
Electronic Journal of Statistics
Vol. 18 (2024) 77–118
ISSN: 1935-7524
https://doi.org/10.1214/23-EJS2195

Regression analysis of partially linear
transformed mean residual life models

Haijin He
School of Mathematical Sciences, Shenzhen University, Shenzhen, China

e-mail: hehj@szu.edu.cn

Jingheng Cai
Department of Statistics, Sun Yat-sen University, Guangzhou, China

e-mail: caijheng@mail.sysu.edu.cn

Xinyuan Song∗

The Chinese University of Hong Kong, Hong Kong, China
e-mail: xysong@sta.cuhk.edu.hk

Abstract: We propose a novel class of partially linear transformed mean
residual life (TMRL) models to investigate linear and nonlinear covariate ef-
fects on survival outcomes of interest. A martingale-based estimating equa-
tion approach with global and kernel-weighted local estimating equations
is developed to estimate the parametric and nonparametric components.
Unlike the existing inverse probability of censoring weighting estimating
equation approach on TMRL models, the newly proposed method avoids
estimating or modeling the distribution of the censoring time, thereby en-
hancing model capability and computational efficiency. Furthermore, we
establish the asymptotic properties for the estimators of parametric and
nonparametric components and develop an efficient iterative algorithm to
implement the proposed procedure. Simulation studies demonstrate the sat-
isfactory finite sample performance of the proposed method. Finally, our
model is applied to the studies of lung cancer and type 2 diabetic compli-
cations.
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1. Introduction

The mean residual life (MRL) function is defined as E(T − t|T > t) (t ≥ 0) for
a nonnegative survival time T . It provides the remaining life expectancy of a
subject surviving up to time t. As a valuable alternative to hazard function, the
MRL function has been widely applied in biomedical sciences, actuarial studies,
industrial reliability research, and other disciplines. Interested readers can refer
to [35] for a detailed discussion of the MRL function.
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Much research efforts have been devoted to the MRL regression analysis.
Oakes and Dasu [31] proposed the proportional mean residual life (PMRL)
model for dichotomous covariates. Maguluri and Zhang [28] extended the PMRL
model to accommodate continuous covariates without censoring and developed
an estimation procedure based on the hazards of the forward recurrence times
in the renewal processes formed by T . Chen et al. [6] and Chen and Cheng [8]
further studied the PMRL model in the presence of censoring and proposed an
inverse probability of censoring weighting (IPCW) approach and a quasi partial
score estimating equation method, respectively. Chen and Cheng [9] and Chen
[7] proposed the additive mean residual life (AMRL) model and discussed var-
ious estimation procedures with or without censoring. Sun and Zhang [35] fur-
ther proposed a general class of transformed mean residual life (TMRL) models
that subsumes the PMRL and AMRL models as exceptional cases. They also
developed an IPCW approach and its variant, namely, an augmented IPCW
(AIPCW) approach, both requiring estimating or modeling the distribution
of censoring. Sun, Song and Zhang [34] investigated the class of TMRL mod-
els with time-dependent coefficients, again under the IPCW framework. Man-
sourvar, Martinussen and Scheike [29] considered semiparametric regression for
the restricted MRL model under right censoring. Mansourvar, Martinussen and
Scheike [30] and Cai et al. [3] proposed different additive-multiplicative restricted
MRL models and developed martingale estimating equation methods for esti-
mation. He et al. [16, 17] explored the PMRL and AMRL models with latent
variables through the corrected estimating equation approach.

Despite the valuable developments in MRL modeling above, they all assumed
that all covariates linearly affect the MRL of interest. In some situations, how-
ever, such a linearity assumption may be unrealistic; some covariates might have
nonlinear effects on the MRL of study subjects. For instance, in the Veteran’s
Administration lung cancer trial study of [20], patients’ age nonlinearly affects
their survival time [25]. Thus, the MRL analysis assuming linear effects of age
might be erroneous or incomprehensive. Therefore, there is a need to consider
nonlinear covariate effects in MRL regression from theoretical and practical
viewpoints. Partially linear models originally proposed by Engle [12] enjoy the
flexibility of modeling nonlinear covariate effects and share the parsimony and
interpretability of ordinary regression models by allowing some covariates to
have linear effects. Partially linear models have been widely studied in multivari-
ate analysis [4, 5, 11, 15, 21, 22, 33] and hazard regression [1, 14, 18, 23, 25, 27].
However, no existing studies have investigated partially linear models in the
MRL context. Hence, to fill this research gap and provide a comprehensive
modeling framework, this study considers a novel class of partially linear TMRL
models to investigate linear and nonlinear covariate effects on survival outcomes.

The inference procedures for partially linear models in the multivariate anal-
ysis have been systematically established; for example, see the monograph by
Härdle et al. [15]. In particular, Gray [14] proposed the penalized partial likeli-
hood with B-splines for the partially linear proportional hazards model. Huang
[18] investigated the asymptotic properties of the partial likelihood estimators
using polynomial splines for the same model. Cai et al. [1] proposed a local and
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profile pseudo partial likelihood method for the partially linear proportional
hazards model with multivariate failure time data. Lu and McMahan [23] used
monotone splines to approximate the baseline cumulative hazard function and
adopted B-splines to accommodate nonlinear covariate effects in the partially
linear proportional hazards model with current status data. In the context of
transformation models, Ma and Kosorok [27] proposed a nonparametric max-
imum penalized log-likelihood method for the partially linear transformation
models with current status data. Lu and Zhang [25] developed martingale-based
global and local estimating equations for the partially linear transformation
models. Nonetheless, the prior studies never considered the inference of par-
tially linear TMRL models.

The TMRL models have distinctive features compared with hazard models;
there are no analogies of partial likelihood or nonparametric likelihood in the
field of MRL regression analysis. Therefore, the various methodologies developed
for partially linear hazard models are not directly applicable to the proposed
partially linear TRML models. This paper develops martingale-based global and
local estimating equations to overcome the difficulties. The global equations are
used to estimate the baseline function and unknown parameters indicating linear
effects, whereas the local equations are adopted to estimate the nonlinear covari-
ate effects. We develop an iterative algorithm to implement the proposed estima-
tion procedure. We establish the root-n consistency of the estimator for linear
parameters under suitable regularity conditions and proper choices of the ker-
nel bandwidth. We also obtain the asymptotic normality for estimating the lin-
ear and nonlinear effects. Finally, we propose an easy-to-implement resampling
method to estimate the asymptotic variances of the estimated linear effects.

The contributions of this study are three-fold. First, we consider a novel
class of partially linear TMRL models. The proposed models are general in the
following senses: (i) both linear and nonlinear covariate effects are considered,
and (ii) the TMRL models are general and encompass PMRL, AMRL, and the
Box-Cox transformation MRL models as exceptional cases. This general model
class has never been investigated in the literature. Second, we develop a novel
martingale-based global and local estimating equation method to overcome the
theoretical and computational challenges incurred by the distinctive structure
of the proposed model. Notably, the proposed approach only assumes condi-
tional independence between the survival and censoring times given covariates.
In contrast, the IPCW approach for linear TMRL models [35] either assumes
independence between the censoring time and covariates and thus requires the
estimation of the censoring distribution or modeling how the censoring time
depends on covariates. Thus, the proposed approach provides a convenient al-
ternative to the IPCW approach of [35] in that it avoids estimating or modeling
the distribution of censoring time. Such an appealing feature of the proposed
approach is due to the use of martingale representations. Even without accom-
modating partially linear covariate effects, the proposed approach is new to the
inference of the TMRL models. Third, we develop an iterative algorithm to im-
plement the proposed estimation procedure and show the asymptotic normality
for the estimators of the linear and nonlinear effects.
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The rest of the article is structured as follows. Section 2 describes the pro-
posed partially linear TMRL models, presents the proposed martingale-based
global and local estimating equations, and provides an iterative algorithm for
implementation. Section 3 establishes the asymptotic properties of the proposed
estimators. Section 4 reports simulation studies for evaluating the finite sample
performance of the proposed method. Section 5 presents applications to two
real-life datasets, one from the Veteran’s Administration lung cancer trial and
the other from chronic kidney disease (CKD) study of type 2 diabetic patients,
to demonstrate the utility of the proposed methodology. Section 6 provides some
concluding remarks. All technical proofs are relegated to the appendices.

2. Model and method

Let Ti (i = 1, . . . , n) be the failure time of interest. The MRL function of Ti is
mi(t) = E[Ti − t|Ti > t], with mi(t) = 0 whenever P (Ti > t) = 0. Let Zi be a
p×1 vector of covariates, and Xi be a uni-variate covariate which has nonlinear
effect. We consider the partially linear TMRL models as follows:

m(t|Zi, Xi) = g
{
m0(t) + βTZi + f(Xi)

}
, (2.1)

where m(t|Zi, Xi) is the MRL function of subject i, g(·) is a prespecified trans-
fomation or link function, β is a p×1 vector of unknown regression parameters,
m0(t) is an unknown baseline function, and f(x) is an unknown smooth func-
tion. For a constant a, (m0(t) + a,β, f(x) − a) and (m0(t),β, f(x)) represent
the same model. Thus, a restriction f(0) = 0 is set to ensure the model identifi-
ability. Notably, g{m0(t)} is the baseline MRL function. Without the presence
of the nonparametric component, Model (2.1) reduces to the TMRL models of
[35]. Moreover, Model (2.1) defines a rich family of models through the link
function g(·). It becomes the partially linear AMRL model if g(u) = u, the par-
tially linear PMRL model if g(u) = exp(u), and encompasses the partially linear
Box-Cox transformation MRL models with g(u) = [(u+1)q − 1]/q, where q = 0
means that g(u) = log(u + 1). To our best knowledge, none of the preceding
three special cases of (2.1) has been investigated in the literature.

In practice, the transformation function g(·) should be properly chosen to
fit the data or to achieve desired interpretation of the regression coefficients.
Theoretical restrictions for g(·) are as follows: (i) g(·) is twice continuously
differentiable, (ii) g(·) is strictly increasing, and (iii) g{m0(t) + βTZi + f(Xi)}
is a proper MRL function for all possible values of Zi and Xi. Model (2.1)
may prove helpful in model selection if we insist that g(·) lies in the Box-Cox
transformation family but allow q to be estimated. For more discussion on the
transformation function g(·), see [35].

In model (2.1), we only consider one covariate in the nonlinear component
for simplicity. However, extending the proposed model to accommodate multi-
ple nonlinear covariates is straightforward and can be implemented as in [4].
Another practical issue is deciding which covaraites should be considered in the
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nonlinear part. To address this issue, we may include the covariates of inter-
est into the model one at a time as the nonparametric component and check
whether they have nonlinear effects.

Let Ci be the censoring time, T̃i = min{Ti, Ci} be the observed time, Δi =
I(Ti ≤ Ci) denote the censoring indicator, Ni(t) = I(T̃i ≤ t,Δi = 1) stand for
the counting process recording the number of events that have occurred by time
t, and Yi(t) = I(T̃i ≥ t) be the at-risk process. The observed data consist of
independent copies (T̃i,Δi,Zi, Xi) (i = 1, . . . , n).

Let Λ(t|Zi, Xi) be the cumulative hazard function of Ti. Using the inversion
formula (e.g., [31]), we have

dΛ(t|Zi, Xi) = d(m(t|Zi, Xi) + t)
m(t|Zi, Xi)

= d(g{m0(t) + βTZi + f(Xi)} + t)
g{m0(t) + βTZi + f(Xi)}

.

Define

dMi(t;m0,β, f) = dNi(t) − Yi(t)
d(g{m0(t) + βTZi + f(Xi)} + t)

g{m0(t) + βTZi + f(Xi)}
. (2.2)

By definition, Mi(t;m0,β, f) (i = 1, . . . , n) are martingales under the true
model indexed by m0(t), β, and f(·).

For fixed f(·), we construct the following global estimating equations for
m0(t) and β as

n∑
i=1

g
{
m0(t) + βTZi + f(Xi)

}
dMi(t;m0,β, f) = 0, (2.3)

and
n∑

i=1

∫ τ

0
Zig

{
m0(t) + βTZi + f(Xi)

}
dMi(t;m0,β, f) = 0, (2.4)

where τ is the end of the study. Notably, the proposed estimating equations (2.3)
and (2.4) are novel for linear TMRL models, as they are different from the
IPCW-based estimating equations of [35]. The rationale for constructing (2.3)
and (2.4) are as follows. A common practice of survival analysis suggests using
estimating equations

n∑
i=1

dMi(t;m0,β, f) = 0 (2.5)

and
n∑

i=1

∫ τ

0
ZidMi(t;m0,β, f) = 0 (2.6)

to estimate m0(t) and β with f(·) fixed. However, due to the particular struc-
ture of Mi(t;m0,β, f) in the proposed model (see (2.2)), i.e., the unknown
parameters and functions are involved in the denominator, and the estimat-
ing equations (2.5) and (2.6) are computationally infeasible. Chen and Cheng
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[8] and Chen and Cheng [9] proposed estimating equations different from (2.5)
and (2.6) for PMRL and AMRL models to address the difficulty. The proposed
estimating equations in the present study can be regarded as an extension of
Chen and Cheng [8] and Chen and Cheng [9] to TMRL models. Multiplying
by the weight g{m0(t) + βTZi + f(Xi)} on both sides of (2.5) and (2.6) can
eliminate the unknown parameters and functions in the denominator of (2.2),
thereby enabling a feasible estimation of m0(t) and β. Furthermore, unlike the
existing IPCW approach that requires estimating or modeling the distribution
of the censoring time, the martingale-based estimating equations (2.3) and (2.4)
only assume independence between the survival and censoring times given co-
variates, simplifying the estimation procedure and enhancing model capability
and computational efficiency.

Note that f(x) ≈ γ0(u) + γ1(u)(x − u) for x in a neighborhood of u, where
γ0(u) = f(u), and γ1(u) = ḟ(u) is the first order derivative of f(u). Let the ker-
nel K(x) be a symmetric probability density function and Kh(x) = K(x/h)/h,
with h > 0 as the bandwidth parameter. Some commonly used kernel functions,
such as the Gaussian kernel function and Epanechnikov kernel function [1], can
be adopted. Since the choice of the kernel function is not crucial, we employ
the Gaussian kernel function in numerical studies. For fixed m0(t) and β, we
propose the following local estimating equation for f(·) (i.e., γ0 and γ1) as

n∑
i=1

∫ τ

0
(1, Xi − x)TKh(Xi − x)

× g
{
m0(t) + βTZi + γ0(x) + γ1(x)(Xi − x)

}
dM̃i(t;m0,β, x) = 0, (2.7)

where

dM̃i(t;m0,β, x)=dNi(t) − Yi(t)
d(g{m0(t)+βTZi+γ0(x)+γ1(x)(Xi − x)}+t)
g{m0(t) + βTZi + γ0(x) + γ1(x)(Xi − x)}

.

M̃i(t;m0, β, x) is unnecessarily a martingale but is still approximately mean-
zero. The validity of (2.7) shares the same spirit with the local estimating
equations of Carroll, Ruppert and Welsh [5], which employs the approximate
mean-zero property. See also the local estimating equations of Lu and Zhang
[25].

The MRL function may not be estimable at the upper tail of the survival
distribution due to right censoring. To avoid such non-identifiability, Chen and
Cheng [6, 9] and Sun and Zhang [35] imposed an assumption that the support
of the censoring time is longer than that of the survival time, while Mansourvar,
Martinussen and Scheike [30] considered the restricted MRL function. In this
article, we adopt the assumption of [6, 9, 35], see condition (C3) in Section 3.
The restricted MRL function of [30] can also be considered without difficulties.

To enhance the implementation of the proposed method, we develop an al-
gorithm to estimate m0(t), β, and f(·) in a recursive manner.

Computing algorithm Let t1 < t2 < · · · < tK be the K distinct observed
failure times, and f̂ (0)(·) and β̂

(0)
be the initial value of f(·) and β, respectively.
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The computing algorithm consists of three steps (a)–(c). In step (a), we solve for
m0(·) at the observed failure times and t = 0 based on the current values of β
and f(·). In step (b), we update β based on the current value of m0(·) and f(·). In
step (c), we update γ0(·) and γ1(·) at the observed covariates Xj (j = 1, · · · , n)
based on the current value of m0(·) and β. We employed the R function “dfsane”
to solve for the roots of the corresponding equations. Specifically, at the ath
iteration, we implement three steps (a)–(c) as follows:

Step (a). Update m̂
(a)
0 (tk) by solving

0 =
n∑

i=1
I(T̃i > tk)g

{
m̂

(a)
0 (tk) + ZT

i β̂
(a−1)

+ f̂ (a−1)(Xi)
}

−
n∑

i=1
I(T̃i ≥ tk)g

{
m̂

(a)
0 (tk−1) + ZT

i β̂
(a−1)

+ f̂ (a−1)(Xi)
}

+
n∑

i=1
I(T̃i ≥ tk)(tk − tk−1) +

n∑
i=1

I(tk−1 < T̃i < tk)(T̃i − tk−1). (2.8)

Step (b). Update β̂
(a−1)

to β̂
(a)

by solving

0 =
n∑

i=1
(Δ − 1)Zig

{
m̂

(a)
0 (T̃i) + βTZi + f̂ (a−1)(Xi)

}

+
n∑

i=1
Zig

{
m̂

(a)
0 (0) + βTZi + f̂ (a−1)(Xi)

}
−

n∑
i=1

ZiT̃i. (2.9)

Step (c). Update γ̂
(a−1)
0 (Xj) and γ̂

(a−1)
1 (Xj) to γ̂

(a)
0 (Xj) and γ̂

(a)
1 (Xj) (j =

1, 2, . . . , n) by solving

0 =
n∑

i=1
(Δi − 1)(1, Xi −Xj)TKh(Xi −Xj)g

×
{
m̂

(a)
0 (T̃i) + ZT

i β̂
(a)

+ γ0(Xj) + γ1(Xj)(Xi −Xj)
}

+
n∑

i=1
(1, Xi −Xj)TKh(Xi −Xj)

× g
{
m̂

(a)
0 (0) + ZT

i β̂
(a)

+ γ0(Xj) + γ1(Xj)(Xi −Xj)
}

−
n∑

i=1
(1, Xi −Xj)TKh(Xi −Xj)T̃i. (2.10)

When returning from step (c) to (a), we set f̂ (a)(Xi) = γ̂
(a)
0 (Xi). In step (a),

we obtain m̂
(a)
0 (tk) in a backward fashion; that is, we first obtain m̂

(a)
0 (tK−1)

from m̂
(a)
0 (tK) = 0, then obtain m̂

(a)
0 (tK−2) from m̂

(a)
0 (tK−1), and finally obtain
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m̂
(a)
0 (0) from m̂

(a)
0 (t1). Steps (a), (b), and (c) are repeated until convergence.

The estimates of m0(t) and β at convergence are denoted as m̂0(t) and β̂. In
the above updating, (2.8) is obtained by taking integration over the interval
(tk−1, tk] (k = 1, . . . ,K, t0 = 0) on both sides of (2.3) and using some simple
algebraic manipulations. Moreover, from (2.4) we have∫ τ

0
g
{
m0(t) + βTZi + f(Xi)

}
dNi(t) = g

{
m0(T̃i) + βTZi + f(Xi)

}
Δi,

and∫ τ

0
ZiYi(t)d

(
g
{
m0(t) + βTZi + f(Xi)

}
+ t

)
= Zi

[
g
{
m0(T̃i) + βTZi + f(Xi)

}
− g

{
m0(0) + βTZi + f(Xi)

}]
+ ZiT̃i,

and there are similar expressions for (2.7). Then, we can obtain (2.9) and (2.10)
from (2.4) and (2.7), respectively, after some simple manipulations.

Step (d). The final estimate of f(x) is obtained by solving Equation (2.10)
with m̂

(a)
0 (t) and β̂

(a)
replaced by m̂0(t) and β̂, respectively.

The asymptotic properties of the estimators of m0(t), β, and f(·) are pre-
sented in Section 3 with proofs in Appendix A. In Appendix B, we propose
a one-step estimator as the initial value f̂ (0)(·) and show its local consistency.
Practically, one can employ a parametric form of f(·) and estimate it using the
proposed global estimating equations for computational convenience.

In implementing the computing algorithm, we must select the bandwidth
parameter h in steps (a)–(d). Notably, h plays different roles in different steps.
In steps (a)–(c), the selection of h should ensure the proper estimation of m0(t)
and β, whereas in step (d), h should be optimal for estimating the nonparametric
function f(·). Therefore, the value of h in steps (a)–(c) is different from that in
step (d). In the simulation section, we provide more discussion on the selection
of h based on the theoretical convergence rate or some data-adaptive tuning
criteria.

3. Asymptotic properties

Let m∗(t) and f∗(x) be the true values of the functions m0(t) and f(x), respec-
tively, and β0 be the true value of β. To investigate the asymptotic properties
of the proposed estimators m̂0(t), β̂, γ̂0(x), and γ̂1(x), we define

dQi(t;m0,β, f)
= ġ

{
m0(t) + βTZi + f(Xi)

}
dNi(t) − Yi(t)dġ

{
m0(t) + βTZi + f(Xi)

}
,

where ġ(u) denotes the derivative of g(u). For simplicity, we denote dQi(t) =
dQi(t;m∗,β0, f∗). In the following, we omit the subscripts representing subjects
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when taking expectations for convenience of presentation. Define

B(t, s) = exp
(
−
∫ t

s

E[dQ(u)]
E[Y (u)ġ{m∗(u) + βT

0 Z + f∗(X)}]

)
,

μ1(t) = E[(Δ − 1)Zġ{m∗(T̃ ) + βT
0 Z + f∗(X)}B(t, T̃ )I(T̃ < t)]

E[Y (t)ġ{m∗(t) + βT
0 Z + f∗(X)}]

,

μ2(t) = E[Zġ{m∗(0) + βT
0 Z + f∗(X)}B(t, 0)]

E[Y (t)ġ{m∗(t) + βT
0 Z + f∗(X)}]

.

Set v{m∗(t)} = B(t, τ), A1 = E[
∫ τ

0 {Z − μ1(t) − μ2(t)}ZT dQ(t)],

A2 = E

[∫ τ

0

{
Z − μZ(t)

}
ρ(X)T dQ(t)

]
,

Σ = E

[∫ τ

0

{
Z − μZ(t) −

(
Z∗ − μZ∗

)}⊗2
g
{
m∗(t) + βT

0 Z + f∗(X)
}2

dN(t)
]
,

where Z⊗2 = ZZT for any vector Z, and

μZ(t) = α(t)v{m∗(t)}
E[Y (t)ġ{m∗(t) + βT

0 Z + f∗(X)}]
,

Z∗
i =

∫ τ

0

E[ZdQ(t)|X = Xi]
E[(Δ−1)ġ{m∗(T̃ )+βT

0 Z+f∗(X)+ġ{m∗(0)+βT
0 Z+f∗(X)|X=Xi]

,

μZ∗,i =
∫ τ

0

μZ(t)E[dQ(t)|X = Xi]
E[(Δ−1)ġ{m∗(T̃ )+βT

0 Z+f∗(X)+ġ{m∗(0)+βT
0 Z+f∗(X)|X=Xi]

.

In the definition of μZ(t), α(t) is the solution to the following Fredholm integral
equation of the second kind

α(t) −
∫ τ

0
α(s)D1(t, ds) = D2(t), t ∈ [0, τ ] (3.1)

with D1(t, ds), D2(t), and ρ(·) provided in Appendix A.
We need the following regularity conditions:

(C1) The covariates Zi and Xi are of compact support, and the density of Xi,
denoted by r(x), has a bounded second derivative.

(C2) β0 belongs to the interior of a known compact set, m∗(t) is continuously
differentiable, f∗(x) has a continuous second derivative, ġ(·) is continuous,
positive and bounded away from zero.

(C3) The support of the censoring time Ci is longer than that of the survival
time Ti.

(C4) τ is finite and P (Ti ≥ τ) > 0 and P (Ci ≥ τ) > 0.
(C5) The kernel D1(·, ·) satisfies supt∈[0,τ ]

∫ τ

0 |D1(t, ds)| < ∞.
(C6) The matrices A = A1 − A2 and Σ are nondegenerate.
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Conditions (C1)–(C4) are similar to those in [35] for establishing asymptotic
properties for TMRL models. Condition (C5) guarantees the uniqueness of the
solution to the Fredholm integral equation (3.1). Condition (C6) is needed for
establishing the asymptotic normality of the proposed estimators. Condition
(C6) is mainly a technical condition to ensure the invertibility of A and the
non-degeneracy of Σ, so that the asymptotic representation of n1/2(β̂ − β0)
can be obtained and the asymptotic distribution of n1/2(β̂ − β0) will not be
degenerate. This condition usually holds when the covariates do not centered
on a lower-dimensional subspace.

The following three theorems establish the asymptotic properties of m̂0(t),
β̂, γ̂0(x), and γ̂1(x). The proofs are relegated to Appendix A.

Theorem 3.1. Under the regularity conditions (C1)–(C6), if nh2/{log(1/h)} →
∞ and nh4 → 0, then β̂ converges in probability to β0, and n1/2(β̂ − β0) →
N(0,A−1Σ(A−1)T ) in distribution as n → ∞.

Theorem 3.2. Under the regularity conditions (C1)–(C6), if nh2/{log(1/h)} →
∞ and nh4 → 0, we have the following asymptotic representation

n1/2{m̂0(t) −m∗(t)
}

= n−1/2
n∑

i=1

κi(t)
v{m∗(t)}

+ op(1),

for t ∈ [0, τ), where κi(t)’s are independent mean zero functions and their defi-
nitions are given in Appendix A.

Theorem 3.3. Under the regularity conditions (C1)–(C4), if nh5 is bounded,
and β and m0(t) are estimated at the order Op(n−1/2), then for any x in the
compact support of Xi, we have

(nh)1/2
([

γ̂0(x) − f∗(x)
h{γ̂1(x) − ḟ∗(x)}

]
− bn(x)

)
→ N

(
0,Ω(x)

)
in distribution, where Ω(x) = Ω−1

1 (x)Ω2(x)(Ω−1
1 (x))T , and the definitions of

Ω1(x), Ω2(x), and bn(x) are provided in Appendix A.

The asymptotic variance of β̂ has a standard sandwich form A−1Σ(A−1)T .
However, the matrices A and Σ are complicated, and their computation requires
solving a Fredholm integral equation, which is often difficult and unstable even
for moderate sample size. Therefore, we propose using a resampling method
[19, 25] to approximate the asymptotic distribution of β̂.

First, we generate n i.i.d. exponential random variables {ξi, i = 1, . . . , n} with
mean 1 and variance 1. Fixing the data at their observed values, we solve the
following ξi-weighted estimating equations

n∑
i=1

ξig
{
m0(t) + βTZi + f(Xi)

}
dMi(t;m0,β, f) = 0, (3.2)

n∑
i=1

ξi

∫ τ

0
Zig

{
m0(t) + βTZi + f(Xi)

}
dMi(t;m0,β, f) = 0, (3.3)
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n∑
i=1

ξi

∫ τ

0
(1, Xi − x)TKh(Xi − x)g

{
m0(t) + βTZi + γ0(x) + γ1(x)(Xi − x)

}
dM̃i(t;m0,β, x) = 0. (3.4)

Equations (3.2), (3.3), and (3.4) can be solved using the same recursive algorithm
as in Section 2. Denote the solutions as β̂

∗
, m̂∗

0(t), and f̂∗(x).

Theorem 3.4. Under the regularity conditions (C1)–(C6), if nh2/{log(1/h)} →
∞ and nh4 → 0, then the conditional distribution of n1/2(β̂

∗ − β̂) given the ob-
served data converges to the asymptotic distribution of n1/2(β̂ − β0)

By repeatedly generating (ξ1, . . . , ξn) many times, we may obtain a large
number of realizations of β̂

∗
. The asymptotic variance of β̂ can be estimated by

the empirical variance of β̂
∗
.

4. Simulation

We conduct simulations to assess the finite sample performance of the proposed
method. The survival times Ti’s are generated from the partially linear TMRL
models (2.1). Two independent covariates Z = (Zi1, Zi2)T are considered, where
Zi1 ∼ Bernoulli(0.5) and Zi2 ∼ Uniform[−0.5, 0.5]. The regression coefficients
are taken as β = (β1, β2)T = (−1, 1)T . For the nonlinear effect, we let f(x) =
3(x − x3) and Xi ∼ Uniform[0, 1], where Xi is independent of Zi. Following
the practice of [35], we consider several transformation functions g(·)’s, but
only report the results for g(u) = u and g(u) = exp(u), which correspond
to the partially linear AMRL and PMRL models, respectively. The baseline
MRL function g{m0(t)} is taken from the Hall-Wellner family [31], such that
g{m0(t)} = (D1t+D2)+, where D1 > −1, D2 > 0, and d+ = dI(d ≥ 0) for any
d. We set D1 = −1/6 and D2 = 1.5 for the partially linear PMRL model and
D1 = −0.9 and D2 = 1.5 for the partially linear AMRL model. For generating
Ti’s, we use the formula

S(t|Zi, Xi) = m(0|Zi, Xi)
m(t|Zi, Xi)

exp
{
−
∫ t

0

du

m(u|Zi, Xi)

}
,

where S(t|Zi, Xi) is the survivor function of subject i, and m(t|Zi, Xi) is given
by (2.1).

Two censoring schemes (CS) are considered: (i) Covariate-independent cen-
soring. The censoring times Ci’s are generated from Uniform(0, c0), where c0
is chosen to achieve a censoring rate (CR) of 10% and 30%. (ii) Covariate-
dependent censoring. The censoring times Ci’s are generated from exponential
distributions with means exp(c0 + c1Zi1), where c0 and c1 are chosen to achieve
a CR of 10% and 30%. In most scenarios considered, the support of Ci is longer
than the support of Ti for all Zi and Xi. For a few exceptional cases violating
this condition, the proposed method and algorithm still work and produce fairly
good estimation results.
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To start the computing algorithm, we set the initial value of f(·) as f̂ (0)(·) ≡
0. We further discuss the selection on the bandwidth parameter h. In Theo-
rems 3.1 and 3.2, a condition on h is provided to ensure the convergence of the
estimates of m0(t) and β derived from the global equations (2.3) and (2.4). In
Theorem 3.3, another condition on h is given to ensure the convergence of the
estimates of f(·) derived from the local equation (2.7). These two conditions are
different. Such difference should be reflected on the implementation of the algo-
rithm. Therefore, h plays different roles in different steps. For the estimation of
the parametric component, we set the bandwidth parameter h = α1n

−1/3 ac-
cording to the asymptotic properties. We find that α1 = 0.5 works well among
various values of α1 between 0.1 and 1 under all configurations. For the es-
timation of the nonparametric function f(·), we set h = α2n

−1/5 and select
α2 = 0.2 from various values among 0.1 to 1 as a trade off between bias and the
mean integrated squared error (MISE) under all settings considered. To assess
the performance of the proposed resampling method for variance estimation, we
generated M = 500 sets of ξ’s for each simulated data and computed the empir-
ical variance of β̂

∗
’s as the estimated asymptotic variance of β̂. All simulations

are based on 500 replications with sample sizes 200 and 400.
Table 1 reports the simulation results on the estimate of β. Bias is the sam-

pling mean of the estimate minus the true value, SE is the estimated asymptotic
standard error based on the resampling method, SD is the sample standard de-
viation of the parameter estimate, CP is the 95% empirical coverage probability
for the parameter based on SE, and RMSE is the root mean square error of the
estimate. It is clear that the proposed estimator for β performs well for all the
situations under consideration. Specifically, the bias is small, the estimated and
empirical standard errors match well, and the 95% empirical coverage probabil-
ities are reasonably close to the nominal level. The performance of the proposed
estimator is improved as the sample size increases from 200 and 400.

For the nonparametric component, Figures 1 and 2 depict the estimated
nonparametric function f(·) and the 95% point-wise confidence interval for
covariate-independent censoring. The bounds of the confidence interval are given
by the 97.5th and 2.5th percentiles of the estimated function at each grid point
among 500 replications. The results indicate that the nonparametric function
f(·) is estimated with good accuracy, and the confidence interval becomes nar-
rower as the sample size increases. The results for covariate-dependent censoring
are similar and thus not reported here.

To examine the sensitivity of the computing algorithm to initial values, we
repeat the above analysis by using different initial values, such as f̂ (0)(·) = −1
or 1. The results are similar to those reported in Table 1 and Figures 1 and 2.

5. Application

5.1. Veteran’s Administration lung cancer study

We apply the proposed methodology to a dataset from the Veteran’s Adminis-
tration lung cancer trial [20]. A total of 137 patients were randomized to two
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Table 1

Simulation results.
g(u) = u β = −1 β = 1

n CS CR Bias RMSE SE/SD CP Bias RMSE SE/SD CP
200 (i) 10% 0.010 0.069 0.915 0.924 0.002 0.115 0.951 0.944

30% 0.006 0.079 0.961 0.948 0.007 0.137 0.992 0.932
(ii) 10% 0.006 0.074 0.905 0.918 0.004 0.121 0.944 0.948

30% −0.003 0.088 0.925 0.922 0.005 0.142 0.963 0.939
400 (i) 10% 0.013 0.049 0.953 0.934 −0.001 0.080 0.984 0.944

30% 0.010 0.055 0.992 0.930 0.002 0.097 0.999 0.930
(ii) 10% 0.013 0.052 0.933 0.934 0.000 0.083 0.979 0.952

30% 0.011 0.061 0.966 0.934 0.002 0.096 1.013 0.942
g(u) = exp(u) β = −1 β = 1
n CS CR Bias RMSE SE/SD CP Bias RMSE SE/SD CP

200 (i) 10% 0.005 0.123 0.912 0.920 0.005 0.197 0.950 0.934
30% 0.053 0.147 0.990 0.897 −0.046 0.221 1.171 0.951

(ii) 10% 0.005 0.123 0.906 0.907 −0.003 0.198 0.966 0.930
30% 0.029 0.145 1.108 0.933 −0.013 0.239 1.322 0.947

400 (i) 10% 0.003 0.085 0.929 0.920 0.006 0.136 0.961 0.936
30% 0.029 0.100 1.055 0.915 −0.025 0.158 0.123 0.942

(ii) 10% 0.003 0.084 0.934 0.924 0.008 0.137 0.967 0.944
30% −0.001 0.104 1.076 0.938 0.013 0.171 1.314 0.970

Fig 1. The estimated nonlinear function and 95% point-wise confidence interval for g(u) = u
and covariate-independent censoring.

chemotherapeutic agents (0, standard; 1, test). The response was the survival
time of each patient, with a censoring rate of 6.6%. The dataset includes six co-
variates: treatment indicator, tumor type with four levels (large, adeno, small,
and squamous), karnofsky score, months from diagnosis, age, and prior therapy
(0 = no, 10 = yes). Many authors have analyzed this dataset in the hazard
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Fig 2. The estimated nonlinear function and 95% point-wise confidence interval for g(u) =
exp(u) and covariate-independent censoring.

model framework, for example, [24, 25, 36]. In particular, Lu and Zhang [25]
pointed out that the covariate age is a complex confounding factor and usually
has a nonlinear effect. To compare with [25], we fitted the data to the proposed
partially linear TMRL models with three covariates: treatment, tumor type,
and age, where age is assumed to have a nonlinear effect. Following the choice
of the link function g(u) presented in [35], three special cases of the class of
partially linear TMRL models were considered: partially linear AMRL model
(g(u) = u), partially linear PMRL model (g(u) = exp(u)), and partially linear
Box-Cox transformation MRL models (g(u) = [(u + 1)2 − 1]/2). We rescaled
age between 0 and 1 and treated tumor type as a categorical variable with the
large type as the reference. In estimating the parametric component and the
nonparametric function f(·), we set the bandwidth parameter h = α1n

−1/3 and
h = α2n

−1/5 and tried various values of α1 and α2 among 0.1 to 1. The results
are similar. Thus, we only report the results for α1 = 0.5 and α2 = 0.2 as
those in the simulation studies. Using a single PC with an Intel(R) Core(TM)
i7-4790 CPU @3.60GHz and 16.00 GB RAM, the computing times for g(u) = u,
g(u) = exp(u), and g(u) = [(u + 1)2 − 1]/2 are 30, 45, and 22 minutes; respec-
tively.

Table 2 presents the estimated regression coefficients along with the standard
error estimates based on 500 resamplings for the three models under considera-
tion. Similar to the findings of [25], tumor type (small versus large, adeno versus
large) is significant for g(u) = u and g(u) = exp(u). However, tumor type is not
significant for g(u) = [(u + 1)2 − 1]/2. Treatment is not significant in all the
three models. Furthermore, Figure 3 displays the estimates of the nonparamet-
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Table 2

Estimates of linear coefficients for lung cancer data.

g(u) = u g(u) = exp(u) g(u) = (1+u)2−1
2

Covariate Est SE Est SE Est SE
Treatment 4.180 26.453 0.004 0.173 0.101 3.039
Squamous vs large 47.129 47.439 0.226 0.222 2.206 5.276
Small vs large −102.150 29.199 −0.849 0.232 −6.733 4.146
Adeno vs large −106.229 28.757 −0.949 0.214 −7.233 3.971

Fig 3. The estimated nonlinear function and 95% point-wise confidence interval for the lung
cancer data.

ric components. The red curves are estimated nonparametric functions, and the
blue curves are the resampling-based 95% point-wise confidence intervals. The
plots clearly show a nonlinear age effect (bell-shape) on the MRL function. The
MRL function first increases and then decreases in the covariate age. This result
is in agreement with the U-shape nonlinear effect of age on the hazard function
[25]. In the present study, the zero line is included in the 95% confidence interval
for g(u) = exp(u) and g(u) = [(u+1)2−1]/2, but not included in the confidence
interval for g(u) = u.

5.2. CKD study of type 2 diabetic patients

This section applied our methodology to a study concerning CKD for type
2 diabetic patients. This study was based on the Hong Kong Diabetes Reg-
istry established in 1995 as part of a continuous quality improvement program
at the Prince of Wales Hospital, Hong Kong. The detailed descriptions of pa-
tient recruitment and characterization are provided in [26]. The event (clinical
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Table 3

Estimates of linear coefficients for diabetic data set.
g(u) = u g(u) = exp(u)

Covariate Est SE Est SE
Gender −0.560 0.646 −0.040 0.057

Fig 4. The estimated nonlinear function and 95% point-wise confidence interval for the CKD
data.

endpoint) of CKD was defined as estimated glomerular filtration rate (eGFR)
< 60 ml/min per 1.7 m2 [26]. The survival time of CKD was calculated as the
duration from enrollment to the first clinical endpoint. A subject was censored
if its first clinical endpoint occurred beyond January 31, 2009. In the current
study, we are mainly interested in type 2 diabetic patients with cardiovascular
and renal disease history who had low health conditions among the cohort. This
sub-cohort consists of 429 patients, and the censoring rate is around 51%.

Albuminuria levels measured by albumin-creatinine ratio (ACR) are im-
portant for evaluating the risk of CKD [26]. Luk et al. [26] used two cate-
gorical variables, microalbuminuria (ACR of 2.5–30 mg/mmol for women or
3.5–30 mg/mmol for men) and macroalbuminuria (ACR > 30 mg/mmol), to
assess the effect of albuminuria levels on the progression of CKD. To be more
comprehensive, in the present study, we directly investigate the effect of ACR
on the MRL function of CKD, while adjusting for the covariate gender. We first
rescaled ACR between 0 and 1. As in the Veteran’s Administration lung cancer
study presented in Section 5.1, we report the results based on the bandwidth
parameter h = 0.5n−1/3 and h = 0.2n−1/5 for estimating the parametric effect
and the nonparametric part f(·), respectively. Using a single PC with an In-
tel(R) Core(TM) i7-4790 CPU @3.60GHz and 16.00 GB RAM, the computing
times for g(u) = u and g(u) = exp(u) are 30 and 60 minutes; respectively. Ta-
ble 3 summarizes the estimated coefficients and their standard errors obtained
based on 500 resamplings for g(u) = u and g(u) = exp(u). The MRL function
of CKD is not significantly affected by gender.

Figure 4 gives the estimates of the nonlinear components along with the
resampling-based 95% point-wise confidence intervals. Based on the plots, the
effects of ACR on the MRL function of CKD have a clear nonlinear pattern,
and the nonlinear effects are evidenced by the 95% confidence intervals, which
do not include the zero line. Considering that there are only five participants
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with rescaled ACR > 0.6 (ACR > 446.8), the estimated nonparametric func-
tions are unreliable in the region with sparse data. Therefore, we focus on the
estimated curves with rescaled ACR in [0, 0.6]. We have the following findings.
(i) The MRL function of CKD is roughly decreasing as ACR gets large, which
is compatible with the results of [26] that patients with microalbuminuria or
macroalbuminuria have significantly greater hazards of developing CKD than
patients with normal ACR. (ii) Although the trend of the estimated curves is
generally decreasing, it is not monotone. There are some intervals on which
the estimated nonparametric functions are slightly increasing. The biological
meaning for such a pattern is unclear and worth further investigating. (iii) The
estimated curves decrease drastically with rescaled ACR in the intervals [0, 0.1]
and [0.4, 0.6] (ACR in [0, 74.5] and [297.8, 446.8], respectively), but are relatively
flat with rescaled ACR in the interval [0.1, 0.4] (ACR in [74.5, 297.8]). This result
suggests that patients with rescaled ACR in [0, 0.1] or [0.4, 0.6] should be more
cautious in taking surgeries or medicines that may increase ACR substantially.
Overall, our analysis is compatible with the research of [26], but we reveal the
nonlinear effect of ACR on CKD progression more comprehensively. To see the
influence of outliers, we rescaled ACR between 0 and 1 after discarding the data
points with ACR > 446.8 and reconducted the analysis. Again, gender is in-
significant, and the pattern of the estimated nonparametric functions is similar
to that in Figure 4 and not reported.

6. Discussion

In this paper, we have proposed a class of partially linear TMRL models and de-
veloped a martingale-based approach by solving a system of global and local es-
timating equations. We have established the root-n consistency and asymptotic
normality for the estimates of regression coefficients and obtained the asymp-
totic properties for the estimated nonparametric components, including the
baseline function and the nonlinear covariate effect. We have proposed an iter-
ative algorithm for computing the estimates and provided a resampling method
for estimating the asymptotic variances of the regression coefficients.

The current study has several extensions. First, the proposed estimating equa-
tions are given in a somewhat ad hoc fashion and thus might not be efficient.
Improvement of the proposed approach to enhance efficiency merit further re-
search efforts. Second, Cortese, Holmboe and Scheike [10] considered the re-
stricted MRL model for right-censored and left-truncated data. The proposed
models and method may be extended to cope with left-truncated data. Finally,
multivariate survival outcomes are frequently encountered in substantive stud-
ies. Generalizing the proposed methodology to analyze multivariate survival
data is worthy of further investigation.
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Appendix A: Proofs of asymptotic results

For fixed β and f , denote the estimate of m0(t) derived from estimating equa-
tion (2.3) as m̂0(t;β, f), and denote the global estimating function for β as

UG(β, f) =
n∑

i=1

∫ τ

0
Zig

{
m̂0(t;β, f) + βTZi + f(Xi)

}
dNi(t)

−
n∑

i=1

∫ τ

0
Yi(t)Zid

(
g
{
m̂0(t;β, f) + βTZi + f(Xi)

}
+ t

)
. (A.1)

For fixed m0(t) and β, denote the local estimating functions for γ0(x) and
γ1(x) as

UL(m0,β, γ0, γ1)(x)

=
n∑

i=1

∫ τ

0

(
1, Xi − x

h

)T

Kh(Xi − x)

× g
{
m0(t) + βTZi + γ0(x) + γ1(x)(Xi − x)

}
dNi(t)

−
n∑

i=1

∫ τ

0

(
1, Xi − x

h

)T

Kh(Xi − x)Yi(t)

× d
(
g
{
m0(t) + βTZi + γ0(x) + γ1(x)(Xi − x)

}
+ t

)
. (A.2)

Proof of Theorem 3.1. To establish the asymptotic results in Theorem 3.1, we
first need to prove the consistency of m̂0(·), β̂ and f̂(·) obtained from estimating
equations (2.3)–(2.7). Because the global consistency is difficult to derive, we
only prove the local consistency. That is, we only consider a small neighborhood
of the true parameters β∗ and f∗(·), but not the possible domain of β and f(·).

The one-step estimators can be used as the initial estimators for the fully-
iterated estimators. For ease of exposition, we defer the derivation and the proof
of the local consistency of the one-step estimator to Appendix B. Following the
arguments of [4], the fully-iterated estimators β̂, γ̂0(x) and γ̂1(x) are also locally
consistent.

To prove the consistency of m̂0(t), we first need to show the consistency of
m̂0(t;β0, f∗). Let S be the proper space of all the possible baseline mean residual
life functions. For any m1, m2 ∈ S, define

d(m1,m2) = sup
t∈[0,τ ]

|m1(t) −m2(t)|

as a metric on S.
Let H be a mapping on S defined by

H(m)(t) = 1
n

n∑
i=1

∫ t

0

[
g
{
m(s) + βT

0 Zi + f∗(Xi)
}
dNi(s)

− Yi(s)d
(
g
{
m(s) + βT

0 Zi + f∗(Xi)
}

+ s
)]
.
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Simple algebraic manipulation yields

H(m1)(t) −H(m2)(t)

= 1
n

n∑
i=1

∫ t

0

[(
g
{
m1(s) + βT

0 Zi + f∗(Xi)
}
− g

{
m2(s) + βT

0 Zi + f∗(Xi)
})

dNi(s)

− Yi(s)d
(
g
{
m1(s) + βT

0 Zi + f∗(Xi)
}
− g

{
m2(s) + βT

0 Zi + f∗(Xi)
})]

= 1
n

n∑
i=1

[(
g
{
m1(T̃i)+βT

0 Zi+f∗(Xi)
}
−g

{
m2(T̃i)+βT

0 Zi+f∗(Xi)
})

ΔiI(T̃i<t)

−
(
g
{
m1(t ∧ T̃i) + βT

0 Zi + f∗(Xi)
}
− g

{
m2(t ∧ T̃i) + βT

0 Zi + f∗(Xi)
})]

= 1
n

n∑
i=1

(
ΔiI(T̃i < t) − 1

)[
g
{
m1(t ∧ T̃i) + βT

0 Zi + f∗(Xi)
}

− g
{
m2(t ∧ T̃i) + βT

0 Zi + f∗(Xi)
}]

.

In the above derivation, note that by definition, g{m1(0)} = g{m2(0)} =
E[Ti|Xi = 0,Zi = 0], thus the term involving m1(0) and m2(0) vanishes. For
any fixed ε > 0, if d(m1,m2) > ε, then d(H(m1), H(m2)) ≥ cε holds almost
surely, where c is a positive constant. We elaborate this point as follows. If
d(m1,m2) > ε, then there exists a t∗ ∈ [0, τ ] such that |m2(t∗) − m1(t∗)| > ε,
now we have

d
(
H(m1), H(m2)

)
≥

∣∣∣∣∣ 1n
n∑

i=1

(
ΔiI(T̃i < t∗) − 1

) ∫ m1(t∗∧T̃i)

m2(t∗∧T̃i)
ġ
{
s + βT

0 Zi + f∗(Xi)
}
ds

∣∣∣∣∣
≥

∣∣∣∣∣ 1n
n∑

i=1

(
ΔiI(T̃i < t∗) − 1

)
I(T̃i ≥ τ)

∫ m1(t∗)

m2(t∗)
ġ
{
s + βT

0 Zi + f∗(Xi)
}
ds

∣∣∣∣∣
= 1

n

n∑
i=1

I(T̃i ≥ τ)ġ
{
s∗ + βT

0 Zi + f∗(Xi)
}
|m2(t∗) −m1(t∗)|,

where s∗ lies in between m1(t∗) and m2(t∗), and the equality holds by noting
that I(T̃i < t∗)I(T̃i ≥ τ) = 0. Then, in view of conditions (C2) and (C4), using
the law of large numbers, 1

n

∑n
i=1 I(T̃i ≥ τ)ġ{s∗ + βT

0 Zi + f∗(Xi)} converges
to a positive constant. Therefore, for large n, there exists a positive constant
c such that d(H(m1), H(m2)) ≥ cε. Thus, the linear bounded operator H is
injective, this ensures that the inverse of H exists. Furthermore, the inverse of
H is continuous and bounded by the arbitrariness of ε [32]. Using the uniform
strong law of large numbers and the continuity of m∗(t) (condition (C2)), we
can show that supt∈[0,τ ] |H(m̂0(·;β0, f∗))(t) − H(m∗)(t)| → 0 almost surely.
Therefore, with probability 1, m̂0(t;β0, f∗) is in the neighborhood of m∗ with
arbitrarily small radius ε under the metric d(·, ·). It follows that m̂0(t;β0, f∗)
converges to m∗(t) almost surely. In view of the local consistency of β̂, γ̂0 and
γ̂1, m̂0(t) = m̂0(t; β̂, γ̂0) converges to m∗(t) in probability.



96 H. He et al.

Given the consistency of β̂, γ̂0, γ̂1 and m̂0(t;β0, f∗), we will establish the
following asymptotic representation of β̂

n1/2(β̂ − β0)

= − A−1n−1/2
n∑

i=1

∫ τ

0

{
Zi − μZ(t) −

(
Z∗

i − μZ∗,i

)}
× g

{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t) + op(1), (A.3)

where A, μZ(t), Z∗
i and μZ∗,i are defined in Section 3, and dMi(t) = dMi(t;m∗,

β0, f∗).
Assuming (A.3) holds, by the regularity conditions given in Theorem 3.1, and

the martingale central limit theorem, n1/2(β̂−β0) converges to a normal random
vector with zero-mean and covariance matrix A−1Σ(A−1)T . To prove (A.3), we
proceed in seven steps.

Step A1. We first derive an asymptotic representation of m̂0(t;β0, f∗). Some
manipulation yields that − 1

n

∑n
i=1 g{m∗(t) + βT

0 Zi + f∗(Xi)}dMi(t) equals

1
n

n∑
i=1

[
g
{
m̂0(t;β0, f∗) + βT

0 Zi + f∗(Xi)
}
− g

{
m∗(t) + βT

0 Zi + f∗(Xi)
}]

dNi(t)

− 1
n

n∑
i=1

Yi(t)d
[
g
{
m̂0(t;β0, f∗)+βT

0 Zi+f∗(Xi)
}
−g

{
m∗(t)+βT

0 Zi+f∗(Xi)
}]

.

Define V (x) =
∫ x

0 v(s)ds, where v{m∗(t) is define in Section 3. It can be verified
that

v
{
m∗(t)

}
E
[
dQ(t)

]
+ E

[
Y (t)ġ

{
m∗(t) + βT

0 Z + f∗(X)
}]

dv
{
m∗(t)

}
= 0. (A.4)

Using the Taylor expansion, we have

− 1
n

n∑
i=1

∫ t

0
g
{
m∗(s) + βT

0 Zi + f∗(Xi)
}
dMi(s)

= 1
n

n∑
i=1

∫ t

0
ġ
{
m∗(s) + βT

0 Zi + f∗(Xi)
}V {m̂0(s;β0, f∗)} − V {m∗(s)}

v{m∗(s)}
dNi(s)

− 1
n

n∑
i=1

∫ t

0
Yi(s)d

[
ġ{m∗(s) + βT

0 Zi + f∗(Xi)}
v{m∗(s)}

×
(
V
{
m̂0(s;β0, f∗)

}
− V

{
m∗(s)

})]
+ op

(
n−1/2)

= 1
n

n∑
i=1

∫ t

0
ġ
{
m∗(s) + βT

0 Zi + f∗(Xi)
}V {m̂0(s;β0, f∗)} − V {m∗(s)}

v{m∗(s)}
dNi(s)

− 1
n

n∑
i=1

∫ t

0

Yi(s)ġ{m∗(s) + βT
0 Zi + f∗(Xi)}

v{m∗(s)}
d
[
V
{
m̂0(s;β0, f∗)

}
−V

{
m∗(s)

}]
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− 1
n

n∑
i=1

∫ t

0
Yi(s)

[
V
{
m̂0(s;β0, f∗)

}
− V

{
m∗(s)

}]

× v{m∗(s)}dġ{m∗(s)+βT
0 Zi+f∗(Xi)}−ġ{m∗(s)+βT

0 Zi+f∗(Xi)}dv{m∗(s)}
v{m∗(s)}2

+ op
(
n−1/2).

By the uniform strong law of large numbers and (A.4), we have

− 1
n

n∑
i=1

∫ t

0
g
{
m∗(s) + βT

0 Zi + f∗(Xi)
}
dMi(s)

=
∫ t

0

V {m̂0(s;β0, f∗)} − V {m∗(s)}
v{m∗(s)}2

×
(
v
{
m∗(s)

}∑n
i=1dQi(s)

n
+
∑n

i=1 Yi(s)ġ{m∗(s)+βT
0 Zi+f∗(Xi)}

n
dv

{
m∗(s)

})

−
∫ t

0

n−1 ∑n
i=1 Yi(s)ġ{m∗(s) + βT

0 Zi + f∗(Xi)}
v{m∗(s)}

d
[
V
{
m̂0(s;β0, f∗)

}
− V

{
m∗(s)

}]
+ op

(
n−1/2)

=
∫ t

0

V {m̂0(s;β0, f∗)} − V {m∗(s)}
v{m∗(s)}2

×
(
v
{
m∗(s)

}
E
[
dQ(s)

]
+ E

[
Y (s)ġ

{
m∗(s) + βT

0 Z + f∗(X)
}]

dv
{
m∗(s)

})
−

∫ t

0

E[Y (s)ġ{m∗(s) + βT
0 Z + f∗(X)}]

v{m∗(s)}
d
[
V
{
m̂0(s;β0, f∗)

}
− V

{
m∗(s)

}]
+ op

(
n−1/2)

= −
∫ t

0

E[Y (s)ġ{m∗(s) + βT
0 Z + f∗(X)}]

v{m∗(s)}
d
[
V
{
m̂0(s;β0, f∗)

}
− V

{
m∗(s)

}]
+ op

(
n−1/2).

Thus, we have the representation

V
{
m̂0(t;β0, f∗)

}
− V

{
m∗(t)

}
= − 1

n

n∑
i=1

∫ τ

t

v{m∗(s)}g{m∗(s) + βT
0 Zi + f∗(Xi)}

E[Y (s)ġ{m∗(s) + βT
0 Z + f∗(X)}]

dMi(s) + op(1). (A.5)

Step A2. We now find the limit of the derivative of m̂0(t;β, f) with respect to
β at β = β0 and f = f∗. Replacing m0(t) with m̂0(t;β, f) in (2.3), and taking
derivatives with respect to β in both sides, we have

n∑
i=1

ġ
{
m̂0(t;β, f) + βTZi + f∗(Xi)

}(∂m̂0(t;β, f)
∂β

+ Zi

)
dNi(t)

−
n∑

i=1
Yi(t)d

[
ġ
{
m̂0(t;β, f) + βTZi + f∗(Xi)

}(∂m̂0(t;β, f)
∂β

+ Zi

)]
= 0.
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Using a similar argument as in the derivation of (A.5), we obtain

∂m̂0(t;β, f)
∂β

∣∣∣∣
β=β0,f=f∗

= −
∫ τ

t

B(s, t)E[ZdQ(s)]
E[Y (s)ġ{m∗(s) + βT

0 Z + f∗(X)}]
+ op(1)

Δ= −a(t) + op(1). (A.6)

Step A3. In this step, we need to find the limit of n−1∂UG(β, f)/∂β at β = β0
and f = f∗. Some manipulation yields

1
n

∂UG(β, f)
∂β

= 1
n

n∑
i=1

∫ τ

0
Ziġ

{
m̂0(t;β, f) + βTZi + f(Xi)

}(∂m̂0(t;β, f)
∂β

+ Zi

)T

dNi(t)

− 1
n

n∑
i=1

∫ τ

0
ZiYi(t)d

[
ġ
{
m̂0(t;β, f) + βTZi + f(Xi)

}(∂m̂0(t;β, f)
∂β

+ Zi

)T]

= 1
n

n∑
i=1

∫ τ

0
ZiZT

i

[
ġ
{
m̂0(t;β, f) + βTZi + f(Xi)

}
dNi(t)

− Yi(t)dġ
{
m̂0(t;β, f) + βTZi + f(Xi)

}]
+ 1

n

n∑
i=1

∫ τ

0
Ziġ

{
m̂0(t;β, f) + βTZi + f(Xi)

}(∂m̂0(t;β, f)
∂β

)T

dNi(t)

− 1
n

n∑
i=1

∫ τ

0
ZiYi(t)d

[
ġ
{
m̂0(t;β) + βTZi + f(Xi)

}(∂m̂0(t;β, f)
∂β

)T]
.

Since
∫ τ

0 h(t)dNi(t) = h(T̃i)Δi and
∫ τ

0 Yi(t)dh(t) = h(T̃i)−h(0), where h(·) is a
function, we rewrite the above expression as

1
n

∂UG(β, f)
∂β

= 1
n

n∑
i=1

∫ τ

0
ZiZT

i dQi

(
t; m̂0(·;β, f),β, f

)

+ 1
n

n∑
i=1

(Δi − 1)Ziġ
{
m̂0(T̃i;β, f) + βTZi + f(Xi)

}(∂m̂0(T̃i;β, f)
∂β

)T

+ 1
n

n∑
i=1

Ziġ
{
m̂0(0;β, f) + βTZi + f(Xi)

}(∂m̂0(0;β, f)
∂β

)T

Δ= I1(β, f) + I2(β, f) + I3(β, f).

By the consistency of m̂0(·;β0, f∗) to m∗(·), and the uniform law of large num-
bers, we have

I1(β0, f∗) = E

[∫ τ

0
ZZT dQ(t)

]
+ op(1).
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Using (A.6), we obtain

I2(β0, f∗) = 1
n

n∑
i=1

(Δi − 1)Ziġ
{
m̂0(T̃i;β0, f∗) + βT

0 Zi + f∗(Xi)
}

×
[
−
∫ τ

T̃i

B(s, T̃i)E[ZT dQ(s)]
E[Y (s)ġ{m∗(s) + βT

0 Z + f∗(X)}]

]
+ op(1)

= −E

[∫ τ

0
μ1(s)ZT dQ(s)

]
+ op(1).

Similarly,

I3(β0, f∗) = −E

[∫ τ

0
μ2(s)ZT dQ(s)

]
+ op(1),

where μ1(s) and μ2(s) are defined in Section 3. Thus, we have

1
n

∂UG(β, f)
∂β

∣∣∣∣
β=β0,f=f∗

= E

[∫ τ

0

{
Z − μ1(t) − μ2(t)

}
ZT dQ(t)

]
+ op(1)

= A1 + op(1). (A.7)

Step A4. We now find the asymptotic representations of γ̂0 and γ̂1, which
are the solutions to the local equation (2.7) at convergence. Let m̂#(t;β) =
m̂0(t;β, γ̂0), recall (A.2), we have

UL

(
m̂#(·; β̂), β̂, γ̂0, γ̂1

)
(x) − UL

(
m̂#(·;β0),β0, γ̂0, γ̂1

)
(x)

=
n∑

i=1

∫ τ

0

(
1, Xi − x

h

)T

Kh(Xi − x)

× g
{
m̂#(t; β̂) + β̂

T
Zi + γ̂0(x) + γ̂1(x)(Xi − x)

}
dNi(t)

−
n∑

i=1

∫ τ

0

(
1, Xi − x

h

)T

Kh(Xi − x)

× g
{
m̂#(t;β0) + βT

0 Zi + γ̂0(x) + γ̂1(x)(Xi − x)
}
dNi(t)

−
n∑

i=1

∫ τ

0

(
1, Xi − x

h

)T

Kh(Xi − x)Yi(t)

× dg
{
m̂#(t; β̂) + β̂

T
Zi + γ̂0(x) + γ̂1(x)(Xi − x)

}
+

n∑
i=1

∫ τ

0

(
1, Xi − x

h

)T

Kh(Xi − x)Yi(t)

× dg
{
m̂#(t;β0) + βT

0 Zi + γ̂0(x) + γ̂1(x)(Xi − x)
}

=nW1(x)(β̂ − β0) + op
(
n1/2), (A.8)

where

W1(x) = 1
n

(Δi − 1)
(

1, Xi − x

h

)T

Kh(Xi − x)
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× ġ
{
m̂#(T̃i;β0) + βT

0 Zi + γ̂0(x) + γ̂1(x)(Xi − x)
}

×
(
∂m̂#(T̃i;β)

∂βT

∣∣∣∣
β=β0

+ ZT
i

)

+ 1
n

(
1, Xi − x

h

)T

Kh(Xi − x)

× ġ
{
m̂#(0;β0) + βT

0 Zi + γ̂0(x) + γ̂1(x)(Xi − x)
}

×
(
∂m̂#(0;β)

∂βT

∣∣∣∣
β=β0

+ ZT
i

)
.

Similarly, we have

UL

(
m̂#(·;β0),β0, γ̂0, γ̂1

)
(x) − UL(m∗,β0, γ̂0, γ̂1)(x) = nW2(x) + op

(
n1/2),

(A.9)
where

W2(x) = 1
n

(Δi − 1)
(

1, Xi − x

h

)T

Kh(Xi − x)

× ġ
{
m∗(T̃i) + βT

0 Zi + γ̂0(x) + γ̂1(x)(Xi − x)
}

× V {m̂#(T̃i;β0)} − V {m∗(T̃i)}
v{m∗(T̃i)}

+ 1
n

(
1, Xi − x

h

)T

Kh(Xi−x)ġ
{
m∗(0)+βT

0 Zi+γ̂0(x)+γ̂1(x)(Xi − x)
}

× V {m̂#(0;β0)} − V {m∗(0)}
v{m∗(0)} .

Moreover, we can show

UL(m∗,β0, γ̂0, γ̂1)(x) − UL(m∗,β0, f∗, ḟ∗)(x)

= nW3(x)
[

γ̂0(x) − f∗(x)
h{γ̂1(x) − ḟ∗(x)}

]
+ op

(
n1/2), (A.10)

where

W3(x) = 1
n

n∑
i=1

(Δi − 1)
[

1
(Xi − x)/h

]⊗2

Kh(Xi − x)

× ġ
{
m∗(T̃i) + βT

0 Zi + f∗(x) + ḟ∗(x)(Xi − x)
}

+ 1
n

n∑
i=1

[
1

(Xi − x)/h

]⊗2

Kh(Xi − x)

× ġ
{
m∗(0) + βT

0 Zi + f∗(x) + ḟ∗(x)(Xi − x)
}
.

Similar to the derivation of (A.6), we can show

∂m̂#(t;β)
∂β

∣∣∣∣
β=β0

= −a(t) + op(1),
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where a(t) is defined in (A.6). It can be checked that W1(x) converges to[
w11(x)T

01×p

]
,

where

w11(x) = r(x)E
[
(Δ − 1)

{
Z − a(T̃

}
ġ
{
m∗(T̃ ) + βT

0 Z + f∗(x)
}
|X = x

]
+ r(x)E

[{
Z − a(0)

}
ġ
{
m∗(0) + βT

0 Z + f∗(x)
}
|X = x

]
,

and r(x) is the density of Xi as stated in condition (C1). Note that

V
{
m̂#(T̃i;β0)

}
− V

{
m∗(T̃i)

}
= −

∫ τ

T̃i

d
[
V
{
m̂#(t;β0)

}
− V

{
m∗(t)

}]
= −

∫ τ

0
I(T̃i < t)d

[
V
{
m̂#(t;β0)

}
− V

{
m∗(t)

}]
,

(A.11)

and

V
{
m̂#(0;β0)

}
− V

{
m∗(0)

}
= −

∫ τ

0
d
[
V
{
m̂#(t;β0)

}
− V

{
m∗(t)

}]
. (A.12)

Thus, using (A.11) and (A.12), we obtain

W2(x) = −
∫ τ

0

[
w21(x, t)

0

]
d
[
V
{
m̂#(t;β0)

}
−V

{
m∗(t)

}]
+op

(
n−1/2), (A.13)

where

w21(x, t) = r(x)E
[
(Δ−1)ġ

{
m∗(T̃ )+βT

0 Z + f∗(x)
}
I(T̃ < t)v

{
m∗(T̃ )

}−1|X=x
]

+ r(x)E
[
ġ
{
m∗(0) + βT

0 Z + f∗(x)
}
v
{
m∗(0)

}−1|X = x
]
.

We can also check that W3(x) converges to

w31(x)
[
1 0
0 k2

]
,

where k2 =
∫
x2K(x)dx, and

w31(x)=r(x)E
[
(Δ−1)ġ

{
m∗(T̃ )+βT

0 Z+f∗(x)
}
+ġ

{
m∗(0)+βT

0 Z+f∗(x)
}
|X=x

]
.

Combining (A.8)–(A.10) and (A.13), and the convergence of W1(x) and W3(x),
we have

γ̂0(x) − f∗(x) = − 1
w31(x)

1
n
UL1(m∗,β0, f∗, ḟ∗)(x) − w11(x)T

w31(x) (β̂ − β0)

+
∫ τ

0

w21(x, t)
w31(x) d

[
V
{
m̂#(t;β0)

}
− V

{
m∗(t)

}]
+ op

(
n−1/2),

(A.14)
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and

h
{
γ̂1(x) − ḟ∗(x)

}
= − 1

k2w31(x)
1
n
UL2(m∗,β0, f∗, ḟ∗)(x) + op

(
n−1/2), (A.15)

where UL1(m∗,β0, f∗, ḟ∗)(x) and UL2(m∗,β0, f∗, ḟ∗)(x) are the first and second
component of UL(m∗,β0, f∗, ḟ∗)(x), respectively.

Step A5. Note that for fixed β, m̂#(t;β) is the solution to the following esti-
mating equation

n∑
i=1

[
g
{
m̂#(t;β) + βTZi + γ̂0(Xi)

}
dNi(t)

− Yi(t)d
(
g
{
m̂#(t;β) + βTZi + γ̂0(Xi)

}
+ t

)]
= 0, (A.16)

and β̂ solves the following estimating equation
n∑

i=1

∫ τ

0
Zi

[
g
{
m̂#(t;β) + βTZi + γ̂0(Xi)

}
dNi(t)

− Yi(t)d
(
g
{
m̂#(t;β) + βTZi + γ̂0(Xi)

}
+ t

)]
= 0. (A.17)

Simple algebraic manipulation yields

− 1
n

n∑
i=1

g
{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t)

= 1
n

n∑
i=1

[
g
{
m̂#(t;β0) + βT

0 Zi + γ̂0(Xi)
}
− g

{
m∗(t) + βT

0 Zi + γ̂0(Xi)
}]

dNi(t)

− 1
n

n∑
i=1

Yi(t)d
[
g
{
m̂#(t;β0) + βT

0 Zi + γ̂0(Xi)
}
− g

{
m∗(t)+βT

0 Zi+γ̂0(Xi)
}]

+ 1
n

n∑
i=1

[
g
{
m∗(t) + βT

0 Zi + γ̂0(Xi)
}
− g

{
m∗(t) + βT

0 Zi + f∗(Xi)
}]

dNi(t)

− 1
n

n∑
i=1

Yi(t)d
[
g
{
m∗(t) + βT

0 Zi + γ̂0(Xi)
}
− g

{
m∗(t) + βT

0 Zi + f∗(Xi)
}]
.

Using the Taylor expansion, similar to the the derivation of (A.5), we have

− 1
n

n∑
i=1

g
{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t)

= −E[Y (t)ġ{m∗(t) + βT
0 Z + f∗(X)}]

v{m∗(t)}
d
[
V
{
m̂#(t;β0)

}
− V

{
m∗(t)

}]

+ 1
n

n∑
i=1

{
γ̂0(Xi) − f∗(Xi)

}
dQi(t) + d

{
op
(
m̂#(t;β0) −m∗(t)

)}
. (A.18)
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Denote the left side of (A.17) as UG(β, m̂#(·;β), γ̂0), using the Taylor expan-
sion, we have

UG

(
β̂, m̂#(·; β̂), γ̂0

)
− UG

(
β0, m̂#(·;β0), γ̂0

)
=

n∑
i=1

∫ τ

0
Zi

[
g
{
m̂#(t; β̂) + β̂

T
Zi + γ̂0(Xi)

}
− g

{
m̂#(t;β0) + βT

0 Zi + γ̂0(Xi)
}]

dNi(t)

−
n∑

i=1

∫ τ

0
ZiYi(t)d

[
g
{
m̂#(t; β̂) + β̂

T
Zi + γ̂0(Xi)

}
− g

{
m̂#(t;β0) + βT

0 Zi + γ̂0(Xi)
}]

=
n∑

i=1

∫ τ

0
Ziġ

{
m̂#(t;β0) + βT

0 Zi + γ̂0(Xi)
}

×
(
∂m̂#(t;β)

∂β

∣∣∣∣
β=β0

+ Zi

)T

(β̂ − β0)dNi(t)

−
n∑

i=1

∫ τ

0
ZiYi(t)d

[
ġ
{
m̂#(t;β0) + βT

0 Zi + γ̂0(Xi)
}

×
(
∂m̂#(t;β)

∂β

∣∣∣∣
β=β0

+ Zi

)T

(β̂ − β0)
]

+ op
(
n1/2)

=
n∑

i=1

∫ τ

0
ZiZT

i dQi

(
t; m̂#(·;β0),β0, γ̂0

)
(β̂ − β0)

+
n∑

i=1
(Δi − 1)Ziġ

{
m̂#(T̃i;β0) + βT

0 Zi + γ̂0(Xi)
}

×
(
∂m̂#(T̃i;β)

∂β

∣∣∣∣
β=β0

)T

(β̂ − β0)

+
n∑

i=1
Ziġ

{
m̂#(0;β0) + βT

0 Zi + γ̂0(Xi)
}

×
(
∂m̂#(0;β)

∂β

∣∣∣∣
β=β0

)T

(β̂ − β0) + op
(
n1/2).

Using a similar argument as in deriving (A.7), and by the consistency of m̂#(t;β)
and γ̂0(Xi), we have

UG

(
β̂, m̂#(·; β̂), γ̂0

)
− UG

(
β0, m̂#(·;β0), γ̂0

)
= nA1(β̂ − β0) + op

(
n1/2),

(A.19)
where A1 is defined in Section 3, also appears in (A.7).

Similarly,

UG

(
β0, m̂#(·;β0), γ̂0

)
− UG

(
β0, m̂#(·;β0), f∗

)
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=
n∑

i=1

∫ τ

0
Zi

[
g
{
m̂#(t;β0) + βT

0 Zi + γ̂0(Xi)
}

− g
{
m̂#(t;β0) + βT

0 Zi + f∗(Xi)
}]

dNi(t)

−
n∑

i=1

∫ τ

0
ZiYi(t)d

[
g
{
m̂#(t;β0) + βT

0 Zi + γ̂0(Xi)
}

− g
{
m̂#(t;β0) + βT

0 Zi + f∗(Xi)
}]

=
n∑

i=1

∫ τ

0
Zi

{
γ̂0(Xi) − f∗(Xi)

}
dQi

(
t; m̂#(·;β0),β0, f∗

)
+ op

(
n1/2). (A.20)

Moreover, similar to the derivation of (A.19), we have

UG

(
β0, m̂#(·;β0), f∗

)
=

n∑
i=1

∫ τ

0
Zig

{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t)

+
n∑

i=1
(Δi − 1)Zi

[
g
{
m̂#(T̃i;β0) + βT

0 Zi + f∗(Xi)
}

− g
{
m∗(T̃i) + βT

0 Zi + f∗(Xi)
}]

+
n∑

i=1
Zi

[
g
{
m̂#(0;β0) + βT

0 Zi + f∗(Xi)
}
− g

{
m∗(0) + βT

0 Zi + f∗(Xi)
}]

=
n∑

i=1

∫ τ

0
Zig

{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t)

+
n∑

i=1
(Δi − 1)Ziġ

{
m∗(T̃i) + βT

0 Zi + f∗(Xi)
}V {m̂#(T̃i;β0)} − V {m∗(T̃i)}

v{m∗(T̃i)}

+
n∑

i=1
Ziġ

{
m∗(0) + βT

0 Zi + f∗(Xi)
}V {m̂#(0;β0)} − V {m∗(0)}

v{m∗(0)} + op
(
n1/2).

In view of (A.11) and (A.12), it follows that

UG

(
β0, m̂#(·;β0), f∗

)
=

n∑
i=1

∫ τ

0
Zig

{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t)

− n

∫ τ

0
W4(t)d

[
V
{
m̂#(t;β0)

}
− V

{
m∗(t)

}]
+ op

(
n1/2)

=
n∑

i=1

∫ τ

0
Zig

{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t)

− n

∫ τ

0
w4(t)d

[
V
{
m̂#(t;β0)

}
− V

{
m∗(t)

}]
+ op

(
n1/2), (A.21)
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where

W4(t) = 1
n

n∑
i=1

(Δi − 1)Ziġ
{
m∗(T̃i) + βT

0 Zi + f∗(Xi)
}
I(T̃i < t)v

{
m∗(T̃i)

}−1

+ 1
n

n∑
i=1

Ziġ
{
m∗(0) + βT

0 Zi + f∗(Xi)
}
v
{
m∗(0)

}−1
,

w4(t) = E
[
(Δ − 1)Zġ

{
m∗(T̃ ) + βT

0 Z + f∗(X)
}
I(T̃ < t)v

{
m∗(T̃ )

}−1]
+ E

[
Zġ

{
m∗(0) + βT

0 Z + f∗(X)
}
v
{
m∗(0)

}−1]
,

and w4(t) is the limit of W4(t).
Adding (A.19), (A.20) and (A.21), and note that UG(β̂, m̂#(·; β̂), γ̂0) = 0,

we obtain

1
n

n∑
i=1

∫ τ

0
Zig

{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t)

= −A1(β̂ − β0) −
1
n

n∑
i=1

∫ τ

0
Zi

{
γ̂0(Xi) − f∗(Xi)

}
dQi

(
t; m̂#(·;β0),β0, f∗

)

+
∫ τ

0
w4(t)d

[
V
{
m̂#(t;β0)

}
− V

{
m∗(t)

}]
+ op

(
n−1/2). (A.22)

Step A6. We further refine (A.18) and (A.22) by using the expression of γ̂0(x)−
f∗(x) given by (A.14). For ease of presentaion, we set B2(t) = E[Y (t)ġ{m∗(t)+
βT

0 Z + f∗(X)}] hereafter. Plugging (A.14) into (A.18), we obtain

− 1
n

n∑
i=1

g
{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t)

= − B2(t)
v{m∗(t)}

d
[
V
{
m̂#(t;β0)

}
− V

{
m∗(t)

}]

− 1
n

n∑
i=1

1
w31(Xi)

1
n
UL1(m∗,β0, f∗, ḟ∗)(Xi)dQi(t)

− 1
n

n∑
i=1

w11(Xi)T

w31(Xi)
(β̂ − β0)dQi(t)

+ 1
n

n∑
i=1

∫ τ

0

w21(Xi, s)
w31(Xi)

d
[
V
{
m̂#(s;β0)

}
− V

{
m∗(s)

}]
dQi(t)

+ d
{
op
(
m̂#(t;β0) −m∗(t)

)}
.

Multiplying the above expression by α(t)v{m∗(t)}
B2(t) on both sides, then taking

integral from 0 to τ , it follows that

− 1
n

n∑
i=1

∫ τ

0

α(t)v{m∗(t)}
B2(t)

g
{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t)
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= −
∫ τ

0
α(t)d

[
V
{
m̂#(t;β0)

}
− V

{
m∗(t)

}]

− 1
n

n∑
i=1

∫ τ

0

α(t)v{m∗(t)}
B2(t)

w11(Xi)T

w31(Xi)
dQi(t)(β̂ − β0)

+ 1
n

n∑
i=1

∫ τ

0

(∫ τ

0

α(t)v{m∗(t)}
B2(t)

dQi(t)
)

× w21(Xi, s)
w31(Xi)

d
[
V
{
m̂#(s;β0)

}
− V

{
m∗(s)

}]

− 1
n

n∑
i=1

∫ τ

0

1
w31(Xi)

1
n
UL1(m∗,β0, f∗, ḟ∗)(Xi)

α(t)v{m∗(t)}
B2(t)

dQi(t)

+ op
(
n−1/2). (A.23)

Plugging (A.14) into (A.22), we have

1
n

n∑
i=1

∫ τ

0
Zig

{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t)

= −A1(β̂ − β0) + 1
n

n∑
i=1

∫ τ

0
Zi

1
w31(Xi)

1
n
UL1(m∗,β0, f∗, ḟ∗)(Xi)dQi(t)

+ 1
n

n∑
i=1

∫ τ

0
Zi

w11(Xi)T

w31(Xi)
dQi(t)(β̂ − β0)

+
∫ τ

0
w4(t)d

[
V
{
m̂#(t;β0)

}
− V

{
m∗(t)

}]

− 1
n

n∑
i=1

∫ τ

0
Zi

(∫ τ

0

w21(Xi, t)
w31(Xi)

d
[
V
{
m̂#(t;β0)

}
− V

{
m∗(t)

}])
dQi(s)

+ op
(
n−1/2). (A.24)

Let

D1(t, ds) = v{m∗(s)}
B2(s)

E

[
w21(X, t)
w31(X) dQ(s)

]
,

D2(t) = w4(t) − E

[∫ τ

0

Zw21(X, t)
w31(X) dQ(s)

]
,

and

A21 = E

[∫ τ

0

Zw11(X)T

w31(X) dQ(t)
]
, A22 = E

[
α(t)v{m∗(t)}

B2(t)
w11(X)T

w31(X) dQ(t)
]
.

Then (A.23) can be rewritten as∫ τ

0

(
α(t) −

∫ τ

0
α(s)D1(t, ds)

)
d
[
V
{
m̂#(t;β0)

}
− V

{
m∗(t)

}]
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+ A22(β̂ − β0) −
1
n

n∑
i=1

∫ τ

0

α(t)v{m∗(t)}
B2(t)

g
{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t)

+ 1
n

n∑
i=1

∫ τ

0

1
w31(Xi)

1
n
UL1(m∗,β0, f∗, ḟ∗)(Xi)

α(t)v{m∗(t)}
B2(t)

dQi(t)=op
(
n−1/2),
(A.25)

and (A.24) can be rewritten as

1
n

n∑
i=1

∫ τ

0
Zig

{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t)

+ (A1 − A21)(β̂ − β0) −
∫ τ

0
D2(t)d

[
V
{
m̂#(t;β0)

}
− V

{
m∗(t)

}]

− 1
n

n∑
i=1

∫ τ

0
Zi

1
w31(Xi)

1
n
UL1(m∗,β0, f∗, ḟ∗)(Xi)dQi(t) = op

(
n−1/2). (A.26)

Define ρ(X) = w11(X)
w31(X) , we observe that A2 = A21 − A22, where A2 is given is

Section 3. Adding (A.25) and (A.26), and note that α(t) solves equation (3.1),
we have

(A1 − A2)(β̂ − β0)

= − 1
n

n∑
i=1

∫ τ

0

{
Zi −

α(t)v{m∗(t)}
B2(t)

}
g
{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t)

+ G1 − G2 + op
(
n−1/2), (A.27)

where

G1 = 1
n

n∑
i=1

∫ τ

0
Zi

1
w31(Xi)

1
n
UL1(m∗,β0, f∗, ḟ∗)(Xi)dQi(t)

and

G2 = 1
n

n∑
i=1

∫ τ

0

1
w31(Xi)

1
n
UL1(m∗,β0, f∗, ḟ∗)(Xi)

α(t)v{m∗(t)}
B2(t)

dQi(t).

Step A7. In this step, we will find the asymptotic representations of G1 and
G2. Recall the expression of UL(m0,β, γ0, γ1)(x) (see (A.2)), we obtain

G1 = 1
n

n∑
i=1

∫ τ

0

Zi

w31(Xi)
dQi(s)

(
1
n

n∑
j=1

∫ τ

0
Kh(Xj −Xi)g

{
m∗(t) + βT

0 Zj

+ f∗(Xi) + ḟ∗(Xi)(Xj −Xi)
}
dNj(t)

)
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− 1
n

n∑
i=1

∫ τ

0

Zi

w31(Xi)
dQi(s)

(
1
n

n∑
j=1

∫ τ

0
Kh(Xj −Xi)Yj(t)d

(
g{m∗(t)

+ βT
0 Zj + f∗(Xi) + ḟ∗(Xi)(Xj −Xi) + t

))
.

Using the Taylor expansion and some standard nonparametric techniques, we
have

G1 = 1
n

n∑
i=1

∫ τ

0
Z∗

i g
{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t) + op

(
n−1/2).

Similarly,

G2 = 1
n

n∑
i=1

∫ τ

0
μZ∗,ig

{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t) + op

(
n−1/2),

where Z∗
i and μZ∗,i are defined in Section 3.

By (A.27) and the asymptotic expressions of G1 and G2, (A.3) holds. Thus,
using the martingale central limit theorem, Theorem 3.1 is proved.

Proof of Theorem 3.2. Let m̂0(t) = m̂#(t; β̂), we need to find the asymptotic
representation of

√
n{m̂0(t) − m∗(t)}. Recall that m̂#(t;β) = m̂0(t;β, γ̂0), we

first consider
√
n[V {m̂#(t; β̂)} − V {m∗(t)}]. Note that

V
{
m̂#(t; β̂)

}
− V

{
m̂#(t;β0)

}
= v

{
m̂#(t;β0)

}(∂m̂#(t;β)
∂βT

∣∣∣∣
β=β0

)
(β̂ − β0) + op(‖β̂ − β0‖).

Recall that ∂m̂#(t;β)
∂β |β=β0 = −a(t) + op(1), and that the asymptotic represen-

tation of n1/2(β̂−β0) has been established in (A.3), we only need to deal with

π̂n(t) �=
√
n
[
V
{
m̂#(t;β0)

}
− V

{
m∗(t)

}]
.

To establish the asymptotic representation of π̂n(t), we have the following lemma.

Lemma A1. Under the regularity conditions (C1)–(C6), if nh2/{log(1/h)} →
∞ and nh4 → 0, we have that π̂n(t) satisfies the following integral equation

π̂n(t) −
∫ τ

0
a(t, s)dπ̂n(s) = Φn(t), t ∈ [0, τ), (A.28)

where a(t, s) is a deterministic function defined later in (A.33). Φn(t) can be
written as a summation of independent mean zero functions, say,
n−1/2 ∑n

i=1 ϕi(t), which converges weakly to a mean-zero Gaussian process.
ϕi(t) is defined later in (A.34).



Regression analysis of PLTMRL models 109

Proof of Lemma A1. Plugging (A.14) into (A.18) and multiplying by n1/2, we
obtain

− n−1/2
n∑

i=1
g
{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t)

= − B2(t)
v{m∗(t)}

dπ̂n(t) − n−1/2
n∑

i=1

1
w31(Xi)

1
n
UL1(m∗,β0, f∗, ḟ∗)(Xi)dQi(t)

− 1
n

n∑
i=1

w11(Xi)T

w31(Xi)
[
n1/2(β̂ − β0)

]
dQi(t) + 1

n

n∑
i=1

∫ τ

0

w21(Xi, s)
w31(Xi)

dπ̂n(s)dQi(t)

+ d
{
op
(
n1/2[m̂#(t;β0) −m∗(t)

])}
. (A.29)

Define d{c(t)} = E[w11(X)T
w31(X) dQ(t)], and recall that D1(t, ds) = v{m∗(s)}

B2(s) ×
E[w21(X,t)

w31(X) dQ(s)]. Multiplying both sides of (A.29) by v{m∗(t)}
B2(t) , then replacing

the empirical quantities with their limits, and finally replacing the arguments
(t, s) with (s, u), (A.29) can be rewritten as

− n−1/2
n∑

i=1

v{m∗(s)}
B2(s)

g
{
m∗(s) + βT

0 Zi + f∗(Xi)
}
dMi(s)

= −dπ̂n(s) − n−1/2
n∑

i=1

v{m∗(s)}
B2(s)

1
w31(Xi)

1
n
UL1(m∗,β0, f∗, ḟ∗)(Xi)dQi(s)

− v{m∗(s)}
B2(s)

d
{
c(s)

}
n1/2(β̂ − β0) +

∫ τ

0
D1(u, ds)dπ̂n(u)

+ d
{
op
(
n1/2[m̂#(s;β0) −m∗(s)

])}
.

Taking integration from t to τ with respect to s on both sides of the above
expression yields

− n−1/2
n∑

i=1

∫ τ

t

v{m∗(s)}
B2(s)

g
{
m∗(s) + βT

0 Zi + f∗(Xi)
}
dMi(s)

= −
∫ τ

t

dπ̂n(s)−n−1/2
n∑

i=1

∫ τ

t

v{m∗(s)}
B2(s)

1
w31(Xi)

1
n
UL1(m∗,β0, f∗, ḟ∗)(Xi)dQi(s)

−
∫ τ

t

v{m∗(s)}
B2(s)

d
{
c(s)

}
n1/2(β̂ − β0) +

∫ τ

t

∫ τ

0
D1(u, ds)dπ̂n(u) + op(1).

(A.30)

Similar to the arguments in Step A7 of the proof of Theorem 3.1, we have

n−1/2
n∑

i=1

∫ τ

t

v{m∗(s)}
B2(s)

1
w31(Xi)

1
n
UL1(m∗,β0, f∗, ḟ∗)(Xi)dQi(s)

= n−1/2
n∑

i=1

∫ τ

0
μ̃Z∗,i(t)g

{
m∗(s) + βT

0 Zi + f∗(Xi)
}
dMi(s) + op(1), (A.31)
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where
μ̃Z∗,i(t) =

∫ τ

0

I(s > t)v{m∗(s)}
B2(s)

E[dQ(s)|X = Xi]
E[

∫ τ

0 dQ(u)|X = Xi]
.

Note that the last term on the right side of (A.30) can be expressed as∫ τ

t

∫ τ

0
D1(u, ds)dπ̂n(u) = −

∫ τ

0
a(t, u)dπ̂n(u), (A.32)

where
a(t, u) = −

∫ τ

t

D1(u, ds). (A.33)

Using (A.30), (A.31) and (A.32), combined with (A.3), we have

π̂n(t) −
∫ τ

0
a(t, u)dπ̂n(u) = Φn(t) = n−1/2

n∑
i=1

ϕi(t),

where

ϕi(t) = −
∫ τ

t

v{m∗(s)}
B2(s)

g
{
m∗(s)+βT

0 Zi+f∗(Xi)
}
dMi(s)−

∫ τ

t

v{m∗(s)}
B2(s)

d
{
c(s)

}
× A−1

∫ τ

0

{
Zi−μZ(t)−

(
Z∗

i −μZ∗,i

)}
g
{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t)

+
∫ τ

0
μ̃Z∗,i(t)g

{
m∗(s) + βT

0 Zi + f∗(Xi)
}
dMi(s), (A.34)

which are independent mean zero functions. Thus, Φn(t) converges weakly to a
mean zero Gaussian process as n → ∞.

We continue to prove Theorem 3.2. Using integration by parts, we rewrite
(A.28) as a Fredholm integral equation of the second kind with the kernel ∂a(t,s)

∂s .
We assume that equation (A.28) has a unique solution, which can be assured
by the condition

sup
t∈[0,τ ]

∫ τ

0

∣∣∣∣∂a(t, s)∂s

∣∣∣∣ds < ∞. (A.35)

Next, we construct a solution to equation (A.28) as

π̂n(t) = Φn(t) +
∫ τ

0
b(t, s)dΦn(s), (A.36)

where b(t, s) is the solution to the following equation

b(t, s) −
∫ τ

0
a(t, u)∂b(u, s)

∂u
du = a(t, s), t, s ∈ [0, τ). (A.37)

Notably, (A.37) can be rewritten as a Fredholm integral equation of the second
kind with the kernel ∂a(t,s)

∂s . Thus, equation (A.37) has a unique solution under
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condition (A.35). Then, we can verify that π̂n(t) defined in (A.36) is a solution
to the integral equation (A.28).

Using the representation of n1/2(β̂ − β0) in (A.3), we have

n1/2[V {
m̂#(t; β̂)

}
− V

{
m̂#(t;β0)

}]
=

∫ τ

t

v{m∗(s)}E[ZdQ(s)]
B2(s)

A−1

× n−1/2
n∑

i=1

∫ τ

0

{
Zi−μZ(t)−

(
Z∗

i −μZ∗,i

)}
g
{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t)

+ op(1).

Together with (A.36), we have

n1/2[V {
m̂#(t; β̂)

}
− V

{
m∗(t)

}]
= n−1/2

n∑
i=1

κi(t) + op(1),

where

κi(t) = ϕi(t) +
∫ τ

0
b(t, s)dϕi(s) +

∫ τ

t

v{m∗(s)}E[ZdQ(s)]
B2(s)

A−1

×
∫ τ

0

{
Zi − μZ(t) −

(
Z∗

i − μZ∗,i

)}
g
{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t)

are independent mean zero functions. Based on the functional delta method, we
have

n1/2{m̂0(t) −m∗(t)
}

= n−1/2
n∑

i=1

κi(t)
v{m∗(t)}

+ op(1)

on [0, τ). Thus, Theorem 3.2 is proved. Considering κi(t) (i = 1, . . . , n) are inde-
pendent and identically distributed zero mean random variables for each t, the
multivariate central limit theorem implies that n1/2{m̂0(t)−m∗(t)} converges in
finite-dimensional distribution to a zero-mean Gaussian process. In view of the
tightness of n1/2 ∑n

i=1 κi(t), it follows from the functional central limit theorem
that n1/2{m̂0(t)−m∗(t)} converges weakly to a mean zero Gaussian process.

Proof of Theorem 3.3. Based on the assumptions n1/2(β̂ − β0) = Op(1),
n1/2{m̂0(t) − m∗(t)} = Op(1), and the regularity conditions of Theorem 3.3,
it can be shown that

‖n−1UL(m̂0, β̂, γ̂0, γ̂1)(x) − n−1UL(m∗,β0, γ̂0, γ̂1)(x)‖ = Op

(
n−1/2).

Since UL(m̂0, β̂, γ̂0, γ̂1)(x) = 0, we have

n−1UL(m∗,β0, γ̂0, γ̂1)(x) = Op

(
n−1/2) = op(1/

√
nh).
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For convenience, set γ̃(x) = (γ0(x), hγ1(x))T , ˆ̃γ(x) = (γ̂0(x), hγ̂1(x))T , and
f̃∗(x) = (f∗(x), hḟ∗(x))T . We first show that ˆ̃γ(x) → f̃∗(x) in probability as
n → ∞. Note that

∂

∂γ̃
UL(m̂0, β̂0, γ0, γ1)(x)

=
n∑

i=1

∫ τ

0

[
1

(Xi − x)/h

]⊗2
Kh(Xi − x)

× ġ
{
m̂0(t) + β̂

T
Zi + γ0(x) + γ1(x)(Xi − x)

}
dNi(t)

−
n∑

i=1

∫ τ

0

[
1

(Xi − x)/h

]⊗2
Kh(Xi − x)Yi(t)

× dġ
{
m̂0(t) + β̂

T
Zi + γ0(x) + γ1(x)(Xi − x)

}
is non-degenerate. Moreover, by the uniform law of large numbers and stan-
dard nonparametric techniques, we can show that n−1 ∂

∂γ̃UL(m̂0,β0, γ0, γ1)(x)
converges to a non-degenerate deterministic matrix

u̇γ̃(m∗,β0, γ0)(x)
= r(x)E

[
(Δ − 1)ġ

{
m∗(T̃ ) + βT

0 Z + γ0(x)
}

+ ġ{m∗(0) + βT
0 Z + γ0(x)|X = x

]
×

[
1 0
0 k2

]
.

Again by the law of large numbers, and the consistency of m̂0(·) and β̂, we can
show

n−1UL(m̂0, β̂, γ0, γ1)(x) → u(m∗,β0, γ0)(x),

where u(m∗,β0, γ0)(x) equals[
r(x)
0

]
E
[
(Δ−1)g

{
m∗(T̃ )+βT

0 Z+γ0(x)
}
+g

{
m∗(0)+βT

0 Z+γ0(x)
}
−T̃ |X = x

]
.

Note that u(m∗,β0, f∗)(x) = 0. Following the arguments of [13], the consistency
of ˆ̃γ(x) holds. Using the Taylor expansion, we obtain

n−1UL(m∗,β0, ˆ̃γ)(x) − n−1UL(m∗,β0, f̃∗)(x)

=n−1
[
∂

∂γ̃
UL(m∗,β0, γ̃)(x)

]
γ̃=f̃ ∗

{ˆ̃γ(x) − f̃∗(x)
}

+ op(1/
√
nh). (A.38)

Note that we have shown n−1UL(m∗,β0, ˆ̃γ)(x) = op(1/
√
nh). By the strong

law of large numbers, we have

Ω1(x) Δ= lim
n→∞

n−1
[
∂

∂γ̃
UL(m∗,β0, γ̃)(x)

]
γ̃=f̃ ∗

= u̇γ̃(m∗,β0, f∗)(x).
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It is easily verified that

UL(m∗,β0, f̃∗)(x) = II1(x) + II2(x),

where

II1(x) =
n∑

i=1

∫ τ

0

(
1, Xi − x

h

)T

Kh(Xi − x)g
{
m∗(t) + βT

0 Zi + f∗(Xi)
}
dMi(t),

and

II2(x) =
n∑

i=1
(Δi − 1)

(
1, Xi − x

h

)T

Kh(Xi − x)

× g
{
m∗(T̃i) + βT

0 Zi + f∗(x) + ḟ∗(x)(Xi − x)
}

−
n∑

i=1
(Δi − 1)

(
1, Xi − x

h

)T

Kh(Xi − x)g
{
m∗(T̃i) + βT

0 Zi + f∗(Xi)
}

+
n∑

i=1

(
1, Xi−x

h

)T

Kh(Xi−x)g
{
m∗(0)+βT

0 Zi+f∗(x)+ḟ∗(x)(Xi−x)
}

−
n∑

i=1

(
1, Xi − x

h

)T

Kh(Xi − x)g
{
m∗(0) + βT

0 Zi + f∗(Xi)
}
.

Following the proof of Theorem 4 of [2], and by the martingale central limit
theorem, it follows that(

n−1h
)1/2II1(x) → N

(
0,Ω2(x)

)
(A.39)

in distribution, where

Ω2(x) = r(x)
[
ν0 0
0 ν2

]
E

[∫ τ

0
g2{m∗(t) + βT

0 Z + f∗(x)
}
dN(t)|X = x

]
,

with ν0 =
∫

[K(x)]2dx and ν2 =
∫
x2[K(x)]2dx. Using the Taylor expansion

around x, we obtain

n−1II2(x) = −Ω1(x)bn(x) + op
(
h2),

where

bn(x) = h2

2 f̈∗(x)r(x)Ω1(x)−1
[
k2
0

]
E
[
(Δ − 1)ġ

{
m∗(T̃ ) + βT

0 Z + f∗(x)
}

+ ġ
{
m∗(0) + βT

0 Z + f∗(x)
}
|X = x

]
.

Combining with (A.38), we have

(nh)1/2Ω1(x)
{ˆ̃γ(x) − f̃∗(x) − bn(x) + op

(
h2)} = −

(
n−1h

)1/2II1(x) + op(1).

Since nh5 is bounded, and using (A.39), Theorem 3.3 is proved.

Proof of Theorem 3.4. The proof of Theorem 3.4 is similar to the proof of The-
orem 3.1, and hence is omitted here.
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Appendix B: One step estimator and its properties

To implement the proposed algorithm in Section 2, we need an initial estimator
of the nonparametric component f(·). Following [1, 4], we propose to use the
one-step estimator as the initial value. Specifically, we consider the following
local estimating equation of m(·) for fixed β and γ1(x) and covariate value
X = x in the compact support of X

n∑
i=1

∫ τ

0
Kh(Xi − x)g

{
m(t) + βTZi + γ1(x)(Xi − x)

}
dNi(t)

−
n∑

i=1

∫ τ

0
Kh(Xi − x)Yi(t)d

(
g
{
m(t) + βTZi + γ1(x)(Xi − x)

}
+ t

)
= 0.

(B.1)

Let m̃x(t;β, γ1) be the estimator of m(t) derived from (B.1), we propose the
following estimating function for β and γ1(x) as

Ũx(β, γ1) =
n∑

i=1

∫ τ

0

(
ZT

i , Xi − x
)T

Kh(Xi − x)
[
g
{
m̃x(t;β, γ1) + βTZi

+ γ1(x)(Xi − x)
}
dNi(t) − Yi(t)d

(
g
{
m̃x(t;β, γ1) + βTZi

+ γ1(x)(Xi − x)
}

+ t
)]
. (B.2)

Solving for Ũx(β, γ1) = 0, we obtained the estimators β̃(x) and γ̃1(x) of β and
γ1(x), respectively. m̃x(t) = m̃x(t; β̃(x), γ̃1(x)) is the estimator of m(t). The
estimator of f(x) can be constructed as γ̃0(x) =

∫ x

0 γ̃1(u)du.
Note that the intercept term γ0(t) is absorbed into the function m(t) because

of the local nature of (B.1) and (B.2). As discussed in [1, 4], the final estimator
based on full iteration of the estimating equations (2.3), (2.4) and (2.7) are at
least as efficient as the one-step estimators. To establish the local consistency
of the one-step estimators β̃(x), γ̃0(x) and γ̃1(x), we first define

Ax =
[
Aβ,x 0
0T Aγ1,x

]
,

where
Aγ1,x = k2r(x)E

[∫ τ

0
dQx(t)|X = x

]

and
Aβ,x = r(x)E

[∫ τ

0

{
Z − μ1x(t) − μ2x(t)

}
dQx(t)|X = x

]

with k2 =
∫
x2K(x)dx, r(x) as the marginal density of X at x, and

dQx(t) = ġ
{
m∗(t) + βT

0 Z + f∗(x)
}
dN(t) − Y (t)dġ

{
m∗(t) + βT

0 Z + f∗(x)
}
,
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Bx(t, s) = exp
(
−
∫ t

s

E[dQx(u)|X = x]
E[Y (u)ġ{m∗(u) + βT

0 Z + f∗(x)}|X = x]

)
,

μ1x(t) = E[(Δ − 1)Zġ{m∗(T̃ ) + βT
0 Z + f∗(x)}Bx(t, T̃ )I(T̃ < t)|X = x]

E[Y (t)ġ{m∗(t) + βT
0 Z + f∗(x)}|X = x]

,

μ2x(t) = E[Zġ{m∗(0) + βT
0 Z + f∗(x)}Bx(t, 0)|X = x]

E[Y (t)ġ{m∗(t) + βT
0 Z + f∗(x)}|X = x]

.

Lemma B1. Under the regularity conditions (C1)–(C6), and the condition that
Ax is finite and nondegenerate for any x in the compact support of X, if h → 0
and nh → ∞ as n → ∞, then the one-step estimators β̃(x), γ̃0(x) and γ̃1(x)
are locally consistent.

Proof of Lemma B. Following the arguments in the proof of Theorem 3.1 that
shows the consistency of m̂0(t;β0, f∗) to m∗(t), we can show that m̃x(t;β0, ḟ∗)
converges almost surely to m∗(t)+f∗(x) on [0, τ ]. Plugging m̃x(t;β, γ1) into the
left side of (B.1), and taking derivatives with respect to β and γ1, following the
arguments as in showing (A.6), we have, for t ∈ [0, τ ],

∂m̃x(t;β, γ1)
∂β

∣∣∣∣
β=β0,γ1=ḟ∗

=−
∫ τ

t

Bx(s, t)E[ZdQx(s)|X = x]
E[Y (s)ġ{m∗(s)+βT

0 Z+f∗(x)}|X=x]
+op(1),

and
∂m̃x(t;β, γ1)

∂γ1

∣∣∣∣
β=β0,γ1=ḟ∗

= op(1).

It can be checked that n−1Ũx(β, γ1) converges almost surely to a determinis-
tic function ũx(β, γ1) for (βT , γ1)T in a small neighborhood of (βT

0 , ḟ∗)T , and
ũx(β0, ḟ∗) = 0. Moreover, we can check that

1
n

∂Ũx(β, γ1)
∂(βT , γ1)

∣∣∣∣
β=β0,γ1=ḟ∗

= Ax + op(1).

By the conditions of Lemma B, Ax is finite and nondegenerate. Thus,
1
n

∂Ũx(β,γ1)
∂(βT ,γ1)

converges to Ax in an arbitrarily small neighborhood of (β0, ḟ∗).
Using the fact that n−1Ũx(β0, ḟ∗) → 0 as n → ∞ and Ũx(β̃(x), γ̃1(x)) = 0,
we have the local consistency of β̃(x) and γ̃1(x). The local consistency of γ̃0(x)
follows from that of γ̃1(x).
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