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Abstract: Predictive classification considered in this paper concerns the
problem of identifying subgroups based on a continuous biomarker through
estimation of an unknown cutpoint and assessing whether these subgroups
differ in treatment effect relative to some clinical outcome. The problem
is considered under a generalized linear model framework for clinical out-
comes and formulated as testing the significance of the interaction between
the treatment and the subgroup indicator. When the main effect of the
subgroup indicator does not exist, the cutpoint is non-identifiable under
the null. Existing procedures are not adaptive to the identifiability issue,
and do not work well when the main effect is small. In this work, we pro-
pose profile score-type and Wald-type test statistics, and further m-out-of-n
bootstrap techniques to obtain their critical values. The proposed proce-
dures do not rely on the knowledge about the model identifiability, and
we establish their asymptotic size validity and study the power under local
alternatives in both cases. Further, we show that the standard bootstrap
is inconsistent for the non-identifiable case. Simulation results corroborate
our theory, and the proposed method is applied to a dataset from a clinical
trial on advanced colorectal cancer.
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1. Introduction

In clinical trials testing a new treatment against a control, it is a common
practice to classify patients into two subgroups based on a continuous biomarker,
such as the expression level of a gene or the result from a blood test, so that the
identified subgroups have significantly different treatment effects with respect to
certain clinical outcome. This problem is known as predictive classification, and
the biomarker that induces the subgroups is called a predictive biomarker [5].
Identification and assessment of predictive biomarkers are very active areas of
medical research, especially in the current era of personalized medicine [45, 34].

In many studies, the clinical outcome of interest is binary. For example, in
cancer clinical trials, one important outcome is whether a patient has responded
to or received a clinical benefit from a treatment based on a specific criterion
[35]. This motivates us to investigate the problem of predictive classification
under generalized linear models (GLMs) for clinical outcomes, which include
the binary outcome as a special case. Specifically, for a patient, denote Y as a
clinical outcome of interest, U a binary treatment indicator which equals 1 if the
patient received an experimental treatment and 0 if a control treatment, and
X a continuous biomarker which is used to classify the patient into subgroups
based on an unknown cutpoint c0. There may be additional covariates W of
length d observed. We assume that conditional on (W , U,X) = (w, u, x), the
density function of Y = y, relative to some σ-finite measure ν on R, belongs to
the exponential family and is given as follows:

exp(y(ηT
0 zc0 + λ0uxc0) − φ(ηT

0 zc0 + λ0uxc0)), (1.1)

where φ is a given strictly convex function on R, zc = (wT , u, xc)T with
xc = I(x ≤ c) for c ∈ R, c0 ∈ [�, u] is the unknown cutpoint, and η0 =
(αT

0 , β0, γ0)T and λ0 are regression parameters. Then the conditional expecta-
tion E(Y |W , U,X) of Y given (W , U,X) satisfies the following GLM:

g(E(Y |W , U,X)) = αT
0 W + β0U + γ0Xc0 + λ0UXc0 , (1.2)

where g(·) = (φ′)−1(·) is a link function. When g is the logistic function, model
(1.2) is the popular logistic regression model for the binary responses.

Model (1.2) implies that the treatment effect is respectively β0 + λ0 and β0
for patients in the subgroup with X ≤ c0 and X > c0. Therefore, parameter λ0
measures the differential treatment effect between the two subgroups defined by
the unknown cutpoint c0. Our goal is to test whether the difference is significant,
i.e., testing H0 : λ0 = 0.

Given a sample {(Yi,W i, Ui, Xi), i ∈ [n] := {1, . . . , n}} of size n, if the
cutpoint c0 was known to take the value c, then one can use the usual score
test statistic, denoted as Sn,c, for testing H0 : λ0 = 0, which, under the null,
converges in distribution to the zero mean normal distribution with variance
σ2
c,η0

, denoted as N(0, σ2
c,η0

) [31]. Note that the discussions below apply similarly
to other tests such as Wald, and we focus on score tests for concreteness. Since c0
is unknown, one may replace it by its estimate, which however is only possible
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when c0 is identifiable. Specifically, if γ0 = 0, then under H0 : λ0 = 0, the
cutpoint c0 is non-identifiable, in the sense that different values of c0 induce the
same distribution on the response Y . We discuss below procedures for each case.

If it is known a priori that the cupoint is identifiable, i.e., γ0 �= 0, we may
estimate c0 by the profile maximum likelihood estimator (MLE), ĉn, and act as
if ĉn is its true value. Specifically, denote by Ln(c,η, λ) the likelihood function
under the model (1.1). Let η̂n,c be the maximizer of Ln(c,η, 0) over η ∈ Rd+2 for
each fixed c, and ĉn the smallest maximizer of Ln(c, η̂n,c, 0) over c ∈ [�, u]. Then
we may use Sn := Sn,ĉn as a profile score-type statistic for testing H0 : λ0 = 0.
Since c0 is identifiable, i.e., γ0 �= 0, it can be shown that ĉn converges to c0 at
the rate n under H0 by similar approaches used in, for example, [22, 36, 29,
44, 43, 25, 33], under some closely related models. As a result, Sn converges in
distribution to N(0, σ2

c0,η0
), the same limit as for Sn,c0 , and the variance σ2

c0,η0
can be consistently estimated by replacing c0 and η0 by ĉn and η̂n respectively,
where η̂n := η̂n,ĉn . See Section 2 for the precise statements.

On the other hand, if it is known a priori that the cupoint is non-identifiable,
i.e., γ0 = 0, the so-called minimum p-value method may be used, which is
popular in practice [20, 9]. Specifically, for each c ∈ [�, u], if c0 assumes the value
c, then Sn,c/σc,η̂n,c

converges in distribution to N(0, 1) [31]. The minimum p-
value method estimates c0 by minimizing the p-value or equivalently maximizing
the absolute value of the test statistic, and uses the associated p-value to test
H0 : λ0 = 0, i.e.,

pn,mp = 2{1 − Φ(Mn)}, where Mn = sup
c∈[�,u]

|Sn,c/σc,η̂n,c
|, (1.3)

where Φ(·) is the cumulative distribution function of the standard normal distri-
bution. Although, without adjustment, pn,mp suffers from the problem of type
I error inflation, under the assumption that γ0 = 0, one may obtain the critical
value for Mn from its limiting distribution, as in [17], which considers a gen-
eral regression model for a continuous outcome. Such approaches are also widely
used in a related problem known as prognostic classifications [32, 18, 23, 30, 40],
which tests H ′

0 : γ0 = 0 under the assumption λ0 = 0 in model (1.2). Finally,
we note that the non-identifiable case is non-standard in the sense that c0 is a
nuisance parameter under the null [12, 13, 2].

The aforementioned works require the additional assumption regarding the
identifiability of the model. However, in practice, there usually is no convincing
justification for one case or the other; further, a valid procedure under the
identifiability condition may control the size poorly if the model is close to
being non-identifiable, i.e., |γ0| being small, and vice versa. Thus it is important
to develop a procedure that is adaptive to the identifiability issue, and that is
valid in both cases. In [27], we have shown that for regression models with a
continuous outcome, the minimum p-value approach as in (1.3), with the score
test statistic being replaced by Wald, turns out to work for both cases under
both the random and fixed designs. However, the arguments therein rely on the
fact that the link function in (1.2) is linear. For general GLMs, Mn in (1.3)
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would diverge at the rate
√
n, and its failure is also apparent from simulation

studies in Section 5.
In this work, we propose to use the profile score-type or Wald-type statistic

for testing H0 : λ0 = 0, and obtain its critical value by an m-out-of-n bootstrap.
For concreteness, here we focus on the score-type, i.e., Sn. Specifically, we first
sample with replacement mn ≤ n pairs of covariates (W ∗

i , U
∗
i , X

∗
i ), i ∈ [mn],

and then for each i ∈ [mn], generate Y ∗
i from the density (1.1) with λ0 = 0

and η0, c0 replaced by η̂n, ĉn, respectively. Finally, we obtain the critical value
for Sn from the bootstrap distribution of the score-type statistic, S∗

n, based on
the bootstrap samples. The proposed procedure does not rely on the knowledge
of identifiability, and we establish its asymptotic size validity in both cases as
long as the bootstrap sample size is of a smaller order compared to the original
sample size, i.e., mn/n → 0.

Further, in the identifiable case, we show that the condition mn/n → 0 can be
dropped, and that the standard bootstrap, i.e., mn = n, provides asymptotically
correct critical values for Sn. This is interesting because by [36, 44, 43] the
standard bootstrap is not asymptotically consistent for constructing confidence
intervals for the MLE ĉn of the cutpoint c0, but we show that it is in fact so for
the MLE η̂n of the regular parameter η0, and also for Sn. In the non-identifiable
case, we prove that the standard bootstrap is inconsistent, in the sense that the
bootstrap distribution does not converge weakly to the limiting distribution of
the test statistic, in probability.

Finally, we study the rejection probabilities, i.e. power, of the proposed pro-
cedure under local alternatives, H1,n : λ0 = B0/

√
n, for some fixed constant

B0 �= 0. In the identifiable case, the asymptotic power is the same as if the
unknown cutpoint c0 was known. In the non-identifiable case, the form of power
is more complicated, but it tends to one as |B0| approaches ∞.

In terms of the literature, the m-out-of-n bootstrap, which usually generates
bootstrap samples of size m = o(n), is proposed by [7] as a modification to
the standard bootstrap techniques using m = n, which are reliable for regular
models [6, 15, 38], but may fail in cases such as non-smooth estimation prob-
lems, estimators with a cube-root convergence rate, or models with unknown
nuisance parameters; see [24, 36, 10, 37, 1] and the references therein. The
asymptotic validity of m-out-of-n bootstrap techniques have been established
under several non-standard models. For example, [36, 44] show the inconsistency
of the standard bootstrap and the consistency of the m-out-of-n bootstrap in
constructing confidence intervals for the cutpoint parameter under regression
models with continuous responses; in addition, [43] establishes similar results
for the Cox model. Further, [24] proves the consistency of the m-out-of-n boot-
strap for estimating the limiting distribution of non-nuisance parameters under
the M-estimation framework, provided that the estimators of the nuisance pa-
rameters enjoy a faster convergence rate. To the best of our knowledge, for
the GLM in (1.1), due to the identifiability issue, the validity of the proposed
procedures does not follow directly from previous works.

The reminder of the paper is organized as follows. In Section 2 we introduce
the score-type and Wald-type test statistics, and derive the limiting distributions
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of Sn in the identifiable and non-identifiable cases, respectively. In Section 3,
we propose an m-out-of-n bootstrap procedure for obtaining the critical value
for Sn, establish the asymptotic size validity and study its power under local
alternatives; further, we show the inconsistency of standard bootstrap for the
non-identifiable case. In Section 4 we propose an m-out-of-n bootstrap for the
Wald-type test statistic. We present in Section 5 simulation studies to evaluate
the finite-sample performance of the proposed methods, and in Section 6 an
application to an advanced colorectal cancer dataset. We conclude in Section 7
and present proofs in Appendix.

2. Profile estimates and test statistics

Our primary objective is to test H0 : λ0 = 0 under model (1.2) based on Di =
(Yi,W i, Ui, Xi), i ∈ [n], which are independently and identically distributed
observations with the same distribution as (Y,W , U,X), where random variables
are defined on some probability space (Ω,G,pr). Under the assumption that the
response Y is from the exponential family defined by (1.1), the log-likelihood
function of parameters c ∈ [�, u], η = (αT , β, γ)T ∈ Rd+2, and λ ∈ R can be
written as

Ln(c,η, λ) := n−1
n∑

i=1
ϕc,η,λ(Di), where

ϕc,η,λ(y,w, u, x) := y
(
ηTzc + λuxc

)
− φ

(
ηTzc + λuxc

)
,

(2.1)

and zc = (wT , u, xc)T with xc = I(x ≤ c).
Suppose for now the value of the cutpoint c0 is known to be c. Then, based

on the likelihood function (2.1), the score test statistic for H0 : λ0 = 0 is:

Sn,c = 1√
n

n∑
i=1

UiXi,c(Yi − φ′(η̂T
n,cZi,c)), (2.2)

where η̂n,c := argmaxη∈Rd+2 Ln(c,η, 0) is the MLE of η0 for a given c under
the null H0 : λ0 = 0.

Since the cutpoint c0 is in fact unknown, in view of the discussion in Section
1, we replace it by the profile estimate ĉn under the null, and use its associated
score test statistic, Sn, for testing H0 : λ0 = 0, i.e.,

ĉn := sargmax
c∈[�,u]

Ln(c, η̂n,c, 0), η̂n := η̂n,ĉn ,

Sn := Sn,ĉn = 1√
n

n∑
i=1

UiXi,ĉn(Yi − φ′(η̂T
nZi,ĉn)),

(2.3)

where “sargmax” denotes the maximizer corresponding to the smallest c; see
a precise definition in [36, Page 4]. Note that (ĉn, η̂n) are the joint MLE for
(c0,η0) under the null H0 : λ0 = 0.
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Another approach for testing H0 : λ0 = 0 is to use the Wald-type test statis-
tic. Similarly, if the value of the cutpoint c0 was known to be c, we can esti-
mate (η0, λ0) by its MLE (η̃n,c, λ̃n,c) := argmax(η,λ)∈Rd+3 Ln(c,η, λ), and use
Wn,c :=

√
nλ̃n,c for testing H0 : λ0 = 0. Now since c0 is unknown, we replace

it by a profile estimator c̃n, and use its associated Wald test statistic, Wn, for
testing H0 : λ0 = 0, i.e.,

c̃n := sargmax
c∈[�,u]

Ln(c, η̃n,c, λ̃n,c), λ̃n := λ̃c̃n , Wn := Wn,c̃n . (2.4)

Because of the similarity in the theoretical development for the score-type and
Wald-type test statistics, we only present the details below for the score-type
test statistic.

Remark 2.1. In practice, to find the “sargmax” over c ∈ [�, u] in (2.3) and
(2.4), it suffices to consider those c ∈ {Xi : i ∈ [n]} ∩ [�, u].

2.1. Limiting distributions of the score-type test statistic

Define Fi(x) := pr(X ≤ x|U = i) for i ∈ {0, 1} and x ∈ R. For a square matrix
A, denote by λmin(A) its smallest eigenvalue. We make the following assumption
regarding the covariates in model (1.2).

(C.i) 0 < E[U ] < 1; For i ∈ {0, 1}, Fi is continuous on [�, u], continuously
differentiable with positive derivative in a neighbourhood of c0, and 0 < Fi(�) <
Fi(u) < 1; ‖W ‖ ≤ Cw for some positive constant Cw, where ‖·‖ is the Euclidean
norm; λmin(E[WW T |U = i,X > u]) > 0 and λmin(E[WW T |U = i,X ≤ �]) >
0.

Remark 2.2. We assume that the additional covariates W are bounded, which
simplifies significantly our presentation and proof. Other assumptions are mainly
to exclude degenerate situations; in particular, the last two conditions assume
that W are (conditionally on U and X) not collinear.

First, we consider the identifiable case. Let Zη := N(0, (V (1)
c0,η0

)−1) be a
normal random vector of length d + 2, independent of another normal random
variable ZS := N(0, σ2

c0,η0
), where for any (c,η) ∈ [�, u] × Rd+2,

V (1)
c,η := E[φ′′(ηTZc)ZcZ

T
c ], σ2

c,η := V (3)
c,η − V (2)

c,η(V (1)
c,η)−1(V (2)

c,η)T ,

with V (2)
c,η := E[φ′′(ηTZc)UXcZ

T
c ], V (3)

c,η := E[φ′′(ηTZc)UXc].
(2.5)

Define Θ+ := αT
0 W + β0U + γ0, and Θ− := αT

0 W + β0U . Let Y+ and Y−
be two random variables such that their conditional ν-density, given (W , U,X),
are respectively exp(y+Θ+−φ(Θ+)) and exp(y−Θ−−φ(Θ−)). Further, consider
a sequence of independent and identically distributed pairs of random variables,
{(ξn,+, ξn,−) : n ∈ N}, such that ξ1,+ and ξ1,− are independent, and

ξ1,+
d= γ0Y+ − (φ(Θ+) − φ(Θ−)) given X = c0,
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ξ1,−
d= −γ0Y− + (φ(Θ+) − φ(Θ−)) given X = c0,

where d= means that two sides have the same distribution. Let N+(·) and N−(·)
be two Poisson processes with intensity F ′

X(c0) > 0, where FX(·) is the cu-
mulative distribution function for X. In addition, we assume N+(·), N−(·),
{(ξn,+, ξn,−) : n ∈ N} and Zη,ZS are all independent. Finally, define

Zc := sargmax
t∈R

D(t), where D(t) :=
{∑N+(t)

i=1 ξi,+ if t ≥ 0,∑N−(−t)
i=1 ξi,− if t < 0.

Note that we use the convention
∑0

i=1 ξi,+ =
∑0

i=1 ξi,− = 0.
We use the notation � for the weak convergence of probability measures.

Theorem 2.1. Consider the identifiable case under the null, i.e. γ0 �= 0 and
λ0 = 0. Assume (C.i) holds. Then n(ĉn − c0) is bounded in probability, and
(
√
n(η̂n − η0), Sn) � (Zη,ZS).
In addition, if the conditional distribution of (W , U) given X = c is contin-

uous in a neighbourhood of c0 with respect to the weak convergence1, then

(n(ĉn − c0),
√
n(η̂n − η0), Sn) � (Zc, Zη, ZS).

Proof. See Sections C.1 and C.3 of the Appendix.

Remark 2.3. It is well known that for change-point models, the weak limits
of the MLE for the regular parameters (Zη above) and for the change-point (Zc

above) are independent, and the latter is the smallest maximizer of a two-sided,
compound Poisson process (D(·) above). See [22, 36, 44] for related results in
the regression models, and [43] in the Cox models.

Now consider the non-identifiable case, i.e. γ0 = 0. For each c ∈ R, define
Z̃c = (W T , U,Xc, UXc)T , and denote by �∞(A) the space of bounded functions
on an arbitrary index set A. Let {((Δ(1)

c )T ,Δ(2)
c )T : c ∈ [�, u]} be a zero mean

Gaussian process, that is tight in (�∞([�, u]))d+3, whose covariance function is
given as follows: for any c1, c2 ∈ [�, u],

cov(((Δ(1)
c1 )T ,Δ(2)

c1 )T , ((Δ(1)
c2 )T ,Δ(2)

c2 )T ) = E[φ′′(αT
0 W + β0U)Z̃c1Z̃

T

c2 ]. (2.6)

Note that for each c, Δ(1)
c is of length d + 2 and Δ(2)

c of length 1, and that the
existence of such a Gaussian process is established in Theorem 2.2.

Finally, define the following quantities associated with the Gaussian process:

C = argmax
c∈[�,u]

(
Δ(1)

c

)T
(V (1)

c,η0
)−1Δ(1)

c , HHH = (V (1)
C,η0

)−1Δ(1)
C ,

S = Δ(2)
C − V

(2)
C,η0

HHH,

(2.7)

where V (1)
c,η and V (2)

c,η are defined in (2.5).
1That is, for any sequence cn → c, we have E[f(W , U)|X = cn] → E[f(W , U)|X = c] for

any continuous, bounded function f .
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Theorem 2.2. Consider the non-identifiable case under the null, i.e. γ0 = λ0 =
0, and assume (C.i) holds. Then there exists a zero mean Gaussian process, that
is tight in (�∞([�, u]))d+3 and that has the covariance function given by (2.6).
Further,

(ĉn,
√
n(η̂n − η0), Sn) � (C, HHH, S).

Proof. See Section C.2 of the Appendix.

In this work, our primary focus is on the limiting behavior of the score-
type test statistic Sn, which is distinct in the two cases. Specifically, in the
identifiable case, ĉn is a consistent estimator of c0 with the rate n, and, as a
result, the limiting distribution of Sn is the same as that for Sn,c0 [31], despite
the fact that c0 is unknown.

In the non-identifiable case, however, ĉn converges to a non-degenerate limit
without scaling, and the limiting distribution of Sn is non-Gaussian. For illustra-
tion, in Appendix C.4, we show that if W = 1, X has the uniform distribution
over (0, 1), and U is independent of X, then C is the maximizer of a Brownian
bridge, while S is the value of another independent Brownian bridge evaluated
at C, up to a multiplicative constant.

In practice, it is usually unknown whether the observations are from an iden-
tifiable model or not. Therefore, it is important to develop a procedure for
obtaining the critical values for the test statistic Sn, that does not rely on the
knowledge of identifiability, but nonetheless is valid in both cases. In the next
section, we propose an m-out-of-n bootstrap method for this purpose, and es-
tablish its validity.

3. Bootstrap method for the score-type profile tests

We propose the following m-out-of-n bootstrap procedure for the score-type
profile test statistic Sn in (2.3), where mn ≤ n below are user-specified integers.

Step 1. Based on data Di, i ∈ [n], compute the MLE (ĉn, η̂n) under the
null H0 : λ0 = 0 and the score-type test statistic Sn as in (2.3).

Step 2. Randomly sample with replacement from (W i, Ui, Xi), i ∈ [n] to
obtain a bootstrap sample of size mn denoted as (W ∗

i , U
∗
i , X

∗
i ), i ∈ [mn]. For

each i ∈ [mn], given (W ∗
i , U

∗
i , X

∗
i ) = (w, u, x), generate Y ∗

i is from the distri-
bution with the following ν-density:

y �→ exp(y(η̂T
nzĉn) − φ(η̂T

nzĉn)).

The bootstrap sample is D∗
i = (Y ∗

i ,W
∗
i , U

∗
i , X

∗
i ), i ∈ [mn].

Step 3. Based on the bootstrapped data D∗
i , i ∈ [mn], compute the MLE

(ĉ∗n, η̂
∗
n) and the score-type test statistic S∗

n as in (2.3) with n replaced by mn
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and Di replaced by D∗
i . That is,

(ĉ∗n, η̂
∗
n) := sargmax

(c,η)∈[�,u]×Rd+2
mn

−1
mn∑
i=1

ϕc,η(D∗
i ), where ϕc,η := ϕc,η,0,

S∗
n := 1√

mn

mn∑
i=1

U∗
i X

∗
i,ĉ∗n

(Y ∗
i − φ′((η̂∗

n)TZ∗
i,ĉ∗n

)).
(3.1)

Step 4. Denote by pr|D the conditional probability given the data Di, i ∈
[n]. Then the p-value is defined as

pSn = 1 − pr|D(|S∗
n| ≤ |Sn|). (3.2)

If pSn is smaller than a user-given significance level, we reject the null hypothesis
H0 : λ0 = 0. Otherwise we cannot reject the null.

Remark 3.1. In practice the p-value can be approximated by:

p̂Sn = B−1
B∑

b=1
I(|Sb∗

n | > |Sn|),

where Sb∗
n is the value of the score-type test statistic S∗

n defined in (3.1) based
on the b-th bootstrap sample and B is the number of bootstrap repetitions.

3.1. Asymptotic consistency of the m-out-of-n bootstrap

In this section, we establish the asymptotic theory for the bootstrap procedure
for the score-type test statistic. We denote by opr(1) a sequence of random
variables that goes to zero in probability as n → ∞. Recall that mn ≤ n is
the size of the bootstrap sample, and that (Zη,ZS) and (C,HHH,S) are the weak
limits appearing Theorems 2.1 and 2.2.

Theorem 3.1. Consider the null, i.e., λ0 = 0. Assume that (C.i) holds and
that mn → ∞ as n → ∞.

(i). If the model is identifiable, i.e., γ0 �= 0, then

sup
t∈Rd+3

∣∣∣pr|D((
√
mn(η̂∗

n − η̂n), S∗
n) ≤ t) − pr((Zη,ZS) ≤ t)

∣∣∣ = opr(1).

(ii). If the model is non-identifiable, i.e., γ0 = 0, and if, additionally, mn/n →
0 as n → ∞, then

sup
t∈Rd+4

∣∣∣pr|D((ĉ∗n,
√
mn(η̂∗

n − η̂n), S∗
n) ≤ t) − pr((C,HHH,S) ≤ t)

∣∣∣ = opr(1).

Proof. The proof for (i) and (ii) can be found, respectively, in Sections C.1 and
C.2 of the Appendix.
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The above theorem, together with Theorems 2.1 and 2.2, establishes the
asymptotic size validity of the proposed m-out-of-n bootstrap procedure for
both the identifiable and non-identifiable cases, as long as the bootstrap sample
size is of a smaller order than the original sample size, i.e., mn/n → 0, despite
the fact that the procedure does not use the knowledge about the identifiability.

In the identifiable case (see part (i) above), however, the condition mn/n → 0
is not required, and mn = n is allowed for obtaining the critical value for the test
statistic Sn, which corresponds to the standard bootstrap. It is noteworthy that
by [36, 44, 43] the standard bootstrap is not asymptotically valid for constructing
confidence intervals for ĉn, but, by Theorem 3.1 above, is in fact so for the MLE
η̂n and Sn. That is, for the same model, bootstrap methods may work for some
statistics, but fail for others.

In the non-identifiable case (see part (ii) above), we show in the next sub-
section that the standard bootstrap, corresponding to mn = n, is inconsistent,
in the sense that the bootstrap distribution of S∗

n in (3.1) does not converge
weakly to the limiting distribution (i.e. S) of the test statistic Sn, in probability.
From the simulation studies in Section 5, with mn = nκ (rounded to an integer),
we observe that as κ varies from 0.9 to 1, the proposed procedure controls the
size well and is not sensitive to the choice of κ; thus κ = 0.95 seems to be a
reasonable choice in practice.

Remark 3.2. In the identifiable case, if mn/n does vanish, then again by [36,
44, 43], the m-out-of-n bootstrap procedure is also consistent for ĉn, which are
now standard results and omitted, since our primary focus is on testing H0 :
λ0 = 0 using Sn.

3.2. Inconsistency of the standard bootstrap for the non-identifiable
case

In this subsection, we establish the inconsistency of the standard bootstrap,
i.e., mn = n, for the non-identifiable case, i.e., γ0 = 0. To make this statement
precise, we recall the notations in Subsection 2.1 and introduce additional ones.

Denote by R̂n the empirical distribution of the covariates {(W i, Ui, Xi) : i ∈
[n]}. For each integer k ≥ 1, denote by M(Rk) the space of Borel probability
measures on Rk, and we equip it with the Prokhorov metric dProk(·, ·) [8, Section
6.5], which characterizes the weak convergence and under which M(Rk) is a
complete and separable metric space.

The m-out-of-n bootstrap procedure with mn = n requires three inputs: the
empirical distribution R̂n from which bootstrap covariates {(W ∗

i , U
∗
i , X

∗
i ) : i ∈

[n]} are drawn, and the estimators ĉn and η̂n which are used to generate the
bootstrap responses {Y ∗

i : i ∈ [n]}. Denote by Ln(c,η,R) the distribution of
the bootstrap test statistic S∗

n when (ĉn, η̂n, R̂n) takes the value (c,η,R). That
is, Ln is a measurable mapping from [�, u] × Rd+2 × M(Rd+2) to M(R), and
Ln(ĉn, η̂n, R̂n) is the bootstrap distribution of S∗

n given the data, which is a
random element in M(R).
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Finally, recall that S in (2.7) is the limiting distribution of the test statistic
Sn, which a deterministic element in M(R). The next theorem shows that the
Prokhorov distance between the bootstrap distribution and the target does not
converge to zero in probability.

Theorem 3.2. Consider the null, i.e., λ0 = 0, and the non-identifiable case,
i.e., γ0 = 0. Further, consider the standard bootstrap with mn = n. Assume that
(C.i) holds. There exists some ε > 0 such that

lim inf
n→∞

pr
(
dProk(Ln(ĉn, η̂n, R̂n), S) ≥ ε

)
> 0,

where S in the second argument of dProk(·, ·) refers to its distribution.

Proof. See Appendix C.5.

We briefly discuss the proof strategy for the non-identifiable case, i.e., γ0 = 0
and the standard bootstrap, i.e., mn = n. From Theorem 2.2, (ĉn,

√
n(η̂n −

η0)) � (C,HHH), and the empirical distribution R̂n converges weakly (i.e., in
terms of dProk) to the population distribution R∞ of the covariates (W , U,X)
almost surely [14, Theorem 11.4.1]. Due to Skorohod’s representation theorem [8,
Theorem 6.7], there exist a sequence of random variables {(c†n,η†

n,R†
n) : n ≥ 1}

and (C†,HHH†) such that (c†n,η†
n,R†

n) has the same distribution as (ĉn, η̂n, R̂n)
for each n ≥ 1, (C†,HHH†) as (C,HHH), and for each ω ∈ Ω,

lim
n→∞

(c†n(ω),
√
n(η†

n(ω) − η0),R†
n(ω)) = (C†(ω),HHH†(ω),R∞).

Denote by γ†
n(ω) the last component of η†

n(ω), and by HHH
†
γ(ω) the last component

of HHH†(ω). Since γ0 = 0, we have
√
nγ†

n(ω) → HHH
†
γ(ω). In Appendix C.5 (Theorem

C.1), we show that

dProk

(
Ln(c†n,η†

n,R†
n), L∞(C†,HHH†

γ)
)

= opr(1),

where L∞ is some measurable map from [�, u]×R to M(R). Since L∞(C†,HHH†
γ)

is a random measure, i.e., depending on ω ∈ Ω, and the law of S is fixed, we
have that for some ε > 0,

lim inf
n→∞

pr
(
dProk(Ln(c†n,η†

n,R†
n), S) ≥ ε

)
> 0,

which is equivalent to the conclusion in the above theorem, as (ĉn, η̂n, R̂n) and
(c†n,η†

n,R†
n) have the same distribution by construction.

Remark 3.3. If mn/n → 0, we have √
mnγ̂n =

√
nγ̂n ×

√
mn/n = opr(1).

Further, it turns out that L∞(c, 0) is equal to the law of S for any c ∈ [�, u].
This explains the consistency in Theorem 3.1(ii) when the bootstrap sample size
mn is of a smaller order compared to the original sample size n.

Remark 3.4. Theorem 3.1 shows that the m-out-of-n bootstrap with mn/n →
0 is consistent in the sense that for each fixed η0 ∈ Rd+2 and c0 ∈ [�, u],
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limn→∞ pr(pSn ≤ α) = α. The procedure is robust against model identifiability
issues, that is, the consistency holds whether γ0 = 0 or not.

However, we note that the procedure does not control the size uniformly over
the parameter space Rd+2 × [�, u], in the sense [4, 3] that under H0 : λ0 = 0,

lim
n→∞

sup
(η,c)∈Rd+2×[�,u]

prη,c(pSn ≤ α) ≤ α,

where prη,c denotes the probability when the value of (η0, c0) is (η, c). This is
a stronger requirement, which allows the parameters (η0, c0) to change with the
sample size n, as opposed to being fixed relative to n. Indeed, if γ0 = B1/

√
n for

some constant B1 �= 0 and other parameters are fixed, which corresponds to the
weakly identifiable case in [3], the limiting distribution of the test statistic Sn

would be L∞(c0, B1) by Theorem A.5 in the Appendix. Further, if mn/n → 0,
by similar arguments as for Theorem 3.1(ii) and 3.4, the bootstrap distribution
of S∗

n converges weakly to S in probability, whose law differs from L∞(c0, B1) if
B1 �= 0.

3.3. Power analysis under local alternatives

In this subsection, we study the rejection probabilities under the following local
alternatives:

H1,n : λn = B0/
√
n, for some constant B0 �= 0. (3.3)

That is, conditional on (W , U,X) = (w, u, x), the ν-density of Y = y is

exp
(
y
(
ηT

0 zc0 + λnuxc0

)
− φ(ηT

0 zc0 + λnuxc0)
)
.

For simplicity, we assume that the constant B0 and other parameters (η0, c0),
as well as the distribution of (W , U,X), do not depend on the sample size n.

We start with the identifiable case, and recall that ZS has the zero mean
normal distribution with variance σ2

c0,η0
given in (2.5).

Theorem 3.3. Assume that γ0 �= 0, and (C.i) holds. Consider the local alter-
natives H1,n in (3.3). As n → ∞, Sn converges in distribution to ZS +B0σ

2
c0,η0

.
Further, consider the bootstrap procedure with mn → ∞ as n → ∞. For each

α ∈ (0, 1),

lim
n→∞

pr(pSn ≤ α) = Φ(Φ−1(α/2) + B0σc0,η0) + Φ(Φ−1(α/2) −B0σc0,η0),

where Φ(·) is the cumulative distribution function of N(0, 1).

Proof. See Appendix D.1.

For the identifiable case, the power under the local alternatives in (3.3) is the
same as if the unknown cutpoint c0 was known [41]. This is because if γ0 �= 0,
the cutpoint c0 can still be estimated at a super parametric rate under H1,n.
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Next, we consider the non-identifiable case. Recall the definitions of V (1)
c,η and

V (2)
c,η in (2.5), and the zero mean Gaussian process {((Δ(1)

c )T ,Δ(2)
c )T : c ∈ [�, u]}

in Subsection 2.1. Define

C : = sargmax
c∈[�,u]

1
2

(
Δ(1)

c + B0V
(4)
c

)T
(V (1)

c,η0
)−1(Δ(1)

c + B0V
(4)
c ),

S : = Δ(2)
C

− V
(2)
C,η0

(V (1)
C,η0

)−1Δ(1)
C

+ B0

(
V

(5)
C

− V
(2)
C,η0

(V (1)
C,η0

)−1V
(4)
C

)
,

where for each c ∈ [�, u],

V (4)
c = E[φ′′(ηT

0 Zc0)UXc0Zc], V (5)
c = E[φ′′(ηT

0 Zc0)UXc0Xc]. (3.4)

Note that both C and S depend on B0, which is omitted for simplicity. In
addition to the bias term, i.e., the last term in the definition of S above, the
first two terms are different from S in (2.7), since they are evaluated at C,
instead of C in (2.7).

Theorem 3.4. Assume that γ0 = 0, and (C.i) holds. Consider the local alter-
natives H1,n in (3.3). As n → ∞, Sn converges in distribution to S.

Further, consider the bootstrap procedure with mn/n → 0 as n → ∞. Fix
some level α ∈ (0, 1) and denote by qα,S the upper α-th quantile of |S|. Then

lim
n→∞

pr(pSn ≤ α) = pr(|S| ≥ qα,S).

Proof. See Appendix D.2.

In the non-identifiable case, although the power function does not have a
simple form, under mild conditions, the rejection probability for the proposed
procedure approaches one under the local alternatives in (3.3), when the mag-
nitude of B0 diverges, that is, lim|B0|→∞ pr(|S| ≥ qα,S) = 1. To see this, due to
the definition of C, as |B0| → ∞, C converges in probability to

c‡ := argmax
c∈[�,u]

(V (4)
c )T (V (1)

c,η0
)−1V (4)

c ,

if the maximizer is unique. Further, if V (5)
c‡ −V

(2)
c‡,η0

(V (1)
c‡,η0

)−1V
(4)
c‡ is non-zero,

then |S| approaches ∞ in probability as |B0| → ∞.

4. Wald-type profile tests based on the m-out-of-n bootstrap

In this section, we propose the following m-out-of-n bootstrap procedure for
the Wald-type test statistic, Wn, in (2.4). As before, mn ≤ n below is a user-
specified integer.

Step 1. Compute the MLE (c̃n, η̃n, λ̃n) for (c0,η0, λ0) and the test statistic
Wn as in (2.4), based on data Di, i ∈ [n].
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Step 2. Randomly sample with replacement from (W i, Ui, Xi), i ∈ [n] to
obtain a bootstrap sample of size mn denoted as (W ∗

i , U
∗
i , X

∗
i ), i ∈ [mn]. For

each i ∈ [mn], given (W ∗
i , U

∗
i , X

∗
i ) = (w, u, x), generate Y ∗

i from the distribu-
tion with the following ν-density:

y �→ exp(y(η̃T
nzc̃n) − φ(η̃T

nzc̃n)).

The bootstrap sample is D̃∗
i = (Y ∗

i ,W
∗
i , U

∗
i , X

∗
i ), i ∈ [mn].

Step 3. Based on the bootstrapped data D̃∗
i , i ∈ [mn], compute the MLE

(c̃∗n, η̃∗
n, λ̃

∗
n) and the test statistic W ∗

n using (2.4) with n replaced by mn and Di

replaced by D̃∗
i . That is,

(c̃∗n, η̃∗
n, λ̃

∗
n) := sargmax

(c,η,λ)∈[�,u]×Rd+3
mn

−1
mn∑
i=1

ϕc,η,λ(D̃∗
i ), W ∗

n :=
√
mnλ̃

∗
n.

Step 4. Recall that pr|D denotes the conditional probability given the data
Di, i ∈ [n]. Then the p-value is defined as

pWn = 1 − pr|D(|W ∗
n | ≤ |Wn|).

If pWn is smaller than a user-given significance level, we reject the null hypothesis
H0 : λ0 = 0. Otherwise we cannot reject the null.

As mentioned above, we omit the precise statements regarding the properties
of Wald-type profile tests, due to its similarity to score-type profile tests, and
also because in Section 5 we notice that its performance is not as good in terms
of empirical sizes and powers, when the sample size is moderate (100 ∼ 500).

To understand this issue, we conduct the following simulation study: W = 1,
X is uniformly distributed over (0, 1), U is independent of X with E[U ] =
0.5, the response follows the logistic regression model, and c0 = 0.5, [�, u] =
[0.15, 0.85], η0 = (1,−1.5, 0)T , λ0 = 0. In Figure 1, we present histograms and
density lines, with 7.5 × 105 repetitions, of the sampling distributions of

√
nλ̃n

for n = 100, 300, 1000, 106. From Figure 1 we observe that
√
nλ̃n approaches its

limiting distribution (in the last panel) rather slowly, not until n is 1000. The
theoretical investigation of the slow convergence rate is left for future work.

5. Simulation study

In this section we conduct simulation studies to evaluate the finite-sample per-
formance of the proposed methods. In each repetition of the simulation, for each
i ∈ [n] where the sample size n ∈ {200, 300, 500}, we consider the following in-
dependent covariates: an intercept W i = 1, a continuous biomarker Xi from the
uniform distribution on (0, 1), and a treatment indicator Ui from the Bernoulli
distribution with a success probability 0.5, and further a binary outcome Yi,
whose conditional expectation, given (W i, Xi, Ui), is specified by model (1.2)
with the logistic link function, and c0 = 0.5. For regression parameters, we con-
sider λ0 = 0 under the H0 and λ0 = 2 under H1, and four different choices for
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Fig 1. The sampling distributions of Wn under the null for different n. “1M” denotes 106.

η0 ∈ {η(k) : k ∈ [4]}, which are specified in the captions of Tables 1 and 2.
Specifically, under the null, η(3),η(4) correspond to the identifiable case, and
η(2) to the non-identifiable case, while η(1) belongs to the identifiable case with
a small main effect (i.e., |γ0| is small). The empirical sizes and powers of the tests
below, defined as the proportion of rejections under H0 and H1 respectively, are
calculated with R = 2000 repetitions at the level 5%.

The bootstrap score-type and Wald-type tests, proposed respectively in Sec-
tions 3 and 4, are referred as “B-Score” and “B-Wald” in this section. For
each sample size n, we let [�, u] = [15%, 85%], consider the bootstrap sam-
ple size mn = nκ (rounded to an integer) with κ ∈ {0.9, 0.9375, 0.95, 1}, and
use B = 2000 bootstrap repetitions. We compare the proposed methods with
several tests mentioned in Section 1, which are asymptotically valid under either
the identifiable case or non-identifiable case, but not both.

First, in Theorem 2.1, we show that if the cutpoint c0 is identifiable (i.e.,
γ0 �= 0), the profile score test statistic Sn in (2.3) convergences in distribution to
N(0, σ2

c0,η0
), where σ2

c,η is defined in (2.5). By a similar argument as for Theorem
2.1, one can show that σ2

ĉn,η̂n
is a consistent estimator for σ2

c0,η0
if γ0 �= 0, where

(ĉn, η̂n) are the MLE in (2.3). Thus we may reject the null if |Sn/σĉn,η̂n
| ≥

Φ−1(0.975), where Φ(·) is the cumulative distribution function of N(0, 1). This
procedure obtains the critical value by the asymptotic approximation under the
identifiable assumption, and thus is referred as “A-Score”.

Second, we consider the minimum p-value methods, with and without ad-
justment. For the unadjusted version, which is called as “MP”, we reject the
null if supc∈[�,u] |Sn,c/σ̂c,η̂n,c

| ≥ Φ−1(0.975), where Sn,c and η̂n,c are defined in
(2.2), and σ2

c,η is defined in (2.5). For the adjustment under the non-identifiable
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assumption, which is referred to as “MP(adj)”, we define the following test
statistic Sadj [40] and p-value pn,adj [8],

pn,adj = 2
∞∑
k=1

(−1)k+1 exp(−2k2S2
adj), where Sadj = sup

c∈[�,u]

∣∣∣∣∣
∑n

i=1 Xi,cUiξ̃i

σ̃mp

√∑n
i=1 Ui

∣∣∣∣∣ ,
with ξ̃i := Yi − φ′(α̃n + β̃nUi), σ̃2

mp := n−1∑n
i=1 ξ̃

2
i − (n−1∑n

i=1 ξ̃i)2, and α̃n

and β̃n are the MLE of α0 and β0 under the assumption γ0 = λ0 = 0.
The empirical sizes and powers for the above tests are summarized in Tables

1 and 2. From Table 1, the empirical sizes of the B-Score method are close
to the nominal 5% level under both the identifiable and non-identifiable cases,
and are not sensitive to the choice of bootstrap sample size mn. The empirical
sizes from the MP method can be seven times of the nominated level in all cases.
Although the A-Score test works reasonably well under the identifiable case (η(3)

and η(4)), it loses the control of Type I error in the non-identifiable case (η(2))
and the small-main-effect case (η(1)). In contrast, the MP(adj) method works
well in the non-identifiable case (η(2)) but behaves poorly in the identifiable
case (η(3) and η(4)), and also when |γ0| is small (η(1)). The results on empirical
sizes indicate that A-Score and MP(adj) methods are quite sensitive to their
corresponding identifiability assumption.

The empirical sizes of the B-Wald are very conservative, and from Table 2, its
empirical powers are poor compared to the B-Score method especially when the
sample size is not large (say, less than 500), which makes B-Wald less desirable.
The A-Score, MP and MP(adj), as expected, have a slightly better power than
the proposed methods, but they fail to control the size in many situations.

6. Application to a colorectal cancer dataset

We consider data from a CO.17 trial conducted by the Canadian Cancer Trials
Group [19], which randomized 572 patients with advanced colorectal cancers
to receive Cetuximab plus best supportive care (BSC) or BSC alone. One of
the important clinical outcomes in this trial is the response to the treatment as
assessed by Response Evaluation Criteria in Solid Tumours (RECIST), which
is categorized as complete response (CR) if all target lesions of this patient
disappear, partial response (PR) if there is at least 30% decrease in the sum
of longest diameters of the target lesions, progressive disease (PD) if there is
at least 20% increase in the sum of longest diameters of the target lesions, or
stable disease (SD) if there is not sufficient decrease or increase in the sum of
longest diameter to qualify for PR or PD [39]. A patient is said to have benefited
clinically when the response was either CR, PR or SD, and it is of interest to
identify subgroups of patients who would have different treatment effects with
respect to this clinical outcome based on baseline values of some biomarkers.

In this analysis, we consider the following three potential, continuous biomark-
ers (i.e. X): mRNA expression of the gene epiregulin (EREG), the levels of lac-
tate dehydrogenase (LDH) and alkaline phosphatase (ALKPH) in the blood.
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Table 1

The empirical sizes (in percentage) for testing H0 : λ0 = 0 at the level 5% for the logistic
model. Here, η(1) = (−1.4, 1.2, 0.2)T , η(2) = (1,−1.5, 0)T ,η(3) = (−1.4, 1.2, 1)T ,

η(4) = (−1.4, 1.2, 2)T , λ0 = 2 under the alternative.

B-Score B-Wald A-Score MP MP(adj)

mn n0.9 n0.9375 n0.95 n n0.9 n0.9375 n0.95 n

n = 200
η(1) 5.4 5.7 5.8 5.9 4.5 3.8 4.4 4.4 26.0 34.0 8.7
η(2) 6.2 6.3 6.1 6.4 2.2 2.4 2.8 2.0 28.4 37.7 5.0
η(3) 7.0 7.5 6.5 6.9 1.1 0.7 1.5 0.9 11.9 35.5 5.4
η(4) 6.4 6.8 6.6 6.0 0.6 2.0 2.4 4.0 5.7 35.4 9.4

n = 300
η(1) 6.3 6.6 5.5 5.4 1.3 0.8 1.0 3.6 26.5 36.0 9.9
η(2) 5.3 5.2 4.2 5.0 0.2 0.4 1.3 2.9 27.8 37.4 4.9
η(3) 7.1 5.5 7.5 5.4 0.2 0.3 0.6 1.8 8.6 37.7 7.5
η(4) 6.6 5.6 5.8 5.6 0.0 1.2 2.6 4.0 5.1 40.3 9.8

n = 500
η(1) 5.2 5.0 6.0 5.0 1.6 2.3 3.3 6.0 22.6 36.8 13.2
η(2) 5.6 5.7 4.8 5.8 1.6 3.6 4.0 8.2 28.2 39.9 4.7
η(3) 5.6 6.3 6.1 4.9 1.2 1.6 1.6 2.8 7.3 41.1 9.3
η(4) 6.1 5.6 6.7 6.0 2.6 3.2 4.1 4.4 4.5 46.4 9.9

Table 2

The empirical powers (in percentage) for testing H0 : λ0 = 0 at the level 5% for the logistic
model. Here, η(1) = (−1.4, 1.2, 0.2)T , η(2) = (1,−1.5, 0)T ,η(3) = (−1.4, 1.2, 1)T ,

η(4) = (−1.4, 1.2, 2)T , λ0 = 2 under the alternative.

B-Score B-Wald A-Score MP MP(adj)

mn n0.9 n0.9375 n0.95 n n0.9 n0.9375 n0.95 n

n = 200
η(1) 73.9 74.0 73.0 73.2 2.2 2.3 3.5 13.3 81.0 92.5 97.3
η(2) 79.2 78.2 76.5 75.6 0.9 1.8 2.4 16.2 86.7 96.0 96.7
η(3) 72.5 70.9 71.9 70.6 9.3 24.0 30.3 53.8 73.1 88.1 94.8
η(4) 53.2 53.0 53.1 54.2 45.2 57.2 61.4 66.4 48.3 56.8 98.4

n = 300
η(1) 89.1 88.5 89.1 88.7 3.3 5.7 35.2 59.5 93.0 98.2 98.9
η(2) 90.2 91.5 92.1 92.0 5.0 14.8 48.9 67.1 96.3 99.3 98.9
η(3) 88.9 87.2 87.5 86.9 32.5 61.3 80.2 89.0 87.7 97.1 98.6
η(4) 73.1 72.1 71.9 72.2 50.5 73.9 80.0 81.1 69.1 83.7 99.5

n = 500
η(1) 98.3 99.0 98.7 98.1 83.5 90.7 92.2 95.2 99.0 99.8 99.3
η(2) 98.9 99.3 98.9 98.7 92.9 94.2 95.2 96.8 99.7 99.9 99.2
η(3) 97.7 98.2 98.1 98.2 97.9 98.7 98.4 98.9 98.4 99.7 99.5
η(4) 92.1 91.4 91.7 92.5 94.5 94.6 94.0 95.9 89.4 98.3 99.0

The clinical outcome Y is binary, with value 1 if a patient had a clinical benefit
and 0 otherwise. The treatment indicator U is 1 if a patient received Cetuximab
plus BSC and 0 if BSC alone. We consider the age of patients and the inter-
cept as the additional covariate W . The sampling distributions of the three
biomarkers and the age covariate are showniIn Figure 2. For each biomarker
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Fig 2. The sampling distribution of EREG, LDH, ALKPH, and AGE. The vertical dash line
for each of the three biomarkers indicates the cutpoint estimated by (2.4).

Table 3

The p-values for testing H0 : λ0 = 0 from the B-Score, MP and A-Score methods. The 95%
confidence interval for the p-value from B-Score method shown in parentheses under the

p-value.

Biomarker B-Score MP A-Score

mn n0.9 n0.95

EREG 5×10−3 7×10−3 1.4×10−3 1.3×10−3

(0.001, 0.008) (0.000, 0.008)
LDH 0.02 0.03 2.5×10−3 0.014

(0.011, 0.028) (0.012, 0.030)
ALKPH 0.07 0.09 4.4×10−3 0.027

(0.069, 0.105) (0.066, 0.100)

(i.e. X), we consider the regression model (1.2) with the logistic link function
for identification of subgroups with differential treatment effects.

First, separately for each biomaker, we applied the proposed B-Score method
with mn = n0.9, n0.95, MP method, and A-Score method defined in Section 5
to test whether there exist subgroups defined by an unknown cutpoint which
have significantly different treatment effects, i.e., testing H0 : λ0 = 0 in model
(1.2) with an unspecified c0. The p-values from these methods are presented in
Table 3. Due to randomness of the resampling methods [26], we computed 95%
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Table 4

An explanatory subgroup analysis that shows the proportion of patients with clinical benefits
by treatment and subgroups for biomarkers EREG, LDH and ALKPH.

Cetuximab+BSC BSC

Biomarker Subgroup Total # # (%) with Clinical Benefit Total # # (%) with Clinical Benefit Treat Effect p-value

EREG ≤ 7.43 116 65 (56%) 99 17 (17%) 39% 5.7×10−9

> 7.43 46 8 (17%) 39 9 (23%) -6% 0.70

LDH ≤ 992 150 71 (47%) 109 25 (23%) 24% 1.0×10−4

> 992 40 20 (50%) 25 0 (0%) 50% 7.1×10−5

ALKPH ≤ 270 152 77 (51%) 114 25 (22%) 29% 3.5×10−6

> 270 50 20 (40%) 21 0 (0%) 40% 1.7×10−3

confidence intervals for the bootstrap p-values from the B-score method with
1, 000 repeated bootstrap tests (each with B = 2, 000 bootstrap samples), which
are also shown in Table 3.

From Table 3, one can see that, for both EREG and LDH, all methods suggest
rejecting the null at the 5% nominal level; the p-values from MP and A-Score
methods are, however, more significant than that from the B-Score methods. For
ALKPH, the B-Score method fails to reject H0 at the 5% level, in contrast to the
other two methods. These results are consistent with the simulation results in
Section 5 which demonstrated that MP and A-Score methods are more liberal
than the B-Score method. Note that the confidence intervals for the p-values
from the B-Score method lead to the same conclusions.

To make sense of the above results from testing H0 : λ0 = 0, we show in Table
4 the results from the explanatory subgroup analysis based on each biomarker.
Specifically, we first obtained the MLE estimate c̃n of the cutpoint for each of
the potential biomarkers through (2.4), i.e., without assuming λ0 = 0, which is
7.43 for EREG, 992 for LDH, and 270 for ALKPH; these cutpoints are shown by
the vertical dash lines in Figure 2 relative to the sampling distributions of the
biomarkers. Next, for each biomarker, based on the estimated cutpoint, patients
are divided into two subgroups; further, for each subgroup, we counted the
number of patients (shown in the Total # column) in each of the two treatment
groups (“Cetuximab + BSC” and “BSC”), and also calculated the number and
proportion (in %) of patients with clinical benefit. For example, there were 116
patients in the subgroup with EREG ≤ 7.43 who received the treatment with
cetuximab+BSC, and 65 (56%) of them had clinical benefit 2. Finally, for each
subgroup, we computed the difference in the proportions (in %) of patients with
clinical benefits between patients treated with cetuximab+BSC and BSC alone
(shown in the Treat Effect column) with a positive difference indicating that the
treatment with Cetuximab plus BSC is “more beneficial” than that with BSC
alone, and the p-value from the chi-square test for the difference. From Table
4, we observe that the absolute difference in the treatment effect between the
subgroups was the smallest for ALKPH among the three biomarkers (11% in
comparison with 45% and 26% respectively for EREG and LDH). Since, from the
B-Score tests (see Table 3), the difference in treatment effect was significant at

2Due to missing data in the biomarkers, the number of patients corresponding to different
biomarkers are not the same.
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5% level for EREG and LDH, we may conclude that patients with EREG ≤ 7.43
or LDH > 992 would have more clinical benefits when treated by centuximab
and BSC than by BSC alone, while there is no additional or smaller clinical
benefit from centuximab and BSC for patients with EREG > 7.43 or LDH
≤ 992. There is only a marginally higher clinical benefit from cetuximab and
BSC for patients with ALKPH > 270 than those with ALKPH ≤ 270 because
there is only a trend to significance at 5% level for the difference in treatment
effect between the subgroups defined by ALKPH from the B-Score tests.

7. Discussions

In this section, we discuss potential future work. First, in this work, we consider
the use of a single unknown cutpoint on a continuous biomarker to classify pa-
tients into two subgroups; however, in many applications, it may be desirable
to have more than two subgroups and thus multiple cutpoints. In the recent lit-
erature on prognostic classification problems, this issue has been studied under
various models such as accelerated failure time models [25] and change plane
models [28]. The procedures proposed in this work may be extended to pre-
dictive classification with multiple cutpoints but there are several challenges to
implement the procedures and investigate their theoretical properties. Specifi-
cally, assume that W = 1 and there are two cutpoints. In this case, the response
Y has a ν-density given by exp(yι0 − φ(ι0)), where

ι0 = α0 + β0U + (γ0,1 + λ0,1U)Xc0,1 + (γ0,2 + λ0,2U)(Xc0,2 −Xc0,1)

with Xc = I(X ≤ c) and c0,1 < c0,2. To test H0 : λ0,1 = λ0,2 = 0, which is
the goal of predictive classification, one approach would be to extend the profile
score test statistic Sn in (2.3) as follows:

Sn = ‖n−1/2
n∑

i=1
(Yi − φ′(ι̂i))Ui[Xi,ĉn,1 , Xi,ĉn,2 −Xĉn,1 ]T ‖2,

where ι̂i = α̂n+β̂nUi+γ̂n,1Xi,ĉn,1 +γ̂n,2(Xi,ĉn,2−Xi,ĉn,1), and (α̂n, β̂n, γ̂n,1, γ̂n,2)
and (ĉn,1, ĉn,2) are the joint maximum likelihood estimators (MLE) under the
null. The critical value for Sn could be obtained by modifying the m-out-of-n
bootstrap procedure in Section 3 but its computation may be more expensive
because of the need to compute joint MLEs. The identifiability issue becomes
more complicated, since it could happen that neither or one of c0,1 and c0,2 is
identifiable, which makes theoretical investigations more difficult. The number
of cutpoints may also be unknown and need to be estimated. These problems
would be interesting topics for future research.

Other interesting directions for future research include the case where there
are multiple biomarkers which need to be combined for predictive classification,
and as discussed in Section 4, the slow convergence rate of the profile Wald-type
test statistics.
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Appendix A: Triangular array setup for size analysis

Let P be the joint distribution of (Y,W , U,X) on the observation space S :=
S0 × {w ∈ Rd : ‖w‖ ≤ Cw} × {0, 1} × R, where S0 is the response space.
The conditional density of Y given (W , U,X) is given in (1.1), relative to some
σ-finite measure ν. From [31] it is known that E[Y |W , U,X] = φ′(ηT

0 Zc0),
Var[Y |W , U,X] = φ′′(ηT

0 Zc0), where Zc = (W T , U,Xc)T and Xc = I(X ≤ c),
and φ′′(t) > 0 for all t ∈ R. Further, φ(·) is an infinitely differentiable convex
function on R.

In this section, we consider a triangular array setup that will be applied to
both the MLE based on the original data and the bootstrapped data. For each
n ∈ N, let Dn,i = (Yn,i,W n,i, Un,i, Xn,i), i ∈ [mn] be a random sample from a
distribution Qn, defined on the common underlying probability space (Ω,G,pr),
where mn → ∞. Assume that conditional on (W n,i, Un,i, Xn,i) = (w, u, x), the
ν-density of Yn,i = y is

exp
(
y
(
ηT
nzcn

)
− φ(ηT

nzcn)
)
, (A.1)

where ηT
nzcn = αT

nw+βnu+γnxcn , zc is defined after (1.1), ηn = (αT
n , βn, γn)T ∈

Rd+2 and cn ∈ [�, u]. Note that compared to (1.1), we set λ0 = 0 in (A.1). Also,
E[Yn,1|W n,1, Un,1, Xn,1] = φ′(ηT

nZn,1,cn), where Zn,1,cn = (W T
n,1, Un,1, Xn,1,cn)T

and Xn,1,cn = I(Xn,1 ≤ cn).
Denote by Q∗

n := m−1
n

∑mn

i=1 δDn,i the empirical measure on S induced by
Dn,i, i ∈ [mn], where δDn,i is the Dirac measure at Dn,i. The MLE (ĉ∗n, η̂

∗
n),

based on Dn,i, i ∈ [mn], is defined to be

(ĉ∗n, η̂
∗
n) := sargmax

(c,η)∈[�,u]×Rd+2
Q∗

nϕc,η = sargmax
(c,η)∈[�,u]×Rd+2

1
mn

mn∑
i=1

ϕc,η(Dn,i),

where we recall ϕc,η(y, w, u, x) = y(ηTzc) − φ(ηTzc) in (3.1), and for an ar-
bitrary distribution Q on S and a function f : S → R, denote by Qf =∫
f(x)Q(dx) as long as the integral is well defined.
Define two semi-metrics on [�, u]×Rd+2, d0((c1,η1), (c2,η2)) =

√
|c1 − c2|+

‖η1 − η2‖ and d1((c1,η1), (c2,η2)) = ‖η1 − η2‖, where ‖ · ‖ is the Euclidean
norm. In this section, we establish the consistency and the convergence rate of
(ĉ∗n, η̂

∗
n) to (cn,ηn), in terms of d0 for the identifiable case (i.e. γ0 �= 0), and

d1 for the non-identifiable case (i.e. γ0 = 0). Further, we derive the limiting
distribution of (ĉ∗n, η̂

∗
n) under the triangular array setup.

Additional Notations. For two sequences of random variables {An : n ∈ N}
and {Bn : n ∈ N}, we write An = Opr(Bn) (resp. An = opr(Bn)) if An/Bn is
bounded (resp. converges to zero) in probability. If {An} and {Bn} are in fact
deterministic, we omit the subscript pr.

Let f, F be two real-valued functions on S, and F a collection of functions on
S. F is said to be an envelope function for F if |g(s)| ≤ F (s) for all g ∈ F , s ∈ S.
Further, define F − f := {g − f : g ∈ F}, and for any δ > 0,

Fδ = {ϕc,η : (c,η) ∈ Kδ}, with Kδ = {(c,η) : c ∈ [�, u], ‖η − η0‖ ≤ δ}. (A.2)
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For a distribution Q on S, define ‖Q‖F = supf∈F |Qf |, and ‖f‖Q,2 = (Q[|f |2])1/2.
Let N(ξ,F , d) denotes the ξ covering number of the set F under the semi-

metric d. Following [42, Page 239], for any ε > 0, define the uniform entropy
J(ε,F , F ) for the class F with an envelope function F as follows

J(ε,F , F ) = sup
Q

∫ ε

0

√
1 + logN(ξ‖F‖Q,2,F , L2(Q))dξ, (A.3)

where the supremum is taken over all discrete probability measures Q with
‖F‖Q,2 > 0.

All random variables Dn,i, i ∈ [mn] are defined on the underlying probabil-
ity space (Ω,G,pr). Since we will work with distributions on the space S, we
introduce the following measurable coordinate mappings on S:

Y(y,w, u, x) = y, W(y,w, u, x) = w, U(y,w, u, x) = u, X (y,w, u, x) = x,

Xc = I(X ≤ c), Zc = (WT , U , Xc)T , Z̃c = (ZT
c , UXc)T ,

which are random variables (vectors) on the space S, and we can use operator
notations such as Q[Xc] for

∫
I(x ≤ c)Q(dx), where Q is a distribution on S.

Let T be an arbitrary index set, and for a function f : T → R, denote its
�∞ norm by ‖f‖∞ = supt∈T |f(t)|. Denote by �∞(T ) the space of uniformly
bounded, real-valued functions on T equipped with �∞ norm. Let Zn = {Zn,t :
t ∈ T}, n ≥ 1 be a sequence of random processes indexed by T , for which
‖Zn‖∞ < ∞ for each n ≥ 1 almost surely, and Z be a tight random element in
�∞(T ). Then as in [41], we say Zn, n ≥ 1 converges weakly to Z, or Zn � Z,
in �∞(T ) if E[g(Zn)] → E[g(Z)], as n → ∞, for any bounded and continuous
function g : �∞(T ) → R. 3

A.1. Assumptions for the triangular array setup

We make the following assumptions for the triangular array setup.

(A.i) For j ∈ {0, 1},

0 < lim inf
n

E[Un,1] ≤ lim sup
n

E[Un,1] < 1,

0 < lim inf
n

pr(Xn,1 ≤ �, Un,1 = j) ≤ lim sup
n

pr(Xn,1 ≤ u, Un,1 = j) < 1,

sup
|c1−c2|≤δn

pr(c1 ∧ c2 < Xn,1 ≤ c1 ∨ c2) → 0 for every δn → 0.

liminf
n

λmin(E[W n,1W
T
n,1 |Un,1 = j,Xn,1 > u]) > 0,

liminf
n

λmin(E[W n,1W
T
n,1 |Un,1 = j,Xn,1 ≤ �]) > 0, sup

n
‖W n,1‖ ≤ Cw.

3The random processes Zn, n ≥ 1, viewed as maps from the underlying probability spaces
to �∞(T ), are usually not Borel measurable, in which case the expectations are with respect
to outer-probabilities. For details and a definitive treatment of functional weak convergence,
we refer readers to [41].
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(A.ii) For any δ > 0, ‖Qn − P‖Fδ
→ 0.

(A.iii) For any δ > 0, (c0,η0) is a well-separated maximizer of Pϕc,η in
Kδ. That is, for any ε > 0, Pϕc,η < Pϕc0,η0 for all (c,η) ∈ Kδ such that
dι((c,η), (c0,η0)) > ε, where ι ∈ {0, 1} needs to be specified.

(A.iv) dι((cn,ηn), (c0,η0)) → 0, where ι ∈ {0, 1} needs to be specified.

If γ0 �= 0, we further need the next three conditions:

(A.v) For some ε ∈ [0, 1/4):

0 < lim inf
n→∞

inf
n−1+2ε≤|c−cn|<1

{
1

|c− cn|
Qn[I(c ∧ cn < X ≤ c ∨ cn)]

}
≤ lim sup

n→∞
sup

n−1+2ε≤|c−cn|<1

{
1

|c− cn|
Qn[I(c ∧ cn < X ≤ c ∨ cn)]

}
< ∞.

(A.vi) For any δ ∈ [0, 1/4):
√
mnQn[I(cn −m−1+2δ

n < X < cn + m−1+2δ
n )] → 0.

(A.vii) For any (c1,η1), (c2,η2) ∈ [�, u] × Rd+2, Qn[(Y − φ′(ηT
1 Zc1))(Y −

φ′(ηT
2 Zc2))Z̃c1Z̃

T

c2 ] converges as n → ∞. Further,

lim
n→∞

Qn[φ′′(ηT
nZcn)Z̃cnZ̃

T

cn ] = P [φ′′(ηT
0 Zc0)Z̃c0Z̃

T

c0 ].

If γ0 = 0, we need the following two conditions:

(A.viii) For some constant B1, limn→∞
√
mnγn = B1. Further, if B1 �= 0,

assume that limn→∞ cn = B2 for some B2 ∈ [�, u].

(A.ix) Uniformly over (c1, c2, c3) ∈ [�, u]3,

lim
n→∞

Qn[φ′′(ηT
nZc3)Z̃c1Z̃

T

c2 ] = P [φ′′(ηT
0 Zc3)Z̃c1Z̃

T

c2 ].

A.2. Consistency under triangular array setup

Theorem A.1. Let ι ∈ {0, 1}. Assume that (A.i)-(A.iii) with ι hold, and that
supn ‖ηn‖ < ∞. Then dι((ĉ∗n, η̂

∗
n), (c0,η0)) → 0 in probability.

Proof. From Lemma A.2, (ĉ∗n, η̂
∗
n) is uniformly tight. Besides, for any δ > 0,

(c0,η0) is a well-separated maximizer of Pϕc,η in Kδ from condition (A.iii).
Therefore by [42, Corollary 3.2.3 (ii)], it suffices to show that ‖Q∗

n − P‖Fδ
→ 0

in probability for any δ > 0. Note the following decomposition

‖Q∗
n − P‖Fδ

≤ ‖Q∗
n −Qn‖Fδ

+ ‖Qn − P‖Fδ
,
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where the second term converges to zero by condition (A.ii). For the first term,
by [42, Theorem 2.14.1], there exists an absolute constant C > 0, such that

E‖Q∗
n −Qn‖Fδ

≤ CJ(1,Fδ, Fδ)√
mn

√
Qn[F 2

δ ],

where Fδ(Y ,W ,U ,Xc) = C1,δ|Y|+C2,δ is defined before Lemma A.1. By Lemma
A.1, J(1,Fδ, Fδ) < ∞. Further, since supn ‖ηn‖ < ∞ and ‖Zc‖ ≤ 2 + Cw for
any c ∈ [�, u], we have

sup
n

Qn[Y2] = sup
n

(
φ′′(ηT

nZcn) + (φ′(ηT
nZcn))2

)
< ∞, (A.4)

which implies supn

√
Qn[F 2

δ ] < ∞. As a result, ‖Q∗
n−Qn‖Fδ

→ 0 in probability.
Then due to [42, Corollay 3.2.3 (ii)], we obtain that dι((ĉ∗n, η̂

∗
n), (c0,η0)) → 0 in

probability.

Recall the function class Fδ and the set Kδ defined in (A.2), and Cw in
condition (A.i). For any δ > 0, define

C1,δ = ‖α0‖Cw + |β0| + |γ0| + (2 + Cw)δ, C2,δ = sup
|t|≤C1,δ

(|φ(t)| + |φ′(t)|) .

Since φ is infinitely differentiable on R, for any δ > 0, we have C2,δ < ∞ and

Fδ(Y ,W ,U ,Xc) = C1,δ|Y| + C2,δ,

is an envelope function for Fδ.

Lemma A.1. Under (A.i), J(1,Fδ, Fδ) < ∞ for any δ > 0.

Proof. For any δ > 0, define a function class F1,δ on S as follows:

F1,δ = {S � (y,w, u, x) → αTw + βu + γI(x ≤ c) : (c,η) ∈ Kδ}.

From [11, Definition 2.1], F1,δ is a VC-type class with the constant envelope
function C1,δ. Further, the class {Y} is a single function, and thus is a VC type
class with the envelope function |Y|.

Now define g : R2 → R by g(a1, a2) = a1a2 − φ(a1). Then we have

Fδ ⊂ g(F1,δ, {Y}) := {f1,δY − φ(f1,δ) : f1,δ ∈ F1,δ}.

Observe that for any f1,δ, f
′
1,δ ∈ F1,δ,∣∣g ◦ (f1,δ,Y)(y,w, u, x) − g ◦ (f ′

1,δ,Y)(y,w, u, x)
∣∣

≤ (|y| + C2,δ)|f1,δ(y,w, u, x) − f ′
1,δ(y,w, u, x)|.

By [11, Lemma A.6], Fδ is of VC type with the envelope function Fδ, which
completes the proof due to the calculation in the proof of [11, Corollary 5.1].

Lemma A.2. Assume that (A.i) holds, and supn ‖ηn‖ < ∞. Then (ĉ∗n, η̂
∗
n) =

Opr(1).
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Proof. The tightness of ĉ∗n holds since it is restricted in [�, u], and in what follows
we focus on η̂∗

n. Since (ĉ∗n, η̂
∗
n) maximizes Q∗

nϕc,η, we have that Q∗
n[ϕĉ∗n,η̂

∗
n
−

ϕcn,ηn
] ≥ 0, or equivalently

Q∗
n[Y((η̂∗

n)TZ ĉ∗n − ηT
nZcn) − (φ((η̂∗

n)TZ ĉ∗n) − φ(ηT
nZcn))] ≥ 0.

Therefore we have IIn ≤ |I(1)
n | + |II(2)

n |, where

I(1)
n = (η̂∗

n)TQ∗
n[(Y − φ′(ηT

nZcn))Z ĉ∗n ], I(2)
n = ηT

nQ
∗
n[(Y − φ′(ηT

nZcn))Zcn ]
IIn = Q∗

n[φ((η̂∗
n)TZ ĉ∗n) − φ(ηT

nZcn) − φ′(ηT
nZcn)((η̂∗

n)TZ ĉ∗n − ηT
nZcn)].

By Lemma A.3 (below) and since supn ‖ηn‖ < ∞, we have

|I(1)
n | + |I(2)

n | = (1 + ‖η̂∗
n‖)opr(1). (A.5)

Next we consider the term IIn. Since φ is convex,

φ̂n := φ((η̂∗
n)TZ ĉ∗n) − φ(ηT

nZcn) − φ′(ηT
nZcn)((η̂∗

n)TZ ĉ∗n − ηT
nZcn) ≥ 0.

which implies that

IIn ≥ II(1)
n + II(2)

n + II(3)
n , where II(1)

n = Q∗
n[φ̂nI(U = 0,X ≤ �)],

II(2)
n = Q∗

n[φ̂nI(U = 1,X ≤ �)], II(3)
n = Q∗

n[φ̂nI(U = 0,X ≥ u)].

Let C0, C1 be the constants in Lemma A.5 (below). Define an event in the
observation space S:

A =
{∣∣∣∣ (α̂∗

n −αn)T

‖α̂∗
n −αn‖

W
∣∣∣∣ ≥ C−1

0 , ‖α̂∗
n −αn‖ ≥ 1, U = 0, X ≤ �

}
.

If A occurs, then Xc = 0 for c ∈ [�, u], and thus

φ̂n ≥ κ(K,C−1
0 )

∣∣(α̂∗
n −αn)TW

∣∣ ≥ κ(K,C−1
0 )C−1

0 ‖α̂∗
n −αn‖,

where K = Cw supn ‖ηn‖ < ∞, and κ(K,C−1
0 ) > 0 is defined in Lemma A.4

(below). Thus there exists some positive constant C such that

CII(1)
n = CQ∗

n[φ̂n(U = 0,X ≤ �)]

≥‖α̂∗
n −αn‖I(‖α̂∗

n −αn‖≥1)Q∗
n

[
I

(∣∣∣∣ (α̂∗
n −αn)T

‖α̂∗
n −αn‖

W
∣∣∣∣≥C−1

0 , U = 0, X ≤ �

)]
≥‖α̂∗

n −αn‖I(‖α̂∗
n −αn‖≥1) inf

θ∈Sd−1
Q∗

n[I(|θTW|≥C−1
0 ,U = 0,X ≤ �)]

≥‖α̂∗
n −αn‖I(‖α̂∗

n −αn‖≥1)(C−1
1 + opr(1)),

where the last inequality is due to Lemma A.5.
Further, if ‖α̂∗

n −αn‖Cw ≤ 2−1|β̂∗
n − βn|, U = 1, X ≤ �, then

|(η̂∗
n)TZ ĉ∗n − ηT

nZcn | ≥ |β̂∗
n − βn| − ‖α̂∗

n −αn‖Cw ≥ 2−1|β̂∗
n − βn|.
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If ‖α̂∗
n −αn‖Cw ≤ 2−1|γ̂∗

n − γn|, U = 0, X ≥ u, then

|(η̂∗
n)TZ ĉ∗n − ηT

nZcn | ≥ |γ̂∗
n − γn| − ‖α̂∗

n −αn‖Cw ≥ 2−1|γ̂∗
n − γn|.

Then by a similar argument as for II
(1)
n , there exist positive constants C2

and C3 such that

II(2)
n ≥ (C−1

2 + opr(1))|β̂∗
n − βn|I(|β̂∗

n − βn| ≥ max{2‖α̂∗
n −αn‖Cw, 2}),

II(3)
n ≥ (C−1

3 + opr(1))|γ̂∗
n − γn|I(|γ̂∗

n − γn| ≥ max{2‖α̂∗
n −αn‖Cw, 2}).

Combining the above three cases, and due to (A.5), we have that there exists
a positive constant C4 such that

(C−1
4 + opr(1))‖η̂∗

n − ηn‖I(‖η̂∗
n − ηn‖ ≥ 8Cw + 6) ≤ IIn ≤ (1 + ‖η̂∗

n‖)opr(1).

This completes the proof for ‖η̂∗
n − ηn‖ = Opr(1), since supn ‖ηn‖ < ∞.

Lemma A.3. Assume that (A.i) holds, and that supn ‖ηn‖ < ∞. Then

sup
c∈[�,u]

‖Q∗
n[(Y − φ′(ηT

nZcn))Zc]‖ = opr(1).

Proof. Let δ := supn ‖ηn‖ < ∞, and define

F2,δ = {S � (y,w, u, x) �→ (y − φ′(ηTzc1))zc2 : (c1, c2) ∈ [�, u]2, ‖η‖ ≤ δ}.

By a similar argument as in Lemma A.1, there exists a constant C, that de-
pends on δ, such that F2,δ = C(|Y| + 1) is an envelope function for F2,δ, and
that J(1,F2,δ, F2,δ) < ∞. Then due to [42, Theorem 2.14.1], for some absolute
constant C ′,

E
[

sup
c∈[�,u]

‖Q∗
n[(Y − φ′(ηT

nZcn))Zc]‖
]

=E
[

sup
c∈[�,u]

‖(Q∗
n −Qn)[(Y − φ′(ηT

nZcn))Zc]‖
]

≤ E‖Q∗
n −Qn‖F2,δ ≤ sup

n

C ′J(1,F2,δ, F2,δ)√
mn

√
QnF 2

2,δ.

Then the proof is complete due to (A.4) and condition (A.i).

Lemma A.4. For any K > 0 and δ > 0,

κ(K, δ) := inf
|y−x|≥δ,|x|≤K

∣∣∣∣φ(y) − φ(x)
y − x

− φ′(x)
∣∣∣∣ > 0.

Proof. Since φ is convex and infinitely differentiable on R, for any y ≥ x + δ,
we have

φ(y) − φ(x)
y − x

− φ′(x) ≥ φ(x + δ) − φ(x)
δ

− φ′(x) = 1
2δφ

′′(x + tδ),
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for some t ∈ (0, 1) by the mean value theorem, and thus

inf
y≥x+δ,|x|<K

φ(y) − φ(x)
y − x

− φ′(x) ≥ 1
2δ inf

|x|≤K+δ
φ′′(x) > 0,

where the last inequality is because φ′′ is continuous and φ′′(t) > 0 for any
t ∈ R. The case where y ≤ x− δ is similar and omitted.

Denote by Sd−1 the unit sphere in Rd, i.e. Sd−1 = {s ∈ Rd : ‖s‖ = 1}.

Lemma A.5. Assume (A.i) holds. Then there exist positive constants C0, C1
such that

inf
θ∈Sd−1

Q∗
n[I(|θTW | ≥ C−1

0 ,U = 0,X ≤ �)] ≥ C−1
1 + opr(1).

Proof. By a similar argument as in Lemma A.3,

sup
θ∈Sd−1

∣∣∣(Q∗
n −Qn)[I(|θTW| ≥ C−1

0 ,U = 0,X ≤ �)]
∣∣∣ = opr(1).

Then, due to (A.i), it suffices to show that for some constant C0,

lim inf
n

inf
θ∈Sd−1

pr(|θTW n,1| ≥ C−1
0 |Un,1 = 0, Xn,1 ≤ �) > 0.

Let λn = λmin(E[W n,1W
T
n,1 |Un,1 = 0, Xn,1 ≤ �]). For any θ ∈ Sd−1,

λn ≤ E[|θTW n,1|2 |Un,1 = 0, Xn,1 ≤ �]

= E[|θTW n,1|2I(|θTW n,1| ≤
√
λn/2) |Un,1 = 0, Xn,1 ≤ �]

+ E[|θTW n,1|2I(|θTW n,1| >
√

λn/2) |Un,1 = 0, Xn,1 ≤ �]

≤ λn

2 + C2
wpr(|θTW n,1| ≥

√
λn/2 |Un,1 = 0, Xn,1 ≤ �),

which implies that

inf
θ∈Sd−1

pr(|θTW n,1| ≥
√
λn/2 |Un,1 = 0, Xn,1 ≤ �) ≥ λn

2C2
w

.

Then the proof is complete since lim infn λn > 0 due to (A.i).

A.3. The identifiable case

For the lemmas and theorems in this subsection we assume conditions (A.i)-(A.v)

hold with ι = 0.
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A.3.1. Convergence rates in the identifiable case

Theorem A.2. Consider the identifiable case under the null, i.e. γ0 �= 0 and
λ0 = 0. Let (A.i)-(A.v) hold. Then m

1/2−ε
n d0((ĉ∗n, η̂

∗
n), (cn,ηn)) = Opr(1),

where ε appears in condition (A.v).

Proof. From conditions (A.i)-(A.iv) with ι = 0 and Theorem A.1, we have that
d0((ĉ∗n, η̂

∗
n), (cn,ηn)) → 0 in probability. Then by [42, Theorem 3.4.1], it suffices

to verify the following two conditions for some positive constant C and large
enough n:

sup
δ/2≤d0((c,η),(cn,ηn))≤δ

Qn[ϕc,η − ϕcn,ηn
] ≤ −C−1δ2, (A.6)

E sup
δ/2≤d0((c,η),(cn,ηn))≤δ

√
mn|(Q∗

n −Qn)ϕc,η − (Q∗
n −Qn)ϕcn,ηn

| ≤ Cδ, (A.7)

for any 4m−1/2+ε
n ≤ δ ≤ δu, where ε appears in condition (A.v), and δu is a

constant that will be specified. Note that in the proof the value of the constant
C may vary from line to line.

Next we verify (A.6) and (A.7) for any fixed δ which satisfies 4m−1/2+ε
n ≤

δ ≤ δu. We focus on the case c < cn, and the case c > cn can be verified similarly.

Due to conditions (A.i) and (A.v), and since φ is infinitely differentiable on
R and φ′′ is a positive function on R, there exists some constant C > 0 such
that for large enough n, i ∈ {0, 1}, ‖η − ηn‖ ≤ δ, and c ∈ [�, u], we have

(|φ′| + |φ′′| + |φ′′′|)(ηTZc) ≤ C, φ′′(ηTZc) ≥ C−1, (A.8)

C−1 ≤ Qn[I(c ∧ cn < X ≤ c ∨ cn)]
|c− cn|

≤ C, if m−1+2ε
n ≤ |c− cn| < 1

λmin(Qn[WWT |U = i,X ≤ �]) > C−1, Qn[I(U = i,X ≤ �)] > C−1,

λmin(Qn[WWT |U = i,X > u]) > C−1, Qn[I(U = i,X > u)] > C−1.

Also, note that due to (A.1)

E[Yn,1 | W n,1, Un,1, Xn,1] = φ′(ηT
nZ1,cn).

Verifying (A.6). Fix some (c,η) such that δ/2 ≤ d0((c,η), (cn,ηn)) ≤ δ. From
(A.8), and by the mean value theorem, there exists a constant C0 such that

Qn[ϕc,η − ϕcn,ηn
] = Qn[ϕc,ηn

− ϕcn,ηn
+ ϕc,η − ϕc,ηn

]
≤Qn[ϕc,ηn

− ϕcn,ηn
] − 2−1Qn[φ′′(ηT

nZc)(η − ηn)TZcZT
c (η − ηn)]

+ Qn[(φ′(ηT
nZcn) − φ′(ηT

nZc))(η − ηn)TZc] + C0δ
3

=D1 + D2 + D3 + C0δ
3, (A.9)

where D1, D2 and D3 will be upper bounded separately as follows.
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Upper bounding D1. Due to (A.8), from the mean value theorem, D1 can be
upper bounded by

D1 = Qn[ϕc,ηn
− ϕcn,ηn

]
= −Qn

[(
γnY −

(
φ(αT

nW + βnU + γn) − φ(αT
nW + βnU)

))
I(c < X ≤ cn)

]
= −Qn

[(
γnφ

′(αT
nW + βnU + γn) −

(
φ(αT

nW + βnU + γn)
− φ(αT

nW + βnU)
))

I(c < X ≤ cn)
]

= −Qn

[
2−1γ2

nφ
′′(αT

nW + βnU + γ̃)I(c < X ≤ cn)
]

≤− C−1γ2
nQn [I(c < X ≤ cn)] ,

where γ̃ is between γn and 0.
By (A.8), Qn[I(c < X ≤ cn)] ≥ C−1|c−cn|, for any c ∈ [�, u], if 1 > |c−cn| ≥

m−1+2ε
n ≥ n−1+2ε. By condition (A.iv), γn → γ0 �= 0. Therefore there exists a

constant C1 > 0 such that for large enough n,

D1 = Qn[ϕc,ηn
− ϕcn,ηn

] ≤ −C−1
1 |c− cn|, if |cn − c| ≥ m−1+2ε

n .

Upper bounding D2. For D2 in (A.9), note that,

D̃2 =Qn[(η − ηn)TZcZT
c (η − ηn)]

=Qn[(α−αn)TW + (β − βn)U + (γ − γn)Xc]2

≥Qn

[
I(U = 0,Xu = 0)((α−αn)TW)2

]
+ Qn

[
I(U = 1,Xu = 0)((α−αn)TW + (β − βn))2

]
+ Qn

[
I(U = 0,X� = 1)((α−αn)TW + (γ − γn))2

]
=Qn[I(U = 0,Xu = 0)]Qn[((α−αn)TW)2|U = 0,Xu = 0]

+ Qn[I(U = 1,Xu = 0)]Qn[((α−αn)TW + (β − βn))2|U = 1,Xu = 0]
+ Qn[I(U = 0,X� = 1)]Qn[((α−αn)TW + (γ − γn))2|U = 0,X� = 1].

If ‖η − ηn‖ > δ/4, then one of the following cases holds: (i) ‖α − αn‖ ≥
min{δ/12, δ/(17Cw)}, (ii) ‖α − αn‖ < δ/(17Cw) and ‖β − βn‖ ≥ δ/12, (iii)
‖α − αn‖ < δ/(17Cw) and ‖γ − γn‖ ≥ δ/12. As 2a2 + 2(a + b)2 ≥ b2 for any
reals a, b, due to (A.8), we have

D̃2 ≥ C−1‖α−αn‖2, if case (i) ,

D̃2 ≥ C−1|β − βn|2, if case (ii),
D̃2 ≥ C−1|γ − γn|2, if case (iii).

Due to (A.8), there exists a constant C2 > 0 such that

D2 ≤ −C−1
2 ‖η − ηn‖2 = −C−1

2 δ2, if ‖η − ηn‖ > δ/4.

Upper bounding D3. The last term D3 in (A.9), as φ′′(·) is upper bounded from
(A.8), by the mean value theorem, can be upper bounded by

D3 =Qn

[
((η − ηn)TZc)(φ′(ηT

nZcn) − φ′(ηT
nZc))

]
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=Qn

[
((α−αn)TW + (β − βn)U)

(
γnφ

′′(αT
nW + βnU + γ̃)

)
I(c < X ≤ cn)

]
≤C|γn|‖η − ηn‖Qn[I(c < X ≤ cn)],

where γ̃ is between 0 and γn. By condition (A.iv), γn → γ0 �= 0, and ‖η−ηn‖ ≤
δ, |c − cn| ≤ δ2, then from (A.8), there exists a constant C3 > 0 such that for
large enough n,

D3 ≤ C|γn||c− cn|‖η − ηn‖ ≤ C3δ
3.

Since d0((c,η), (cn,ηn)) > δ/2, either ‖η − ηn‖2 > δ2/16 or |c − cn| >
δ2/16 ≥ m−1+2ε

n , therefore D1 + D2 ≤ −C−1
4 δ2. Further, there exists a small

enough δu > 0 such that −C−1
4 δ2 +C3δ

3 +C0δ
3 ≤ −C−1δ2 for all δ ≤ δu. Thus,

for any 4m−1/2+ε
n ≤ δ ≤ δu,

sup
δ/2≤d0((c,η),(cn,ηn))≤δ

Qn[ϕc,η − ϕcn,ηn
] ≤ −C−1δ2.

Verifying (A.7). We next verify (A.7) using [42, Theorem 2.14.1]. Consider the
function class

Fn,δ =
{
ϕc,η − ϕcn,ηn

: d0((c,η), (cn,ηn) ≤ δ
}
.

For any (c,η) satisfying d0((c,η), (cn,ηn)) ≤ δ and 4m−1/2+ε
n ≤ δ ≤ δu, due to

(A.8), by the mean value theorem, |ϕc,η − ϕcn,ηn
| can be upper bounded by

|y(ηTzc − ηT
nzcn)| + |φ(ηTzc) − φ(ηT

nzc)| + |φ(ηT
nzc) − φ(ηT

nzcn)|
=
∣∣((α−αn)Tw + (β − βn)u + (γ − γn)I(x ≤ c) − γnI(c < x ≤ cn))y

∣∣
+
∣∣((α−αn)Tw + (β − βn)u + (γ − γn)I(x ≤ c)

)
φ′(a)

∣∣
+
∣∣(φ(αT

nw + βnu + γn) − φ(αT
nw + βnu)

)
I(c < x ≤ cn)

∣∣
≤|y|(‖α−αn‖Cw + |β − βn| + |γ − γn| + |γn|I(c < x < cn))
+C(‖α−αn‖Cw + |β − βn| + |γ − γn| + |γn|I(c < x ≤ cn))
≤C(|y| + 1)(δ + |γn|I(cn − δ2 < x < cn)) := Fn,δ, (A.10)

where a is between ηTzc and ηT
nzc. From (A.8) and conditions (A.i), (A.iv)

and (A.v), we have supn(Qn[F 2
n,δ])1/2 ≤ Cδ.

Similar to Lemma A.1, supn J(1,Fn,δ, Fn,δ) ≤ C < ∞ with the envelope
function Fn,δ. Then, from [42, Theorem 2.14.1] and (A.4), for 4m−1/2+ε

n ≤ δ ≤
δu, we have

E sup
δ/2≤d0((c,η),(cn,ηn))≤δ

√
mn

∣∣(Q∗
nϕc,η −Qnϕc,η) − (Q∗

nϕcn,ηn
−Qnϕcn,ηn

)
∣∣

≤ sup
n

J(1,Fn,δ, Fn,δ)
√

sup
n

QnF 2
n,δ ≤ Cδ.
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A.3.2. Limiting distributions in the identifiable case

Next we derive the asymptotic distributions of the score test statistic and the
MLE under the triangular array setup.

Let p = E[U ] and recall F0(·), F1(·) in condition (C.i), and V (1)
c,η,V

(2)
c,η, V

(3)
c,η ,

σ2
c,η defined in (2.5). Recall from the Section 2.1 that Zη is a random vector

of length (d + 2) that has the multivariate normal distribution with zero mean
and covariance matrix (V (1)

c0,η0
)−1, ZS is a random variable that has the normal

distribution with zero mean and variance σ2
c0,η0

, and Zη and ZS are independent.
Let gc,η(y,w, x, u) := (y − φ′(ηTzc))z̃c = (g(1)

c,η, g
(2)
c,η), where

g(1)
c,η(y,w, x, u) := (y − φ′(ηTzc))zc,

g(2)
c,η(y,w, x, u) := (y − φ′(ηTzc))uxc.

(A.11)

Denote G∗
n := √

mn(Q∗
n −Qn).

Theorem A.3. Consider the identifiable case under the null, i.e. γ0 �= 0 and
λ0 = 0. If (C.i) and (A.i)-(A.vii) hold, then (√mn(η̂∗

n−ηn), S∗
n) � (Zη,ZS).

Proof. By condition (A.vii), we have V (i)
n → V (i)

c0,η0
for i = 1, 2, 3, where

V (1)
n := Qn[φ′′(ηT

nZcn)ZcnZT
cn ], V (2)

n := Qn[φ′′(ηT
nZcn)XcnUZT

cn ]
V (3)
n := Qn[φ′′(ηT

nZcn)XcnU ].

First we derive an asymptotic linear expansion of √
mn(η̂∗

n − ηn). Since
(ĉ∗n, η̂

∗
n) is the maximum likelihood estimator, we have

0 = 1√
mn

mn∑
i=1

Zn,i,ĉ∗n(Yn,i − φ′(ZT
n,i,ĉ∗n

η̂∗
n)) = G∗

ng
(1)
ĉ∗n,η̂

∗
n

+
√
mnQng

(1)
ĉ∗n,η̂

∗
n
.

By Lemma A.6 (ahead), G∗
ng

(1)
ĉ∗n,η̂

∗
n

= G∗
ng

(1)
cn,ηn

+ opr(1). Further,

√
mnQng

(1)
ĉ∗n,η̂

∗
n

=
√
mnQng

(1)
cn,η̂∗

n
+
√
mnQn[g(1)

ĉ∗n,η̂
∗
n
− g

(1)
cn,η̂∗

n
]

=(1)
√
mnQng

(1)
cn,η̂∗

n
+ opr(1),

=(2) −V (1)
n

√
mn(η̂∗

n − ηn) + opr(1),

where (1) holds by Lemma A.7 (ahead) and (2) is due to the Taylor Theorem
and that ‖η̂∗

n − ηn‖2 = opr(n−1/2) by Theorem A.2 (note that ε < 1/4 in
condition (A.v)). From condition (C.i), V (1)

c0,η0
is invertible, and thus we have

√
mn(η̂∗

n − ηn) = (V (1)
n )−1G∗

ng
(1)
cn,ηn

+ opr(1). (A.12)

Now consider the score test statistic. By similar arguments and by the mean
value form of the Taylor Theorem, Lemma A.7 and (A.12), we have

S∗
n = G∗

ng
(2)
ĉ∗n,η̂

∗
n

+
√
mnQng

(2)
ĉ∗n,η̂

∗
n

= G∗
ng

(2)
cn,ηn

+
√
mnQng

(2)
ĉ∗n,η̂

∗
n

+ opr(1)
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= G∗
ng

(2)
cn,ηn

+
√
mnQng

(2)
cn,η̂∗

n
+

√
mnQn[g(2)

ĉ∗n,η̂
∗
n
− g

(2)
cn,η̂∗

n
] + opr(1)

= G∗
ng

(2)
cn,ηn

− V (2)
n

√
mn(η̂∗

n − ηn) + opr(1)

= G∗
ng

(2)
cn,ηn

− V (2)
n (V (1)

n )−1G∗
ng

(1)
cn,ηn

+ opr(1)

Thus, we have (√mn(η̂∗
n − ηn), S∗

n) = G∗
n [ĝn] + opr(1), where

ĝn =
(
(V (1)

n )−1g(1)
cn,ηn

, g(2)
cn,ηn

− V (2)
n (V (1)

n )−1g(1)
cn,ηn

)
.

Finally, note that

Qn[ĝnĝ
T
n ] =

[
(V (1)

n )−1 0
0 V

(3)
n − V (2)

n (V (1)
n )−1(V (2)

n )T

]
→
[
(V (1)

c0,η0
)−1 0

0 σ2
c0,η0

]
.

Then the proof is complete by the Lindeberg-Feller central limit theorem.

Lemma A.6. Consider the identifiable case under the null, i.e. γ0 �= 0 and
λ0 = 0. Under conditions (A.i)- (A.vii),

∥∥∥G∗
n[gĉ∗n,η̂

∗
n
− gcn,ηn

]
∥∥∥ = opr(1).

Proof. Fix some δ > 0. Due to Theorem A.2 and the asymptotically uniformly
equicontinuity property [42, Page 37], it suffices to show that there exists a tight,
uniformly d0-continuous, Gaussian process G such that {G∗

ngc,η : (c,η) ∈ Kδ}
converges weakly to G in (�∞(Kδ))d+3. In turn, by [42, Theorem 2.11.1], it
suffices to show the following conditions hold:

1. There exists an envelope function Gδ on S such that for any (c,η) ∈ Kδ,
Gδ(y,w, u, x) ≥ |y − φ′(ηTzc)|‖zc‖, and

Qn[G2
δ{Gδ > ε

√
mn}] → 0, for every ε > 0;

2. For every positive sequence εn → 0,

sup
d0((c1,η1),(c2,η2))≤εn

Qn‖gc1,η1
− gc2,η2

‖2 → 0;

3. For every positive sequence εn → 0 and j ∈ [d + 3],∫ εn

0

√
logN(ξ,Kδ, d

(j)
n ) → 0, in probability,

where d
(j)
n ((c1,η1), (c2,η2)) = ‖g(j)

c1,η1 − g
(j)
c2,η2‖Q∗

n,2, and g
(j)
c,η is the j-th

element in gc,η.
4. For any (c1,η1), (c2,η2) ∈ Kδ, cov(G∗

ngc1,η1
,G∗

ngc2,η2
) converges.

Verify condition 1. Since W,U ,Xc are bounded, (cn,ηn) → (c0,η0) by con-
dition (A.iv), and φ(·) is infinitely differentiable in R, there exists a posi-
tive constant C ≥ 1 such that Gδ = C(|Y| + 1) is an envelope function for
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{gc,η : (c,η) ∈ Kδ}. Since the distribution of Yn,1 belongs to the exponential
family (A.1), and ηn → η0, for every ε > 0,

Qn

[
G2

δ{Gδ > ε
√
mn}

]
≤ 1

ε
√
mn

Qn

[
G3

δ

]
→ 0.

Verify condition 2. Note that

‖Z̃c1 − Z̃c2‖2 = |Xc1 −Xc2 |2 + |Xc1 −Xc2 |2U2 ≤ 2|Xc1 −Xc2 |2.

Further, since φ is smooth on R and ‖Zc‖ ≤ Cw+2, by the mean value theorem,
there exists a positive constant C such that for any ((c1,η1), (c2,η2)) ∈ K2

δ ,

‖φ′(ηT
1 Zc1) − φ′(ηT

2 Zc2)‖ ≤ C
(
‖X̃c1 − X̃c2‖ + ‖η1 − η2‖

)
,

and, as a result,

‖gc1,η1
− gc2,η2

‖ ≤ C (|Y||Xc1 −Xc2 | + ‖η1 − η2‖) .

Then by a similar argument to (A.4), and due to conditions (A.v) and (A.vi),
for every εn → 0, we have

sup
d0((c1,η1),(c2,η2))≤εn

Qn‖gc1,η1
− gc2,η2

‖2 → 0.

Verify condition 3. We will show condition 3 for j = d + 2; the other cases
can be shown similarly and omitted here. Let F3,δ = {S � (y,w, u, x) → (y −
φ′(ηTzc))xc : (c,η) ∈ Kδ}. Similar to Lemma A.1, there exists a positive
constant C such that for each n and ε > 0,

sup
Q

logN(ε‖Gδ‖Q,2,F3,δ, L2(Q)) ≤ C

(
1 + log

(
1
ε

))
,

where Q is any discrete measure on S, which indicates J(εn,F3,δ, Gδ) → 0 for
any εn → 0.

Further, since E[‖Gδ‖Q∗
n,2] = ‖Gδ‖Qn,2, due to the definition of Gδ and (A.4),

we have that 1 ≤ ‖Gδ‖Q∗
n,2 = Opr(1). Then, for any εn → 0,∫ εn

0
N(ξ,Kδ, d

(j)
n )dξ =

∫ εn

0

√
logN(ξ,F3,δ, L2(Q∗

n))dξ

=‖Gδ‖Q∗
n,2

∫ εn/‖Gδ‖Q∗
n,2

0

√
logN(ξ‖Gδ‖Q∗

n,2,F3,δ, L2(Q∗
n))dξ

≤‖Gδ‖Q∗
n,2J(εn/‖Gδ‖Q∗

n,2,F3,δ, Gδ) = opr(1).

Verify condition 4. Note that for any (c1,η1), (c2,η2) ∈ Kδ,

cov(G∗
ngc1,η1

,G∗
ngc2,η2

) = Qn[(Y − φ′(ηT
1 Zc1))(Y − φ′(ηT

2 Zc2))Z̃c1Z̃
T

c2 ].

Then condition 4 is verified due to (A.vii).
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Lemma A.7. Consider the identifiable case under the null, i.e. γ0 �= 0 and
λ0 = 0. Assume (A.i)- (A.vi) hold. Then √

mnQn[gĉ∗n,η̂
∗
n
− gcn,η̂∗

n
] = opr(1).

Proof. Due to Theorem A.1 and by the mean value theorem, we have
√
mnQn[gĉ∗n,η̂

∗
n
− gcn,η̂∗

n
] = I(‖η̂∗

n − η0‖ ≤ 1)
√
mnQn[gĉ∗n,η̂

∗
n
− gcn,η̂∗

n
] + opr(1)

= I(‖η̂∗
n − η0‖ ≤ 1)

√
mnQn[(φ′(ηT

nZcn) − φ′((η̂∗
n)TZ ĉ∗n))(Z̃ ĉ∗n − Z̃cn)]

− I(‖η̂∗
n − η0‖ ≤ 1)

√
mnQn[(φ′((η̂∗

n)TZ ĉ∗n) − φ′((η̂∗
n)TZcn)Z̃cn ] + opr(1)

= I(‖η̂∗
n − η0‖ ≤ 1)

√
mnQn[(φ′(ηT

nZcn) − φ′((η̂∗
n)TZ ĉ∗n))(Z̃ ĉ∗n − Z̃cn)]

− I(‖η̂∗
n − η0‖ ≤ 1)

√
mnQn[φ′′(a)((η∗

n)T (Z ĉ∗n −Zcn))Z̃cn ] + opr(1),

where a is between (η̂∗
n)TZ ĉ∗n and (η̂∗

n)TZc∗n . Now each function inside [·] is
zero unless Xcn �= Xc∗n . Since φ is smooth, and supc∈[�,u] ‖Z̃c‖ and supn ‖ηn‖
are both fine, there exists a positive constant C such that∣∣∣√mnQn[gĉ∗n,η̂

∗
n
− gcn,η̂∗

n
]
∣∣∣ ≤ C

√
mnQn[I(ĉ∗n ∧ cn < X ≤ ĉ∗n ∨ cn)] + opr(1).

Let δ ∈ (ε, 1/4), where ε < 1/4 appears in condition (A.v). Then
√
mnQn[I(ĉ∗n ∧ cn < X ≤ ĉ∗n ∨ cn)]

=I(|ĉ∗n − cn| ≤ m−1+2δ
n )

√
mnQn[I(ĉ∗n ∧ cn < X ≤ ĉ∗n ∨ cn)]

+I(|ĉ∗n − cn| > m−1+2δ
n )

√
mnQn[I(ĉ∗n ∧ cn < X ≤ ĉ∗n ∨ cn)]

=opr(1),

where, in the second to the last equality, the first term is o(1) by condition
(A.vi), and the second term is opr(1) since m1−2ε

n |ĉ∗n − cn| = Opr(1) due to
Theorem A.2. Then the proof is complete.

A.4. The non-identifiable case

For the lemmas and theorems in this subsection we assume conditions (A.iii)

and (A.iv) hold with ι = 1.

A.4.1. Convergence rates in the non-identifiable case

Theorem A.4. Consider the non-identifiable case under the null, i.e. γ0 =
λ0 = 0. Let (A.i)-(A.iv) and (A.viii) hold. Then √

mnd1((ĉ∗n, η̂
∗
n), (cn,ηn)) =

Opr(1).

Proof. The proof of Theorem A.4 is similar to the proof of Theorem A.2. First
from conditions (A.i)-(A.iv) with ι = 1 and Theorem A.1, d1((ĉ∗n, η̂

∗
n), (cn,ηn))

converges to 0 in probability. Then by [42, Theorem 3.4.1], to achieve the rate√
mn, we need to verify (A.6) and (A.7) with d0 replaced by d1, for any fixed

δ which satisfies κm
−1/2
n ≤ δ ≤ δu, where κ, δu will be specified below. We also
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focus on the case c < cn, and omit the case c > cn.

Verifying (A.6) Fix some (c,η) such that δ/2 ≤ d1((c,η), (cn,ηn)) ≤ δ. The
same decomposition of Qn[ϕc,η−ϕcn,ηn

] continues to hold in the non-identifiable
case:

Qn[ϕc,η − ϕcn,ηn
] ≤ D1 + D2 + D3 + C0δ

3,

where D1, D2, D3 are defined in (A.9). By definition of d1(·, ·), ‖η − ηn‖ ≤ δ.
Further, from the proof of Theorem A.2 and by the Taylor Theorem, for some
constant C > 0 that does not depend on δ, κ, δu, we have

D1 ≤− C−1γ2
nQn [I(c < X ≤ cn)] ≤ 0,

D2 ≤− C−1δ2,

D3 ≤C|γn||c− cn|‖η − ηn‖ ≤ C(u− �)δ2/κ× (
√
mn|γn|).

Recall the limit B1 in condition (A.viii), and let κ = max{3C2(u− �)|B1|, 1}.
Then for large enough n, D3 ≤ (2C)−1δ2, which implies that there exists a small
δu > 0 such that for δ ≤ δu and large enough n,

sup
δ/2≤d1((c,η),(cn,ηn))≤δ

Qn

[
ϕc,η − ϕcn,ηn

]
≤ −(3C)−1δ2.

Verifying (A.7) Define

F̃n,δ =
{
ϕc,η − ϕcn,ηn

: d1((c,η), (cn,ηn) ≤ δ
}
.

From (A.10), there exists a positive constant C such that for any (c,η) satisfying
d1((c,η), (cn,ηn)) ≤ δ, we have

|ϕc,η − ϕcn,ηn
| ≤ F̃n,δ := C(|y| + 1)(δ + |γn|).

As γn = o(δ), by (A.4), there exists some constant C such that (Qn[F̃ 2
n,δ])1/2 ≤

Cδ for large enough n.
Similar to Lemma A.1, supn J(1,Fn,δ, F̃n,δ) < ∞ with the envelope function

F̃n,δ. Then by [42, Theorem 2.14.1], for any δu ≥ δ ≥ m
−1/2
n and large enough

n, we have

E sup
δ/2≤d1((c,η),(cn,ηn))≤δ

√
mn|(Q∗

n −Qn)ϕc,η − (Q∗
n −Qn)ϕcn,ηn

)| ≤ Cδ.

A.4.2. Limiting distributions in non-identifiable case

We recall and introduce a few notations. For any c1, c2 ∈ R, define ρ(c1, c2) =
|c1 − c2|. Recall the definitions of (C,HHH,S) in (2.7), and V (1)

c,η,V
(2)
c,η in (2.5). Let

B1, B2 be the constants appearing in condition (A.viii).
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In Lemma A.10, we show that there exists a zero mean Gaussian process
{((Δ(1)

c )T ,Δ(2)
c ,Δ(3)

c )T : c ∈ [�, u]}, that is tight in (�∞([�, u]))d+4, is uniformly
ρ-continuous, and has the following covariance function: for c1, c2 ∈ [�, u],

Cov

(
((Δ(1)

c1 )T ,Δ(2)
c1 ,Δ(3)

c1 )T , ((Δ(1)
c2 )T ,Δ(2)

c2 ,Δ(3)
c2 )T

)
(A.13)

=P

[
φ′′(ηT

0 Zc0)Z̃c1Z̃
T

c2 φ′′(ηT
0 Zc0)Z̃c1(Xc2 −XB2)

φ′′(ηT
0 Zc0)Z̃

T

c2(Xc1 −XB2) φ′′(ηT
0 Zc0)(Xc1 −XB2)(Xc2 −XB2)

]
.

Note that for each c, Δ(1)
c is a random vector of length d+2 and Δ(2)

c , Δ(3)
c are

real valued random variables. Further, {((Δ(1)
c )T ,Δ(2)

c )T : c ∈ [�, u]} does not
depend on B2, and has the same distribution as the random process appear in
Subsection 2.1.

Further, for each c ∈ [�, u], define

μ(1)
c = P [φ′′(ηT

0 Zc0)UI(B2 < X ≤ c)], μ(2)
c = P [φ′′(ηT

0 Zc0)(Xc −XB2)2],
μ(3)

c = P [φ′′(ηT
0 Zc0)(Xc −XB2)Zc],

and

C̃ = argmax
c∈[�,u]

1
2

(
Δ(1)

c −B1μ
(3)
c

)T
(V (1)

c,η0
)−1

(
Δ(1)

c −B1μ
(3)
c

)
+ B1Δ(3)

c − 1
2B

2
1μ

(2)
c ,

H̃HH = (V (1)
C̃,η0

)−1
(
Δ(1)

C̃
−B1μ

(3)
C̃

)
,

S̃ = Δ(2)
C̃

− V
(2)
C̃,η0

H̃HH−B1μ
(1)
C̃

.

(A.14)

Note that when B1 = 0, the distribution of (C̃, H̃HH, S̃) does not depend on B2,
and is the same as (C,HHH,S) in (2.7).

Further, for any δ > 0 let K̃δ = {(c,h) ∈ [�, u] × Rd+2 : c ∈ [�, u], ‖h‖ ≤ δ}.
For any (c,h) ∈ [�, u] × Rd+2, define the following functions on the observation
space S:

ϕ̃c,h,n :=
√
mn(ϕc,ηn+h/

√
mn

− ϕcn,ηn
),

f (1)
c,n = (Y − φ′(ηT

nZcn))Zc, f (2)
c,n = (Y − φ′(ηT

nZcn))UXc,

f (3)
c,n = φ′′(ηT

nZc)UXcZc, f (4)
c,n = φ′′(ηT

nZcn)UI(cn < X ≤ c),

f (5)
c,n =

(
Y − φ′(ηT

nZcn)
)
(Xc −Xcn) .

(A.15)

Finally, denote G∗
n = √

mn(Q∗
n −Qn).

The following theorem establishes the limiting distribution of the MLE and
the score test statistics under the triangular arrary setup.

Theorem A.5. Consider the non-identifiable case under the null, i.e. γ0 =
λ0 = 0. If (C.i), (A.i)-(A.iv) with τ = 1, (A.viii) and (A.ix) hold, then

(ĉ∗n,
√
mn(η̂∗

n − ηn), S∗
n) � (C̃, H̃HH, S̃).
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Proof. Let ĥ
∗
n = √

mn(η̂∗
n−ηn). By Theorem A.4, ĥ

∗
n is bounded in probability.

Note that by definition,

(ĉ∗n, ĥ
∗
n) = sargmax

(c,h)∈[�,u]×Rd+2
Q∗

n[ϕc,ηn+h/
√
mn

− ϕcn,ηn
]

= sargmax
(c,h)∈[�,u]×Rd+2

G∗
nϕ̃c,h,n +

√
mnQnϕ̃c,h,n.

Further, observe that

S∗
n =

√
mnG

∗
n[(Y − φ′(ηT

nZcn))UXĉ∗n ]
−√

mnQ
∗
n[(φ′((η̂∗

n)TZ ĉ∗n) − φ′(ηT
nZ ĉ∗n))UXĉ∗n ]

+
√
mnQ

∗
n[(φ′(ηT

nZcn) − φ′(ηT
nZ ĉ∗n))UI(cn < X ≤ ĉ∗n)]

=
√
mnG

∗
n[f (2)

ĉ∗n,n
] −Q∗

n[(f (3)
ĉ∗n,n

)T ]ĥ
∗
n − (

√
mnγn)Q∗

n[f (4)
ĉ∗n,n

] + opr(1),

where in the last equality, we applied the Taylor Theorem, and used the fact
that ĥ

∗
n = Opr(1) and √

mnγn → B1 by (A.viii).
By Lemmas A.8, A.10 (both ahead) and the Slutsky’s theorem, for any δ > 0,

in the space of (�∞(K̃δ))d+6, we have for (c,h) ∈ K̃δ,⎡⎢⎢⎢⎢⎢⎣

√
mnQnϕ̃c,h,n

Q∗
n[(f (3)

c,n)T ]
Q∗

n[f (4)
c,n ]

G∗
nϕ̃c,h,n

G∗
nf

(2)
c,n

⎤⎥⎥⎥⎥⎥⎦ �

⎡⎢⎢⎢⎢⎢⎢⎣
−1

2h
TV (1)

c,η0
h− B2

1
2 μ

(2)
c −B1h

Tμ
(3)
c

V (2)
c,η0

μ
(1)
c

hTΔ(1)
c + B1Δ(3)

c

Δ(2)
c

⎤⎥⎥⎥⎥⎥⎥⎦ .

For each c ∈ [�, u], the maximizer and the maximum value of the function
Rd+2 � h �→ hTΔ(1)

c + B1Δ(3)
c − 1

2h
TV (1)

c,η0
h − B2

1
2 μ

(2)
c − B1h

Tμ
(3)
c ∈ R are

respectively:

(V (1)
c,η0

)−1(Δ(1)
c −B1μ

(3)
c ), and

1
2

(
Δ(1)

c −B1μ
(3)
c

)T
(V (1)

c,η0
)−1

(
Δ(1)

c −B1μ
(3)
c

)
+ B1Δ(3)

c − B2
1

2 μ(2)
c .

Further, note that {((Δ(1)
c )T ,Δ(2)

c ,Δ(3)
c )T : c ∈ [�, u]} is uniformly ρ-contin-

uous, and so are V (1)
c,η0

,V (2)
c,η0

, μ
(1)
c , μ

(2)
c ,μ

(3)
c due to (C.i), and that ĥ

∗
n = Opr(1).

Then by the continuous mapping theorem, we have(
ĉ∗n, ĥ

∗
n, G

∗
nf

(2)
ĉ∗n,n

, Q∗
n[f (3)

ĉ∗n,n
]T ,Q∗

n[f (4)
ĉ∗n,n

]
)

� (C̃, H̃HH, Δ(2)
C̃

, V
(2)
C̃,η0

, μ
(1)
C̃

).

Finally, the proof is complete by another application of the continuous mapping
theorem.

Recall the definitions of ϕ̃c,h,n, f (3)
c,n and f

(4)
c,n above.
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Lemma A.8. Consider the non-identifiable case under the null, i.e. γ0 = λ0 =
0. Assume (C.i), (A.i), (A.iv), (A.viii) and (A.ix) hold. Then for any δ > 0

sup
(c,h)∈K̃δ

|√mnQnϕ̃c,h,n + 1
2h

TV (1)
c,η0

h + B2
1

2 μ(2)
c + B1h

Tμ(3)
c | → 0.

sup
c∈[�,u]

‖Q∗
n[f (3)

c,n]T − V (2)
c,η0

‖ → 0, in probability.

sup
c∈[�,u]

|Q∗
n[f (4)

c,n ] − μ(1)
c | → 0, in probability.

Proof. We start with the first claim. Note that for any (c,h) ∈ K̃δ,
√
mnQnϕ̃c,h,n = mnQn[ϕc,ηn+h/

√
mn

− ϕcn,ηn
]

=mnQn

[
φ′(ηT

nZcn)((ηn + h/
√
mn)TZc − ηT

nZcn)
]

−mnQn

[
(φ((ηn + h/

√
mn)TZc) − φ(ηT

nZcn))
]

=mnQn[g(rn, sn, tn, qn)],

where rn = ηT
nZcn , sn = γnXcn , tn = γnXc, qn = h√

mn
, and

g(r, s, t, q) = φ′(r)(t− s + qTZc) − (φ(r − s + t + qTZc) − φ(r)).

Let v = (s, t, q)T . Elementary calculation shows that

g(rn, 0, 0, 0) = 0, ∂g(rn,vT )
∂v

∣∣∣∣
(rn,0,0,0)

= (0, 0, 0)T ,

∂2g(rn,vT )
∂v∂vT

∣∣∣∣
(rn,0,0,0)

= −φ′′(rn)

⎡⎣ 1
−1
−Zc

⎤⎦×
[
1 −1 −Zc

]
.

From conditions (A.iv) and (A.viii), ηn → η0 and √
mnγn → B1. Since

‖Zc‖ is bounded,

sup
(c,h)∈K̃δ, n∈N

(
|φ′′(ηT

nZcn)| + |φ′′′((ηn + h/
√
mn)TZc)|

)
< ∞,

by the mean value theorem,
√
mnQnϕ̃c,h,n = −2−1Qn[φ′′(ηT

nZcn)(
√
mnγn(Xc −Xcn) + hTZc)2] + o(1)

= −2−1hTQn

[
φ′′(ηT

nZcn)ZcZT
c

]
h

− 2−1(
√
mnγn)2Qn[φ′′(ηT

nZcn)(Xc −Xcn)2]
− (

√
mnγn)hTQn[φ′′(ηT

nZcn)(Xc −Xcn)Zc] + o(1),

where o(1) is uniform over (c,h) ∈ K̃δ. Then the proof of the first claim is
complete due to condition (A.ix) and (A.viii).
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Now we consider the second claim. Note that supc∈[�,u] ‖Q∗
n[f (3)

c,n]T − V
(2)
c,η0‖

is upper bounded by

sup
c∈[�,u]

‖(Q∗
n −Qn)[f (3)

c,n]T ‖

+ sup
c∈[�,u]

‖Qn[φ′′(ηT
nZc)UXcZT

c ] − P [φ′′(αT
0 W + β0U)UXcZT

c ]‖.

By a similar argument to Lemma A.3, the first term is opr(1). Further, the
second term is o(1) by condition (A.ix).

The proof for the last claim is similar, and thus omitted. Then the proof is
complete.

Recall that ϕ̃c,h,n and f (1)
c,n, f

(2)
c,n , f

(5)
c,n are defined (A.15), and that G∗

n =
√
mn(Q∗

n − Qn). Next we derive the limiting process for {G∗
n[ϕ̃c,h,n, f

(2)
c,n ] :

(c, h) ∈ K̃δ} in (�∞(K̃δ))2 for any δ > 0. The key step is to approximate
G∗

n[ϕ̃c,h,n] by G∗
n[hTf (1)

c,n + B1f
(5)
c,n ] uniformly over (c,h) ∈ K̃δ, which is estab-

lished in the following lemma.

Lemma A.9. Consider the non-identifiable case under the null, i.e. γ0 = λ0 =
0. Suppose (A.i), (A.iv) and (A.viii) hold, then for any δ > 0,

sup
(c,h)∈K̃δ

∣∣∣G∗
n[ϕ̃c,h,n] −G∗

n[hTf (1)
c,n + B1f

(5)
c,n ]

∣∣∣ = opr(1).

Proof. Fix some δ > 0. Due to (A.viii) and (A.i), γn = O(1/√mn) and
supc∈[�,u] ‖Zc‖ < ∞, thus uniformly over (c,h) ∈ K̃δ,(

ηn + h√
mn

)T

Zc − ηT
nZcn = γn (Xc −Xcn) + 1√

mn
hTZc = O

(
1√
mn

)
.

Since φ(·) is infinitely differentiable on R, supn ‖ηn‖ < ∞ due to (A.iv), and
supc∈[�,u] ‖Zc‖ < ∞, by the Taylor expansion to the third order, uniformly over
(c,h) ∈ K̃δ,

ϕ̃c,h,n − hTf (1)
c,n −B1f

(5)
c,n = (

√
mnγn −B1)f (5)

c,n

− 1
2√mn

φ′′(ηT
nZcn)(

√
mnγn (Xc −Xcn) + hTZc)2 + o

(
1√
mn

)
.

Thus, sup(c,h)∈K̃δ

∣∣∣G∗
n[ϕ̃c,h,n] −G∗

n[hTf (1)
c,n + B1f

(5)
c,n ]

∣∣∣ ≤ |√mnγn − B1| × In +
2−1IIn + o(1), where

In := sup
(c,h)∈K̃δ

∣∣G∗
n[
(
Y − φ′(ηT

nZcn)
)
(Xc −Xcn)]

∣∣ ,
IIn := sup

(c,h)∈K̃δ

∣∣∣(Q∗
n −Qn)[φ′′(ηT

nZcn)(
√
mnγn (Xc −Xcn) + hTZc)2]

∣∣∣ .
By [42, Theorem 2.14.1] and a similar argument as Lemma A.3, we have In =
Opr(1) and IIn = opr(1), which complete the proof due to (A.viii).
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Recall the distance function ρ(c1, c2) = |c1 − c2| for c1, c2 ∈ [�, u].

Lemma A.10. Consider the non-identifiable case under the null, i.e. γ0 =
λ0 = 0. Suppose (A.i), (A.iv), (A.viii) and (A.ix) hold. Then there exists a
zero mean Gaussian process {((Δ(1)

c )T ,Δ(2)
c ,Δ(3)

c )T : c ∈ [�, u]}, that is tight
in (�∞([�, u]))d+4, that is uniformly ρ-continuous, whose covariance function is
given by (A.13), and for which Δ(1)

c is of length d + 2 and Δ(2)
c ,Δ(3)

c both of
length 1 for each c ∈ [�, u]. Further, for any δ > 0, in (�∞(K̃δ))2,

{G∗
n(ϕ̃c,h,n, f

(2)
c,n) : (c,h) ∈ K̃δ} �

{
(hTΔ(1)

c + B1Δ(3)
c ,Δ(2)

c ) : (c,h) ∈ K̃δ

}
.

Proof. Fix some δ > 0. By Lemma A.9 and the continuous mapping theorem,
it suffices to show that there exists a Gaussian process {((Δ(1)

c )T ,Δ(2)
c ,Δ(3)

c )T :
c ∈ [�, u]} with the above prescribed conditions such that in (�∞([�, u]))d+4

{G∗
n((f (1)

c,n)T , f (2)
c,n , f

(5)
c,n)T ) : c ∈ [�, u]} � {((Δ(1)

c )T ,Δ(2)
c ,Δ(3)

c )T : c ∈ [�, u]}.

In turn, by [42, Theorem 2.11.1], it suffices to verify the following conditions:

1. There exists a function Gδ on S such that uniformly over c ∈ [�, u],
Gδ(y,w, u, x) ≥ |y − φ′(ηT

nzcn)|‖z̃c‖, and

Qn[G2
n,δ{Gn,δ > ε

√
mn}] → 0, for every ε > 0.

2. For every positive sequence εn → 0,

sup
|c1−c2|<εn

Qn[(Y − φ′(ηT
nZcn))2‖Z̃c1 − Z̃c2‖2] → 0.

3. For every positive sequence εn → 0 and j ∈ [d + 4],∫ εn

0

√
logN(ξ, [�, u], d(j)

n ) → 0, in probability,

where d
(j)
n (c1, c2) = ‖(Y − φ′(ηT

nZcn)(Z̃(j)
c1 − Z̃(j)

c2 ))‖Q∗
n,2, and Z̃(j)

c is the
j-th element in Z̃c.

4. For any (c1, c2) ∈ [�, u]2,

cov

(
G∗

n[(f (1)
c1,n)T , f (2)

c1,n, f
(5)
c1,n]T ,G∗

n[(f (1)
c2,n)T , f (2)

c2,n, f
(5)
c2,n]T

)
converges to the right hand side of (A.13).

The verification for the first three conditions is almost identical to those
arguments in the proof of Lemma A.6, and thus omitted. Further, the condition
4 is due to assumption (A.ix), which completes the proof.
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Appendix B: Some useful lemmas and proofs

Lemma B.1. Consider the case under H0 : λ0 = 0. If (C.i) holds, then con-
dition (A.iii) holds with ι = 0 for the identifiable case, i.e., γ0 �= 0, and with
ι = 1 for the non-identifiable case, i.e., γ0 = 0.

Proof. Denote M(c,η) = Pϕc,η. We consider two cases separately.

Identifiable case. First we show that (c0,η0) is the unique maximizer of
M(c,η). By [41, Lemma 5.35], it is sufficient to show that if d0((c,η), (c0,η0)) �=
0, then pr(φ′(ηTZc) �= φ′(ηT

0 Zc0)) > 0, which is equivalent to pr(ηTZc �=
ηT

0 Zc0) > 0, since φ′(·) is strictly increasing. Note that

{ηTZc �= ηT
0 Zc0} = {(α−α0)TW +(β−β0)U+(γ−γ0)Xc+γ0(Xc−Xc0) �= 0}.

From the definition, d0((c,η), (c0,η0)) �= 0 indicates one of the following
cases holds: (i) α �= α0, (ii) α = α0, β �= β0, (iii) α = α0, β = β0, γ �= γ0, and
(iv) α = α0, β = β0, γ = γ0, c �= c0.

If (c,η) belongs to case (i), we have

pr(ηTZc �= η0Zc0) ≥ pr((α−α0)TW �= 0, U = Xu = 0).

From Assumption (C.i), λmin(E(WW T |U = 0, Xu = 0)) > 0 and thus (α −
α0)TE(WW T |U = 0, Xu = 0)(α−α0) ≥ λmin(E(WW T |U = 0, Xu = 0))‖α−
α0‖2 > 0 if α �= α0. On the other hand, if pr((α − α0)TW = 0|U = Xu =
0) = 1, it is clear that E((α−α0)TWW T (α−α0)|U = 0, Xu = 0) = 0, which
is a contradiction. Therefore pr((α − α0)TW = 0|U = Xu = 0) < 1 and thus
pr((α−α0)TW �= 0|U = Xu = 0) > 0. Since 0 < F0(u) < 1, 0 < E[U ] < 1 from
Assumption (C.i), we have pr((α−α0)TW �= 0, U = Xu = 0) > 0.

Similarly, for cases (ii), (iii) and (iv), by Assumption (C.i),

pr(ηTZc �= η0Zc0) ≥ pr((β − β0)U �= 0, Xu = 0)
≥ pr(U = 1, Xu = 0) > 0, case (ii),

pr(ηTZc �= η0Zc0) ≥ pr((γ − γ0)Xc �= 0, γ0(Xc −Xc0) = 0)
≥ pr(X� = 1) > 0, case (iii),

pr(ηTZc �= η0Zc0) ≥ pr(γ0(Xc −Xc0) �= 0)
≥ pr(Xc = 0, Xc0 = 1) + pr(Xc0 = 0, Xc = 1) > 0, case (iv),

where the last inequality holds, since F (·) is continuous and differentiable with
a positive derivative at a small neighbor of c0 from Assumption (C.i). Then by
[41, lemma 5.35], (c0,η0) is the unique maximizer of M(c,η).

As M(c,η) is continuous in (c,η) due to Assumption (C.i), the unique maxi-
mizer (c0,η0) must be well separated over any compact set, i.e. condition (A.iii)

holds with ι = 0.

Non-identifiable case. Similar to the identifiable case, (c0,η0) is the unique
maximizer of M(c,η) in the non-identifiable case with respect to d1. Next we
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show the maximizer (c0,η0) is well-separated, with respect to d1, in the compact
set Kδ, for any δ > 0.

Fix some δ > 0. Suppose there exists ε > 0 such that

M(c0,η0) = sup
ε≤d1((c,η),(c0,η0))≤δ

M(c,η).

Define Kε,δ := {(c,η) ∈ Kδ : d1((c,η), (c0,η0)) ≥ ε}. Then by definition, there
exists a sequence (c̃n, η̃n), n ≥ 1, in Kε,δ, such that M(c̃n, η̃n) → M(c0,η0).
As Kε,δ is a compact set, there exists a sub-sequence (c̃nk

, η̃nk
), k ≥ 1 and

(˜̃c0, ˜̃η0) ∈ Kε,δ such that d1((c̃nk
, η̃nk

), (˜̃c0, ˜̃η0)) → 0. By the continuity of
M(c,η), we have M(˜̃c0, ˜̃η0) = limk→∞ M(c̃nk

, η̃nk
) = M(c0,η0), which con-

tradicts with the fact that (c0,η0) is the unique maximizer. Therefore, for all
0 < ε < δ,

M(c0,η0) > sup
ε≤d1((c,η),(c0,η0))≤δ

M(c,η),

i.e. condition (A.iii) holds with ι = 1.

Next we provide a few lemmas under the bootstrap setup, under which Qn

takes the form as follows:

(W n,1, Un,1, Xn,1) ∼
1
n

n∑
i=1

δ(W i,Ui,Xi), (B.1)

Yn,1|W n,1, Un,1, Xn,1 ∼ exp(Yn,1(ηT
nZn,1,cn) − φ(ηT

nZn,1,cn)),

with respect to the measure ν, where (cn,ηn), n ∈ N is a sequence in [�, u]×Rd+2.
In what follows in this subsection, for the identifiable case, we establish that

given almost every sequence of Di = (W i, Ui, Xi), i ≥ 1, for every sequence
(cn,ηn) → (c0,η0), certain condition holds for the Qn above; in other words,
the null set is common to every sequence (cn,ηn), n ∈ N with the property
that (cn,ηn) → (c0,η0). Similar comment applies to the non-identifiable case.
Further, note that the distribution of (W n,1, Un,1, Xn,1) does not depend on
(cn,ηn), n ∈ N.

The following Lemma verifies condition (A.i) under the bootstrap setup,
which only concerns covariates, and does not depend on (cn,ηn), n ∈ N.

Lemma B.2. Suppose (C.i) holds. Then condition (A.i) holds for Qn in (B.1),
given almost every sequence of Di, i ≥ 1.

Proof. The condition supn ‖W n,1‖ ≤ Cw follows from Assumption (C.i). For
j ∈ {0, 1}, by the strong law of large numbers, we have that almost surely,

E[Un,1] = 1
n

n∑
i=1

Ui → E[U ]

pr(Xn,1 ≤ �, Un,1 = j) = 1
n

n∑
i=1

I(Xi ≤ �, Ui = j) → pr(X ≤ �, U = j)
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pr(Xn,1 ≤ u, Un,1 = j) = 1
n

n∑
i=1

I(Xi ≤ u, Ui = j) → pr(X ≤ u, U = j).

By Assumption (C.i), the first two conditions in (A.i) hold almost surely.
Next we prove the condition on λmin(E[W n,1W

T
n,1|Un,1 = j,Xn,1 ≤ �]), and

the other case on λmin(E[W n,1W
T
n,1|Un,1 = j,Xn,1 > u]) can be proved in a

similar way. For Qn in (B.1) and j ∈ {0, 1}, by the strong law of large numbers,
almost surely,

E[W n,1W
T
n,1|Un,1 = j,Xn,1 ≤ �] =

∑n
i=1 I(Ui = j,Xi ≤ �)W iW

T
i∑n

i=1 I(Ui = j,Xi ≤ �)
→E[WW T |U = j,X ≤ �], almost surely.

As lim infn λmin(·) is a continuous function in (�∞(R))d×d, from Assumption
(C.i), we have lim infn λmin(E[W n,1W

T
n,1|Un,1 = j,Xn,1 ≤ �]) > 0 almost

surely.
Finally, by [42, Theorem 2.4.3], uniformly over c1, c2 ∈ [�, u], given almost

sure all sequence of Di, i ≥ 1,

pr(c1 ∧ c2 < Xn,1 ≤ c1 ∨ c2)

= 1
n

n∑
i=1

I(c1 ∧ c2 < Xi ≤ c1 ∧ c2) → pr(c1 ∧ c2 < X ≤ c1 ∧ c2).

From Assumption (C.i) and the mean value theorem, the last condition in (A.i)

holds almost surely.

Lemma B.3. Consider the case under the null H0 : λ0 = 0, and Qn in (B.1).
Assume (C.i) holds.

1. For the identifiable case, i.e., γ0 �= 0, condition (A.ii) holds for every
sequence (cn,ηn) → (c0,η0), given almost every sequence of Di, i ≥ 1.

2. For the non-identifiable case, i.e., γ0 = 0, condition (A.ii) holds for ev-
ery sequence (cn,ηn) such that ηn → η0, given almost every sequence of
Di, i ≥ 1.

Proof. We start with the first claim. Fix some δ > 0, and define the following
function class on S:

{φ̃c,η : (c,η) ∈ Kδ}, where φ̃c,η(y,w, u, x) = ηTzcφ
′(ηT

0 zc0) − φ(ηTzc).

For any (c,η) ∈ Kδ, by the definition of Qn in (B.1), we have the following
decomposition for Qnϕc,η − Pϕc,η:

Qn

[
φ′(ηT

nZcn)ηTZc − φ(ηTZc))
]
− P

[
φ′(ηT

0 Zc0)ηTZc − φ(ηTZc)
]

=Qn[(φ′(ηT
nZcn) − φ′(ηT

0 Zcn))ηTZc] + Qn[(φ′(ηT
0 Zcn) − φ′(ηT

0 Zc0))ηTZc]
+ (Qn − P )[φ̃c,η]
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=E(1)
n,c,η + E(2)

n,c,η + E(3)
n,c,η.

Thus it suffices to show that sup(c,η)∈Kδ
|E(k)

n,c,η| → 0 for every sequence
(cn,ηn) → (c0,η0), almost surely, for k = 1, 2, 3. We first observe that for any
(c,η) ∈ Kδ, ‖η‖ ≤ ‖η0‖ + δ and ‖Zc‖ ≤ Cw + 2, and that φ is infinitely
differentiable on R.
E

(1)
n,c,η For every sequence (cn,ηn) → (c0,η0), by the mean value form of the

Taylor Theorem, there exist some constants C,C ′ that may depend on the
sequence (cn,ηn), n ≥ 1, but not on n such that

sup
(c,η)∈Kδ

|E(1)
n,c,η| = sup

(c,η)∈Kδ

|Qn[(φ′(ηT
nZcn) − φ′(ηT

0 Zcn))ηTZc]|

≤ C sup
(c,η)∈Kδ

|Qn[ηTZcZT
cn(ηn − η0)]|

≤ C ′‖ηn − η0‖ → 0.

This holds surely, not just almost surely.
E

(2)
n,c,η Note that ηT

0 Zcn−ηT
0 Zc0 = γ0(Xcn−Xc0). Then there exists a constant

C > 0, that does not depend on (cn,ηn), n ≥ 1, such that

sup
(c,η)∈Kδ

|E(2)
n,c,η| = sup

(c,η)∈Kδ

|Qn[(φ′(ηT
0 Zcn) − φ′(ηT

0 Zc0))ηTZc]|

≤ C sup
(c,η)∈Kδ

Qn[I(cn ∧ c0 < X ≤ cn ∨ c0)]

≤ C sup
(c1,c2)∈[�,u]2:|c1−c2|≤|cn−c0|

Qn[I(c1 ∧ c2 < X ≤ c1 ∨ c2)].

In Lemma B.2, we showed that if cn → c0, then the last term converges to zero
almost surely, where the null set does not depend on (cn,ηn), n ≥ 1.
E

(3)
n,c,η Note that φ̃c,η only depends on (w, u, x), and that under Qn in (B.1),

(W n,1, Un,1, Xn,1) is a random pair from the empirical measure induced by
(W i, Ui, Xi), i ∈ [n]. Similar to Lemma A.1, {φ̃c,η : (c,η) ∈ Kδ} is a strongly
Glivenko-Cantelli class. Therefore sup(c,η)∈Kδ

|E(3)
n,c,η| → 0 almost surely, where

the null set does not depend on (cn,ηn), n ≥ 1.
Next, we consider the second claim. The decomposition continues to hold,

and the exact same argument shows that sup(c,η)∈Kδ
|E(k)

n,c,η| → 0 for every
sequence (cn,ηn) such that ηn → η0, almost surely, for k = 1, 3. If γ0 = 0, then
by definition sup(c,η)∈Kδ

|E(2)
n,c,η| = 0. Thus the proof is complete.

Lemma B.4. Consider the identifiable case under the null, i.e. γ0 �= 0 and
λ0 = 0, and Qn in (B.1). Assume (C.i) holds. Then for any ε ∈ (0, 1/4),
condition (A.v) holds for every sequence (cn,ηn) such that cn → c0, given
almost all sequence of Di, i ≥ 1.

Proof. Fix any ε ∈ (0, 1/4) and a sequence sequence (cn,ηn) such that cn → c0.
We first focus on those c ∈ (cn + n−1+2ε, cn + 1].
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Define K(·) = I(· ∈ [−1, 0)), and observe that for Qn defined in (B.1), almost
surely,

Qn[I(c ∧ cn < X ≤ c ∨ cn)] = 1
n

n∑
i=1

I(cn < Xi ≤ c) = 1
n

n∑
i=1

K
(
cn −Xi

|c− cn|

)

∈ (F (c) − F (cn)) ∓
∣∣∣∣∣ 1n

n∑
i=1

K
(
cn −Xi

|c− cn|

)
− (F (c) − F (cn))

∣∣∣∣∣ .
Note that

sup
n−1+2ε<|c−cn|≤1

1
|c− cn|

∣∣∣∣∣ 1n
n∑

i=1
K
(
cn −Xi

|c− cn|

)
− (F (c) − F (cn))

∣∣∣∣∣
≤ sup

n−1+2ε<h≤1
sup

c∈[�,u]

∣∣∣∣∣ 1n
n∑

i=1

1
h
K
(
c−Xi

h

)
− E

[
1
h
K
(
c−Xi

h

)]∣∣∣∣∣ .
By [16, Theorem 1], the last term converges to zero almost surely, where the
null set does not depend on (cn,ηn), n ≥ 1.

Further, due to the mean value theorem and Assumption (C.i),

0 < inf
n−1+2ε<|c−cn|≤1

1
|c− cn|

|F (c) − F (cn)|

≤ sup
n−1+2ε<|c−cn|≤1

1
|c− cn|

|F (c) − F (cn)| < ∞.

As a result, we have that for those c ∈ (cn + n−1+2ε, cn + 1], condition (A.v)

holds for every cn → c0, almost surely. The proof for the case where c ∈ [cn −
1, cn − n−1+2ε) is similar if we define K(·) = I(· ∈ [0, 1)).

Lemma B.5. Consider the identifiable case under the null, i.e. γ0 �= 0 and
λ0 = 0, and Qn in (B.1). Assume (C.i) holds. Then condition (A.vi) holds
for every sequence (cn,ηn) such that cn → c0, given almost all sequence of
Di, i ≥ 1.

Proof. Fix any δ ∈ [0, 1/4), and any sequence (cn,ηn) such that cn → c0. By
condition (C.i), there exists a small neighbourhood U0 around c0 on which X
has a density. Since cn → c0, for large n and cn ∈ U0.

Define F4,ε = {R � x → I(c1 < x < c2) : (c1, c2) ∈ U2
0 , |c1 − c2| ≤ ε}. Note

that for large n,
√
mnQn[I(cn −m−1+2δ

n < X < cn + m−1+2δ
n )]

≤ sup
|c1−c2|≤2m−1+2δ

n

√
mnQn[I(c1 ∧ c2 < X ≤ c1 ∨ c2)]

≤ sup
|c1−c2|≤2m−1+2δ

n

√
mnP [I(c1 ∧ c2 < X ≤ c1 ∨ c2)] +

√
mn‖Qn − P‖F

4,2m−1+2δ
n

,

where the first term converges to 0 by the mean value theorem, and the second
term converges to zero almost surely by a similar argument as in [27, Proof of
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Lemma 10], where the null set does not depend on (cn,ηn), n ≥ 1. Then the
proof is complete.

Lemma B.6. Consider the identifiable case under the null, i.e. γ0 �= 0 and
λ0 = 0, and Qn in (B.1). Assume (C.i) holds. Then condition (A.vii) holds for
every sequence (cn,ηn) → (c0,η0), given almost all sequence of Di, i ≥ 1.

Proof. We first consider the second statement in condition (A.vii). Fix a se-
quence (cn,ηn) → (c0,η0). Then for large n, ‖ηn − η0‖ ≤ 1. Let F5 = {S �
(y,w, u, x) → φ′′(ηT zc)z̃cz̃

T
c : (c,η) ∈ K1}. Note that for large n,

‖Qn[φ′′(ηT
nZcn)Z̃cnZ̃

T

cn ] − P [φ′′(ηT
0 Zc0)Z̃c0Z̃

T

c0 ]‖

≤‖Qn − P‖F5 + ‖P [φ′′(ηT
nZcn)Z̃cnZ̃

T

cn ] − P [φ′′(ηT
0 Zc0)Z̃c0Z̃

T

c0 ]‖.

Note that functions in F5 only depends on (w, u, x), and that under Qn in
(B.1), (W n,1, Un,1, Xn,1) is a random pair from the empirical measure induced
by (W i, Ui, Xi), i ∈ [n]. Similar to Lemma A.1, F5 is a strongly Glivenko-
Cantelli class, and thus ‖Qn − P‖F5 converges to zero almost surely, where the
null set does not depend on (cn,ηn), n ≥ 1. Further, the last term converges to
0 due to (C.i). Then the proof for the second statement in condition (A.vii) is
complete.

Now we consider the first statement in condition (A.vii). Note that for any
(c1,η1), (c2,η2) ∈ [�, u] × Rd+2, we have

Qn[(Y − φ′(ηT
1 Zc1))(Y − φ′(ηT

2 Zc2))Z̃c1Z̃
T

c2 ] = Qn[φ′′(ηT
nZcn)Z̃c1Z̃

T

c2 ]

+ Qn[
(
(φ′(ηT

nZcn) − φ′(ηT
1 Zc1))(φ′(ηT

nZcn) − φ′(ηT
2 Zc2))

)
Z̃c1Z̃

T

c2 ].

For those functions inside [·] on the right hand side, they only depend on
(w, u, x). Then by a similar argument as above, almost surely,

lim
n→∞

Qn[(Y − φ′(ηT
1 Zc1))(Y − φ′(ηT

2 Zc2))Z̃c1Z̃
T

c2 ] = P [φ′′(ηT
0 Zc0)Z̃c1Z̃

T

c2 ]

+ P [
(
(φ′(ηT

0 Zc0) − φ′(ηT
1 Zc1))(φ′(ηT

0 Zc0) − φ′(ηT
2 Zc2))

)
Z̃c1Z̃

T

c2 ],

where the null set does not depend on (cn,ηn), n ≥ 1. Then the proof is
complete.

Lemma B.7. Consider the non-identifiable case under the null, i.e. γ0 = λ0 =
0, and Qn in (B.1). Assume (C.i) holds. Then condition (A.ix) holds for every
sequence (cn,ηn) such that ηn → η0, given almost all sequence of Di, i ≥ 1.

Proof. Fix a sequence (cn,ηn) such that ηn → η0. Then for large n, ‖ηn−η0‖ ≤
1. Consider the class F6 = {S � (y,w, u, x) → φ′′(ηTzc3)z̃c1 z̃c2 : (c1, c2, c3) ∈
[�, u]3, ‖η − η0‖ ≤ 1}. Note that for large n,

sup
(c1,c2,c3)∈[�,u]3

|Qn[φ′′(ηT
nZc3)Z̃c1Z̃

T

c2 ] − P [φ′′(ηT
0 Zc3)Z̃c1Z̃

T

c2 ]|
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≤‖Qn − P‖F6 + sup
(c1,c2,c3)∈[�,u]3

∣∣∣P [(φ′′(ηT
nZc3) − φ′′(ηT

0 Zc3))Z̃c1Z̃
T

c2

]∣∣∣ .
Note that functions in F6 only depends on (w, u, x), and that under Qn in (B.1),
(W n,1, Un,1, Xn,1) is a random pair from the empirical measure induced by
(W i, Ui, Xi), i ∈ [n]. Similar to Lemma A.1, F6 is a strongly Glivenko-Cantelli
class, and thus ‖Qn − P‖F6 converges to zero almost surely, where the null set
does not depend on (cn,ηn), n ≥ 1. Further, since φ is infinitely differentiable
on R, the last term converges to 0 since supc∈[�,u] ‖Zc‖ ≤ Cw + 2 < ∞ due to
(C.i). Then the proof is complete.

Appendix C: Proofs regarding size analyais

Consider the cases under the null, i.e. λ0 = 0. For (ĉn, η̂n), the MLE estimator
based on the original data, we consider the triangular setup, where Qn = P ,
mn = n and Dn,i = Di, i ∈ [n]. For (ĉ∗n, η̂

∗
n), the MLE estimator based on

the bootstrapped data, Qn is defined in (B.1) with (cn,ηn) = (ĉn, η̂n), and
Dn,i = (Y ∗

i ,W
∗
i , U

∗
i , X

∗
i ), i ∈ [mn].

All results, except for the limiting distribution of n(ĉn−c0) in the identifiable
case, follow immediately from the results in the triangular array setup in Section
A and the verification of conditions in Section B. Thus we defer the proof for
the second claim in Theorem 2.1 to Section C.3.

C.1. Identifiable case - size analysis

Proof of the first claim in Theorem 2.1. We consider the identifiable case under
the null, i.e. γ0 �= 0 and λ0 = 0, and the triangular array setup, where mn = n,
Dn,i = Di, i ∈ [n], and Qn = P with (cn,ηn) = (c0,η0). Then the MLE
estimator (ĉn, η̂n) and the score-type test statistic Sn in (2.3), based on the
original data, correspond to (ĉ∗n, η̂

∗
n) and S∗

n in Theorem A.3.
Note that (A.i), (A.ii), (A.iv) with ι = 0, and (A.vii) trivially hold, due

to (C.i). Further, by the mean value theorem, and due to (C.i), (A.v) with
ε = 0 and (A.vi) hold. Finally, (A.iii) with ι = 0 holds by Lemma B.1. Then
the claim follows immediately from Theorem A.2 and A.3.

Proof of Theorem 3.1(i). We consider the identifiable case under the null, i.e.,
γ0 �= 0 and λ0 = 0, and the triangular array setup: Dn,i = (Y ∗

i ,W
∗
i , U

∗
i , X

∗
i ), i ∈

[mn], and Qn is defined in (B.1) with (cn,ηn) = (ĉn, η̂n). Then the MLE esti-
mator (ĉ∗n, η̂

∗
n) and the score-type test statistic S∗

n in (3.1), based on the boot-
strapped data, correspond to (ĉ∗n, η̂

∗
n) and S∗

n in Theorem A.3.
From Theorem 2.1, d0((ĉn, η̂n), (c0,η0)) → 0 in probability. Then for each

sub-sequence (ĉnk
, η̂nk

), there exists a further sub-sequence (ĉnk�
, η̂nk�

) such
that d0((ĉnk�

, η̂nk�
), (c0,η0)) → 0 almost surely.

We apply Theorem A.3 to Qnk�
in (B.1) associated with this sub-sub-sequence

(ĉnk�
, η̂nk�

). First, by construction, condition (A.iv) holds almost surely. Fur-
ther, conditions (A.i)-(A.iii) and (A.v)- (A.vii) with ι = 0 are verified by
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Lemmas B.1-B.6 given almost all sequence of Di, i ≥ 1. Thus by Theorem A.3,
almost surely,

sup
t∈Rd+3

|pr|D((√mnk�
(η̂∗

nk�
− η̂nk�

), S∗
nk�

) ≤ t) − pr((Zη,ZS) ≤ t)| → 0,

which completes the proof.

C.2. Non-identifiable case - size analysis

Note that for B1 = 0, (C̃, H̃HH, S̃) in (A.14) has the same distribution as (C,HHH,S)
in (2.7).

Proof of Theorem 2.2. We consider the non-identifiable case under the null,
i.e. γ0 = λ0 = 0, and the triangular array setup, where mn = n, Dn,i =
Di, i ∈ [n], and Qn = P with (cn,ηn) = (c0,η0). Then the MLE estimator
(ĉn, η̂n) and the score-type test statistic Sn in (2.3), based on the original data,
correspond to (ĉ∗n, η̂

∗
n) and S∗

n in Theorem A.5.
Note that (A.i), (A.ii), (A.iv) with ι = 1, (A.viii), and (A.ix) trivially

hold, due to (C.i). Finally, (A.iii) with ι = 1 holds by Lemma B.1. Then the
first claim follows immediately from Theorem A.5.

Proof of Theorem 3.1(ii). We consider the non-identifiable case under the null,
i.e. γ0 = λ0 = 0, and the triangular array setup, where Dn,i = (Y ∗

i ,W
∗
i , U

∗
i , X

∗
i ),

i ∈ [mn], and Qn is defined in (B.1) with (cn,ηn) = (ĉn, η̂n). Then the MLE
estimator (ĉ∗n, η̂

∗
n) and the score-type test statistic S∗

n in (3.1), based on the
bootstrapped data, correspond to (ĉ∗n, η̂

∗
n) and S∗

n in Theorem A.5.
By Theorem 2.2, since γ0 = 0,

√
nγ̂n = Opr(1) and mn/n → 0, we have

√
mnγ̂n = opr(1), ‖η̂n − η0‖ = opr(1),

which implies that for each sub-sequence (ĉnk
, η̂nk

), there exists a further sub-
sequence (ĉnk�

, η̂nk�
) such that

√
mnk�

γ̂nk�
→ 0, and ‖η̂nk�

− η0‖ → 0, almost surely.

We apply Theorem A.5 to Qnk�
in (B.1) associated with this sub-sub-sequence

(ĉnk�
, η̂nk�

). First, by construction, conditions (A.viii) with B1 = 0 and (A.iv)

with τ = 1 hold. Second, conditions (A.i)-(A.iii) and (A.ix) hold due to Lem-
mas B.1-B.3 and B.7. Then by Theorem A.5, almost surely,

sup
t∈Rd+4

|pr|D((ĉ∗nk�
,
√
mnk�

(η̂∗
nk�

− η̂nk�
), S∗

nk�
) ≤ t) − pr((C,HHH,S) ≤ t)| → 0,

which completes the proof.
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C.3. The weak limit of the cutpoint MLE in the identifiable case

In this subsection, we prove the second claim in Theorem 2.1 regarding the
limiting distribution of n(ĉn − c0) in the identifiable case.

Before the formal proof we review some definitions. For a closed interval
I ⊂ R, the space D̃I is the collection of all functions on I, that are right-
continuous with left limits, endowed with a metric d̃I below [21, 36, 44]. Let
ΛI = {λ : I �→ I|λ is strictly increasing, surjective and continuous} and write
‖λ‖ := sups �=t∈I | log λ(s)−λ(t)

s−t |. Then for any f1, f2 ∈ D̃I :

d̃I(f1, f2) := inf
λ∈ΛI

{
sup
c∈I

{|f1(c) − f2(λ(c))|} + ‖λ‖
}
.

Note that, endowed with the metric d̃I , the space D̃I is Polish [37, 8, 21].
For (τ,h) ∈ R× Rd+2, define

ϕ̄τ,h,n :=
√
n(ϕc0+τ/n,η0+h/

√
n − ϕc0,η0).

Further, recall from Section A.3.2 that g
(1)
c,η = (Y − φ′(ηTZc))Zc and g

(2)
c,η =

(Y − φ′(ηTZc))UXc, and that V (1)
c,η and V (2)

c,η are introduced in (2.5). Define

g(3)
c,η := g(2)

c,η − V (2)
c,η(V (1)

c,η)−1g(1)
c,η.

Denote by Pn = n−1∑n
i=1 δDi

, the empirical measure on S induced by Di, i ∈
[n], where δDi

is the Dirac measure at Di, and define Gn =
√
n(Pn − P ).

Proof of the second claim in Theorem 2.1. By definition,

(n(ĉn − c0),
√
n(η̂n − η0)) = (τ̂n, ĥn) := sargmax

(τ,h)∈[�n,un]×Rd+2

√
nPnϕ̄τ,h,n

= sargmax
(τ,h)∈[�n,un]×Rd+2

√
nPn[ϕ̄τ,h,n − ϕ̄τ,0,n] +

√
nPn[ϕ̄τ,0,n].

where �n := n(�− c0) and un := n(u− c0).
In the proof of Theorem A.3, whose conditions are verified in Section C.1, we

showed that
Sn = Gn

[
g(3)
c0,η0

]
+ opr(1).

Further, for any compact hyper-rectangle K ⊂ R×Rd+2, by the same asymptotic
expansion argument as in Section A.3.2, we have

sup
(τ,h)∈K

∣∣∣∣√nPn[ϕ̄τ,h,n − ϕ̄τ,0,n] −
(
hT

Gn

[
g(1)
c0,η0

]
− 1

2h
TV (1)

c0,η0
h

)∣∣∣∣ = opr(1).

By a tedious but now standard argument as in [21, 36, 44] (see some discus-
sions below), for any closed interval I ⊂ R,⎡⎢⎢⎣

Gn

[
g

(1)
c0,η0

]
Gn

[
g
(3)
c0,η0

]
{√nPn[ϕ̄τ,0,n] : τ ∈ I}

⎤⎥⎥⎦ �

⎡⎣ V (1)
c0,η0

Zη

ZS

{D(τ) : τ ∈ I}

⎤⎦ , in R2 × D̃I , (C.1)
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where recall that Zη, ZS and D(·) are defined before Theorem 2.1. Then the
proof is complete by the continuous mapping theorem [36, Lemma A.3], and
due to the fact that (τ̂n, ĥn) = Opr(1), which is the first claim in Theorem 2.1,
and is proved in Section C.1.

To show (C.1), as in [21, 36, 44], it involves two steps: (1). establishing
the finite-dimensional distribution convergence using the characteristic func-
tion method; (2) establishing that {√nPn[ϕ̄τ,0,n] : τ ∈ I} is uniformaly tight in
D̃I . The detailed arguments are similar to those in [21, 36, 44], and thus not
repeated here.

Below we present an important calculation in order to show why we have the
two-sided, compound Poisson process D(·) in the limit, and why we assume the
following for the second part of Theorem 2.1.

(C.ii) the conditional distribution of (W , U) given X = c is continuous in a
neighbourhood of c0 with respect to the weak convergence.

Lemma C.1. Assume (C.i) and (C.ii) hold. Then for two real numbers 0 <
τ1 < τ2, √

nPn [ϕ̄τ2,0,n − ϕ̄τ1,0,n] � D(τ2 − τ1).

Proof. Note that by definition,
√
nPn [ϕ̄τ2,0,n − ϕ̄τ1,0,n]

=
n∑

i=1
(Yiγ0 − (φ(Θi,+) − φ(Θi,−))) I

(τ1
n

< Xi − c0 ≤ τ2
n

)
,

where Θi,+ := αT
0 W i + β0Ui + γ0, and Θi,− := αT

0 W i + β0Ui. Then denoting
Ξ+ := Y1γ0 − (φ(Θ1,+) − φ(Θ1,−)), for any t ∈ R, we have

E
[
exp

{√
−1t

√
nPn [ϕ̄τ2,0,n − ϕ̄τ1,0,n]

}]
=
(
E
[
exp

{√
−1tΞ+I

(τ1
n

< X1 − c0 ≤ τ2
n

)}])n
=
(

1 + E
[
exp

{√
−1tΞ+

}
− 1

∣∣∣∣ τ1n < X1 − c0 ≤ τ2
n

]
pr
(τ1
n

< X1 − c0 ≤ τ2
n

))n

.

Due to (C.i),

lim
n

n× pr
(τ1
n

< X1 − c0 ≤ τ2
n

)
= F ′

X(c0)(τ2 − τ1).

Further, due to (C.ii) and since Y , given (W , U,X), belongs to the exponential
family distribution (1.1), the conditional distribution of (Y,W , U) given X = c
is also continuous in a neighbourhood of c0 with respect to the weak convergence,
due to the (generalized) dominated convergence theorem. As a result, for any
t ∈ R,

lim
n

E
[
exp

{√
−1tΞ+

} ∣∣∣∣ τ1n < X1 − c0 ≤ τ2
n

]
= E

[
exp

{√
−1tξ1,+

}]
.
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Combining these two parts, for any t ∈ R, we have

lim
n→∞

E
[
exp

{√
−1t

√
nPn [ϕ̄τ2,0,n − ϕ̄τ1,0,n]

}]
= exp

(
F ′
X(c0)(τ2 − τ1)

(
E
[
exp

{√
−1tξ1,+

}
− 1

)])
.

Since the right hand side is the characteristic function for D(τ2−τ1) for τ2 > τ1,
the proof is complete.

C.4. A special case in the non-identifiable case

In this section we consider a special case where W = 1 and U,X are indepen-
dent, and X follows uniform distribution over (0, 1). Then, in the non-identifiable
case,

E[φ′′(αT
0 W + β0U)Z̃c1Z̃

T

c2 ] =

⎡⎢⎢⎣
t1 t2 t1c2 t2c2
t2 t2 t2c2 t2c2
t1c1 t2c1 t1(c1 ∧ c2) t2(c1 ∧ c2)
t2c1 t2c1 t2(c1 ∧ c2) t2(c1 ∧ c2)

⎤⎥⎥⎦ ,

which indicates {((Δ(1)
c )T ,Δ(2)

c )T : c ∈ [�, u]} in Theorem 2.2 has the same
distribution as ⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎣
√
t1B(1)

t2√
t1
B(1) +

√
t2 − t22

t1
B̃(1)√

t1B(c)
t2√
t1
B(c) +

√
t2 − t22/t1B̃(c)

⎤⎥⎥⎥⎦ : c ∈ [�, u]

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

where B(·), B̃(·) are two independent Brownian motions, t1 = E[σ′′(α0 +β0U)]
and t2 = E[σ′′(α0 + β0U)U ].

Then C,HHH,S in (2.7) have the following representation:

C = sup
t∈[�,u]

(B(t) − tB(1))2

t(1 − t) , S =
√

t2 − t22/t1(B̃(C) − CB̃(1)),

HHH = (V (1)
C,η0

)−1

⎡⎣
√
t1B(1)

t2√
t1
B(1) −

√
t2 − t22/t1B̃(1)√

t1B(C)

⎤⎦ .

(C.2)

In other words, ĉn converges to the maximizer C of a weighted Brownian bridge,
and Sn to the value of an independent Brownian bridge evaluated at C, up to
a multiplicative constant.

C.5. Proof for the inconsistency of standard bootstrap in the
non-identifiable case

Recall from Subsection 3.2 that M(Rk) denotes the space of Borel probability
measures on Rk where k ≥ 1 is some integer, and we equip M(Rk) with the
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the Prokhorov metric dProk(·, ·) [8, Section 6.5], which characterizes the weak
convergence and under which M(Rk) is a complete and separable metric space.

Recall from Subsection 3.2 that R̂n denotes the empirical distribution of the
covariates {(W i, Ui, Xi) : i ∈ [n]}, that is, R̂n = n−1∑n

i=1 δ(W i,Ui,Xi), which is
a random element in M(Rd+2). Further, recall that R∞ denotes the population
distribution of (W , U,X).

Recall from Subsection 3.2 that Ln(c,η,R) denotes the distribution of the
bootstrap test statistic S∗

n when (ĉn, η̂n, R̂n) takes the value (c,η,R); that
is, Ln is a measurable mapping from [�, u] × Rd+2 × M(Rd+2) to M(R), and
Ln(ĉn, η̂n, R̂n) is the bootstrap distribution of S∗

n given the data, which is a
random element in M(R).

Recall the definition of (C̃, H̃HH, S̃) in (A.14). Note that the distribution of S̃
depends on the value of B1 and B2 in condition (A.viii), and thus we denote its
law by L∞(B2, B1), where L∞ may be viewed as a measurable mapping from
[�, u] × R to M(R).

Theorem C.1. Consider the null, i.e., λ0 = 0, and the non-identifiable case,
i.e., γ0 = 0. Assume that (C.i) holds. Further, consider the standard bootstrap
with mn = n. There exist a sequence of random variables {(c†n,η†

n,R†
n) : n ≥ 1}

and (C†,HHH†) such that (c†n,η†
n,R†

n) has the same distribution as (ĉn, η̂n, R̂n)
for each n ≥ 1, (C†,HHH†) as (C, HHH), and as n → ∞

dProk

(
Ln(c†n,η†

n,R†
n), L∞(C†,HHH†

γ)
)

= opr(1),

where HHH
†
γ is the (d + 2)-th component of HHH†.

Proof. By Theorem 2.2, (ĉn,
√
n(η̂n−η0)) � (C,HHH), and the empirical distribu-

tion R̂n converges weakly (i.e., in terms of dProk) to the population distribution
R∞ of the covariates (W , U,X) almost surely [14, Theorem 11.4.1]. Due to
Skorohod’s representation theorem [8, Theorem 6.7], there exist a sequence of
random variables {(c†n,η†

n,R†
n) : n ≥ 1} and (C†,HHH†) such that (c†n,η†

n,R†
n) has

the same distribution as (ĉn, η̂n, R̂n) for each n ≥ 1, (C†,HHH†) as (C,HHH), and for
each ω ∈ Ω,

lim
n→∞

(c†n(ω),
√
n(η†

n(ω) − η0),R†
n(ω)) = (C†(ω),HHH†(ω),R∞). (C.3)

Denote by γ†
n(ω) the last component of η†

n(ω); since γ0 = 0, we have
√
nγ†

n(ω) →
HHH

†
γ(ω). Recall the triangle array setup in Appendix A. By Lemma B.2, B.3 and

B.7 respectively, conditions (A.i), (A.ii) and (A.ix) hold almost surely, when
Qn takes the following form:

(W n,1, Un,1, Xn,1) ∼ R̂n,

Yn,1|W n,1, Un,1, Xn,1 ∼ exp(Yn,1(η̂T
nZn,1,ĉn) − φ(η̂T

nZn,1,ĉn)),

with respect to the measure ν. Since (c†n,η†
n,R†

n) has the same distribution
as (ĉn, η̂n, R̂n) for each n ≥ 1, by arguing along sub-sequences, without loss
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of generality, we may assume conditions (A.i), (A.ii) and (A.ix) hold almost
surely, when Qn takes the following form:

(W n,1, Un,1, Xn,1) ∼ R†
n,

Yn,1|W n,1, Un,1, Xn,1 ∼ exp(Yn,1((η†
n)TZn,1,c†n) − φ((η†

n)TZn,1,c†n)).

Condition (A.iii) only concerns P and is verified in Lemma B.1. Further,
again by arguing along sub-sequences, we may assume almost surely, ‖η†

n −
η0‖ → 0, which is condition (A.iv) with τ = 1. Finally, by construction,√
nγ†

n → HHH†
γ and c†n → C†, that is, condition (A.viii) holds.

With all conditions verified, we apply Theorem A.5 and conclude that for
almost surely ω ∈ Ω,

dProk

(
Ln(c†n(ω),η†

n(ω),R†
n(ω)), L∞(C†(ω),HHH†

γ(ω))
)

→ 0, as n → ∞.

Note that the above statement is true if we argue along sub-sequences, which
completes the proof for the in-probability convergence.

Now we prove Theorem 3.2.

Proof. Recall that S in (2.7) is the limiting distribution of the test statis-
tics Sn, and its law is a fixed element in M(R). Further, recall the coupling
{(c†n,η†

n,R†
n) : n ≥ 1} and (C†,HHH†) in Theorem C.1, and in particular L∞(C†,HHH†

γ)
is a random element in M(R). Thus for some ε > 0, we have

pr
(
dProk

(
L∞(C†,HHH†

γ), S
)
≥ 2ε

)
> 0,

where the second argument in dProk(·, ·) refers to the law of S. Then due to
Theorem C.1, we have

lim inf
n→∞

pr
(
dProk

(
Ln(c†n,η†

n,R†
n), S

)
≥ ε

)
> 0,

which completes the proof since (c†n,η†
n,R†

n) and (ĉn, η̂n, R̂n) have the same
distribution for each n ≥ 1.

Appendix D: Proofs regarding power analysis

In this subsection, we consider the rejection probabilities under the local al-
ternatives H1,n : λn = B0/

√
n defined in (3.3), where recall that the constant

B0 �= 0 does not depend on n. Further, recall that the other parameters η0
and c0, as well as the distribution of (W , U,X), do not depend on n. That is,
conditional on (W , U,X) = (w, u, x), the ν-density of Y = y is

exp
(
y
(
ηT

0 zc0 + λnuxc0

)
− φ(ηT

0 zc0 + λnuxc0)
)
,

where ηT
0 zc0 = αT

0 w + β0u + γ0xc0 . Denote by Pn the joint distribution of
(Y,W , U,X), and by Pn = n−1∑n

i=1 δDi the empirical measure on S induced by
Di, i ∈ [n], where δDi is the Dirac measure at Di, and define Gn =

√
n(Pn−Pn).

Next, we consider the identifiable and non-identifiable case separately.
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D.1. Identifiable case - power analysis

Recall the definitions of V (1)
c,η,V

(2)
c,η, V

(3)
c,η , σ2

c,η in (2.5), and g
(1)
c,η and g

(2)
c,η in

(A.11). In the identifiable case, γ0 �= 0.

Proof of Theorem 3.3. We start with the first statement regarding the score test
statistics Sn based on the original data. The proof is similar to that for Theorem
A.3, and we only show key calculations.

By similar arguments as for Theorem A.1, A.2 and 2.1, under the local al-
ternatives H1,n in (3.3), we can show that the maximal likelihood estimators
(MLE) (ĉn, η̂n) have a

√
n-convergence rate in d0-metric, i.e.,

√
n
(√

|ĉn − c0| + ‖η̂n − η0‖
)

= Opr(1).

Since (ĉn, η̂n) is the MLE, we have

0 = 1√
n

n∑
i=1

Zi,ĉn(Yi − φ′(ZT
i,ĉn η̂n)) = Gng

(1)
ĉn,η̂n

+
√
nPng

(1)
ĉn,η̂n

.

By a similar argument as for Lemma A.6, Gng
(1)
ĉn,η̂n

= Gng
(1)
c0,η0+opr(1). Further,

√
nPng

(1)
ĉn,η̂n

=
√
nPng

(1)
c0,η̂n

+
√
nPn[g(1)

ĉn,η̂n
− g

(1)
c0,η̂n

]

=(1)
√
nPng

(1)
c0,η̂n

+ opr(1),

=(2) −V (1)
c0,η0

√
n(η̂n − η0) + B0(V (2)

c0,η0
)T + opr(1),

where (1) can be verified by similar arguments as for Lemma A.7, and (2) is
due to the Taylor Theorem and that ‖η̂n − η0‖2 = opr(n−1/2) and

√
nλn = B0

under the H1,n. From condition (C.i), V (1)
c0,η0

is invertible, and thus we have
√
n(η̂n − η0) = (V (1)

c0,η0
)−1Gng

(1)
c0,η0

+ B0(V (1)
c0,η0

)−1(V (2)
c0,η0

)T + opr(1). (D.1)

By similar arguments as above and for Lemma A.6 and A.7, we have

Sn = Gng
(2)
ĉn,η̂n

+
√
nPng

(2)
ĉn,η̂n

= Gng
(2)
c0,η0

+
√
nPng

(2)
c0,η̂n

+
√
nPn[g(2)

ĉn,η̂n
− g

(2)
c0,η̂n

] + opr(1)

= Gng
(2)
c0,η0

− V (2)
c0,η0

√
n(η̂n − η0) + B0V

(3)
c0,η0

+ opr(1)

= Gng
(2)
c0,η0

− V (2)
c0,η0

(V (1)
c0,η0

)−1Gng
(1)
c0,η0

+ B0σ
2
c0,η0

+ opr(1).

Since cov(Gn(g(2)
c0,η0 − V (2)

c0,η0
(V (1)

c0,η0
)−1g

(1)
c0,η0)) converges to σ2

c0,η0
, by the

Lindeberg-Feller central limit theorem, Sn � N(B0σ
2
c0,η0

, σ2
c0,η0

) under H1,n.
Next, we study the bootstrap distribution of S∗

n under H1,n. Consider the
triangle array setup in Appendix A with Qn given in (B.1). By similar arguments
as for Theorem 3.1(i), for each sub-sequence, we may extract a further sub-
sequence such that conditions (A.i)-(A.vii) with τ = 0 hold almost surely.
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Then by Theorem A.3, we have that the bootstrap distribution of S∗
n converges

weakly to N(0, σ2
c0,η0

) in probability. As a result, the limit of the rejection
probabilities under H1,n in (3.3) is

P(|ZS + B0σ
2
c,η| ≥ σc0,η0 |Φ

−1(α/2)|),

which completes the proof.

D.2. Non-identifiable case - power analysis

Recall the definition of V (1)
c,η,V

(2)
c,η, V

(3)
c,η in (2.5) and V (4)

c , V
(5)
c in (3.4). Recall

the zero mean Gaussian process {((Δ(1)
c )T ,Δ(2)

c )T : c ∈ [�, u]} in Section 2.1,
that is tight in (�∞([�, u]))d+3 and uniformly ρ-continuous, where ρ(c1, c2) =
|c1−c2| for any c1, c2 ∈ R. Further, recall that C and S are defined in Subsection
3.3, and define

HHH := (V (1)
C,η0

)−1(Δ(1)
C

+ B0V
(4)
C

).

For any δ > 0 let K̃δ = {(c,h) ∈ [�, u] × Rd+2 : c ∈ [�, u], ‖h‖ ≤ δ}. For any
(c,h) ∈ [�, u]×Rd+2, define the following functions on the observation space S:

ϕc,h,n :=
√
n(ϕc,η0+h/

√
n − ϕc0,η0),

f
(2)
c,n = (Y − φ′(ηT

0 Zc0 + λnUXc0))UXc,

f
(3)
c = φ′′(ηT

0 Zc0)UXcZc, f
(4)
c = φ′′(ηT

0 Zc0)Xc0UXc.

Proof of Theorem 3.4. In the non-identifiable case, γ0 = 0. We start with the
first statement regarding the score test statistics Sn based on the original data.
The proof is similar to that for Theorem A.5, and we only show key calculations.

By similar arguments as for Theorem A.1, A.4 and 2.2, under the local alter-
natives H1,n in (3.3), we can show that the maximal likelihood estimators (MLE)
(ĉn, η̂n) have a

√
n-convergence rate in d1-metric, i.e., ĥn :=

√
n‖η̂n − η0‖ =

Opr(1). Note that by definition,

(ĉn, ĥn) = sargmax
(c,h)∈[�,u]×Rd+2

Gnϕc,h,n +
√
nPnϕc,h,n.

Further, since γ0 = 0, λn = B0/
√
n, and

√
n‖ηn − η0‖ = Opr(1), we have

Sn = Gn[(Y − φ′(ηT
0 Zc0 + λnUXc0))UXĉn ]

+
√
nPn[(φ′(ηT

0 Zc0 + λnUXc0) − φ′(ηT
0 Zc0))UXĉn ]

−
√
nPn[(φ′((η̂n)TZ ĉn) − φ′(ηT

0 Z ĉn))UXĉn ]

= Gn[f (2)
ĉn,n] + B0Pn[f (4)

ĉn ] − Pn[(f (3)
ĉn )T ]ĥn + opr(1).
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By similar arguments as for Lemma A.8-A.10, for any δ > 0, in (�∞(K̃δ))d+6,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

√
nPnϕc,h,n

Pn[(f (3)
c )T ]

Pn[(f (4)
c )T ]

Gnϕc,h,n

Gnf
(2)
c,n

⎤⎥⎥⎥⎥⎥⎦ : (c,h)∈K̃δ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
−1

2h
TV (1)

c,η0
h + B0h

TV (4)
c

V (2)
c,η0

V
(5)
c

hTΔ(1)
c

Δ(2)
c

⎤⎥⎥⎥⎥⎥⎦ : (c,h)∈K̃δ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

For each c ∈ [�, u], the maximizer and the maximum value of the function
Rd+2 � h �→ hTΔ(1)

c + B0h
TV (4)

c − 1
2h

TV (1)
c,η0

h ∈ R are respectively:

(V (1)
c,η0

)−1(Δ(1)
c + B0V

(4)
c ), and

1
2

(
Δ(1)

c + B0V
(4)
c

)T
(V (1)

c,η0
)−1(Δ(1)

c + B0V
(4)
c ).

Further, note that {((Δ(1)
c )T ,Δ(2)

c )T : c ∈ [�, u]} is uniformly ρ-continuous, and
so are V (1)

c,η0
,V (2)

c,η0
, V

(3)
c,η0 and V (4)

c , V
(5)
c due to (C.I), and that ĥn = Opr(1).

Then by the continuous mapping theorem, we have(
ĉn, ĥn, Gnf

(2)
ĉn,n, Pn[f (3)

ĉn ]T ,Pn[f (4)
ĉn ]

)
� (C, HHH, Δ(2)

C
, V

(2)
C,η0

, V
(5)
C,η0

),

and further Sn converges in distribution to S.
Next, we study the bootstrap distribution of S∗

n under H1,n. Consider the
triangle array setup in Appendix A with Qn given in (B.1). Since mn/n → 0,
by similar arguments as for Theorem 3.1(ii), for each sub-sequence, we may
extract a further sub-sequence such that conditions (A.i)-(A.iv) with τ = 1,
(A.viii) with B1 = 0 and (A.ix) hold almost surely. Then by Theorem A.5, we
have that the bootstrap distribution of S∗

n converges weakly to S in probability,
since S̃ has the same distribution as S when B1 = 0. The proof is complete.
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