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Abstract: Strong invariance principles describe the error term of a Brow-
nian approximation to the partial sums of a stochastic process. While these
strong approximation results have many applications, results for continuous-
time settings have been limited. In this paper, we obtain strong invariance
principles for a broad class of ergodic Markov processes. Strong invariance
principles provide a unified framework for analysing commonly used esti-
mators of the asymptotic variance in settings with a dependence structure.
We demonstrate how this can be used to analyse the batch means method
for simulation output of Piecewise Deterministic Monte Carlo samplers. We
also derive a fluctuation result for additive functionals of ergodic diffusions
using our strong approximation results.
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1. Introduction

Let X = (Xk)k∈N be a stochastic sequence defined on a common probability
space and consider the partial sum process Sn, given by Sn =

∑n
k=1 Xk. We

say that a strong invariance principle holds for X if there exist a probability
space (Ω,F ,P) on which we can construct a sequence of random variables X ′ =
(X ′

k)k∈N and a Brownian motion W = (W (t))t≥0, such that X and X ′ are equal
in law and

|S′
n − μn− σW (n)| = O(ψn) a.s.,

where S′
n denotes the partial sum process of X ′, μ and σ are finite constants

determined by the law of the process, O is a placeholder for the asymptotic
regime, and ψn the corresponding approximation error. More specifically, if S =
(St)t≥0 denotes a stochastic process and ψ = (ψt)t≥0 is some positive sequence,
we write

ST = o(ψT ) a.s. and ST = O(ψT ) a.s.

to denote

P

(
lim

T→∞
ST

/
ψT = 0

)
= 1 and P

(
lim sup
T→∞

|ST |
/
ψT < ∞

)
= 1

respectively. For technical convenience, we will usually make no distinction be-
tween X and X ′.

For a sequence of independent, identically distributed random variables with
mean zero and unit variance, the Komlós-Major-Tusnády approximation [51,
52] asserts that if E|X1|p < ∞ for some p > 2, then on a suitably enriched
probability space, we can construct a Brownian motion W = {W (t), t ≥ 0}
such that

Sn = W (n) + o(n1/p) a.s. (1.1)

If we additionally assume that the moment-generating function exists in a neigh-
bourhood of zero, i.e., Eet|X| < ∞ for some t > 0, then one can construct a
Brownian motion W such that

Sn = W (n) + O(log n) a.s. (1.2)
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Furthermore, if only existence of the the second moment is assumed, [60] showed
that there exists a sequence tn ∼ n such that

Sn = W (tn) + o(n1/2) a.s. (1.3)

The error terms appearing in the strong invariance principles (1.1), (1.2), and
(1.3) are optimal. The approximation error appearing in the strong invariance
principle also quantifies the convergence rate in the functional central limit
theorem, as shown in [20, Theorem 1.16 and Theorem 1.17]. These strong ap-
proximation results are powerful tools used to obtain numerous results in both
probability and statistics, as seen in e.g., [23], [22], [72], and [81].

Naturally, it is of great interest to extend these results beyond the i.i.d.
setting. An extensive overview of invariance principles for dependent sequences
is given in [6]. In Markovian settings, strong approximation results were obtained
by [24], [19], [89], and [61], among others. The strong invariance principle of [61]
attains the Komlós-Major-Tusnády bound given in (1.2). The results of [19] and
[61] are established through an application of Nummelin splitting, introduced
in the seminal papers of [3] and [67]. Provided that the transition operator of
the chain satisfies a one-step minorisation condition, a bivariate process can
be constructed such that this process possesses a recurrent atom and the first
coordinate of the constructed process is equal in law to the original Markov
chain. Consequently, the chain inherits a regenerative structure and can thus
be divided into independent identically distributed cycles. By application of
the Komlós-Major-Tusnády approximations strong invariance principles can be
obtained. Strong approximation results for Markov chains are useful tools for
analysing estimators of the asymptotic variance of Markov Chain Monte Carlo
(MCMC) sampling algorithms. The results of [25, 26], [38], and [89] show strong
consistency of the batch means and spectral variance estimators for MCMC
simulation output using the appropriate strong invariance principles.

Recently, there has been growing interest in Monte Carlo algorithms based on
Piecewise Deterministic Markov Processes (PDMPs). The main appeal of these
processes is their non-reversible nature. It is well known that non-reversibility
can significantly improve performance of sampling methods, in terms of both
convergence rate to equilibrium and asymptotic variance, see for example, the
results of [48] and [55] regarding convergence to stationarity and [33] and [76]
regarding the asymptotic variance. Furthermore, PDMPs have piecewise deter-
ministic paths and can therefore be simulated without discretisation error, in
contrast to for example Langevin and Hamiltonian dynamics. The primary sam-
pling algorithms belonging to this class are the Zig-Zag Sampler and the Bouncy
Particle Sampler, introduced in [10] and [12] respectively. Moreover, since these
processes maintain the correct target distribution if sub-sampling is employed,
they enjoy advantageous scaling properties to large datasets, as seen in [9].

For many useful results regarding the estimation of the asymptotic vari-
ance of Markov chain simulation output to carry over to PDMP-based meth-
ods, it is required that a strong invariance principle holds for the underlying
continuous-time process. In this paper, we obtain strong approximation results
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for a broad class of (continuous-time) ergodic Markov processes. Firstly, we show
that the strong invariance principle given in Theorem 4.1 can be obtained di-
rectly through ergodicity and moment conditions. However, the resulting error
rate is not explicit and therefore less convenient to work with.

A natural approach for obtaining a more refined strong invariance princi-
ple would be through regenerative properties of the process. However, it is in
general not possible to show that the transition semigroup satisfies a minori-
sation condition such that a regenerative structure can be obtained. The resol-
vent chain, on the other hand, does satisfy a one-step minorisation condition.
Utilising this result, [58] extends the concept of Nummelin splitting to Harris
recurrent Markov processes. Hence we can redefine the process such that it is
embedded in a richer process which is endowed with a recurrent atom. Although
the resulting cycles are not independent and we therefore do not have regenera-
tion in the classic sense, we do obtain short-range dependence. Therefore we can
utilise the approximation results of [5] to obtain a strong invariance principle
attaining a convergence rate of order O(T 1/4 log T ). This result is formulated
in Theorem 4.5 and covers a wide range of Markov processes including ergodic
diffusions. Although the nearly optimal bound O(T 1/p log(T )2) of [5] does not
carry over, to the best of our knowledge, there are currently no approaches
established that lead to superior rates for the class of processes considered in
Theorem 4.5.

For PDMPs we are able to give a strong invariance principle with an im-
proved approximation error. We show that the univariate Zig-zag process has
regenerative cycles. This allows us to follow the approach of [61] such that the
optimal strong approximation error of O(T 1/p) can be obtained. Moreover, if
the target distribution factorises into a product of independent densities, the
optimal approximation bound carries over to the multivariate settings. Further-
more, we also show that the results of [61] can be extended under less restric-
tive conditions such that the optimal approximation error (1.2) is still attained.
Finally, we discuss some applications of our obtained strong invariance prin-
ciples. We demonstrate how the obtained strong approximation results can be
utilised for analysing the batch means estimator of the asymptotic variance of
continuous-time Monte Carlo samplers. Theorem 5.2 weakens the existing regu-
larity conditions guaranteeing strong convergence of the batch means estimator
in an MCMC setting. This is a direct consequence of the fact that Theorems 4.6
and 4.7 obtain the optimal approximation rate of O(T 1/p) whereas previous
work on estimation of the MCMC standard error is based on strong invariance
principles with limited accuracy, which we further explain in Remark 5.3. Fur-
thermore, we demonstrate the applicability of our results to diffusion processes
and show that the magnitude of increments can be described with our obtained
approximation results.

This article is organised as follows. In Section 2, we give a brief introduction of
Piecewise Deterministic Markov processes and state our motivational example.
In Section 3, we review Nummelin splitting in continuous time as introduced in
[58] and discuss other relevant results. In Section 4, the main results of the paper
are given. In Section 5, we discuss the estimation of the asymptotic variance for
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PDMC simulation output. Section 6 illustrates the applicability of our results
to diffusion processes. In Section 7, the proofs of the main results are given.

2. Motivating example: estimation of the piecewise deterministic
Monte Carlo standard error

Suppose our goal is to sample from a probability distribution π(dx) on E = R
k,

which admits Lebesgue density

π(x) = e−U(x)∫
Rk e−U(x) dx

, (2.1)

where U is referred to as the associated potential of the target π. We will as-
sume that U is twice continuously differentiable and can be evaluated pointwise.
Typically, the objective is to compute expectations with respect to this distri-
bution, in other words, we are interested interested in π(f) =

∫
f(x)π(dx), for

some appropriately integrable function f .
Piecewise Deterministic Monte Carlo (PDMC) samplers consist of a posi-

tion and a velocity component. We will consider processes Z = (Zt)t≥0 with
Zt = (Xt, Vt), where Xt and Vt denote the position and velocity component
respectively. Our process takes values in E = X × V, where X denotes the
state-space of the position component and V denotes the space of attainable
velocities. Piecewise Deterministic Markov processes are characterised by their
deterministic dynamics between random event times along with a Markov ker-
nel that describes the transitions at events. More specifically, their deterministic
dynamics are described by some ordinary differential equation. Both the Zig-
Zag process and the Bouncy Particle sampler have piecewise linear trajectories
characterised by

dXt

dt
= Vt and dVt

dt
= 0.

Thus the rate of change of the position is described by the velocity, whereas
the velocity does not change along the deterministic dynamics. Changes in the
velocity occur according to some inhomogeneous Poisson process of rate λ(Zt).
The Poisson events consist of changes in the velocity component of our process.
The fundamental idea behind these sampling methods is to choose the event
rate and the changes in velocity such that the position component explores
the state-space according to the target distribution π. The event rate should
increase in an appropriate manner as the position moves towards regions of
lower probability mass.

For the Zig-Zag process the set of possible velocities is given by V={−1,+1}d.
We distinguish d types of events for the Zig-Zag Sampler. For every dimension
i of our position component, an event will consist of flipping component i of the
velocity, while keeping the other (d − 1) components unchanged. More specif-
ically, our transition at events can be described by Fi : V → V, which is the
mapping that flips the i-th component of the velocity, i.e., for v ∈ V we have
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that the k-th entry of Fi(v) is given by

(Fi(v))k =
{
−vk for k = i
vk for k �= i,

where vk denotes the k-th entry of the velocity v for k = 1, . . . , d. A change
in the i-th component of the velocity will be governed by an inhomogeneous
Poisson process of rate λi. For the (canonical) Zig-Zag Sampler these rates are
given by

λi(x, v) = (vi∂xiU(x))+ , (2.2)

where (x)+ := max{x, 0}. Hence for the Zig-Zag process events occur with rate

λZ(x, v) =
d∑

i=1
λi(x, v) =

d∑
i=1

(vi∂xiU(x))+ . (2.3)

The simulation scheme for Zig-Zag is given in Algorithm 1 below.

Algorithm 1 Zig-Zag Sampler
1: Initialise (X0, V0) ← (x, v) and T0 ← 0.
2: For k = 1, 2, . . . simulate τ1

k , . . . , τ
d
k according to

Pr
(
τ ik ≥ t

)
= exp

(
−
∫ t

0
λi(Xτk−1 + sVτk−1 , Vτk−1 )

)
ds,

for i = 1, . . . , d.
3: For s ∈ (0, τk) set (Xτk−1+s, Vτk−1+s) ← (Xτk−1 + sVτk−1 , Vτk−1 ).
4: The time of the k-th event is given by Tk = Tk−1 + τ i0k , with i0 = mini{τ ik}di=1.
5: Update velocity of component i0 at the event time

VTk
= Fi0(VTk−1 ).

In [9] it is shown that if we have

λi(x, v) − λi(x, Fi(v)) = vi∂xiU(x), for i = 1, . . . , d,

then the Zig-Zag process has the desired invariant distribution given by
π(dx)ν(dv), where the target distribution π is the marginal distribution of
the position component and ν is a uniform distribution over the set of ve-
locities V. Consider the case when the target π is of product form, namely
π(x) =

∏d
i=1 πi(xi), where each πi is a one-dimensional probability density.

Then the Zig-Zag process with stationary distribution π can be defined through
d independent one-dimensional Zig-Zag processes. The potential of the product
form target is given by U(x) = −

∑d
i=1 log πi(xi), and therefore the correspond-

ing Poisson event rates are given by

λi(x, v) =
(
−vi

∂xiπi(xi)
πi(xi)

)+
= (vi∂xiUi(x))+ , (2.4)

where Ui(x) = − log πi(xi). Because the switching intensity of every coordinate
only depends on its own position and velocity, we see that the corresponding
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Poisson processes are independent. Therefore it follows that the d-dimensional
Zig-Zag process Zt with target distribution π can be decomposed into d inde-
pendent one-dimensional Zig-Zag processes (Zi

t)di=1, where every coordinate i
moves according to Zi

t which has target distribution πi for i = 1, . . . , d.
For the simulation scheme of the Bouncy Particle Sampler we refer to [12]. In

the one-dimensional case the canonical BPS and ZZS are described by the same
PDMP. For a more detailed introduction to PDMP-based samplers we refer to
[37]. It can be shown that under very mild regularity conditions both sampling
processes admit a stationary distribution given by

μ(dx, dv) = π(dx)υ(dv), (2.5)

where the target distribution π is the marginal distribution of the position com-
ponent and ν is the marginal distribution of the velocity component. Moreover,
an ergodic law of large numbers holds, i.e.,

lim
T→∞

1
T

∫ T

0
g(Xs, Vs) ds =

∫
E

g(x, v)μ(dx, dv) =: μ(g),

for all μ-integrable g. Let f be a function such that π(|f |) < ∞, then from the
independence of position and velocity at equilibrium, we see that 1

T

∫ T

0 f(Xs)ds,
the time average of the position component, is a natural estimator for π(f), the
expectation with respect to π. In order to assess the accuracy of our sampling
method, we require a central limit theorem to hold;

√
T

(
1
T

∫ T

0
f(Xs)ds− π(f)

)
d−→ N (0,Σf ) as T → ∞, (2.6)

and estimate the corresponding asymptotic variance Σf . Moreover, the asymp-
totic variance is also useful for determining the efficiency of the sampling algo-
rithm via measures such as the effective sample size, see for example [44] or [88].
The estimation of the asymptotic variance is also required for the implemen-
tation of stopping rules, which consists of justifiable criteria for termination of
the simulation. In order to validate stopping rules that guarantee a desired level
of precision, in [42] it is shown that the estimator of the asymptotic covariance
matrix must be strongly consistent. Strong invariance principles play a central
role in the analysis of estimators of the asymptotic variance of Markov Chain
Monte Carlo (MCMC) sampling algorithms, see for example [25, 26], [38], and
[89]. In this paper, we obtain strong approximation results for broad classes of
ergodic Markov processes. We show that for PDMPs many results regarding
estimation of the asymptotic variance immediately carry over.

3. Nummelin splitting in continuous time

Let X = (Xt)t≥0 be a stochastic process defined on a filtered probability space
(Ω,F , (Ft)t≥0,Px), with Polish state space (E,E ) and initial value X0 = x. We
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consider the case where X is a positive Harris recurrent strong Markov process
with transition semigroup given by (Pt)t≥0 with finite invariant measure π. By
definition of positive Harris recurrence, π can be normalised to be a probability
measure and we have that

π(A) > 0 =⇒ Px

(∫ ∞

0
1{Xs∈A}ds = ∞

)
= 1, x ∈ E. (3.1)

Throughout this paper we will additionally require ergodicity of the considered
processes. We say that a Markov process X is ergodic with convergence rate Ψ
if

‖Pt(x, ·) − π‖TV ≤ V (x)Ψ(t), for all x ∈ E and t ≥ 0, (3.2)
where V is some positive π-integrable function and Ψ some positive function
that tends to zero as t → ∞. Furthermore, a process is called polynomially or
exponentially ergodic if Ψ decays at a polynomial rate (1 + t)−β or exponential
rate e−γt respectively for some β, γ > 0. For a more thorough discussion of these
definitions we refer to [62].

The resolvent chain X̄ = (X̄n)n≥0 is obtained by observing the process at
independent exponential times, i.e., X̄n := XTn for n ≥ 0. Here (Tn)n≥0 denote
the sampling times at which we observe the process X, which are defined as
T0 := 0 and Tn :=

∑n
k=1 σk, where (σk)k≥1 denote a sequence of i.i.d. standard

exponential random variables with mean equal to one. The resolvent chain will
inherit positive Harris recurrence from the original process, see for example [47,
Thereom 1.4]. The transition kernel of the process X̄ = (X̄n)n∈N is given by

U(x,A) =
∫ ∞

0
Pt(x,A)e−tdt, (3.3)

and satisfies the one-step minorisation condition, see for example [47] or [75],

U(x,A) ≥ h⊗ ν(x,A), (3.4)

where h ⊗ ν(x,A) = h(x)ν(A), with h(x) = α1C(x) for some α ∈ (0, 1), a
measurable set C with π(C) > 0, and ν(·) a probability measure equivalent to
π(· ∩ C).

The minorisation condition of the resolvent chain motivates the introduction
of the kernel K((x, u), dy) : E × [0, 1] → E given by

K((x, u), dy) =

⎧⎨
⎩
ν(dy) for (x, u) ∈ C × [0, α]
W (x, dy) for (x, u) ∈ C × (α, 1]
U(x, dy) for x /∈ C,

(3.5)

where the residual kernel W (x, dy) is defined as

W (x, dy) = U(x, dy) − αν(dy)
1 − α

. (3.6)

Since the resolvent chain is also positive Harris recurrent, it will hit C infinitely
often. Given that the resolvent chain has hit C, with probability α the chain
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will move independently of its past according to the small measure ν and with
probability (1−α) it will move according to the residual kernel W . By the Borel-
Cantelli lemma the residual chain will move according to ν infinitely often. Let
Rk denote the k-th time that the resolvent chain moves according to ν. The
randomised stopping times (Rk)k serve as regeneration epochs for the resolvent;
for every k, X̄Rk

has law ν and is independent of both its past and of Rk.
The implied regenerative properties that the process X obtains through its
resolvent are made explicit with the approach of [58]. Their framework requires
the following regularity conditions on the transition semigroup of the process X:

Assumption 1.

(i) The semigroup (Pt)t≥0 is Feller, i.e., for every bounded and continuous
function f , the mapping x �−→ Ptf(x) =

∫
E
Pt(x, dy)f(y) is bounded and

continuous.
(ii) There exists a σ-finite measure Λ on (E,E ) such that for every t > 0,

Pt(x, dy) = pt(x, dy)Λ(dy), with (t, x, y) �−→ pt(x, y) jointly measurable.

Note that by Assumption 1 it follows that U(x, dy), the transition kernel
of the resolvent chain, also has a density with respect to Λ(dy), which we will
denote by u(x, y). At the so-called sampling times of the process X, we can
apply the Nummelin splitting technique to the resolvent chain. We then fill
in the original process between the sampling times. Following this procedure,
[58] construct on an extended probability space a process Z with state space
E × [0, 1] ×E, that admits a recurrent atom. The first coordinate of Z has the
same law as the original process X, the second coordinate denotes the auxiliary
variables employed in order to generate draws from the resolvent chain via the
splitting procedure, and the third coordinate corresponds to the subsequent
values of the resolvent chain.

The process Z = (Z1
t , Z

2
t , Z

3
t )t≥0 can be constructed according to the fol-

lowing procedure. Firstly, let Z1
0 = X0 = x. Independently of Z1 generate

Z2
0 ∼ U [0, 1], where U [0, 1] denotes the uniform distribution on the unit inter-

val. Given {Z2
0 = u}, draw Z3

0 according to K((x, u), dx′). Then inductively for
n ≥ 1, on Zn = (x, u, x′):

I. Choose σn+1 according to(
pt(x, x′)
u(x, x′) 1{0<u(x,x′)<∞} + 1{u(x,x′)∈{0,∞}}

)
e−tdt on R+. (3.7)

The next sampling time Tn+1 is given by Tn + σn+1.
II. On {σn+1 = t}, put Z2

Tn+s := u and Z3
Tn+s := x′ for all 0 ≤ s < t.

III. Draw a bridge of Z1 conditioned on its starting point Z1
Tn

and end point
Z3
Tn

, so that for every 0<s < t we obtain

Z1
Tn+s ∼

ps(x, y)pt−s(y, x′)
pt(x, x′) 1{pt(x,x′)>0}Λ(dy). (3.8)

Let Z1
Tn+s := x0 for some fixed x0 ∈ E on {pt(x, x′) = 0}. Moreover, given



200 A. Pengel and J. Bierkens

Z1
Tn+s = y on s + u < t we have that

Z1
Tn+s+u ∼ pu(y, y′)pt−s−u(y′, x′)

pt−s(y, x′) 1{pt−s(y,x′)>0}Λ(dy′). (3.9)

Again, on {pt−s(y, x′) = 0}, let Z1
Tn+s = x0.

IV. At jump time Tn+1 we have Z1
Tn+1

:= Z3
Tn

= x′. Draw Z2
Tn+1

independently
of Zs, s < Tn+1, uniformly on the unit interval. Given {Z2

Tn+1
= u′},

generate

Z3
Tn+1

∼ K((x′, u′), dx′′). (3.10)

Note that in the construction of Z the inter-sampling times (σn)n≥1 are drawn
according to (3.7), their conditional distribution given the starting and endpoint
of the sampled chain. Equation (3.8) and (3.9), describe the distributions of
points in a bridge of the process X. The first coordinate of Z consists of bridges
drawn according to the law of the original process X, between realisations of
the resolvent chain. The results of [58, 59] that we work with are given in
the following propositions. Firstly, the first coordinate of Z has the desired
distribution.

Proposition 3.1 ([58, Proposition 2.8]). The constructed process Z from the
simulation scheme given in (3.7)–(3.10) is a Markov process with respect to its
natural filtration F. Moreover, the first coordinate Z1 is equal in law to our
process X, namely,

L((Xt)t≥0|X0 = x) = L((Z1
t )t≥0|Z1

0 = x).

Moreover, (Tn − Tn−1)n≥1 are i.i.d exponential random variables and are inde-
pendent of Z1; therefore, we also have that

L((XTn)n≥0|X0 = x) = L((Z1
Tn

)n≥0|Z1
0 = x).

Moreover, the process X is embedded in a richer process Z, which admits a
recurrent atom A := C × [0, α] × E in the sense of the following proposition.

Proposition 3.2 ([59, Proposition 4.2]). Let (Sn, Rn) be a sequence of stopping
times defined as S0 = R0 := 0 and

Sn+1 := inf{Tm > Rn : ZTm ∈ A} and Rn+1 := inf{Tm : Tm > Sn+1}.

Then ZRn is independent of FRn−1 for all n ≥ 1 and (ZRn)n≥1 is an i.i.d
sequence with

ZRn ∼ ν(dx)λ(du)K((x, u), dx′) for all n ≥ 1.

The stopping times {Sn}n thus denote the hitting times of the recurrent
atom A for the jump process (ZTn)n, and {Rn}n denote the implied regenera-
tion epochs of the process Z. As a direct consequence, we obtain the following
regenerative structure for the original process.
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Proposition 3.3 ([59, Proposition 4.4]). Let f be a measurable π-integrable
function, then we can construct a sequence of increasing stopping times {Rn}n
with R0 = 0 and

ξn :=
∫ Rn

Rn−1

f(Xs) ds, n ≥ 1,

such that the sequence {ξn}n is a stationary sequence under Pν . Moreover, for
n ≥ 2, ξn is independent of FRn−2 .

The regenerative structure given in Proposition 3.3 was also noted by [82].
They define a process X to be one-dependent regenerative if there exists, on a
possibly enlarged probability space, a sequence of randomised stopping times
Rn with corresponding cycle lengths ρn = Rn+1 − Rn such that {(XRn+t)t≥0 ,
(ρn+k)k≥0} has the same distribution for each n ≥ 1 and are independent of
{(ρn)k−1

n=1, (Xt)t<Rn−1} for n ≥ 2. Note that according to this definition the
initial cycle is allowed to have a different distribution. In [58] a constructive
approach towards this result is given, in which they explicitly define the corre-
sponding stopping times and the recurrent atom. By the implied regenerative
structure of X, we obtain the following characterisation of the stationary mea-
sure.

Proposition 3.4 ([82, Theorem 2]). Let X be a positive recurrent one-dependent
regenerative process, then we can characterise its stationary measure as follows

π(A) = 1
�
Eν

∫ R1

0
1{Xs∈A} ds, (3.11)

where � is defined as EνR1. Moreover, we have the following erdogic law of large
numbers

lim
T→∞

1
T

∫ T

0
f(Xs)ds = 1

�
Eν

∫ R1

0
f(Xs)ds a.s., (3.12)

for all f : E → R
d with π(‖f‖) < ∞.

Note that the normalisation constant 1/� given in Proposition 3.4 is finite
and non-zero due to the positive Harris recurrence of the process.
Remark 3.5. The framework of [58, 59] does not require ergodicity. Moreover, it
is important to note that contrary to the classically regenerative case, Proposi-
tion 3.4 does not imply convergence in total variation to the stationary measure.
For a counterexample see [82, Remark 3.2].

For our applications, we will require ergodicity and hence we must addition-
ally impose this as stated in (3.2). These ergodicity requirements are usually
established through Foster–Lyapunov drift conditions; see [32] and [39] for expo-
nential and polynomial ergodicity respectively. These results have been applied
to several classes of diffusion processes, see for example [15, Theorem 8.3 and
8.4] and [85, Theorem 3.1 and 4.1].

For PDMPs, [11] show aperiodicity, positive Harris recurrence, and expo-
nential ergodicity of the Zig-Zag process for target distributions that have a
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non-degenerate local maximum and appropriately decaying tails. In [30] and
[34] conditions for exponential ergodicity of the Bouncy Particle Sampler are
given. Utilising hypocoercivity techniques, [2] establish polynomial rates of con-
vergence for PDMPs with heavy-tailed stationary distributions. When we are
concerned with PDMPs we will require the following regularity conditions on
the stationary density:

Assumption 2. Assume that the density of π is twice continuously differen-
tiable, strictly positive, has a non-degenerate local maximum and lim‖x‖→∞ π(x)
= 0. Moreover, assume that π has a finite set of local extrema.

These regularity conditions are often imposed in order to analyse the ergodic
behaviour of PDMPs. Assumption 2 with accompanying conditions on the decay
of the tails of the target distribution are used to show various rates of ergodicity.

4. Main theorems

The most straightforward approach for obtaining a strong approximation result
for Markov processes would be through ergodicity requirements. In [53] it is
shown that a multivariate strong invariance principle holds for sums of random
vectors satisfying a strong mixing condition; see also Theorem 7.1. This mixing
condition is satisfied when one has an appropriate rate of ergodicity of the
process. All proofs are provided in Section 7.

Theorem 4.1. Let X = (Xt)t≥0 be polynomially ergodic of order β ≥ (1 +
ε)(1 + 2/δ) for some ε, δ > 0. Then for every initial distribution and for all
f : E → R

d with π(‖f‖2+δ) < ∞, we can construct a process that is equal in law
to X together with a standard d-dimensional Brownian motion W = (W (t))t≥0
on some probability space such that∥∥∥∥∥

∫ T

0
f(Xt) dt− Tπ(f) − Σ1/2

f W (T )

∥∥∥∥∥ = O(ψT ) a.s. (4.1)

with
ψT = T 1/2−min(δ/(2δ+4), λ) for some λ ∈ (0, 1/2), (4.2)

and positive semi-definite d× d covariance matrix Σf given by

Σf =
∫ ∞

0
Covπ (f(X0), f(Xs)) ds +

∫ ∞

0
Covπ(f(Xs), f(X0)) ds, (4.3)

with all entries converging absolutely and integration of matrices defined element-
wise.

Remark 4.2. The asymptotic covariance matrix Σf given in Theorem 4.1 cannot
be simplified. Only for the univariate case (p = 1) and for reversible processes
do we obtain that

Σf = 2
∫ ∞

0
Covπ(f(X0), f(Xs)) ds. (4.4)
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As a result of the reversibility, the cross-covariance matrices in (4.3) will be
symmetric and thus the asymptotic covariance can be expressed as (4.4).

The rate ψT appearing in Theorem 4.1 will depend on the dependence and
moment structure of the considered process. For processes admitting higher or-
der moments and having faster decaying levels of dependence the approximation
bound ψT will tend to infinity at a slower rate. This can be interpreted as the
magnitude of the difference between the centred additive functional of the pro-
cess and the approximating Brownian motion being smaller. Although result
(4.1) has useful applications for arbitrary λ ∈ (0, 1/2), many refined limit theo-
rems require an explicit remainder term, where more insight is given regarding
the impact of the moment and dependence structure on the approximation er-
ror. In order to derive a more refined strong invariance principle we will make
us of splitting arguments. Following the continuous time Nummelin splitting
technique, as introduced in [58] and described in Section 3, it follows that the
process can be embedded in a richer process, which admits a recurrent atom.
Hence the process can be redefined such that it can be split in identically dis-
tributed blocks of random variables, which are one-dependent. Therefore we
can utilise the approximation results for weakly m-dependent sequences of [5]
to obtain a strong invariance principle; see also Theorem 7.5.

Proposition 4.3. Let X = (Xt)t≥0 be an aperiodic, positive Harris recurrent
Markov process for which Assumption 1 is satisfied. Let f : E → R, be a given π-
integrable function. Define the sequence of random times {Rn}∞n=1 and {ξn}∞n=1
as in Propositions 3.2 and 3.3. Moreover, assume that

Eν [Rq
1] < ∞ for some q > 2, (4.5)

Eν

∣∣∣∣∣
∫ R1

0
f(Xs)ds

∣∣∣∣∣
p

< ∞ for some p > 2. (4.6)

Then for every initial distribution we can construct a process, on an enriched
probability space, that is equal in law to X together with two standard Brownian
motions W1 and W2 such that∣∣∣∣∣

∫ T

0
f(Xs)ds− Tπ(f) −W1(σ2

T ) −W2(τ2
T )

∣∣∣∣∣ = O(ψT ) a.s., (4.7)

where {σ2
T } and {τ2

T } are non-decreasing sequences with σ2
T = σ2

ξ

	 T + O( T
logT ),

τ2
T = O( T

logT ) as T → ∞, and ψT , π(f), �, and σξ are defined in equations (4.9)
to (4.12) below.

In Proposition 4.3 we obtain an explicit approximation error. In alignment
with expectations, we see that the existence of higher-order moments will result
in an improved approximation error. However, the required moment conditions
for Proposition 4.3 stated in (4.5) and (4.6) are impractical and would be burden-
some, if not impossible, to verify directly for most applications. For classically
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regenerative Markov chains this problem also arises, see the analogous require-
ments of regenerative simulation given in [66] and the strong approximation
result of [19]. The results of [46] were the first to simplify moment conditions
of this form and give practical sufficient conditions for regenerative simulation.
More specifically, in their main result they show that polynomial or geometric
ergodicity and moment conditions with respect to the stationary measure are
sufficient to guarantee finiteness of the second moment of a cycle. This result
was generalised to higher order cycle moments by [49] and [4]; hence simplify-
ing the required conditions of [19]. However, the aforementioned approaches are
all for Markov chains satisfying a one-step minorisation condition, i.e., for the
classically regenerative setting. Since our setting involves a more complicated
reconstruction of the process of interest, the results do not immediately carry
over. In Theorem 4.3, we show that the cycle moment conditions (4.5) and (4.6)
required for Proposition 4.3 can also be guaranteed with more easily verifiable
ergodicity and moment conditions.

Theorem 4.4. Let X = (Xt)t≥0 be an aperiodic, positive Harris recurrent
Markov process for which Assumption 1 is satisfied. Moreover, let X be polyno-
mially ergodic of order β > 1 + p(p + ε)/ε, for some ε > 0 then

Eν

[
(R1)β−1] < ∞.

Moreover, for all measurable f : E → R with π(|f |p+ε) < ∞ with p ≥ 1 we have
that

Eν

∣∣∣∣∣
∫ R1

0
f(Xs)ds

∣∣∣∣∣
p

< ∞.

By combining Proposition 4.3 and Theorem 4.4 we obtain the desired strong
invariance principle.

Theorem 4.5. Let X = (Xt)t≥0 be an aperiodic, positive Harris recurrent
Markov process for which Assumption 1 is satisfied. Moreover, let X be polyno-
mially ergodic of order β > 1 + p(p + ε)/ε, for given p > 2 and some ε > 0.
Then for every initial distribution and for all measurable f : E → R with
π(|f |p+ε) < ∞ we can, on an enriched probability space, define a process that is
equal in law to X and two standard Brownian motions W1 and W2 such that∣∣∣∣∣

∫ T

0
f(Xs)ds− Tπ(f) −W1(σ2

T ) −W2(τ2
T )

∣∣∣∣∣ = O(ψT ) a.s., (4.8)

where {σ2
T } and {τ2

T } are non-decreasing sequences with σ2
T = σ2

ξ

	 T + O( T
logT ),

τ2
T = O( T

logT ), and

ψT = max
{
T 1/4 log T, T 1/p log2(T )

}
, (4.9)

π(f) = 1
�
Eν

∫ R1

0
f(Xs) ds, (4.10)
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� = Eν [R1], and (4.11)

σξ =
√

Varν(ξ1) + 2 Covν(ξ1, ξ2) . (4.12)

Proof. The assertion follows immediately from Proposition 4.3 and Theorem
4.4.

The appearance of the second Brownian motion in Theorem 4.5 is inherited
from the strong invariance principle of [5]. Although we obtain different time
perturbations of the Brownian motions, all desired properties carry over. The
second Brownian motion appearing in (4.8) is of a smaller magnitude, and will
therefore be asymptotically negligible in typical applications. Furthermore, even
though the two Brownian motions are not independent, their correlation decays
over time

Corr
(
W1(σ2

t ),W2(τ2
s )
)
→ 0, as t, s → ∞. (4.13)

Note that the nearly optimal convergence rate O(T 1/p log2 T )) obtained by [5]
does not carry over. Instead, we obtain an approximation error that cannot
be improved beyond O(T 1/4 log T ). Obtaining a superior approximation error
remains an open problem for the class of processes considered in Theorem 4.5.
A possible approach for attaining a better convergence rate would be to extend
to results of [5] to a multivariate setting and then follow the approach of [61].

The univariate Zig-zag process passes every point in its state-space, in par-
ticular also the local optima of its target density, an infinite amount of times.
This allows us the define regenerative cycles of the process. Therefore we can
adapt the approach of [61] and obtain the optimal bound of O(T 1/p) for the
strong approximation of the one-dimensional Zig-Zag process.

Theorem 4.6. Let Z = (Xt, Vt)t≥0 be an aperiodic, positive Harris recurrent
one-dimensional Zig-zag process with an invariant distribution π ⊗ υ, where π
satisfies Assumption 2. Moreover, let Z be polynomially ergodic of order β >
1 + p(p + ε)/ε, for given p > 2 and some ε ∈ (0, 1). Then for every initial
distribution and for all measurable f : E → R with π(|f |p+ε) < ∞ there exists
a Brownian motion W such that∣∣∣∣∣

∫ T

0
f(Xs)ds− Tπ(f) − σ2

fW (T )

∣∣∣∣∣ = O(T 1/p) a.s., (4.14)

where σ2
f can be characterised as (4.16).

In [61] a strong invariance principle is obtained for one-dimensional Markov
chains satisfying a one-step minorization condition by making use of the implied
regenerative properties. Note that their approach carries over for any regenera-
tive process. However, they assume that the chain is exponentially ergodic and
that the test function f is bounded. The boundedness of f is very restrictive
for applications in MCMC, since it excludes many interesting examples such
as the posterior mean and variance. Theorem 4.6 extends their results by only
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imposing polynomial ergodicity and only a necessary moment condition for the
test function.

Furthermore, we see that if the target distribution is of product form, i.e.,
satisfies the factorisation π(x) =

∏d
i=1 πi(xi), then the optimal bound carries

over to the multivariate setting.

Theorem 4.7. Let Z = (Xt, Vt)t≥0 be an aperiodic, positive Harris recurrent
d–dimensional Zig-zag process with an invariant distribution π ⊗ υ, where π
is of product form and every πi satisfies Assumption 2. Moreover, let Z be
polynomially ergodic of order β > 1 + p(p + ε)/ε, for given p > 2 and some
ε ∈ (0, 1). Then for every initial distribution and for all f : E → R

d that
can be decomposed as

∏
i fi(xi) with π(‖f‖p) < ∞, there exists a standard d-

dimensional Brownian motion W such that∥∥∥∥∥
∫ T

0
f(Xt) dt− Tπ(f) − Σ1/2

f W (T )

∥∥∥∥∥ = O(T 1/p) a.s. (4.15)

and covariance matrix Σf = diag{σ2
f1
, . . . , σ2

fd
} with

σ2
fi =

∫ ∞

0
Covπ(fi(Xi

0), fi(Xi
s)) ds +

∫ ∞

0
Covπ(fi(Xi

s), fi(Xi
0)) ds. (4.16)

Note that although the proof of Theorem 4.7 relies on the fact that the
d-dimensional Zig-Zag process Z can be decomposed into d one-dimensional
independent Zig-Zag processes, the multivariate invariance principle does not
directly follow from an application of Theorem 4.6, since even though the in-
dividual coordinates have regenerative cycles, the multivariate process Z does
not possess regeneration times. Moreover, it must be guaranteed that the ap-
proximating Brownian motions for the individual components are defined on
the same probability space.
Remark 4.8. From Theorem 4.4 we see that polynomial ergodicity of a suf-
ficiently high order and moments with respect to the stationary distribution
guarantee the existence of the p–th order cycle moments, which in turn deter-
mines the approximation error in our strong invariance results. In general, if we
assume polynomial ergodicity of order β > 1, then from Remark 7.7 and (7.32),
we see that the approximation error of Theorem 4.6 can in general taken to be
of order O(Tα) with

α = max{1/p′, 1/(β − 1)},
where p′ < 1

2 (
√

ε(ε + 4(β − 1)))−ε) if p > 1
2 (
√

ε(ε + 4(β − 1)))−ε) and p′ = p
otherwise. Therefore we see that a faster polynomial rate of convergence to the
stationary measure improves the approximation error, up to the point where the
approximation error from the moment conditions dominates. The same conclu-
sion can be seen to hold for Theorem 4.5 and 4.7. Furthermore, from Remark 7.8,
we see that under the assumption of exponential ergodicity, the conclusions of
Theorem 4.4 and all aforementioned strong invariance principles hold with their
stated approximation error.
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Remark 4.9. Note that in Theorem 4.6, the rate function λ(x, v) = (vU ′(x))+
guarantees the existence of regenerative cycles of the process. Namely, for every
stationary point of π we can take an appropriate velocity, such that they form
a regeneration epoch for the process. Hence for any PDMP with deterministic
dynamics such that the process remains aperiodic, positive Harris recurrent, and
polynomially ergodic, the strong invariance principles of Theorem 4.6 and 4.7
will hold.

5. Analysis of batch means for Piecewise Deterministic Monte Carlo

In order to assess the accuracy of our PDMC sampler, we require a central limit
theorem to hold and estimate the corresponding asymptotic variance. In [8]
several conditions are given to obtain a CLT for the univariate Zig-Zag process.
In [34], [30], and [11] a CLT is obtained for the Bouncy Particle sampler and
Zig-Zag process respectively through geometric drift conditions, which in turn
also imply exponential ergodicity. The strong invariance principles we obtained
in Theorems 4.1, 4.5, 4.6, and 4.7 immediately imply the following central limit
theorems for polynomially ergodic Markov processes.

Corollary 5.1. Let (Zt)t≥0 with Zt = (Xt, Vt) be polynomially ergodic of order
β ≥ (1 + ε)(1 + 2/δ) for some ε, δ > 0. Then we have that for all f : E → R

d

with μ(‖f‖2+δ) < ∞, a central limit theorem holds:

1√
T

∫ T

0
(f(Xs, Vs) − μ(f)) ds d−→ Np(0,Σf ). (5.1)

Additionally, also a functional central limit theorem holds:(
1√
n

∫ nt

0
(f(Xs, Vs) − μ(f)) ds

)
t≥0

d−→ Σ1/2
f W as n → ∞, (5.2)

where

Σf =
∫ ∞

0
Covμ(f(X0, V0), f(Xs, Vs)) ds +

∫ ∞

0
Covμ(f(Xs, Vs), f(X0, V0)) ds,

(5.3)
W = (Wt)t≥0 denotes a standard d-dimensional Brownian motion and the weak
convergence is with respect to the Skorohod topology on D[0,∞), the space of
real-valued càdlàg functions with domain [0,∞).

Proof. By [20, Theorem 1.17], the FCLT immediately follows from the strong
invariance principle formulated in Theorem 4.1. Similarly, by [26, Proposition
2.1] the CLT follows.

By the same argument the CLT follows for the processes considered in Theo-
rems 4.5, 4.6, and 4.7. For simplicity, we will mainly consider the one-dimensional
case, i.e. our quantity of interest is given by π(f), with f : E → R a given π-
integrable function. Let the simulation output, which in our case consists of the
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position component of a PDMP, be given by (Xt)t∈[0,T ]. Note that from Corol-
lary 5.1 also a (functional) central limit theorem follows for the position com-
ponent of the process. We are interested in estimating the asymptotic variance
(5.3); which we will denote by σ2

f , when we are not considering the multivariate
setting.

The batch means method divides the obtained sample trajectory of our pro-
cess into non-overlapping parts. The sample variance of the means of the ob-
tained batches gives rise to a natural estimator for the asymptotic variance.
More specifically, we divide our simulation output in kT batches of length �T
such that kT = �T/�T �. We proceed by computing the sample average of each
obtained batch;

Z̄i(�T ) := 1
�T

∫ i�T

(i−1)�T
f(Xs)ds, i = 1, . . . , kT . (5.4)

If a functional central limit theorem holds for our process, it follows that the
computed means Z̄i(�T ) are asymptotically independent and identically dis-
tributed for each fixed amount of batches. Hence, we can heuristically reason
that the sample variance of (Z̄i(�T )kT

i=1 will be close to Var(Z̄i(�T )). Moreover,
since each Z̄i(�T ) is also an empirical mean, it is reasonable to expect their
variance to be approximately σ2

f/�T . The batch means estimator of the asymp-
totic variance is defined by correcting the sample variance of the batch means
(Z̄i(�T ))kT

i=1 by a factor �T , namely

σ̂2
T = �T

kT − 1

kT∑
i=1

(
Z̄i(�T ) − 1

kT

kT∑
i=1

Z̄i(�T )
)2

. (5.5)

Following the framework of [26], we impose the following conditions on the
amount of batches and their length.

Assumption 3. Let the amount of batches kT and their lengths �T be such that

i. kT → ∞, �T → ∞, and �T /T → 0 as T → ∞,
ii. �T and T/�T are both monotonically increasing,
iii. there exists a constant c ≥ 1 such that

∑∞
n=1 k

−c
n < ∞.

The first requirement of Assumption 3 is a necessary condition for consistency
as seen from the results of [41]. The second requirement is solely for technical
reasons and the third requirement ensures that the amount of the batches grows
fast enough; if we choose �T = Tα the requirement holds for all α ∈ (0, 1), since
we can choose c > 1/(1 − α).

Theorem 5.2. Let Z be polynomially ergodic of order β > 1 + p(p + ε)/ε, for
given p > 2 and some ε ∈ (0, 1) with stationary measure μ with μ(|g|p) < ∞.
Assume that Assumption 3 holds and that

T 2/p

�T
log(T ) → 0, as T → ∞, (5.6)

then for every initial distribution σ̂2
T → σ2

f as T → ∞ with probability 1.
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Proof. The result follows from Theorem 4.1, [49, Proposition 3], and [26, The-
orem 3.3].
Remark 5.3. Note that Theorem 5.2 weakens the currently available regularity
conditions guaranteeing strong convergence of the batch means estimator in
an MCMC setting. This is a direct consequence of the fact that Theorems 4.6
and 4.7 obtain the optimal approximation rate of O(T 1/p) whereas the results of
[49] are based upon the strong invariance principle of [19] which attains the rate
O(T γ log T ), with γ = max(1/p, 1/4). More specifically, for f with π(|f |p) < ∞
[49] requires T γ log3(T )/�T → 0 as T → ∞. In particular for the case where
p > 4, Theorem 5.2 is able to significantly weaken the conditions on the required
batch length �T . As a direct result of the smaller batch lengths, we are able to use
a higher number of batches kT , which results in a smaller variance for the batch
means estimator, as seen in Theorem 5.4. Note that a similar conclusion holds
for the overlapping batch means and spectral variance estimators considered in
[38].

We see from the required assumption (5.6) that a larger approximation error
in the strong invariance principle, which corresponds to higher orders of depen-
dence, results in a larger required batch size �T . This is in agreement with the
idea behind batching methods; every batch should give a proper representation
of the dependence structure of the process. Otherwise, a structural bias will be
introduced in the estimation procedure. On the other hand, choosing the batch
size larger than necessary will result in a lower amount of batches kT leading to
a higher variance for the estimator. Strong approximations can also be used to
characterise the mean squared error and obtain a central limit theorem for the
batch means estimator.

Theorem 5.4. Let Z be polynomially ergodic of order β > 1 + p(p + ε)/ε, for
given p > 2 and some ε ∈ (0, 1) with stationary measure μ with μ(|f |p) < ∞.
Let the initial distribution be given by μ and assume that Assumption 3 holds
and EμC

2 < ∞, where C is defined in (7.68) below. Then we have that

Eμ

∣∣σ̂2
T − σ2

f

∣∣2 = 2σ4
f

�T
T

+ O

(
T 1/p
√
T

log
1
2 T

)
+ O

(
�−1
T T 2/p log T

)
. (5.7)

Moreover, if �−1
T T 1/p(T log T )1/2 → 0 as T → ∞, then we obtain a CLT for the

batch means estimator√
kT (σ̂2

T − σ2
f ) d−→ N (0, 2σ4

f ) as T → ∞. (5.8)

Proof. By the imposed conditions of the process, the strong invariance principle
formulated in Theorem 4.1 holds. The first claim then follows by [27, Theorem
1 and Lemma 3] and the second by [27, Proposition 2].

The first and second term in (5.7) describe the variance, whereas the third
term represents the bias. Note that the second term does not depend on �T and
tends to zero. The obtained bounds for the variance are sharp, whereas, the
bounds for bias have room for improvement.
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In the multivariate setting, where our quantity of interest is given by π(f),
with f : E → R

d a given π-integrable function, the batch means estimator is
given by

Σ̂T = �T
kT − 1

kT∑
i=1

(
Z̄i(�T ) − 1

kT

kT∑
i=1

Z̄i(�T )
)(

Z̄i(�T ) − 1
kT

kT∑
i=1

Z̄i(�T )
)T

,

(5.9)
where Z̄i(�T ) is defined in (5.4). Given the strong invariance principle of Theo-
rem 4.1, the results of [88] for the multivariate batch means estimator immedi-
ately carry over.

Theorem 5.5. Let Z be polynomially ergodic of order β ≥ (1 + ε)(1 + 2/δ) for
some ε, δ > 0. Let f : E → R

d with μ(‖f‖2+δ) < ∞. Assume that Assumption 3
holds and that

ψ2
T

�T
log(T ) → 0, as T → ∞, (5.10)

with ψT defined in (4.2), then for every initial distribution we have that Σ̂T →
Σf as T → ∞ with probability 1.

Proof. The claim follows from Theorem 4.1 and [88, Theorem 2].

Furthermore, if the target distribution is of product form and we consider
the Zig-Zag Sampler, then Theorem 4.7 gives a strong invariance principle with
an explicit approximation error. Therefore, we can replace condition (5.10) of
Theorem 5.5 with (5.6) for every component of the Zig-Zag process. This results
in a condition that can more easily be verified.

5.1. Discussion

5.1.1. Batch size selection for PDMC

In [41] it is shown that there exists no consistent estimator of σ2
f with fixed

amounts of batches. Hence the amount of batches should explicitly depend on
the length of the simulation T . For the standard choice �T = Tα we see that for
α > 1/2p we obtain both strong consistency and L2-convergence of the batch
means estimator. Theorem 5.4 suggests that α∗ = (2 + p)/2p would be opti-
mal in the mean squared error sense. The well-known results of [17], [43], and
[83] obtain a bound for the bias of order O(�−1

T ), which implies an optimal (in
the MSE sense) batch size of �	T � T 1/3. However, the aforementioned results
require the sampling process to be stationary, uniformly ergodic, and satisfy
moment condition π(f12) < ∞. Obtaining the bias term of order O(�−1

T ) for
batch means under milder conditions remains an unaddressed problem. Theo-
rem 5.2 and 5.4 only require a strong invariance principle, which we have shown
holds under polynomial ergodicity; a very reasonable assumption for simulation
output. Moreover, these results do not require stationarity and thus hold for ev-
ery initial distribution. Theorem 5.4 imposes more demanding conditions on �T
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than aforementioned frameworks, however, it is quite reasonable to let the batch
size depend on the dependence structure of the process through ψT , instead of
only the auto-covariance function (γ(s))s≥0 through the constant

∫
sγ(s)ds, as

is the case in the aforementioned results. Moreover, in practice, the performance
of batch means methods with batch size �	T are often found to be sub-optimal
whereas larger batch sizes see better finite sample performance, as noted by for
example [38]. We see that for exponentially and polynomially ergodic sampling
algorithms the batch size choice �∗T = Tα∗ log(T ) gives almost sure convergence,
convergence in mean square, and guarantees asymptotic normality of the BM
estimator. However, the optimal tuning parameter does depend on the num-
ber of moments of the target distribution. If no theoretical guarantees can be
obtained, we can in practice also assess the level of tail decay of our target distri-
bution by examining the simulation output. For a survey of statistical methods
for the detection of heavy tails, estimation of the tail index, and the number of
finite moments, see for example [1] and all their given references. For uniformly
ergodic sampling algorithms, the aforementioned results imply an optimal batch
size of order T 1/3.

An alternative approach for determining the optimal batch size was given by
[18], which obtains an optimal batch size of �̃T � T 1/2 by minimising the dis-
tance between the cumulants of the studentised ergodic average and a standard
Gaussian, which suggest that the resulting confidence intervals enjoy improved
finite-sample properties.

5.1.2. Asymptotic normality of the batch means estimator

We see that given polynomial ergodicity, also the central limit theorem for the
batch-means estimator carries over to the PDMC setting. The results of [80]
require uniform ergodicity and the moment condition π(f12) < ∞, in order to
obtain asymptotic normality of the batch, means estimator. Since uniform er-
godicity is not attainable for most practical problems, less stringent conditions
on the rate of ergodicity are desired. Theorem 5.4 places more restrictive condi-
tions on the batch size and excludes the choice �	T � T 1/3. In [16] a CLT for the
batch means estimator is obtained assuming reversibility, stationarity, geomet-
ric ergodicity, and moment condition π(f8) < ∞. Moreover, the required batch
size must be such that kT = o(�2T ). Hence their result is also unable to guarantee
asymptotic normality for batch size �	T . We see that Theorem 5.4 gives more
practical conditions for guaranteeing asymptotic normality of the batch-means
estimator, in particular, the results are applicable to non-reversible processes.

5.1.3. Spectral variance and overlapping batch means estimators for the
PDMC standard error

Analogous to the batch means method, given the strong invariance principle
formulated in Theorem 4.1, many results for other estimators of the asymptotic
variance also carry over. In [38] more convenient alternatives are given for some
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of the requirements of the framework given in [25]. The results of [38] regarding
spectral variance and overlapping batch means estimators for MCMC output
are thus also applicable for PDMC, with minor adjustments to their assump-
tions. Note that the assumed minorisation condition and geometric ergodicity of
the Markov chain in [38] are only imposed such that the strong invariance prin-
ciple of [19] holds. Although implementation of spectral variance estimators for
continuous-time output might be impractical, these estimators are still of theo-
retical interest. Numerous estimation methods, such as overlapping batch means
and certain standardised time series methods, with feasible implementation for
PDMC output, can be shown to be (asymptotically) equivalent to spectral es-
timators. Furthermore, we expect the results of [89] and [57] regarding spectral
variance and generalised overlapping batch means estimators respectively to re-
main valid in the continuous-time setting. Hence also the implications for the
optimal values of the tuning parameters of these estimation methods for the
asymptotic variance remain valid. Lastly, note that our results hold for all sam-
pling algorithms that produce continuous-time output, and are not restricted to
the PDMP setting.

5.1.4. Regenerative simulation

From the proof of Theorem 4.6, we see that the univariate Zig-Zag sampler
possesses a recurrent atom. Moreover, any local optimum with an appropriate
velocity can be taken as a recurrent atom. Hence, regenerative simulation can
also be considered for the estimation of the asymptotic variance. Let (Rk)k∈N

denote the hitting times of the chosen regeneration epoch of the process, then
we can define the contribution of cycle k to the time-average as

ξk :=
∫ Rk

Rk−1

f(Xs) ds, k ≥ 1,

and the corresponding cycle lengths as τk = Rk −Rk−1. From the strong law of
large numbers, it follows that π̂RS(f) =

∑n
j=1 ξj/Rn is a consistent estimator

of π(f). Moreover, the corresponding asymptotic variance can be estimated by

σ̂2
RS =

∑n
j=1(ξj − π̂RS(f)τj)2

1
nR

2
n

.

For a more detailed description of regenerative simulation, we refer to for ex-
ample [14] or [46]. Note that σ̂2

RS is a ratio estimator and hence can be biased
for an insufficient number of tours. Although this bias is small when the coeffi-
cient of determination of Rn is small, as explained in for example [14], there are
other caveats to this approach that also need to be taken into account. Firstly,
the practicality of the regeneration-based estimator will depend on the length
of the regenerative cycles. As mentioned in the discussions of [38] and [40], it
can take the chain a lot of time to reach its regeneration epoch even in moder-
ately large finite state-spaces or as the dimension of the Markov chain increases.
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The expected time for the Zig-zag sampler to move between modes increases
proportionally to the ratio of their density value, as seen from the results of
[65]. Thus if the chosen regeneration epoch is a local maximum of π that has
a substantially lower density value compared to the global maximum, the tours
required for regenerative simulation are expected to be long.

Moreover, regenerative simulation requires the identification of the regenera-
tive states. For the case with the Zig-zag sampler, this requires that the location
of a local extremum of the target distribution is known. Note that even though
our results assume the existence of at least one local maximum, we do not re-
quire to know its location or even that the sampler has to visit all local optima
often. Therefore, in case an appropriate maximum of the target density is known
a priori or can be obtained with low computational cost, regenerative simula-
tion can be considered. In general, the batch means or overlapping batch means
methods are more widely applicable.

6. Increments of additive functionals of ergodic Markov processes

Strong approximation results enable various asymptotic properties of Brownian
motion to carry over to other stochastic processes. In this section, we show
that the strong invariance principle given in Theorem 4.5 can be used to show
that the increments of additive functionals of Markov processes are of the same
magnitude as Brownian increments, provided we have sufficient decay of the
approximation error. The following theorem describes the magnitude of the
fluctuations of Brownian increments over subintervals of length aT .

Theorem 6.1 ([21, Theorem 1]). Let W = (Wt)t≥0 denote a Brownian motion,
and let aT be a positive non-decreasing function of T such that 0 < aT ≤ T and
T/aT is non-decreasing. Then

lim sup
T→∞

sup
0≤t≤T−aT

sup
0≤u≤aT

βT |Wt+u −Wt| = 1 a.s., (6.1)

where

βT =
(

2aT
[
log T

aT
+ log log T

])−1/2

.

Taking aT = T gives the law of iterated logarithm, and for aT = c log T
with c > 0, the Erdös-Rényi law of large numbers for Brownian motion is
obtained, as seen in for example [22, Theorem 2.4.3]. This fluctuation result has
been extended to other processes such as integrated Brownian motion, fractional
Brownian motion, and non-stationary Gaussian processes, see [56], [36] and [71]
respectively. While these fluctuation results are of independent interest, they
are also used as building blocks in applications, such as proving convergence
properties of kernel density estimators, see for example [74] and [29]. These
fluctuation results are also used for proving almost sure convergence of various
estimators of the asymptotic variance in simulation output settings, see the
references given in Section 4.1. By the Komlós-Major-Tusnády approximation
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the fluctuation result immediately carries over for i.i.d. sequences satisfying
appropriate moment conditions, as seen in [22, Theorem 3.1.1 and 3.2.1].

In order to describe the fluctuations of additive functionals over an interval
of a specified length aT , we require an explicit remainder term for the Brown-
ian approximation, as given in Theorem 4.5. However, due to the appearance
of the second Brownian motion in this invariance principle and the perturbed
time sequences, it is not immediate that the Brownian fluctuation result car-
ries over. In [5] it is shown that the magnitude of the increments of partial
sums of weakly m-dependent sequences are indeed given by Theorem 6.1, due
to the smaller scaling of the second Brownian motion. However, in our case the
perturbed time sequences are random since they depend on the amount of one-
dependent regenerative cycles of the process, hence the desired result does not
follow directly from [5, Theorem 4].

Theorem 6.2. Let X = (Xt)t≥0 be an aperiodic, positive Harris recurrent
Markov process for which Assumption 1 is satisfied. Moreover, let X be polyno-
mially ergodic of order β > 3 + p/ε, for given p > 2 and some ε > 0. Consider
a function f : E → R with π(f) = 0 and π(|f |p+ε) < ∞. Let aT be a given
positive non-decreasing function of T such that

i. 0 < aT ≤ T ,
ii. T/aT is non-decreasing,
iii. aT is regularly varying at ∞ with index ζ ∈ (0, 1].

Suppose that βTψT = o(1), where

βT =
(

2aT
[
log T

aT
+ log log T

])−1/2

,

and
ψT = max

{
T 1/4 log T, T 1/p log2(T )

}
.

Then we have that

lim sup
T→∞

sup
0≤t≤T−aT

sup
0≤u≤aT

βT

∣∣∣∣
∫ t+u

t

f(Xs)ds
∣∣∣∣ ≤ σ2

ξ

�
a.s. (6.2)

As noted by [5], the split invariance principle also implies the distributional
version of Theorem 6.2; with similar adaptations to their argument this would
also hold in our case. Since the approximation error ψT of Theorem 4.5 cannot
be guaranteed to be smaller than O(T 1/4 log T ), the fluctuation result given in
Theorem 6.2 cannot describe the magnitude of increments over slowly growing
time intervals aT .

6.1. Application to diffusion processes

Diffusions are an important class of processes for which the strong approxima-
tion given in Theorem 4.5 and the related fluctuation result given in Theorem 6.2
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are applicable. Let X = (Xt)t≥0 denote a one-dimensional diffusion process that
is defined as the solution of the following time-homogeneous stochastic differen-
tial equation (SDE) {

dXt = b(Xt)dt + σ(Xt)dWt

X0 ∼ μ,
(6.3)

where μ is the initial distribution of the process, X ⊆ R denotes the state-space,
b : X −→ R and σ : X −→ R denote the drift and volatility function respectively,
and the process W is a Brownian motion. We assume that all required regularity
conditions hold such that the existence and uniqueness of a strong solution of
the SDE is guaranteed. For example, we can impose Lipschitz conditions on the
drift and volatility of the SDE. For a more detailed explanation, we refer to [79].

For diffusion processes to admit the desired ergodic properties we must im-
pose additional regularity conditions. Let x0 denote the initial value of our
process, then the scale function of a one-dimensional diffusion is given by

s(u) =
∫ u

x0

exp
[
−2
∫ z

x0

b(y)
σ2(y)dy

]
dz and must satisfy lim

u→±∞
s(u) = ±∞. (6.4)

If condition (6.4) holds it follows that the diffusion is recurrent, that is, the
time for the process to return to any bounded subset of its state space is
a.s. finite. The speed density of the diffusion process m : X → R

+, given by
m(u) =

(
s(u)σ2(u)

)−1, must be Lebesque integrable for the diffusion to be pos-
itive Harris recurrent. For higher-dimensional diffusion processes [7] gives condi-
tions that guarantee positive Harris recurrence. The results of [54, Theorem 2.3]
show that diffusions are aperiodic if the drift and diffusion coefficients are Hölder
continuous and the diffusion coefficient is uniformly elliptic on an open ball. Al-
ternatively, from [84, Remark 4.3; Theorem 2.6] we see that aperiodicity can also
be obtained under linear growth conditions on the drift, uniform ellipticity of
the diffusion coefficient, and requiring that the transition probability is positive
for any set with positive Lebesgue measure. In order for the obtained strong
invariance principles given in Theorem 4.1 and Theorem 4.5 to hold, we require
polynomial or exponential convergence to stationarity. These assumptions are
usually obtained by verifying drift conditions for the diffusion processes, see for
example [15, Theorem 8.3 and 8.4] and [85, Theorem 3.1 and 4.1].

In order for the strong approximation result in Theorem 4.5 and the related
fluctuation result of Theorem 6.2 to hold, the Nummelin splitting scheme of
[58] must be applicable. Therefore we must impose regularity conditions such
that Assumption 1 is satisfied, i.e., the transition semigroup of the diffusion
must be Feller and admit densities with respect to some dominating measure.
Under appropriate growth and continuity conditions on the drift and volatility,
diffusion processes are Feller, see for example [90, Theorem 2.2]. Moreover, if
the volatility function σ is strictly positive (positive-definite in the multivari-
ate case), the diffusion is elliptic and therefore admits transition densities; [86,
Theorem 3.2.1]. Hence, Assumption 1 is satisfied. Alternatively, for multivari-
ate diffusions, we can impose the parabolic Hörmander condition which ensures
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that the propagation of the noise through the different coordinates is sufficient,
such that the transition density exists, see for example [79, Theorem 38.16].

6.2. Discussion and suggestions for further research

We see that Theorem 4.1 and Theorem 4.5 are applicable to a broad class of
diffusions and extend the current results on strong approximations for diffusion
processes. In [45] and [64] strong invariance principles are obtained for diffusions
and a complementary fluctuation result and change point test respectively. The
results of [64] yield an explicit approximation error comparable to that of Theo-
rem 4.5, but are only applicable to stochastic integrals with respect to Brownian
motion, i.e., diffusion processes with no drift. The results of [45] give an implicit
approximation error and hold for singular diffusions. The strong invariance prin-
ciple of [45] is not covered by our results since singular diffusions generally do
not satisfy the mixing properties required for our framework.

The obtained strong invariance principles offer numerous applications for
diffusion processes, see for example [23] and their given references. Following the
approach of [5, Proposition 2], Theorem 4.5 can be used to obtain a change-point
test for diffusions. If the diffusion process we consider has a drift that enforces
mean-reversion, we could construct a test for the existence of a deterministic
linear trend over specified time periods. This approach would require continuous-
time output of a diffusion process, and is therefore more of theoretical interest.
However, it is plausible that the asymptotic behaviour of the change-point test
should carry over to the high-frequency setting, where the diffusion is observed
discretely and it is assumed the inter-observation times tend to zero.

7. Proofs

7.1. Theorem 4.1

In [53] a strong invariance principle is given for random variables that satisfy
certain mixing conditions. In order to state their result, we first briefly introduce
mixing coefficients. Let A and B denote two sub σ-algebras of our probability
space. The α-mixing coefficients of two σ-algebras quantify their dependence as
follows

α(A ,B) = sup{Pr(F ∩G) − Pr(F ) Pr(G) : F ∈ A , G ∈ B}.

The mixing coefficients of a stochastic process X, endowed with its natural
filtration, are defined as αX(s) := supt α(F t

−∞,F∞
t+s) for s > 0, with F t

−∞ =
σ(Xu : u ≤ t) and F∞

t+s = σ(Xu : u ≥ t + s). The mixing coefficients of a
process measure the dependence between events in terms of units of time that
they are apart. For a stationary Markov process the mixing coefficients simplify
to α(s) = α(σ(X0), σ(Xs)), as shown in for example [13, page 118].
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Theorem 7.1 ([53, Theorem 4]). Let ξ = (ξk)∞k=1 be a stationary sequence
taking values in R

d with mean zero and supk E‖ξk‖
p ≤ 1, for some δ ∈ (0, 1].

Moreover, let αξ the α-mixing coefficients of ξ decay polynomially with rate
n−(1+ε)(1+2/δ) for some ε > 0. Then we can redefine ξ on a new probability
space on which we can also construct a d-dimensional Brownian motion W with
covariance matrix Σξ, with absolutely converging entries

(Σξ)ij = E[ξi1ξj1] +
∞∑
k=2

E[ξi1ξjk] +
∞∑
k=2

E[ξikξj1], for 1 ≤ i, j ≤ p,

such that ∥∥∥∥∥
n∑

k=1

ξk −W (n)

∥∥∥∥∥ = O(n1/2−λξ) a.s.

for some λξ ∈ (0, 1/2) depending only on ε, δ and d.

The following lemmata are useful in the proof of Theorem 4.1.

Lemma 7.2 ([31, Theorem F.3.3]). Let X be an ergodic Markov process with
initial distribution μ and rate of convergence to stationarity given by Ψ, then
αX(s), the α-mixing coefficients of the process X, decay according to Ψ, i.e., for
all s ≥ 0 we have that

αX(s) ≤ μ(V )Ψ(s),

where Ψ and V are as stated in (3.2).

Lemma 7.3 ([28] and [77]). Let (Ω,F ,Pr) be a probability space and A and
B be two sub σ-algebras and consider random variables X and Y that are
measurable with respect to these σ-algebras respectively. Moreover, assume that
X ∈ Lp(Pr) and Y ∈ Lq(Pr), for some p, q ≥ 1. Then we can bound their
covariance in terms of the α-mixing coefficients as follows

|Cov(X,Y )| ≤ 8α (A ,B)1/r ‖X‖p‖Y ‖q,with p, q, r ∈ [1,∞] and 1
p

+ 1
q

+ 1
r

= 1.

Lemma 7.4 ([73, Corollary 1]). Let W denote a d-dimensional Brownian mo-
tion and let ‖Wt‖ denote the corresponding Bessel process, then we have that

P

(
max

T∈[0,1]
‖W (T )‖ > u

)
= π(d−1)/2

2d/2−1Γ(d/2)
ud−2e−u2/2(1 + o(1)),

as u → ∞.

Following a traditional blocking argument it is now straightforward to show
that the result of [53] also holds for continuous-time ergodic processes.

7.1.1. Proof of Theorem 4.1

Proof. Firstly, assume that we have a stationary process, i.e., our initial distri-
bution is equal to π. For technical convenience introduce Y = (Yt)t≥0, where
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Yt := f(Xt) − π(f) for t ≥ 0, and ξ = (ξk)nk=1, with n := nT := �T �
and ξk :=

∫ k

k−1 Ytdt for k = 1, . . . , n. Note that Yt is a d-dimensional vector,
i.e., Yt = (Y1t, . . . , Ydt)� and therefore also each ξk is a d-dimensional vector,
ξk = (ξ1k, . . . , ξdk)�. Furthermore, by definition n is a function of the sample
size T , however, for technical convenience we suppress this. Since we are in
the setting of Lemma 7.2, X has polynomially decaying α-mixing coefficients,
which we will denote with (αX(s))s≥0. Consequently, we have that Y and ξ
are both stationary processes with polynomially decaying α-mixing coefficients
(αY (s))s≥0 and (αξ(h))h∈N respectively. This can easily be seen by observing
that σ (f(Xt)) ⊆ σ (Xt) and σ (ξk) ⊆ σ (Xs : k − 1 ≤ s ≤ k). In order to show
that a strong invariance principle holds for Y , we will show that it holds for ξ
and determine the growth rate of the corresponding remainder terms. Moment
conditions for ξ are directly inherited by the assumed moment conditions for X.
By an application of Jensen’s inequality we see that for p = 2 + δ we have that

π (‖ξk‖p) = Eπ

∥∥∥∥∥
∫ k

k−1
Ysds

∥∥∥∥∥
p

≤ Eπ

∫ k

k−1
‖Ys‖pds = π (‖f − π(f)‖p) < ∞.

Therefore, by Theorem 7.1, we can redefine ξ on a new probability space on
which we can also construct a d-dimensional Brownian motion W with covari-
ance matrix Σξ, with absolutely converging entries

(Σξ)ij = E[ξi1ξj1] +
∞∑
k=2

E[ξi1ξjk] +
∞∑
k=2

E[ξikξj1], for 1 ≤ i, j ≤ d,

such that ∥∥∥∥∥
n∑

k=1
ξk −W (n)

∥∥∥∥∥ = O(n1/2−λξ) a.s.

for some λξ ∈ (0, 1/2) depending only on ε, δ and d. The claim follows if we
show that for any ε > 0 we have that∥∥∥∥∥

n∑
k=1

ξk −
∫ T

0
Ytdt

∥∥∥∥∥ = O(T 1/p+ε) a.s. for T → ∞, (7.1)

‖WT −Wn‖ = o(T 1/p+ε) a.s. for T → ∞, and (7.2)
Σf = Σξ. (7.3)

In order to show that (7.1) holds, we note that∥∥∥∥∥
∫ T

0
Ysds−

n∑
k=1

ξk

∥∥∥∥∥ =

∥∥∥∥∥
∫ T

n

Ysds

∥∥∥∥∥ ≤
∫ n+1

n

‖Ys‖ds. (7.4)

By a Borel-Cantelli argument, it will follow that∫ n+1

n

‖Ys‖ ds= O(n1/p+ε) = O(T 1/p+ε) a.s. for T → ∞. (7.5)
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Indeed, let ε > 0 be given and introduce the event

An,ε =
{∫ n+1

n

‖Ys‖ds > n(1+ε)/p
}
.

By Markov’s inequality it follows that the introduced sequence of events satisfies

∞∑
n=1

Pπ (An,ε) ≤
∞∑

n=1
Pπ

(∫ n+1

n

‖Ys‖pds > n1+ε

)

≤ π(‖f − π(f)‖)p
∞∑

n=1

1
n1+ε

< ∞.

The Borel-Cantelli lemma implies that Pπ(lim supAn,ε) = 0, and consequently
that Pπ(lim inf Ac

n,ε) = 1, which proves (7.5). A similar Borel-Cantelli argument
also shows that (7.2) holds. Introduce the sequence of events

Bn,ε =
{

sup
n≤T≤n+1

‖W (T ) −W (n)‖ > n(1+ε)/q
}
,

for given ε>0 and some q>p. Since all moments of supn≤T≤n+1‖W (T ) −W (n)‖
are finite, we have by Markov’s inequality that the introduced sequence of events
satisfies

∞∑
n=1

Pr (Bn,ε) ≤
∞∑

n=1
Pr
(

sup
n≤T≤n+1

‖WT −Wn‖q > n1+ε

)

≤
∞∑

n=1
Pr
(

sup
0≤T≤1

‖WT −W0‖q > n1+ε

)

≤ E

[
sup

0≤T≤1
‖W (T )‖q

] ∞∑
n=1

1
n1+ε

< ∞.

Let W denote a d-dimensional Brownian motion and let ‖Wt‖ denote the
corresponding Bessel process, then we have by Lemma 7.4 that for q > p

Pr
(

max
T∈[0,1]

‖W (T )‖ > u

)
= π(d−1)/2

2d/2−1Γ(d/2)
ud−2e−u2/2(1 + o(1)),

as u → ∞. This implies the existence of all moments of the maximum of the
Bessel process, since for all q we have that for all ε′ > 0 we can find an M
sufficiently large such that

E

[(
max

T∈[0,1]
‖W (T )‖

)q]

= E

[
max

T∈[0,1]
‖W (T )‖q

]
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=
∫ ∞

0
quq−1Pr

(
max

T∈[0,1]
‖W (T )‖ > u

)
du

≤
∫ M

0
quq−1du +

∫ ∞

M

quq−1Pr
(

max
T∈[0,1]

‖W (T )‖ > u

)
du

≤ Mq + qπ(d−1)/2

2d/2−1Γ(d/2)

∫ ∞

M

uq+d−3e−u2/2du(1 + ε′) < ∞.

By a Borel-Cantelli argument we see that

sup
n≤T≤n+1

‖W (T ) −W (n)‖ = O(n1/q) = o(T 1/p) a.s. for T → ∞.

Therefore the term (7.2) will be asymptotically negligible. Finally, we see that
by Lemma 7.3 the asserted asymptotic variance Σf is finite, i.e., all entries

(Σf )ij =
∫ ∞

0
Covπ(fi(X0), fj(Xs)) ds +

∫ ∞

0
Covπ(fi(Xs), fj(X0)) ds, (7.6)

for 1 ≤ i, j ≤ d converge absolutely. Indeed, since α-mixing sequences are mono-
tonically decreasing and bounded by 1/4, an application of Lemma 7.3 gives us∫ ∞

0
|Covπ(fi(X0), fj(Xs))|ds

≤ 8
∫ ∞

0
αX(s)δ/pπ(|Yi0|p)1/pπ(|Yjs|p)1/pds

≤ 8π(|Yi0|p)1/pπ(|Yj0|p)1/p
(

1
4 + π(V )δ/p

∫ ∞

1
Ψ(s)δ/pds

)
,

which is finite since the integral converges due to the rate of polynomial ergod-
icity: ∫ ∞

1
Ψ(s)δ/pds ≤

∫ ∞

1
(1 + s)−

δ
p (1+ε)(1+2/δ)ds < ∞,

since δ
p (1 + ε)(1 + 2/δ) > 1. The second term of (7.6) is treated similarly. In

order to show that Σf = Σξ, we will show that all entries are equal. Firstly, we
decompose the asymptotic covariance matrix as follows

lim
T→∞

Varπ

(
1√
T

∫ T

0
Ytdt

)
= lim

T→∞
Varπ

(
1√
T

(∫ n

0
Ytdt +

∫ T

n

Ytdt

))

= lim
T→∞

1
T

Varπ
(∫ n

0
Ytdt

)
+ lim

T→∞

1
T

Varπ

(∫ T

n

Ytdt

)

+ lim
T→∞

1
T

Covπ

(∫ n

0
Ytdt,

∫ T

n

Ytdt

)
+ lim

T→∞

1
T

Covπ

(∫ T

n

Ytdt,

∫ n

0
Ytdt,

)
.

(7.7)
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Let ΣT1,ΣT2,ΣT3 and ΣT4 denote the four terms in (7.7). We will show that
the entry-wise convergence gives us the desired result. For 1 ≤ i, j ≤ d we obtain
the following expressions for the elements of the matrices in (7.7):

(ΣT1)ij = 1
T

∫ n

0

∫ n

0
Covπ(Yit, Yjs) dtds, (7.8)

(ΣT2)ij = 1
T

∫ T

n

∫ T

n

Covπ(Yit, Yjs) dtds, (7.9)

(ΣT3)ij = 1
T

∫ n

0

∫ T

n

Covπ(Yit, Yjs) dtds, (7.10)

(ΣT4)ij = 1
T

∫ n

0

∫ T

n

Covπ(Yis, Yjt) dtds. (7.11)

We see that (ΣT1)ij tends to the asymptotic variance (Σf )ij as T → ∞, since(
Varπ

(
1√
n

n∑
k=1

ξk

))
ij

= T

n
· 1
T

∫ n

0

∫ n

0
Covπ(Yit, Yjs) dtds.

Finally, we claim that (ΣT2)ij , (ΣT3)ij and (ΣT4)ij tend to zero as T → ∞.
An application of Lemma 7.2 and Lemma 7.3 gives us that

1
T

∫ n

0

∫ T

n

|Covπ(Yit, Yjs)| dtds ≤ Cf,V
1
T

∫ n

0

∫ T

n

Ψ(|t− s|)1−2/p dtds

= Cf,V
1
T

∫ n

0

∫ T

n

(1 + t− s)−βδ/p dtds,

where Cf,V = 8π(V )δ/pπ(|Yi0|p)1/pπ(|Yj0|p)1/p < ∞ and the last equality fol-
lows since we assumed polynomial ergodicity of degree β and since we always
have t ≥ s on the considered integration region. Since βδ/p > 1, it follows that∫ n

0

∫ T

n

(1 + t− s)−βδ/p dtds ≤ (T − n)
∫ n

0
sup

t∈[n,T ]
(1 + t− s)−βδ/p ds

≤ (T − n)
∫ n

0
(1 + n− s)−βδ/p ds

= (T − n)
βδ/p− 1

(
1 − 1

(1 + n)
βδ
p −1

)
.

Consequently, it follows that

1
T

∫ n

0

∫ T

n

|Covπ(Yit, Yjs)| dtds≤Cf,V
T − n

T

p

βδ − p

(
1 − 1

(1 + n)
βδ
p −1

)
= o(1).

By the same argument, we have that

1
T

∫ n

0

∫ T

n

|Covπ(Yis, Yjt)| dtds = o(1).
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Finally, we also have that

1
T

∫ T

n

∫ T

n

|Covπ(Yit, Yjs)| dtds ≤ Cf,V
1
T

∫ T

n

∫ T

n

(1 + |t− s|)−βδ/p dtds

≤ Cf,V
(n− T )2

T
sup

(s,t)∈[n,T ]×[n,T ]
(1 + |t− s|)−βδ/p

= Cf,V
(n− T )2

T
= o(1).

Hence we have shown that (ΣT2)ij , (ΣT3)ij and (ΣT4)ij tend to zero as T tends
to infinity and thus we have that Σf = Σξ. Note that we have now proven
our result assuming stationarity, i.e., with initial distribution π. However, by
following the argument of [63, Proposition 17.1.6] it follows that the strong
invariance principle holds for every initial distribution. Let

h(x) = Px

(∥∥∥∥∥
∫ T

0
[f(Xt) − π(f)]dt dt− Σ1/2

f W (T )

∥∥∥∥∥ = O(ψT )

∣∣∣∣∣X0 = x

)
.

We have currently shown that the strong approximation results holds for initial
distribution π, i.e., ∫

h(x)π(dx) = 1.

Now we will show that h is harmonic, i.e., h(x) = Psh(x). Indeed, for every x
in E and s ≥ 0 we have

Psh(x)

=
∫
E

Ps(x, dy)h(y)

= Exh(Xs)

= E

[
Px

(∥∥∥∥∥
∫ s+T

s

[f(Xt) − π(f)]dt− Σ1/2
f W (T )

∥∥∥∥∥ = O(ψT )
∣∣∣Xs = y

)∣∣∣∣∣X0 = x

]

By the Markov property and the tower property of conditional expectation, we
have that

Psh(x)

= E

[
Px

(∥∥∥∥∥
∫ s+T

s

[f(Xt) − π(f)]dt− Σ1/2
f W (T )

∥∥∥∥∥
= O(ψT )

∣∣∣Xs = y;X0 = x

)∣∣∣∣∣X0 = x

]

= Px

(∥∥∥∥∥
∫ s+T

s

[f(Xt) − π(f)]dt− Σ1/2
f W (T )

∥∥∥∥∥ = O(ψT )
∣∣∣X0 = x

)
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= h(x),

where the last inequality follows since for all fixed s ≥ 0 we have, by the same
argument of (7.5), that∫ s

0
[f(Xt) − π(f)]dt− Σ1/2

f W (s) and
∫ T+s

T

[f(Xt) − π(f)]dt− Σ1/2
f W (s)

are O(ψT ) almost surely. By [50, Theorem 20.10], we have that for ergodic
Markov processes every bounded harmonic function is constant, hence it fol-
lows that h(x) = 1 for all x ∈ E. It immediately follows that for every initial
distribution ν we have that

Pν

(∥∥∥∥∥
∫ T

0
f(Xt) dt− Tπ(f) − Σ1/2

f W (T )

∥∥∥∥∥ = O(ψT )
)

=
∫
E

Px

(∥∥∥∥∥
∫ T

0
f(Xt) dt− Tπ(f) − Σ1/2

f W (T )

∥∥∥∥∥ = O(ψT )
∣∣∣X0 = x

)
ν(dx) = 1

Hence the strong invariance principle holds for every initial distribution.

7.2. Proposition 4.3

In [5] a strong invariance principle for weakly m-dependent processes is given,
which are defined as processes that can be approximated by m-dependent pro-
cesses in the Lp-sense, with a sufficiently decaying approximation error (rate
function in terminology of [5]). Their strong invariance principle, stated in The-
orem 7.5, is obtained through a classical blocking argument for m-dependent
random variables. By dividing an m-dependent sequence into non-overlapping
long and short blocks, two sequences of independent random variables are ob-
tained; these can both be approximated by a Brownian motion. Trivially, sta-
tionary m-dependent processes satisfying appropriate moment conditions fall
into their framework. For more details we refer to [5].

Theorem 7.5 ([5, Theorem 2]). Let ξ = (ξk)∞k=1 be a centered stationary se-
quence with supk E|ξk|

p
< ∞, for some δ > 0. Moreover, let ξ be weakly m-

dependent in Lp with an exponentially decaying rate function κ, i.e.,

κ(m) � exp(−cm), for some c > 0.

Then the series

σ2
ξ =

∞∑
k=0

Eξ0ξk

is absolutely convergent, and we can redefine ξ on a new probability space on
which we can also construct two standard Brownian motions W1 and W2 such
that ∣∣∣∣∣

n∑
k=1

ξk −W1(s2
n) −W2(t2n)

∣∣∣∣∣ = O(n1/p log2 n) a.s.,
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where {sn} and {tn} are non-decreasing deterministic sequences with

s2
n = σ2

ξn + O(n/ log n),
t2n = O(n/ logn),

and lim supn(s2
n+1 − s2

n) = lim supn(t2n+1 − t2n) = σ2
ξ .

As noted by [5] the perturbed time sequences {sn} and {tn} are deterministic
and can be explicitly calculated.

7.2.1. Proof of Proposition 4.3

Proof. Firstly, assume that the initial distribution of X is equal to ν. By Propo-
sition 3.1 we see that we can redefine our process such that it is embedded in
a richer process Z. We will identify X as the first coordinate of the process Z.
Following Proposition 3.2, we introduce the sequence of stopping times (Sn, Rn)
defined as S0 = R0 := 0 and

Sn+1 := inf{Tm > Rn : ZTm ∈ A} and Rn+1 := inf{Tm : Tm > Sn+1}.

Then ZRn is independent of FRn−1 for all n ≥ 1 and (ZRn)n≥1 is an i.i.d sequence
with

ZRn ∼ ν(dx)λ(du)K((x, u), dx′) for all n ≥ 1,
where λ denotes the law of a standard Uniform random variable. As a direct
consequence, the sequence {ξn}n defined as

ξn :=
∫ Rn

Rn−1

{f(Xs) − π(f)} ds, n ≥ 1, (7.12)

is stationary under Pν . Moreover, by Proposition 3.3 for n ≥ 2, ξn is independent
of FRn−2 . Let N(T ) denote the number of regenerations of the resolvent chain
up to time T , namely

N(T ) = max{k : Rk ≤ T}.
It immediately follows that∫ T

0
{f(Xs) − π(f)} ds =

N(T )∑
k=1

ξk +
∫ T

RN(T )

{f(Xs) − π(f)} ds.

Consequently, we have that∣∣∣∣∣
∫ T

0
{f(Xs) − π(f)} ds−

N(T )∑
k=1

ξk

∣∣∣∣∣ ≤
∫ T

RN(T )

|f(Xs) − π(f)|ds. (7.13)

By an argument analogous to the one given in Theorem 4.1 for the remainder
term defined in (7.4), we will show that∫ T

RN(T )

|f(Xs) − π(f)|ds = O(T 1/p) a.s. for T → ∞. (7.14)
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In order to show that (7.14) holds, we note that∫ T

RN(T )

|f(Xs) − π(f)|ds ≤
∫ RN(T )+1

RN(T )

|f(Xs) − π(f)|ds. (7.15)

By a Borel-Cantelli argument it will follow that∫ RN(T )+1

RN(T )

|f(Xs) − π(f)|ds = O(T 1/p) a.s. for T → ∞. (7.16)

Indeed, introduce the event

An =
{∫ Rn+1

Rn

|f(Xs) − π(f)|ds > n1/p

}
.

By the stationarity of {ξn}n∈N under Pν it follows that the introduced sequence
of events satisfies

∞∑
n=1

Pν (An,ε) =
∞∑

n=1
Pν

(∣∣∣∣∣
∫ Rn+1

Rn

|f(Xs) − π(f)|ds
∣∣∣∣∣
p

> n

)

=
∞∑

n=1
Pν

(∣∣∣∣∣
∫ R1

0
|f(Xs) − π(f)|ds

∣∣∣∣∣
p

> n

)

≤ Eν

∣∣∣∣∣
∫ R1

0
|f(Xs) − π(f)|ds

∣∣∣∣∣
p

< ∞.

The Borel-Cantelli lemma states that Pν(lim supAn) = 0. Consequently, we
have that Pν(lim inf Ac

n) = 1. Hence it follows that∫ Rn+1

Rn

|f(Xs) − π(f)|ds = O(n1/p) a.s. (7.17)

Moreover, since N(T ) is almost surely increasing and N(T ) = O(T ), as shown
in (7.21), it follows that∫ RN(T )+1

RN(T )

|f(Xs) − π(f)|ds = O(N(T )1/p) = O(T 1/p) a.s.

Hence proving the claim formulated in (7.16) and as a direct consequence
also the bound stated in (7.14). Furthermore, by Proposition 3.3, the sequence
{ξk}∞k=1 is a stationary m-dependent sequence. By the imposed moment condi-
tions and stationarity, we have by the reasoning given in [5, Section 3.1] that
{ξk}∞k=1 is also a weakly m-dependent process with a rate function κ(m) equal
to zero for m ≥ 1. Hence by Theorem 7.5, we can redefine (ξk)k on a new prob-
ability space on which we can also construct two standard Brownian motions
W1 and W2 such that∣∣∣∣∣

n∑
k=1

ξk − nEνξ1 −W1(s2
n) −W2(t2n)

∣∣∣∣∣ = O(n1/p log2 n) a.s., (7.18)
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where {sn} and {tn} are increasing deterministic sequences with s2
n = σ2

ξn +
O(n/ logn) and t2n = O(n/ log n). Note that by Proposition 3.4 we have that

π(f) = 1
�
Eν

∫ R1

0
f(Xs)ds.

Hence
Eνξ1 = Eν

∫ R1

0
{f(Xs) − π(f)} ds = � · π(f − π(f)) = 0.

Furthermore, by definition of big O in (7.18), there exists an almost surely
finite random variable C such that for almost all sample paths ω we have that
for all n ≥ N0 ≡ N0(ω) we have that

1
n1/p log2 n

∣∣∣∣∣
n∑

k=1

ξk(ω) −W1(s2
n, ω) −W2(t2n, ω)

∣∣∣∣∣ < C(ω) (7.19)

Since we have that EνR
q
1 < ∞, by [20, Theorem 2.4] with q = β − 1, we can

construct a Brownian motion W̃ such that∣∣∣∣N(T ) − T

�
− Varν(R1)

�3/2 W̃T

∣∣∣∣ = o(T 1/q). (7.20)

By the law of iterated logarithm for Brownian motion we obtain

N(T ) = T

�
+ O(

√
T log log T ) a.s. (7.21)

Since N(T ) is almost surely increasing and tends to infinity, we have that for
almost every sample path ω there exists a T0 ≡ T0(ω) such that N(T )(ω) ≥ N0
for all T ≥ T0. Hence we obtain from (7.19) that

lim sup
T→∞

|
∑N(T )

k=1 ξk −W1(s2
N(T )) −W2(t2N(T ))|

N(T )1/p log2(N(T ))
< C a.s., (7.22)

where s2
N(T ) and t2N(T ) are almost surely increasing sequences, which given N(T )

are deterministic with

s2
N(T ) = σ2

ξN(T ) + O(N(T )/ logN(T ))
t2N(T ) = O(N(T )/ logN(T )).

We see that (7.22) can be reformulated as∣∣∣∣∣∣
N(T )∑
k=1

ξk −W1(s2
N(T )) −W2(t2N(T ))

∣∣∣∣∣∣ = O(N(T )1/p log2 N(T ))) a.s. (7.23)

= O(T 1/p log2 T )) a.s. (7.24)
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Here the second equality follows by (7.21). Furthermore, the asymptotic be-
haviour of N(T ) motivates the introduction of σ2

T , τ
2
T defined as

σ2
T = s2

n/�, for T ∈ [n, n + 1),
τ2
T = t2n/�, for T ∈ [n, n + 1).

By Theorem 6.1 (see also Theorem 1.2.1 of [22]) we see that∣∣W1(s2
N(T )) −W1(σ2

T )
∣∣ and

∣∣W2(t2N(T )) −W1(τ2
T )
∣∣ are both O(T 1/4 log T ) a.s.

(7.25)
with

σ2
T =

σ2
ξ

�
T + O(T/ log T ) and τ2

T = O(T/ log T ).

Combining results (7.14), (7.23), and (7.25) concludes the proof. By the same
arguments given in the proof of Theorem 4.1, the strong invariance principle
holds for every initial distribution.

Furthermore, we have by [5, Proposition 1] that

Corr(W1(sn),W2(tm)) → 0 as m,n → ∞.

Hence (4.13) immediately follows.

7.3. Theorem 4.4

For this proof, we will rely on the following properties of the resolvent chain.
Granted that the process X is aperiodic and positive Harris recurrent, then also
the resolvent X̄ will inherit these properties, as seen in [63, Propostion 5.4.5]
and [87, Theorem 3.1] respectively. Moreover, by [32, Theorem 5.3], exponential
convergence to stationarity is equivalent for X and X̄. The split chain of the
resolvent in turn obtains aperiodicity and positive Harris recurrence from X̄,
as seen in for example [68]. Following a co-de-initialising argument of [78], we
see that the split chain inherits the rate of convergence of the resolvent chain.
To conclude, we see that the split chain inherits aperiodicity, positive Harris
recurrence, and the rate of ergodicity from the process X.

Note that by Proposition 3.1 (Z1
Tn

, Z2
Tn

)n, the jump chain of the first two
coordinates of Z, has the same distribution as the split chain of the resolvent.
From (3.4) and (3.5) we see that (Z1

Tn
, Z2

Tn
)n is a Markov chain taking values

in E′ := E × [0, 1] that moves according to the kernel

U ′((x, u), (dy, dv)) = ν(dy)λ(dv)1{u≤α1C(x)} + W (x, dy)λ(dv)1{u>α1C(x)},
(7.26)

where λ denotes Lebesgue measure on the unit interval. Observe that the kernel
of the split chain of the resolvent also satisfies a one-step minorisation condition
U ′ ≥ s⊗ ν ⊗ λ, i.e.,

U ′((x, u), (dy, dv)) ≥ s(x, u)ν(dy)λ(dv), (7.27)
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where
s(x, u) = 1{u≤α1C(x)}.

Moreover, the split chain of the resolvent is aperiodic, positive Harris recurrent
and inherits the rate of convergence to stationarity from X.

Lemma 7.6 ([46, Lemma 1]). Let (Xt)t≥0 be a positive Harris recurrent Markov
process with invariant distribution π. Let U denote the transition kernel of the
resolvent chain of X and assume that the following minorisation condition holds:

U(x, dy) ≥ α1C(x)ν(dy). (7.28)

Then for any π-integrable function g : E[0,∞) → R we have the following in-
equality holds

Eπ|g| ≥ c Eν |g|, (7.29)

where c = απ(C).

Proof. Since the resolvent chain has the same stationary distribution as the
process X, i.e., π = πU , the claim follows with the identical argument of [46,
Lemma 1].

7.3.1. Proof of Theorem 4.4

Proof. Firstly, by the construction of the randomised stopping times (Sn)n and
(Rn)n we see that Rn = Sn + σn+1, where σn+1 has a standard exponential
distribution. Hence, by the triangle inequality in Lq(π) we only need to show
that Eπ[S1

q] < ∞, with

S1 = inf{Tn : ZTn ∈ C × [0, α] × E}

Let Z̄ = (Z̄n)n denote the jump chain of the process Z, i.e., Z̄n = ZTn , where
the (Tn)n denote the jump times. Let X̄ = (X̄n)n≥0 again denote the resolvent
chain. Let Nt denote the number of jumps up to time t. Let τ̄A denote the
hitting time of the recurrent atom for jump chain Z̄, i.e.,

τ̄A : = inf{n ≥ 0 : Z̄n ∈ A} = inf{n ≥ 0 : Z̄n ∈ C × [0, α] × E}.

For technical convenience, we introduce q := β − 1, note that by the assumed
ergodicity assumptions we have that q > p(p+ ε)/ε. From the relation between
the expectation of positive random variables and tail probabilities we can express
the expectation of interest as follows

EπS
q
1 =

∫ ∞

0
qtq−1

Pπ (S1 > t) dt

=
∫ ∞

0
qtq−1

∞∑
m=0

Pπ (τ̄A > m;Nt = m) dt
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=
∫ ∞

0
qtq−1

∞∑
m=0

⎛
⎜⎝Pπ

(
τ̄A > m;Nt = m; Z̄0 ∈ A

)︸ ︷︷ ︸
=0

+ Pπ

(
τ̄A > m;Nt = m; Z̄0 /∈ A

)⎞⎟⎠ dt

=
∫ ∞

0
qtq−1

∫
E′

∫
E′

∞∑
m=0

tm

m!e
−t

∞∑
k=m+1

(U ′ − ν ⊗ λ⊗ s)k (x, dz)1A(z)π(dx)dt

=
∫
E′

∫
E′

∞∑
m=0

∫ ∞

0

tm+q−1

m! qe−t
∞∑

k=m+1

(U ′ − ν ⊗ λ⊗ s)k (x, dz)1A(z)dtπ(dx)

=
∫
E′

∫
E′

∞∑
k=1

(U ′ − ν ⊗ λ⊗ s)k (x, dz)1A(z)q
k−1∑
m=0

Γ(m + q)
m! π(dx)

=
∫
E′

∫
E′

∞∑
k=1

Γ(k + q)
Γ(k) (U ′ − ν ⊗ λ⊗ s)k (x, dz)s(z)π(dx).

Here we obtained the last equality by using
k−1∑
m=0

Γ(m + q)
m! = Γ(k + q)

qΓ(k) ,

which can easily be proven by mathematical induction and the fact that for every
k > 0 we have that Γ(k+2) = kΓ(k+1)+Γ(k+1). Note that Γ(k + q)/Γ(k − 1)
can be dominated by some polynomial ψ(k) with a leading term of order kq+1.
By [70, Proposition 1.6] we have that∫

E′

∫
E′

∞∑
k=0

ψ(k) (U ′ − ν ⊗ λ⊗ s)k (x, dz)s(z)π(dx) < ∞.

It follows that EπS
q
1 < ∞.

For the second statement of Theorem 4.4 we follow the argument of [4, The-
orem 2] with some minor adaptations. We give the proof for completion.

[Eπξ
p
1 ]1/p ≤

[
Eπ

∣∣∣∣∣
∫ R1

0
|f(Xs)|ds

∣∣∣∣∣
p]1/p

=
[
Eπ

∣∣∣∣
∫ ∞

0
|f(Xs)|1{R1≥s}ds

∣∣∣∣p
]1/p

≤
∫ ∞

0

[
Eπ

(
|f(Xs)|p1{R1≥s}ds

)]1/p
≤
∫ ∞

0

[
Eπ|f(Xs)|p+ε

]1/(p+ε) [
Eπ1{R1≥s}

]ε/p(p+ε)
ds

≤ π
(
|f |p+ε

)1/(p+ε) ∫ ∞

0
[Pπ(R1 ≥ s)]ε/p(p+ε)

ds

≤ π
(
|f |p+ε

)1/(p+ε)
(

1 + π(Rq
1)ε/p(p+ε)

∫ ∞

1
s−εq/p(p+ε)ds

)
< ∞.
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Here the inequalities follow by Minkowski’s integral inequality, Hölder’s in-
equality, stationarity, and Markov’s inequality. Note that the integral on the
last line is finite due to the imposed condition on the rate of polynomial ergod-
icity since q = β − 1 > p(p + ε)/ε. An application of Lemma 7.6 concludes the
proof.

Remark 7.7. Note that if we assume polynomial ergodicity of rate β > 1, without
any further requirements, then we can only guarantee the existence of moments
up to order p′ where p′ < 1

2 (
√

ε(ε + 4(β − 1)))−ε) if p > 1
2 (
√

ε(ε + 4(β − 1)))−
ε) and p′ = p otherwise.
Remark 7.8. For the exponentially ergodic case we would make use of [69,
Lemma 2.8] which states that for an exponentially ergodic Markov chain there
exists an r > 1 such that∫

E′

∫
E′

∞∑
k=0

rk (U ′ − ν ⊗ λ⊗ s)k (x, dy)1C(y)π(dx) < ∞.

7.4. Theorems 4.6 and 4.7

Lemma 7.9 ([61, Lemma 2.4]). Let B be a standard Brownian motion and N
be a Poisson process with intensity λ, independent of B. Then there exists a
standard Brownian motion W that is also independent of N such that∣∣∣∣B(n) − 1√

λ
W (N(n))

∣∣∣∣ = O(log(n)) a.s.

Proof. The claim immediately follows from [61, Lemma 2.4] and a Borel-Cantelli
argument.

7.4.1. Proof of Theorem 4.6

Proof. We will first assume that our initial distribution is equal to the stationary
distribution. Let x0 denote the smallest local optimum of the density π, i.e.,

x0 = min{x : π′(x) = 0}.

Since the tails of π are diminishing, we must have that x0 is a local maximum.
Moreover, for some M > 0, define the set A as follows

A = [x0 −M,x0] × {+1}.

Note that on (−∞, x0) the density on π is increasing, and therefore the poten-
tial U = − log π is decreasing and thus the derivative of U is negative. Conse-
quently, for all (x, v) ∈ (−∞, x0) × {+1} we have that the switching intensity
λ(x, v)= (U ′(x))+ = 0, since the process is moving toward a higher density re-
gion. If the process moves from (−∞, x0−M)×{+1} to A, the process will thus
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not switch and move deterministically from A to x0 × {+1} in time M . If the
process hits A from [x0−M,x0]×{−1}, i.e., when the position component is in
[x0 −M,x0] and the velocity switches from −1 to +1, then the point x0 ×{+1}
will be reached in time at most M . Note that these are the only possibilities
for reaching the set A. We see that when the process hits A, the process must
move deterministically for time at most M until the point x0 ×{+1} is reached
and the probability of a velocity switch becomes positive. This motivates the
introduction of the stopping times Rn defined as

R0 = inf{t ≥ 0 : (Xt, Vt) = (x0, 1)}

and
Rn = inf{t ≥ Rn−1 : (Xt, Vt) = (x0, 1)}.

By the Markov property, the sequence {ξn} defined as

ξn :=
∫ Rn

Rn−1

{f(Xs) − π(f)} ds, n ≥ 1,

is i.i.d under Pν , with ν a Dirac measure at the point x0 ×{+1}. Note that this
argument holds for any local optimum by the smoothness assumptions on π.
Note that we also have that Rn ≤ M + τA with τA again denoting the hitting
time of set A. Since we have that

{τA > t} ⊂
∞⋃

m=1
{τ̄A > m;Nt = m},

where τ̄A again denotes the hitting time of the resolvent chain, we can follow
the argument of Theorem 4.4 to obtain that

Eν [(R1)β−1] < ∞.

Moreover, for all measurable f : E → R with π(|f |p+ε) < ∞ where p ≥ 1 and
β > (p + 2ε)/ε, we have that

Eπ

∣∣∣∣∣
∫ R0

0
[f(Xs) − π(f)]ds

∣∣∣∣∣
p

< ∞ and Eν

∣∣∣∣∣
∫ R1

R0

[f(Xs) − π(f)]ds

∣∣∣∣∣
p

< ∞.

Thus we see that ξ0 :=
∫ R0
0 [f(Xs) − π(f)]ds is asymptotically negligible.

Define (τk)k∈N as τk = Rk−Rk−1 and let � and σ2
τ denote the mean and variance

of this random variable. The sequence of random vectors (ξk, τk) are independent
and identically distributed. If we choose α = Covν(ξ1, τ1)/Varν(τ1), then it
immediately follows that ξk − α(τk − �) and τk are uncorrelated.

Applying the multivariate Komlós-Major-Tusnády approximation given in
[35, Theorem 1] and [20, Theorem 2.1], there exists two independent Brownian
motions B1 and B2 such that∣∣∣∣∣

n∑
k=1

ξk − α(
n∑

k=1
τk − �) − σ̃B1

∣∣∣∣∣ = o (ψn) a.s. (7.30)
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|Rn − n�− στB2(n)| = o (ψn) a.s., (7.31)

with
ψn = n

max
(

1
β−1 ,

1
p

)
. (7.32)

Note that in (7.30) we have that Eνξ1 = 0 by Theorem 3.4 and that σ̃2 =
Varν(ξ1−α(τ1−�)). From the assumptions on the rate of ergodicity, we see that
the approximation error simplifies to o(n1/p). By [52, Theorem 1(ii)], a Poisson
Process N with intensity λ = �2/σ2

τ can be constructed from the Brownian
motion B2 such that∣∣∣∣N(n) − �

γ
n− στ

γ
B2(n)

∣∣∣∣ = O(logn) a.s., (7.33)

where γ = σ2
τ/� and N is constructed increment-wise from B2 in a determinstic

way and is therefore also independent of B1. From (7.31) and (7.33) it follows
that

|Rn − γN(n)| = o(n1/p) a.s. (7.34)

We claim that it therefore follows that∣∣∣∣∣
∫ Rn

0
[f(Xs) − π(f)]ds−

∫ γN(n)

0
[f(Xs) − π(f)]ds

∣∣∣∣∣ = O(n1/p) a.s. (7.35)

Indeed, we have that∣∣∣∣∣
∫ Rn

0
[f(Xs) − π(f)]ds−

∫ γN(n)

0
[f(Xs) − π(f)]ds

∣∣∣∣∣ =
∣∣∣∣
∫ cn

bn

f(Xs) − π(f)ds
∣∣∣∣,

(7.36)

where bn := min{Rn, γN(n)} and cn := max{Rn, γN(n)}. Therefore we can
introduce the positive sequence αn as follows

αn := cn − bn = |Rn − γN(n)|.

From (7.34) it follows that αn = o(n1/p) a.s., hence for almost every ω it holds
that for all ε1 > 0 there exists an N1 := N1(ω) such that for all n ≥ N1 we
have that αn < ε1n

1/p and hence cn = bn + αn ≤ bn + ε1n
1/p. Note that

the stopping times (Rk)k≥0 are regeneration epochs of the process, and hence
the corresponding cycles Ck := (Xs : Rk ≤ s < Rk+1) are independent and
identically distributed. Let η(T ) := max{k : Rk ≤ T} denote the number of
regenerative cycles up to time T and let Yk =

∫ Rk+1
Rk

|f(Xs) − π(f)|ds. Then we
see that for n > N1(ω) we have that∣∣∣∣ 1

n
1
p

∫ cn

bn

f(Xs) − π(f)ds
∣∣∣∣
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= 1
n

1
p

∣∣∣∣∣
∫ cn−bn

0
f(Xbn+u) − π(f)du

∣∣∣∣∣
≤ 1

n
1
p

∫ αn

0
|f(Xbn+u) − π(f)|du

≤ 1
n

1
p

∫ ε1n
1/p

0
|f(Xbn+s) − π(f)|ds

≤ 1
n

1
p

η(bn+ε1n
1/p)∑

j=η(bn)

Yj + 1
n

1
p

∫ bn+ε1n
1/p

R
η(bn+ε1n1/p)

|f(Xs) − π(f)|ds (7.37)

From (7.21) we see that η(T ) tends to infinity as T → ∞ and limT→∞ η(T )/T =
1/� almost surely. Also for every positive sequence mT that tends to infinity as
T → ∞ we have that limT→∞ η(mT )/mT = 1/� almost surely. By an application
of the law of iterated logarithm to (7.31) and (7.33) we obtain Rn = n/� +
O(

√
n log logn) a.s. and Nn = n/λ+O(

√
n log logn) a.s. respectively. Hence we

have that bn = O(n) a.s., and consequently η(bn) = O(n) almost surely. Note
that η(bn + ε1n

1/p), the number of regenerations until time bn + ε1n
1/p is equal

to the number of generation until time bn and the number of regenerations in the
time interval (bn, bn+ε1n

1/p), i.e., η(bn+ε1n
1/p) = η(bn)+η(bn+ε1n

1/p)−η(bn).
Since η(T ) is a renewal process it is clear that we should have

η(bn + ε1n
1/p) − η(bn) = O(η(ε1n

1/p)) a.s. (7.38)

Indeed, since we have that EνR
q
1 < ∞, by [20, Theorem 2.4] we can construct a

Brownian motion B̃2 such that∣∣∣∣η(T ) − T

μη
− σηB̃2(T )

∣∣∣∣ = o(T 1/q) a.s., (7.39)

for some constants μη and ση. Hence for almost all sample paths ω there exists
a T1(ω) such that for all T ≥ T1(ω) we have that

1
T 1/q

∣∣∣∣η(T ) − T

μη
− σηB̃2(T )

∣∣∣∣ < ε. (7.40)

Since bn is non-decreasing and tends to infinity almost surely, it follows that
for all sample paths ω there exists a N2(ω) such that η(bn)(ω) ≥ T1(ω) for all
n ≥ N2(ω) and hence

1
b
1/q
n

∣∣∣∣η(bn) − bn
μη

− σηB̃2(bn)
∣∣∣∣ < ε. (7.41)

Since bn = O(n) almost surely, it follows that∣∣∣∣η(bn) − bn
μη

− σηB̃2(bn)
∣∣∣∣ = o(b1/qn ) = o(n1/q) a.s. (7.42)



234 A. Pengel and J. Bierkens

Let an := ε1n
1/p, then by the triangle inequality, we obtain

η(bn + an) − η(bn) ≤
∣∣η(bn + an) − (bn + an)/μη − σηB̃2(η(bn) + an)

∣∣ (7.43)
+ an/μη +

∣∣−η(bn) + bn/μη + σηB̃2(bn)
∣∣ (7.44)

+ ση

∣∣B̃2(bn + an) − B̃2(bn)
∣∣ (7.45)

By (7.42) the rhs of (7.43) and the second term in (7.44) are both o(n1/q) and
thus o(n1/p). Furthermore, by [21, Theorem 2] we have that

lim sup
n→∞

sup
0≤s≤an

∣∣B̃2(n + s) − B̃2(n)
∣∣

[an(log(n/an) + log logn)]1/2
= 1 a.s. (7.46)

Since we have an = ε1n
1/p it follows that

sup
0≤s≤an

∣∣B̃2(n + s) − B̃2(n)
∣∣ = O

(
n1/2p log(n)

)
= o

(
n1/p

)
a.s. (7.47)

Moreover, since η(bn) = O(n) a.s. and almost surely non-decreasing we also
have that

sup
0≤s≤an

∣∣B̃2(η(bn) + s) − B̃2(η(bn))
∣∣ = o

(
η(bn)1/p

)
= o

(
n1/p

)
a.s. (7.48)

Hence, we have shown that

η(bn + an) − η(bn) ≤ an/μη + o
(
n1/p

)
almost surely. Therefore there exists a K > 0 such that for almost all sample
paths there exits an N3(ω) sufficiently large such that η(bn+an)−η(bn) < Kn1/p

almost surely. Hence we have shown that the claim formulated in (7.38) indeed
holds.

For technical convenience let ãn be defined as Kn1/p. Since (Yk)k≥0 form
an i.i.d sequence with Eν |Y1|p < ∞ we have by the Komlós-Major-Tusnády
approximation that there exists a Brownian motion B3 such that∣∣∣∣∣

n∑
k=0

Yk − nμY − σY B3(n)

∣∣∣∣∣ = o(n1/p) a.s., (7.49)

where μY and σY denote the mean and standard deviation of Y1 respectively.
It immediately follows that we also have∣∣∣∣∣∣

η(bn)∑
k=0

Yk − η(bn)μY − σY B3(η(bn))

∣∣∣∣∣∣ = o(η(b1/pn )) = o(n1/p) a.s. (7.50)

By the triangle inequality, we obtain∣∣∣∣∣∣
η(bn)+ãn∑
k=η(bn)

Yk

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
η(bn)+ãn∑

k=0

Yk − (η(bn) + ãn)μY − σY B3(η(bn) + ãn))

∣∣∣∣∣∣ (7.51)
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+ ãnμY +

∣∣∣∣∣∣−
η(bn)∑
k=0

Yk + η(bn)μY + σY B3(η(bn))

∣∣∣∣∣∣ (7.52)

+ σy|B3(η(bn) + ãn) −B3(η(bn))| (7.53)
≤ ãnμY + o(n1/p) a.s. (7.54)

The last inequality follows, since by (7.50) both the term in (7.51) and the
second term in (7.53) are o(n1/p) almost surely. Furthermore, by (7.48) the last
inequality also follows. Hence it follows that

Pν

⎛
⎝lim sup

n→∞

1
n1/p

∣∣∣∣∣∣
η(bn+an)∑
k=η(bn)

Yk

∣∣∣∣∣∣ ≤ KμY

⎞
⎠ = 1. (7.55)

Hence the first term in the upper bound (7.37) is O(1) almost surely. For the
second term, we see that from (7.17), it follows that

Yn =
∫ Rn+1

Rn

|f(Xs) − π(f)|ds = O(n1/p) a.s. (7.56)

Therefore∫ bn+an

Rη(bn+an)

|f(XRn+s) − π(f)|ds ≤
∫ Rη(bn+an)+1

Rη(bn+an)

|f(XRn+s) − π(f)|ds (7.57)

= Yη(bn+ε1n1/p) (7.58)

= O
(
(η(bn + ε1n

1/p))1/p
)

a.s. (7.59)

= O
(
(n + n1/p)1/p

)
= O

(
n1/p

)
a.s. (7.60)

Hence our claim (7.37) follows, and consequently we have also shown (7.35).
Combining (7.30), (7.34), and (7.35) it follows that∣∣∣∣∣
∫ γN(n)

0
[f(Xs) − π(f)]ds− αγN(n) + α�n− σ̃B1(n)

∣∣∣∣∣ = o
(
n

1
p

)
a.s. (7.61)

Let (Γs)s≥0 be defined as Γ0 := 0 and Γs := N−1(s), the right-continuous
inverse of the Poisson process. Recall that N is a Poisson process with intensity
λ = �2/σ2

τ . Taking n = Γn′ in (7.61) and subsequently making the substitution
n = γn′, it follows that∣∣∣∣
∫ n

0
[f(Xs) − π(f)]ds− αn + α�Γn/γ − σ̃B1(Γn/γ)

∣∣∣∣ = o
(
Γn

1/p
)

a.s.

= o
(
n1/p

)
a.s., (7.62)
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where we used the fact that Γ is a non-decreasing process that tends to infinity.
Moreover, since Γn has a Gamma distribution it follows from the Komlós-Major-
Tusnády approximation [52, Theorem 1] that there exists a Brownian motion
B4 such that ∣∣∣∣Γn − n

λ
− 1

λ
B4(n)

∣∣∣∣ = O(logn) a.s. (7.63)

Note that the Poisson process N and therefore its corresponding event time
process Γ are independent of B1. Therefore by an application of Lemma 7.9 with
n = Γn it follows that there exists a standard Brownian motion B5 independent
of N and Γ such that∣∣∣∣B1(Γn) − 1√

λ
B5(n)

∣∣∣∣ = O(log n) a.s. (7.64)

Applying the obtained approximations given in (7.63) and (7.64) to (7.62) it
follows that∣∣∣∣
∫ n

0
f(Xs) − π(f)ds−

(
σ̃√
λγ

B5(n) − α�

λ
√
γ
B4(n)

)∣∣∣∣ = o
(
n1/p

)
a.s. (7.65)

Note that since B4 and B5 are independent we have that

Wn = 1
σf

(
σ̃√
λγ

B5(n) − α�

λ
√
γ
B4(n)

)
(7.66)

is a standard Brownian motion since
σ̃2

γλ
+ α2�2

γλ2 = Eνξ
2
1

�
= σ2

f . (7.67)

Furthermore, by definition of big O, there exists an almost surely finite random
variable C such that for almost all sample paths ω we have that for all n ≥
N0 ≡ N0(ω) we have that

1
n1/p

∣∣∣∣
∫ n

0
f(Xs(ω))ds− Tπ(f) − σ2

fWn(ω)
∣∣∣∣ < C(ω). (7.68)

It immediately follows that (7.68) also holds for T sufficiently large and hence
carries over for T → ∞. By the same argument given in the proof of Theorem 4.1,
the strong invariance principle holds for every initial distribution.

7.4.2. Proof of Theorem 4.7

Proof. From [9, Proposition 2.8] we see that the Zig-Zag process with a station-
ary distribution of product form π(x) =

∏d
i=1 πi(xi) can be decomposed into d

independent Zig-Zag processes, each with stationary distribution πi. Since we
have that ∥∥∥∥∥

∫ T

0
f(Xt) dt− Tπ(f) − Σ1/2

f W (T )

∥∥∥∥∥
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≤
√
dmax

i

∣∣∣∣∣
∫ T

0
fi(Xi

t) dt− Tπi(fi) − σfiW
i(T )

∣∣∣∣∣, (7.69)

the theorem follows if we can show that a strong invariance principle holds for
every component on the same probability space. Firstly, assume that the initial
distribution of Z is π.

In order to obtain a Brownian approximation for every coordinate we will use
a regenerative argument along the lines of Theorem 4.6. For every component i =
1, . . . , d we define the following: xi

0 the smallest local maximum of the density πi,
i.e., xi

0 = min{x : π′
i(x) = 0} and corresponding set set Ai = [xi

0−M,xi
0]×{+1},

and the sequences of stopping times {Ri
n}n∈N as follows

Ri
0 = inf{t ≥ 0 : (Xi

t , V
i
t ) = (xi

0, 1)},

and
Ri

n = inf{t ≥ Rn−1 : (Xi
t , V

i
t ) = (xi

0, 1)}.
Furthermore, we also introduce for every coordinate i the sequence {ξin} defined
as

ξin :=
∫ Ri

n

Ri
n−1

{f(Xs) − π(f)} ds, n ≥ 1.

Note that for all components {ξin}n is i.i.d under Pνi , with νi a Dirac measure
at the point xi

0 × {+1}. We can follow the argument of Theorem 4.4 to obtain
that

Eνi

[
(Ri

1)β−1] < ∞ for i = 1, . . . , d.

Moreover, for all measurable f : E → R with π(|f |p+ε) < ∞ where p ≥ 1 and
β > 2 + p/ε, we have that

Eνi

∣∣∣∣∣
∫ Ri

1

Ri
0

fi(Xi
s) − π(f)ds

∣∣∣∣∣
p

< ∞ for i = 1, . . . , d.

Note that for every coordinate i we have that∣∣∣∣∣
∫ T

0
fi(Xi

t) dt− Tπi(fi) − σfiW
i(T )

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ Ri

1

0
fi(Xi

t) − πi(fi)dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

Ri
1

fi(Xi
t) − πi(fi)dt− σfiW

i(T )

∣∣∣∣∣.
(7.70)

By assuming that the process starts at its stationary distribution, it follows by
the argument in the proof of Theorem 4.4 that

∣∣∣∫ Ri
1

0 fi(Xi
t) − πi(fi)dt

∣∣∣ is almost
surely finite and hence asymptotically negligible.

Define (τ ik)k∈N as τ ik = Ri
k − Ri

k−1 and let �i and σ2
	i

denote the mean and
variance respectively. The sequence of random vectors (ξik, τ ik) are independent
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and identically distributed. If we choose αi = Covν(ξi1, τ i1)/Varν(τ i1), then it
immediately follows that ξik − αi(τ ik − �i) and τ ik are uncorrelated. By applying
the multivariate Komlós-Major-Tusnády approximation given in [35, Theorem
1] and [20, Theorem 2.1] to the sequence of random vectors

zk = (z1
k, . . . , z

d
k)T = ((ξ1

k − α1(τ1
k − �1), τ1

k ), . . . , (ξdk − αd(τdk − �d), τdk ))T ,

it follows that there exists a 2d-dimensional Brownian motion such that∣∣∣∣∣
n∑

k=1
zk − Eνz1 − Σ̃zBn

∣∣∣∣∣ = o
(
n1/p

)
a.s., (7.71)

where Σ̃z = diag(Varν(z1), . . . ,Varν(zk)). All components of zk are independent
and therefore also the corresponding components of the Brownian motion are
independent. Note that we have that for every component zik of zk we have that
there exists two independent Brownian motions B1 and B2 such that∣∣∣∣∣

n∑
k=1

ξik − αi

(
n∑

k=1

τ ik − �i

)
− σ̃iBi1

∣∣∣∣∣ = o
(
n1/p

)
a.s. (7.72)

∣∣Ri
n − n�i − στiBi2(n)

∣∣ = o
(
n1/p

)
a.s. (7.73)

Note that in (7.72) we have that Eνξ
i
1 = 0 by Theorem 3.4 and that σ̃i =

Varν(ξi1−αi(τ i1−�i)) a.s. By following the argument of the proof of Theorem 4.6
for every component, we see that∣∣∣∣∣

∫ n

Ri
1

fi(Xi
t) − πi(fi)ds− σfiW

i
n

∣∣∣∣∣ = o
(
n1/p

)
a.s. for i = 1, . . . , d. (7.74)

By combining (7.69), (7.70) and (7.74) the claim follows. By the argument given
in the proof of Theorem 4.1, the strong invariance principle holds for every initial
distribution.

7.5. Proof of Theorem 6.2

Proof. Firstly, by Proposition 4.3 there exist two standard Brownian motions
W1 and W2 such that∣∣∣∣∣

∫ T

0
f(Xs)ds−W1(σ2

T ) −W2(τ2
T )

∣∣∣∣∣ = O(ψT ) a.s.,

where {σ2
T } and {τ2

T } are non-decreasing sequences with

σ2
T =

σ2
ξ

�
T + O(T/ log T ) and τ2

T = O(T/ log T ).
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as T → ∞, where σ2
ξ and � are defined in Theorem 4.3. An application of our

strong invariance principle gives the following

lim sup
T→∞

max
0≤t≤T−aT

max
0≤u≤aT

βT

∣∣∣∣
∫ t+u

0
f(Xu)du−

∫ t

0
f(Xu)du

∣∣∣∣
≤ lim sup

T→∞
max

0≤t≤T−aT

max
0≤u≤aT

βT

∣∣W1(σ2
t+u) −W1(σ2

t )
∣∣

+ lim sup
T→∞

max
0≤t≤T−aT

max
0≤u≤aT

βT

∣∣W2(τ2
t+u) −W2(τ2

t )
∣∣

+ βTO(ψT )
=: A1 + A2 + A3.

Since βTψT = o(1), it immediately follows that lim supT A3 = 0 almost surely.
In order to use the arguments of [5, Theorem 4] for the terms A1 and A2, we
require the following properties of the sequence σ2

T ; for any ε > 0 there exists
some T0 such that for all T ≥ T0

σ2
T ≤

(
σ2
ξ

�
+ ε

)
T and sup

u≥0
{σ2

u+aT
− σ2

u} ≤
(
σ2
ξ

�
+ ε

)
aT . (7.75)

Since σ2
T = σ2

ξ

μ T + O(T/ log(T )), the first required property described in (7.75)
follows directly. From the proof of Theorem 4.5 we have that

σ2
T = s2

n/�, for T ∈ [n, n + 1). (7.76)

Note that (7.76) is equivalent to σ2
T = s2

�T
/� and therefore lim supu→∞(σ2
�u
+1−

s2
�u
) ≤ lim supk→∞(s2

k+1 − s2
k)/� = σ2

ξ/�, where the last equality follows since
by Theorem 7.5 we have that lim supk(s2

k+1−s2
k) = σ2

ξ . Since aT tends to infinity,
we have for T and U0 sufficiently large that

sup
u>U0

{σ2
u+aT

− σ2
u} = sup

u>U0

{σ2
�u+aT 
 − σ2

u}

≤ sup
u>U0

{σ2
�u+aT 
 − σ2

�u
}

≤ lim sup
u→∞

�aT 
∑
j=1

(σ2
�u
+j − σ2

�u
+j−1)

≤ 1/�
�aT 
∑
j=1

lim sup
k→∞

(s2
�u
+j − s2

�u
+j−1)

≤ (σ2
ξ/� + ε)�aT � ≤ (σ2

ξ/� + ε)aT , (7.77)

where the first equality follows from (7.76), the first inequality due to the fact
that (σu)u≥0 is a non-decreasing sequence. Note that for all U0 > 0 we have
that

sup
u
{σ2

u+aT
− σ2

u} = max
{

sup
u≤U0

{σ2
u+aT

− σ2
u}, sup

u>U0

{σ2
u+aT

− σ2
k}
}

(7.78)
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Since (σ2
n)n≥0 is a non-decreasing sequence and aT tends to infinity we have

that for sufficiently large T that

sup
u≤U0

{σ2
u+aT

− σ2
u} ≤ σ2

U0+aT
≤ (σ2

ξ/� + ε)aT . (7.79)

Combining (7.77) and (7.79) gives (7.78). Consequently, we have also shown
that the required properties given in (7.75) hold. Hence for T ≥ T0 we obtain

max
0≤t≤T−aT

max
0≤u≤aT

βT

∣∣W1(σ2
t+u) −W1(σ2

t )
∣∣

≤ sup
0≤t≤σ2

T−aT

sup
0≤u≤(σ2

ξ/	+ε)aT

βT |W1(t + u) −W1(t)|

≤ sup
0≤t≤(σ2

ξ/	+ε)(T−aT )
sup

0≤u≤(σ2
ξ/	+ε)aT

βT |W1(t + u) −W1(t)|

= sup
0≤t≤T̃ε−ãT,ε

sup
0≤u≤ãT,ε

βT |W1(t + u) −W1(t)|,

where T̃ε and ãT,ε are defined as (σ2
ξ/� + ε)T and (σ2

ξ/� + ε)aT respectively.
Introduce

β̃T,ε :=
(

2ãT,ε

[
log T̃ε

ãT,ε
+ log log T̃ε

])−1/2

,

then by Theorem 6.1 we have that

lim sup
T→∞

sup
0≤t≤T̃ε−aT,ε

sup
0≤u≤aT,ε

β̃T,ε|W (t + u) −Wt| ≤ σ2
ξ/� a.s.

Similarly, it can be shown that lim supA2 = 0 almost surely, which completes
the proof.
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