;α2

; qĜi∗Y,X ;1−α
2

]
,

CIHybrid :=
[
ĜiY,X ± z1−α

2

σ̂∗
ξ√
n

]
,

where Ĝi
∗
Y,X is the estimator of GiY,X in the bootstrap sample. Moreover,

qĜi∗Y,X ;a is the bootstrap estimator of the a-quantile of the distribution of Ĝi
∗
Y,X

and σ̂∗
ξ is the bootstrap estimator of the standard deviation of Ĝi

∗
Y,X . Finally,

za is the a-quantile of the standard normal distribution. We focus on Setup 1
with multivariate normal covariates and perform our simulations on M = 2000
different datasets. We display results using the bootstrap and BIC procedures.
The quality of the confidence intervals is assessed in terms of their lengths and
coverages.

Figure 2 displays the evolution of the coverage and length for different sample
sizes. Solid lines refer to the BIC procedure while dashed lines correspond to the
bootstrap procedure. Several observations are worth making. With low sample
sizes, all confidence intervals undercover the true parameter. However, the cov-
erages approach the target level of 95% as the sample size increases. In terms
of types of bootstrap, a clear ranking emerges. The basic bootstrap performs
the worst. The percentile bootstrap comes second while the hybrid bootstrap
provides the best performance. Finally, the BIC yields slightly wider confidence
intervals with better coverages compared to the bootstrap procedure.

5. Real data example

Our discussion is based on data resulting from the Young Men’s Cohort of the
National Longitudinal Survey (NLS-Y), a survey started in 1966 on individuals
of ages 14-24. The excerpt we use is available in the dataset Griliches contained
in the R package Ecdat. Besides wage, schooling (Schooling) and experience
(Exp), we include the following variables in the analysis: age (Age), ability
(IQ), marital status (Married), degree of urbanisation (Urban) and a dummy
indicating whether the individual lives in a Southern State (South). Ability
was computed as IQ scores collected in a school survey conducted in 1968.
All the remaining variables were observed in 1980. The degree of urbanisation
is a dummy determining whether the individual lives in a metropolitan area.
Before delving into modelling, we note that the considered wage distribution
exhibits a mean of 1000, a median of 948 and a Gini coefficient of 22.03%. The
concentration indices of wage with respect to age, schooling, experience and
ability are respectively of 4.34%, 7.21%, 0.71% and 6.14%.
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Fig 2. Coverages and Lengths of confidence intervals for GiY,X on Setup 1.

A PLR analysis of the data is provided in Section 5.1. More specifically, we
display the results obtained with the PLR-SCAD for several values of nfwd,
and with the PLR-LASSO. The robustness to the number of bootstrap samples
and to the choice of the kernel function is evaluated in Section 5.2. Finally, a
study of the evolution of the computing time in function of several parameters
is provided in Section 5.3.

5.1. PLR analysis of the Griliches data

We run the PLR-LASSO and the PLR-SCAD, with nfwd on the grid 5, 20,
50, on a model including all the covariates as well as the interactions between
the binary and the numeric ones. We let the procedure select the variables to
include in the final model. In essence, it does so by balancing the complexity
of the model with the extra amount of explained inequality that a deshrink
in the coefficient would bring. Figure 3 plots the trace of the SCAD-FABS
algorithm, with the value nfwd = 20. The horizontal axis displays the evolution
of the penalty parameter (in terms of − log(λ)), while each line corresponds to
the value taken by a given coefficient. At any time, the vector of coefficients
is normalized in order to have a unit L2-norm. When the algorithm starts,
penalisation is the highest and schooling is the first covariate to enter the model.
This makes sense since, as we have seen, this is the variable for which we observe
the highest concentration index. As the algorithm proceeds, new variables enter
the model but they may also shrink back to 0. We observe this phenomenon for
several variables throughout the algorithm. The path of the FABS algorithm,
related to the PLR-LASSO, is relegated to Appendix D.
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Fig 3. Trace plot of the SCAD-FABS (nfwd = 20) on the Griliches data.

In order to obtain an estimate for the explained Gini coefficient, one needs to
choose a value of λ. As in Section 4, we use the BIC and bootstrap procedures.
However, it turns out that both scores tend to reach a plateau after a certain
value of λ. This feature is illustrated for the SCAD-FABS (with nfwd = 20) in
Figure 4, which displays the evolution of the BIC (solid lines) and OOB (dashed
lines) scores with the evolution of the penalty parameter (in terms of − log(λ)).
The scores are normalized such that the optimum is attained at 1. Taking this
into consideration, one may wish to take a value of λ higher than the optimum,
at a small cost in terms of optimality, but at a higher benefit in terms of sparsity
and interpretability of the model. In practice and for each procedure, we choose
the highest value of λ that leads to at most 1% loss in the relative score. In
Figure 4, this means to take the first value of − log λ to reach the horizontal
line, set at 0.99.

Table 6 summarizes the model fits obtained with the different procedures, us-
ing the bootstrap procedure to select λ. As the first line indicates, all procedures
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Fig 4. Evolution of the BIC and OOB-scores for the SCAD-FABS (nfwd = 20) on the
Griliches data.

Table 6

Results of the PLR-SCAD and PLR-LASSO on the Griliches data.
PLR-SCAD PLR-LASSO

nfwd = 5 nfwd = 20 nfwd = 50
ĜiY,X 10.37 10.51 10.50 10.46

95% CI [8.72, 20.02] [8.87, 12.15] [8.83, 12.16] [8.79, 12.13]
# variables 7 6 5 6
OOB score 9.75 9.78 9.73 9.76

provide an estimated explained Gini coefficient around the same value, ranging
from 10.37% to 10.51%. The second line provides 95% hybrid confidence inter-
vals for the explained Gini coefficient. Again, all procedures provide intervals
of similar sizes. The third line displays the number of active covariates in the
selected model. Notice that it is the lowest for the PLR-SCAD (nfwd = 50) even
though it yields the highest estimated explained Gini coefficient. Conversely, it
is the highest for the PLR-SCAD (nfwd = 5) while it yields the lowest estimate
for the explained Gini coefficient. Finally, the last line shows that all proce-
dures perform similarly in terms of OOB-score. Table 7 shows the estimated
coefficients of the active covariates for each procedure. Four covariates are al-
ways included: Age, Schooling, IQ and the interaction between Schooling and
Urban. As argued before, as nfwd increases, the coefficients obtained with the
PLR-SCAD converge to those obtained with the PLR-LASSO. The summary of
the model fits and the estimated coefficients obtained when the BIC procedure
is used to select λ are shown in Tables 13 and 14, relegated to Appendix D.
The conclusions remain the same, except that the estimated explained Gini
coefficient now ranges from 10.19% to 10.33%.
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Table 7

Coefficients estimated by the PLR-SCAD and PLR-LASSO on the Griliches data.
PLR-SCAD PLR-LASSO

nfwd = 5 nfwd = 20 nfwd = 50
Age 0.277 0.252 0.197 0.356

Schooling 0.927 0.877 0.890 0.826
Exp 0.122 / / /
IQ 0.063 0.076 0.078 0.107

SchoolingMarried / / / 0.158
SchoolingUrban 0.131 0.277 0.255 0.336

ExpMarried / 0.291 0.313 0.206
ExpUrban 0.166 / / /
IQMarried 0.030 / / /

IQSouth / −0.003 / /

Table 8

Evolution of the estimated explained Gini with the number of bootstrap samples.
B

50 100 200 400 1000
PLR-SCAD (nfwd = 5) 10.37 10.37 10.61 10.37 10.37

PLR-SCAD (nfwd = 20) 10.51 10.51 10.51 10.51 10.51
PLR-SCAD (nfwd = 50) 10.51 10.51 10.49 10.50 10.49

PLR-LASSO 10.46 10.44 10.46 10.46 10.44

5.2. Robustness analysis

In what follows, we evaluate the robustness of the results, first to changes in the
number of bootstrap samples B and, second, to the specific choice of the ker-
nel. Notice that the parameter B influences the results in two manners. First, it
drives the OOB-score and, therefore, influences the estimated explained Gini co-
efficient obtained with the bootstrap procedure. More directly, it also affects the
confidence intervals. Table 8 shows the evolution of the estimated explained Gini
coefficient obtained with the bootstrap procedure, for each estimation method,
and for a grid of values of B. In general, the results are very stable. In terms
of the computation of the OOB-score, it seems therefore that B = 50 is already
sufficient. Some instability may however occur, see for example PLR-SCAD
(nfwd = 5) with B = 200. This issue is related to the existence of the plateau
mentioned in Section 5.1 and calls for a more refined procedure to select the
penalty parameter λ.

Figure 5 displays, for each bootstrap method, the evolution of the confi-
dence intervals with the number of bootstrap samples. Concerning the estima-
tion method, we focus on the PLR-SCAD with (nfwd = 20) but similar pictures
are obtained with the other procedures as well. Notice that the hybrid boot-
strap (small dashes) leads to more stable results than basic bootstrap (solid)
and percentile bootstrap (large dashes). This is expected since the hybrid ex-
ploits the bootstrap only to estimate the asymptotic variance. Therefore, it does
not require as many bootstrap samples as the other two procedures which rely
on the bootstrap to approximate quantiles. In all cases, it seems that B = 400
already provides stable results.
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Fig 5. Evolution of the confidence interval for GiY,X for the SCAD-FABS (nfwd = 20) on
the Griliches data.

Table 9

Results of the PLR-SCAD and PLR-LASSO on the Griliches data (transformed biweight
kernel).

PLR-SCAD PLR-LASSO
nfwd = 5 nfwd = 20 nfwd = 50

ĜiY,X 10.41 10.51 10.42 10.40
95% CI [8.73, 12.09] [8.86, 12.16] [8.77, 12.07] [8.74, 12.06]

# variables 8 6 7 6
OOB-score 9.73 9.77 9.73 9.76

Let us now turn to the choice of the kernel. The baseline choice is the same as
in Section 4, i.e. a fourth-order kernel constructed from an Epanechnikov kernel.
As a robustness check, we switch to a fourth-order kernel constructed from a
biweight kernel. It satisfies

K(u) =

⎧⎪⎨⎪⎩
0 if u < −1
45
32u− 25

16u
3 + 21

32u
5 + 1

2 if u ∈ [−1, 1]
1 if u > 1.

Table 9 displays the model fits obtained with the transformed biweight kernel.
It is to be compared with Table 6, showing the model fits obtained with the
transformed Epanechnikov kernel. The results obtained for the PLR-SCAD with
nfwd = 20 and the PLR-LASSO are almost unchanged. For the PLR-SCAD with
nfwd ∈ 5, 50, the use of the transformed biweight kernel induces a slightly larger
estimated explained Gini coefficient and an extra included covariate, see the
third line of Table 9.
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Fig 6. Evolution of the run time as a function of n and p on the Griliches data.

5.3. Computation time

We compare next the CPU time of the PLR-SCAD, with nfwd ∈ 5, 20, 50, and
of the PLR-LASSO, and evaluate the impact of a few parameters. More specifi-
cally, we examine the influence of the sample size n, of the number of covariates
p and of the bandwidth h. To maintain comparability of results, all computa-
tions were performed on AMD Epyc-Rome 2.9 GHz CPUs, with 1 GB RAM
reserved. In each of the scenario, the computation is repeated M = 400 times.
Concerning the impact of n, a subsample of the original observations is drawn in
each iteration and the bandwidth is fixed to the value used on the full dataset.
Concerning p, a subsample of the original covariates is drawn in each iteration.
For the other scenarios, the full dataset is used each time.

The evolution of the square-root of the CPU time in seconds as a function of
the sample size is displayed in the left part of Figure 6. All the methods follow
closely a O(n2) tendency, even though the LASSO seems to perform slightly
more favourably than the SCAD when the sample size increases. The evolution
of the CPU time as a function of the number of covariates is represented in the
right part of Figure 6. The different methods follow roughly a O(p) trajectory.
This O(pn2) tendency is coherent with the computational complexity involved
in the FABS and SCAD-FABS algorithms. Indeed, as stressed out by [15], each
iteration is characterized by the computation of the gradient of the loss function,
which requires O(pn2) computations.
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Fig 7. Evolution of the CPU time in function of h on the Griliches data.

The impact of the bandwith h is displayed in Figure 7. Overall, the computing
time increases with h for all methods. Recall from Section 3 that an increase
in h is equivalent to a proportional decrease in ε. As the bandwidth increases,
the path becomes smoother and the CPU time increases. However, we observe
noticeable differences between the methods. The increase in computation time
is the largest for the LASSO. As we move to the PLR-SCAD, and especially if
we consider low values of nfwd, the increase is less pronounced.

6. Discussion

The penalised Lorenz regression is proposed as a method to produce estimation
and inference for the explained Gini coefficient in a high-dimensional setting.
Several features make it a suitable choice. First, it shares the good properties
of the Lorenz regression developed by [10]. The statistical model underlying the
procedure is a single-index and is therefore more flexible than fully parametric
models. Also, the link function H(·), which corresponds to the nonparametric
part of the model, does not need to be estimated.

Second, the penalised Lorenz regression provides some improvements to the
original procedure. The addition of a SCAD penalty ensures that irrelevant
covariates are discarded with a probability tending to one and avoids to overes-
timate the explained Gini coefficient. The presence of a differentiable approxi-
mation in the objective function allows the use of the SCAD-FABS algorithm,
for which convergence properties are established. The procedure also enjoys
strong statistical guarantees. It yields an asymptotically normal estimator for
the explained Gini coefficient, with a convergence rate unaffected by the selec-
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tion process. The inference for the explained Gini coefficient and the selection of
the regularisation parameter can be dealt with in a single bootstrap procedure.
In the simulations, the procedure proved to be at least as good as the proposed
competitors.

What is still missing is an assessment of the contribution of each covariate
to the explained Gini coefficient. The estimated weight vector θ̂ provides such
a contribution but it has no direct interpretation in terms of inequality. Also,
it is computed on the full model and therefore measures a contribution of one
covariate given the others. Further research should focus on filling this gap.

Appendix A: Asymptotic properties of the penalised Lorenz
regression

In this appendix, we provide the proofs of Theorems 2.1, 2.2 and 2.3. We also
state and prove some technical results related to the asymptotic properties of
the penalised Lorenz regression.

We rewrite (7) as

Gn(θ) = 1
n

n∑
i=1

YiF̂θ(Xᵀ
i θ),

where

F̂θ(t) := 1
n

n∑
i=1

K

(
t−Xᵀ

i θ

h

)
.

In what follows, for any function ϕθ(z), denote ϕ′
θ(z) = ∂ϕθ(z)/∂z and

∇θ0ϕθ(y) = [∂ϕθ(y)/∂θ1, . . . , ∂ϕθ(y)/∂θp]ᵀ|θ=θ0 . Also, ∇2
θ0
ϕθ(y) is a [p × p]

matrix whose [k, l] element is given by [∂2ϕθ(y)/∂θk∂θl]|θ=θ0 .

Lemma A.1. Assume (RC1)–(RC4). Then, for any 0 < δ < 1,

sup
z∈Z

∣∣F̂θ0(z) − Fθ0(z)
∣∣ = op(1) (19)

sup
z∈Z

∣∣F̂ ′
θ0(z) − F ′

θ0(z)
∣∣ = op(1) (20)

sup
z,z′∈Z

∣∣F̂ ′
θ0

(z) − F ′
θ0

(z) − F̂ ′
θ0

(z′) + F ′
θ0

(z′)
∣∣

|z − z′|δ = Op(1). (21)

Proof. Relations (19) and (20) are direct consequences of Theorem 3 in [19] and
Theorem A in [16] respectively. Hence, we focus on proving (21). Let dn(z) :=
F̂θ0(z)−Fθ0(z) and βn(z, z′) := (d′n(z)−d′n(z′))/|z−z′|δ. We have that d′n(z)−
d′n(z′) = (z − z′)d′′n(z∗) for some z∗ between z and z′. Hence, it holds

|βn(z, z′)| ≤ |z − z′|1−δ sup
z∈Z

|d′′n(z)|

≤ C sup
z∈Z

|d′′n(z)|,
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for some constant C. The supremum above is Op(1) by Theorem C in [16]. This
finishes the proof.

Proposition A.2. Assume (RC1)–(RC4). Then,

1
n

n∑
i=1

{
YiF̂θ0(Zi) − YiFθ0(Zi) −E[Y F̂θ0(Z)|Xn] + E[Y Fθ0(Z)]

}
= op(n−1/2),

where Xn = {(Xᵀ
i , Yi)ᵀ, i = 1, . . . , n} and Zi = Xᵀ

i θ0.

Proof. We are going to use Lemma 19.24 from [17], with

f̂n : (y, z) �→ yF̂θ0(z) = ydn(z) + yFθ0(z)
f0 : (y, z) �→ yFθ0(z),

where dn(z) := F̂θ0(z) − Fθ0(z). Define the class

F = {(z, y) → y[d(z) + Fθ0(z)], d ∈ C1+δ
1 (Z)},

where C1+δ
1 (Z) is the class of differentiable functions d defined on Z satisfying

‖d‖1+δ ≤ 1, where ‖d‖1+δ = max{supz |d(z)|, supz |d′(z)|} + supz,z′ |d′(z) −
d′(z′)|/|z − z′|δ. From Lemma A.1, we have that P (dn ∈ C1+δ

1 (Z)) → 1 as
n → ∞. We start by showing that F is Donsker. From Theorem 19.5 in [17],
this reduces to showing that∫ 1

0

√
logN[](ε,F , ‖ · ‖PY,Z

)dε < ∞, (22)

where N[] is the bracketing number, PY,Z is the probability measure related
to FY,Z and ‖ · ‖PY,Z

denotes the L2(PY,Z)-norm. By Corollary 2.7.2 in [18],
O(exp(ε−2/(1+δ))) brackets are needed for d(z). Hence, the bracketing entropies
logN[](ε,F , ‖ · ‖PY,Z

) are growing with order slower than ε−2. Hence, (22) holds
and F is Donsker. To be able to use Lemma 19.24 from [17], it remains to show
that ∫ ∫

y2[F̂θ0(z) − Fθ0(z)]2dFY,Z(y, z) = op(1).

This is a direct consequence of Lemma A.1 and E[Y 2] < ∞.

Proposition A.3. Assume (RC1)–(RC4). Then,

1
n

n∑
i=1

YiF̂θ0(Zi) = 1
n

n∑
i=1

{
YiFθ0(Zi) +

∫ ∫
yη(Zi, z)dFY,Z(y, z)

}
+ op(n−1/2),

with η(Zi, z) = K((z − Zi)/h) − Fθ0(z). Also, E[η(Zi, z)] = O(h3).
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Proof. Using Proposition A.2, we have

1
n

n∑
i=1

YiF̂θ0(Zi) = 1
n

n∑
i=1

YiFθ0(Zi) + E
[
Y [F̂θ0(Z) − Fθ0(Z)]|Xn

]
+ op(n−1/2).

Also, we can write

E
[
Y [F̂θ0(Z) − Fθ0(Z)]|Xn

]
= 1

n

n∑
i=1

∫ ∫
yη(Zi, z)dFY,Z(y, z).

To finish the proof, we show that E[η(Zi, z)] = O(h3). Let Z = [z1, z2], we have

E

[
K

(
z − Zi

h

)]
=
∫ z2

z1

K

(
z − t

h

)
dFθ0(t)

=
[
K

(
z − t

h

)
Fθ0(t)

]z2
z1

+
∫ z2

z1

1
h
κ

(
z − t

h

)
Fθ0(t)dt

= K

(
z − z2

h

)
+
∫ z+h

z−h

1
h
κ

(
t− z

h

)
Fθ0(t)dt−

[
1 −K

(
z2 − z

h

)]
=
∫ 1

−1
κ(u)Fθ0(z + hu)du

= Fθ0(z) + O(h3),

where the last equality comes from a Taylor expansion of Fθ0(z+hu) around z.
This closes the proof.

Define next

ĝ(z) := 1
nh

n∑
i=1

κ

(
z − Zi

h

)

r̂(z) := 1
nh

n∑
i=1

κ

(
z − Zi

h

)
Xᵀ

i .

Hence, ĝ(z) is a kernel density estimator of g(z) and r̂(z) is an estimator of
r(z) := g(z)E[X|Z = z]ᵀ. Let r̂k(z) denote the kth component of vector r̂(z),
r̂k(z) then corresponds to the numerator of a Nadaraya-Watson estimator of
Xk on Z. These objects will play a role in the asymptotic representation of
∇Gn(θ0). Indeed, we can write

D̂(x, xᵀθ0) := ∇θ0 F̂θ(xᵀθ) = xĝ(xᵀθ0) − r̂(xᵀθ0)
D(x, xᵀθ0) := ∇θ0Fθ(xᵀθ) = xg(xᵀθ0) − r(xᵀθ0).

Notice that supz∈Z
∣∣ĝ(z) − g(z)

∣∣ = op(1) by (20).
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Lemma A.4. Assume (RC1)–(RC4). Then, for any 0 < δ < 1,

sup
z∈Z

∣∣ĝ′(z) − g′(z)
∣∣ = op(1) (23)

sup
z,z′∈Z

∣∣ĝ′(z) − g′(z) − ĝ′(z′) + g′(z′)
∣∣

|z − z′|δ = Op(1) (24)

Proof. Relation (23) is proven in Theorem C from [16]. The proof of (24) follows
that of (21) and uses again Theorem C from [16], applied to the second derivative
of ĝ(z).

Lemma A.5. Assume (RC1)–(RC4). Then, for any 0 < δ < 1,

sup
z∈Z

∣∣r̂(z) − r(z)
∣∣ = op(1) (25)

sup
z∈Z

∣∣r̂′(z) − r′(z)
∣∣ = op(1) (26)

sup
z,z′∈Z

∣∣r̂′(z) − r′(z) − r̂′(z′) + r′(z′)
∣∣

|z − z′|δ = Op(1) (27)

Proof. We start with the proof of (25). Write |r̂(z) − r(z)| ≤ |r̂(z) −E[r̂(z)]| +
|E[r̂(z)] − r(z)|. Using Proposition 4 from [13], we have that supz∈Z |r̂(z) −
E[r̂(z)]| = op(1). Also,

E[r̂(z)] = 1
h
E

[
κ

(
z − Z

h

)
X

]
= 1

h

∫ z2

z1

κ

(
z − t

h

)
E[X|Z = t]g(t)dt

= 1
h

∫ z+h

z−h

κ

(
t− z

h

)
r(t)dt

=
∫ 1

−1
κ(u)r(z + hu)du

= r(z) + O(h3),

where the last step uses a Taylor expansion of r(z + hu) around z and the fact
that r(·) is three times continuously differentiable. This closes the proof of (25).
The same structure can be applied to the proof of (26). First, supz∈Z |r̂′(z) −
E[r̂′(z)]| = op(1) follows as a special case of Theorem 2 in [12]. Then,

E[r̂′(z)] = 1
h

∫ 1

−1
κ′(u)r(z + hu)du

=
∫ 1

−1
κ(u)r′(z + hu)du

= r′(z) + O(h3),
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where the second equality uses integration by parts and the fact that κ(−1) =
κ(1) = 0. The last equality is obtained using a Taylor expansion of r′(z + hu)
around z and the fact that r(·) is four times continuously differentiable. This
finishes the proof of (26). The proof of (27) follows that of (21) and uses again
Theorem 2 from [12], applied to the second derivative of r̂(z).

Proposition A.6. Assume (RC1)–(RC4). Then,

1
n

n∑
i=1

{
YiD̂(Xi, Zi) − YiD(Xi, Zi) − E[Y D̂(X,Z)|Xn] + E[Y D(X,Z)]

}
= op(n−1/2).

Proof. As in the proof of Proposition A.2, we use Lemma 19.24 from [17], now
with

f̂n : (x, z, y) �→ yD̂(x, z) = y[xd1
n(z) + d2

n(z)] + yD(x, z)
f0 : (x, z, y) �→ yD(x, z),

where d1
n(z) := ĝ(z) − g(z) and d2

n(z) := r̂(z) − r(z). Define the class

F := {(x, z, y) → y[xd1(z) + d2(z) + D(x, z)], (d1, d2) ∈ C1+δ
1 (Z)}.

From Lemmas A.1, A.4 and A.5, we have that P (d1
n ∈ C1+δ

1 (Z)) → 1 and
P (d2

n ∈ C1+δ
1 (Z)) → 1 as n → ∞. With this in mind, the proof that F is

Donsker is the same as in Proposition A.2. It remains to show that∫ ∫
y2[xd1

n(xᵀθ0) + d2
n(xᵀθ0)]2dFY,X(y, x) = op(1).

This is a direct consequence of Lemmas A.4, A.5, and the fact that E[Y 2] <
∞.

Proposition A.7. Assume (RC1)–(RC4). Then,

1
n

n∑
i=1

YiD̂(Xi, Zi)

= 1
n

n∑
i=1

{
YiD(Xi, Zi) +

∫ ∫
yη1(Xi, x)dFY,X(y, x)

}
+ op(n−1/2),

with

η1(Xi, x) := x

h
κ

(
xᵀθ0 −Xᵀ

i θ0

h

)
− Xi

h
κ

(
xᵀθ0 −Xᵀ

i θ0

h

)
−D(x, xᵀθ0).

Also, E[η1(Xi, x)] = O(h3).
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Proof. Using Proposition A.6, we have

1
n

n∑
i=1

YiD̂(Xi, Zi)

= 1
n

n∑
i=1

YiD(Xi, Zi) + E
[
Y [D̂(X,Z) −D(X,Z)]|Xn

]
+ op(n−1/2).

The expectation above can be written as

1
n

n∑
i=1

∫ ∫
yη1(Xi, x)dFY,X(y, x).

Hence, E[η1(Xi, x)] = xᵀE[ĝ(xᵀθ0)] − E[r̂(xᵀθ0)] − D(x, xᵀθ0). By Taylor ex-
pansions similar to that operated in the proof of Lemma A.5, we have E[ĝ(z)] =
g(z)+O(h3) and E[r̂(z)] = r(z)+O(h3). This implies that E[η1(Xi, x)] = O(h3)
and closes the proof.

Denote D̂2(x, xᵀθ0) := ∇2
θ0
F̂θ(xᵀθ) and D2(x, xᵀθ0) := ∇2

θ0
Fθ(xᵀθ).

Proposition A.8. Assume (RC1)–(RC4). If E[Y 2] < ∞, then it holds that

1
n

n∑
i=1

YiD̂
2(Xi, Zi) − E[Y D2(X,Z)] = op(1). (28)

Proof. The left-hand side of (28) can be rewritten as

1
n

n∑
i=1

{YiD
2(Xi, Zi) −E[Y D2(X,Z)]} + 1

n

n∑
i=1

Yi[D̂2(Xi, Zi) −D2(Xi, Zi)].

The first term is op(1) by the weak law of large numbers since E[|Y D2(X,Z)|] <
∞. We now focus on the second term. By Markov’s inequality, it is sufficient to
show that

E

[∣∣∣∣ 1n
n∑

i=1
Yi[D̂2(Xi, Zi) −D2(Xi, Zi)]

∣∣∣∣]→ 0,

as n → ∞. Since E[Y 2] < ∞, it is enough to show that

sup
x∈X

|D̂2(x, xᵀθ0) −D2(x, xᵀθ0)| = op(1).

Notice that

D̂2(x, xᵀθ0) = 1
nh2

n∑
i=1

κ′
(
xᵀθ0 −Xᵀ

i θ0

h

)
[x−Xi][x−Xi]ᵀ.
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The [k, l] element of this matrix can be decomposed into xkxlĝ′(xᵀθ0) −
xkr̂′l(xᵀθ0) − xlr̂′k(xᵀθ0) + m̂′

kl(xᵀθ0), where

m̂kl(z) := 1
nh

n∑
i=1

κ

(
z − Zi

h

)
Xk

i X
l
i .

Similarly, we can decompose the [k, l] element of D2(x, xᵀθ0) into xkxlg′(xᵀθ0)−
xkr′l(xᵀθ0) − xlr′k(xᵀθ0) + m′

kl(xᵀθ0), where

mkl(z) := g(z)E[XkX l|Z = z].

Using Lemmas A.4 and A.5, we are left with showing supz∈Z |m̂′
kl(z)−m′

kl(z)| =
op(1) for any k, l, which is proven in the same way as (26). This closes the
proof.

Proof of Theorem 2.1. Let αn := 1/
√
n+an and Jn(θ) := Gn(θ)−

∑p
k=1 pλ(|θk|).

Following [11], we show that for any given ε > 0, there exists a constant C such
that

P

(
sup

‖u‖=1,uᵀθ0=0
Jn

(
(1 − C2α2

n)1/2θ0 + Cαnu
)
< Jn(θ0)

)
≥ 1 − ε.

Let θ∗ := (1 − C2α2
n)1/2θ0 + Cαnu. Since pλ(|θ0,k|) = 0 for k ∈ {s + 1, . . . , d},

it holds

Jn(θ∗) − Jn(θ0) ≤ Gn(θ∗) −Gn(θ0) −
s∑

k=1

[
pλ(|θ∗k|) − pλ(|θ0,k|)

]
.

After Taylor expansions of Gn(θ∗) around θ0 and of pλ(|θ∗k|) around |θ0,k|, we
have

Jn(θ∗) − Jn(θ0) ≤ I1 + I2 + I3,

with

I1 =
[
∇Gn(θ0)

]ᵀ[θ∗ − θ0]

I2 = 1
2[θ∗ − θ0]ᵀ∇2Gn(θ0)[θ∗ − θ0][1 + op(1)]

I3 = −
s∑

k=1

[
p′λ(|θ0,k|)sign(θ0,k)[θ∗k − θ0,k] + 1

2p
′′
λ(|θ0,k|)[θ∗k − θ0,k]2[1 + o(1)]

]
.

We first focus on I1. Using Proposition A.7, the weak law of large numbers and
E[|Y D2(X,Z)|] < ∞, we have that ∇Gn(θ0) = Op(n−1/2). Using the definition
of θ∗ and a Taylor expansion of (1 − C2α2

n) 1
2 around 1, we conclude that I1 =

Op(Cαn/
√
n). Let us now consider I2. Using Proposition A.8, ∇2Gn(θ0) =

Op(1). Hence, I2 = Op(C2α2
n). Finally, I3 is bounded above by

sαnan + sα2
nC

2 max{|p′′λ(|θ0,k|)| : θ0,k �= 0}.

Hence, choosing a sufficiently large C, I2 is the dominating term. The fact that
it is asymptotically negative stems from (RC7).
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Proof of Theorem 2.2. Take any θA such that ‖θA − θA0 ‖ = Op(1/
√
n) and

‖θA‖ = 1, and take any constant C. We show that

Jn((θAᵀ, 0ᵀ)ᵀ) = max
‖θI‖≤C/

√
n
Jn((θAᵀ, θIᵀ)ᵀ).

It is sufficient to show that for some small εn = C/
√
n and for k = s+ 1, . . . , p,

we have

∇kJn(θ) < 0 for 0 < θk < εn

> 0 for − εn < θk < 0.

We have

∇kJn(θ) = ∇kGn(θ) − p′λ(|θk|)sign(θk)
= Op(n−1/2) − p′λ(|θk|)sign(θk),

using a Taylor expansion of ∇kGn(θ) around θ0 as well as Propositions A.7
and A.8. Hence,

∇kJn(θ) = λ
[
− p′λ(|θk|)

λ
sign(θk) + Op

( 1√
nλ

)]
.

Recall that lim infn→∞ lim infx→0+ p′λ(x)/λ > 0. Hence, asymptotically, the sign
of ∇kJn(θ) is fully determined by the sign of θk. This closes the first part of
this proof. Now we move on with the proof of the asymptotic normality. Since
θ0,s > 0, it is easy to show that there exists (θ̂1, . . . , θ̂s−1)ᵀ that is a

√
n-

consistent local solution of the following maximization programme

max
(θ1,...,θs−1)

Jn

((
θ1, . . . , θs−1,

√√√√1 −
s−1∑
k=1

θ2
k, 0

ᵀ
)ᵀ)

.

Let θ̂s =
√

1 −
∑s−1

k=1 θ̂
2
k, θ̂A = (θ̂1, . . . , θ̂s) and θ̂ = (θ̂Aᵀ, 0ᵀ)ᵀ. For all k =

1, . . . , s− 1, θ̂k must satisfy

∂

∂θ̂k
Jn

((
θ̂1, . . . , θ̂s−1,

√√√√1 −
s−1∑
k=1

θ̂2
k, 0

ᵀ
)ᵀ)

= 0.

We develop this derivative, starting with the part related to the non-penalised
objective function. We have

∂

∂θ̂k
Gn

((
θ̂1, . . . , θ̂s−1,

√√√√1 −
s−1∑
k=1

θ̂2
k, 0

ᵀ
)ᵀ)

= 1
n

n∑
i=1

Yi

[
1
n

n∑
j=1

κ

(
Xᵀ

i θ̂ −Xᵀ
j θ̂

h

) [Xk
i −Xk

j ]
h

]
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− θ̂k

θ̂s

1
n

n∑
i=1

Yi

[
1
n

n∑
j=1

κ

(
Xᵀ

i θ̂ −Xᵀ
j θ̂

h

) [Xs
i −Xs

j ]
h

]
.

Using a Taylor expansion on the function (θ̂1, . . . , θ̂s−1)ᵀ �→ κ(X
ᵀ
i θ̂−Xᵀ

j θ̂

h ) around
(θ0,1, . . . , θ0,s−1)ᵀ and the previous notations, the partial derivative above can
be written as

∇kGn(θ0) −
θ̂k

θ̂s
∇sGn(θ0) +

s−1∑
l=1

∇2
klGn(θ0)[θ̂l − θ0,l]

−
s−1∑
l=1

θ0,l

θ0,s
∇2

ksGn(θ0)[θ̂l − θ0,l] −
θ̂k

θ̂s

s−1∑
l=1

∇2
lsGn(θ0)[θ̂l − θ0,l]

+ θ̂k

θ̂s

s−1∑
l=1

θ0,l

θ0,s
∇2

ssGn(θ0)[θ̂l − θ0,l] + op(1).

We focus now on the part related to the penalty. Using the consistency of θ̂k,
we have

∂

∂θ̂k

{
s−1∑
k=1

pλ(|θ̂k|) + pλ
(√

1 −
∑s−1

k=1 θ̂
2
k

)}

= p′λ(|θ̂k|)sign(θ̂k)1{θ̂k �= 0} − p′λ(θ̂s)
θ̂k

θ̂s
+ op(1).

Using again the consistency of θ̂k, Taylor expansions of p′λ(|θ̂k|) around θ0,k and
of p′λ(θ̂s) around θ0,s, the partial derivative above writes as[

p′λ(|θ0,k|)sign(θ0,k) − p′λ(θ0,s)
θ̂k

θ̂s
+ p′′λ(|θ0,k|)[θ̂k − θ0,k]

]
1{θ̂k �= 0}

+ θ̂k

θ̂s

s−1∑
l=1

[
p′′λ(θ0,s)

θ0,l

θ0,s

]
(θ̂l − θ0,l) + op(1).

Finally, we can get rid of the indicator since 1{θ̂k �= 0} converges in probability
to one. Notice that in the case of the SCAD, the penalty is only piecewise
differentiable. However, this is not an issue since λ → 0 as n → ∞. Hence, for
a sufficiently large n, the value of θ0,k will not lie at a discontinuity point. In
what follows, we adopt the following notations. For a vector v, we denote by ṽ
the vector obtained by taking the first s− 1 elements of v. For a matrix M , we
denote by M̃ the matrix formed by taking the first s − 1 rows and columns of
M . Also, we denote by M̃.,s the vector formed by taking the first s−1 rows and
fixing the s-th column of M . Define

Σ1 := E[Y D̃2(X,Z)].
Σ2 := E[Y D̃2

.,s(X,Z)] θ̃ᵀ
0

θ0,s
.
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Σ3 := ϑ0θ̃
ᵀ
0

θ2
0,s

E[Y D2
ss(X,Z)].

Σ4 is a (s − 1) × (s − 1) diagonal matrix where the diagonal is given by
[p′′λ(|θ10|)sign(θ10), . . . , p′′λ(|θs−1,0|)sign(θs−1,0)]ᵀ.
Σ5 := ϑ0θ̃

ᵀ
0

θ2
0,s

p′′λ(θ0,s).
Ω1 := E[ξ̃iξ̃ᵀ

i ].
Ω2 := ϑ0θ̃

ᵀ
0

θ2
0,s

E[ξ2
is].

Ω3 := E[ξ̃iξis] ϑᵀ
0

θ0,s

where

ξi := YiD(Xi, Zi) +
∫ ∫

yη1(Xi, x)dFY,X(y, x).

Also, let

Σ := −Σ1 + Σ2 + Σᵀ
2 − Σ3 + Σ4 − Σ5 (29)

Ω := Ω1 + Ω2 − Ω3 − Ωᵀ
3 . (30)

In order to avoid heavier notations, we define ϑ0 = ϑ0 and ϑ̂ = ˜̂
θ. Recall that b

is defined in Equation (9). Then, we have

√
nΣ[ϑ̂− ϑ0 + Σ−1b] =

√
n∇̃Gn(θ0) −

ϑ0

θ0,s

√
n∇sGn(θ0) + op(1)

= 1√
n

n∑
i=1

(
ξ̃i −

ϑ0

θ0,s
ξis

)
+ op(1),

where the last equality uses Proposition A.7. Notice that E[YiD(Xi, Zi)] =
0 because the function θ �→ E[Y Fθ(Xᵀθ)] is maximized in θ0. Hence, using
Proposition A.7 and the central limit theorem, we have

√
nΣ[ϑ̂− ϑ0 + Σ−1b] d→ N(0,Ω),

which concludes the proof.

Proposition A.9. Assume (RC1)–(RC7). Then,

1
n

n∑
i=1

[
1{Xᵀ

i θn ≤ xᵀθn} − 1{Xᵀ
i θ0 ≤ xᵀθ0} − P (Xᵀθn ≤ xᵀθn|Xn)

+ P (Xᵀθ0 ≤ xᵀθ0)
]

= op(n−1/2)

uniformly in x ∈ X and in θn
p→ θ0, with θn,s > 0.

Proof. In this proof, we will make use of Corollary 2.3.12 in [18]. We first show
that fn(Xi) := 1{Xᵀ

i θn ≤ xᵀθn} − 1{Xᵀ
i θ0 ≤ xᵀθ0} − P (Xᵀ

i θn ≤ xᵀθn|Xn) +
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P (Xᵀ
i θ0 ≤ xᵀθ0) belongs to a Donsker class. Define θC0 = ( θ0,1θ0,s

, . . . ,
θ0,s−1
θ0,s

,
θ0,s+1
θ0,s

, . . . ,
θ0,p
θ0,s

)ᵀ and θCn = ( θn,1
θn,s

, . . . ,
θn,s−1
θn,s

,
θn,s+1
θn,s

, . . . ,
θn,p

θn,s
)ᵀ, where θn

p→ θ0.
Also, let xc = (x1, . . . , xs−1, xs+1, . . . , xp)ᵀ. Notice that the first term of f(Xi)
can be rewritten as 1{Xs

i ≤ xᵀθCn −XCᵀ
i θCn }. Define the class

F :=
{
x �→

[
1{xs ≤ t− xCᵀθC} − 1{xs ≤ u− xCᵀθC0 } − P (Xs ≤ t−XCᵀθC)

+ P (Xs ≤ u− xCᵀθC0 )
]
, t ∈ R, u ∈ R, θC ∈ ΘC

}
,

where θC is a vector of size (p− 1) defined on a compact set ΘC . We prove that
F is Donsker using the same reasoning as in Proposition A.2. We focus on the
class F1 := {x �→ 1{xs ≤ t−(xC)ᵀθC}, θC ∈ ΘC , t ∈ R}. The other terms can be
dealt with in a similar way. Embed θC into a hypercube [θl1, θu1 ]×· · ·×[θlp−1, θ

u
p−1]

of dimension (p− 1). For all j, partition [θlj , θuj ] into O(ε−2) intervals of length
O(ε2). Hence, we partitioned θC into O(ε−2(p−1)) hypercubes. Denote by Ri one
such hypercube. For each non-empty Ri, let

Γl
i(XC) := min

θC∈(Ri∩ΘC)
XCᵀθC

Γu
i (XC) := max

θC∈(Ri∩ΘC)
XCᵀθC .

Now, notice that, for all t, there exists an i such that

1{Xs ≤ t− Γu
i (XC)} ≤ 1{Xs ≤ t− (XC)ᵀθC} ≤ 1{Xs ≤ t− Γl

i(XC)}.

Define Pu
i (t) := P (Xs ≤ t − Γu

i (XC)) and partition the line into segments tuik,
with k = 1, . . . , O(ε−2), and with Pu

i -probability less than a fraction of ε2. Sim-
ilarly, define P l

i (t) := P (Xs ≤ t− Γl
i(XC)) and partition the line into segments

tlik, with k = 1, . . . , O(ε−2), and with P l
i -probability less than a fraction of ε2.

Denote by tlik1
the largest tlik ≤ t and denote by tlik2

the smallest tuik ≥ t. Brackets
for 1{Xs ≤ t−(XC)ᵀθC} are then given by [1{tlik1

−Γu
i (XC)},1{tuik2

−Γl
i(XC)}].

Let us now compute their size. Denoting ‖ · ‖PX
the L2(PX)-norm, we have

‖1{Xs ≤ tuik2
− Γl

i(XC)} − 1{Xs ≤ tlik1
− Γu

i (XC)}‖2
PX

= P (Xs ≤ tuik2
− Γl

i(XC)) − P (Xs ≤ tlik1
− Γu

i (XC))
= P l

i (t) − Pu
i (t) + O(ε2)

=
∫ [

FXs|XC (t−Γl
i(xC)|xC) − FXs|XC (t− Γu

i (xC)|xC)
]
dFXC (xC)

]
+O(ε2)

=
∫ [

sup
xs,xC

fX1|XC (xs|xC)ε2
]
dFXC (xC) + O(ε2) = O(ε2),

where fXs|XC and FXs|XC denote the conditional density and the conditional
CDF of Xs with respect to XC , and FXC is the CDF of XC . Hence, the brack-
ets are of size O(ε). In conclusion, the bracketing number associated to F1 is
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O(ε−2p). Using Theorem 19.5 in [17], it follows that F1 is Donsker. By straight-
forward computations, F is also Donsker. Let V [·] denote the variance, we have

V [fn(X)|Xn] = V [1{Xᵀθn ≤ xᵀθn} − 1{Xᵀθ0 ≤ xᵀθ0}|Xn]
≤ E[(1{Xᵀθn ≤ xᵀθn} − 1{Xᵀθ0 ≤ xᵀθ0})2|Xn]
≤ E[(1{Xᵀθn ≤ xᵀθn} − 1{Xᵀθ0 ≤ xᵀθ0})|Xn]2/3

= op(1),

where the last line uses the continuous mapping theorem and the fact that
θn

p→ θ0. Since F is Donsker, it follows from Corollary 2.3.12 in [18] that

lim
α↓0

lim sup
n→∞

P

(
sup

f∈F,V [f ]<α

n−1/2
∣∣∣∣ n∑
i=1

f(Xi)
∣∣∣∣ > ε

)
= 0,

for each ε > 0. We obtain the desired result by restricting the above probability
to elements in F satisfying θC = θCn .

Proof of Theorem 2.3. We can rewrite

ĜiY,X = 1
Y

2
n

n∑
i=1

Yi

[
1
n

n∑
j=1

1{Xᵀ
j θ̂ ≤ Xᵀ

i θ̂}
]
− n + 1

n

where θ̂ is the estimator of Theorem 2.2. Using Proposition A.9 and the same
notations as in Theorem 2.2, we can write

2√
n

n∑
i=1

Yi

[
1
n

n∑
j=1

1{Xᵀ
j θ̂ ≤ Xᵀ

i θ̂}
]

= An1 + An2 + op(1),

with

An1 = 2√
n

n∑
i=1

Yi

[
1
n

n∑
j=1

1{Xᵀ
j θ0 ≤ Xᵀ

i θ0}
]

An2 = 2
n

n∑
i=1

Yi

∫ √
n

[
1

{
xs ≤ [X̃i − x̃]ᵀ ϑ̂

θ̂s
+ [XI

i − xI ]ᵀ θ̂
I

θ̂s
+ Xs

i

}
− 1
{
xs ≤ [X̃i − x̃]ᵀ ϑ0

θ0,s
+ Xs

i

}]
dFX(x̃, xs),

where we recall that X̃i is the vector obtained by taking the first s− 1 elements
of Xi. Let us first focus on An2. We can rewrite the integral displayed inside the
sum as ∫ √

n

[
FXs

(
[X̃i − x̃]ᵀ ϑ̂

θ̂s
+ [XI

i − xI ]ᵀ θ̂
I

θ̂s
+ Xs

i

)
− FXs

(
[X̃i − x̃]ᵀ ϑ0

θ0,s
+ Xs

i

)]
dFX̃(x̃),
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where FXs is the CDF of Xs and FX̃ is the CDF of X̃. Using Theorem 2.1, a
Taylor expansion on the piece inside the integral yields

fXs

(
[X̃i − x̃]ᵀ ϑ0

θ0,s
+ Xs

i

)(
[X̃i − x̃]ᵀ

√
n

[
ϑ̂

θ̂s
− ϑ0

θ0,s

]
+ [XI

i − xI ]ᵀ
√
n
θ̂I

θ̂s

)
+ op(1).

By Theorem 2.1 and the property of sparsity proven in Theorem 2.2, the part
related to θ̂I is negligible. Using the same development as in Theorem 2.2, we
have

√
n

[
ϑ̂

θ̂s
− ϑ0

θ0,s

]
=

√
n[ϑ̂− ϑ0]
θ0,s

− ϑ̂

θ̂s

√
n[θ̂s − θ0,s]

θ0,s

= 1
θ3
0,s

1√
n

n∑
i=1

{
[θ2

0s + ϑ0ϑ
ᵀ
0 ]ξ̃i −

ϑ0

θ0,s
ξis

}
+ op(1).

Hence,

An2 = 1
θ3
0,s

1√
n

n∑
i=1

{
E[ρᵀ

i ]
(

[θ2
0s + ϑ0ϑ

ᵀ
0 ]ξ̃i −

ϑ0

θ0,s
ξis

)}
+ op(1),

where

ρi = 2Yi

∫
fXs

(
[X̃i − x̃]ᵀ ϑ0

θ0,s
+ Xs

i

)
[X̃i − x̃]dFX̃(x̃).

We now focus on An1. We can write

An1 =
√
nUn1 + op(1),

where

Un1 = 2
n(n− 1)

∑
i<j

Yi 1{Xᵀ
j θ0 ≤ Xᵀ

i θ0} + Yj 1{Xᵀ
i θ0 ≤ Xᵀ

j θ0}

is a U-statistic. Let mH(t) := E[Yi 1{Xᵀ
i θ0 ≥ t}]. Using Theorem 12.3 in [17]

and the fact that E[Y 2
i ] < ∞, we have

√
n[Un1 − 2G(θ0)] = 2

n

n∑
i=1

[
YiFθ0(X

ᵀ
i θ0) + mH(Xᵀ

i θ0) − 2G(θ0)
]
+ op(1),

and has mean zero. Using the last developments and the fact that E[Yi] > 0,
we can write

√
n[ĜiY,X − GiY,X ] = 1√

n

n∑
i=1

ζi + op(1),
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where

ζi := 1
E[Yi]

(
2YiFθ0(X

ᵀ
i θ0) + 2mH(Xᵀ

i θ0) − 4G(θ0)

+ E[ρᵀ
i ]

θ3
0,s

(
[θ2

0,s + ϑ0ϑ
ᵀ
0 ]ξ̃i −

ϑ0

θ0,s
ξis

))
. (31)

Hence,
√
n[ĜiY,X − GiY,X ] d→ N(0, σ2

ζ ), with σ2
ζ := V [ζi].

Appendix B: Properties of the SCAD-FABS algorithm

Proof of Lemma 3.1. Let k ∈ At be updated via a forward step. Then, it both
holds that

L(θt − sign(θtl )1lε) − L(θt) − εp′λt(|θtl |) ≥ 0 ∀l ∈ At (32)
L(θt+1) < L(θt). (33)

(32) holds because t → t + 1 is not a backward step and (33) comes from the
fact that a forward step always decreases the loss. Now, assume per contra that
θt+1
k = θtk − sign(θtk)ε. Equation (33) implies L(θt − sign(θtk)1kε) − L(θt) < 0,

which contradicts (32).

Lemma B.1. Consider that coefficient k is updated via a forward step.

(a) If λt+1 = λt and |θtk| ≤ λt, then λt ≤ λt+1
A .

(b) If λt+1 = λt and λt < |θtk| ≤ aλt, then λt ≤ λt+1
B .

Proof. Recall that λt is updated according to (13). Also, λt+1
A and λt+1

B are
determined by (15) and (16).

We start with the proof of part (a). Let λt+1 = λt and |θtk| ≤ λt. We may
face two scenarios

λt+1
A ≥ λt+1

B (34)
λt+1
B > λt+1

A . (35)

In situation (34), λt ≤ λt+1
A holds trivially because λt = λt+1. Assume now

that (35) holds. Using the definition of λt+1
A and λt+1

B , we have λt+1
B < |θtk|.

Hence, we must have λt+1
B < |θtk| ≤ λt, which contradicts λt ≤ λt+1

B . Hence, (35)
cannot happen, which closes the proof of part (a).

We move to the proof of part (b). Let λt+1 = λt and λt < |θtk| ≤ aλt. Once
again, we may face either (34) or (35). If (35) holds, then λt ≤ λt+1

B arises
trivially from λt+1 = λt. Assume now (34). Using the definition of λt+1

A and
λt+1
B , we now have λt+1

B ≥ |θtk|. Hence, we must have λt < |θtk| ≤ λt+1
B , which

closes the proof of part (b).

Lemma B.2. Let k ∈ {1, . . . , p} be updated via a forward step and λ > 0. Then,
there exists some ctk ∈ [0, 1] such that

Q(θt+1, λ) −Q(θt, λ) = L(θt+1) − L(θt) + p′λ(|θtk|)ε−
ctkε

2

2(a− 1) .
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Proof. Let λ > 0 and consider that k ∈ {1, . . . , p} is updated via a forward
step. By Lemma 3.1, we have θt+1 = θt + sign(θtk)1kε. We face the following
situations:

|θt+1
k | ≤ λ (36)

|θtk| ≤ λ < |θt+1
k | ≤ aλ (37)

λ < |θtk| < |θt+1
k | ≤ aλ (38)

λ < |θtk| ≤ aλ < |θt+1
k | (39)

|θtk| > aλ. (40)

In situation (36), there is no approximation error since

pλ(|θt+1
k |) − pλ(|θtk|) = λε = p′λ(|θtk|)ε.

Let us move to situation (37). Then, we have

pλ(|θt+1
k |) − pλ(|θtk|) = p′λ(|θtk|)ε− c2k,1

ε2

2(a− 1) ,

where ck,1 := |θt+1
k |−λ

ε ∈ [0, 1]. Consider now situation (38). Then, we have

pλ(|θt+1
k |) − pλ(|θtk|) = p′λ(|θtk|)ε−

ε2

2(a− 1) .

In cases covered by (39), we have

pλ(|θt+1
k |) − pλ(|θtk|) = p′λ(|θtk|)ε− (1 − c2k,2)

ε2

2(a− 1) ,

where ck,2 := |θt+1
k |−aλ

ε ∈ [0, 1]. Obviously, there is no approximation error
in (40) since

pλ(|θt+1
k |) − pλ(|θtk|) = 0 = p′λ(|θtk|)ε.

Lemma B.3. Let k ∈ At be updated via a backward step and λ > 0. Then,
there exists some dtk ∈ [0, 1] such that

Q(θt+1, λ) −Q(θt, λ) = L(θt+1) − L(θt) − p′λ(|θtk|)ε−
dtkε

2

2(a− 1) .

This result can be proven by the same reasoning as the one used in the proof
of Lemma B.2.

Lemma B.4. Let k ∈ {1, . . . , p} be updated via a forward step. Then, ∀l �= k
such that L(θt − sign(∇lL(θt))1lε) − L(θt) < 0, it holds

L(θt+1) − L(θt − sign(∇lL(θt))1lε) +
[
p′λt(|θtk|) − p′λt(|θtl |)

]
ε ≤ etk − etl

2 ε2,

where etk = ∇2
kkL(θ̇), with θ̇ between θt and θt − sign(∇mL(θt))1kε and ∇2

denotes the Hessian matrix.
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Proof. Consider that k ∈ {1, . . . , p} is updated via a forward step. Using a
Taylor expansion, we have

L(θt+1) − L(θt) = −∇kL(θt)sign(∇kL(θt))ε + etk
2 ε2.

This implies that

[|∇kL(θt)| − p′λt(|θtk|)]ε = L(θt) − L(θt+1) − p′λt(|θtk|)ε + etk
2 ε2.

Remark that, in a forward step, the left hand side of the previous equation is
maximized on the set {l ∈ {1, . . . , p} : L(θt − sign(∇lL(θt))1lε) − L(θt) < 0}.
Hence, for such coefficients, it holds that

L(θt) − L(θt − sign(∇lL(θt))) − p′λt(|θtk|)ε + etl
2 ε2

≤ L(θt) − L(θt+1) − p′λt(|θtk|)ε + etk
2 ε2,

which leads us to the desired result.

Proof of Proposition 3.2. Let k be the index of the updated coefficient. We first
show that, in a backward step, it holds

Q(θt+1, λt+1) < Q(θt, λt) − dtkε
2

2(a− 1) .

Since we are considering a backward step, it both holds λt+1 = λt and

L(θt+1) − L(θt) − εp′λt(|θtk|) < 0.

Using Lemma B.3, this implies

Q(θt+1, λt+1) −Q(θt, λt) < −dtk
ε2

2(a− 1) .

We now prove that, in a forward step, it holds

Q(θt+1, λt+1) ≤ Q(θt, λt) − ctkε
2

2(a− 1) . (41)

Assume first that λt+1 = λt+1
A . Recall that λt+1

A = Lt,t+1
ε and |θtk| ≤ λt+1

A . Using
Lemma B.2, it holds

Q(θt+1, λt+1
A ) −Q(θt, λt+1

A ) = − ctkε
2

2(a− 1) .

Since λt+1
A ≤ λt, we also have Q(θt, λt+1

A ) ≤ Q(θt, λt). Taken together, the last
two results yield (41). Second, consider that λt+1 = λt+1

B . Recall that λt+1
B =
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1
a [(a − 1)Lt,t+1

ε + |θtk|] and |θtk| > λt+1
B . Using the same reasoning as in the

last point yields (41). Third, we assume that λt+1 = λt and |θtk| ≤ λt. Using
Lemma B.2, it holds

Q(θt+1, λt) −Q(θt, λt) = L(θt+1) − L(θt) + ελt − ctkε
2

2(a− 1)

≤ L(θt+1) − L(θt) + ελt+1
A − ctkε

2

2(a− 1)

= − ctkε
2

2(a− 1) ,

where the inequality in the second line is due to Lemma B.1. Fourth, let λt+1 =
λt and λt < |θtk| ≤ aλt. Relation (41) is proven similarly to the last situation.
Finally, assume |θtk| > aλt. The result emerges using Lemma B.2 and the fact
that a forward step never increases the loss.

Proposition B.5. If λt+1 < λt and k is the index of the updated coefficient,
then ∀l ∈ At, it holds

Q(θt, λt) ≤ Q(θt + sign(θtl )1lε, λ
t) + ε2

2

[
ct
l

a − 1 + (et
k − et

l )
]

Q(θt, λt) ≤ Q(θt − sign(θtl )1lε, λ
t) + dt

l ε
2

2 (a − 1 ) .

Proof. Let λt+1 < λt and k be the index of the updated coefficient. Consider
any l ∈ At. We first show that

Q(θt, λt) ≤ Q(θt + sign(θtl )1lε, λ
t) + ε2

2

[
ct
l

a − 1 + (et
k − et

l )
]
. (42)

We can safely restrict to the set {l ∈ At : L(θt + sign(θtl )1lε) − L(θt) < 0}.
Indeed, on the complementary set, (42) is obviously true since θt leads to lower
penalty and loss values. Write θ̃ := θt + sign(θtl )1lε. We prove the result by
showing that it both holds

Q(θt, λt) ≤ Q(θt+1, λt) + ctkε
2

2(a− 1) (43)

Q(θt+1, λt) −Q(θ̃, λt) ≤ ε2

2

(
(ctl − ctk)
a− 1 + (etk − etl)

)
. (44)

Let us first focus on (43). Suppose first that λt+1 = λt+1
A . In that case, λt ≥

λt+1
A ≥ |θtk|. Hence

Q(θt, λt) = Q(θt+1, λt) + L(θt) − L(θt+1) − ελt + ctkε
2

2(a− 1)

≤ Q(θt+1, λt) + L(θt) − L(θt+1) − ελt+1
A + ctkε

2

2(a− 1)
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= Q(θt+1, λt) + ctkε
2

2(a− 1) .

Consider now that λt+1 = λt+1
B . We have λt ≥ λt+1

B ≥ λt+1
A and λt+1

B < |θtk| ≤
aλt+1

B . Hence, |θtk| ≤ aλt. But it might either be that |θtk| ≤ λt or λt < |θtk| ≤ aλt.
In the first situation, relation (43) follows from the exact same reasoning as
above. If λt < |θtk| ≤ aλt, we have

Q(θt, λt) = Q(θt+1, λt) + L(θt) − L(θt+1) − ε
aλt − |θtk|
a− 1 + ctkε

2

2(a− 1)

≤ Q(θt+1, λt) + L(θt) − L(θt+1) − ε
aλt+1

B − |θtk|
a− 1 + ctkε

2

2(a− 1)

= Q(θt+1, λt) + ctkε
2

2(a− 1) .

We now turn to proving (44). We have

Q(θ̃, λt) −Q(θt, λt) = L(θ̃) − L(θt) + p′λt(|θtl |)ε−
ctlε

2

2(a− 1)

Q(θt+1, λt) −Q(θt, λt) = L(θt+1) − L(θt) + p′λt(|θtk|)ε−
ctkε

2

2(a− 1) .

Together, these two equations imply that

Q(θt+1, λt) −Q(θ̃, λt)

= L(θt+1) + p′λt(|θtk|)ε− [L(θ̃) + p′λt(|θtl |)ε] + ε2

2(a− 1)(ctl − ctk)

≤ ε2

2

(
(ctl − ctk)
a− 1 + (etk − etl)

)
.

The inequality in the last equation is justified as follows. First, following the
proof of Lemma 3.1, it is easy to show that sign(θtl ) = −sign(∇lL(θt)). We can
then use Lemma B.4 to obtain the desired inequality. Now, we show that

Q(θt, λt) ≤ Q(θt − sign(θtl )1lε, λ
t) + dtlε

2

2(a− 1) .

Since t �→ t + 1 is a forward step, it means that no backward step is taken.
Hence, for all l ∈ At, we have

L(θt − sign(θtl )1lε) − L(θt) − εp′λt(|θtl |) ≥ 0.

Using Lemma B.3 leads to the desired result.

Proof of Theorem 3.4. Let t be such that λt < λt+1 and consider that k is the
index of the updated coefficient. Recall that m is the upper bound of the second
order derivatives of L(·).
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Suppose first that l ∈ At, we want to show that |∇lQ(θt, λt)| ≤ mε. Remark
that ∇lQ(θt, λt) = ∇lL(θt)+p′λt(|θtl |)sign(θtl ). Using Taylor expansions of L(θt+
sign(θtl )1lε) and of L(θt − sign(θtl )1lε), both around θt, we have

L(θt + sign(θtl )1lε) − L(θt) = ∇lL(θt)sign(θtl )ε + etl
2 ε2 (45)

L(θt − sign(θtl )1lε) − L(θt) = −∇lL(θt)sign(θtl )ε + etl
2 ε2. (46)

Using Lemma B.2, we can rewrite (45) as

Q(θt + sign(θtl )1lε, λ
t)

= Q(θt, λt) + p′λt(|θtl |)ε + ∇lL(θt)sign(θtl )ε + etl
2 ε2 − ctlε

2

2(a− 1) .

Using Proposition B.5, we have

Q(θt, λt) ≤ Q(θt + sign(θtl )1lε, λ
t) + ε2ctl

2(a− 1) + ε2

2 [etk − etl ].

Putting the last two results together, we obtain that

εp′λt(|θtl |) + ∇lL(θt)sign(θtl )ε + etk
2 ε2 ≥ 0.

Since etk ≤ m, we get

−
[
∇lL(θt)sign(θtl ) + p′λt(|θtl |)

]
≤ mε

2 . (47)

We now focus on (46). Using Lemma B.3, we rewrite it as

Q(θt − sign(θtl )1lε, λ
t)

= Q(θt, λt) + p′λt(|θtl |)ε−∇lL(θt)sign(θtl )ε + etl
2 ε2 − dtlε

2

2(a− 1) .

Again, using Proposition B.5, we have that

Q(θt, λt) ≤ Q(θt − sign(θtl )1lε, λ
t) + ε2dtl

2(a− 1) .

These last two results imply that

∇lL(θt)sign(θtl ) + p′λt(|θtl |) ≤
mε

2 . (48)

Together, (47) and (48) lead to the desired result.
Consider now that l /∈ At. We want to show that |∇lL(θt)| ≤ p′λt(|θtl |) +mε.

Using a Taylor expansion of L(θt − sign(∇lL(θt))1lε) around θt, we have

L(θt − sign(∇lL(θt))1lε) − L(θt) = −∇lL(θt)sign(∇lL(θt))ε + etl
2 ε2,
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which we can rewrite as

|∇lL(θt)| = L(θt) − L(θt − sign(∇lL(θt))1lε)
ε

+ etl
2 ε. (49)

In what follows, we restrict to the set {l /∈ At : L(θt−sign(∇lL(θt))1lε)−L(θt) <
0}. Notice that in the complementary set, we directly have |∇lL(θt)| ≤ mε.
Using Lemma B.4, we have

L(θt+1) − L(θt − sign(∇lL(θt))1lε)
ε

≤ p′λt(|θtl |) − p′λt(|θtk|) + etk − etl
2 ε. (50)

Returning to Equation (49), we can write

|∇lL(θt)| = L(θt) − L(θt+1)
ε

+ L(θt+1) − L(θt − sign(∇lL(θt))1lε)
ε

+ etlε

2

≤ Lt,t+1
ε + p′λt(|θtl |) − p′λt(|θtk|) + etkε

2 ,

where the inequality is implied by (50). Suppose that |θtk| ≤ λt. Then, it holds

Lt,t+1
ε − p′λt(|θtk|) = λt+1

A − λt ≤ 0,

where the inequality is due to λt+1
A = λt+1 < λt. Consider instead that λt <

|θtk| ≤ aλt. In that case,

Lt,t+1
ε − p′λt(|θtk|) = aλt+1

B − |θtk|
a− 1 − aλt − |θtk|

a− 1 ≤ 0,

where the inequality is due to λt+1
B = λt+1 < λt. Finally, the situation covered

by |θtk| > aλt can be disregarded since k is the index of the updated coefficient
and λt+1 < λt. In conclusion, we have

|∇lL(θt)| − p′λt(|θtl |) ≤
etkε

2
≤ mε

2 ,

which closes the second part of the proof.

Appendix C: Supplementary results concerning the Monte-Carlo
simulations

In what follows, we provide supplementary results concerning the simulation
studies performed in Section 4. Tables 10, 11 and 12 display the results of
the comparison between the estimation procedures obtained for the Student
distribution, see Tables 3, 4 and 5 for their equivalent in the Gaussian case.
Next, Figure 8 provide a qqplot and histogram of the estimated explained Gini
coefficient obtained in Section 4.3.



296 A. Jacquemain et al.

Table 10

Comparison of the estimation procedures – Student distribution with n = 100 and
GiY,X = 0.15

Setup 1 Setup 2
GiY,X θ0 FPR FNR GiY,X θ0 FPR FNR

PLR-SCAD (BIC) 1.55 0.26 1.93 13.30 1.50 0.33 0.93 16.90
PLR-SCAD (Bootstrap) 1.51 0.26 19.72 4.75 1.70 0.34 4.57 13.25

PLR-LASSO (BIC) 1.62 0.31 4.18 14.55 1.72 0.42 1.24 23.60
PLR-LASSO (Bootstrap) 1.51 0.29 26.73 4.95 1.81 0.43 6.51 16.15

PMSRC (FABS) 1.70 0.31 6.02 13.20 2.12 0.44 0.82 28.50
PMSRC (LP) 2.15 0.41 2.82 25.30 2.76 0.53 0.66 36.65

Table 11

Comparison of the estimation procedure – Student distribution with n = 100 and
GiY,X ∈ {0.05, 0.25}.

Setup 1 Setup 2
GiY,X θ0 FPR FNR GiY,X θ0 FPR FNR

Low explained Gini coefficient (GiY X = 0.05)
PLR-SCAD (BIC) 1.65 0.78 25.32 31.30 3.48 1.10 8.19 55.80

PLR-SCAD (Bootstrap) 1.80 0.81 44.53 27.05 4.39 1.09 28.70 41.95
PLR-LASSO (BIC) 1.56 0.75 29.57 27.40 2.72 1.04 7.84 53.55

PLR-LASSO (Bootstrap) 1.80 0.80 45.02 26.25 4.32 1.10 27.44 42.80
PMSRC (FABS) 1.31 0.84 9.28 52.85 1.39 1.10 1.57 76.50

PMSRC (LP) 1.33 0.91 5.20 63.95 1.39 1.12 1.27 80.15

High explained Gini coefficient (GiY X = 0.25)
PLR-SCAD (BIC) 2.41 0.20 0.23 11.75 2.38 0.22 0.11 13.85

PLR-SCAD (Bootstrap) 2.29 0.17 13.05 2.35 2.26 0.22 3.50 5.35
PLR-LASSO (BIC) 2.52 0.24 1.92 10.95 2.76 0.34 0.55 19.95

PLR-LASSO (Bootstrap) 2.26 0.20 23.90 1.40 2.22 0.29 5.92 5.80
PMSRC (FABS) 2.40 0.19 4.92 4.75 2.76 0.29 0.62 15.60

PMSRC (LP) 2.88 0.29 1.80 16.50 3.45 0.37 0.50 26.30

Table 12

Comparison of the estimation procedure – Student distribution and Setup 2 with
n ∈ {50, 200}.
n = 50 n = 200

GiY,X θ0 FPR FNR GiY,X θ0 FPR FNR
PLR-SCAD (BIC) 2.18 0.70 1.79 43.95 1.15 0.20 0.51 6.9

PLR-SCAD (Bootstrap) 2.95 0.73 10.27 31.65 1.21 0.20 1.47 6.0
PLR-LASSO (BIC) 2.54 0.75 1.76 47.35 1.24 0.24 0.84 8.5

PLR-LASSO (Bootstrap) 3.03 0.77 13.31 32.15 1.22 0.26 2.09 7.5
PMSRC (FABS) 4.13 0.81 0.64 59.35 1.30 0.24 0.84 9.30

PMSRC (LP) 4.95 0.89 0.34 67.90 1.59 0.29 0.41 19.10

Appendix D: Supplementary results concerning the real data
example

In this section, we provide supplementary results concerning the real data ex-
ample of Section 5. Figure 9 displays the traceplot obtained with the FABS
algorithm. Tables 13 and 14 show the model fits and estimated coefficients ob-
tained when the regularization parameter is chosen via BIC, see Tables 6 and 7
for their equivalent when the bootstrap method is used instead.
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Fig 8. Asymptotic Normality of ĜiY,X obtained with the PLR-SCAD on Setup 1, samples of
size 1000.

Fig 9. Trace plot of the FABS on the Griliches data.
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Table 13

Results of the PLR-SCAD and PLR-LASSO on the Griliches data (BIC selection).
PLR-SCAD PLR-LASSO

(nfwd = 5) (nfwd = 20) (nfwd = 50)
ĜiY,X 10.19 10.33 10.31 10.30

95% CI [8.52, 11.87] [8.69, 11.97] [8.66, 11.96] [8.58, 12.02]
# variables 5 6 6 6

BIC score −2.305 −2.296 −2.299 −2.299

Table 14

Coefficients estimated by the PLR-SCAD and PLR-LASSO on the Griliches data (BIC
selection).
PLR-SCAD PLR-LASSO

(nfwd = 5) (nfwd = 20) (nfwd = 50)
Age 0.257 0.357 0.304 0.305

Schooling 0.930 0.829 0.848 0.850
IQ 0.058 0.081 0.103 0.069

SchoolingMarried / 0.079 0.203 0.203
SchoolingUrban / 0.393 0.359 0.360

ExpMarried / 0.138 0.088 0.088
ExpUrban 0.256 / / /
IQMarried 0.028 / / /
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