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Abstract: This paper proposes a distributed estimation and inferential
framework for sparse multivariate regression and conditional Gaussian
graphical models under the unbalanced splitting setting. This type of data
splitting arises when the datasets from different sources cannot be aggre-
gated on one single machine or when the available machines are of different
powers. In this paper, the number of covariates, responses and machines
grow with the sample size, while sparsity is imposed. Debiased estimators
of the coefficient matrix and of the precision matrix are proposed on ev-
ery single machine and theoretical guarantees are provided. Moreover, new
aggregated estimators that pool information across the machines using a
pseudo log-likelihood function are proposed. It is shown that they enjoy
efficiency and asymptotic normality as the number of machines grows with
the sample size. The performance of these estimators is investigated via a
simulation study and a real data example. It is shown empirically that the
performances of these estimators are close to those of the non-distributed
estimators which use the entire dataset.
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1. Introduction

A natural way to investigate the relationship among gene expressions in a ge-
netic study is via graphical models. The relationships between variables usually
are mediated by external influences under the form of covariates effects. For
instance, when looking at how genes are connected in a genome-wide expression
quantitative trait loci (eQTL) analysis, the genetic variation can be viewed as
external effects. It is crucial to account for these external factors to unravel
the real connections in the gene network. For instance consider the connection
between microRNA gene expressions in cancer research, in which several co-
variates such as the presence and composition of immune cells within the tumor
microenvironment can affect the microRNA expressions and cancer progression.
By considering these additional covariates in the analysis of microRNAs, one
can construct more comprehensive models that better capture the complexity
of cancer biology. This, in turn, can lead to more robust and clinically relevant
findings that benefit cancer diagnosis and treatment. The reader can refer to
[1, 23] and [27] for more details among many others. In Section 7 of the paper
a cancer dataset is used to illustrate the benefits of accounting for covariates
when describing interactions between various genes.

By adjusting the effect of covariates on the mean of the random variables in
a Gaussian graphical model (GGM), one is able to estimate the structure of a
conditional graphical model constructed using the elements of the precision ma-
trix. Most studies focusing on the estimation of the precision matrix for GGMs
assume that the random vector has zero or constant mean. For a treatment
on the subject in the high-dimensional context for a mean zero GGM, we refer
the reader to [2, 6, 7, 13, 24, 26, 32] and [39] among many others. However, in
many real applications, adjusting for the effect of covariates on the mean of the
random vector is important for understanding the underlying graph structure.
This problem can be viewed as a multivariate linear regression problem, where
multiple response variables (say p) are regressed on multiple predictors (say q),
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and one is going to estimate the elements of the precision matrix related to the
response vector. This model has many applications in the real world, especially
in genomic data analysis, where one can model the dependence of RNA levels on
DNA copy numbers through a multivariate regression model with RNA levels
being responses and the DNA copy numbers being predictors as in [30]. Estima-
tion of the coefficient matrix in multivariate regression models is also of interest
and has many applications in the real world. For instance, consider the case
when one wants to predict the expression levels of multiple microRNA mature
stands based on a set of gene-level copy numbers in tumor samples. This is a
common problem in cancer research, where the goal is to understand the regu-
latory mechanisms involving microRNAs and their relationship with gene copy
number alterations. For the estimation of the coefficient matrix one requires to
estimate pq coefficients, which becomes challenging with high-dimensional pre-
dictors and responses. To allow for consistent estimation in high-dimensional
setting, a sparsity assumption is imposed on the model.

Several studies used regularization-based approaches to estimate the coeffi-
cient and precision matrices with adjusted covariates. The works of [29] and [37]
proposed a joint regularization penalty to estimate iteratively both the multi-
variate regression coefficients corresponding to the covariates and the precision
matrix of a GGM. In [33] and [36], the coefficient and precision matrices were
estimated simultaneously via a joint penalized likelihood function. The works
of [8] and [38] proposed a two-stage strategy which first estimates the regres-
sion coefficients and then using the residuals from the first stage, estimates the
precision matrix. In [9], a tuning-free parameter estimator was proposed that is
asymptotically normal and efficient for the estimation of every finite sub-graph
for covariate adjusted GGMs. In these studies, due to the use of penalization,
the estimators are biased. In this paper, by introducing debiased estimators, we
are able to perform not only the estimation, but also inference and hypothesis
testing.

The mentioned works investigated the covariate adjusted graphical models
when the size of the dataset is not too large. However, with the development of
technology, the size of the datasets grows at a high rate, such that in certain sit-
uations it is not possible to store all needed datasets in the memory of one single
machine. Moreover, in recent frameworks, like federated learning [25], due to pri-
vacy concerns, it may be impossible to collect datasets from different resources
on one single central machine. As such, the dataset is partitioned onto a cluster
of machines. Distributed statistical approaches, also known as ‘divide and con-
quer’ approaches, have drawn a lot of attention in the last decade and have been
developed for various statistical problems. The two most popular techniques in
distributed statistical inference and estimation problems are ‘averaging’ estima-
tors from local machines and the ‘one-step’ approach, which combines the simple
averaging estimator with a classical Newton’s method to generate a one-step es-
timator. In [19], the authors presented a ‘Communication-efficient Surrogate
Likelihood’ framework for solving distributed statistical inference problems in
low-dimensional, high-dimensional and Bayesian frameworks. In [3] and [22] the
authors considered a high-dimensional sparse parameter vector estimation prob-
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lem, where they adopted the penalized M-estimator setting. In [10] the authors
proposed an aggregated estimator for the coefficients of a univariate general-
ized linear model, where the weights were determined by the majority voting
method, and they showed the asymptotic normality for the estimators of the
active set components. Recently, [12] proposed a weighted combination of ridge
regression estimators in a univariate non-sparse linear regression problem via a
balanced distributed setting. However, ridge regression is not an efficient proce-
dure in high-dimensional setting. For a detailed review on aggregation methods
for distributed estimators, the reader can refer to [16].

Nevertheless, most studies in the distributed setting have focused on the
balanced sub-samples case, while in recent approaches like federated learning,
some of the machines are more powerful than others and it is not efficient to
distribute a dataset on different machines with equal sizes. In this situation, just
taking a simple average is not an optimal approach for aggregating estimators.
Recently, [28] proposed a new weighted, aggregated estimator for the elements
of the precision matrix in a zero-mean GGM, where the weights are a function
of sub-sample sizes and the variances estimated based on the sub-samples. How-
ever, as explained earlier, adjusting for the effect of covariates is a crucial issue
in many fields, such as genomic data analysis. In this paper, we introduce new
aggregated estimators for both the coefficient and precision matrices in covari-
ate adjusted GGMs using a pseudo log-likelihood function which is constructed
using the asymptotic distribution of the debiased estimators. It is shown empir-
ically that these estimators perform better than the simple average in terms of
accuracy and coverage probabilities. These estimators are constructed for the
setting where the number of responses (p), covariates (q) and machines (K) grow
with the sample size (n). As a consequence, sparsity assumptions are imposed
on the true matrices as a function of p, q and n. Different upper bounds are
derived on the number of machines to guarantee the consistency and asymptotic
normality of the estimators.

The content of this paper is organized as follows. Notation and preliminaries
are presented in Section 2. The debiased distributed estimators and their statis-
tical properties are provided for the coefficient matrix and the precision matrix
separately in Sections 3 and 4, respectively. The final aggregated estimators for
both target matrices are introduced in Section 5. Theoretical properties of these
estimators are also investigated in this section. In Section 6, the performance
of the estimators is evaluated by means of a controlled simulation study and
in Section 7, the performance on a real data set is illustrated. We close with
a discussion on the method in Section 8. Proofs of the supporting lemmas and
theorems and more simulation results can be found in the Appendix.

2. Notation and preliminaries

The multivariate regression model in this paper is defined as

9Y “ ΓJ 9X ` 9ε, (2.1)
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where 9Y “ pY 1, . . . , Y pqJ P R
p and 9X “ pX1, . . . , XqqJ P R

q are the random
response and covariate vectors, respectively. Moreover, the matrix Γ is a q ˆ p
regression coefficient matrix. Consider a random noise vector 9ε “ pε1, . . . , εpqJ P

R
p independent of 9X, which follows a p-dimensional Gaussian distribution with

mean zero, covariance matrix Σ and precision matrix Θ “ Σ´1. The compo-
nents of 9Y are mapped to the node set V “ t1, . . . , pu of a graph G “ pV, Eq

where E Ď VˆV describes the set of edges between all pairs pa, bq P VˆV, a ‰ b.
An undirected edge between nodes a, b P V is drawn if pa, bq P E and pb, aq P E .
A pair pa, bq is included in the edge set E if and only if the variables Y a and Y b

are conditionally dependent given 9X and all remaining random variables in 9Y.
According to model (2.1), conditionally on 9X “ 9x, 9Y follows a p-dimensional

Gaussian distribution with mean vector ΓJ 9x, covariance matrix Σ and precision
matrix Θ. Every off-diagonal entry pa, bq of Θ is proportional to the partial
correlation between Y a and Y b given 9X and all other variables in 9Y. As such, a
pair of variables in 9Y is conditionally independent given all remaining variables
of 9Y and 9X, if and only if the corresponding entry in the precision matrix Θ is
zero. Denote by Aab the pa, bq-th element of an arbitrary matrix A. The support
of the precision matrix Θ is defined as the index set of its non-zero off-diagonal
elements

S1 :“ tpa, bq P V ˆ V, a ‰ b : Θab ‰ 0u,

with cardinality s1 “ #S1 and the maximum node degree or row sparsity of Θ
is defined as

d1 :“ max
aPV

#tb P V, b ‰ a : Θab ‰ 0u.

Analogously, the support of the regression coefficient matrix Γ is considered as

S2 :“
�

pa, bq P t1, . . . , qu ˆ t1, . . . , pu : Γab ‰ 0
(

,

which is the index set of its non-zero elements, with cardinality s2 “ #S2.
Moreover, the support of the b-th column of the regression coefficient matrix Γ
is defined as S2pbq “

�

a P t1, . . . , qu : Γab ‰ 0
(

, b “ 1, . . . , p, with cardinality
s2pbq “ #S2pbq.

Given n independent observations from the pair p 9YJ, 9XJq, our goal is to in-
troduce distributed, debiased estimators for Γ and Θ from model (2.1). Suppose
that the n samples are randomly divided into K non-overlapping unbalanced
sub-samples with size nk for the k-th sub-sample, k “ 1, . . . ,K, and denote by
n: “ min1ďkďK nk, while n “

řK
k“1 nk. Suppose that nk{n Ñ ck P p0, 1q, as

nk Ñ 8, such that limKÑ8

řK
k“1 ck “ 1. In this paper, p and q can grow with n,

such that they might be larger than n. However, we suppose that logppq “ opn:q

and logpqq “ op
?
n:q, where op¨q expresses the asymptotic behavior of a sequence

and is defined later in this section. The usual assumption in the high-dimensional
context is that the underlying matrices (coefficient and precision matrices in this
paper) are sparse, which means that the number of non-zero elements in the ma-
trices cannot grow too fast and a certain bound is imposed on it. This sparsity
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reflects that many predictors in the regression model are redundant and that
the graph related to the precision matrix has a rather low number of edges. To
impose this sparsity condition on the estimation, one common approach is to
add an �1 penalty to the function which is going to be optimized. This kind of
regularization effectively forces some of the elements to zero, thus resulting in
sparse solutions. There exists a wide variety of methods making use of �1 regu-
larization, see for example [13, 32] and [34]. For convenience of notation, denote
by Yk “ r 9Y1,k, . . . , 9Ynk,ksJ and ξk “ r 9ε1,k, . . . , 9εnk,ksJ the k-th sub-sample
of the response vector 9Y and the random noise 9ε, respectively, both arranged
as matrices of dimension nk ˆ p, with 9Yl,k P R

p, 9εl,k P R
p as the l-th row,

l “ 1, . . . , nk, and by Xk “ r 9X1,k, . . . , 9Xnk,ksJ the k-th design matrix of dimen-
sion nk ˆ q, with 9Xl,k P R

q as the l-th row, l “ 1, . . . , nk. With this notation,
the sample version of the regression model (2.1) corresponds to

Yk “ XkΓ ` ξk, (2.2)

where the rows of ξk are i.i.d. p-dimensional Gaussian vectors with mean zero,
covariance matrix Σ and precision matrix Θ. In the next two sections, debiased
estimators for Γ and Θ based on the k-th sub-sample are derived.

Before starting the discussion, we introduce some order notation which is
needed later in the paper. For two sequences tan;n ě 1u and tbn;n ě 1u, bn “

Opanq if there exist positive numbers M0 and N0 such that |bn{an| ď M0 for all
n ě N0. Similarly, for a random sequence tXn;n ě 1u, we write Xn “ Oppanq

if for every ε ą 0, there exist finite numbers M0 ą 0 and N0 ą 0 such that
Pp|Xn{an| ą M0q ă ε for all n ě N0. We write bn — an if both bn “ Opanq and
an “ Opbnq hold. Moreover, bn “ opanq if limnÑ8 bn{an “ 0. In the case of a
random sequence tXn;n ě 1u, we write Xn “ oppanq if Xn{an

p
ÝÑ 0, as n Ñ 8,

where the notation p
ÝÑ denotes convergence in probability. For a matrix A, we use

the notation ~A~8 “ maxa

ř

b |Aab| and }A}8 “ maxa,b |Aab| for the matrix
and elementwise �8 norms, respectively. The same symbol }x}8 “ maxb |xb| is
used for the �8 norm of a vector x, where xb is the b-th element of x. Moreover,
}A}1 “

ř

a,b |Aab| and }x}1 “
ř

b |xb| are used for the elementwise �1 norm
of a matrix A and of a vector x, respectively. We use }A}F “

b

ř

a,b A2
ab “

a

tracepAJAq for the Frobenius norm of a matrix and }x}2 “
a

ř

b x2
b for the

�2 norm of a vector x. Finally, by A b B we denote the Kronecker product of
two arbitrary matrices A and B of dimension m ˆ n and p ˆ q as a pm ˆ qn
block matrix with AabB for the block pa, bq where Aab is the pa, bq-th element
of matrix A, a “ 1, . . . ,m, and b “ 1, . . . , n.

3. Distributed estimator of the coefficient matrix using the k-th
sub-sample

We make the following assumptions in this section.
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(A1) The rows of the design matrix Xk are i.i.d. q-dimensional Gaussian vectors
with mean vector zero and positive definite covariance matrix Q, where
maxa Qaa “ Op1q.

Assumption (A1) can be relaxed to a deterministic design matrix. However,
in this case, one needs the mutual incoherence or irrepresentability condition
on the design matrix to exhibit model selection consistency (see Chapter 6 of
[5] for more details). Another equivalent condition is the restricted eigenvalue
condition [4]. The work of [31] showed that this condition holds for the random
Gaussian design matrices. As such, one does not need any mutual incoherence
assumption in this setting.

(A2) The eigenvalues of Q are bounded from above and below, i.e., there exists
a constant Λ1 ě 1 such that 1{Λ1 ď ΛminpQq ď ΛmaxpQq ď Λ1, where
ΛminpQq and ΛmaxpQq are the minimum and maximum eigenvalues of Q,
respectively.

Denote the maximum row sparsity of the inverse covariance matrix Q´1

with d2 :“ maxaPt1,...,qu #ta1 P t1, . . . , qu, a1 ‰ a : Q´1
aa1 ‰ 0u. To find an

initial estimator for the regression coefficient matrix Γ in the k-th sub-sample,
following [38], we minimize the following joint penalized residual sum of squares
and denote by Γ̂k,

Γ̂k “ arg min
Γ

"

1
2nk

trace
�

pYk ´ XkΓq
J

pYk ´ XkΓq
(

` ρk}Γ}1

*

, (3.1)

where ρk ą 0 is a regularization parameter that forces Γ̂k to be sparse. The
optimization problem (3.1) contains p decoupled Lasso regressions with q coef-
ficients. This equation ignores the correlation among response variables when
estimating the multiple regression coefficients. The work of [33] showed empiri-
cally that only when the correlation of the errors is high, incorporation of such
a dependency can lead to increased efficiency in estimating Γ. Lemma 5 in Ap-
pendix B, provides a bound of the form Op

`

s2
a

logppqq{nk

˘

on the �1 norm of
the difference between Γ̂k and the true matrix Γ under additional regularity
conditions.

Due to the �1 penalty which is added to this loss function, Γ̂k is a biased esti-
mator. To obtain a debiased estimator of Γ, we use the idea of [34] by inverting
the Karush-Kuhn-Tucker (KKT) conditions. They showcased this method in
the linear regression and generalized linear models framework. Using the KKT
conditions in (3.1), we have

´XJ
k Yk{nk ` XJ

k XkΓ̂k{nk ` ρkBk “ 0, (3.2)

where Bk belongs to the sub-differential of the �1 norm evaluated at Γ̂k. By
adding and subtracting XJ

k ξk{nk to (3.2), performing some algebra calculations
and finally vectorizing, we get

?
nkvec

`

Γ̂d
k ´ Γ

˘

“ Tk ` Rk,Γ, (3.3)
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where vecp¨q is an operator which converts the matrix into a column vector by
stacking the columns of the matrix on top of one another. Moreover

Γ̂d
k “ Γ̂k ` MkXJ

k pYk ´ XkΓ̂kq{nk,

Tk “ vec
`

MkXJ
k ξk

˘

{
?
nk,

Rk,Γ “
?
nkvec

`

pIq ´ MkCkqpΓ̂k ´ Γq
˘

,

where Iq is the identity matrix of dimension qˆq and Mk is a reasonable approx-
imation for the inverse of the sample covariance matrix Ck “ XJ

k Xk{nk. As q
can be larger than nk, the sample covariance matrix Ck is not always invertible.
As such, we find Mk such that MkCk « Iq. The estimator Γ̂d

k, k “ 1, . . . ,K, is
the multivariate version of the one introduced in [34]. Note that the quantities
in (3.3) are indexed by k, and as such one obtains a collection of debiased esti-
mators Γ̂d

1, . . . , Γ̂d
K , each using a particular sub-sample. In Section 5, we propose

a novel, aggregated estimator based on the collection Γ̂d
1, . . . , Γ̂d

K . In order to
construct the aggregated estimator one needs the asymptotic distribution of Γ̂d

k,
k “ 1, . . . ,K, which is investigated in the sequel.

Similarly to the case of a univariate response, by conditioning on Xk, one
can show the normality of Tk from (3.3). One just needs next to show that
the remainder term Rk,Γ vanishes with increasing nk. To this end, we consider
a suitable approximation for Mk, such that with increasing nk, the entries in
pIq´MkCkq get closer to zero. Several works (for instance, [18, 34, 40]) assumed
that Q´1 is sparse and then using the method of nodewise Lasso, estimated Q´1

and have set Mk “ Q̂´1, where Q̂´1 is the nodewise Lasso estimator of Q´1. We
follow the same procedure, and for the reader’s convenience, a brief description
of the method is provided in Appendix A.1. Furthermore, we need to control
the randomness of the product between the noise matrix ξk and the design
matrix Xk in the multivariate linear regression. Many studies, focusing on Lasso
regression models, control the randomness of the noise by conditioning on an
event of interest (see for instance, [5, 18]). Similarly, considering the threshold
ρ0,k, such that 2ρ0,k ď ρk, recall that ρk is the regularization parameter in (3.1),
we consider the event

Fkpnk, p, qq “

"

}vec
`

XJ
k ξk

˘

}8{nk ď ρ0,k

*

.

Lemmas 2 and 3 in Appendix B show that for a suitable value of ρ0,k, the
event Fkpnk, p, qq happens with a large probability for every fixed k and jointly
in k “ 1, . . . ,K, respectively. By controlling the randomness of the product
between Xk and ξk, one can control the �1 error bound on the estimation of
the coefficient matrix. The reader can refer to Theorem 2 and its proof for more
details. To show the asymptotic normality of Tk from (3.3), we need to impose
as well a sparsity condition on the inverse covariance matrix Q´1. The sparsity
condition in [34] is considered as d2 “ opn{ logpqqq. In this paper, we need to
restrict the elements of Q´1 to a sparser regime such that the maximum row
sparsity grows at the rate d2 “ op

?
n:{ logpqqq. With this sparsity condition, we
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show the asymptotic normality of the final aggregated estimator in Section 5
as this condition is needed in Lemma 8, where we show that under such an
assumption two sequences are equivalent in probability. Moreover, due to the
fact that both K and nk, k “ 1, . . . ,K, grow in the distributed case, we impose
the sparsity condition s2 “ o

`

nπ1
:

{plogpqq logppqqq
˘

, 0 ă π1 ď 1{2 on Γ to
guarantee the theoretical properties of the aggregated estimator.

Theorem 1. Consider the regression model (2.2) for the k-th sub-sample with
zero-mean Gaussian noise matrix ξk having covariance matrix Σ and random
design matrix Xk, which satisfies assumptions (A1) and (A2) from Section 3
with sparsity condition d2 “ op

?
n:{ logpqqq. On the event Fkpnk, p, qq, with

regularization parameter ρk —
a

logppqq{nk in (3.1) and ρ̃j,k —
a

logpqq{nk,
j “ 1, . . . , q, from the nodewise Lasso procedure, defined in Appendix A.1, we
have

Tk|Xk „ Npq

`

0,Σ b pMkCkMJ
k q
˘

, }Rk,Γ}8 “ Opps2
a

logpqq logppqq{nkq,
(3.4)

and under the additional sparsity condition s2 “ o
`

nπ1
:

{plogpqq logppqqq
˘

, 0 ă

π1 ď 1{2, we have }Rk,Γ}8 “ opp1q.

The proof is given in Appendix A.1.
One can use Theorem 1 to construct asymptotic inferential tools for Γ based

on the k-th sub-sample. However, the covariance matrix Σ is in general un-
known and it can be replaced in practice by a consistent estimator. Lemma 6
in Appendix B shows that if the eigenvalues of Σ are bounded from below
and above, then under the random design setting, with sparsity condition s2 “

o
`

nπ1
:

{plogpqq logppqqq
˘

, 0 ă π1 ď 1{2, the estimator Σ̂k,Γ̂k
“ pYk ´ XkΓ̂kqJ ˆ

pYk ´ XkΓ̂kq{nk is a consistent estimator for the covariance matrix Σ with
convergence rate in �8 norm of order Oppmaxt

a

logppq{nk, s2 logppqq{nkuq.
Using (3.3), one can also obtain the convergence rate of the debiased estimator

Γ̂d
k. This bound is investigated in Theorem 2.

Theorem 2. Consider the regression model (2.2) for the k-th sub-sample with
design matrix Xk which satisfies assumptions (A1) and (A2) from Section 3.
On the event Fkpnk, p, qq, with regularization parameter ρk —

a

logppqq{nk, we
have

}Γ̂d
k ´ Γ}8 “ Op

`

maxt
a

d2 logppqq{nk, s2
a

logpqq logppqq{nku
˘

, (3.5)

where under the assumption logppq{ logpqq “ opnπ2
:

q, 0 ă π2 ă 1{2, and the
sparsity conditions d2 “ op

?
n:{ logpqqq and s2 “ o

`

nπ1
:

{plogpqq logppqqq
˘

, 0 ă

π1 ď 1{2, we obtain }Γ̂d
k ´ Γ}8 “ opp1q.

The proof is given in Appendix A.2. In the next section, the distributed
estimation of Θ based on the k-th sub-sample is provided.
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4. Distributed estimator of the precision matrix using the k-th
sub-sample

Given the design matrix Xk, the following assumptions (similarly to [17] and
[32]) are adapted to our context and are considered for providing theoretical
guarantees in the estimation procedure of Θ.

(B1) The eigenvalues of the precision matrix Θ are bounded from below and
above, i.e., there exists a constant Λ2 ě 1 such that 1{Λ2 ď ΛminpΘq ď

ΛmaxpΘq ď Λ2, where ΛminpΘq and ΛmaxpΘq are the minimum and max-
imum eigenvalues of Θ, respectively. Moreover, maxa Θaa “ Op1q, where
Θaa is the a-th diagonal element of Θ.

Recall that Σ̂k,Γ̂k
“ pYk ´XkΓ̂kqJpYk ´XkΓ̂kq{nk and consider H as the Hes-

sian of the negative log-likelihood function proportional to lpΘq “ tracepΣ̂k,Γ̂k
Θq

´ log detpΘq. By definition, H is a p2 ˆ p2 matrix indexed by the pair of ele-
ments from the node set, such that H “ rHpa,bq,pc,dqs, where pa, bq, pc, dq P VˆV.
Let S1 “

�

S1
Ť

tp1, 1q, p2, 2q, . . . , pp, pqu
(

with cardinality �, which is equal to
� “ s1 ` p, and denote its complement set with S

c
1.

(B2) The irrepresentability condition holds for the true precision matrix Θ,
i.e., there exists α1 P p0, 1s such that maxePSc1 }HeS1

`

HS1S1

˘´1
}1 ď 1 ´α1,

where HS1S1 P R
�ˆ� is a sub-matrix of H whose rows and columns are

indexed by the elements of S1. Moreover, e is a pair pa, bq P S
c
1 such that

HeS1 is an �-dimensional column vector with elements He,pc,dq, where
pc, dq P S1.

Given Xk and using Σ̂k,Γ̂k
“ pYk ´ XkΓ̂kqJpYk ´ XkΓ̂kq{nk, one can con-

struct an estimator for Θ using the following graphical Lasso optimization prob-
lem

Θ̂k “ arg min
ΘPSp

``

"

tracepΣ̂k,Γ̂k
Θq ´ log detpΘq ` λk}Θ}1,off

*

, (4.1)

where } ¨ }1,off is the �1 off-diagonal norm of the matrix defined as }Θ}1,off “
ř

a‰b |Θab| and Sp
`` is the space of positive definite matrices of dimension pˆp.

To obtain a debiased estimator of Θ, we invert the KKT conditions from the
optimization problem (4.1), which is of the form

Σ̂k,Γ̂k
´ Θ̂´1

k ` λkD̂k “ 0, (4.2)

where the matrix D̂k belongs to the sub-differential of the �1 off-diagonal norm
evaluated at Θ̂k. The difference between (4.2) and the problem in [17] is that
the previous work used the sample covariance matrix YJ

k Yk{nk, but here due
to the non-zero mean of the model, we use Σ̂k,Γ̂k

which contains the plug-
in estimation of the regression coefficient matrix Γ therein, thus making the
analysis more complicated. To simplify notation, define

Wk “ Σ̂k,Γ ´ Σ, W1
k “ Σ̂k,Γ̂k

´ Σ, W2
k “ Σ̂k,Γ̂k

´ Σ̂k,Γ,
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where

Σ̂k,Γ “ pYk ´ XkΓq
J

pYk ´ XkΓq{nk.

Using the KKT condition (4.2) and performing some algebra calculations, leads
to

?
nkpΘ̂d

k ´ Θq “ ´
?
nkΘWkΘ ` Rk,Θ, (4.3)

where Θ̂d
k “ 2Θ̂k ´ Θ̂kΣ̂k,Γ̂k

Θ̂k is the k-th debiased estimator of Θ and the
term Rk,Θ is defined as

Rk,Θ :“ ´
?
nkpΘ̂kΣ̂k,Γ̂k

´ IpqpΘ̂k ´ Θq ´
?
nkpΘ̂k ´ ΘqW1

kΘ ´
?
nkΘW2

kΘ.

(4.4)

In the sequel, it is shown that under suitable conditions, }Rk,Θ}8 “ opp1q and
that the term ?

nkΘWkΘ is elementwise asymptotically normal.
Relative to the work of [17], in addition to different covariance matrices used

in (4.4), our remainder contains the extra term ?
nkΘW2

kΘ. This extra term
is bounded in elementwise �8 norm at the rate of Oppd1s2 logppqq{

?
nkq, as it

is shown in Lemma 1. In the estimation procedure, if one considers Γ “ 0 as a
special case, then the KKT condition (4.2) will simplify to the one in [17], and as
such the estimator we propose, Θ̂d

k, will simplify to the same debiased estimator
with the same convergence rate from that work. We recall κΣ :“ ~Σ~8 as the
matrix �8 norm of Σ and κH “ ~

`

HS1,S1

˘´1
~8 as the matrix �8 norm of

the inverse of HS1,S1 from the irrepresentability condition (B2). In Lemma 1,
negligibility of Rk,Θ is shown.

Lemma 1. Consider the multivariate regression model (2.2) with random Gaus-
sian noise matrix ξk having zero-mean rows, covariance matrix Σ and preci-
sion matrix Θ. Let assumptions (B1)–(B2), and (C1)–(C3) from Appendix A.3
hold. Consider the debiased estimator in (4.3) with regularization parameter
λk —

a

logppq{nk. On the event Fkpnk, p, qq with 2ρ0,k ď ρk, where ρk —
a

logppqq{nk, and under the assumptions 1{α1 “ Op1q, κΣ “ Op1q and κH “

Op1q, we have

}Rk,Θ}8 “ Op

ˆ

max
�

d
3{2
1 logppq{

?
nk, d

2
1plogppqq

3{2
{nk, d1s2 logppqq{

?
nk

(

˙

,

(4.5)

and under the sparsity conditions d3{2
1 “op

?
n:{ logppqq and s2 “opnπ3

:
{ logppqqq,

where 0 ă π3 ď 1{6, we get }Rk,Θ}8 “ opp1q.

The proof is given in Appendix A.3.

Remark 1. A similar convergence rate for the remainder term is obtained in [17]
but for the zero-mean model. Their rate is of order Op

`

max
�

d
3{2
1 logppq{

?
nk,

d2
1plogppqq3{2{nk

(˘

. Comparing it with (4.5), it is observed that the convergence
rate of the extra term ?

nkΘW2
kΘ is of order Oppd1s2 logppqq{

?
nkq which also

adds more constraints on the negligibility of Rk,Θ.
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Theorem 3 investigates the elementwise asymptotic normality of the debiased
estimator Θ̂d

k, which will be leveraged further in Section 5 to construct an
aggregated estimator using all K estimators Θ̂d

1, . . . , Θ̂d
K .

Theorem 3. Under the assumptions of Lemma 1 and the sparsity conditions
d
3{2
1 “ op

?
n:{ logppqq and s2 “ opnπ3

:
{ logppqqq, 0 ă π3 ď 1{6, for all pa, bq P

V ˆ V, a ‰ b, it holds that
?
nkpΘ̂d

ab,k ´ Θabq{σab “ Zab,k ` opp1q, (4.6)

where Θab and Θ̂d
ab,k are the pa, bq-th element of Θ and Θ̂d

k, respectively, and
σ2
ab “ ΘaaΘbb ` Θ2

ab. Moreover, 1{σab “ Op1q and Zab,k converges weakly to
N p0, 1q as nk grows.

The proof is given in Appendix A.4.

Remark 2. One can use Theorem 3 to construct asymptotic confidence in-
tervals and hypothesis testing procedures. However, to perform inference, one
needs a consistent estimator for σab as it is unknown. By similar arguments
as in Lemma 2 of [17] and considering d

3{2
1 “ op

?
n:{ logppqq, the estimator

σ̂2
ab,k “ Θ̂aa,kΘ̂bb,k ` Θ̂2

ab,k is a consistent estimator for σ2
ab with convergence

rate Oppmaxtlogppq{nk,
a

d1 logppq{nkuq.

Remark 3. To quantify the convergence rate of the debiased estimator Θ̂d
k,

from (4.3), we have that

}Θ̂d
k ´ Θ}8 ď ~Θ~

2
8}Wk}8 ` }Rk,Θ}8{

?
nk.

Given Xk and under assumption (B1), by considering ξk “ Yk ´ XkΓ and
setting A “ B “ Ip in Lemma 2 of [21], for which the conditions are fulfilled,
one can write }Wk}8 “ Opp

a

logppq{nkq. Combining this bound with (4.5)
and (A.9) from Appendix A.3, we get

}Θ̂d
k ´ Θ}8 “ Op

ˆ

max
�

d1
a

logppq{nk, d
3{2
1 logppq{nk,

d2
1plogppq{nkq

3{2, d1s2 logppqq{nk

(

˙

,

and under the sparsity conditions d3{2
1 “op

?
n:{ logppqq, and s2 “opnπ3

:
{ logppqqq,

0 ă π3 ď 1{6, the consistency of Θ̂d
k follows.

5. The final aggregated estimators across the sub-samples

The results in the previous sections are provided at the level of the k-th sub-
sample, k “ 1, . . . ,K. To construct more reliable estimators, we aggregate esti-
mators drawn from different distributed locations. There are multiple ways to
aggregate these K estimators into a combined estimator. In this paper, due to
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the asymptotic normal distribution of the local estimators, we derive the final
aggregated estimator by maximizing a pseudo log-likelihood function, which is
constructed using the asymptotic normal density of local estimators constructed
based on the sub-samples. Consider Δ as a general parameter of interest, for
example Θab or vecpΓqa in this paper, where vecpΓqa is the a-th element of
the vectorized form of Γ, and Δ̂k as the k-th estimator based on the k-th sub-
sample with variance σ2 and denote its consistent estimator by σ̂2

k which is also
derived based on the k-th sub-sample. Consider the asymptotic normal den-
sity of Δ̂k at point ιk as f̂kpιk | Δ, σ̂kq, where the variance σ2 is replaced by
its consistent estimator σ̂2

k. By maximizing the pseudo log-likelihood function
constructed as

lpΔq “ log
ˆ K
ź

k“1
f̂kpιk | Δ, σ̂kq

˙

9

K
ÿ

k“1
p´nk{2qpιk ´ Δq

2
{σ̂2

k,

with respect to Δ, the final aggregated estimator is of the form

Δ̃owAvg “
1

řK
k“1

nk

σ̂2
k

ˆ

K
ÿ

k“1

nk

σ̂2
k

Δ̂k, (5.1)

where the subscript “owAvg” stands for the optimally weighted average. We
call this estimator an “optimally weighted average”, as it is obtained using
a maximization problem. As it is shown in [11], when K is fixed, a convex
combination of K estimators Δ̂1, . . . , Δ̂K is of the form Δ̃c “ wJΔ̂, where
Δ̂ “ pΔ̂1, . . . , Δ̂KqJ and w “ pw1, . . . , wKqJ is the vector of weights satisfying
the constraint

řK
k“1 wk “ 1. When the covariance between every two estimators

is zero, the optimal weight for the k-th estimator in this convex combination
is of the form wk “

1{σ2
k

řK
k“1 1{σ2

k

, where σ2
k is the variance of the k-th estimator.

This result can be also encountered in portfolio theory, where the same weights
are used to find the global minimum variance portfolio. The reader can refer to
[14] and [20] among many other references for more details. In the distributed
setting, when the sub-samples are equal (balanced case), our proposed estima-
tor simplifies to the optimal weights convex combination, where we substitute
the variance σ2

k with its consistent estimator σ̂2
k, as it is unknown in prac-

tice. Substituting debiased estimators Γ̂d
k and Θ̂d

k in (5.1), one can aggregate
distributed estimators of the coefficient and precision matrices from the sub-
samples into the final combined estimators Γ̃owAvg and Θ̃owAvg, respectively.
Note that if the variance σ2 is known, then replacing σ̂2

k by σ2 simplifies the
aggregated estimator Δ̃owAvg to two special cases. In the case of unbalanced
sub-samples, Δ̃owAvg is simplified to the sample size weighted average estima-
tor

Δ̃wAvg “

K
ÿ

k“1

nk

n
Δ̂k, (5.2)
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where “wAvg” stands for the sample size weighted average proportional to the
sub-sample sizes. Similarly to the optimally weighted average estimator, by sub-
stituting debiased estimators Γ̂d

k and Θ̂d
k in (5.2), the weighted average aggre-

gated estimators of Γ and Θ can be constructed and denoted by Γ̃wAvg and
Θ̃wAvg, respectively. Moreover, if the sub-samples are also balanced, Δ̃owAvg
further simplifies to the simple average estimator

Δ̃sAvg “
1
K

K
ÿ

k“1
Δ̂k, (5.3)

where “sAvg” stands for the simple average. By the same argument as for the
optimally weighted and sample size weighted averages, the simple average es-
timators of Γ and Θ can be constructed and denoted by Γ̃sAvg and Θ̃sAvg,
respectively.

Using (3.3) and (5.1), by considering the consistent estimator Σ̂k,Γ̂k
for Σ,

the optimally weighted average estimator for the a-th element of vecpΓq, a “

1, . . . , qp, is of the form

vecpΓ̃owAvgqa “

ˆ K
ÿ

k“1

nk
“

Σ̂k,Γ̂k
b pMkCkMJ

k q
‰

aa

˙´1

ˆ

K
ÿ

k“1

nk
“

Σ̂k,Γ̂k
b pMkCkMJ

k q
‰

aa

vec
`

Γ̂d
k

˘

a
. (5.4)

It can be shown that
g

f

f

e

K
ÿ

k“1
nk

L

rΣ̂k,Γ̂k
b pMkCkMJ

k qsaa

`

vecpΓ̃owAvgqa ´ vecpΓqa

˘

“ Wa,Γ ` Ra,Γ,

(5.5)

where

Ra,Γ “

g

f

f

e

řK
k“1 nk{rΣ b Q´1saa

řK
k“1 nk{rΣ̂k,Γ̂k

b pMkCkMJ
k qsaa

ˆ

K
ÿ

k“1

a

nkrΣ b Q´1saa
?
nrΣ̂k,Γ̂k

b pMkCkMJ
k qsaa

Ra,k,Γ,

Wa,Γ “

g

f

f

e

řK
k“1 nk{rΣ b Q´1saa

řK
k“1 nk{rΣ̂k,Γ̂k

b pMkCkMJ
k qsaa

ˆ

K
ÿ

k“1

a

nkrΣ b Q´1saa
?
nrΣ̂k,Γ̂k

b pMkCkMJ
k qsaa

Ta,k,

and Ra,k,Γ and Ta,k are the a-th element of Rk,Γ and Tk, respectively, defined
in (3.3).
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Similarly, using (4.3) and (5.1), by considering the consistent estimator σ̂2
ab,k

for σ2
ab in (4.6), the aggregated estimator for the pa, bq-th element of Θ, pa, bq P

V ˆ V, a ‰ b, is of the form

Θ̃ab,owAvg “

ˆ K
ÿ

k“1

nk

σ̂2
ab,k

˙´1

ˆ

K
ÿ

k“1

nk

σ̂2
ab,k

Θ̂d
ab,k. (5.6)

Moreover,
g

f

f

e

K
ÿ

k“1

nk

σ̂2
ab,k

ˆ

Θ̃ab,owAvg ´ Θab

˙

“ Wab,Θ ` Rab,Θ, (5.7)

where

Rab,Θ “

g

f

f

e

řK
k“1 nk{σ2

ab
řK

k“1 nk{σ̂2
ab,k

K
ÿ

k“1

?
nkσab

?
nσ̂2

ab,k

Rab,k,Θ,

Wab,Θ “

g

f

f

e

řK
k“1 nk{σ2

ab
řK

k“1 nk{σ̂2
ab,k

K
ÿ

k“1

σab
?
nσ̂2

ab,k

nk
ÿ

l“1

`

ΘJ
a p 9Yl,k ´ ΓJ 9Xl,kq

ˆ p 9Yl,k ´ ΓJ 9Xl,kq
JΘb ´ Θab

˘

,

and Rab,k,Θ is the pa, bq-th element of Rk,Θ from (4.3), 9Yl,k P R
p and 9Xl,k P R

q

are the l-th row of Yk and Xk, respectively, while Θa and Θb are p-dimensional
vectors coming from the a-th row and the b-th row of Θ, respectively.

Theorem 4. Consider the regression model (2.2), where Xk satisfies assump-
tions (A1) and (A2) from Section 3, and consider the maximum row sparsity
of Q´1 as d2 “ op

?
n:{ logpqqq. Moreover, consider the coefficient matrix Γ

with sparsity condition s2 “ o
`

nπ1
:

{plogppqq logpqqq
˘

, 0 ă π1 ď 1{2. Suppose
that the event Fkpnk, p, qq holds jointly in k “ 1, . . . ,K. Moreover, suppose
that Γ̂d

k, k “ 1, . . . ,K, is the k-th debiased estimator in (3.3) with tuning pa-
rameter ρk —

a

logppqq{nk and let nk{n Ñ ck P p0, 1q as nk grows such that
limKÑ8

řK
k“1 ck “ 1.

a) If K grows at the rate K “ O
`

n1{4{p
a

logppqq logpqq maxts2,
?
d2uq

˘

, and
logppq{ logpqq “ opnπ2

:
q, 0 ă π2 ă 1{2, for the a-th element of the vector-

ized form of Γ̃owAvg, a “ 1, . . . , qp, in (5.5), we have

Wa,Γ
d
ÝÑ N p0, 1q, and |Ra,Γ| “ opp1q, (5.8)

where d
ÝÑ denotes convergence in distribution.

b) If K grows at the rate K “ O
`

n1{3{p
a

logppqq logpqq maxts2, d2uq
˘

, in the
spirit of the special case (5.2), for the a-th element of the vectorized form



614 E. Nezakati and E. Pircalabelu

of Γ̃wAvg, a “ 1, . . . , qp, which is denoted by vecpΓ̃wAvgqa, we have
?
nK

b

řK
k“1rΣ̂k,Γ̂k

b pMkCkMJ
k qsaa

`

vecpΓ̃wAvgqa´vecpΓqa

˘

“W1
a,Γ ` R1

a,Γ,

where W1
a,Γ converges weakly to N p0, 1q and |R1

a,Γ| “ opp1q.
c) If K grows at the rate

?
K “ O

`

n
1{3
:

{p
a

logppqq logpqq maxts2, d2uq
˘

, in
the spirit of the special case (5.3), for the a-th element of the vectorized
form of Γ̃sAvg, a “ 1, . . . , qp, which is denoted by vecpΓ̃sAvgqa, we have

K3{2
b

p
řK

k“1rΣ̂k,Γ̂k
b pMkCkMJ

k qsaaqp
řK

k“1 1{nkq

`

vecpΓ̃sAvgqa ´ vecpΓqa

˘

“ W2
a,Γ ` R2

a,Γ,

where W2
a,Γ converges weakly to N p0, 1q and |R2

a,Γ| “ opp1q.

The proof is given in Appendix A.5.

Remark 4. Note that Theorem 1 in Section 3 provides the asymptotic normal-
ity, conditionally on the design matrix Xk, while the asymptotic normality result
in Theorem 4 is more general as it is an unconditional result. By using a similar
argument to the proof of Theorem 4, it can be shown that both vecpΓ̃owAvgqa and
vecpΓ̃wAvgqa have an asymptotic variance equal to rΣ b Q´1saa which implies
that their asymptotic relative efficiency is equal to 1, and they are as efficient
as the full estimator using the full sample data. This result is expected since (i)
the definitions of vecpΓ̃owAvgqa and vecpΓ̃wAvgqa are closely related, and (ii) the
estimated variances based on the sub-samples are consistent estimators for the
true variance, i.e., rΣ̂k,Γ̂k

b pMkCkMJ
k qsaa{rΣ b Q´1saa

p
ÝÑ 1. However, it has

been brought to our attention that the same final result can be obtained via
the asymptotic normality result characterizing M estimators (see for instance,
Theorem 5.21 of [35]) since the proposed estimators are asymptotically linear
and hence asymptotically equivalent to the estimator obtained using the full
sample data. A comparison of the owAvg and wAvg estimators from a finite
sample perspective is also provided through simulation and real data examples
in Sections 6 and 7, respectively.

In Theorem 5, the asymptotic normality of the estimator in (5.6) and its two
special cases is investigated as n: and K both grow.

Theorem 5. Consider the regression model (2.2) and suppose that assumptions
(B1)–(B2), and (C1)–(C3) from Appendix A.3 hold. Moreover, consider the co-
efficient matrix Γ with sparsity condition s2 “ opnπ3

:
{ logppqqq, 0 ă π3 ď 1{6.

Suppose that the event Fkpnk, p, qq holds jointly in k “ 1, . . . ,K. Moreover, sup-
pose that Θ̂d

k, k “ 1, . . . ,K, is the k-th debiased estimator in (4.3) with tuning
parameter λk —

a

logppq{nk and let nk{n Ñ ck P p0, 1q as nk grows, such that
limKÑ8

řK
k“1 ck “ 1.
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a) If K and the maximum node degree of Θ grow at the rates K “ O
`

n1{3{

pd1 logppqq
˘

, and d
3{2
1 “ op

?
n:{ logppqq, respectively, then for every pair

pa, bq P V ˆ V, a ‰ b, of the pooled estimator Θ̃owAvg in (5.7), we have

Wab,Θ
d
ÝÑ N p0, 1q, and |Rab,Θ| “ opp1q. (5.9)

b) Under the same conditions as in part a), in the spirit of the special case
(5.2), for every pair pa, bq P V ˆ V, a ‰ b, of Θ̃wAvg, which is denoted by
Θ̃ab,wAvg, we have

?
nK

b

řK
k“1 σ̂

2
ab,k

pΘ̃ab,wAvg ´ Θabq “ W1
ab,Θ ` R1

ab,Θ,

where W1
ab,Θ converges weakly to N p0, 1q and |R1

ab,Θ| “ opp1q.
c) If K and the maximum node degree of Θ grow at the rates K “ O

`

n
4{3
:

{n
˘

and d
3{2
1 “ o

`

n
1{3
:

{ logppq
˘

, in the spirit of the special case (5.3), for every
pair pa, bq P V ˆV, a ‰ b, of Θ̃sAvg, which is denoted by Θ̃ab,sAvg, we have

K3{2
b

p
řK

k“1 σ̂
2
ab,kqp

řK
k“1 1{nkq

pΘ̃ab,sAvg ´ Θabq “ W2
ab,Θ ` R2

ab,Θ,

where W2
ab,Θ converges weakly to N p0, 1q and |R2

ab,Θ| “ opp1q.

The proof is given in Appendix A.6.

Remark 5. By a similar argument to that of Remark 4, it can be shown that
the asymptotic variances of Θ̃ab,owAvg and Θ̃ab,wAvg are both equal to σ2

ab, where
we recall that σ2

ab “ ΘaaΘbb ` Θ2
ab. Additionally, by rewriting Theorem 3 for

the full sample estimator, which uses the entire dataset of size n, it can be shown
that the asymptotic variance of the debiased full estimator is also equal to σ2

ab.
Therefore, we can deduce that both the optimally weighted and the sample size
weighted distributed estimators are asymptotically as efficient as the debiased
full sample estimator, which implies that the efficiency loss from the distributed
setting is asymptotically zero.

According to the asymptotic normal distribution of the proposed estimators,
one can construct confidence intervals and perform hypothesis testing for the
elements of the coefficient matrix Γ and of the precision matrix Θ. The p1 ´

αq100% asymptotic confidence intervals for a general quantity of interest Δ,
namely Θab or vecpΓqa in this paper, using the optimally weighted, weighted
and simple average estimators can be constructed as

Δ̃owAvg ˘ Φ´1
p1 ´ α{2q{

g

f

f

e

K
ÿ

k“1
nk{σ̂2

k, (5.10)
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Δ̃wAvg ˘ Φ´1
p1 ´ α{2q

g

f

f

ep

K
ÿ

k“1
σ̂2
kq{pnKq, (5.11)

Δ̃sAvg ˘ Φ´1
p1 ´ α{2q

g

f

f

ep

K
ÿ

k“1
σ̂2
kqp

K
ÿ

k“1
1{nkq{K3, (5.12)

where Φ´1p1 ´ α{2q is the p1 ´ α{2q-th quantile of the standard normal distri-
bution and σ̂2

k is the k-th consistent estimator of σ2. Substituting vecpΓ̃owAvgqa,
vecpΓ̃wAvgqa and vecpΓ̃sAvgqa, respectively in (5.10), (5.11) and (5.12) and then
replacing the estimated variance σ̂2

k by rΣ̂k,Γ̂k
b pMkCkMJ

k qsaa, one can con-
struct p1 ´ αq100% asymptotic confidence intervals for the a-th element, a “

1, . . . , qp, of the vectorized from of the coefficient matrix Γ. Similarly, substitut-
ing Θ̃ab,owAvg, Θ̃ab,wAvg and Θ̃ab,sAvg, respectively in (5.10), (5.11) and (5.12)
and then replacing the estimated variance σ̂2

k by σ̂2
ab,k “ Θ̂aa,kΘ̂bb,k ` Θ̂2

ab,k,
the p1 ´ αq100% asymptotic confidence intervals for every pair pa, bq P V ˆ V,
a ‰ b, of the precision matrix Θ can be constructed. Moreover, by substituting
the same quantities in

|Δ̃owAvg| ą Φ´1
p1 ´ α{2q{

g

f

f

e

K
ÿ

k“1
nk{σ̂2

k,

|Δ̃wAvg| ą Φ´1
p1 ´ α{2q

g

f

f

ep

K
ÿ

k“1
σ̂2
kq{pnKq,

|Δ̃sAvg| ą Φ´1
p1 ´ α{2q

g

f

f

ep

K
ÿ

k“1
σ̂2
kqp

K
ÿ

k“1
1{nkq{K3,

the rejection regions at level α for the hypothesis tests H0,a : vecpΓqa “ 0 vs
H1,a : vecpΓqa ‰ 0, where a “ 1, . . . , pq and H0,ab : Θab “ 0 vs H1,ab : Θab ‰ 0,
where pa, bq P V ˆ V, a ‰ b can be constructed.

As it was mentioned, the distributed estimator has an efficiency loss ap-
proaching zero as the sample size grows. This allows us to compare its incurred
loss with that of the practically unavailable, full-sample debiased estimator.
Considering the definition of vecpΓ̃owAvgqa, one has

vecpΓ̃owAvgqa ´ vecpΓqa

“

řK
k“1 nk{rΣ b Q´1saa

řK
k“1 nk{rΣ̂k,Γ̂k

b pMkCkMJ
k qsaa

ˆ

K
ÿ

k“1

?
nkrΣ b Q´1saa

nrΣ̂k,Γ̂k
b pMkCkMJ

k qsaa

Ta,k

`

řK
k“1 nk{rΣ b Q´1saa

řK
k“1 nk{rΣ̂k,Γ̂k

b pMkCkMJ
k qsaa

ˆ

K
ÿ

k“1

?
nkrΣ b Q´1saa

nrΣ̂k,Γ̂k
b pMkCkMJ

k qsaa

Ra,k,Γ.

Since rΣ b Q´1saa{rΣ̂k,Γ̂k
b pMkCkMJ

k qsaa
p

ÝÑ 1 and
řK

k“1pnk{rΣ b Q´1saaq{
řK

k“1pnk{rΣ̂k,Γ̂k
b pMkCkMJ

k qsaaq
p
ÝÑ 1 as K Ñ 8 and nk Ñ 8, k “ 1, . . . ,K,
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using similar arguments to the proof of Theorem 2, we can write

}Γ̃owAvg ´ Γ}8 “ max
aPt1,...,qpu

|vecpΓ̃owAvgqa ´ vecpΓqa|

“ Op

`

K maxt
a

d2 logppqq{n, s2
a

logpqq logppqq{nu
˘

, (5.13)

where the last equality is deduced using (3.4), (A.5) and (B.21). By using the full
sample data in Theorem 2, the convergence rate of the debiased full estimator,
call it Γ̂d

F , is of order

}Γ̂d
F ´ Γ}8 “ Op

`

maxt
a

d2 logppqq{n, s2
a

logpqq logppqq{nu
˘

. (5.14)

Combining the triangle inequality with (5.13) and (5.14), it is deduced that

}Γ̃owAvg ´ Γ̂d
F }8 “ Op

`

K maxt
a

d2 logppqq{n, s2
a

logpqq logppqq{nu
˘

,

which implies that the convergence rate of the distance between the distributed
estimator and the full one is equal to the rate of the distance between the dis-
tributed estimator and the true matrix Γ. As such, it is noteworthy that Γ̃owAvg
not only follows an asymptotic normal distribution, but also approximates the
debiased full estimator Γ̂d

F well, and it exhibits a similar statistical error as Γ̂d
F

does, as long as the number of machines K is not too large.
By a similar argument, one can derive the convergence rate of Θ̃owAvg to be

of the order

}Θ̃owAvg ´ Θ}8 “ Op

`

K maxtd1
a

logppq{n, d
3{2
1 logppq{n,

d2
1plogppqq

3{2
{pn

?
n:q, d1s2 logppqq{nu

˘

, (5.15)

which is obtained by combining the definition of Θ̃owAvg with the rate in (4.5),
the upper bound on }Wk}8 from Remark 3 and (A.9) from Appendix A.3.
Comparing this convergence rate with the one from Remark 3 for the full sample
data estimator, call it Θ̂d

F , which is of the order

}Θ̂d
F ´ Θ}8 “ Op

`

maxtd1
a

logppq{n, d
3{2
1 logppq{n,

d2
1plogppq{nq

3{2, d1s2 logppqq{nu
˘

,

one can achieve the same conclusion as for the estimation of Γ, which implies
that if K is not too large, Θ̃owAvg attains a similar statistical error as the
debiased full estimator Θ̂d

F .

Remark 6. One can show that the convergence rate of the optimally weighted
average estimator in a zero-mean model is of the form

}Θ̃owAvg ´ Θ}8 “ Op

`

K maxtd1
a

logppq{n, d
3{2
1 logppq{n,

d2
1plogppqq

3{2
{pn

?
n:qu

˘

.

The reader can refer to [28] for more details. Comparing this bound with the
one presented in (5.15), it is observed that the difference in the convergence
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rates between a covariate adjusted Gaussian graphical model and a zero-mean
Gaussian graphical model is in the term d1s2 logppqq{n. However, when consid-
ering the condition s2 “ o

`

nπ3
:

{ logppqq
˘

, 0 ă π3 ď 1{6, the cardinality of the
non-zero entries of Γ does not grow fast, hence Γ will be much sparser than Θ,
and as a result, the term d1s2 logppqq{n will be dominated by the other terms
in the bound (5.15).

In the next section, the statistical error and coverage probability of estimators
are compared from a finite sample perspective.

6. Simulation study

In this section, we examine empirically the performance of our proposed estima-
tors. To this end, we followed the simulation setup of [38] for generating sparse
matrices Γ and Θ.

First, to generate the precision matrix Θ, we randomly generated a link be-
tween all pairs pa, bq P V ˆ V, a ‰ b, with probability of connection of 0.01.
Then, the corresponding entry in the precision matrix is generated uniformly
from r´1,´0.5s

Ť

r0.5, 1s, for each link. After that, for each row, each entry
except the diagonal one is divided by the sum of the absolute values of the
off-diagonal entries multiplied by 1.5. Finally, the matrix is symmetrized and
the diagonal entries are fixed to 1. To generate the regression coefficient matrix,
we first generated a sparse indicator matrix with non-zero elements having a
probability of 0.01 of occurring for every pair pa, bq; a “ 1, . . . , q, b “ 1, . . . , p.
Then, corresponding to the non-zero entries of this indicator matrix, we gen-
erated uniformly the entries of Γ from r´1,´νms

Ť

rνm, 1s, where νm is the
minimum absolute non-zero value of the generated precision matrix. To gen-
erate a dataset, we first generated 9X “ pX1, . . . , XqqJ from a q-dimensional
Gaussian distribution with mean vector zero and covariance matrix Q. We used
the Toeplitz structure �|a´b|, a, b P t1, . . . , qu with � “ 0.9 to generate the co-
variance matrix Q. Finally, given 9X “ 9x, we generated 9Y from a p-dimensional
Gaussian distribution with mean ΓJ 9x and covariance matrix Θ´1.

To conduct the simulation, we set n “ 25000 and 50000 and the number
of machines to K “ 5, 10 and 20. To show the performance of the distributed
estimator in the unbalanced setting, we considered the following splitting pro-
cedure. Suppose that among all available machines, two of them are powerful.
The first one is the most powerful one and p55 ´ Kq% of the dataset is dis-
tributed on this machine. The second one is less powerful than the first one
and p60 ´ Kq% of the remaining dataset is distributed on this machine. The
remaining dataset is distributed roughly equally on the remaining machines.
By considering this splitting procedure and setting the number of responses to
p “ 1100 and the number of predictors to q “ 550, for some sub-samples we
have high-dimensionality. For example, when n “ 25000 and K “ 10, we have
p ą nk, @k “ 3, . . . , 10 and when K “ 20, we have p, q ą nk, @k “ 3, . . . , 20.
Moreover, when n “ 50000 and K “ 20, we have p ą nk, @k “ 3, . . . , 20.
To compare the performance of the distributed estimators, we considered two
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types of estimators: debiased (which are non-sparse) and sparse. The debiased
estimators consist of:

1) (Full) A debiased estimator based on the full non-distributed data.
2) (sAvg) An estimator based on splitting the data and averaging directly

the debiased estimators from each machine.
3) (wAvg) An estimator based on splitting the data and taking the weighted

average of the debiased estimators from each machine, where the weight
for the k-th sub-sample is set to pnk{nq.

4) (Top1) The estimator produced by the most powerful machine which takes
p55 ´Kq% of dataset. Since estimation on each machine is consistent and
asymptotically normal, investigating the performance on the first machine
which takes most of the dataset, is relevant.

The sparse competitors, which are shown respectively by SFull, SsAvg, SwAvg,
STop1, are obtained in the same way as estimators in 1)–4) but without the
debiasing step. A comparison with the full estimator reveals how much the
performance deteriorates due to splitting the data, while a comparison with
the simple and sample size weighted average estimators has the purpose of
evaluating if indeed the proposed owAvg estimator is better equipped to tackle
unbalanced settings due to a more appropriate weighting. A comparison with the
Top1 estimator has the purpose to evaluate if the remaining pK ´ 1q machines
which account for p45 ` Kq% of the original data are still able to produce
informative estimates even though they receive low amounts of data. In this
study, the tuning parameters in (3.1), (4.1) and (A.1), which are needed to
obtain Mk, see Appendix A.1, are set to ρk “ ρ “

a

logppqq{n, λk “ λ “
a

logppq{n and ρ̃j,k “ ρ̃ “
a

logpqq{n for all simulation runs. All simulation
results are calculated as averages over R “ 500 different repetitions.

To compare the performance of the estimators, we used the Frobenius norm
between the estimated matrix for each competitor and the true matrix from the
data generating process. The results for the Frobenius norm and their standard
deviation (between parentheses) for n “ 50000 are presented in Table 1 for
each competitor, separately on the active and the non-active sets. Note that the
active sets on Θ and Γ are indexed by S1 and S2, respectively. The results for
n “ 25000 are similar and are presented in Table 4 in Appendix C.

From Table 1, it is observed that the performance of the proposed debiased
owAvg estimator is similar to that of the non-distributed, full estimator in terms
of Frobenius norm. With increasing K from 5 to 20, the norm of the distributed
estimator stays relatively constant. This suggests that by splitting observations
in combination with the proposed aggregation, one might not lose much informa-
tion. On the other hand, wAvg is quite sensitive to the number of machines and
with increasing K, its norm performance deteriorates. Especially when K “ 20,
the difference relative to the full one is large on the non-active set. The worst
estimator between the debiased ones is sAvg which imposes the same weights on
all sub-samples and it is observed that its norm increases substantially, which
suggests that it is highly sensitive to K, as opposed to the distributed owAvg
estimator. Furthermore, the Frobenius norm of Top1 is much larger than that
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Table 1

Average and standard deviation (between parentheses) of the Frobenius norm over 500
repetitions on the active and non-active sets, for the proposed estimators and different

competitors, when n “ 50000.

Active set Non-active set
K K

1 5 10 20 1 5 10 20
Full 0.73 4.75

p.01q p.01q

owAvg 0.74 0.78 0.89 4.86 5.13 5.59
p.00q p.01q p.01q p.00q p.01q p.01q

D
eb

ia
se

d Top1 1.00 1.05 1.19 6.60 6.95 7.85
p.01q p.01q p.01q p.01q p.01q p.01q

sAvg 1.07 1.81 2.94 7.00 10.44 12.96
p.01q p.02q p.02q p.01q p.05q p.03q

wAvg 0.75 0.84 1.32 4.89 5.42 6.74
p.00q p.01q p.01q p.00q p.01q p.01qΘ

SFull 2.03 .38
p.01q p.00q

Sp
ar

se STop1 2.13 2.15 2.20 1.02 1.19 1.69
p.01q p.01q p.01q p.01q p.01q p.01q

SsAvg 2.02 1.82 1.49 3.12 5.06 6.06
p.01q p.01q p.01q p.00q p.02q p.01q

SwAvg 1.99 1.90 1.68 1.44 1.95 2.78
p.01q p.01q p.01q p.00q p.00q p.00q

Full 1.09 10.85
p.01q p.01q

owAvg 1.11 1.15 1.23 11.10 11.44 12.24
p.01q p.01q p.01q p.01q p.01q p.01q

D
eb

ia
se

d Top1 1.55 1.63 1.86 15.43 16.29 18.54
p.01q p.01q p.02q p.02q p.02q p.02q

sAvg 1.57 2.02 2.23 15.67 20.15 22.23
p.01q p.02q p.02q p.02q p.03q p.03q

wAvg 1.11 1.16 1.29 11.12 11.59 12.89
p.01q p.01q p.01q p.01q p.01q p.02qΓ

SFull 4.74 1.93
p.00q p.00q

Sp
ar

se STop1 4.74 4.74 4.75 1.99 2.00 2.04
p.00q p.00q p.00q p.00q p.00q p.00q

SsAvg 4.75 4.36 3.97 2.04 2.27 2.65
p.00q p.13q p.03q p.00q p.05q p.02q

SwAvg 4.74 4.61 4.40 1.93 1.90 1.93
p.00q p.04q p.01q p.00q p.01q p.00q

of the centralized full estimator, which implies that by considering just the
first machine with the largest amount of data and disregarding the remaining
machines one loses information as this strategy does not provide an accurate
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Fig 1. Histograms of the normalized debiased full (light gray bars) and of the distributed
estimator (dark gray bars), respectively, when n “ 50000, pa, bq “ p1, 3q and K “ 5, 10 or
20. From top to bottom, the figures present the asymptotic distributions for the estimation of
Γ (top) and Θ (bottom).

estimate. Moreover, as it is expected, the performance of the sparse estimators is
much better than the performance of the debiased estimators on the non-active
set only, as they shrink most of the elements to zero. However, their errors are
much larger than the errors of the debiased estimators on the active set as they
do not correct for the bias.

Due to the asymptotic distribution of the proposed estimators, investigat-
ing their inferential properties is also of interest. However, since there is no
distributional result available for the sparse estimators, it is not possible to
perform inference using these estimators. Figure 1 shows the normalized distri-
bution of the proposed debiased optimally weighted estimator and of the full
non-distributed estimator for both Γ and Θ, respectively from top to bottom.
As an illustrative example, these figures are reported for pa, bq “ p1, 3q, others
are available from the authors, but are similar. The light gray histograms corre-
spond to the normalized distribution of the full estimators which are obtained
from (3.4) and (4.6), by setting K “ 1, for Γ and Θ, respectively. The dark gray
histograms correspond to the asymptotic distributions of (5.8) and (5.9), respec-
tively. The presented histograms confirm the asymptotic normal distribution of
the proposed estimators and its similarity to the full one.

Using the asymptotic distribution of the estimators, the coverage probabilities
and the length of the confidence intervals are presented in Table 2 at significance
level α “ .05. Here, we explain the procedure for computing the empirical cover-
age probability for the elements of Θ. The same procedure is applied to compute
the empirical coverage probability and the length of confidence intervals for the
elements of Γ. Similarly to [17], the empirical probability that the true parameter
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Table 2

Average coverage probability and average length of the confidence intervals over 500
repetitions for the proposed estimators and different competitors, when n “ 50000.

Avg.Cov Avg.Len
K K

1 5 10 20 1 5 10 20

A
ct

iv
e

se
t Full .93 .02

owAvg .93 .93 .92 .02 .02 .02
Top1 .94 .94 .94 .02 .03 .02
sAvg .92 .85 .71 .02 .03 .04
wAvg .94 .96 .91 .02 .02 .03Θ

N
on

-a
ct

iv
e

se
t

Full .93 .02
owAvg .95 .95 .95 .02 .02 .02
Top1 .95 .95 .95 .02 .03 .05
sAvg .94 .92 .92 .02 .03 .04
wAvg .95 .97 .98 .02 .02 .03

A
ct

iv
e

se
t Full .95 .06

owAvg .95 .95 .95 .06 .06 .06
Top1 .95 .95 .95 .09 .08 .09
sAvg .95 .94 .93 .09 .10 .10
wAvg .96 .96 .97 .06 .06 .07Γ

N
on

-a
ct

iv
e

se
t

Full .96 .08
owAvg .95 .95 .95 .06 .06 .06
Top1 .95 .95 .95 .09 .08 .09
sAvg .95 .94 .93 .09 .10 .10
wAvg .96 .96 .97 .06 .06 .07

Θab is included in the confidence interval is defined as P̂ab “ #tΘab P CIab,ru{R,
where R is the number of repetitions in the simulation, CIab,r is the estimated
confidence interval for Θab at the r-th repetition, and # denotes the number
of times for which the true parameter Θab belongs to the confidence interval.
After obtaining P̂ab for all pa, bq P V ˆV, a ‰ b, the average coverage probability
on the active set S1 is obtained as Avg.CovS1

“ p1{s1q
ř

pa,bqPS1
P̂ab, where s1 is

the number of active components. Similar computations have been implemented
for obtaining the estimated coverage probability over the non-active set Sc

1.
From Table 2, it is observed that the performance of the owAvg estimator

is close to the full one on both the active and non-active sets, as the coverage
probabilities are close to the nominal level of 95%. Moreover, the average lengths
are relatively low and are stable with increasing K. The results for Top1 are
also close to the nominal level, but its length is slightly larger than that of the
full and of the distributed estimator. However, in Table 1, we observed that its
Frobenius norm performance is far away from the norm of the full estimator
making it a less interesting alternative. The coverage probability of sAvg is low
in some cases, especially in estimating Θ on the active set. The length of its
confidence interval is also relatively large, especially when estimating Γ. The
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Fig 2. Running time in seconds for the full and proposed estimators in estimating Γ (left)
and Θ (right), when p “ 1100 and q “ 550. The regularization parameters for the distributed
estimators are considered as λk “

a

logppq{nk, ρk “
a

logppqq{nk and ρ̃k “
a

logpqq{nk.

performance of wAvg is generally better than that of sAvg but over-coverage is
observed. More than that, the length of its confidence interval is not stable and
it increases with increasing K. The results for n “ 25000 are similar and they
are presented in Table 5 in Appendix C.

Another quantity which is important to keep track of, is the running time.
In this paper, it is considered as the maximum running time among all parallel
jobs plus the time to combine the results. These results are shown in Figure 2
for the debiased estimators of Γ and Θ for different sample sizes from n “ 50000
to 200000 and K “ 5, 10, 20. Not surprisingly, the running times of the sparse
estimators were at lower values than the running times of the debiased ones as
they do not involve the debiasing step in the estimation procedure, and they are
not reported in this figure. It is observed from Figure 2 that for any fixed sample
size, the computation time of the distributed estimators is less than that of the
full one and as expected, it decreases with increasing K. This running time is
quite close for all owAvg, wAvg, sAvg and Top1 estimators. This behavior is the
same for both estimators of Γ and Θ and shows, as expected, the efficiency of
the proposed estimators in terms of computation time.

7. Real data example

To explore the performance of the proposed methodology, we used the Pan-
Cancer dataset from The Cancer Genome Atlas (TCGA) project (available at
https://xenabrowser.net/datapages/) that fits perfectly the motivation setup
presented in Section 1. This project was started in 2006 and in 10 years time,
TCGA network investigators had characterized the molecular landscape of tu-
mors from more than 11000 patients across 33 cancer types. This particular
TCGA molecular dataset has been studied in multiple works to understand
the cancer biology, including those of glioblastoma multiforme (GBM), ovarian,
breast, lung, prostate, bladder and others (see for instance, [1, 23, 27]).

https://xenabrowser.net/datapages/
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Table 3

Significant and common pairs between four competitors and the estimator using the
full dataset. For all methods a Bonferroni correction is applied.

Percentage of
Significant pairs common pairs

with Full
K K

1 3 5 10 3 5 10
Full 964

owAvg 897 832 828 83 78 71
Γ Top1 300 290 295 26 25 19

sAvg 817 466 234 76 43 23
wAvg 888 948 1334 84 79 81
Full 6564

owAvg 6168 5917 5535 90 86 81
Θ Top1 3095 2966 2655 47 45 40

sAvg 5234 2923 1914 78 44 29
wAvg 6120 5463 4169 89 81 63

Although the estimation of the graph structure of genes can be effective in
identifying the associated genetic variants, external covariates such as single
nucleotide polymorphisms may affect their structure. As such, we applied the
proposed conditional multivariate regression to regress 743 microRNA mature
strand expressions on 27147 tumor gene-level copy numbers and to model how
the gene expressions regulate the microRNA expressions. Estimation of the un-
derlying graph among the microRNAs is also of interest. We further selected
1164 tumor gene expressions with empirical variance greater than 0.3, and the
final dataset consists of n “ 9986 subjects having both q “ 1164 covariates and
p “ 743 responses.

To compare the performance of the proposed method, we split the dataset
on K “ 3, 5 and 10 different machines with the same splitting setting as in the
simulation study in Section 6. Tuning parameters are also fixed as in the sim-
ulation study with α “ 5% and a Bonferroni correction is applied for multiple
testing. The number of significant pairs and the percentage of the common pairs
between the distributed procedures and the full one are presented in Table 3.
It is observed that when estimating Γ, the owAvg and wAvg estimators identify
more common non-zero coefficients with the full estimator, while sAvg and Top1
are further away from the full estimator. When K “ 3, sAvg is close to the full
one, but with increasing K, it grows further apart, such that when K “ 10, it
identified only 234 coefficients of which 23% of them are common with the full
estimator. The same holds for Top1 which identified much less coefficients com-
pared to the full, owAvg and wAvg estimators. We conclude that there are more
common edges between the graphs estimated by the distributed owAvg method
and the full one, while the least similar competitors are Top1 and sAvg. With
increasing K, the percentage of common edges tends to decrease for all competi-
tors due to the loss of information incurred by splitting data on more machines.
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Fig 3. The estimated sub-graph between relevant genes for the GBM cancer. For all methods
a Bonferroni correction is applied.

As it is mentioned in [36], the genes hsa-miR-136, hsa-miR-376a and hsa-
miR-377 are important genes in identifying GBM cancer. Figure 3 presents the
estimated sub-graph between these genes using the owAvg and Full procedures
after a Bonferroni correction. It is observed that owAvg procedure could identify
a similar sub-graph to the full one. A similar sub-graph was also identified by
the wAvg procedure. However, when K “ 10, the identified sub-graph by wAvg
procedure contained only two edges. The sAvg and Top1 procedures missed more
edges, and they could identify only one edge namely between hsa-miR-136-3p
and hsa-miR-136-5p. The sparse graphical Lasso estimator which completely
ignores the impact of covariates on the mean structure of the responses is also
considered as a competitor and with this method we identified 37376 edges
suggesting that many estimated edges might in fact be false positive edges.

Afterwards, to investigate the performance of the estimators for completely
independent variables, we permuted randomly sample data for each variable,
thus breaking up the correlation structure in order to construct a dataset with
mutually independent variables. As such, we expect that there are no selected
variables in the estimated coefficient matrix and zero off-diagonal elements in
the estimated precision matrix. By fitting separately the proposed owAvg esti-
mator and all competitors on the dataset with K “ 3, 5 and 10, we identified
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no edges in the estimated precision matrix which confirms this assertion. How-
ever, a couple of non-zero coefficients were wrongly identified in the estimated
coefficient matrix. The owAvg and sAvg estimators, both identified around 10
non-zero coefficients, while wAvg identified 84, which indicates more false posi-
tive discoveries produced by this estimator.

8. Discussion

Splitting a dataset on multiple locations with different sizes is an inevitable
method to tackle the problem of large scale datasets which cannot be read
nor stored in one single location. Separate analyses at multiple locations are
also of contemporary interest due to today’s security and privacy concerns. The
essential step in distributed problems is choosing how to aggregate different
estimators to a final one.

In this paper, aggregated estimators are introduced for the coefficient matrix
in the multivariate regression models and the precision matrix corresponding
to the graph structure of the response vector. To build these estimators, first
debiased quantities were provided on each machine and then, they were pooled
together to create the final estimators by maximizing a pseudo log-likelihood
function which is constructed using the asymptotic distribution of the debiased
estimators. Two special cases of the aggregated estimators, including simple and
weighted averages, were provided under the known variance assumption. Statis-
tical guarantees and the asymptotic distribution of the aggregated estimators
were investigated under sparsity conditions and a growing number of machines
as a function of the sample size.

It is shown that the aggregated estimators are asymptotically as efficient as
the debiased, full non-distributed estimators and confirm the asymptotic neg-
ligibility of the efficiency loss in the distributed procedure. Moreover, based
on the provided convergence rates, it is deduced that the aggregated estima-
tors exhibit a similar statistical error as the debiased full estimator as long as
the number of machine is not too large. In the estimation of the coefficient
matrix, it is shown that as the number of machines grows at the rate K “

O
`

n1{4{p
a

logppqq logpqq maxts2,
?
d2uq

˘

, the final estimator is consistent and
asymptotically normal. This growth rate adjusts to K “ O

`

n1{3{pd1 logppqq
˘

, in
estimating the precision matrix. Statistical inference was also proposed based
on the asymptotic normal distribution of the aggregated estimators. These dis-
tributions are valid as long as the number of machines grows at the mentioned
rates.

The finite sample performance of the proposed estimators was evaluated with
a simulation study where it was observed that the estimators produced com-
petitive results relative to the non-distributed estimators that use the entire
data. Since we perform estimation by distributing the computational load across
multiple machines, not surprisingly the computational time comparison favors
our novel estimator. Moreover, this estimator performed substantially better
than the simple average-based estimator in terms of accuracy. It was also ob-
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served that the coverage probabilities of the distributed estimators are close to
those of the non-distributed estimators. This points to the fact that in practice,
performing distributed estimation across multiple machines in our unbalanced
framework induces a minimal loss in performance relative to models using all
the data in a centralized location.

Appendix A: Proofs of the main theorems and lemmas

A.1. Proof of Theorem 1

Before starting the proof of Theorem 1, we provide a short description of the
nodewise Lasso method from [34] using the k-th sub-sample, which is needed
later in the proof.

For every j P t1, . . . , qu, use Lasso for the regression problem Xj,k against
X´j,k, where Xj,k and X´j,k are, the j-th column and the nk ˆ pq ´ 1q dimen-
sional sub-matrix of Xk obtained by removing the j-th column, respectively.
Formally,

η̂j,k “ arg min
ηPRq´1

"

1
2nk

}Xj,k ´ X´j,kη}
2
2 ` ρ̃j,k}η}1

*

, (A.1)

with components η̂j,k “ tη̂pj,j1q,k; j1 “ 1, . . . , q, j1 ‰ ju, where η̂pj,j1q,k is the esti-
mated regression coefficient associated to the j1-th column of Xk when column
j is the response vector. Define

Ψ̂k “

¨

˚

˚

˚

˝

1 ´η̂p1,2q,k . . . ´η̂p1,qq,k

´η̂p2,1q,k 1 . . . ´η̂p2,qq,k

...
...

. . .
...

´η̂pq,1q,k ´η̂pq,2q,k . . . 1

˛

‹

‹

‹

‚

and write

Υ̂2
k “ diagpτ̂2

1,k, . . . , τ̂
2
q,kq, τ̂2

j,k “ }Xj,k ´ X´j,kη̂j,k}
2
2{nk ` ρ̃j,k}η̂j,k}1,

and finally, set
Mk “

“

Υ̂2
k

‰´1Ψ̂k.

Now, to prove Gaussianity in Theorem 1, we mention that ξk is an nk ˆ p
matrix with independent rows and distributed as Npp0,Σq. As such, the random
vector vecpξkq is distributed as a pnk-dimensional Gaussian vector with mean
zero and covariance matrix Σ b Ink

, which is a pnk ˆ pnk matrix. Due to the
properties of the vecp¨q function,

Tk :“ vecpMkXJ
k ξk{

?
nkq “ p1{

?
nkq

`

Ip b pMkXJ
k q
˘

vecpξkq.

As such, given Xk, the random vector Tk is a linear transformation of vecpξkq

and it is thus a pq-dimensional Gaussian vector with mean vector zero and
covariance matrix

VarpTk|Xkq “ p1{nkqpIp b pMkXJ
k qqpΣ b Ink

qpIp b pXkMJ
k qq
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“ Σ b pMkCkMJ
k q.

To show negligibility of the remainder term Rk,Γ in (3.3), we have

}Rk,Γ}8 ď
?
nk}Iq ´ MkCk}8~Γ̂k ´ Γ~8

ď
?
nk}Iq ´ MkCk}8}Γ̂k ´ Γ}1. (A.2)

Using the KKT conditions, [34] showed that }CkMJ
j,k ´ej}8 ď ρ̃j,k{τ̂2

j,k, where
Mj,k is the j-th row of Mk and ej is the j-th unit column vector with 1 at the
j-th position and zero everywhere else. Under the assumptions (A1) and (A2)
and considering the maximum row sparsity d2 “ op

?
n:{ logpqqq in Lemma 5.3

of [34], we have

max
jPt1,...,qu

1{τ̂2
j,k “ Opp1q.

Therefore, by choosing uniformly ρ̃j,k —
a

logpqq{nk for each j “ 1, . . . , q, we
get

}CkMJ
k ´ Iq}8 “ max

j
}CkMj,k ´ ej}8 “ Opp

a

logpqq{nkq. (A.3)

Substituting (A.3) and (B.15) from Lemma 5 (see Appendix B) in (A.2), we get

}Rk,Γ}8 “ Op

`

s2
a

logpqq logppqq{nk

˘

.

Finally, by considering s2 “ o
`

nπ1
:

{plogpqq logppqqq
˘

, 0 ă π1 ď 1{2, the required
result follows.

A.2. Proof of Theorem 2

Using (3.3), we have that,

}Γ̂d
k ´ Γ}8 ď }vecpMkXJ

k ξkq}8{nk ` }Rk,Γ}8{
?
nk. (A.4)

Due to the properties of the vecp¨q function,

}vecpMkXJ
k ξkq}8{nk ď ~Ip b Mk~8}vecpXJ

k ξkq}8{nk “ Opp
a

d2 logppqq{nkq,
(A.5)

where the last equality is obtained by (i) working on the event Fkpnk, p, qq with
ρk —

a

logppqq{nk, and (ii) by the same argument as in the proof of Lemma 5.4
from [34], as

~Ip b Mk~8 “ ~Mk~8 “ max
jPt1,...,qu

}Mj,k}1 “ Opp
a

d2q,

where Mj,k is the j-th row of Mk. Under assumptions (A1) and (A2) and using
Theorem 1, by substituting (3.4) and (A.5) in (A.4), the result in (3.5) follows
directly.
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A.3. Proof of Lemma 1

Before starting the proof of this Lemma, we provide some technical assumptions
on the sample covariance matrix Ck, which are needed later in the proof. For
more information on these assumptions, the reader can refer to [38].

(C1) There exists an α2 P p0, 1s, such that

sup
bPt1,...,pu

~pCkqSc
2pbqS2pbqrpCkqS2pbqS2pbqs

´1
~8 ď 1 ´ α2,

where pCkqSc
2pbqS2pbq is a sub-matrix of Ck whose rows and columns are

indexed by the elements of Sc
2pbq and S2pbq, respectively, where Sc

2pbq is
the complement set of S2pbq, defined in Section 2. As it is mentioned in
[38], this condition is the matrix version of the irrepresentability condition
used in the �1 penalized regression setting of [41].

(C2) There exists a constant Cmax, such that the largest eigenvalue

Λmax

ˆ

“

pCk b IpqS2S2

‰´1
pCk b ΣqS2S2

“

pCk b IpqS2S2

‰´1
˙

ď Cmax.

(C3) For all nk ą 0, the largest eigenvalue of Ck has a common upper bound
Λ3, that is ΛmaxpCkq ď Λ3.

Now to prove Lemma 1, using (4.4), we have

}Rk,Θ}8 “
?
nk} ´ pΘ̂kΣ̂k,Γ̂k

´ IpqpΘ̂k ´ Θq ´ pΘ̂k ´ ΘqW1
kΘ ´ ΘW2

kΘ}8

ď
?
nk}Θ̂kΣ̂k,Γ̂k

´ Ip}8~Θ̂k ´ Θ~8 `
?
nk~Θ̂k ´ Θ~8}W1

kΘ}8

`
?
nk}ΘW2

kΘ}8. (A.6)

To find an upper bound on }Θ̂kΣ̂k,Γ̂k
´ Ip}8, we write

}Θ̂kΣ̂k,Γ̂k
´ Ip}8 “ }Θ̂kΣ̂k,Γ̂k

´ Θ̂kΣ ` Θ̂kΣ ´ Ip}8

“ }Θ̂kpΣ̂k,Γ̂k
´ Σq ` Θ̂kΣ ´ ΘΣ ` ΘΣ ´ Ip}8

“ }Θ̂kpΣ̂k,Γ̂k
´ Σq ` pΘ̂k ´ ΘqΣ ` ΘΣ

´ ΘΣ̂k,Γ̂k
` ΘΣ̂k,Γ̂k

´ Ip}8

“ }Θ̂kpΣ̂k,Γ̂k
´ Σq ` pΘ̂k ´ ΘqΣ ´ ΘpΣ̂k,Γ̂k

´ Σq

` ΘΣ̂k,Γ̂k
´ ΘΣ}8

ď ~Θ̂k ´ Θ~8}W1
k}8 ` }Θ̂k ´ Θ}8~Σ~8 ` }ΘW1

k}8.

(A.7)

Substituting (A.7) in (A.6), we have

}Rk,Θ}8 ď
?
nk

�

2}R1
k,Θ}8 ` }R2

k,Θ}8 ` }R3
k,Θ}8 ` }R4

k,Θ}8

(

, (A.8)
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where

}R1
k,Θ}8 “ }ΘW1

k}8~Θ̂k ´ Θ~8,

}R2
k,Θ}8 “ ~Θ̂k ´ Θ~

2
8}W1

k}8,

}R3
k,Θ}8 “ }Θ̂k ´ Θ}8~Θ̂k ´ Θ~8κΣ,

}R4
k,Θ}8 “ }ΘW2

kΘ}8.

Under assumption (B1) from Section 4 for the matrix Θ, it holds that

~Θ~8 “ max
aPV

}Θa}1 ď
a

d1ΛmaxpΘq “ Op
a

d1q, (A.9)

where Θa is the a-th row of Θ. Under (B2) and the additional assumptions
(C1)–(C3), the conditions of result 1 from Theorem 2 of [38] are fulfilled, and
for the k-th sub-sample we have

}Θ̂k ´Θ}8 “ Op

ˆ

�

16
?

2p1`4γ2
qp1`8{α1q max

a
ΣaaκH

(

d

logp4pτ q

nk

˙

, (A.10)

where maxa Σaa is the maximal diagonal element of the covariance matrix Σ,
τ ą 2 is a constant and γ is a common sub-Gaussian parameter for Gaussian
random variables ε1, . . . , εp, where γ “ Op1q. Moreover, based on result 2 of the
aforementioned theorem, the edge set EpΘ̂kq, i.e. the edge set created based on
the estimated Θ̂k, is a subset of the true edge set EpΘq with high probability.
As such, Θ̂k has at most d1 non-zero entries per row, and we get

~Θ̂k ´ Θ~8 “ max
a

p
ÿ

b“1
|Θ̂ab,k ´ Θab| “ max

a

d1
ÿ

b“1
|Θ̂ab,k ´ Θab|

ď max
a

d1
ÿ

b“1
max

b
|Θ̂ab,k ´ Θab|

“ d1}Θ̂k ´ Θ}8,

where Θ̂ab,k is the pa, bq-th element of Θ̂k. Thus, using (A.10),

~Θ̂k ´ Θ~8 ď Op

ˆ

d1
�

16
?

2p1 ` 4γ2
qp1 ` 8{α1q max

a
ΣaaκH

(

d

logp4pτ q

nk

˙

.

Therefore in (A.8), we have

}Rk,Θ}8 ď 5
?
nk max

�

}R1
k,Θ}8, }R2

k,Θ}8, }R3
k,Θ}8, }R4

k,Θ}8

(

, (A.11)

where

}R1
k,Θ}8 ď

a

d1ΛmaxpΘq}W1
k}8
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ˆ Op

ˆ

d1
�

16
?

2p1 ` 4γ2
qp1 ` 8{α1q max

a
ΣaaκH

(

d

logp4pτ q

nk

˙

,

}R2
k,Θ}8 ď }W1

k}8Op

ˆ

d2
1
�

16
?

2p1 ` 4γ2
qp1 ` 8{α1q max

a
ΣaaκH

(2 logp4pτ q

nk

˙

,

}R3
k,Θ}8 ď κΣOp

ˆ

d1
�

16
?

2p1 ` 4γ2
qp1 ` 8{α1q max

a
ΣaaκH

(2 logp4pτ q

nk

˙

.

To obtain an upper bound on }W1
k}8, under assumptions (C1)–(C3), and using

Lemma 2 of [38], we can write

}W1
k}8 “ Op

ˆ

d

logp4pτ q

C2nk

˙

,

where C2 “ r128p1 ` 4γ2q2 max2
a Σaas´1. Moreover,

}R4
k,Θ}8 “ }Θ

�

pYk ´ XkΓ̂kq
J

pYk ´ XkΓ̂kq{nk ´ ξJ
k ξk{nk

(

Θ}8.

Adding and subtracting XkΓ to the first term in R4
k,Θ, we get that

}R4
k,Θ}8 ď ~Θ~

2
8

"

2}pΓ̂k ´ Γq
JXJ

k ξk}8{nk ` }XkpΓ̂k ´ Γq}
2
F {nk

*

.

Under assumption (B1) and by conditioning on the event Fkpnk, p, qq, we have

}R4
k,Θ}8 ď d1

�

ρk}Γ̂k ´ Γ}1 ` }XkpΓ̂k ´ Γq}
2
F {nk

(

.

Recall that S2 and S2pbq denote the support of the coefficient matrix Γ and its
b-th column, b “ 1, . . . , p, with cardinalities s2 and s2pbq, respectively. Under
assumption (C1), by a similar argument as in the proof of Theorem 6.1 of [5],
one can show that for the fixed design matrix Xk,

ρk}Γ̂k ´ Γ}1 ` }XkpΓ̂k ´ Γq}
2
F {nk ď 4ρ2

ks2{φ2.

where φ2 P p0,8q is the compatibility constant which has a similar role to μb

from the RE condition (B.6) for the fixed design matrix Xk. It is noteworthy
that, as it is shown in Theorem 7.2 of [5], under the fixed design setting, the
irrepresentability condition (C1) is enough to reach the compatibility condition
and the restricted eigenvalue condition (B.6) is not needed. The reader can refer
to Chapter 7 of [5] for more details. Since φ2 P p0,8q, there exists L “ Op1q,
such that 1{φ2 ď L. Combining this with ρk —

a

logppqq{nk, and substituting
in R4

k,Θ, we get

}R4
k,Θ}8 “ Oppd1s2 logppqq{nkq.

Substituting the obtained bounds in (A.11) and considering κΣ “ Op1q,
κH “ Op1q, 1{α1 “ Op1q, and γ “ Op1q, we get

}Rk,Θ}8 “ Op

ˆ

?
nk max

�

d
3{2
1 logppq{nk, d

2
1plogppq{nkq

3{2, d1 logppq{nk, d1s2 logppqq{nk

(

˙

,

and under the sparsity assumptions d
3{2
1 “ op

?
n:{ logppqq and s2 “

opnπ3
:

{ logppqqq, 0 ă π3 ď 1{6 the result }Rk,Θ}8 “ opp1q follows.
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A.4. Proof of Theorem 3

The proof of this theorem is an extension of the proof of Theorem 1 from [17]
by considering a non-zero mean structure. Under the assumptions of Lemma 1
from the main text, it is shown that }Rk,Θ}8 “ opp1q. As such, using (4.3), we
have

?
nkpΘ̂d

ab,k ´ Θabq “ ´
?
nktΘWkΘuab ` opp1q

“ ´
1

?
nk

nk
ÿ

l“1

`

ΘJ
a p 9Yl,k ´ ΓJ 9Xl,kqp 9Yl,k ´ ΓJ 9Xl,kq

JΘb

´ Θab

˘

` opp1q, (A.12)

where 9Yl,k P R
p and 9Xl,k P R

q are the l-th row of the sub-matrices Yk and Xk,
respectively, and Θa and Θb are p-dimensional vectors coming from the a-th
row and the b-th row of Θ. The second equality in (A.12) follows directly since
ΘWkΘ “ ΘΣ̂k,ΓΘ ´ Θ. To show the normality of the term in (A.12), define
Zab,l,k :“ ΘJ

a p 9Yl,k ´ ΓJ 9Xl,kqp 9Yl,k ´ ΓJ 9Xl,kqJΘb ´ Θab, l “ 1, . . . , nk. Then,

EpZab,l,kq “ ΘJ
aE

�

p 9Yl,k ´ ΓJ 9Xl,kqp 9Yl,k ´ ΓJ 9Xl,kq
J
(

Θb ´ Θab

“ eJ
a Θeb ´ Θab “ 0,

where eb is a p-dimensional unit column vector of zeros with one at position
b and similarly for ea. On the other hand, since 9Yl,k ´ ΓJ 9Xl,k is a Gaussian
random vector, the variance

σ2
ab “ VarpZab,l,kq “ Var

`

ΘJ
a p 9Yl,k ´ ΓJ 9Xl,kqp 9Yl,k ´ ΓJ 9Xl,kq

JΘb

˘

is finite. Denote by Znk
“

řnk

l“1 Zab,l,k. Then, z2
nk

:“ VarpZnk
q “ nσ2

ab. Divid-
ing (A.12) by σab ą 0, we get

?
nkpΘ̂d

ab,k ´ Θabq{σab “ Znk
{znk

` opp1q{σab.

It is enough to show that Znk
{znk

d
ÝÑ N p0, 1q, where d

ÝÑ denotes convergence in
distribution. By substituting Zab,l,k in the proof of Theorem 1 from [17], with
the same argument, the normality of Znk

{znk
follows. The reader can refer to

[17] for more details.
To show σ2

ab “ ΘaaΘbb ` Θ2
ab, under the multivariate Gaussian distribution

of 9εl,k, which is the l-th row of ξk, we have 9εl,k “ 9Yl,k´ΓJ 9Xl,k „ Npp0,Σq, and
as such Θp 9Yl,k ´ΓJ 9Xl,kq „ Npp0,Θq. Using a similar argument as in the proof
of Lemma 2 from [17], it holds that σ2

ab “ ΘaaΘbb `Θ2
ab and 1{σab “ Op1q.

A.5. Proof of Theorem 4

a) The proof of this theorem relies on Lemma 7, which shows the negligibility of
the remainder term Ra,Γ as n: and K grow. To show the asymptotic normality
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of Wa,Γ, define

ζa :“
K
ÿ

k“1

d

nkrΣ b Q´1saa

nrΣ̂k,Γ̂k
b pMkCkMJ

k qsaa

ˆ
Ta,k

b

rΣ̂k,Γ̂k
b pMkCkMJ

k qsaa

,

where Ta,k is the a-th element of Tk from (3.3). As
c

řK
k“1 nk{rΣbQ´1saa

řK
k“1nk{rΣ̂k,Γ̂k

bpMkCkMJ
k qsaa

p
ÝÑ 1, see the proof of Lemma 7, using Slutsky’s theorem, it is enough to
show that ζa converges in distribution to N p0, 1q. Defining ζ 1

a :“
řK

k“1
a

nk

n ˆ

Ta,k
b

rΣbpMkCkMJ
k qsaa

, we show in Lemma 8 that |ζa ´ ζ 1
a|

p
ÝÑ 0 as K Ñ 8 and

nk Ñ 8, k “ 1, . . . ,K, and then convergence in distribution of ζa follows by
convergence in distribution of ζ 1

a.
Now to show the asymptotic normal distribution of ζ 1

a, denoting by Za,k :“
a

nk

n ˆ
Ta,k

b

rΣbpMkCkMJ
k qsaa

, we use the Lindeberg theorem (see for instance, The-

orem 2.1 in Chapter 7 of [15]). We have

EpZa,kq “ E

"

E

ˆ
c

nk

n
ˆ

Ta,k
b

rΣ b pMkCkMJ
k qsaa

| Xk

˙*

“ E

"
c

nk

n
ˆ

1
b

rΣ b pMkCkMJ
k qsaa

E
`

Ta,k | Xk

˘

*

“ 0,

where the last equality is deduced from the conditional normal distribution of
Ta,k shown in Theorem 1. Moreover,

K
ÿ

k“1
EpZ2

a,kq “

K
ÿ

k“1
E

"

nk

n
ˆ

1
rΣ b pMkCkMJ

k qsaa
E
`

T2
a,k | Xk

˘

*

“

K
ÿ

k“1

nk

n
“ 1,

where the second equality is deduced using the conditional variance of Ta,k,
which is equal to rΣ b pMkCkMJ

k qsaa. Now to check the Lindeberg condition,
for every ε ą 0, we can write

E
`

Z2
a,kIp|Za,k| ą εq | Xk

˘

“
nk

nrΣ b pMkCkMJ
k qsaa

E

"

T2
a,kI

`

|Ta,k|ąε

d

nrΣ b pMkCkMJ
k qsaa

nk

˘

| Xk

*

,

(A.13)

where Ip¨q is the indicator function. Following [17], p. 1223, for a random variable
X and a positive constant a, one can write

E
`

X2
Ip|X| ą aq

˘

“ a2
Pp|X| ą aq ` 2

ż 8

a

uPp|X| ą uq du.
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Applying this equality to (A.13), we get

E
`

Z2
a,kIp|Za,k| ą εq | Xk

˘

“ ε2P

ˆ

|Ta,k| ą ε

d

nrΣ b pMkCkMJ
k qsaa

nk
| Xk

˙

`
2nk

nrΣ b pMkCkMJ
k qsaa

ż 8

ε
b

nrΣbpMkCkMJ
k qsaa{nk

uPp|Ta,k| ą u | Xk

˘

du.

(A.14)

Applying the concentration inequality Pp|X ´ μ| ą tq ď 2e´ t2
2σ2 , t P R, for a

normal random variable X with mean μ and variance σ2, we get

P

ˆ

|Ta,k| ą ε

d

nrΣ b pMkCkMJ
k qsaa

nk
| Xk

˙

ď 2e´ nε2
2nk .

In the integral, by substituting t :“
?
nku

ε
b

nrΣbpMkCkMJ
k qsaa

, we have

ż 8

ε
b

nrΣbpMkCkMJ
k qsaa{nk

uPp|Ta,k| ą u | Xk

˘

du

“
nrΣ b pMkCkMJ

k qsaaε
2

nk

ż 8

1
tP

ˆ

|Ta,k|ąεt

d

nrΣ b pMkCkMJ
k qsaa

nk
| Xk

˙

dt

ď
nrΣ b pMkCkMJ

k qsaaε
2

nk

ż 8

1
2te´ nε2t2

2nk dt “ 2rΣ b pMkCkMJ
k qsaae

´ nε2
2nk .

As such, in (A.14),

E
`

Z2
a,kIp|Za,k| ą εq | Xk

˘

ď 2e´ nε2
2nk tε2 ` 2nk{nu.

Thus, in the Lindeberg condition, we get

lim
KÑ8

lim
nkÑ8

k“1,...,K

K
ÿ

k“1
E

"

Z2
a,kI

`

|Za,k| ą ε
˘

*

“ lim
KÑ8

lim
nkÑ8

k“1,...,K

K
ÿ

k“1
E

"

E
`

Z2
a,kIp|Za,k| ą εq | Xk

˘

*

ď lim
KÑ8

lim
nkÑ8

k“1,...,K

K
ÿ

k“1
2e´ nε2

2nk tε2 ` 2nk{nu

ď lim
KÑ8

lim
nkÑ8

k“1,...,K

K
ÿ

k“1
2e´

Kn:ε2

2n tε2 ` 2nk{nu
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“ lim
KÑ8

"ˆ

lim
nkÑ8

k“1,...,K
2e´

Kn:ε2

2n

˙ˆ

lim
nkÑ8

k“1,...,K

K
ÿ

k“1

�

ε2 ` 2nk{n
(

˙*

ď lim
KÑ8

`

2ε2 ` 4qKe´Kc:ε
2

{2
“ 0,

where the last inequality is deduced due to the fact that nk ă n, k “ 1, . . . ,K,
and the last equality follows by l’Hôpital’s rule.

b) By basic algebra it can be shown that
?
nK

b

řK
k“1rΣ̂k,Γ̂k

b pMkCkMJ
k qsaa

`

vecpΓ̃wAvgqa ´ vecpΓqa

˘

“ W1
a,Γ ` R1

a,Γ,

where

W1
a,Γ “

d

KrΣ b Q´1saa
řK

k“1rΣ̂k,Γ̂k
b pMkCkMJ

k qsaa

K
ÿ

k“1

c

nk

n

1
a

rΣ b Q´1saa

Ta,k,

R1
a,Γ “

d

KrΣ b Q´1saa
řK

k“1rΣ̂k,Γ̂k
b pMkCkMJ

k qsaa

K
ÿ

k“1

c

nk

n

1
a

rΣ b Q´1saa

Ra,k,Γ,

where Ta,k and Ra,k,Γ are respectively the a-th element of Tk and Rk,Γ defined
in (3.3). Consider the random variable ζa “

1
a

rΣbQ´1saa

řK
k“1

a

nk

n Ta,k. In

part a), it is shown that ζ 1
a :“

řK
k“1

a

nk

n ˆ
1

b

rΣbpMkCkMJ
k qsaa

Ta,k converges in

distribution to N p0, 1q. On the other hand, one can easily show that |ζa ´ ζ 1
a| “

Op

`

Kd2
a

logppqq logpqq{n
˘

, and then the opp1q result follows by the mentioned
sparsity condition on d2 and with K “ O

`

n1{3{p
a

logppqq logpqq maxts2, d2uq
˘

.
As such, the asymptotic normality of ζa follows directly. Moreover, the opp1q

result of the remainder term R1
a,Γ is reached by the same technique as in part a).

c) By basic algebra it can be shown that

K3{2
b

p
řK

k“1rΣ̂k,Γ̂k
b pMkCkMJ

k qsaaqp
řK

k“1 1{nkq

`

vecpΓ̃sAvgqa ´ vecpΓqa

˘

“ W2
a,Γ ` R2

a,Γ,

where

W2
a,Γ “

a

KrΣ b Q´1saa
b

řK
k“1rΣ̂k,Γ̂k

b pMkCkMJ
k qsaa

ˆ
1

b

prΣ b Q´1saaqp
řK

k“1 1{nkq

ˆ

K
ÿ

k“1

1
?
nk

Ta,k,

R2
a,Γ “

a

KrΣ b Q´1saa
b

řK
k“1rΣ̂k,Γ̂k

b pMkCkMJ
k qsaa

ˆ
1

b

prΣ b Q´1saaqp
řK

k“1 1{nkq
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ˆ

K
ÿ

k“1

1
?
nk

Ra,k,Γ.

Considering ζa :“ 1
b

prΣbQ´1saaqp
řK

k“1 1{nkq

řK
k“1

1?
nk

Ta,k and ζ 1
a :“

řK
k“1

1
b

nkrΣbpMkCkMJ
k

qsaap
řK

k“1 1{nkq
Ta,k, by similar techniques as in part a), using the

Lindeberg theorem, one can show that ζ 1
a is asymptotically normal with mean

zero and variance 1. Moreover, |ζa ´ ζ 1
a| “ Op

`

d2
a

nK logppqq logpqq{n:q and
|R2

a,Γ| “ Op

`

s2
a

nK logppqq logpqq{n:

˘

, which are opp1q under the mentioned
sparsity conditions and with

?
K “ Opn

1{3
:

{p
a

logppqq logpqq maxts2, d2uqq.

A.6. Proof of Theorem 5

a) The proof of this theorem relies on Lemma 9 from Section B, which shows
the negligibility of the remainder term Rab,Θ as n: and K both grow. To show
the asymptotic normality, define

ζab :“
K
ÿ

k“1

1
?
nσab

ˆ
σ2
ab

σ̂2
ab,k

nk
ÿ

l“1

`

ΘJ
a p 9Yl,k ´ ΓJ 9Xl,kqp 9Yl,k ´ ΓJ 9Xl,kq

JΘb ´ Θab

˘

,

where 9Yl,k and 9Xl,k are the l-th row, l “ 1, . . . , nk, of Yk and Xk, respectively.
Similarly to the proof of Theorem 4, by defining the sequence

ζ 1
ab :“

K
ÿ

k“1

1
?
nσab

nk
ÿ

l“1

`

ΘJ
a p 9Yl,k ´ ΓJ 9Xl,kqp 9Yl,k ´ ΓJ 9Xl,kq

JΘb ´ Θab

˘

,

we have

ζ 1
ab “

1
?
nσab

n
ÿ

l“1

`

ΘJ
a p 9Yl ´ ΓJ 9Xlqp 9Yl ´ ΓJ 9Xlq

JΘb ´ Θab

˘

,

where 9Yl P R
p and 9Xl P R

q are the l-th sample, l “ 1, . . . , n, of 9Y and 9X,
respectively. The sequence ζ 1

ab converges to N p0, 1q as it is shown in Theorem 2 of
[17]. As such, we only need to show that |ζab ´ζ 1

ab|
p
ÝÑ 0 as K Ñ 8 and nk Ñ 8,

k “ 1, . . . ,K, and then convergence in distribution of ζ 1
ab yields convergence in

distribution of ζab. As it is shown in the proof of Lemma 9, the term p1{σ̂2
ab,kq “

Opp1q. Using Remark 2, we have

ˇ

ˇζab ´ ζ 1
ab

ˇ

ˇ ď

K
ÿ

k“1

1
?
nσab

ˆ Op

`

maxtlogppq{nk,
a

d1 logppq{nku
˘

ˆ

ˇ

ˇ

ˇ

ˇ

nk
ÿ

l“1

`

ΘJ
a p 9Yl,k ´ ΓJ 9Xl,kqp 9Yl,k ´ ΓJ 9Xl,kq

JΘb ´ Θab

˘

ˇ

ˇ

ˇ

ˇ

. (A.15)
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Due to the definition of Wk in Section 4, we have that
ˇ

ˇ

řnk

l“1
`

ΘJ
a p 9Yl,k ´

ΓJ 9Xl,kqp 9Yl,k´ΓJ 9Xl,kqJΘb´Θab

˘ˇ

ˇ “ nk

ˇ

ˇtΘWkΘuab

ˇ

ˇ. Under assumption (B2)
and using Lemma 2 of [21], for which the conditions are fulfilled, we have

nk

ˇ

ˇtΘWkΘuab

ˇ

ˇ ď nk}ΘWkΘ}8 ď nk~Θ~
2
8}Wk}8 ď d1

a

nk logppq.

Substituting this bound in (A.15), we get

|ζab ´ ζ 1
ab| ď Op

ˆ

K
?
n

max
�

d1plogppqq
3{2

{
?
n:, d

3{2
1 logppq

(

˙

,

and under the conditions d
3{2
1 “ op

?
n:{ logppqq and K “ O

`

n1{3{pd1 logppqq
˘

,
the result |ζab ´ ζ 1

ab| “ opp1q follows.
b) Similarly to a).
c) By a similar technique as for the proof of part c) of Theorem 4, it can be

shown that

|R2
ab,Θ| “ Op

ˆ

?
nK max

�

d
3{2
1 logppq{n:, d

2
1plogppq{n:q

3{2, d1s2 logppqq{n:

(

˙

,

which is opp1q under the sparsity conditions d
3{2
1 “ o

`

n
1{3
:

{ logppq
˘

and s2 “

o
`

nπ3
:

{ logppqq
˘

, 0 ă π3 ď 1{6, and K “ Opn
4{3
:

{nq. The proof of asymptotic
normality is similar to the one from part c) of Theorem 4, and we do not repeat
it here.

Appendix B: Some technical lemmas and their proofs

Lemma 2. Consider the regression model (2.2) with random noise matrix ξk
and random Gaussian design matrix Xk. By choosing ρ0,k “pmax1ďaďq

a

rCksaaq

ˆ pmax1ďbďp

?
Σbbq

a

A logppqq{nk, where rCksaa is the a-th diagonal element
of Ck “ XJ

k Xk{nk, and A ą 4 is a universal constant for all k “ 1, . . . ,K, we
have

P
`

Fkpnk, p, qq
˘

ě 1 ´ 2{ppqq
A{2´1.

Proof. According to the definition of the elementwise �8 norm, the event Fk is
equivalent to

Fkpnk, p, qq “

"

max
1ďaďq

max
1ďbďp

ˇ

ˇ

ˇ

ˇ

nk
ÿ

l“1
εbl,kX

a
l,k

ˇ

ˇ

ˇ

ˇ

{nk ď ρ0,k

*

,

where Xa
l,k and εbl,k are the a-th and the b-th components of the vectors 9Xl,k and

9εl,k which are the l-th row of Xk and ξk, respectively. Conditioning on Xk, the
random variable

řnk

l“1 ε
b
l,kX

a
l,k is a linear transformation of εb1,k, . . . , εbnk,k

and
it is normally distributed with mean zero and variance nkΣbbrCksaa. Defining
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the random variable Vab,k :“
řnk

l“1 ε
b
l,kX

a
l,k{

a

nkΣbbrCksaa, we get Vab,k | Xk „

N p0, 1q. With our choice of ρ0,k, we have,

P

ˆ

max
1ďaďq
1ďbďp

ˇ

ˇ

nk
ÿ

l“1
εbl,kX

a
l,k

ˇ

ˇ{nk ě ρ0,k

˙

“

ż

P

ˆ

max
1ďaďq
1ďbďp

ˇ

ˇ

ˇ

ˇ

nk
ÿ

l“1
εbl,kX

a
l,k

ˇ

ˇ

ˇ

ˇ

{nk ě ρ0,k | Xk

˙

fXk
pxkq dxk. (B.1)

To have a bound on P
`

max1ďaďq
1ďbďp

ˇ

ˇ

řnk

l“1 ε
b
l,kX

a
l,k

ˇ

ˇ{nk ě ρ0,k | Xk

˘

, we have

P

ˆ

max
1ďaďq
1ďbďp

ˇ

ˇ

ˇ

ˇ

nk
ÿ

l“1
εbl,kX

a
l,k

ˇ

ˇ

ˇ

ˇ

{nk ě ρ0,k | Xk

˙

“ P

ˆ max1ďaďq
1ďbďp

ˇ

ˇ

řnk

l“1 ε
b
l,kX

a
l,k

ˇ

ˇ

nkpmax1ďaďq

a

rCksaaqpmax1ďbďp

?
Σbbq

ą
a

A logppqq{nk | Xk

˙

ď P

ˆ

max
1ďaďq
1ďbďp

ˇ

ˇ

ˇ

ˇ

řnk

l“1 ε
b
l,kX

a
l,k

a

nkΣbbrCksaa

ˇ

ˇ

ˇ

ˇ

ą
a

A logppqq | Xk

˙

ď

q
ÿ

a“1

p
ÿ

b“1
P
`

|Vab,k| ě
a

A logppqq | Xk

˘

. (B.2)

To obtain a bound on P
`

|Vab,k| ě
a

A logppqq | Xk

˘

, using the Gaussian concen-
tration inequality Pp|X ´ μ| ą σtq ď 2 expp´t2{2q, t P R, for a normal random
variable X with mean μ and variance σ2, we get

P
`

|Vab,k| ě
a

A logppqq | Xk

˘

ď 2 expt´A logppqq{2u “
2

ppqqA{2 . (B.3)

Substituting (B.3) in (B.2), and then in (B.1), the result of this Lemma follows
directly.

Lemma 3. Under the assumptions of Lemma 2, and by considering the uni-
versal constants 0 ă c1 ď c2 ă 8, such that c1 ď sup1ďkďKrCksaa ď c2, for
a “ 1, . . . , q, it holds that

P

ˆ K
č

k“1
Fkpnk, p, qq

˙

ě 1 ´
2K

ppqqA{2´1 ,

and if K grows at the rate K “ o
`

ppqqA{2´1˘, then this probability tends to one
with increasing n.

Proof. We have

P

ˆ K
č

k“1
Fkpnk, p, qq

˙

“ 1 ´ P

ˆ

`

K
č

k“1
Fkpnk, p, qq

˘c
˙

“ 1 ´ P

ˆ K
ď

k“1
Fc

kpnk, p, qq

˙

.

(B.4)
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We have as well that

P

ˆ K
ď

k“1
Fc

kpnk, p, qq

˙

ď

K
ÿ

k“1
P
`

Fc
kpnk, p, qq

˘

ď

K
ÿ

k“1

2
ppqqA{2´1 “

2K
ppqqA{2´1 ,

(B.5)

where the second inequality follows using Lemma 2. By substituting (B.5)
in (B.4), the result of this Lemma follows directly.

Before providing Lemmas 4 and 5, we need some preliminary notation. The
results are provided under the Restricted Eigenvalue (RE) condition. The follow-
ing definition from [31] defines the RE condition for the population covariance
matrix and is essentially equivalent to the RE condition of [4]. For a given subset
G Ă t1, . . . , qu with cardinality g “ #G and a constant δ ě 1, define the set

CpG; δq :“
�

ν P R
q : }νGc}1 ď δ}νG}1

(

,

where νG is the restriction of vector ν to G and has zeros outside the set G.
The symbol Gc denotes the complement set of G.

Definition 1 ([31]). A deterministic covariance matrix Q satisfies the RE con-
dition over G of order g, if there exist constants pδ, μq P r1,8q ˆ p0,8q such
that

}Q1{2ν}2 ě μ}ν}2, for all ν P CpG; δq,

where Q1{2 is the square root matrix of Q.

Note that Definition 1 provides a lower bound on the �2 norm of the product
between Q1{2 and the vector ν. As in the multivariate regression we have a
matrix of coefficients not a vector anymore, we need to provide a lower bound
on the product of Q1{2 and each column of the coefficient matrix. To this end,
consider an arbitrary matrix V P Rqˆp, and denote its vectorized form with
ν :“ vecpVq such that ν “ pνJ

p1q
, . . . ,νJ

ppq
qJ P R

qp, where νpbq P R
q is the b-th

column of V, b “ 1, . . . , p. To simplify the notation and having one index for the
elements of ν, denote the index set of νpbq as tqpb´ 1q ` 1, . . . , qbu, b “ 1, . . . , p.
Consider Gb Ă tqpb´1q`1, . . . , qbu with cardinality gb “ #Gb and complement
set Gc

b. For a constant δb ě 1, define the set

CpGb; δbq :“
�

νpbq P R
q : }rνpbqsGc

b
}1 ď δb}rνpbqsGb

}1
(

,

where rνpbqsGb
is the restriction of νpbq to Gb which has zeros outside the sub-

set Gb.

Definition 2. A deterministic covariance matrix Q satisfies the multivariate
restricted eigenvalue (MRE) condition over G “ tG1, . . . , Gpu of order g “
řp

b“1 gb, if there exist constants pδb, μbq P r1,8q ˆ p0,8q, such that for every
b “ 1, . . . , p,

}Q1{2νpbq}2 ě μb}νpbq}2, for all νpbq P CpGb; δbq.
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Definition 3. The sample covariance matrix Ck “ XJ
k Xk{nk of the design

matrix Xk satisfies the MRE condition over G “ tG1, . . . , Gpu of order g “
řp

b“1 gb, if there exist constants pδb, μbq P r1,8q ˆ p0,8q, such that for every
b “ 1, . . . , p,

νJ
pbqCkνpbq ” }Xkνpbq}

2
2{nk ě μ2

b}νpbq}
2
2, for all νpbq P CpGb; δbq. (B.6)

To introduce Lemma 4, let S2pbq be the support of the b-th column of Γ.
By vectorizing Γ and rewriting its columns as explained for the general matrix
V, we have S2pbq Ă tqpb ´ 1q ` 1, . . . , qbu, with cardinality s2pbq “ #S2pbq and
complement set Sc

2pbq. For a constant δb ě 1, denote the set

CpS2pbq; δbq :“
�

νpbq P R
q : }rνpbqsSc

2pbq}1 ď δb}rνpbqsS2pbq}1
(

,

where rνpbqsS2pbq is the restriction of νpbq to S2pbq which has zeros outside the
subset S2pbq.

Lemma 4. Consider the regression model (2.2) for the k-th sub-sample with
random Gaussian design Xk which has independent and identical Nqp0,Qq rows,
and denote the maximum diagonal element of Q by Qmax. Suppose that Q
satisfies the MRE condition over S2 of order s2 for all vectors in CpS2pbq; δbq with
parameters pδb, μbq, b “ 1, . . . , p. On the event Fkpnk, p, qq, for some positive
constants c, c1 and c2, if the sub-sample size nk, k “ 1, . . . ,K, satisfies

nk ě c2 Q2
maxp1 ` δmaxq2

μ2
min

s2 logpqq, (B.7)

where μmin “ min1ďbďp μb and δmax “ max1ďbďp δb, then we have

}XkpΓ̂k ´ Γq}2
F

nk
ě pμmin{8q

2
}Γ̂k ´ Γ}

2
F , (B.8)

with probability at least 1 ´ c1 expp´cnkq.

Proof. In general, consider the matrix V P R
qˆp with the b-th column νpbq,

b “ 1, . . . , p, and its vectorized form as ν P R
qp. We have

}XkV}F
?
nk

“
}vecpXkVq}2

?
nk

“
}pIp b Xkqν}2

?
nk

“

d

řp
b“1 }Xkνpbq}2

2
nk

. (B.9)

Using Theorem 1 of [31], under the Gaussianity of the design matrix Xk, we
have

}Xkνpbq}2
?
nk

ě
1
4}Q1{2νpbq}2 ´ 9Qmax

d

logpqq

nk
}νpbq}1, for all νpbq P R

q,

with probability at least 1 ´ c1 expp´cnkq. Using the relation between �1 and �2
norms, for all vectors νpbq P CpS2pbq; δbq with parameters pμb, δbq, b “ 1, . . . , p,
we have

}νpbq}1 “ }rνpbqsS2pbq}1 ` }rνpbqsSc
2pbq}1 ď p1 ` δbq}rνpbqsS2pbq}1
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ď p1 ` δbq
a

s2pbq}νpbq}2. (B.10)

Under the MRE condition of Q for all vectors νpbq P CpS2pbq; δbq with param-
eters pμb, δbq, b “ 1, . . . , p, together with (B.10) and the fact that s2pbq ď s2,
b “ 1, . . . , p, we get

}Xkνpbq}2
2

nk
ě

"

1
4μmin ´ 9Qmaxp1 ` δmaxq

d

s2 logpqq

nk

*2

}νpbq}
2
2. (B.11)

Substituting (B.11) in (B.9),

}XkV}F
?
nk

ě

"

1
4μmin ´ 9Qmaxp1 ` δmaxq

d

s2 logpqq

nk

*

g

f

f

e

p
ÿ

b“1
}νpbq}2

2. (B.12)

Applying the lower bound (B.7) in (B.12) for some constant c2, we get

}XkV}F {
?
nk ě pμmin{8q}V}F . (B.13)

Note that using (B.16) from the proof of Lemma 5, we have

}Γ̂Sc
2 ,k ´ ΓSc

2 }1 ď 4}Γ̂S2,k ´ ΓS2}1, (B.14)

where ΓS2 and Γ̂S2,k are the matrices Γ and Γ̂k which have zeros outside the
set S2, respectively. By the same argument as in the proof of Lemma 5 for
univariate linear regression (see for example, [4]), a similar inequality to (B.14)
can be written for the b-th column of Γ̂k ´ Γ and it can be deduced that the
b-th column of Γ̂k ´ Γ is in CpS2pbq; δbq. As such, by replacing V with Γ̂k ´ Γ
in (B.13), the result in (B.8) follows directly.

The following Lemma provides an �1-error bound on Γ̂k ´ Γ, by a similar
approach to that of [8] for the Dantzig selector.

Lemma 5. Under the conditions of Lemma 4 and the lower bound (B.7) on
the sub-sample size nk, with probability at least 1 ´ c1 expp´cnkq, we have

}Γ̂k ´ Γ}1 “ Op

`

s2
a

logppqq{nk

˘

. (B.15)

Proof. Consider the regression model (2.2) and recall the Lasso solution (3.1).
Due to the fact that Γ̂k minimizes the loss in (3.1),

}XkpΓ ´ Γ̂kq}
2
F {p2nkq ` ρk}Γ̂k}1 ď trace

`

pΓ̂k ´ Γq
JXJ

k ξk
˘

{nk ` ρk}Γ}1,

where

trace
`

pΓ̂k ´ Γq
JXJ

k ξk
˘

ď

ˇ

ˇ

ˇ

ˇ

trace
`

pΓ̂k ´ Γq
JXJ

k ξk
˘

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

`

vecpΓ̂k ´ Γq
˘JvecpXJ

k ξkq

ˇ

ˇ

ˇ

ˇ

ď }Γ̂k ´ Γ}1}vecpXJ
k ξkq}8,
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where the last inequality holds due to Hölder’s inequality. Now, on the event
Fkpnk, p, qq, by a similar argument as in the univariate regression (see for ex-
ample [5], chapter 6), we get

}XkpΓ ´ Γ̂kq}2
F

2nk
`

ρk}Γ̂k ´ Γ}1

2 ď 2ρk}Γ̂S2,k ´ ΓS2}1, (B.16)

where ΓS2 and Γ̂S2,k are the matrices Γ and Γ̂k which have zeros outside the set
S2, respectively. Due to the relation between the elementwise �1 and Frobenius
norms of a matrix, we have

}Γ̂S2,k ´ ΓS2}1 ď
?
s2}Γ̂k ´ Γ}F . (B.17)

Substituting (B.17) in (B.16) and then applying Lemma 4 under the lower
bound (B.7) on the sub-sample size nk, we get

}XkpΓ ´ Γ̂kq}2
F

2nk
`

ρk}Γ̂k ´ Γ}1

2 ď 2ρk
?
s2

ˆ

8
μmin

˙

}XkpΓ̂k ´ Γq}F
?
nk

,

with probability at least 1 ´ c1 expp´cnkq, and

}XkpΓ´ Γ̂kq}
2
F {nk ď 16ρ2

ks2p8{μminq
2, }Γ̂k ´Γ}1 ď 16ρks2p8{μminq

2. (B.18)

Since μmin P p0,8q, there exists L “ Op1q such that p8{μminq2 ď L, and by
considering ρk —

a

logppqq{nk, the result of (B.15) follows.

Lemma 6. Consider the regression model (2.2) where Xk satisfies assumptions
(A1) and (A2). Suppose that the eigenvalues of Σ, the covariance matrix of
the noise, are bounded from below and above. On the event Fkpnk, p, qq with
regularization parameter ρk —

a

logppqq{nk, we have

}Σ̂k,Γ̂k
´ Σ}8 “ Op

`

maxt
a

logppq{nk, s2 logppqq{nku
˘

, (B.19)

and under the sparsity condition s2 “ o
`

nπ1
:

{plogpqq logppqqq
˘

, 0 ă π1 ď 1{2, we
get }Σ̂k,Γ̂k

´ Σ}8 “ opp1q.

Proof. Recalling that ξk “ Yk ´ XkΓ, by adding and subtracting ξJ
k ξk{nk to

Σ̂k,Γ̂k
´ Σ, we get

}Σ̂k,Γ̂k
´ Σ}8 ď }ξJ

k ξk{nk ´ Σ}8 ` }Σ̂k,Γ̂k
´ ξJ

k ξk{nk}8. (B.20)

Under the boundedness of the eigenvalues of Σ from below and above, using
Lemma 2 of [21],

}ξJ
k ξk{nk ´ Σ}8 “ Opp

a

logppq{nkq. (B.21)

To find an upper bound on the second term of (B.20), by adding and subtracting
XkΓ to Yk ´ XkΓ̂k, we get

}Σ̂k,Γ̂k
´ ξJ

k ξk{nk}8
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“ }
`

ξk ´ XkpΓ̂k ´ Γq
˘J`

ξk ´ XkpΓ̂k ´ Γq
˘

{nk ´ ξJ
k ξk{nk}8

ď 2}pΓ̂k ´ Γq
JXJ

k ξk{nk}8 ` }pΓ̂k ´ Γq
JXJ

k XkpΓ̂k ´ Γq{nk}8. (B.22)

Using Lemma 5, on the event Fkpnk, p, qq,

2}pΓ̂k ´ Γq
JXJ

k ξk{nk}8 ď 2}Γ̂k ´ Γ}1}XJ
k ξk}8{nk “ Opps2 logppqq{nkq.

(B.23)
On the other hand,

}pΓ̂k ´ Γq
JXJ

k XkpΓ̂k ´ Γq{nk}8 ď }XkpΓ̂k ´ Γq}
2
F {nk “ Opps2 logppqq{nkq,

(B.24)
where the last equality is due to the fact that in (B.18), μmin P p0,8q and
ρk —

a

logppqq{nk. Substituting (B.23) and (B.24) in (B.22) and then substi-
tuting (B.22) and (B.21) in (B.20), the result in (B.19) follows.

Lemma 7. Consider the regression model (2.2) where Xk satisfies assump-
tions (A1) and (A2), and consider the maximum row sparsity of Q´1 as d2 “

op
?
n:{ logpqqq. Moreover, consider the coefficient matrix Γ with sparsity con-

dition s2 “ o
`

nπ1
:

{plogppqq logpqqq
˘

, 0 ă π1 ď 1{2. Suppose that the event
Fkpnk, p, qq holds jointly in k “ 1, . . . ,K. Moreover, suppose that Γ̂d

k, k “

1, . . . ,K, is the k-th debiased estimator in (3.3) with tuning parameter ρk —
a

logppqq{nk and Γ̃owAvg is the pooled estimator in (5.4). Let nk{n Ñ ck P p0, 1q

as nk grows, such that limKÑ8

řK
k“1 ck “ 1, and consider the remainder term

Ra,Γ defined in (5.5). Then, it follows that

|Ra,Γ| “ Op

`

Ks2
a

logppqq logpqq{n
˘

, (B.25)

and if K grows at the rate K “ O
`

n1{4{p
a

logppqq logpqq maxts2,
?
d2uq

˘

, we
have |Ra,Γ| “ opp1q.

Proof. First note that using Lemma 6, |rΣ̂k,Γ̂k
´Σsaa| “ Op

`

maxt
a

logppq{nk,

s2 logppqq{nku
˘

, where we recall that Aaa is the a-th diagonal element of an ar-
bitrary matrix A. Moreover, under the sparsity condition d2 “ op

?
n:{ logpqqq,

with tuning parameter ρ̃j,k —
a

logpqq{nk in the nodewise Lasso regression (A.1),
using Lemma 5.4 of [34], we get |rMkCkMJ

k ´ Q´1saa| “ Opp
a

d2 logpqq{nkq.
As such,

ˇ

ˇrΣ̂k,Γ̂k
b pMkCkMJ

k qsaa ´ rΣ b Q´1
saa

ˇ

ˇ

“ Op

`

maxt
a

d2 logpqq{nk,
a

logppq{nk, s2 logppqq{nku
˘

. (B.26)

It can be shown that
ˇ

ˇ

ˇ

ˇ

1
rΣ̂k,Γ̂k

b pMkCkMJ
k qsaa

´
1

rΣ b Q´1saa

ˇ

ˇ

ˇ

ˇ

“ Op

`

maxt
a

d2 logpqq{nk,
a

logppq{nk, s2 logppqq{nku
˘

. (B.27)



644 E. Nezakati and E. Pircalabelu

As such,
ˇ

ˇ

ˇ

ˇ

K
ÿ

k“1

"

nk

n
ˆ

rΣ b Q´1saa

rΣ̂k,Γ̂k
b pMkCkMJ

k qsaa

*

´ 1
ˇ

ˇ

ˇ

ˇ

“ rΣ b Q´1
saa

ˇ

ˇ

ˇ

ˇ

K
ÿ

k“1

nk

n

"

1
rΣ̂k,Γ̂k

b pMkCkMJ
k qsaa

´
1

rΣ b Q´1saa

*ˇ

ˇ

ˇ

ˇ

ď rΣ b Q´1
saa

K
ÿ

k“1

nk

n

ˇ

ˇ

ˇ

ˇ

1
rΣ̂k,Γ̂k

b pMkCkMJ
k qsaa

´
1

rΣ b Q´1saa

ˇ

ˇ

ˇ

ˇ

“ Op

ˆ

K max
�

a

d2 logpqq{n,
a

logppq{n, s2 logppqq{
?
nn:

(

˙

,

where the last equality holds using (B.27), and the fact that nk ď n, k “

1, . . . ,K. As such,
ˇ

ˇ

řK
k“1

�

nk

n ˆ
rΣbQ´1

saa

rΣ̂k,Γ̂k
bpMkCkMJ

k qsaa

(

´ 1
ˇ

ˇ “ opp1q as K grows

at the rate K “ O
`

n1{4{
`
a

logpqq logppqq maxts2,
?
d2u

˘˘

, and as a result
řK

k“1 nk{rΣ̂k,Γ̂k
bpMkCkMJ

k qsaa
řK

k“1 nk{rΣbQ´1saa

p
ÝÑ 1. By considering the continuous map gpxq “

1{
?
x, the sequence

c

řK
k“1 nk{rΣbQ´1saa

řK
k“1 nk{rΣ̂k,Γ̂k

bpMkCkMJ
k qsaa

converges in probability to

1 as K and nk, k “ 1, . . . ,K, grow. As such, due to the definition of Ra,Γ, it
is enough to show the bound (B.25) for

řK
k“1

a

nkrΣbQ´1saa
?
nrΣ̂kbpMkCkMJ

k qsaa
Ra,k,Γ, with

Ra,k,Γ the a-th element, a “ 1, . . . , qp, of Rk,Γ from (3.3).
We first show that 1{rΣ̂k,Γ̂k

b pMkCkMJ
k qsaa “ Opp1q. Note that rΣ̂k,Γ̂k

b

pMkCkMJ
k qsaa is nothing else than the a-th element of the outer product of

the diagonal elements of Σ̂k,Γ̂k
and MkCkMJ

k . Thus, it is just needed to find
a lower bound for the diagonal elements of these two matrices. By construc-
tion, the diagonal elements of Σ̂k,Γ̂k

are always positive. Combining Theo-
rem 2.2 of [34] and the reversed triangle inequality, for each a P t1, . . . , qu

we get

|Q´1
aa | ´ |rMkCkMJ

k saa| ď |Q´1
aa ´ rMkCkMJ

k saa| “ opp1q. (B.28)

Since Q´1 is positive definite, using assumption (A2), we get Q´1
aa ě

ΛminpQ´1q ą 1{Λ1. As such, for sufficiently large nk, using (B.28) we have that
|rMkCkMJ

k saa| ą 0. Thus, for every a, b, c P t1, . . . , qu, there exists a bound Jk
such that

1
rΣ̂k,Γ̂k

b pMkCkMJ
k qsaa

ď
1

rΣ̂k,Γ̂k
sbb|rMkCkMJ

k scc|
ď

1
Jk

“ Opp1q. (B.29)

By the fact that rΣ b Q´1saa does not grow with n based on the bounded-
ness assumption of the diagonal entries of Σ and Q´1, using Theorem 1 and
combining it with (B.29), we have that
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ˇ

ˇ

ˇ

ˇ

K
ÿ

k“1

a

nkrΣ b Q´1saa
?
nrΣ̂k,Γ̂k

b pMkCkMJ
k qsaa

Ra,k,Γ

ˇ

ˇ

ˇ

ˇ

ď

K
ÿ

k“1

a

nk{n
ˇ

ˇRa,k,Γ
ˇ

ˇ ˆ Opp1q

ď OppKs2
a

logpqq logppqq{nq.

Considering the sparsity conditions s2 “ o
`

nπ1
:

{plogppqq logpqqq
˘

, 0 ă π1 ď 1{2,
d2 “ op

?
n:{ logpqqq and K “ O

`

n1{4{p
a

logppqq logpqq maxts2,
?
d2uq

˘

, the
opp1q result follows immediately.

Lemma 8. Under the assumptions of Theorem 4, by considering

ζa “

K
ÿ

k“1

d

nkrΣ b Q´1saa

nrΣ̂k,Γ̂k
b pMkCkMJ

k qsaa

ˆ
Ta,k

b

rΣ̂k,Γ̂k
b pMkCkMJ

k qsaa

,

where Ta,k is the a-th element of Tk from (3.3), and

ζ 1
a “

K
ÿ

k“1

c

nk

n
ˆ

Ta,k
b

rΣ b pMkCkMJ
k qsaa

,

we have |ζa ´ ζ 1
a|

p
ÝÑ 0, as K Ñ 8 and nk Ñ 8, k “ 1, . . . ,K.

Proof. Denoting the sequence ζ2
a “

řK
k“1

a

nk

n ˆ
Ta,k

b

rΣ̂k,Γ̂k
bpMkCkMJ

k qsaa

, we show

that |ζa ´ ζ2
a |

p
ÝÑ 0 and |ζ2

a ´ ζ 1
a|

p
ÝÑ 0, and then automatically, |ζa ´ ζ 1

a|
p
ÝÑ 0. We

have

ˇ

ˇζa ´ ζ2
a

ˇ

ˇ ď

K
ÿ

k“1

c

nk

n

ˇ

ˇ

ˇ

ˇ

d

rΣ b Q´1saa

rΣ̂k,Γ̂k
b MkCkMJ

k saa

´ 1
ˇ

ˇ

ˇ

ˇ

ˆ

ˇ

ˇTa,k

ˇ

ˇ

b

rΣ̂k,Γ̂k
b MkCkMJ

k saa

“

K
ÿ

k“1

c

nk

n

ˇ

ˇ

a

rΣ b Q´1saa ´

b

rΣ̂k,Γ̂k
b MkCkMJ

k saa

ˇ

ˇ

b

rΣ̂k,Γ̂k
b MkCkMJ

k saa

ˆ

ˇ

ˇTa,k

ˇ

ˇ

b

rΣ̂k,Γ̂k
b MkCkMJ

k saa

ď Opp1q

K
ÿ

k“1

c

nk

n

ˇ

ˇ

ˇ

a

rΣ b Q´1saa ´

b

rΣ̂k,Γ̂k
bMkCkMJ

k saa

ˇ

ˇ

ˇ
ˆ
ˇ

ˇTa,k

ˇ

ˇ,

where the last inequality follows by the fact that 1{rΣ̂k,Γ̂k
b pMkCkMJ

k qsaa “

Opp1q using (B.29). Moreover, using (B.26) we get

ˇ

ˇζa´ζ2
a

ˇ

ˇď

K
ÿ

k“1

c

nk

n

ˇ

ˇTa,k

ˇ

ˇˆOp

`

maxt
a

d2 logpqq{nk,
a

logppq{nk, s2 logppqq{nku
˘

.

(B.30)
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On the other hand,

Tk “ vecpMkXJ
k ξk{

?
nkq “ pIp b MkqvecpXJ

k ξkq{
?
nk,

and working on the event Fkpnk, p, qq, by considering ρk —
a

logppqq{nk,

}Tk}8 ď
?
nkOpp

a

logppqq{nkq~Ip b Mk~8. (B.31)

As was shown in the proof of Lemma 1,

~Ip b Mk~8 “ ~Mk~8 “ max
jPt1,...,qu

}Mj,k}1 “ Opp
a

d2q,

where Mj,k is the j-th row of Mk. As such, in (B.31), we get }Tk}8 ď

Opp
a

d2 logppqqq. Substituting this result in (B.30), we have

ˇ

ˇζa ´ ζ2
a

ˇ

ˇ ď

K
ÿ

k“1

c

nk

n
Op

`

a

d2 logppqq ˆ maxt
a

d2 logpqq{nk,
a

logppq{nk,

s2 logppqq{nku
˘

ď Op

`

K
a

d2 logppqq{n ˆ maxt
a

d2 logpqq,
a

logppq,

s2 logppqq{
?
n:u

˘

,

where by considering the sparsity conditions s2 “ o
`

nπ1
:

{plogppqq logpqqq
˘

, 0 ă

π1 ď1{2, d2 “op
?
n:{ logpqqq and K“O

`

n1{4{p
a

logppqq logpqqˆmaxts2,
?
d2uq

˘

,
the opp1q result follows immediately.

Now, to show
ˇ

ˇζ2
a ´ ζ 1

a

ˇ

ˇ

p
ÝÑ 0, by the same argument,

ˇ

ˇζ2
a ´ ζ 1

a

ˇ

ˇ ď

K
ÿ

k“1

c

nk

n

ˇ

ˇ

ˇ

ˇ

b

rΣ b pMkCkMJ
k qsaa ´

b

rΣ̂k,Γ̂k
b pMkCkMJ

k qsaa

ˇ

ˇ

ˇ

ˇ

ˆ
ˇ

ˇTa,k

ˇ

ˇ

ď

K
ÿ

k“1

c

nk

n

"ˇ

ˇ

ˇ

ˇ

b

rΣ b pMkCkMJ
k qsaa ´

a

rΣ b Q´1saa

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

a

rΣ b Q´1saa ´

b

rΣ̂k,Γ̂k
b pMkCkMJ

k qsaa

ˇ

ˇ

ˇ

ˇ

*

ˇ

ˇTa,k

ˇ

ˇ.

Similarly to the proof of |ζa ´ ζ2
a |

p
ÝÑ 0, by considering the mentioned sparsity

conditions, we conclude that
ˇ

ˇζ2
a ´ ζ 1

a

ˇ

ˇ

p
ÝÑ 0.

Lemma 9. Consider the regression model (2.2), and suppose that assumptions
(B1)–(B2) and (C1)–(C3) from Appendix A.3 hold. Consider the coefficient
matrix Γ with sparsity condition s2 “ opnπ3

:
{ logppqqq, 0 ă π3 ď 1{6, and the

precision matrix Θ with maximum node degree d
3{2
1 “ op

?
n:{ logppqq. Suppose

that the event Fkpnk, p, qq holds jointly in k “ 1, . . . ,K. Moreover, suppose that
Θ̂d

k, k “ 1, . . . ,K, is the k-th debiased estimator in (4.3) with tuning parameter
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λk —
a

logppq{nk and Θ̃owAvg is the pooled estimator in (5.6). Consider the
remainder term Rab,Θ defined in (5.7). Then it follows that

|Rab,Θ| “ Op

ˆ

K
?
n

max
�

d
3{2
1 logppq, d2

1plogppqq
3{2

{
?
n:, d1s2 logppqq

(

˙

, (B.32)

and if K grows as K “ O
`

n1{3{pd1 logppqq
˘

, we have |Rab,Θ| “ opp1q.

Proof. By a similar argument as in the proof of Lemma 7 and using Remark 2,
ˇ

ˇ

řK
k“1 nk{σ̂2

ab,k
řK

k“1 nk{σ2
ab

´ 1
ˇ

ˇ “ Op

`

K max
�

logppq{n,
a

d1 logppq{n
(˘

, which is of order
opp1q as K grows at the rate K “ O

`

n1{3{pd1 logppqq
˘

. As a result, by considering

the continuous map gpxq “ 1{
?
x, the sequence

c

řK
k“1 nk{σ2

ab
řK

k“1 nk{σ̂2
ab,k

converges in

probability to 1 as K and nk, k “ 1, . . . ,K, grow. As such, we just need to show
the boundedness of

řK
k“1

?
nkσab?
nσ̂2

ab,k
ˆ Rab,k,Θ. Due to the positive definiteness of

the graphical Lasso estimator defined in (4.1), there exists a positive constant
Lk such that with high probability σ̂2

ab,k ě Λ2
minpΘ̂kq ą Lk, where ΛminpΘ̂kq is

the minimum eigenvalue of Θ̂k and then the term 1{σ̂2
ab,k “ Opp1q. Moreover,

using (4.5),
ˇ

ˇ

ˇ

ˇ

K
ÿ

k“1

?
nkσab

?
nσ̂2

ab,k

Rab,k,Θ

ˇ

ˇ

ˇ

ˇ

ď

K
ÿ

k“1

1
?
n
Op

`

maxtd
3{2
1 logppq, d2

1plogppqq
3{2

{
?
n:,

d1s2 logppqqu
˘

,

and the result in (B.32) follows directly. By considering the mentioned sparsity
and K “ O

`

n1{3{pd1 logppqq
˘

, one can reach the opp1q rate.



648 E. Nezakati and E. Pircalabelu

Appendix C: Extra simulation results

Table 4

Average and standard deviation (between parentheses) of the Frobenius norm over 500
repetitions on the active and non-active sets, for the proposed estimators and different

competitors, when n “ 25000.

Active set Non-active set
K K

1 5 10 20 1 5 10 20
Full 1.00 6.50

p.01q p.01q

owAvg 1.03 1.08 1.18 6.72 7.15 7.79
p.01q p.01q p.01q p.01q p.01q p.01q

D
eb

ia
se

d Top1 1.39 1.46 1.19 9.12 9.60 7.85
p.01q p.01q p.01q p.01q p.01q p.01q

sAvg 1.59 2.88 3.95 10.27 16.91 20.15
p.01q p.02q p.03q p.03q p.02q p.03q

wAvg 1.04 1.25 1.81 6.80 8.00 10.10
p.01q p.01q p.01q p.01q p.01q p.01qΘ

SFull 2.74 .35
p.01q p.00q

Sp
ar

se STop1 2.82 2.84 2.88 1.31 1.56 2.28
p.01q p.01q p.01q p.01q p.01q p.01q

SsAvg 2.54 2.29 2.04 4.29 7.37 8.83
p.01q p.01q p.01q p.01q p.01q p.01q

SwAvg 2.59 2.45 2.22 1.93 2.77 4.01
p.01q p.01q p.01q p.00q p.00q p.01q

Full 1.55 15.43
p.01q p.02q

owAvg 1.62 1.74 1.55 16.18 17.30 14.28
p.02q p.02q p.01q p.02q p.02q p.02q

D
eb

ia
se

d Top1 2.21 2.34 2.67 22.08 23.33 26.65
p.02q p.02q p.03q p.03q p.03q p.03q

sAvg 2.42 3.91 7.09 24.17 39.04 70.18
p.02q p.04q p1.45q p.03q p.06q p14.36q

wAvg 1.63 1.90 3.38 16.30 18.93 33.51
p.02q p.02q p.61q p.02q p.02q p6.03qΓ

SFull 4.79 1.82
p.00q p.00q

Sp
ar

se STop1 4.80 4.80 4.80 1.91 1.93 1.99
p.00q p.00q p.00q p.00q p.00q p.01q

SsAvg 4.67 4.23 4.17 2.03 2.82 3.11
p.12q p.02q p.02q p.02q p.01q p.01q

SwAvg 4.75 4.59 4.51 1.82 1.84 1.98
p.04q p.01q p.01q p.02q p.00q p.00q
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Table 5

Average coverage probability and average length of the confidence intervals over 500
repetitions for the proposed estimators and different competitors, when n “ 25000.

Avg.Cov Avg.Len
K K

1 5 10 20 1 5 10 20

A
ct

iv
e

se
t Full .94 .02

owAvg .94 .94 .95 .02 .03 .03
Top1 .94 .94 .94 .03 .04 .03
sAvg .92 .89 .90 .04 .06 .08
wAvg .95 .98 .98 .03 .04 .06Θ

N
on

-a
ct

iv
e

se
t

Full .95 .02
owAvg .95 .96 .96 .02 .03 .03
Top1 .96 .96 .95 .03 .04 .03
sAvg .94 .94 .97 .04 .06 .08
wAvg .97 .98 .98 .03 .04 .06

A
ct

iv
e

se
t Full .95 .08

owAvg .95 .95 .92 .08 .09 .07
Top1 .95 .95 .95 .11 .12 .14
sAvg .94 .92 .90 .12 .17 .27
wAvg .96 .97 .98 .09 .12 .20Γ

N
on

-a
ct

iv
e

se
t

Full .95 .08
owAvg .95 .95 .94 .08 .09 .07
Top1 .95 .95 .95 .11 .12 .14
sAvg .94 .92 .90 .12 .17 .27
wAvg .96 .97 .98 .09 .12 .20
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