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Abstract: Let x1, · · · , xn be independent observations of size p, each
of them belonging to one of c distinct classes. We assume that observa-
tions within the class a are characterized by their distribution N (0, 1

p
Ca)

where here C1, · · · , Cc are some non-negative definite p× p matrices. This
paper studies the asymptotic behavior of the symmetric matrix Φ̃kl =√
p
(
(xT

k xl)2δk �=l

)
when p and n grow to infinity with n

p
→ c0. Particu-

larly, we prove that, if the class covariance matrices are sufficiently close
in a certain sense, the matrix Φ̃ behaves like a low-rank perturbation of a
Wigner matrix, presenting possibly some isolated eigenvalues outside the
bulk of the semi-circular law. We carry out a careful analysis of some of the
isolated eigenvalues of Φ̃ and their associated eigenvectors and illustrate
how these results can help understand spectral clustering methods that use
Φ̃ as a kernel matrix.
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1. Introduction

Motivation. Kernel methods play a central role in statistical machine learn-
ing. They have extensively been used in many problems such as classification,
clustering, regression, as well as principal component analysis and have shown
to exhibit better performances than traditional statistical techniques [18, 20].
At the core of these methods is the notion of kernel matrices, constructed as
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follows: Let x1, · · · , xn be n observations in R
p, the entries of the kernel matrix

are given by:

K =
{

k(xi, xj), i �= j
0, i = j.

(1)

where k is a function of two variables, referred to as the kernel. A common type
of these kernel matrices include inner-product kernel random matrices obtained
by selecting function k as k(xi, xj) = f(xT

i xj) where f is a given real-valued
function. Kernel methods operate exclusively with the kernel matrix, be it by
computing its principal eigenvectors like in kernel clustering [17] or by solving
a convex problem involving it, as in support vector machine algorithms [14]. A
recent line of research works has been concerned with studying the properties of
large random kernel matrices when the dimension of the data and the sample size
get large and are commensurable. It follows on the important wave of research
focusing on the study of large sample covariance matrices given by 1

n

∑p
i=1 xix

T
i

which have been the interest of several generations of mathematicians. For more
details, the reader can refer to [8] and the references therein.

First works analyzing the spectrum of kernel random matrices were due to
El Karoui [11, 10], who was interested in the kernel random matrices of the
form

{
f(xT

i xj)
}n
i,j=1 where {xi}ni=1 are zero-mean independent and identically

distributed random vectors with covariance 1
pC, C being a p × p matrix of

bounded spectral norm. More precisely, it was proven under the asymptotic
setting in which the number of samples n and that of features p grow large
and converge to a constant, that kernel random matrices are equivalent (up to
some additive deterministic matrix and proper scaling) to the standard large
sample covariance matrix, extensively studied in the literature. The key idea
in the work of [11] lies in the observation that the kernel function is applied
entry-wise to the random variable xT

i xj , which converges fast to its mean. The
behavior of the kernel random matrix is then characterized by applying a Taylor-
expansion of each element around its mean. However, practical machine learning
applications like clustering call for more involved models, among which is the
Gaussian mixture model. Based on this model, and following the same Taylor-
expansion approach of [11], it was proven in [7] and subsequently in [1] that the
underlying kernel random matrix behaves as a “spiked random model”, that is
a finite rank perturbation of (a matrix similar) to a Wishart random matrix
model [4]. The work in [7] provides valuable insights into the impact of the
kernel function and the data model on the clustering performance, unveiling the
sufficient growth rates in the distances between covariances and means to ensure
non-trivial clustering performance. More particularly, assume that data are
drawn from a mixture of c Gaussian distributions associated with class C1, · · · , Cc
such that data samples from class Ca follow a Gaussian distribution with zero
mean and covariance 1

pCa. It can be easily seen that, under the assumption
that all covariance matrices have uniformly bounded spectral norms, the off-
diagonal elements of the kernel random matrix K :=

{
f(xT

i xj)
}n
i,j=1 can be
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Taylor-expanded as:

f(xT
i xj) = f(0)+f ′(0)xT

i xj+
f ′′(0)

2 (xT
i xj)2+O(p− 3

2 ) i, j = 1, · · · , n i �= j (2)

while the diagonal elements can be expressed as:

f(xT
i xi) = f(1

p
Tr(Ca)) + O(p− 1

2 ) (3)

Clearly, if for a �= b, 1
pTr(Ca) − 1

pTr(Cb) = O(1), perfect clustering can be
performed without invoking spectral clustering. Indeed, it suffices, in this case,
to investigate the diagonal elements of K as they would tend to different limits
reflecting the class to which each observation belongs. From this, it is clear that
the use of spectral clustering becomes relevant only when for all a = 1, · · · , c,
1
pTr(Ca) are asymptotically the same. In this case, all diagonal elements tend
to the same limits, and as such, they cannot be used to perform clustering. Let
C◦ =

∑c
i=1

ni

n Ci where for i = 1, · · · , c, ni refers to the number of observations
in class Ci and define for a = 1, · · · , c, matrix C◦

a as: C◦
a = Ca − C◦. Based

on the above discussion and in order to not alter the convergence rate in (3),
it is thus sensible to assume that 1

pTr(Ca) − 1
pTr(C◦) = 1

pTr(C◦
a) = O(p− 1

2 ).
Combining (2) and (3) together, and letting τ = 1

pTr(C◦), we can easily deduce
that the kernel random matrix K is asymptotically equivalent to Kg given by
1:

Kg = f(0)11T +(f(τ)−f(0)−τf ′(0))In+f ′(0)XTX+ f ′′(0)
2
{
δi �=j(xT

i xj)2
}n
i,j=1

(4)
where X = [x1, · · · , xn]. In [8], noticing that the spectral norm

{
δi �=j(xT

i xj)2
}n
i,j=1 −

{
1
p2 Tr(CaCb)1na1nb

}c

a,b=1

is O(p− 1
2 ), the authors argued that the matrix

{
δi �=j(xT

i xj)2
}n
i,j=1 contains

the necessary information to perform clustering, while the matrix f ′(0)XTX
represents the noise part. On the lookout for better performances, one is tempted
to cancel the noise by choosing f such that f ′(0) = 0 and f ′′(0) �= 0. In this
case, the equivalent matrix Kg satisfies

Kg = f(0)11T +(f(τ)−f(0))In+ f ′′(0)
2

{
1
p2 Tr(CaCb)1na1nb

}c

a,b=1
+O‖.‖(p−

1
2 ),

(5)
where O‖.‖(p−

1
2 ) represents a matrix with a spectral norm of order O(p− 1

2 ).
Equation (5) reveals that, under this particular choice of function f , matrix
Kg is up to a vanishing matrix deterministic, which suggests the possibility

1The asymptotic equivalence herein is in the sense that ‖K −Kg‖ tends to zero as n and
p grow large with n

p
→ c0
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of perfectly clustering observations in the asymptotic regime. However, this
conclusion is not guaranteed to hold if we further assume that for all a, b ∈
{1, · · · , c}, 1

pTr(C◦
aCb) = O(p− 1

2 ). To see this, it suffices to expand 1
pTr(CaCb)

as:

1
p
Tr(CaCb) = 1

p
Tr(C◦

aC
◦) + 1

p
Tr(C◦

bC
◦) + 1

p
Tr(C◦

aC
◦
b ) + 1

p
Tr((C◦)2)

One can easily check that under the assumption 1
pTr(C◦

aCb) = O(p− 1
2 )

∥∥∥∥∥f
′′(0)
2

{
δa�=b

(
1
p2 Tr(CaCb) −

1
p2 Tr((C◦)2)

)
1na1Tnb

}c

a,b=1

∥∥∥∥∥ = O(p− 1
2 ) (6)

where for a square matrix A, ‖A‖ stands for its spectral norm. Going back
to (4), it becomes clear that in case 1

pTr(C◦
aCb) = O(p− 1

2 ), spectral clustering
based on K does not perform better than random guess clustering if f is such
that f ′(0) �= 0, since K would be equivalent (up to a non-informative matrix)
to the noise part f ′(0)XTX. On the other hand, selecting f ′(0) = 0 cancels
out the noise term, but Kg becomes equivalent (up to a vanishing matrix with
spectral norm O(p− 1

2 )) to a deterministic non-informative matrix. The findings
of [7] could not inform of whether clustering can be performed based on the
inner-product kernel random matrix K. The present work aims to fill this gap.
In view of (4), the answer to this question boils down to analyzing the clustering
task using the following random matrix:

Φ̃ = √
p
{
(xT

k xl)2δk �=l

}n
k,l=1 (7)

where the factor √
p aims to apply a kind of a “zoom” on the vanishing pertur-

bation matrix expected to carry information about clustering.

Contributions and summary of the obtained results. This paper is
concerned with the problem of clustering n observations x1, · · · , xn drawn from a
Gaussian mixture model with c classes, in which observations from cluster k, k =
1, · · · , c follow a Gaussian distribution with zero mean and covariance 1

pCk. Of
interest is the asymptotic setting in which the total number of samples n, that
of samples in each class na, a = 1, · · · c and the number of features p grow large
while their ratios na

n and n
p are equal to constants ca > 0 and c0 > 0, respectively.

We further assume that the covariance matrices satisfy 1
pTr(C◦

aCb) = O(p− 1
2 ),

which as earlier mentioned, requires selecting the kernel function f such that
f ′(0) = 0. Under this growth regime, and as shown above, the eigenvectors of
the kernel matrix K =

{
f(xT

i xj)
}n
i,j=1 are informative for clustering tasks if

those of matrix Φ̃ are also informative. Based on this observation, we redefine
our task to that of analyzing the leading eigenvectors and eigenvalues of matrix
Φ̃ in (7). Decomposing Φ̃ as:

Φ̃ = Φ + √
p
{
E
[
(xT

i xj)2δi �=j

]}n
i,j=1
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where
Φ = √

p
{
(xT

i xj)2δi �=j

}
−√

p
{
E
[
(xT

i xj)2δi �=j

]}n
i,j=1

we prove that Φ̃ is a sort of a spiked random matrix with matrix
√
p
{
E
[
(xT

i xj)2δi �=j

]}n
i,j=1

playing the role of the finite-rank perturbation while Φ stands for the high-rank
random matrix. A major result of the present work is to show that Φ behaves as
a standard Wigner matrix presenting possibly isolated eigenvalues that escape
from the bulk. However, these isolated eigenvalues do not carry information
about clustering. The clustering information is indeed carried by the isolated
eigenvalues of matrix Φ̃ and their associated eigenvectors that are produced by
the presence of the finite-rank perturbation matrix √

p
{
E
[
(xT

i xj)2δi �=j

]}n
i,j=1.

In a nutshell, our contributions can be summarized as follows:

• We show (Theorem 1) that in the asymptotic regime wherein n, p grow to
infinity with n

p = c0 and na

n = ca, the matrix Φ behaves as a real symmet-
ric Wigner matrix, in the sense that its empirical eigenvalue distribution
converges towards the semi-circle law. This result is in perfect agreement
with that of [6], which asserts that the asymptotic behavior will involve
only the contribution of a Wigner matrix once f ′(0) = 0. Note that the re-
sult in [6] is restricted to the case of standard Gaussian random matrices,
and as such, could not be used to handle our specific setting. Moreover, our
approach is very different from [6] and mainly relies on Gaussian calculus
tools as the basic instruments.

• We analyze the asymptotic behavior of bilinear forms involving the re-
solvent of Φ (Theorem 2). Particularly, we highlight a striking difference
in the behavior of these quantities that, to the authors’ knowledge, has
never been encountered when dealing with Gram random matrices.

• We show that almost surely for n large enough, the limiting support is
composed of the support of the semi-circle law plus possibly two spikes,
the positions of which are derived. Moreover, almost surely, all eigenvalues
lie within a neighborhood of the limiting support.

• Finally, to allow a thorough understanding of the clustering performance,
we characterize the leading eigenvectors and eigenvalues of the kernel
matrix Φ̃.

Related works. This work, initially motivated by the previous work of [7], fits
in the recent line of research aiming at analyzing kernel random matrices with
elements

Kij = 1
√
p
f(√pxT

i xj)δi �=j . (8)

Indeed, matrix Φ̃ can be thought of as a specific instance of the class of kernel
matrices in the form of (8) with f = x2. Compared to the kernel random ma-
trices studied in [11], the multiplication by √

p inside function f produces fluc-
tuating off-diagonal elements. As a consequence, the Taylor-expansion method
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originally developed in [11] and later generalized in [15] for uniform distribu-
tion over balls and in [7] for Gaussian mixture models is not applicable. In a
series of recent works in [6], [12], and [9], new tools have been developed to
study the behavior of kernel random matrices in the form of (8). Contrary to
the kernel random matrices studied in [11], a completely different behavior has
been unveiled, according to which kernel random matrices following the model
(8) behave as deformed Wigner-like matrices. However, all these results concern
observations with isotropic covariance structure and hence could not be applied
to understand the performance of kernel clustering methods. Compared to these
works, our contribution differs as follows. (i) First, we study the behavior of ker-
nel random matrices in (8) for f = x2 and when data are drawn from a Gaussian
mixture model with c classes. As discussed earlier, the choice f = x2 aims at
examining the “covariance discriminative power” of inner-product kernel ran-
dom matrices K =

{
f(xT

i xj)
}n
i,j=1, for which, to cancel the noise, f is selected

such that f ′(0) = 0. (ii) Second, we characterize both the eigenvalues and the
leading eigenvectors of Φ̃, which allows us to gain a deeper understanding of the
clustering performance. On a technical level, we develop a new approach that
combines both Gaussian calculus and the Stieltjes transform tool. We believe
that this approach can provide the underpinning for a unified theoretical frame-
work to analyze general inner-product kernel random matrices in the form of
(8).

Notations: In the remainder of the article, uppercase characters will stand for
matrices, lowercase for scalars or vectors. The transpose and hermitian operation
will be denoted by (.)T or (.)H . The multivariate Gaussian distribution of mean
μ and covariance C will be denoted N (μ,C). The notation V = {Vij}n,Ti=1,j=1
denotes the matrix with (i, j)− entry Vij (scalar or matrix) 1 ≤ i ≤ n, 1 ≤ j ≤ T

while {Vi}ni=1 is the row-wise concatenation of the Vi’s and {Vj}Tj=1 the column-
wise concatenation of the Vj ’s. The i-th element of vector v is denoted by [v]i,
while the (i, j)-th entry of matrix A may be denoted by either Aij or [A]ij .
The operator D(v) = D {va}ka=1 is the k × k diagonal matrix with v1, . . . , vk
as its diagonal elements. When A is a matrix, the operator D(A) refers to the
diagonal matrix formed by the diagonal elements of A. The identity matrix of
size p is denoted by Ip while the vector in n × 1 of all ones is denoted by 1n.
The notation ‖.‖ refers to either the Euclidean norm of vectors or the operator
norm of matrices while the notation ‖.‖∞ refers to the �∞ norm for vectors.
For A and B matrices with the same size, we denote the Hadamard product of
A and B by A�B. For scalars xp and rp, xp = O(rp) means that there exists
a constant K independent of p and n such that |xp| ≤ K|rp|. For a sequence
of random variables xp, the notation xp = O(rp) means that for every η and
D strictly positives, pDP [xp ≥ pηrp] → 0. We also define δA as the indicator
function of set A. For deterministic scalars xp and vp the notation xp = Oz(vp)
means that |xp| ≤ vpP (|z|)R(|�z|−1) for some polynomials P and R with non-
negative coefficients and whose parameters are independent of the dimensions
n and p. Finally, we denote by Ek, the expectation with respect to vector xk

and by vark its corresponding variance.
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2. Assumptions and main results

Consider p-dimensional independent real Gaussian vectors x1, . . . , xn. For
n1, . . . , nc such that n1 + . . . + nc = n, we assume that

xn1+...+nj−1+1, . . . , xn1+...+nj∼ N (0, p−1Cj)

for C1, . . . , Cc ∈ R
p×p.

Let j ∈ {1, · · · , n}. Then, for all integer k ∈
[∑j−1

r=1 nr + 1,
∑j

r=1 nr

]
, we

define C[k] as C[k] = Cj . In other words, C[k] denotes the covariance matrix of
observation xk. Hence, observations xk can be written as:

xk = 1
√
p
C

1
2
[k]zk

where zk ∼ N (0, Ip)
Further, define C◦ =

∑c
i=1

ni

n Ci and, for each i, C◦
i = Ci−C◦. The matrices

C1, . . . , Cc additionally satisfy the following rate conditions.

Assumption 1 (Growth Rates). As p → ∞, we have the following assumptions:

(i) n/p = c0 ∈ (0,∞)
(ii) for each a ∈ {1, . . . , c}, na/n = ca ∈ (0,∞)
(iii) ∀ a, b ∈ {1, · · · , c}, 1

p trC◦
aCb = O(p− 1

2 )
(iv) all matrices Ck, k = 1, · · · , c have bounded spectral norm, that is:

max
1≤k≤c

lim sup
p

‖Ck‖ < ∞.

We shall further assume that 1
p tr
(
(C◦)2

)
and 1

p tr
(
(C◦)4

)
converge, and de-

fine:
ω =

√
2 lim
p→∞

1
p

tr
(
(C◦)2

)

Ω =
√

2
√

lim
p→∞

1
p

tr
(
(C◦)4

)
Moreover, we assume that:

max
(∣∣∣∣ Ω√

2
−
√

1
p

tr
(
(C◦)4

)∣∣∣∣ ,
∣∣∣∣ ω√2

− 1
p

tr
(
(C◦)2

)∣∣∣∣
)

≤ Kp−
1
2

for some constant K independent of p.

As a direct consequence of Item iii) in Assumption 1, we have:

1
p

trC◦
aC

◦ = O(p− 1
2 ) (9)

1
p

trC◦
aC

◦
b = O(p− 1

2 ). (10)
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To prove (9), it suffices to replace C◦ by
∑c

i=1
ni

n Ci and then apply item iii) to
each element of the obtained sum. Similarly, (10) can be proven by substituting
C◦

b by Cb−C◦ and using (9) together with item iii) in Assumption 1. Moreover,
it also holds that for any sequence of p×p matrices (Ap) with uniformly bounded
spectral norm, we have:

1
p

tr (C◦
aAp) = O(p− 1

4 ) (11)

which can be directly shown by noting that

|1
p

tr(C◦
aAp)| ≤

√
1
p

tr ((C◦
a)2)
√

1
p

tr
(
(A2

p)
)
.

A possible choice of covariance matrices that satisfy Assumption 1-iii) is when
for instance, Ca − Cb has rank √

p for any a �= b in {1, . . . , c} or when it has
O(√p) eigenvalues of order 1 and the others converging to zero. In this case, it
can be easily seen that 1

p trC◦
aCb = O(p− 1

2 ) and 1
p trC◦

aC
◦
b = O(p− 1

2 ).
This paper is concerned with the clustering task using the kernel:

Φ̃ = √
p
{(

xT
i xj

)2
δi �=j

}
Particularly, we aim to determine the conditions under which clustering using

Φ̃ leads to a non-trivial behavior in the growth rate regime of Assumption 1.
As explained earlier, these conditions also imply the non-trivial behavior of
the clustering performance using the kernel matrix K =

{
f(xT

i xj)
}n
i,j=1 with

f ′(0) = 0.
To assess the clustering performance, it is a fundamental first step to under-

stand the asymptotic spectral behavior of the kernel matrix Φ̃. This forms the
main objective of the present work. We will proceed in two steps. First, we will
study the asymptotic behavior of matrix Φ obtained by element-wise centering
of Φ̃:

[Φ]ij = √
p

(
(xT

i xj)2 −
1
p2 trC[i]C[j]

)
δi �=j (12)

in the growth regime defined in Assumption 1. Particularly, our main results
are as follows:

1) The empirical spectral distribution of matrix Φ converges almost surely
towards the semi-circle distribution, (Theorem 1)

2) Bilinear forms involving the resolvent matrix of Φ have deterministic
equivalents in the large n, p regime, which we characterize in Theorem
2,

3) Almost surely, for n large enough, all the eigenvalues of Φ are located in
a neighborhood of the semi-circle distribution plus possibly two spikes at
positions c0Ω + ω2

Ω and −c0Ω − ω2

Ω , (Theorem 4).

These results set the stage for the second part of our work (section 3), in which
we study the behavior of spectral clustering using matrix Φ̃.
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For the first part of our work, the fundamental tool is the Stieltjes transform.
For z ∈ C\R, we denote the resolvent of matrix Φ by:

Q(z) = (Φ − zIn)−1

and the Stieltjes transform of the expectation of the empirical measure of the
eigenvalues of Φ by:

gn(z) = 1
n

trEQ(z)

We will prove that:
1
n

trQ(z) a.s.−→ m(z)

where m(z) is the unique Stieltjes transform solution of the following fixed point
equation:

m(z) = − 1
z + c0ω2m(z) .

This allows us to achieve the first goal of the present work, which is to prove
the convergence of the empirical distribution of matrix Φ to the semi-circle
distribution. The latter result is formally stated in the following Theorem, the
proof of which is postponed to Section 5.1.

Theorem 1. Let Assumption 1 hold true. Denote by λ1, · · · , λn the eigenvalues
of Φ. Then, the empirical spectral distribution μn = 1

n

∑n
i=1 δλi converges al-

most surely (in the weak convergence of probability measures) to the probability
measure μ with density:

μ(dt) = 1
2πc0ω2

√
(4c0ω2 − t2) δ{−2√c0ω≤t≤2√c0ω

}dt

where δA is the indicator function of set A. Moreover, the support of the limiting
density is S =

[
−2√c0ω, 2

√
c0ω
]
.

Theorem 1 can be leveraged to approximate in the almost sure sense func-
tionals of the eigenvalues of matrix Φ by virtue of the Portmanteau Lemma,
thus leading to the following corollary:

Corollary 1. Let Assumption 1 hold true and f be a continuous bounded func-
tion. Then, ∫

f(λ)μn(dλ) −
∫

f(λ)μ(dλ) a.s.−→ 0.

Corollary 1 prefigures the asymptotic behavior of functionals of the eigenval-
ues of matrix Φ. However, it cannot be used to infer that of the eigenvectors. As
shall be seen next, a key step in analyzing the asymptotic behavior of the eigen-
vectors of Φ (or a perturbation of it) is to characterize the asymptotic behavior
of bilinear forms associated with the resolvent matrix in the form of aTnQ(z)bn
where an and bn are two vectors in C

n×1. This is the purpose of the following
Theorem, the proof of which is deferred to Section 5.2.
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Theorem 2. Consider the setting of Assumption 1. Let {an} and {bn} be
two sequences of vectors in C

n×1 with bounded Euclidean norm. Then, for any
z ∈ C\R,

aTnQ(z)bn −
(
aTn bn

)
m(z) − c0Ω2m3(z)

p(1 − Ω2c20m
2(z))a

T
n1n1Tn bn

a.s.−→ 0.

where here 1n is the n× 1 vector of all ones and thus 1n1Tn is the n×n matrix
of all ones.

Theorem 1 and Theorem 2 imply that the resolvent matrix Q is equivalent
to

Q = m(z)In + Ω2c0m
3(z)

p(1 − Ω2c20m
2(z))1n1Tn

where the equivalence is in the sense that 1
n trAnXn − 1

n trAnYn → 0 and
aTn (Xn − Yn)bn → 0 for every sequence of deterministic matrices An with
bounded spectral norm and sequence of vectors an, bn having bounded Euclidean
norms. In other words, by reference with this definition, matrix Q is equivalent
to a rank-one perturbation of a scaled identity. As far as classical random ma-
trix models are considered, this behavior is met when the random matrix under
study is modeled by a finite-rank perturbation of a high-rank random matrix.
Based on this, we can anticipate that matrix Φ may possess a spike outside the
support of the semi-circle law, which explains the presence of the rank one ma-
trix c0Ω2m3(z)

p(1−Ω2c20m
2(z))1n1Tn . Such a spike should correspond to the real values x for

which m2(x) = 1
Ω2c20

. This question is discussed in Theorem 4, which confirms
the possible existence of spikes outside the main bulk of the semi-circle law.

But before moving to Theorem 4, we shall present the following result con-
cerning the asymptotic limit of quadratic forms involving two resolvent matrices.

Theorem 3. Consider the setting of Assumption 1. Let {an} and {bn} be two
sequences of deterministic vectors in C

n×1 with bounded Euclidean norm. Let
Dn be a n × n sequence of diagonal matrices with uniformly bounded diagonal
elements. Define for z1, z2 ∈ C\R, g(z1, z2) as:

g(z1, z2) = (1 − ω2c0m(z1)m(z2))−1m(z1)m(z2)aT b

m(z1)m(z2)c0Ω2
[
m2(z1) + m2(z2) + m(z1)m(z2) − c20Ω2m2(z1)m2(z2)

]
×
(
1 − Ω2c20m

2(z1)
)−1(1 − Ω2c20m

2(z2)
)−1(1 − ω2c0m(z1)m(z2))−1 1

p
aT 1n1Tn b

Then,

aTnQ(z1)DnQ(z2)bn −m(z1)m(z2)aTnDnbn

−m(z1)m(z2)ω2(1
p

tr(D))g(z1, z2) − r̃(z1, z2)
a.s.−→ 0.
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where:

r̃(z1, z2) =
c0Ω2m3(z2)m(z1)aTD 1n1T

n

p b

1 − Ω2c20m
2(z2)

+
c0Ω2m3(z1)m(z2)aT 1n1T

n

p Db

1 − Ω2c20m
2(z1)

+
1
p tr(D)Ω2m2(z1)m2(z2)(1 + c20Ω2m(z1)m(z2))aT 1n1T

n

p b(
1 − Ω2c20m

2(z1)
)(

1 − Ω2c20m
2(z2)

)

Proof. See Section 5.3

Theorem 4 (Almost sure location of the eigenvalues of Φ). Consider the setting
of Assumption 1. Let λ1, · · · , λn be the eigenvalues of Φ. Let ρ̃ = c0Ω + ω2

Ω . For
ε > 0, define Sε as

Sε =
{ [−2√c0ω − ε, 2√c0ω + ε

]
if Ω ≤ ω√

c0[
−2√c0ω − ε, 2√c0ω + ε

]
∪ [ρ̃− ε, ρ̃ + ε] ∪ [−ρ̃− ε,−ρ̃ + ε] otherwise.

Then, with probability 1 for all large n:

{λi, 1 ≤ i ≤ n} ∩ R\Sε = ∅.

Proof. See Section 5.4.

Remark 1. From Cauchy-Schwartz inequality, it follows that
√

1
p tr
(
(C◦)4

)
≥

1
p tr
(
(C◦)2

)
or equivalently Ω ≥ ω. Hence, if c0 ≥ 1, Ω ≥ ω√

c0
. In such a case,

we expect at least two spikes at positions ρ̃ and −ρ̃ escaping from the main bulk
of the semi-circle law. While in theory Theorem 4 could not infer exactly on the
exact number of the spikes, simulations in Fig. 1 suggest that there are exactly
2 spikes at position ρ̃ and −ρ̃.

Remark 2. The result in Theorem 4 is in agreement with [12, Theorem 1.7],
which shows that under the i.i.d. case with all Ck’s equal to the identity matrix,
polynomial kernel matrices might have two spikes outside the main bulk of the
semi-circle law. Although restricted to f(x) = x2, our work extends the result
in [12] to Gaussian mixture models.

Remark 3. The convergence results in Theorem 2 and Theorem 3 can be
easily extended to all z ∈ I := C\

(
[−2√c0ω, 2

√
c0ω] ∪ {−ρ̃, ρ̃}

)
using standard

arguments based on Montel’s theorem. Particularly, for Theorem 2, the recipe
is as follows. The random quantity aTnQ(z)bn and its deterministic equivalent in
Theorem 2 are analytic and bounded on any compact support of I. It follows
from Montel’s theorem that there exists a subsequence for which aTnQn(z)bn −
aTn bnm(z) − c0Ω2m3(z)

p(1−Ω2c20m
2(z))a

T
n1n1Tn bn converges to a holomorphic function on

each compact set of C\I. Since this limiting function is zero for all compacts



Covariance discriminative power 303

Fig 1. Histogram of the eigenvalues of Φ and the semi-circle law, for (a) n = 4800 and
p = 1600 and (b) n = 1600 and p = 4800. All Ci’s are equal to Ip. The semi-circle law is
superposed in red, and the locations of two observed spikes is highlighted with red arrows.

of C\R, it is thus also zero for all z ∈ C\I. Thus, the convergence of Theorem
2 holds for all z ∈ C\I. The same argument is valid to extend the convergence
result of Theorem 3 to all z ∈ I.

3. Applications: Spectral clustering using
{√

p(xT
i xj)2δi�=j

}
In this section, we show how the previous results can be leveraged to gain a
better understanding of the performance of spectral kernel clustering based on
the matrix:

Φ̃ :=
{
(xT

i xj)2δi �=j

}n
i,j=1 .

To begin with, we decompose Φ̃ as:

Φ̃ = Φ +
{

1
p

3
2

trC[i]C[j]δi �=j

}n

i,j=1

The behavior of matrix Φ is studied in the previous section, where we showed
that Φ behaves like a Wigner matrix plus possibly a one-rank perturbation. It is
thus not informative from a clustering perspective; the information about clus-

tering in Φ̃ is rather carried by the finite rank matrix
{

1
p

3
2

trC[i]C[j]δi �=j

}n

i,j=1
.

To continue, we note that
{

1
p

3
2

trC[i]C[j]δi �=j

}n

i,j=1
=
{

1
p

3
2

trC[i]C[j]

}n

i,j=1
+ O‖.‖(p−

1
2 ) (13)
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where O‖.‖(p−
1
2 ) refers to a matrix with O(p− 1

2 ) spectral norm. Next, for a, b =
1, · · · , c, decomposing 1

p
3
2

tr(CaCb) as:

1
p

3
2

tr(CaCb) = 1
p

3
2

tr(C◦
aC

◦
b ) + 1

p
3
2

tr(C◦
aC

◦) + 1
p

3
2

tr(C◦
bC

◦) + 1
p

3
2

tr((C◦)2)

we can easily see that matrix M defined as:

M :=
{

1
p

3
2

tr(CaCb)1na1Tnb

}c

a,b=1

can be written in matrix form as follows:

M = 1
p
JAJT + 1

p
Ja1Tn + 1

p
1naTJT + β

1n1Tn
p

(14)

where J = [j1, . . . , jc] ∈ Rn×c, with ji being the canonical vector of class i,
taking 1 at the positions in which xj belongs to class i and zero otherwise and
A, a and β are given by:

a :=
{

1
√
p

trC◦
i C

◦
}c

i=1

β := 1
√
p

tr
(
(C◦)2

)

A :=
{

1
√
p

trC◦
i C

◦
j

}c

i,j=1
,

(15)

Then, in view of (13), we obtain:

Φ̃ = Φ + O‖.‖(p−
1
2 ) (16)

where Φ writes as:
Φ := Φ + M (17)

Behavior of the eigenvalues. Matrix Φ follows a spiked random model per-
turbed by a finite rank deterministic matrix. From standard results of random
matrix theory, we expect all its eigenvalues to be located asymptotically within
Sε except for finitely many of isolated eigenvalues escaping from Sε. Determin-
ing the almost sure location of such eigenvalues is of fundamental importance
to understand how kernel clustering works in high-dimensional settings. Since
β1n1Tn has only one non-zero eigenvalue of order √

p, by the Weyl’s inequali-
ties, the n− 1 smallest eigenvalues of Φ are located almost surely in a compact
interval, satisfying

λi(Φ) ≤ ‖Φ‖2 +
∥∥∥∥1pJAJT + 1

p
Ja1Tn + 1

p
1naTJT

∥∥∥∥
2
, i = 1, · · · , n− 1

while the largest eigenvalue cannot be bounded. The following theorem charac-
terizes the location of the eigenvalues of Φ̃ that escape from Sε.
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Theorem 5. Let κ, λ1 · · · , λc−1 be the c largest eigenvalues of Φ such that
κ ≥ λ1 ≥ . . . ≥ λc−1. Then, there exist K1 and K2 deterministic constants
such that:

K1
√
p ≤ κ ≤ K2

√
p

Moreover,
κ
√
p
− βc0√

p

a.s.−→ 0.

Assume that 1√
p trC◦

aC
◦
b converges and let:

T :=
{√

ca
√
cb lim

n→∞
1
√
p

trC◦
aC

◦
b

}c

a,b=1

Denote by ν1 ≥ ν2 ≥ · · · ≥ νc−1 the c− 1 largest eigenvalue of T . Then, under
Assumption 1, if for i ∈ {1, · · · , c}, νi > ω√

c0
and νi /∈ {Ω,−Ω}, then

λi
a.s.−→ ρi � c0νi + ω2

νi
.

Proof. See Appendix C.1

Combining the results of Theorem 4 and Theorem 5, it can be seen that
the eigenvalues of Φ̃ that converge to values outside the support of the semi-
circular law are informative except possibly for eigenvalues converging to ρ̃ and
−ρ̃ which appear only when Ω ≥ ω√

c0
. Thus, in practice, it is important to get

estimates of Ω and ω in order to: 1) estimate the support of the semi-circular
law, 2) determine if non-informative eigenvalues converging to ρ̃ and −ρ̃ may
appear. The values of ω and Ω depend on the unknown covariances. However,
as can be seen below, they can be estimated based on the observations from all
classes. Indeed, we may use the Poincaré-Nash inequality stated later in (31) to
prove that:

var

⎛
⎜⎜⎝ 1
n

∑
i=1

n∑
j=1
j �=i

(xT
i xj)2

⎞
⎟⎟⎠ = O( 1

p2 ) (18)

var

⎛
⎜⎜⎝ 1
n

n∑
i,j,k,m

i �=j �=k �=m

xT
i xjx

T
j xkx

T
k xmxT

mxi

⎞
⎟⎟⎠ = O( 1

p2 ) (19)

The proof of the above results follows from very similar derivations used in the
paper for variance control and is thus omitted. It follows from (18) and (19)
that:

1
n

∑
i=1

n∑
j=1
j �=i

(xT
i xj)2 −

1
n

∑
i=1

n∑
j=1
j �=i

E(xT
i xj)2

a.s.−→ 0 (20)
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and
1
n

∑
i,j,k,m

i �=j �=k �=m

xT
i xjx

T
j xkx

T
k xmxT

mxi −
1
n

∑
i,j,k,m

i �=j �=k �=m

E[xT
i xjx

T
j xkx

T
k xmxT

mxi]
a.s.−→ 0

(21)
On the other hand, taking the expectation over the distributions of the obser-
vations, we obtain:

1
n

∑
i=1

n∑
j=1
j �=i

E(xT
i xj)2 = 1

np

n∑
i=1

n∑
j=1
j �=i

1
p
tr(C[i]C[j])

(a)= (n− 1)
p

1
p
tr((C◦)2) + O(p− 1

2 )

(22)

= c0
1
p
tr((C◦)2) + O(p− 1

2 ) (23)

where (a) follows from Assumption 1−(iii). Similarly,

1
n

∑
i,j,k,m

i �=j �=k �=m

E[xT
i xjx

T
j xkx

T
k xmxT

mxi] = 1
np3

∑
i,j,k,m

i �=j �=k �=m

1
p
tr(C[i]C[j]C[k]C[m])

=
(n− 1)(n− 2)(n− 3) 1

p tr((C◦)4)
p3 + O(p− 1

4 )

= c30
1
p
tr((C◦)4) + O(p− 1

4 )

(24)

where (24) follows from (11). Combining (20) and (21), consistent estimators
for ω and Ω can be obtained as:

ω̂ =
√

2p
n2

n∑
i=1

∑
j �=i

(xT
i xj)2 (25)

Ω̂ =

√√√√√2p3

n4

∑
i,j,k,m

i �=j �=k �=m

xT
i xjxT

j xkxT
k xmxT

mxi (26)

Behavior of the eigenvectors The clustering performance depends on the
degree of alignment between the eigenvectors of Φ̃ associated with the isolated
eigenvalues and hence referred to as from now on isolated eigenvectors and the
columns of J . A perfect clustering performance would be obtained in case of
perfect alignment. In our case, because of the noise matrix Φ, a perfect align-
ment does not hold, making the eigenvectors of Φ̃ fluctuate around the classes’
index vectors j1, · · · , jc, ji being the canonical vector of class i. Assessing the
alignment of isolated eigenvectors of Φ̃ to these vectors is an important step
towards gauging the clustering performance. In the sequel, we will focus only on
the eigenvalues of Φ̃ that converge to one of the {ρi}c−1

i=1 defined in Theorem 5.
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Let ûρ be an eigenvector of Φ̃ associated with the isolated eigenvalue con-
verging to ρ. Then, ûρ may be decomposed as:

ûρ =
c∑

a=1
αρ
a

ja√
na

+ σρ
aw

ρ
a

where wρ
a is a vector of unit norm supported on the indices of class a and

orthogonal to ja while αρ
a ∈ R and σρ

a ≥ 0 are scalars to be determined. Similarly,
for two isolated eigenvalues and bounded eigenvalues of Φ̃ converging to ρ1 and
ρ2, it is of interest to study the correlation:

σa
ρ1,ρ2

=
(
ûρ1 − αρ1

a

ja√
na

)T

D(ja)
(
ûρ2 − αρ2

a

ja√
na

)

where D(ja) is the diagonal matrix formed by the entries of the canonical vector
ja of class a.

Theorem 6. Consider the setting of Theorem 4. Let i1, i2 ∈ {1, . . . , c− 1}.
Let (λρi1

, ûρi1
) and (λρi2

, ûρi2
) be the eigenpairs of Φ̃ such that λρi1

and λρi2
converge respectively to ρi1 and ρi2 . Let (νρi1

, Vρi1
) and (νρi2

, Vρi2
) be the eigen-

pairs of T associated with ρi1 and ρi2 where νρi1
and νρi2

have unit multiplicity.
Assume that for k = 1, 2, √

c0|νρik
| > ω, νρik

/∈ {Ω,−Ω} with ρ̃ = c0Ω + ω2

Ω .
Then, for any a, b ∈ {1, . . . , c} and j = 1, 2,

α
ρij
a α

ρij

b
a.s.−→ (1 − 1

c0

ω2

νρij

)
[
Vρij

V T
ρij

]
a,b

. (27)

Moreover,

σa
ρi1 ,ρi2

a.s.−→ δρi1=ρi2

ca
c0

ω2

ν2
ρi1

. (28)

Proof. The proof is in Appendix C.2

Remark 4. (The Largest eigenvector is the most informative) Since x �→ c0x+
ω2

x is an increasing function when x ≥ ω√
c0

, the largest isolated eigenvalue ρ1 is
associated with the largest ν1 eigenvalue of T . The fluctuations of the entries of
this eigenvector around αρ1

a are the smallest compared to those of other isolated
eigenvectors, and is as such less prone to the noise induced by the presence of
matrix Φ. On the other hand, as far as the isolated eigenvalue approaches the
bulk, its associated eigenvector becomes more noisy presenting the highest level
of fluctuations.

Remark 5. (Isolated eigenvectors are asymptotically decorrelated) Since σa
ρi1ρi2

converges to zero whenever ρi1 �= ρi2 , an interesting outcome of Theorem 6 is
that the dominant eigenvectors of matrix Φ̃ associated to bounded eigenvalues
have negligible correlation and thus can be treated independently when it comes
to clustering. This behavior is a consequence of the fact that, although the xi’s
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Fig 2. Distribution of the eigenvalues of Φ̃ along with the semi circle law, for p = 1024,
c = 3, c1 = c3 = 0.25 and c2 = 0.5, Ci = Ip + 1

p
WiW

T
i when Wi ∈ Rp×√

p with i.i.d N (0, 1)
entries.

have different covariance matrices per class, Φ asymptotically behaves like a ma-
trix with i.i.d. entries and thus does not asymptotically capture the difference
in covariances as do the isolated eigenvectors.

Remark 6. (Expression of αρi
a ) Since the eigenvectors are defined up to a sign,

we may impose without restriction that αρi
s > 0 for s the smallest index a for

which αρi
a �= 0. Thus from Theorem 6, we find for each a,

αρi
a

a.s.−→ sign
([
viv

T
i

]
sa

)√(
1 − 1

c0

ω2

ν2
i

)[
vivTi
]
aa
.

Numerical results For the sake of illustration, we represent in Figure 2 the
distribution of the eigenvalues of Φ̃ along with the semi-circle law when obser-
vations can belong to 3 different classes with proportions c1 = c3 = 0.25 and
c2 = 0.5. We assume that observations are drawn from p = 1024 dimensional
Gaussian distributions with mean zero and covariance Ci = Ip + θi

1
pWiW

T
i

where Wi is p × √
p standard Gaussian matrix and θ1 = 2, θ2 = 3 and θ3 = 4.

The total number of observations is taken to be 5000. As seen from this figure, Φ̃
has two isolated eigenvalues which are bounded and one large eigenvalue scaling
with p. We further investigate the behavior of the eigenvectors associated to the
eigenvalues converging to the values ρ1 and ρ2 specified in Theorem 5. Figure 3
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Fig 3. Isolated eigenvectors of Φ̃ converging towards ρ1 and ρ2 as specified in Theorem 5
versus deterministic approximations of α

ρi
a ± √σa

ρi,ρi
as per Theorem 6, for n = 5000,

p = 1024, c = 3, c1 = c3 = 1/4 and c2 = 0.5, Ci = Ip + 1
p
WiW

T
i with Wi ∈ Rp×√

p with
i.i.d. N (0, 1) entries.

represents these largest eigenvectors along with the theoretical approximations
provided by Theorem 6. We note a high accuracy of the provided approxima-
tions. Moreover, we note that the largest eigenvector presents the lowest variance
and thus is less sensitive to the noise caused by matrix Φ̃.

4. Mathematical tools and preliminary results

This section is dedicated to the proof of our main results in Theorems 1– 4.
Throughout this section, we shall adopt the following notation. We write xk =
C

1
2
[k]zk and define Z = [z1, · · · , zn] and X = [x1, . . . , xn]. The element (i, j) of

matrix A will be denoted as Aij or [A]i,j . Our object of interest is the resolvent
matrix, which we recall is defined as

Q(z) = (Φ − zIn)−1

where Φ is defined in (12).The proof relies heavily on standard tools from Gaus-
sian calculus as well as linear algebra relations, which we provide below for the
reader’s convenience.

4.1. Mathematical tools

The following results will be of constant use throughout the proof of our main
results.
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1. Differentiation formula:

∂Qik

∂Zrs
= −2

∑
b �=s

(xT
b xs)

[
C

1
2
s xb

]
r
(QisQbk + QskQbi) . (29)

2. Integration by Parts formula for Gaussian functionals: Let f be a C1

function polynomially bounded together with its derivatives. Consider
Z ∈ R

p×n a standard normal Gaussian matrix. Then,

E [Zijf(Z)] = E

[
∂f(Z)
∂Zij

]
. (30)

3. Poincaré-Nash inequality: Let Z and f as above, then:

var(f(Z)) ≤
p∑

i=1

n∑
j=1

E

[∣∣∣∣∂f(Z)
∂Zij

∣∣∣∣
2
]
. (31)

4. Identities involving the resolvent: Define vector ξk ∈ R
n with elements:

[ξk]i = √
p
[
(xT

k xi)2 − E(xT
k xi)2

]
We denote by ξ(k,−k) vector ξk where the k-th entry is replaced by zero.
Let Φk be matrix Φ where we replace the k-th row and k-th column by
zero-entry vectors. Define Qk = (Φk − zIn)−1. It is thus easy to notice
that Qk does not depend on xk and that [Qk]kj = 0 for k �= j. These
properties will be extensively used in the proofs. Moreover, the diagonal
elements of Q satisfy [3, Theorem A.4]:

Qkk = −1
z + ξT(k,−k)Qkξ(k,−k)

(32)

Furthermore, the off-diagonal element Qik with (i �= k) is given by [3, page
471]:

Qik =
eTi Qkξ(k,−k)

z + ξT(k,−k)Qkξ(k,−k)
= −Qkke

T
i Qkξ(k,−k) (33)

where ei denotes the i-th canonical vector of Cn.

The integration by parts formula along with the Poincaré-Nash inequality will
be extensively used to find deterministic approximations of functionals depend-
ing on the resolvent matrix and the observations x1, · · · , xn. Let f(Q, {xi}ni=1)
denote a scalar functional of interest. At a high level, we proceed into the fol-
lowing steps. First, we use the Poincaré-Nash inequality to find an upper bound
of the variance. If this upper bound goes to zero with a rate O(p−1−ε) for some
ε > 0, then, from Markov inequality, the problem amounts to finding a determin-
istic approximation for the expectation of f(Q, {xi}ni=1). This is then performed
by using the Integration by Parts formula (30) together with the differentiation
formula (29).
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4.2. Preliminary results

4.2.1. Useful inequalities

We gather in this section some matrix estimates which will be of constant use
in the proof of our results.

Lemma 1. Let A be a n× n matrix. Then,

‖D(A)1n‖∞ ≤ ‖A‖

Proof. The proof follows by noticing that ‖D(A)1n‖∞ = maxk=1,··· ,n |Ak,k| and
using the fact that for all k = 1, · · · , n,

|Ak,k| ≤ ‖A‖

Lemma 2. Let A and B be two n× n matrices. Then,

‖AB‖ ≤ ‖A‖‖B‖.

Moreover, denoting by � the Hadamard product, we also have:

‖A�B‖ ≤ ‖A‖‖B‖

Lemma 3. Let A be n× n matrix. Then, the following inequality hold true,

‖A‖ ≤
√

tr(AAT )

4.2.2. Useful approximations of random quantities

In this section, we introduce some important results that will be extensively
used in the proof of our main theorems. These results facilitate the assessment
of random quantities involving the resolvent matrix. We shall for the reader’s
convenience, recall the notation xp = O(rp) where xp is a sequence of random
variables and rp is a rate decreasing with p. The notation xp = O(rp) implies
that for every η and D strictly positives P [xp ≥ pηrp] = o(p−D). As shown in
[7], the notation O(.) has the property that the maximum of a collection of
nC random variables for any constant C of order O(rp) is still O(rp). Using
standard concentration inequalities, we can show that this notation holds for
many functionals of Gaussian vectors. Particularly, if zp and wp are two inde-
pendent standard normal vectors and Ap a sequence of deterministic or random
matrices with bounded spectral norm that are independent of zp and wp, then
1
pzp

TApwp = O(p− 1
2 ).

Let A1,p, A2,p and A3,p be sequences of p × p deterministic matrices with
spectral norm uniformly bounded in p. Let k ∈ {1, · · · , n}. Define the n × n
matrix Sk such that its (b1, b2) entry is given by:

[Sk]b1b2 =
(
xT
b1A1,pxk

) (
xT
b2A2,pxk

) (
xT
b1A3,pxb2

)
δk �=b1δk �=b2 . (34)

The following result, controlling the spectral norm of this matrix is extensively
required in the proofs of our results.
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Lemma 4. Let Sk be as in (34). Then,

‖Sk‖ = O(p−1).

Proof. We can write Sk as:

Sk = DkX
TA3,pXD̃k

where Dk = D
{
xT
b A1,pxkδb �=k

}n
b=1, D̃k = D

{
xT
b A2,pxkδb �=k

}n
b=1 and X =

[x1, . . . , xn]. The result follows since ‖Dk‖ = O(p−1/2), ‖D̃k‖ = O(p− 1
2 ) and

‖XTA3,pX‖ = O(1) as per [2].

Lemma 5. Let W1,p and W2,p be two sequences of positive random variables
such that there exists constant K ≥ 1 for which

EW2,p ≤ Kp−r (35)
EW 4

2,p ≤ K (36)
EW 4

1,p ≤ Kpα (37)

for some positive constants α and r. Assume that W1,p = O(1). Then, for any
ε > 0, we have

E [W1,pW2,p] ≤ 2Kp−r+ε.

Proof. Let ε > 0. We have:

E [W1,pW2,p] = E
[
W1,pW2,pδ{W1,p≥pε}

]
+ E
[
W1,pW2,pδ{W1,p≤pε}

]
≤
√

EW 2
1,pW

2
2,p

√
P [W1,p ≥ pε] + pεE [W2,p]

≤
√
Kp

α
4

√
P [W1,p ≥ pε] + Kp−r+ε

The result of the lemma follows by noticing that P [W1,p ≥ pε] = o(p−l) for
any l > 0, which follows from the definition of O(p−r) for random variables
described in the notation section. Taking l = 2r+ α

2 −2ε finishes the proof.

Remark 7. Lemma 5 offers a practical way to control the expectation of the
product of the two random variables W1,p and W2,p, in which the fourth moment
of one random variable, (here W1,p) can be coarsely bounded by a constant that
scales with pα. This situation occurs for instance when W1,p represents the
maximum of random variables with bounded moments 2. If W1,p additionally
satisfies W1,p = O(1), the growth rate of the expected value of the product
of these random variables will be essentially determined by that of W2,p. For
instance, when W2,p = 1 and W1,p = O(1) satisfying the conditions of Lemma 5,
then, for any small ε > 0,

E[W1,p] = O(pε)
2Assuming W1,p = max1≤k≤p |Yk| where Yk, k = 1, · · · , p have all finite moments. Then,

E|W1,p|4 ≤ E|
∑p

k=1 |Yk||4 ≤ p3∑p
k=1 E[|Yk|4]
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The asymptotic characterization of the behavior of quadratic forms has played
a key role in proving many illustrative results of the field of random matrix the-
ory. It turns out that in the currently studied case, quadratic forms of different
nature involving vector ξ(k,−k) will arise. Studying these new kinds of quadratic
forms is essential to our analysis, and is the purpose of the following lemma.

Lemma 6 (Behavior of quadratic forms involving vector ξ(k,−k) ). Let k ∈
{1, · · · , n}. Let A be a n × n symmetric matrix independent of xk. Denote by
Ek the expectation operator with respect to xk. Define vector dk as the n × 1
vector with elements:

[dk]i =
{ 1√

px
T
i C[k]xi − 1

p
3
2
Tr(C[k]C[i]) for i �= k

0, otherwise.
(38)

Define also matrix Σk as the n× n matrix with elements:

Σk =
{

(xT
i C[k]xj)2 for i �= k and j �= k

0 otherwise.
(39)

Then,

Ek

[
ξT(k,−k)Aξ(k,−k)

]
= dTkAdk + 2

p
1T (Σk �A)1 (40)

Moreover, we also have for any ε > 0:

Ek

∣∣∣ξT(k,−k)Aξ(k,−k) − Ekξ
T
(k,−k)Aξ(k,−k)

∣∣∣2s = ‖A‖2sO(p−s+ε) (41)

for s ∈ N
∗.

Proof. See Appendix A.1

Corollary 2. Let k ∈ {1, . . . , n}. Let A be a n×n symmetric matrix independent
of xk. Let a and b be n × 1 vector independent of xk. Denote by Ek the
expectation operator with respect to xk. Then,∣∣∣Ek

[
ξT(k,−k)AabTAξ(k,−k)

]∣∣∣ ≤ ‖a‖‖b‖‖A‖2O(1
p
) (42)

Proof. It follows from Lemma 6 that

Ek

[
ξT(k,−k)AabTAξ(k,−k)

]
= dTkAabTAdk + 2

p
bTAΣkAa (43)

where dk and Σk are defined in (38) and (39). Noting that ‖dk‖ = O( 1√
p ) and

that ‖Σk‖ = O(1), we can upper-bound the first and second terms in the above
equality as: ∣∣dTkAabTAdk

∣∣ ≤ ‖A‖2‖a‖‖b‖O(1
p
),∣∣∣∣2pbTAΣkAa

∣∣∣∣ ≤ 2‖b‖‖a‖‖A‖2O(1
p
)

which proves (42).
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4.2.3. Useful properties of the Stieltjes transform of the semi-circle distribution

Lemma 7. Let z ∈ C\
[
−2√c0ω, 2

√
c0ω
]
. Let m(z) be the unique Stieltjes

transform solution of the following fixed-point equation:

m(z) = − 1
z + ω2c0m2(z) .

Then, m(z) satisfies the following properties:

1. m(z) is analytic in C\
[
−2√c0ω, 2

√
c0ω
]

2. ∀
{
z ∈ C, |z| > 2√c0ω

}
,

|m(z)| ≤ 1
|z| − 2√c0ω

3. Let α > 0 be a strictly positive scalar. Then, it holds that

(∣∣1 − αm2(z)
∣∣)−1 ≤ (|z| + 2

√
c0ω)4

(
4|�z|−4 + 2

α
|�z|−2

)
. (44)

Moreover, if |z| ≥ 2
√

2√c0ω
√

4 + 2α
ω2c0

, then:

∣∣1 − αm2(z)
∣∣ ≥ |z|4

8(|z| + 2√c0ω)4 (45)

Proof. The proof is in Appendix A.2.

4.2.4. Variance evaluations of resolvent based quantities

In this section, we leverage the Poincaré-Nash inequality to evaluate the variance
of quadratic forms and weighted averages of diagonal elements of the resolvent
matrix.

Lemma 8. Let z ∈ C\R. Let {an} and {bn} be two sequences of deterministic
vectors with unit norm in R

n×1. Then, for any ε > 0:

E

[ ∣∣aTnQbn − EaTnQbn
∣∣2s ] = Oz(p−s+ε) for s ∈ N

∗ (46)

var
(

1√
n

n∑
i=1

Qiiai,n

)
= Oz(p−2+ε). (47)

Proof. For the sake of simplification, we shall remove the subscript n from an
and bn.

1. The proof of (46) is performed by induction on s. For s = 1,

E
∣∣aTQb− E

[
aTQb

]∣∣2 = var
(
aTQb

)
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Using Poincaré-Nash inequality, we can upper-bound the variance of aTQb
as follows:

var(aTQb) ≤
p∑

l=1

n∑
k=1

E

[∣∣∣∂aTQb

∂Zlk

∣∣∣2] (48)

To prove the desired result, we shall show that:
p∑

l=1

n∑
k=1

∣∣∣∂aTQb

∂Zlk

∣∣∣2 ≤ |�z|−4O(p−1) (49)

For that, we rely on the differentiation formula in (29) to obtain:
p∑

l=1

n∑
k=1

∣∣∣∂aTQb

∂Zlk

∣∣∣2≤ 8
p∑

l=1

n∑
k=1

∣∣∣ n∑
i=1

n∑
j=1

aibj
∑
s �=k

(xT
s xk)

[
C

1
2
[k]xs

]
l
QikQsj

∣∣∣2

+8
p∑

l=1

n∑
k=1

∣∣∣ n∑
i=1

n∑
j=1

aibj
∑
b �=k

(xT
s xk)

[
C

1
2
[k]xs

]
l
QkjQsi

∣∣∣2

= 8
p∑

l=1

n∑
k=1

∣∣∣aTQek
∑
s �=k

(xT
s xk)
[
C

1
2
[k]xs

]
l
eTs Qb

∣∣∣2

+ 8
p∑

l=1

n∑
k=1

∣∣∣aTQes
∑
s �=k

(xT
s xk)
[
C

1
2
[k]xs

]
l
eTkQb

∣∣∣2 (50)

We will only treat the first term as the second one can be handled in the
same manner. Expanding the sum of the first term, we obtain:

8
p∑

l=1

n∑
k=1

∣∣∣∣∣∣aTQek
∑
s �=k

(xT
s xk)

[
C

1
2
[k]xs

]
l
eTs Qb

∣∣∣∣∣∣
2

(51)

= 8
n∑

k=1

∑
s1 �=k

∑
s2 �=k

|aTQek|2(xT
s1xk)(xT

s2xk)xT
s1C[k]xs2 [Qb]s1 [QHb]s2 (52)

= 8
n∑

k=1

|aTQek|2bTQSkQ
Hb (53)

where Sk is the n× n matrix with entries

[Sk]s1s2 = (xT
s1xk)(xT

s2xk)xT
s1C[k]xs2 .

From Lemma 4, the spectral norms of matrices Sk satisfy:

max
1≤k≤n

‖Sk‖ = O(p−1)

Using the fact
∑n

k=1 |aTQek|2 is bounded by |�z|−2‖a‖2, we thus prove
(49), and hence (46) follows by Lemma 5. Assume now that (46) holds
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true up to s− 1 ∈ N
∗. Note that

E

[∣∣aTQb− E
[
aTQb

]∣∣2s] =
(
E

[∣∣aTQb− EaTQb
∣∣s])2

+ var
(
aTQb− EaTQb

)s
Using the induction assumption, along with Cauchy-Schwartz inequality,
the first term in the above equation can be shown to be Oz(p−s+ε). It
remains thus to prove the same result for the second term. Based on the
Poincaré-Nash inequality,

var(aTQb− EaTQb)s ≤ s2
p∑

l=1

n∑
k=1

E

[∣∣∣∣(aTQb− EaTQb)s−1 ∂a
TQb

∂Zlk

∣∣∣∣
2]

= s2
E

[
(aTQb− EaTQb)2(s−1)

p∑
l=1

n∑
k=1

∣∣∣∣∂aTQb

∂Zlk

∣∣∣∣
2]

Using (49) along with the induction assumption, we obtain:

var(aTQb− EaTQb)s = Oz(p−s+ε).

2. Proof of var
(

1√
n

∑n
i=1 aiQii

)
= Oz(p−2+ε). From Poincaré-Nash inequal-

ity, we have:

var
(

1√
n

n∑
k=1

aiQii

)
≤ 1

n

p∑
l=1

n∑
k=1

E

∣∣∣∣∣
n∑

i=1
ai
∂Qii

∂Zlk

∣∣∣∣∣
2

= 16
n
E

n∑
k=1

[
QD {ai}ni=1

(
QSkQ

H
)
D {ai}ni=1 Q

H
]
kk

= 16
n
E

[
tr
(
QD {ai}ni=1

(
QSkQ

H
)
D {ai}ni=1 Q

H
) ]

≤ 16
n
E[‖Q‖4‖Sk‖tr((D {ai}ni=1)

2)]

where the last inequality follows from the fact that tr(AB) ≤ ‖A‖ tr(B) for
A and B two n× n matrices with B being hermitian non-negative. Since
tr((D {ai}ni=1)

2) = ‖a‖2 is bounded, we obtain: var
(

1√
n

∑n
i=1 aiQii

)
=

Oz(p−2+ε).

Lemma 9. Let z ∈ C\R. For j ∈ {1, . . . , n}, let (Ap,j)p∈N∗ be a sequence of
p× p matrices satisfying lim supp max1≤j≤n ‖Aj,p‖ < ∞. Then, for any s ∈ N

∗

and ε > 0

max
1≤j≤n

E

∣∣∣∣∣∣
∑
k �=j

1
√
p

(
xT
kAp,jxk − 1

p
trC[k]Ap,j

)
Qjk

∣∣∣∣∣∣
2s

= Oz(p−2s+ε) (54)
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Proof. See Appendix A.3

Lemma 10. Let z ∈ C\R. Let a be a unit norm deterministic vector in Rn×1.
Then, for any ε > 0 and s ∈ N

∗,

E

[ ∣∣aTQkξ(k,−k)
∣∣2s ] = Oz(p−s+ε)

Proof. The proof is carried out by induction on s. For s = 1, the result follows
by applying Corollary 2. Let s ∈ N. Assume that the result holds true for all
k ≤ s−1, and let us prove it for k = s. To begin with, we decompose aTQkξ(k,−k)
as:

aTQkξ(k,−k) = aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

]
+ Ek

[
aTQkξ(k,−k)

]
and apply Jensen inequality to obtain:

E
∣∣aTQkξ(k,−k)

∣∣2s ≤ 22s−1
E

[ ∣∣∣aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

]∣∣∣2s ]
+ 22s−1

E

[ ∣∣∣Ek

[
aTQkξ(k,−k)

]∣∣∣2s ] (55)

The second term in the right-hand side of the above inequality is Oz(p−s+ε) by
Corollary 2. To handle the first quantity, we use the following equality:

Ek

[ ∣∣∣aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

]∣∣∣2s ] (56)

= vark
((

aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

])s)
+
∣∣∣Ek

[ ∣∣∣aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

]∣∣∣s ]∣∣∣2 (57)

where vark is the variance with respect to the random vector xk. Hence,

E

[ ∣∣∣aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

]∣∣∣2s ]
= E

[
vark

((
aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

])s)]
+ E

[∣∣∣Ek

[ ∣∣∣aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

]∣∣∣s ]∣∣∣2] (58)

To treat the second term in (58), we apply Cauchy-Schwartz inequality to find:∣∣∣Ek

[ ∣∣∣aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

]∣∣∣s ]∣∣∣2
≤ Ek

[ ∣∣∣aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

]∣∣∣2s−2 ]
vark

(
aTQkξ(k,−k)

)
By Corollary 2,

vark(aTQkξ(k,−k)) ≤ Ek|aTQkξ(k,−k)|2 ≤ ‖a‖2|�z|−2O(1
p
)
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Hence using Lemma 5 along with the induction assumption, we obtain:

E

[∣∣∣Ek

[ ∣∣∣aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

]∣∣∣s ]∣∣∣2] = Oz(p−s+ε) (59)

To conclude, it remains thus to handle the first term in (58). For that, we use
Poincaré-Nash inequality, which leads to:

vark
((

aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

])s)

≤
p∑

l=1

∣∣∣∣∣∣
∂
(
aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

])s
∂Zlk

∣∣∣∣∣∣
2

=
p∑

l=1

s2
(
aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

])2(s−1)
∣∣∣∣∂aTQkξk,−k

∂Zlk

∣∣∣∣
2

(60)

= 4
p∑

l=1
s2
(
aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

])2(s−1)

×

∣∣∣∣∣∣
n∑

j �=k

[aTQk]j(xT
j xk)
[
C

1
2
[k]xj

]
l

∣∣∣∣∣∣
2

(61)

= 4s2
(
aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

])2(s−1)
aTQkSkQka (62)

where Sk is the n× n matrix with elements

[Sk]j1,j2 = δj1 �=kδj2 �=k(xT
j1xk)(xT

j2xk)xT
j1C[k]xj2 .

From Lemma 4, ‖Sk‖ = O(p−1), hence,

|aTQkSkQka| ≤ |�z|−2‖a‖2O(p−1) (63)

From the induction assumption, it follows that

E(aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

])2(s−1)
= Oz(p−s+1+ε).

This, together with (63) and Lemma 5 leads to

E

[
vark
((

aTQkξ(k,−k) − Ek

[
aTQkξ(k,−k)

])s)]
= Oz(p−s+ε) (64)

Combining (64) with (59), we thus prove the desired result.

A direct corollary of Lemma 10 is the following result:

Corollary 3. Let i �= k with i, k ∈ {1, · · · , n}. Then, for any ε > 0,

E

[
|Qik|2s

]
= Oz(p−s+ε)

for s ∈ N and s ≥ 1. Moreover,

E[Qik] = Oz(p−1+ε) (65)
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Proof. Recalling (33), we have:

Qik = −Qkke
T
i Qkξ(k,−k)

Hence,

E

[
|Qik|s

]
≤ |�z|−s

E

[
|eTi Qkξ(k,−k)|s

]

From Lemma 10, E
[
|eTi Qkξ(k,−k)|s

]
= Oz(p−s+ε), and thus so is E

[
|Qik|s

]
. To

prove (65), we decompose Qik as:

Qik = −(Qkk − E[Qkk])eTi Qkξ(k,−k) − E[Qkk]eTi Qkξ(k,−k) (66)

and use Lemma 10 along with Lemma 8, to prove that

E
[
(Qkk − E[Qkk])eTi Qkξ(k,−k)

]
= Oz(p−1+ε) (67)

Computing the expectation with respect to xk, we can show that:

E

[
eTi Qkξ(k,−k)

]
= 1

√
p

∑
l �=k

E

[
[Qk]il(xT

l C[k]xl −
1
p

tr(C[k]C[l]))
]

(68)

= 1
√
p

∑
l/∈{k,i}

E

[
[Qk]il(xT

l C[k]xl −
1
p

tr(C[k]C[l]))
]

+ 1
√
p
E

[
[Qk]ii(xT

i C[k]xi −
1
p

tr(C[k]C[i]))
]

(69)

The second term in the above inequality is obviously Oz(p−1+ε). The control
of the first term can be performed using Lemma 9. To see this, we define X̃k

as the n − 1 × n − 1 matrix made up of the columns of X except the k-th
one and denote by x̃1, · · · , x̃n−1 its corresponding columns. Then, we form the
n−1×n−1 matrix Φ̂k =

{√
p
(
(x̃T

i x̃j)2 − E[(x̃T
i x̃j)2]

)
δi �=j

}n−1
i,j=1 and introduce

its associated resolvent Q̂k(z) = (Φ̂k − zIn−1)−1. With this, it takes no much
effort to notice that the first term is given by

1
√
p

∑
l �=i

E

[
[Q̂k]il(x̃T

l C[k]x̃l − E[x̃T
l C[k]x̃l])

]

which is clearly Oz(p−1+ε) by Lemma 9. We thus obtain:

E

[
eTi Qkξ(k,−k)

]
= Oz(p−1+ε) (70)

Combining (67) and (70), we thus prove that the expectation of both quantities
in (66) are Oz(p−1+ε) which shows (65).
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4.2.5. Other important results

Lemma 11. Let k, b and j integers in the set {1, . . . , n}. Let A1,p and A2,p be
two sequences of p×p matrices possibly random but independent of xj and have
spectral norms of order O(1). Then, for any small ε > 0,

max
1≤j≤n

E

∣∣∣∣∣∣
∑

s/∈{k,b,j}
xT
s A1,pxkx

T
s A2,pxbQsj

∣∣∣∣∣∣
2

= Oz(p−2+ε)

Proof. See Appendix A.4.

Lemma 12. Let j, k ∈ {1, · · · , n} with j �= k. Let A1,j,p, A2,j,p, A3,j,p and
A4,j,p be four sequences of p×p matrices with bounded spectral norm. Then, for
any ε > 0, we have:

max
j �=k

E

∣∣∣∣∣∣
∑

r/∈{j,k}

∑
b/∈{j,r,k}

xT
b A1,j,pxkx

T
b A2,j,pxjx

T
kA3,j,pxrx

T
r A4,j,pxjQbr

∣∣∣∣∣∣
2

= Oz(p−3+ε)

Proof. See Appendix A.6

Lemma 13. Let k ∈ {1, · · · , n}. Let b be a unit norm deterministic vector in
R

n. Let c be a random vector in R
n independent of xk such that ‖c‖2 = O(1)

Then, for z ∈ C\R and any small ε:
∑
r �=k

∑
l �=k

(E [Qrlbrcl] − E [[Qk]rl brcl]) = Oz(p−1+ε).

where bl and cr denote the r-th and the l-th entries of a and b, respectively.

Proof. See Appendix A.5

4.3. Expression of matrix EQjj using the integration by parts
formula

The objective of this section is to develop the diagonal elements of the resolvent
matrix using the integration by Parts formula. From the resolvent identity:

QΦ = In + zQ,

we have for 1 ≤ j ≤ n,

EQjj = −1
z

+ 1
z

∑
k �=j

E [QjkΦkj ]
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Working on the rightmost term (with k �= j) by expanding Φkj as a function of
Z, we have:

E [QjkΦkj ]

= 1
p

3
2

p∑
a,b=1

p∑
l,l′=1

p∑
m,m′=1

[
C

1
2
[k]
]
al

[
C

1
2
[j]
]
al′

[
C

1
2
[k]
]
bm

[
C

1
2
[j]
]
bm′E
[
ZlkZl′jZmkZm′jQjk

]

− 1
p

3
2

trC[k]C[j]E [Qjk] (71)

Using the integration by parts formula in (30) along with the differentiation
formula in (29), we obtain:

E
[
ZlkZl′jZmkZm′jQjk

]
= E
[
Zlkδl′m′ZmkQjk

]
+ E
[
ZlkZl′jZmk

∂Qjk

∂Zm′j

]
= E [Zlkδl′m′ZmkQjk]

− 2E
[
ZlkZl′jZmk

∑
b �=j

(xT
b xj)

[
C

1
2
[j]xb

]
m′

(QjjQbk + QjkQbj)
]

Plugging the above equation into (71), we ultimately get:

∑
k �=j

E [QjkΦkj ] = E
[∑
k �=j

1
√
p

(
xT
kC[j]xk − 1

p
trC[k]C[j]

)
Qjk

]
− 2
∑
k �=j

∑
r �=j

E
[
xT
j xkx

T
r xjx

T
kC[j]xr(QjjQrk + QjkQrj)

]

Hence,
zEQjj = −1 + αj(z) + βj(z) + γj(z) + θj(z) (72)

where αj(z), βj(z), γj(z) and θj(z) write as:

αj(z) = E
[∑
k �=j

1
√
p

(
xT
kC[j]xk − 1

p
trC[k]C[j]

)
Qjk

]
(73)

βj(z) = −2
∑
k �=j

E

[(
xT
j xk

)2
xT
kC[j]xkQjjQkk

]
(74)

γj(z) = −2
∑
k �=j

∑
r/∈{j,k}

E
[
xT
j xkx

T
r xjx

T
kC[j]xrQjjQrk

]
(75)

θj(z) = −2
∑
k �=j

∑
r �=j

E
[
xT
j xkx

T
r xjx

T
kC[j]xrQjkQrj

]
(76)

The decomposition in (72) will play a key role in the proof of our main results,
as will be seen in section 5.
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5. Proof of the main results

5.1. Proof of Theorem 1

The proof of Theorem 1 will rely on (72) in which quantities αj(z), γj(z) and
θj(z) constitute error terms that converge to zero in the asymptotic regime.
Indeed, a direct application of Lemma 9 allows us to show that:

max
1≤j≤n

|αj(z)| = Oz(p−1+ε). (77)

To control γj(z) and θj(z), we will rely on Lemma 11. Indeed, by Lemma 11,

max
1≤j≤n

|γj(z)| = Oz(p−
1
2+ε) (78)

To handle θj(z), we start by decomposing it as:

θj(z) = −2
∑
k �=j

∑
r/∈{j,k}

E
[
xT
j xkx

T
r xjx

T
kC[j]xrQjkQrj

]

− 2
∑
k �=j

E
[
xT
j xkx

T
k xjx

T
kC[j]xkQjkQkj

]
Then, using Lemma 11 and the approximations in Corollary 3, it unfolds that:

max
1≤j≤n

|θj(z)| = Oz(p−1+ε). (79)

Finally, to treat βj(z), we use the fact that xT
kC[j]xk − 1

p tr(C[k]C[j]) = O(p− 1
2 )

in combination with Lemma 5 to obtain:

βj(z) = −2
∑
k �=j

1
p

(
1
p

trC[k]C[j]

)2

EQkkEQjj + Oz(p−
1
2+ε) (80)

= − ω2c0
n

n∑
k=1

EQkkEQjj + Oz(p−
1
2+ε) (81)

where (81) follows from the fact that
√

2
p trC[k]C[j] = ω+O(p− 1

2 ). Now, putting
(77), (78), (79) and (81) together with (72), we obtain:

zEQjj = −1 − ω2c0gn(z)EQjj + Oz(p−
1
2+ε) (82)

Summing (82) over index j, we get

ω2c0g
2
n(z) + zgn(z) + 1 = Oz(p−

1
2+ε). (83)

where we recall that gn(z) = 1
n trEQ(z). Reaching this equation, termed as

“Master equation” in [5], it can be proven by following the same steps in [5]
that:

|gn(z) −m(z)| = Oz(p−
1
2+ε). (84)

The weak convergence of the spectral measure of Φ to the semi-circle law follows
from using the fact that 1

n trQ−gn(z) converge almost surely to zero. This ends
up the proof of Theorem 1.
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5.2. Proof of Theorem 2

Theorem 2 provides a deterministic equivalent for bilinear forms of the resolvent
matrix Q(z).Due to the almost sure convergence of aTnQ(z)bn − aTnEQ(z)bn to
zero, guaranteed by Lemma 8, the problem amounts to finding an asymptotic
approximation for aTnEQ(z)bn. It can be easily seen by injecting the approxima-
tion in (84) into (82) that the contribution of the diagonal elements, given by∑n

k=1 ak,nbk,nE [Q(z)]kk can be approximated by m(z)aT b. It remains thus to
study the contribution of the off-diagonal elements which we denote by:

Υ(an, bn, z) =
n∑

k=1

∑
r �=k

ak,nbr,nE[[Q(z)]kr] (85)

where ak,n and br,n refers to the k-th and r-th elements of vectors an and bn
respectively. This is performed in three steps. In a first step, we establish an
equation between Υ(an, bn, z) and the quantities {α̃r,j(z)}nr,j=1 defined as:

α̃r,j(z) = E

[∑
k �=j

1
√
p

(
xT
kC[r]xk − 1

p
tr(C[r]C[k])

)
Qkj

]
(86)

In the second step, we establish an equation between α̃r,j and Υ( 1n√
p , ej , z) where

ej is the j-th canonical vector of Rn. Gathering these results, we obtain a linear
equation whose solution is a deterministic equivalent for Υ( 1n√

p , bn, z). Plugging
this deterministic equivalent back into the relations obtained in the first and
the second step, we finally derive a deterministic equivalent for Υ(an, bn, z) and
α̃r,j(z).

5.2.1. Step 1: Expression for Υ(an, bn, z)

Proposition 1. Let {an} and {bn} be two sequences of vectors in C
n×1 with

bounded Euclidean norm. Then for any z ∈ C\R and any small positive ε

Υ(an, bn, z) = −
n∑

k=1

∑
r �=k

ak,nbr,nE [Qkk] α̃k,r(z) + Oz

(
p−

1
2+ε
)
. (87)

Moreover, if bn is such that
∑n

k=1 |bn,k| is uniformly bounded in n, then (87)
becomes:

Υ(an, bn, z) = −
n∑

k=1

∑
r �=k

ak,nbr,nE [Qkk] α̃k,r(z) + Oz

(
p−1+ε

)
. (88)

Proof. See Appendix B.1
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5.2.2. Step 2: Expression for α̃r,j(z)

Proposition 2. Let r and j be two integers in {1, . . . , n}. The following ap-
proximation holds true:

α̃r,j(z) = − 2
p

3
2

n∑
k=1

E(Qkk)Υ( 1n√
p
, ej , z)

1
p

tr((C◦)4)

− 2
p2

n∑
k=1

E[Qkk]E[Qjj ]
1
p

tr((C◦)4) + Oz(p−
5
4 ). (89)

Proof. See Appendix B.2

5.2.3. Step 3: Asymptotic equivalents for α̃r,j and Υ(an, bn, z)

Proposition 3. The following approximations hold true:

Υ(an, bn, z) = 1
p

c0m
3(z)Ω2aTn1n1Tn bn

1 − c20Ω2m2(z) + Oz(p−
1
4 ) (90)

α̃r,j(z) = −c0
p

m2(z)Ω2

1 − c20Ω2m2(z) + Oz(p−
5
4 ), r, j = 1, · · · , n (91)

If bn is such that
∑n

k=1 |bn,k| is uniformly bounded in n, then (90) becomes:

Υ(an, bn, z) = 1
p

c0m
3(z)Ω2aTn1n1Tn bn

1 − c20Ω2m2(z) + Oz(p−
3
4 ) (92)

Proof. Combining (89) and (87), we obtain:

Υ(an, bn, z) = 2
p

3
2

n∑
k=1

∑
r �=k

ak,nbr,nE(Qkk)
n∑

�=1

E(Qll)Υ( 1n√
p
, er, z)

1
p
tr((C◦)4)

+ 2
p2

n∑
k=1

∑
r �=k

ak,nbr,nE[Qkk]
n∑

l=1
E[Qll]E[Qrr]

1
p

tr((C◦)4) + Oz(p−
1
4 )

(93)

= 2
p

3
2

n∑
k=1

ak,nE[Qkk]
n∑

�=1

E[Qll]Υ( 1n√
p
, bn, z)

1
p
tr((C◦)4)

+ 2
p2

n∑
k=1

n∑
r=1

ak,nbr,nE[Qkk]
n∑

l=1

E[Qll]E[Qrr]
1
p

tr((C◦)4) + Oz(p−
1
4 )

(94)
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Particularizing (94) for an = 1n√
p , we obtain:

Υ( 1n√
p
, bn, z) = 2

p2

n∑
k=1

E(Qkk)
n∑

�=1
E(Qll)Υ( 1n√

p
, bn, z)

1
p
tr((C◦)4)

+ 2
p

5
2

n∑
k=1

E[Qkk]
n∑

l=1

E[Qll]
n∑

r=1
br,nE[Qrr]

1
p
tr((C◦)4) + Oz(p−

1
4 )

(95)

= c20(gn(z))2Υ( 1n√
p
, bn, z)Ω2 + c20Ω2(gn(z))2 1

√
p

n∑
r=1

br,nE[Qrr]

+ Oz(p−
1
4 ) (96)

Using (82) and (84), we can easily see that:

E[Qrr] −m(z) = Oz(p−
1
2+ε)

Thus,

(
1 − c20Ω2m2(z)

)
Υ( 1n√

p
, bn, z) = c20Ω2m3(z) 1Tn√

p
bn + Oz(p−

1
4 )

Invoking Lemma 7, it can be shown that:

(
1 − c20Ω2m2(z)

)−1 = Oz(1)

Hence,

Υ( 1n√
p
, bn, z) = c20Ω2m3(z)

1 − c20Ω2m2(z)
1Tn√
p
bn + Oz(p−

1
4 ). (97)

Plugging (97) back into (94), we thus obtain:

Υ(an, bn, z) = 1
p

c0Ω2m3(z)aTn1n1Tn bn
1 − c20Ω2m2(z) + Oz(p−

1
4 )

The proof of (92) follows along the same lines by using the approximation (88)
of Proposition (1), while that of (91) follows by plugging the approximations in
(92) into (89).

5.2.4. Concluding.

We end up the proof of Theorem 2 by noticing that
∑n

k=1 akbkEQkk = aT bm(z)+
Oz(p−

1
2+ε).
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5.3. Proof of Theorem 3

For the sake of simplification, we remove the subscript n from the notation of an,
bn and Dn. Following the same kind of calculations as in the proof of Lemma
8, we can show that for any z1, z2 ∈ C\R, and s ∈ N

∗,

E

[ ∣∣∣aTQ(z1)DQ(z2)b− E

[
aTQ(z1)DQ(z2)b

∣∣∣2s ] = Oz(p−s+ε)

Therefore, the proof of Theorem 3 amounts to finding an asymptotically deter-
ministic equivalent for E

[
aTQ(z1)DQ(z2)b

]
. To begin with, we expand it as:

E

[
aTQ(z1)DQ(z2)b

]
=

n∑
i=1

n∑
j=1

n∑
k=1

E

[
ai[Q(z1)]ikDkk[Q(z2)]kjbj

]
(98)

= Z1 + Z2 + Z3 + Z4 (99)

where

Z1 =
n∑

i=1

n∑
j=1

∑
k/∈{i,j}

E

[
ai [Q(z1)]ik Dkk [Q(z2)]kj bj

]

Z2 =
n∑

j=1

∑
i �=j

E

[
ai [Q(z1)]ii Dii [Q(z2)]ij bj

]

Z3 =
n∑

j=1

∑
i �=j

E

[
ai [Q(z1)]ij Djj [Q(z2)]jj bj

]

Z4 =
n∑

i=1
E [ai [Q(z1)]ii Dii [Q(z2)]ii bi]

Using the fact that E[[Q(z)]ii] −m(z) = Oz(p−
1
2+ε), we approximate Z4 as:

Z4 = m(z1)m(z2)aTDb + Oz(p−
1
2+ε) (100)

while Z2 can be treated as follows:

Z2 =
n∑

j=1

∑
i �=j

aiE
[
[[Q(z1)]ii − E [[Q(z1)]ii]]Dii [Q(z2)]ij bj

]

+
n∑

j=1

∑
i �=j

aiE [[Q(z1)]ii]DiiE

[
[Q(z2)]ij

]
bj

=
n∑

j=1

∑
i �=j

aiE [[Q(z1)]ii]DiiE

[
[Q(z2)]ij

]
bj + Oz(p−

1
2+ε)
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since, applying Cauchy-Schwartz Lemma on the first term of the above equa-
tion, we obtain:∣∣∣∣∣∣

n∑
j=1

∑
i �=j

aiE
[
([Q(z1)]ii − E [[Q(z1)]ii])Dii [Q(z2)]ij bj

]∣∣∣∣∣∣
≤

√√√√ n∑
i=1

a2
iD

2
iiE |[Q(z1)]ii − E [Q(z1)]ii|

2

√√√√ n∑
i=1

|[Q(z2)b]i|
2

= Oz(p−
1
2+ε)

Recalling the definition of Υ(an, bn, z) in (85), we may write Z2 as:

Z2 =
n∑

i=1
aiDiiE[[Q(z1)]ii]Υ(ei, b, z2) + Oz(p−

1
2+ε)

=
n∑

i=1
aiDiiΥ(ei, b, z2)m(z1) + Oz(p−

1
2+ε)

Using (92), we thus obtain:

Z2 = c0Ω2m3(z2)m(z1)
1 − Ω2c20m

2(z2)
aTD

1n1Tn
p

b + Oz(p−
1
4 ) (101)

Similarly, we can prove that:

Z3 = c0Ω2m3(z1)m(z2)
1 − c20Ω2m2(z1)

aT
1n1Tn
p

Db + Oz(p−
1
4 ) (102)

It remains thus to treat the quantity Z1. Using (33), we get:

Z1 =
n∑

k=1
E

[
Dkkξ

T
(k,−k)Qk(z1)abTQk(z2)ξ(k,−k)[Q(z1)]kk[Q(z2)]kk

]

= m(z1)m(z2)
n∑

k=1

DkkE

[
ξT(k,−k)Qk(z1)abTQk(z2)ξ(k,−k)

]
+ Oz(p−

1
2+ε)

= m(z1)m(z2)
n∑

k=1
DkkE

[
dTkQk(z1)abTQk(z2)dk

]

+m(z1)m(z2)
2
p

n∑
k=1

DkkE

[
aTQk(z1)ΣkQk(z2)b

]
+ Oz(p−

1
2+ε)

where the last equality follows from Lemma 6 and Σk is defined in (39). To
treat the first term, we will make use of the following statements

E

[ ∣∣dTkQk(z)c
∣∣2 ] = Oz(p−1+ε) (103)
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var(dTkQk(z)c) = Oz(p−2+ε) (104)

where c ∈ C
n×1 is deterministic with bounded norm and z ∈ C\R. The proof

of (103) follows by noting that ‖dk‖2 = O(p−1) whereas the proof of (104) is
based on standard calculations using the Poincaré-Nash inequality and is thus
omitted. Based on (103) and (104), we approximate the first term in Z1 (with
an error Oz(p−

1
2+ε)) as follows

m(z1)m(z2)
n∑

k=1

DkkE

[
dTkQk(z1)abTQk(z2)dk

]

= m(z1)m(z2)
n∑

k=1
DkkE

[
dTkQk(z1)a

]
E
[
bTQk(z2)dk

]
+ Oz(p−

1
2+ε) (105)

= m(z1)m(z2)
n∑

k=1

DkkE
[
dTkQ(z1)a

]
E
[
bTQ(z2)dk

]
+ Oz(p−

1
2+ε) (106)

where the last equality follows from Lemma 13. To continue, we note that the
following relation holds true

E

[
cTQ(z)dk

]
=

n∑
i=1

ciα̃k,i(z) + Oz(p−1+ε) (107)

with z ∈ C\R, c being a n × 1 vector with bounded norm and α̃k,i(z) defined
in (86). To prove it, we shall expand E

[
cTQ(z)dk

]
as:

E

[
cTQ(z)dk

]
=

n∑
i=1

ci
∑
j �=k

1
√
p
E

[(
xT
j C[k]xj −

1
p

tr(C[k]C[j])
)

[Q(z)]ij
]

(108)

=
n∑

i=1
ci
∑
j �=i

1
√
p
E

[(
xT
j C[k]xj −

1
p

tr(C[k]C[j])
)

[Q(z)]ij
]

+
n∑

i=1
ci

1
√
p
E

[(
xT
i C[k]xi −

1
p

tr(C[k]C[i])
)

([Q(z)]ii − E[[Q(z)]ii])
]

−
n∑

i=1
ci

1
√
p
E

[(
xT
kC[k]xk − 1

p
tr(C[k]C[k])

)
[Q(z)]ik

]
(109)

and note that the two last quantities in (109) are Oz(p−1+ε). With (107) at
hand, the first term in Z1 can be apprroximated by:

m(z1)m(z2)
n∑

k=1

DkkE

[
dTkQk(z1)abTQk(z2)dk

]
(110)

= m(z1)m(z2)
n∑

k=1

Dkk

n∑
i=1

aiα̃k,i(z1)
n∑

j=1
bjα̃k,j(z2) + Oz(p−

1
2+ε) (111)
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We may now invoke Proposition 3 to replace α̃k,i(z1) and α̃k,j(z2) by their
asymptotic equivalents. In doing so, we obtain:

m(z1)m(z2)
n∑

k=1

DkkE

[
dTkQk(z1)abTQk(z2)dk

]

= 1
p

tr(D)
c20m

3(z1)m3(z2)Ω4aT
1n1T

n

p b

(1 − c20Ω2m2(z2))(1 − c20Ω2m2(z1))
+ Oz(p−

1
4 ) (112)

It remains now to handle the second term in Z1. Adapting the calculations of
[11] to our setting (Page 14-20 in [11]), we can prove that:

‖Σk − 1
p2 tr((C◦)4)(1n1Tn − In) − (1

p
tr((C◦)2))2In‖ = O(p− 1

4 ).

Hence,

m(z1)m(z2)
2
p

n∑
k=1

DkkE

[
aTQk(z1)ΣkQk(z2)b

]
(113)

= m(z1)m(z2)
2
p

n∑
k=1

Dkk

(
1
p

tr((C◦)2)
)2

E

[
aTQk(z1)Qk(z2)b

]

+ m(z1)m(z2)
2
p

n∑
k=1

Dkk

(
1
p

tr((C◦)4)
)
E

[
aTQk(z1)

1n1Tn
p

Qk(z2)b
]

+ Oz(p−
1
4 )

(114)

Using Lemma 13 and the fact that

max(var(aTQ(z) 1n√
p
), var(bTQ(z) 1n√

p
) = Oz(p−1+ε),

we thus obtain:

m(z1)m(z2)
2
p

n∑
k=1

DkkE

[
aTQk(z1)ΣkQk(z2)b

]
(115)

= m(z1)m(z2)
2
p

n∑
k=1

Dkk

(1
p

tr((C◦)4)
)1
p
E

[
aTQ(z1)1n

]
E

[
1TnQ(z2)b

]

+ m(z1)m(z2)
2
p

n∑
k=1

Dkk

(1
p

tr((C◦)2)
)2
E

[
aTQ(z1)Q(z2)b

]
+ Oz(p−

1
4 )

= m(z1)m(z2)
2
p

tr(D)
(1
p

tr((C◦)2)
)2
E

[
aTQ(z1)Q(z2)b

]

+
m2(z1)m2(z2) 1

p tr(D)Ω2

p(1 − Ω2c20m
2(z1))(1 − Ω2c20m

2(z2))
aT 1n1Tn b + Oz(p−

1
4 ) (116)
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where (116) follows by using Theorem 2. Combining (112) and (116), we con-
clude that:

Z1 = m(z1)m(z2)ω2 1
p

tr(D)E
[
aTQ(z1)Q(z2)b

]

+
m2(z1)m2(z2) 1

p tr(D)Ω2aT 1n1Tn b
p(1 − Ω2c20m

2(z1))(1 − Ω2c20m
2(z2))

+
1
p tr(D)c20m3(z1)m3(z2)Ω4aT

1n1T
n

p b

(1 − c20Ω2m2(z1))(1 − c20Ω2m2(z2))
+ Oz(p−

1
4 ) (117)

Combining (117), (101), (102) and (100), we obtain:

E

[
aTQ(z1)DQ(z2)b

]
= m(z1)m(z2)

1
p

tr(D)ω2
E

[
aTQ(z1)Q(z2)b

]

+
m2(z1)m2(z2) 1

p tr(D)Ω2aT 1n1Tn b
p(1 − Ω2c20m

2(z1))(1 − Ω2c20m
2(z2))

+
c20Ω4 1

p tr(D)m3(z1)m3(z2)aT 1n1T
n

p b

(1 − c20Ω2m2(z1))(1 − c20Ω2m2(z2))

+
c0Ω2m3(z2)m(z1)aTD 1n1T

n

p b

1 − Ω2c20m
2(z2)

+
c0Ω2m3(z1)m(z2)aT 1n1T

n

p Db

1 − c20Ω2m2(z1)
+ m(z1)m(z2)aTDb + Oz(p−

1
4 ) (118)

Setting D = In, we obtain:

E

[
aTQ(z1)Q(z2)b

]
= ω2c0m(z1)m(z2)E

[
aTQ(z1)Q(z2)b

]
+ m(z1)m(z2)aT b

(119)

+ m(z1)m(z2)c0Ω2
[
m2(z1) + m2(z2) + m(z1)m(z2) − c20Ω2m2(z1)m2(z2)

]
×
(
1 − Ω2c20m

2(z1)
)−1(

1 − Ω2c20m
2(z2)

)−1 1
p
aT 1n1Tn b + Oz(p−

1
4 ) (120)

thus yielding:
E

[
aTQ(z1)Q(z2)b

]
= g(z1, z2) + Oz(p−

1
4 ) (121)

with

g(z1, z2) = (1 − ω2c0m(z1)m(z2))−1m(z1)m(z2)aT b

+ m(z1)m(z2)c0Ω2
[
m2(z1) + m2(z2) + m(z1)m(z2) − c20Ω2m2(z1)m2(z2)

]
×
(
1 − Ω2c20m

2(z1)
)−1(1 − Ω2c20m

2(z2)
)−1(1 − ω2c0m(z1)m(z2))−1 1

p
aT 1n1Tn b

(122)

Plugging (121) into (118), we get:

E

[
aTQ(z1)DQ(z2)b

]
= m(z1)m(z2)aTDb + m(z1)m(z2)ω2 1

p
tr(D)g(z1, z2)
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+ r̃(z1, z2) + Oz(p−
1
4 ) (123)

where

r̃(z1, z2) =
c0Ω2m3(z2)m(z1)aTD 1n1T

n

p b

1 − Ω2c20m
2(z2)

+
c0Ω2m3(z1)m(z2)aT 1n1T

n

p Db

1 − Ω2c20m
2(z1)

+
1
p tr(D)Ω2m2(z1)m2(z2)(1 + c20Ω2m(z1)m(z2))aT 1n1T

n

p b(
1 − Ω2c20m

2(z1)
)(

1 − Ω2c20m
2(z2)

) . (124)

5.4. Almost sure location of the eigenvalues of Φ (Proof of Theorem
4)

The goal of Theorem 4 is to characterize the location of the eigenvalues of Φ
in the asymptotic regime. To this end, we will resort to the tools developed in
[13], which consists in analyzing the difference gn(z) − m(z). If this difference
converges to zero faster than O(p−1), then it can be proven under other mild as-
sumptions that all the eigenvalues are almost surely located in the neighborhood
of the limiting support S =

[
−2√c0ω, 2

√
c0ω
]
. Unfortunately, this does not hold

in our case, since gn(z)−m(z) = Oz(p−
1
2+ε). The analysis of the location of the

eigenvalues becomes thus less trivial and requires a deeper investigation of the
difference gn(z)−m(z). As a matter of fact building on the ideas of [5, 16, 19],
the characterization of the location of eigenvalues of Φ requires us to investigate
the behavior of each term in the difference gn(z) −m(z) that converges slower
than O(p−1). More specifically, we consider showing that

gn(z) −m(z) = 1
p

1
2
f̃(z) + 1

p
3
4
h̃(z) + 1

p
k̃(z) + Oz(p−

5
4 ) (125)

where f̃(z), h̃(z) and k̃(z) should be determined in terms of m(z) (and not in
terms of elements of E(Q(z)). The key idea behind the technique of [5] consists
in proving that f̃(z), h̃(z) and k̃(z) are Stieltjes transforms of some distributions
and characterizing their associated supports. It turns out that in our case, the
supports of the distributions associated with the Stieltjes transforms f̃(z), h̃(z)
are included in S while the support of that of k̃(z) may present two spikes
outside S. As will be shown next, this will imply that the support of the limiting
eigenvalue distribution of Φ is S plus possibly the two spikes that arise in the
support of the distribution of Stieltjes transform k̃(z). Proving (125) is the heart
matter of the proof Theorem 4. To pave the way towards this, we need to derive
deterministic equivalents of some quantities that will appear in our derivations.
This is performed in the following next section.

5.4.1. Some preliminaries

Lemma 14. Let k, b be two integers in {1, · · · , n} such that b �= k. Let A1,p and
A2,p be two sequences of p × p deterministic matrices with uniformly bounded
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spectral norms. Let z ∈ C\R. Then,

E
[
xT
b A1,pxkx

T
b A2,pxkQbk

]
= −2p− 3

2m2(z)1
p

tr
(
(C◦)2 A2,p

) 1
p

tr
(
(C◦)2 A1,p

)
+ Oz(p−

7
4 )

Proof. Using the relation Qbk = −eTb Qkξ(k,−k)Qkk when b �= k and invoking
Lemma 10 and Lemma 8, we obtain:

E
[
xT
b A1,pxkx

T
b A2,pxkQbk

]
= −E

[
xT
b A1,pxkx

T
b A2,pxke

T
b Qkξ(k,−k)Qkk

]
(126)

= −E
[
xT
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T
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T
b Qkξ(k,−k)

]
EQkk + Oz(p−2+ε) (127)

= −E
[
Qkk

]
E

[
xT
b A1,pxkx

T
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∑
l �=k

√
p [Qk]bl

(
(xT

k xl)2 −
1
p
xT
l C[k]xl

)]

− E
[
Qkk

]
E
[
p−

3
2xT

b A1,pC[k]A2,pxb

∑
l �=k

[Qk]bl
(
xT
l C[k]xl −

1
p

trC[k]C[l]
)]

+ Oz(p−2+ε) (128)

= − E

[
Qkk

] 2
p

3
2

∑
l �=k

E
[[
Qk

]
bl
xT
b A2,pC[k]xlx

T
l C[k]A1,pxb

]
+ Oz(p−2+ε) (129)

= − E[Qkk]
2
p

3
2

∑
l �=k

E
[
[Q]bl x

T
b A2,pC[k]xlx

T
l C[k]A1,pxb

]
+ Oz(p−2+ε) (130)

= − 2
p

3
2
m2(z)1

p
tr
(
A2,p (C◦)2

) 1
p

tr
(
(C◦)2 A1,p

)
+ Oz(p−

7
4 ) (131)

The second term in (128) can be proven to be Oz(p−2+ε) by applying Lemma 9
as in the proof of Corollary 3. Equality (130) in which [Qk]bl is replaced by [Q]bl
follows from Lemma 13, while (131) follows by noticing that the term obtained
by taking b = l is the most dominant.

Lemma 15. Let j, k ∈ {1, · · · , n} such that j �= k. Let A1,p, A2,p and A3,p
be three sequences of p × p deterministic matrices with spectral norms bounded
uniformly in p. Then,∑

b/∈{j,k}
E
[
xT
kA1,pxjx

T
b A2,pxjx

T
b A3,pxkQbj

]

= −2np− 5
2m2(z)1
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(C◦)2 A2,p

) 1
p

tr
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C◦A1,p (C◦)2 A3,p

)
+ Oz(p−

7
4 )

Proof. Again, using the relation Qbj = −eTb Qjξ(j,−j)Qjj for b �= j, we have:
∑

b/∈{j,k}
E
[
xT
kA1,pxjx

T
b A2,pxjx

T
b A3,pxkQbj

]
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[
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T
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]
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= −
∑

b/∈{j,k}
E
[
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T
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T
b A3,pxke

T
b Qjξ(j,−j)

]
EQjj + Oz(p−2+ε)

(132)

where equation (132) follows by using the relation eTb Qjξ(j,−j) = −Qbj

Qjj
to write:

∑
b/∈{j,k}

E
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b/∈{j,k}
E

[
xT
kA1,pxjx

T
b A2,pxjx

T
b A3,pxk

Qbj
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(Qjj − E(Qjj))

]
(133)

and then applying Lemma 11 and Lemma 8 to prove the desired. Next, expand-
ing ξ(j,−j), we get:∑
b/∈{j,k}
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2E
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p
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T
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=−
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(136)

= −2np− 5
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tr
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) 1
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tr
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)
+ Oz(p−

7
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Equation (134) follows by taking the expectation with respect to xj . In equation
(135), we used Lemma 11 to show that the summand of the first term in (134)
over b �= l is Oz(p−2+ε), and handled the second term as in the proof of Corollary
3 by using Lemma 9 to show that it is Oz(p−2+ε). Next, to obtain equation
(136), we use the same arguments as in the proof of Corollary 3 to interpret
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the diagonal elements of Qj as those of another resolvent matrix formed by
discarding the observation xj . This allows us to obtain var([Qj ]bb) = O(p− 1

2+ε)
from Lemma 8 and hence up to an error Oz(p−2+ε), [Qj ]bb can be replaced by
its expectation. Finally, we use Lemma 13 to replace Qj by Q and obtain the
desired by taking the expectation with respect to the distribution of xb and xk,
and then using (11).

5.4.2. Precise estimation of the approximation gn(z) −m(z)

With these Lemmas at hand, we are now in position to prove the estimation in
(125). To this end, recall the relation involving the diagonal elements of Q:

zEQjj = −1 + αj(z) + βj(z) + γj(z) + θj(z)

where αj(z), βj(z), γj(z) and θj(z) are given by (73)-(76). To prove (125), we
shall first derive asymptotic equivalents that approximate all these quantities
up to an error of order Oz(p−

5
4 ).

Asymptotic equivalent for αj(z). Recall that:
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√
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∑
k �=j
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p
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From Proposition 3, it unfolds that:
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1 − c20Ω2m2(z) + Oz(p−
5
4 )

Asymptotic equivalent for βj(z). Using the Integration by Parts formula,
we decompose βj(z) as:

βj(z) = βj,1(z) + βj,2(z) + βj,3(z), (138)

where

βj,1(z) = −2
p

∑
k �=j

E
[
(xT

kC[j]xk)2QkkQjj

]

βj,2(z) = 8
√
p

∑
k �=j

∑
b �=j

E
[
xT
kC[j]xkx

T
k xjx

T
kC[j]xbx

T
b xjQjjQbjQkk

]

βj,3(z) = 8
√
p

∑
k �=j

∑
b �=j

E
[
xT
kC[j]xkx

T
k xjx

T
kC[j]xbx

T
b xjQkjQbkQjj

]

By distinguishing the cases b = k and b /∈ {k, j}, we may decompose βj,2(z)
as:
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+ 8
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together with Lemma 11, Lemma 14 and Lemma 15, we obtain:
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As for βj,3(z), we can see from Lemma 11 that the contribution of the summand
over b �= {j, k} is Oz(p−

3
2+ε). This leads to:
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where the second equality follows from (139) and Lemma 8, while the last equal-
ity follows from Lemma 14.

It remains thus to handle the term βj,1(z). For that, we apply the Integration
by Parts formula to obtain:

βj,2(z) = υ1 + υ2 + υ3 + υ4
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The term υ1 can be treated by applying again the Integration by Parts formula,
thus leading to:
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The first term in υ1 can be decomposed as:
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Using Cauchy-Schwartz inequality and the variance control in Lemma 8, we
obtain:
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On the other hand, it follows from Lemma 8 that:
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Plugging (143) and (144) into (142), we get:
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The last term in υ1 can be shown Oz(p−2+ε) using the result of Lemma 11,
while the second term can be treated by Lemma 14 to yield:
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Combining (146) and (147), we thus obtain:
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Similarly, using Lemma 11, we can easily see that υ3 = Oz(p−2+ε), while
following the same approach as before, we can prove that υ2 and υ4 can be
approximated as:
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Combining (149), (150) and (151), we thus get:
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Plugging (152), (140), (141) into (138) leads to:
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Asymptotic equivalent for θj(z). Using the Integration by Parts formula,
we decompose θj(z) as:

θj(z) = θj,1(z) + θj,2(z) + θj,3(z) + θj,4(z) (153)

where
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Based on Lemma 11, we can see that the contribution of the sum over b /∈ {k, j}
in θj,2(z) is Oz(p−

3
2+ε). Hence,
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where the last equality follows from Lemma 11 along with the fact that for
k �= j, xT
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2+ε) by Lemma 8. Similarly,

it follows from Lemma 11 that the contribution of the sum over b /∈ {k, j} in
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2+ε), which leads to:
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where (154) follows from Lemma 15. The quantity θj,4 can be shown to be
Oz(p−
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2+ε). To see this, we first decompose it as:
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The first term is Oz(p−
3
2+ε) as per Lemma 12. The second and third terms can

also be shown to be Oz(p−2+ε) and Oz(p−
3
2+ε) respectively using Lemma 11.

It remains to deal with θj,1(z). Based on the Integration by Parts formula,
θj,1(z) can be decomposed as:
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Based on Lemma 11 and the variance evaluations in Lemma 8, we can prove
that the first, fourth and fifth terms, which we denote by θj,1,1(z), θj,1,4(z)
and θj,1,5(z) are the dominant ones, while all other terms are Oz(p−

3
2+ε). To

handle the first term, we note that we may replace in the first term Qjj by
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On the other hand, we may use Lemma 11 and Lemma 15 to approximate
θj,1,4(z) as:
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Finally, to treat θj,1,5(z) we use the Integration by Parts formula and follow
the same kind of approximation as before to obtain:
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where the last equality follows from the variance control in Lemma 8. Note that
we cannot replace the diagonal elements of the resolvent matrix by m(z) or the
covariance matrices by C◦, since this would produce an error of order Oz(p−
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4 )

which is bigger than O(p− 5
4 ). Combining (156), (157) and (158), we obtain
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Using the fact that the dominant terms in θj(z) are θj,1(z) and θj,3(z), we get:
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Asymptotic equivalent for γj(z). Using the Integration by Parts formula,
we may decompose γj(z) as:

γj(z) = γj,1(z) + γj,2(z) + γj,3(z) + γj,4(z) + γj,5(z)
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We will start by handling γj,2(z). Using Lemma 11, it is easy to see that
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where the last equality follows from Lemma 14 and Lemma 15. Using Lemma
11, we can see that γj,3(z) and γj,4(z) are Oz(p−

3
2+ε). It remains thus to treat
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the term γj,5(z). Again, using Lemma 11, it can be shown that the summand
over indexes r /∈ {j, k} and b /∈ {j, r, k} is Oz(p−
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γj,5(z) = 4
√
p

∑
k �=j

∑
b �=j

E
[
xT
kC[j]xkx

T
b xjx

T
b C[j]xkx

T
k xjQbkQjjQjk

]

+ 4
√
p

∑
k �=j

∑
r/∈{j,k}

E
[
xT
kC[j]xrx

T
k xjx

T
kC[j]xkx

T
r xjQrkQjjQjk

]

+ 4
√
p

∑
k �=j

∑
r/∈{j,k}

E
[
(xT

kC[j]xr)2(xT
r xj)2QjjQrrQjk

]
+ Oz(p−

3
2+ε)

= 4
√
p

∑
k �=j

E
[
(xT

kC[j]xk)2(xT
k xj)2QkkQjjQjk

]

+ 4
√
p

∑
k �=j

∑
r/∈{j,k}

E
[
(xT

kC[j]xr)2(xT
r xj)2QjkQjjQrr

]
+ Oz(p−

3
2+ε)

= 4
√
p

∑
k �=j

E
[
(xT

kC[j]xk)2(xT
k xj)2QkkQjjQjk

]
+ Oz(p−

3
2+ε)

where the last equality follows from Lemma 11. By Lemma 15,
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It remains thus to handle γj,1(z). We may use Lemma 11 to show that the
summand over index r /∈ {j, k} is Oz(p−
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Using Lemma 8, we can replace Qjj by m(z) with an error Oz(p−
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2+ε), thus
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It remains to find approximate equivalents for the diagonal elements of Q2.
From the proof of Theorem 3, we can see that:
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into the expression of γj,1(z) and using the

asymptotic approximations of γj,2(z) and γj,5(z), we ultimately get:

γj(z) = −1
p

ω2m2(z)
1 − c0ω2m2(z) + 1

p
ω2m2(z) − 4

p
c20ω

2 1
p

tr
(
(C◦)4

)
m4(z)

− 4c0
p

ω4m4(z) + Oz(p−
5
4 )

Proof of (125). For j = 1, . . . , n, based on the asymptotic approximations for

αj(z), βj(z), θj(z) and γj(z), we can write zEQjj as:

zEQjj =−1 − ω2c0EQjjgn(z) + A
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We should recall that in (125), functions f̃(z), h̃(z) and k̃(z) should be ex-
pressed solely in terms of m(z) and not in terms of elements of EQ. However,
replacing diagonal elements of EQ by m(z) could not help to identify these
functions, as this would result in an error bigger than O(p−1). In the sequel, we
propose an iterative approach that allows us to compute the error we made by
replacing the diagonal elements of Q(z) by m(z).

Derivation of f̃(z). For j = 1, . . . , n, denote by fj(z) = EQjj −m(z). Then,
substituting EQjj by fj(z) + m(z) into (160) and using the fact zm(z) +
ω2c0m

2(z) + 1 = 0, we obtain:

zfj(z) = −ω2c0fj(z)m(z) − ω2c0m(z) 1
n

n∑
l=1

fl(z) + 4n
2

p
5
2
m3(z)

(1
p

tr
((
C◦)3))2
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− 1
p

n∑
k=1

[
2
(1
p

trC[k]C[j]
)2 − ω2]m2(z) + Oz(p−

3
4 ), j = 1, . . . , n.

Again, leveraging the relation z + ω2c0m(z) = − 1
m(z) leads to

fj(z) = ω2c0m
2(z) 1

n

n∑
l=1

fl(z) + 1
p

n∑
k=1

[
2
(

1
p

trC[k]C[j]

)2
− ω2

]
m3(z)

− 4n2p−
5
2m4(z)

(
1
p

tr
(
(C◦)3

))2

+ Oz(p−
3
4 ), j = 1, . . . , n.

The above equations define a linear system in the vector f(z)=
[
f1(z), · · · , fn(z)

]T
which can be written as:
(
In−ω2c0m

2(z)1n1Tn
n

)
f = 1

p
δ1nm3(z)−4n

2

p
5
2
m4(z)

(1
p

tr
((
C◦)3))21n+Oz(p−

3
4 )1n

where δ the n× n matrix given by

δ =
{
2
(

1
p

trC[k]C[j]

)2

− ω2}n
k,j=1

Since
∣∣1 − ω2c0m

2(z)
∣∣−1 = Oz(1) from Lemma 7, we have:

f(z) = f(z) + Oz(p−
3
4 )1n

where

f(z) = 1
p
m3(z)δ1n + ω2c0m

5(z)1Tn δ1n
np(1 − ω2c0m2(z))1n −

4n2p−
5
2m4(z)

(
1
p tr
(
(C◦)3

))2
1 − ω2c0m2(z) 1n

(161)
Recalling that:

gn(z) −m(z) = 1
n

1T f(z)

we thus obtain:
gn(z) −m(z) = 1

n
1T f(z) + Oz(p−

3
4 )

The quantity 1
n1T f(z) represents thus the error of order Oz(p−

1
2 ) in the differ-

ence gn(z) −m(z). From that, we identify f̃(z) as f̃(z) = p
1
2

1T
nf(z)
n where

gn(z) −m(z) − 1
p

1
2
f̃(z) = Oz(p−

3
4 )

and f̃(z) simplifies as:

f̃(z) = 1
√
p

m3(z)1Tn δ1n
n(1 − ω2c0m2(z)) −

4n2p−2m4(z)
(

1
p tr((C◦)3)

)2
1 − ω2c0m2(z)
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Derivation of h̃(z). To derive h̃(z), we define for j = 1, . . . , n hj(z) =
EQjj − m(z) − f j(z) where f j(z) is the j-th entry of vector f . Following the
same approach as for the derivation of f̃(z), we substitute in (160) EQjj by
hj(z)+m(z)+ f j(z). Using (161) and the relation zm(z)+ω2c0m

2(z)+1 = 0,
we obtain after simplifications:

zhj(z) = −ω2c0m(z)hj(z) − ω2c0m(z) 1
n

n∑
l=1

hl(z)

+ 4
n∑

k=1

n∑
r=1

p−
5
2m4(z)

[(
1
p

trC[r]C[k]C[j]

)2

−
(

1
p

tr (C◦)3
)2
]

+ Oz(p−1),

which, using (z + ω2c0m(z))−1 = −m(z), leads to:

hj(z) = ω2c0m
2(z) 1

n

n∑
l=1

hl(z) (162)

− 4
n∑

k=1

n∑
r=1

p−
5
2m4(z)

[(1
p

trC[r]C[k]C[j]
)2 − (1

p
tr
(
(C◦)3

))2]+ Oz(p−1),

(163)

Denote by h(z) = [h1(z), . . . , hn(z)]T . Then,

(In − ω2c0m
2(z)1n1Tn

n
)h

= −4
{ n∑

k=1

n∑
r=1

p−
5
2m4(z)

[(1
p

trC[r]C[k]C[j]
)2 − (1

p
tr
(
(C◦)3

))2]}n
j=1

+ Oz(p−1)1n

and thus:
h(z) = h(z) + Oz(p−1)1n

where

h(z) = −4
{ n∑

k=1

n∑
r=1

p−
5
2m4(z)

[(
1
p

trC[r]C[k]C[j]

)2
−
(

1
p

tr
(
(C◦)3

))2
]}n

j=1

− 4ω2c0m
6(z)p− 5

2

n(1 − ω2c0m2(z))

( n∑
j=1

∑
k=1

n∑
r=1

[(1
p

trC[r]C[k]C[j]
)2 − (1

p
tr
((
C◦)3))2])1n

Recalling that:
gn(z) −m(z) = 1

n
(1T f(z) + 1Th(z))

we thus obtain:

gn(z) −m(z) = 1
n

1T f(z) + 1
n

1Th(z) + Oz(p−1)
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The quantity 1
n1Th(z) represents thus the error of order Oz(p−

3
4 ) in the differ-

ence gn(z) −m(z). From that, we identify h̃(z) as h̃(z) = p
3
4 1
n1Th(z) where:

gn(z) −m(z) − p−
1
2 f̃(z) − p−

3
4 h̃(z) = Oz(p−1)

and

h̃(z) = − 4
n

n∑
j=1

n∑
k=1

n∑
r=1

p−
7
4m4(z)

1 − ω2c0m2(z)
[(1
p

trC[r]C[k]C[j]
)2 − (1

p
tr
(
(C◦)3

))2]

Asymptotic equivalent for k̃(z). We will now determine an asymptotic
equivalent for the term vanishing at rate Oz(p−1). To this end, we define for
j = 1, . . . , n, kj(z) = EQjj − m(z) − f j(z) − hj(z) and substitute EQjj by
m(z) + f j(z) + hj(z) + kj(z) in (160), which yields after simplification

zkj(z) = −ω2c0m(z) 1
n

n∑
l=1

kl(z) − ω2c0f j(z)
1
n

n∑
l=1

f l(z) − ω2c0kj(z)m(z)

− 1
p

n∑
k=1

δkj
(
m(z)fk(z) + m(z)f j(z)

)
+ 8nm2(z)p− 5

2

n∑
r=1

fr(z)
(1
p

tr
((
C◦)3))2

+ 4n2p−
5
2m2(z)

(1
p

tr
(
C◦)3)2f j(z) + A−1

p (z) + Oz(p−
5
4 )

Similarly, using the relation (z + ω2c0m(z)) = − 1
m(z) , we obtain:

kj(z) = ω2c0m
2(z) 1

n

n∑
l=1

kl(z) + ω2c0m(z)f j(z)
f̃(z)
√
p

+ 1
p

n∑
k=1

δkjm
2(z)
(
fk(z) + f j(z)

)
− 8m3(z) n

2
√
p
p−

5
2 f̃(z)

(1
p

tr
(
C◦)3)2

− 4n2p−
5
2m3(z)

(1
p

tr
(
C◦)3)2f j(z) −m(z)Ap−1(z) + Oz(p−

5
4 )

Define k(z) = [k1(z), . . . , kn(z)]T . Then, the above equality can be equivalently
written as:(

In − ω2c0m
2(z)1n1Tn

n

)
k(z) = ω2c0m(z) f̃(z)

√
p
f(z) + 1

p
m2(z)δf(z)

+ m2(z)
{

1
p

n∑
k=1

δkjf j(z)
}n

j=1

− 8m3(z)n2p−3f̃(z)
(

1
p

tr (C◦)3
)2

1n

− 4n2p−
5
2m3(z)

(
1
p

tr (C◦)3
)2

f(z) −m(z)Ap−1(z)1n + Oz(p−
5
4 )1n

or equivalently,
k(z) = k(z) + Oz(p−

5
4 )1n
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with

k(z) = ω2c0m(z)f̃(z)f(z)
√
p

+
ω4c20m

3(z)
(
f̃(z)
)2

p(1 − ω2c0m2(z)) 1n + 1
p
m2(z)δf(z)

+ ω2c0m
4(z)1Tn δf(z)

pn(1 − ω2c0m2(z))1n + m2(z)
{1
p

n∑
k=1

δkjf j(z)
}n
j=1 + ω2c0m

4(z)1T δf(z)
np(1 − ω2c0m2(z))1n

− 8m3(z)n2p−3

1 − ω2c0m2(z) f̃(z)
(1
p

tr
((
C◦)3))21n − 4n2p−

5
2m3(z)

(1
p

tr
((
C◦)3))2f(z)

− 4m5(z)n2p−3

1 − ω2c0m2(z) f̃(z)
(1
p

tr
(
(C◦)3

))21n − m(z)Ap−1(z)
1 − ω2c0m2(z)1n

Recalling that:

gn(z) −m(z) = 1
n

(1T f(z) + 1Th(z) + 1Tk(z))

we thus obtain:

gn(z) −m(z) = 1
n

1T f(z) + 1
n

1Th(z) + 1
n

1Tk(z) + Oz(p−
5
4 )

from which, we identify k̃(z) as k̃(z) = p1T k(z)
n where

gn(z) −m(z) − p−
1
2 f̃(z) − p−

3
4 h̃(z) − p−1k̃(z) = Oz(p−

5
4 )

and

k̃(z) =
ω2c0m(z)

(
f̃(z)
)2

1 − ω2c0m2(z) + 2m2(z)f(z)T δ1n
n(1 − ω2c0m2(z))

− 12m3(z)n2p−2

1 − ω2c0m2(z) f̃(z)
(1
p

tr
((
C◦)3))2 − m(z)pAp−1(z)

1 − ω2c0m2(z)

With this, we complete the proof of (125), which will be the key for the analysis
of the support of the empirical measure of Φ.

5.4.3. Concluding.

With the approximation in (125) at hand, we are now ready to determine the
limiting support of the empirical measure of Φ. We first need to prove that f̃(z),
h̃(z) and k̃(z) are Stieljtes transforms of some distributions and determine the
supports thereof. To this end, we will resort to the following Lemma.

Lemma 16. [16, Lemma 9.1] Let Λ be a distribution on R with compact support.
Define its Stieltjes transform l : C\R → C by:

l(z) = Λ
(

1
x− z

)

Then l is analytic in C\R and has analytic continuation to C\supp(Λ). More-
over,
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c1) l(z) → 0 as |z| → ∞,
c2) There exists a constant C > 0, k ∈ N and a compact set K ⊂ E containing

supp(Λ) such that for any z ∈ C\R,

|l(z)| ≤ C max
{
dist(z,K)−k, 1

}
c3) for any φ ∈ C∞(R,R) with compact support,

Λ(φ) = − 1
π

lim
y→0+

�
∫
R

φ(x)l(x + ıy)dx

c4) If lim|z|→∞ |zl(z)| = 0, then it holds that:

Λ(1) = 0.

Conversely if K is a compact subset of R and if l : C\K → C is an analytic
function satisfying c1) and c2) above, then l is the Stieltjes transform of a com-
pactly supported distribution Λ on R. Moreover, supp(Λ) is exactly the set of
singular points of l in K.

From the expressions of f̃(z) and h̃(z), we can easily see that both of them
are analytic on C\

[
−2√c0ω, 2

√
c0ω
]

except k̃(z) which presents singularities
(through the term Ap−1(z)) for z such that

m(z) = ± 1
c0Ω

. (164)

This singularity falls outside the support if Ω > 1√
c0ω

, in which case the z’s
satisfying (164) are given by the two isolated complex values {−ρ̃, ρ̃} where
ρ̃ = c0Ω + ω2

Ω .

Proposition 4. f̃(z) and h̃(z) are the Stieltjes transforms of distributions Λf̃

and Λh̃ with support S =
[
−2√c0ω, 2

√
c0ω
]

while k̃(z) is the Stieltjes transform
of Λk̃ with support Sk = S ∪ {−ρ̃, ρ̃}. Moreover, Λf̃ (1) = Λh̃(1) = Λk̃(1) = 0.

Proof. We will prove the result only for f̃(z). The same reasoning can be applied
to h̃(z). For k̃(z), some slight modifications should be made to account for the
singularities {−ρ̃, ρ̃}. According to Lemma 16, it suffices to show that f̃(z)
satisfy conditions c1 and c2 of Lemma 16. Let |z| ≥ 4

√
3c0ω, then there exist

positive constants C such that:

∣∣f̃(z)
∣∣ ≤ C

{
(|z| + 2√c0ω)4

|z|4(|z| − 2√c0ω)3 +
(|z| + 2√c0ω)4

|z|4(|z| − 2√c0ω)4

}

Hence f̃(z) converges to zero as |z| goes to infinity. It remains to check the
condition c2). To this end, we follow the same approach in [5]. We define the
interval3:

K = [−1 − 2
√
c0ω, 1 + 2

√
c0ω]

3Note that if k̃(z) was considered and Ω > 1√
c0ω

, then the interval K should be set to
K = [−ρ̃− 1, ρ̃ + 1].



Covariance discriminative power 349

Let D = {z ∈ C, 0 < dist(z,K) ≤ 1}. We need to distinguish the following
cases:

• Let z ∈ D ∩ C\R with �z ∈ K. We have dist(z,K) = |�z| ≤ 1. Then, it
is clear that there exists a constant C0 such that:∣∣f̃(z)

∣∣ ≤ C0|�z|−8 = C0dist(z,K)−8 = C0 max
(
dist(z,K)−8, 1

)
• Let z ∈ D∩C\R with �z /∈ K. Since f̃(z) is bounded on compact subsets

of C\
[
−2√c0ω, 2

√
c0ω
]
, we easily deduce that there exists a constant C1

such that for any z ∈ D with �z /∈ K,∣∣f̃(z)
∣∣ ≤ C1 ≤ C1dist(z,K)−8 = C1 max

(
dist(z,K)−8, 1

)
• Since

∣∣f̃(z)
∣∣ → 0 when |z| → ∞, f̃(z) is bounded on C\D. Thus, there

exists some constant C2 such that for any z ∈ C\D,∣∣f̃(z)
∣∣ ≤ C2 = C2 max

(
dist(z,K)−8, 1

)
This shows that condition c2) is satisfied. Hence, f̃(z) is the Stieltjes transform
of a distribution Λf̃ whose support is in S. Moreover, as lim|z|→∞ zf̃(z) = 0,
we have Λf̃ (1) = 0.

Using Proposition 4, we prove the following Lemma which evaluates the speed
of convergence of the first moment as well as the central moments of 1

n trψ(Φ) for
ψ smooth, constant on the complementary of a compact interval and vanishing
on S =

[
−2√c0ω, 2

√
c0ω
]
∪ {−ρ̃, ρ̃}:

Lemma 17. Assume that Ω > 1√
c0ω

. For all smooth function ψ constant on the
complementary of a compact interval and vanishing on S =

[
−2√c0ω, 2

√
c0ω
]
∪

{−ρ̃, ρ̃},

E

[
1
n

tr (ψ(Φ))
]

= O(p− 5
4 ) (165)

E

∣∣∣∣ 1n tr (ψ(Φ)) − E
1
n

tr (ψ(Φ))
∣∣∣∣
2l

= O(p− 5l
2 ) (166)

for each l ≥ 1.

Proof. Using the inverse Stieltjes transform, it holds that for any smooth func-
tion ψc with compact support:

1
n
E [trψc(Φ)] =

∫
ψcdμ + 1

p
1
2
Λf̃ (ψc) + 1

p
3
4
Λh̃(ψc) + 1

p
Λk̃(ψc)

− 1
π

lim
y→0+

�
∫
R

ψc(x)Rn(x + iy)dx

where Rn = gn(z) −m(z) − 1
p

1
2
f̃(z) − 1

p
3
4
h̃(z) − 1

p k̃(z). Since, for z ∈ C\R,

|Rn(z)| = Oz(p−
5
4 )
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using the ideas of [13],

1
π

lim
y→0+

�
∫
R

ψc(x)Rn(x + iy)dx = O(p− 5
4 )

In order to prove (165), we follow the approach in [16]. We denote κ the constant
for which ψ(x) = κ for x lying outside a compact set. Function ψc = ψ −
κ is compactly supported and

∫
ψc(λ)dμ(λ) = −κ. Moreover, we have from

Proposition 4, Λf̃ (ψc) = Λh̃(ψc) = Λk̃(ψc) = 0. Hence,

1
n
E [tr (ψ(Φ))] = 1

n
E [tr (ψc(Φ))] + κ + O(p− 5

4 )

= O(p− 5
4 )

In order to prove (166), we proceed by induction on l. For l = 1, using the
Poincaré-Nash inequality, we have:

var
( 1
n

trψ(Φ)
)

≤ 1
n2

p∑
i=1

n∑
j=1

E
∣∣ trψ(Φ)

∂Zij

∣∣2

≤ 1
n2

p∑
i=1

n∑
j=1

E
∣∣ trψ′(Φ)

{∂Φlk

∂Zij

}n
l,k=1

∣∣2

= 4
n2

p∑
i=1

n∑
j=1

E

∣∣∣ trψ′(Φ)
{
xT
l xk

[
C

1
2
[k]xl

]
i
δj �=kδl �=k

+ (xT
l xk)

[
C

1
2
[l]xk

]
i
δj �=lδl �=k

}n
l,k=1

∣∣∣2

= 16
n2

p∑
i=1

n∑
j=1

E

∣∣∣∣∣∣
∑
a�=j

[ψ′(Φ)]aj (xT
j xa)

[
C

1
2
[j]xa

]
i

∣∣∣∣∣∣
2

= 16
n2

n∑
j=1

∑
a1 �=j

∑
a2 �=j

E

[
xT
a2
C[j]xa1x

T
j xa2x

T
j xa1 [ψ′(Φ)]a1j

[ψ′(Φ)]a2j

]

≤ 16
n2

n∑
j=1

E

[∣∣∣[ψ′(Φ)]a1j

∣∣∣ ∣∣∣[ψ′(Φ)]a2j

∣∣∣ ∣∣xT
a2
C[j]xa1

∣∣max
j �=a1

∣∣xT
j xa1

∣∣max
j �=a2

∣∣xT
j xa2

∣∣]

Define R as:

[R]a1a2
= max

j �=a1

∣∣xT
j xa1

∣∣max
j �=a2

∣∣xT
j xa2

∣∣ max
j /∈{a1,a2}

∣∣xT
a2
C[j]xa1

∣∣
It is easy to see that ‖R‖ = O(p− 1

2+ε) by bounding the Frobenuis norm, for
instance. Let h(x) = |ψ′(x)| Hence:

var
(

1
n

tr (ψ(Φ))
)

≤ 16
n2 tr (h(Φ)Rh(Φ)) ≤ 16

n2E‖R‖ trh2(Φ)
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From (165), E 1
n trh2(Φ) = O(p− 5

4 ). Using the fact that ‖R‖ = O(p− 1
2+ε) along

with Lemma 5 we obtain for any ε small and positive,

var
(

1
n

trψ(Φ)
)

= O(p− 11
4 +ε) = O(p− 5

2 )

Assume now that (166) holds for all l �= k − 1. We will prove it for l = k. Note
that:

E
∣∣ 1
n

trψ(Φ) − E
1
n

tr Φ
∣∣2k =

(
E
∣∣ 1
n

trψ(Φ) − E
1
n

tr Φ
∣∣k)2

+ var
( 1
n

trψ(Φ) − E
1
n

trψ(Φ)
)k (167)

The Hölder inequality can be used to treat the first term in the right-hand side
of the above equation. This leads to:

E
∣∣ 1
n

trψ(Φ) − E
1
n

tr Φ
∣∣k ≤

√
E
∣∣ 1
n

trψ(Φ) − E
1
n

tr Φ
∣∣2k−2

√
var( 1

n
trψ(Ψ))

Using the induction assumption, it unfolds that:
(
E

∣∣∣ 1
n

trψ(Φ) − E
1
n

tr Φ
∣∣∣k)2

= O(p− 5k
2 )

We will now handle the second term in the right-hand side of (167). Using the
Poincaré-Nash inequality, we obtain:

var
( 1
n

tr
(
ψ(Φ)

)
− E

1
n

trψ(Φ)
)k

≤
p∑

i=1

n∑
j=1

k2
E
[∣∣ 1
n

trψ(Φ) − E
1
n

trψ(Φ)
∣∣k−1∣∣∂ 1

n trψ(Φ)
∂Zij

∣∣2]

≤ 16k2

n2 E

[∣∣ 1
n

trψ(Φ) − E
1
n

trψ(Φ)
∣∣2(k−1) trh(Φ)Rh(Φ)

]
≤ 16k2

n2

(
E
∣∣ 1
n

trψ(Φ) − E
1
n

trψ(Φ)
∣∣2k) k−1

k
∣∣∣E |trh(Φ)Rh(Φ)|k

∣∣∣ 1k
Recall that

E |trh(Φ)Rh(Φ)|k ≤ E‖R‖k
∣∣trh2(Φ)

∣∣k
where ‖R‖k = O(p− k

2 +ε); From Lemma 5, it suffices thus to treat E
∣∣trh2(Φ)

∣∣k.
We have:

E
∣∣trh2(Φ)

∣∣k ≤ 2k−1
E
∣∣trh2(Φ) − E trh2(Φ)

∣∣k + 2k−1 ∣∣E trh2(Φ)
∣∣k

≤ 2k−1
√

E |trh2(Φ) − E trh2(Φ)|2k−2
√

E |trh2(Φ) − E trh2(Φ)|2

+ 2k−1 ∣∣E trh2(Φ)
∣∣k
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Using the induction assumption along with (165), it unfolds that:

E |trh(Φ)Rh(Φ)|k = O(p− 3k
4 +ε)

Let κp = E
∣∣ 1
n trψ(Φ) − E

1
n trψ(Φ)

∣∣2k. From the previous derivations, it is easy
to see that there exists positive constants C1 and C2 such that:

κp ≤ C1p
− 5

2k + C2κ
k−1
k

p p−
11
4 +ε (168)

Let up = κpp
5
2k. To conclude the proof, it suffices to check that up is a bounded

sequence. Expressing (168) in terms of up, we obtain:

up ≤ C1 + C2 (up)1−
1
k p−

1
4+ε

or equivalently:
u

1
k
p ≤ C1u

1
k−1
p + C2p

− 1
4+ε

thus proving that up is a bounded sequence. This finishes the proof of Lemma
17.

A direct consequence of Lemma 17 is that for any ψ satisfying the condition
of Lemma 17,

trψ(Φ) a.s.−→ 0.
We will now terminate the proof of Theorem 4. We will consider only the case
when Ω > 1√

c0ω
. Let ε > 0, and take ψ smooth such that

• ψ(x) = 1,∀x /∈
[
−2√c0ω − ε, 2√c0ω + ε

]
∪ [−ρ̃− ε,−ρ̃ + ε]∪ [ρ̃− ε, ρ̃ + ε]

• ψ(x) = 0,∀x ∈
[
−2√c0ω− ε

2 , 2
√
c0ω+ ε

2
]
∪
[
−ρ̃− ε

2 ,−ρ̃+ ε
2
]
∪
[
ρ̃− ε

2 , ρ̃+ ε
2
]

• 0 ≤ ψ(x) ≤ 1 elsewhere

Function ψ satisfies the conditions of Lemma 17. Hence, we have:

trψ(Φ) a.s.−→ 0.

Since trψ(Φ) is greater than the number of eigenvalues lying outside

Sε := [−2
√
c0ω − ε, 2

√
c0ω + ε] ∪ [−ρ̃− ε,−ρ̃− ε] ∪ [ρ̃− ε, ρ̃ + ε] ,

we conclude that almost surely for n large enough, there is no eigenvalue of Φ
outside Sε.

Appendix A Proof of the preliminary results

A.1 Proof of Lemma 6

Proof of (40). Decomposing ξ(k,−k) = ξ(k,−k) − Ek

[
ξ(k,−k)

]
+ Ek

[
ξ(k,−k)

]
we

may expand Ek

[
ξT(k,−k)Aξ(k,−k)

]
as:

E
[
ξT(k,−k)Aξ(k,−k)

]
= Ek

[(
ξ(k,−k) − Ek

[
ξk,−k

])T
A
(
ξ(k,−k) − Ek

[
ξk,−k

])]
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+ Ek

[
ξT(k,−k)

]
AEk

[
ξ(k,−k)

]
(169)

= Ek

[∑
l �=k

∑
m �=k

(√
p(xT

k xl)2 −
1
√
p
xT
l C[k]xl

)
Alm

(√
p(xT

k xm)2 − 1
√
p
xT
mC[k]xm

)]
(170)

+
∑
l �=k

∑
m �=k

( 1
√
p
xT
l C[k]xl −

1
p

3
2

trC[k]C[l]
)
Alm

( 1
√
p
xT
mC[k]xm − 1

p
3
2

trC[k]C[m]
)

(171)

= 2
p

∑
l �=k

∑
m �=k

(xT
l C[k]xm)2Alm (172)

+
∑
l �=k

∑
m �=k

( 1
√
p
xT
l C[k]xl −

1
p

3
2

trC[k]C[l]
)
Alm

( 1
√
p
xT
mC[k]xm − 1

p
3
2

tr(C[k]C[m])
)

(173)

where the last equality follows by using the fact that

E
[
(zTA1z − tr(A1))(zTA2z − tr(A2))

]
= 2 tr(A1A2)

for z standard Gaussian random vector in R
n×1 with A1, A2 n× n matrices.

Proof of (41). The proof of (41) will be carried out by induction on s. For
s = 1, using Poincaré-Nash inequality, we obtain:

Ek

∣∣∣ξT(k,−k)Aξ(k,−k) − Ekξ
T
(k,−k)Aξ(k,−k)

∣∣∣2 ≤
p∑

j=1
Ek

[∣∣∂ξT(k,−k)Aξ(k,−k)

∂Zjk

∣∣2]

Hence, to prove the result for s = 1, it suffices to establish that:
p∑

j=1

∣∣∂ξT(k,−k)Aξk,−k

∂Zjk

∣∣2 ≤ ‖A‖2O(p−1) (174)

where O(p−1) should be understood in the sense of the convergence of random
variables as described in the notation section. Moreover, as will be shown next,
the inequality in (174) will also help in the proof of the result for s > 1. Given
that:

∂ξT(k,−k)Aξk,−k

∂Zjk

=
∑
a�=k

∑
b �=k

∂p(xT
k xa)2Aab(xT

k xb)2

∂Zjk
−
∑
a�=k

∑
b �=k

∂ 1
p trC[k]C[a]Aab(xT

k xb)2

∂Zjk

−
∑
a�=k

∑
b �=k

∂(xT
k xa)2Aab

1
p trC[k]C[b]

∂Zjk
,

we have:
p∑

j=1

∣∣∂ξT(k,−k)Aξ(k,−k)

∂Zjk

∣∣2 ≤ α̃1 + 4α̃2
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where

α̃1 :=
p∑

j=1

∣∣∑
a�=k

∑
b �=k

∂p(xT
k xa)2Aab(xT

k xb)2

∂Zjk

∣∣2

α̃2 :=
p∑

j=1

∣∣∑
a�=k

∑
b �=k

∂(xT
k xa)2Aab

1
p trC[k]C[b]

∂Zjk

∣∣2
Both α̃1 and α̃2 can be shown to satisfy:

α̃1 ≤ ‖A‖2O(p−1), (175)
α̃2 ≤ ‖A‖2O(p−1). (176)

Proving (175) and (176) implies directly the sought-for result in (174). To prove
(175), we upper-bound α̃1 as:

α̃1 ≤ p2
p∑

j=1

[∣∣∑
a�=k

∑
b �=k

∂(xT
k xa)2Aab(xT

k xb)2

∂Zjk

∣∣2]

≤ 16p
p∑

j=1

[∣∣∑
a�=k

∑
b �=k

xT
k xa

[
C

1
2
[k]xa

]
j
Aab(xT

k xb)2
∣∣2]

= 16p
∑
a1 �=k

∑
b1 �=k

∑
a2 �=k

∑
b2 �=k

[
xT
k xa1x

T
k xa2x

T
a2
C[k]xa1Aa1b1A

∗
a2b2(x

T
k xb1)2

(
xT
k xb2

)2 ]
= 16p1TD2

kA
HSkAD

2
k1

≤ 16p2‖Dk‖4‖A‖2‖Sk‖

where Dk = D
{
xT
b xkδb �=k

}n
b=1 and [Sk]a1,a2

= xT
k xa1x

T
a2
C[k]xa1x

T
k xa2δa1 �=kδa2 �=k.

From Lemma 4, ‖Sk‖ = O(p−1). Thus, (175) follows using the fact that ‖Dk‖ =
O(p−1/2).

On the other hand, α̃2 can be treated as:

α̃2 ≤ 4
p∑

j=1

∣∣∑
a�=k

∑
b �=k

(xT
k xa)

1
√
p

[
C

1
2
[k]xa

]
j
Aab

1
p

trC[k]C[b]
∣∣2

= 4
p

∑
a1 �=k

∑
b1 �=k

∑
a2 �=k

∑
b2 �=k

xT
k xa1x

T
k xa2x

T
a2
C[k]xa1

1
p

trC[k]C[b1]
1
p

trC[k]C[b2]

×Aa1b1A
∗
a2b2

= 4
p
1TD
{

1
p

tr(C[k]C[b2])δb2 �=k

}n

b2=1
AHSkAD

{
1
p

trC[k]C[b1]δb1 �=k

}n

b1=1
1

= ‖A‖2O(p−1)

We assume that (41) holds for all integer k = 1, . . . , s− 1, and consider proving
it for k = s. For that, we use the following relation

Ek

∣∣∣ξT(k,−k)Aξ(k,−k) − Ekξ
T
(k,−k)Aξ(k,−k)

∣∣∣2s
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=
(
Ek

∣∣ξT(k,−k)Aξ(k,−k) − Ekξ
T
(k,−k)Aξ(k,−k)

∣∣s)2
+ vark

((
ξT(k,−k)Aξ(k,−k) − Ekξ

T
(k,−k)Aξ(k,−k)

)s)
The first term of the above equation can be handled using the induction as-
sumption along with the Cauchy-Schwartz inequality to find:

(
Ek

∣∣ξT(k,−k)Aξ(k,−k) − Ekξ
T
(k,−k)Aξ(k,−k)

∣∣)2s
= Ek

∣∣ξT(k,−k)Aξ(k,−k) − Ekξ
T
(k,−k)Aξ(k,−k)

∣∣2(s−1)

× Ek

∣∣ξT(k,−k)Aξ(k,−k) − Ekξ
T
(k,−k)Aξ(k,−k)

∣∣2
= ‖A‖2sO(p−s+ε)

The second term can be treated using the Poincaré-Nash inequality as follows:

vark
[(
ξT(k,−k)Aξ(k,−k) − Ekξ

T
(k,−k)Aξ(k,−k)

)s]
≤ Ek

[
s2∣∣ξT(k,−k)Aξ(k,−k) − Ekξ

T
(k,−k)Aξ(k,−k)

∣∣2(s−1)
p∑

j=1

∣∣∂ξT(k,−k)Aξ(k,−k)

∂Zj,k

∣∣2]

Since
∑p

j=1
∣∣∂ξT(k,−k)Aξ(k,−k)

∂Zj,k

∣∣2 = ‖A‖2O(p−1) by (174) and

Ek

[∣∣ξT(k,−k)Aξ(k,−k) − Ekξ
T
(k,−k)Aξ(k,−k)

∣∣2(s−1)] = ‖A‖2(s−1)O(p−s+1+ ε
2 )

by the induction assumption, we have by Lemma 5,

vark
[(

ξT(k,−k)Aξ(k,−k) − Ekξ
T
(k,−k)Aξ(k,−k)

)s]
= ‖A‖2sO(p−s+ε)

A.2 Proof of Lemma 7

We will only prove the inequalities (44) and (45) in the last item as the first two
items have been established in [5].
Proof of (44). Since ω2c0m

2(z) = −1 − zm(z), we have:

1 − αm2(z) = 1 + α

ω2c0
+ αzm(z)

ω2c0

=
(

1 + α

ω2c0

)
− α

ω2c0
|z|2
∫ 1

|λ− z|2μ(dλ)

+ αz

ω2c0

∫
λ

|λ− z|2μ(dλ)

To show (44), we start by noticing that:∣∣1 − αm2(z)
∣∣ ≥ max

(∣∣�(1 − αm2(z))
∣∣ , ∣∣�(1 − αm2(z))

∣∣) (177)
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In view of (177), it suffices thus to study
∣∣�(1 − αm2(z))

∣∣ and
∣∣�(1 − αm2(z))

∣∣.
Let z = x + ıy. Then, due to the symmetry of μ,

∣∣�(1 − αm2(z))
∣∣ can be

simplified as:∣∣� (1 − αm2(z)
)∣∣

= α

ω2c0
|y|
∣∣∣∣∣
∫ 2√c0ω

0

λ

(λ− x)2 + y2μ(dλ) −
∫ 2√c0ω

0

λ

(λ + x)2 + y2μ(dλ)

∣∣∣∣∣
= α|yx|

ω2c0

∫ 2√c0ω

0

4λ2

((λ− x)2 + y2) ((λ + x)2 + y2)μ(dλ) (178)

On the other hand,
∣∣�(1 − αm2(z))

∣∣ can be expanded as:∣∣� (1 − αm2(z)
)∣∣

= 1 + α

ω2c0
+ α

ω2c0

(∫ λx

(λ− x)2 + y2μ(dλ) −
∫ (x2 + y2)

(λ− x)2 + y2μ(dλ)
)

= 1 + α

ω2c0
+ α

ω2c0

∫ 2√c0ω

0

4λ2x2

((λ− x)2 + y2) ((λ + x)2 + y2)μ(dλ)

− α

ω2c0
(x2 + y2)

∫ 2√c0ω

0

2λ2 + 2x2 + 2y2

((λ− x)2 + y2) ((λ + x)2 + y2)μ(dλ)

=
∣∣∣ ∫ 2√c0ω

0

P (x, y, λ)
((λ− x)2 + y2) ((λ + x)2 + y2)μ(dλ)

∣∣∣ (179)

where

P (x, y, λ) := (2 + 2α
ω2c0

)λ4 − λ2x2(4 + 2α
ω2c0

) + λ2y2(4 + 2α
ω2c0

)

+ 2x2(x2 + y2) + 2y2(x2 + y2)

Consider the following two cases: |x| ≥ |y| and |x| ≤ |y|.
Case 1: |x| ≥ |y|. It follows from (178) that

∣∣1 − αm2(z)
∣∣ ≥ αy2

ω2c0

∫ 2√c0ω

0

4λ2

((λ− x)2 + y2) ((λ + x)2 + y2)μ(dλ)

Then, for 0 ≤ λ ≤ 2√c0ω,

max
(
(λ− x)2 + y2, (λ + x)2 + y2) ≤ 2λ2 + 2|z|2 ≤ 2(|z|2 + (2

√
c0ω)2)

≤ 2(|z| + 2
√
c0ω)2

(180)

Hence,

∣∣1 − αm2(z)
∣∣ ≥ α|y2|

ω2c0(|z| + 2√c0ω)4

∫ 2√c0ω

0
λ2μ(dλ) = α|y|2

2(|z| + 2√c0ω)4
(181)
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Case 2: |x| ≤ |y|. In this case, (−x2 + y2)(4 + 2α
ω2c0

) ≥ 0. Hence, using (179), we
obtain:

∣∣1 − αm2(z)
∣∣ ≥ 2y4

4(|z| + 2√c0ω)4

∫ 2√c0ω

0
μ(dλ) = y4

4(|z| + 2√c0ω)4 (182)

To prove (44), we combine (181) and (182) to obtain:

|1 − αm2(z)|−1 ≤ (|z| + 2
√
c0ω)4(4|�z|−4 + 2

α
|�z|−2)

Proof of (45). To show (45), we will exploit the following inequality

|1 − αm2(z)| ≥ |�(1 − αm2(z))|

Note first that if |z| ≥ 2
√

2√c0ω
√

4 + 2α
ω2c0

, then necessarily

max(|x|, |y|) ≥ 2
√
c0ω

√
4 + 2α

ω2c0
(183)

Based on (183), we consider the following two cases:
Case 1: |y| = max(|x|, |y|). In this case, (−x2 + y2)(4 + 2α

ω2c0
) ≥ 0. Hence, using

(179) along with (180), we obtain:

|1 − αm2(z)| ≥
2|z|4

∫ 2√c0ω

0 μ(dλ)
4(|z| + 2√c0ω)4 ≥ |z|4

8(|z| + 2√c0ω)4 (184)

Case 2: |x| = max(|x|, |y|). In this case, from (183), it holds that

|x| ≥ 2
√
c0ω

√
4 + 2α

ω2c0
.

Under this condition, it can be easily checked that function λ �→ (2 + 2α
ω2c0

)λ4 −
λ2x2(4 + 2α

ω2c0
) is a decreasing function on

(
0, 2√c0ω

)
and thus achieves its

minimum at λ = 2√c0ω. As a result, in view of (179), |�(1 − αm2(z))| can be
lower-bounded as follows:

∣∣� (1 − αm2(z)
)∣∣ ≥

∣∣∣∣∣
∫ 2√c0ω

0

−4c0ω2x2(4 + 2α
ω2c0

) + x4 + (x2 + y2)2

((λ− x)2 + y2) ((λ + x)2 + y2) μ(dλ)

∣∣∣∣∣
(185)

≥ |z|4
8(|z| + 2√c0ω)4 (186)

where (186) follows from the fact that since |x| ≥ 2√c0ω
√

4 + 2α
ω2c0

,

x4 − 4c0ω2(4 + 2α
ω2c0

)x2 ≥ 0.



358 A. Kammoun and R. Couillet

Combining (184) and (186), we note that in either case |y| = max(|x|, |y|) or
|x| = max(|x|, |y|),

|1 − αm2(z)| ≥ |z|4
8(|z| + 2√c0ω)4

which proves the desired result.

A.3 Proof of Lemma 9

To ease the notations, we denote by dk,j the quantity:

dk,j = 1
√
p

(
xT
kAj,pxk − 1

p
tr(C[k]C[j])

)
δk �=j

The aim of Lemma 9 is to show that:

E

[∣∣∣∑
k �=j

dk,jQkj

∣∣∣2s] = Oz(p−2s+ε) (187)

By Lemma 5, proving that

Ej

[∣∣∣∑
k �=j

dk,jQkj

∣∣∣2s] ≤ (|�z|−4 + |�z|−6)sO(p−2s+ε) (188)

suffices to show the desired result (187). Thus, in what follows, we consider
showing (188) by induction on s. For s = 1, we decompose Ej

[∣∣∑
k �=j dk,jQkj

∣∣2]
as:

Ej

[∣∣∑
k �=j

dk,jQkj

∣∣2] = varj
( 1
√
p

∑
k �=j

dk,jQkj

)
+
∣∣Ej

[∑
k �=j

dk,jQkj

]∣∣2 (189)

Using Poincaré-Nash inequality, the treatment of the first term in the right-hand
side of (189) boils down to showing that:

p∑
l=1

∣∣∑
k �=j

dk,j
∂Qkj

∂Zlj

∣∣2 ≤ |�z|−4O(p−2) (190)

Indeed, using the differentiation formula in (29), we obtain:
p∑

l=1

∣∣∑
k �=j

dk,j
∂Qkj

∂Zlj

∣∣2

=
p∑

l=1

4
∣∣∑
k �=j

dk,j
∑
b �=j

(xT
b xj)
[
C

1
2
[j]xb

]
l
(QkjQbj + QjjQbk)

∣∣2

≤ 8
∣∣[1TD{dk,j}nk=1Q

]
j

∣∣2 p∑
l=1

∣∣∑
b �=j

(xT
b xj)[C

1
2
[j]xb]lQbj

∣∣2
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+ 8|Qjj |2
p∑

l=1

∣∣∑
b �=j

[1TD{dk,j}nk=1Q]b(xT
b xj)[C

1
2
[j]xb]l

∣∣2 (191)

= 8
∣∣∣∣[1TD{dk,j}nk=1Q

]
j

∣∣∣∣
2 [

QHSjQ
]
jj

+ 8|Qjj |21TD{dk,j}nk=1QSjQ
HD{dk,j}nk=11. (192)

where Sj is the n× n matrix with elements

[Sj ]b1b2 = (xT
j xb1)(xT

j xb2)xT
b1C[j]xb2δb1 �=jδb2 �=j , (193)

and D{dk,j}nk=1 is the diagonal matrix with diagonal elements d1,j , . . . , dn,j .
Obviously the spectral norm of Sj is O(p−1) by Lemma 4 and so is that of
D{dk,j}nk=1. From this, it is easy to see that (190) holds true.

It remains thus to treat the second term in the right-hand side of (189). We
consider proving that:∣∣Ej

[∑
k �=j

dk,jQkj

]∣∣2 ≤ (|�z|−4 + |�z|−6)O(p−2) (194)

Noticing that for k �= j, dk,j is independent of xj , we obtain:
∣∣Ej

[∑
k �=j

dk,jQkj

]∣∣2
=
∣∣∑
k �=j

dk,jEj [Qkj ]
∣∣2 (195)

=
∣∣∑
k �=j

dk,jEj [Qjje
T
kQjξ(j,−j)]

∣∣2 (196)

≤ 2
∣∣∑
k �=j

dk,jEj [(Qjj − Ej(Q)jj)eTkQjξ(j,−j)]
∣∣2

+ 2

∣∣∣∣∣∣
∑
k �=j

dk,jEj [Qjj ]Ej

[
eTkQjξ(j,−j)]

]∣∣∣∣∣∣
2

(197)

To establish (194) and thus complete the proof for s = 1, we propose to show
that the following inequalities hold true:∣∣∣∑

k �=j

dk,jEj [(Qjj − Ej(Q)jj)eTkQjξ(j,−j)]
∣∣∣2 ≤ |�z|−6O(p−2) (198)

∣∣∣∑
k �=j

dk,jEj [Qjj ]Ej

[
eTkQjξ(j,−j)]

]∣∣∣2 ≤ |�z|−4O(p−2) (199)

Proof of (198). From Corollary 2, it holds that

Ej [
∣∣eTkQjξ(j,−j)

∣∣2] ≤ |�z|−2O(1
p
) (200)
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while using Poincaré-Nash inequality, we have:

Ej

[
|Qjj − Ej [Qjj ]|2

]
≤

p∑
l=1

Ej

[ ∣∣∣∣∂Qjj

∂Zlj

∣∣∣∣
2 ]

= 16
∑
b1 �=j

∑
b2 �=j

Ej

[
xT
b1xjx

T
b2xjx

T
b1C[j]xb2 |Qjj |2Qb1jQ

∗
b2j

]

= 16Ej

[
|Qjj |2[QHSjQ]jj

]
≤ |�z|−4O(1

p
) (201)

Using the fact that maxk |dk,j | = O(p−1), we obtain (198) by combining (200)
and (201) and applying Cauchy-Schwartz inequality.
Proof of (199). Computing the expectation over xj of the term Ej [eTkQjξ(j,−j)],
we get:∣∣∣∣∣∣

∑
k �=j

dk,jEj [Qjj ]Ej

[
eTkQjξ(j,−j)]

]∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
k �=j

dk,jEj [Qjj ]
∑
m �=j

[Qj ]km
1
√
p

(
xT
mC[j]xm − 1

p
tr(C[m]C[j])

)∣∣∣∣∣∣
2

(202)

=
∣∣Ej [Qjj ]1TD{dk,j}nk=1QjD{dm,j}nm=11

∣∣2 (203)
≤ |�z|−4p2‖D{dk,j}‖4 (204)

Hence, using the fact that ‖D{dk,j}‖4 = O(p−4), (199) follows.
Assume that (188) holds for all integer k = 1, . . . , s − 1, and let us prove it

for k = s. To begin with, we use the following relation:

Ej

[∣∣∣∑
k �=j

dk,jQk,j

∣∣∣2s] =
∣∣∣Ej

[∣∣∣∑
k �=j

dk,jQkj

∣∣∣s]∣∣∣2 + varj
[∣∣∣∑

k �=j

dk,jQkj

∣∣∣s] (205)

and apply the Cauchy-Schwartz inequality together with the induction assump-
tion to treat the first term of the right-hand side of (205) as follows:∣∣∣Ej

[∣∣∣∑
k �=j

dk,jQkj

∣∣∣s]∣∣∣2 ≤ Ej

[∣∣∣∑
k �=j

dk,jQkj

∣∣∣2s−2]
Ej

[∣∣∣∑
k �=j

dk,jQkj

∣∣∣2] (206)

≤ (|�z|−4 + |�z|−6)sO(p−2s+ε) (207)

To handle the second term in (205), we invoke the Poincaré-Nash inequality to
obtain:

varj
[∣∣∣∑

k �=j

dk,jQkj

∣∣∣s] ≤ Ej

[
s2
∣∣∣∑
k �=j

dk,jQkj

∣∣∣2s−2 p∑
l=1

∣∣∣∣∣∣
∑
k �=j

dk,j
∂Qkj

∂Zlj

∣∣∣∣∣∣
2 ]

(208)
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and use (190) in combination with the induction assumption and Lemma 5, to
ultimately get:

varj
[∣∣∣∑

k �=j

dk,jQkj

∣∣∣s] ≤ (|�z|−4 + |�z|−6)sO(p−2s+ε) (209)

From (207) and (209) and based on the decomposition in (205), we thus prove
the desired result for k = s, which completes the proof.

A.4 Proof of Lemma 11

For simplicity, we remove the subscript p from the notation of A1,p and A2,p.
We will treat the case of k = j since all other cases follow similarly. Call ϑj

sb the
quantity:

ϑj
sb = xT

s A1xjx
T
b A2xsQsj

and let χbj be:
χbj =

∑
s/∈{b,j}

ϑj
sb

With these notations, Lemma 11 aims to show that:

E

[
|χbj |2

]
= Oz(p−2+ε). (210)

Decomposing χbj as:

χbj = χbj − Ej [χbj ] + Ej [χbj ]

we obtain:

E[|χbj |2] ≤ 2E
[
|χbj−Ej [χbj ]|2

]
+2E
[
(Ej [χbj ])2

]
= 2E[varj(χbj)]+2E

[
(Ej [χbj ])2

]
where varj is the variance with respect to the distribution of xj . To prove the
desired result in (210), it suffices to show that:

E[varj(χbj)] = Oz(p−2+ε) (211)

E

[
(Ej [χbj ])2

]
= Oz(p−2+ε) (212)

Proof of (211). Based on Poincaré-Nash inequality, we can upper bound
varj(χbj) as:

varj(χbj) ≤
p∑

l=1

∣∣∣∣∣∣
∑

s/∈{b,j}

∂ϑj
sb

∂Zlj

∣∣∣∣∣∣
2

(213)

Using the differentiation formula in (29), we obtain:

varj(χbj) ≤ 2Z1 + 8Z2
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where

Z1 =
p∑

l=1

∣∣∣∣∣∣
∑

s/∈{b,j}

1
√
p

[
C

1
2
[j]A1xs

]
l
xT
b A2xsQsj

∣∣∣∣∣∣
2

(214)

Z2 =
p∑

l=1

∣∣∣∣∣∣
∑

s/∈{b,j}
xT
s A1xjx

T
b A2xs

∑
q �=j

(xT
q xj)[C

1
2
[j]xq]l(QsjQqj + QjjQqs)

∣∣∣∣∣∣
2

(215)

Using Lemma 5, the proof of (210) reduces to showing that Zi = Oz(p−2) for
i = 1, 2.
Treatment of Z1. Expanding Z1, we obtain:

Z1 =
∑

s1 /∈{b,j}

∑
s2 /∈{b,j}

1
p
xT
s1A1C[j]A1xs2x

T
b A2xs1x

T
b A2xs2Qs1jQ

∗
s2j (216)

= 1
p

[
QSbjQ

H
]
jj

(217)

where Sbj is the n× n matrix with elements:

Sbj = xT
s1A1C[j]A1xs2x

T
b A2xs1x

T
b A2xs2δs1 /∈{b,j}δs2 /∈{b,j}

By Lemma 4, ‖Sbj‖ = O(p−1). Thus Z1 = O(p−2).
Treatment of Z2. Clearly, Z2 can be upper-bounded as Z2 ≤ 2Z21 + 2Z22
where Z21 and Z22 are given by:

Z21 =

∣∣∣∣∣∣
∑

s/∈{b,j}
xT
s A1xjx

T
b A2xsQsj

∣∣∣∣∣∣
2

p∑
l=1

∣∣∣∣∣∣
∑
q �=j

(xT
q xj)[C

1
2
[j]xq]lQqj

∣∣∣∣∣∣
2

(218)

Z22 = |Qjj |2
p∑

l=1

∣∣∣∣∣∣
∑

s/∈{b,j}
xT
s A1xjx

T
b A2xs

∑
q �=j

(xT
q xj)[C

1
2
[j]xq]lQqs

∣∣∣∣∣∣
2

(219)

Denote by Db the n× n diagonal matrix with diagonal elements:

[Db]ss = xT
b A2xsδs/∈{b,j}, s = 1, . . . , n

and by Sj the n× n matrix with elements:

[Sj ]q1q2 = (xT
q1xj)(xT

q2xj)xT
q1C[j]xq2δq1 �=jδq2 �=j

With these notations quantities Z21 and Z22 can be written in a matrix form
as:

Z21 = [QSjQ
H ]jj
∣∣∣[XTA1XDbQ

]
jj

∣∣∣2 (220)
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Z22 = |Qjj |2xT
j A1XDbQSjQ

HDbX
TA1xj (221)

Using the fact that ‖Sj‖ = O(p−1) and ‖Db‖ = O(p− 1
2 ), we can easily deduce

that Z21 = O(p−2) and Z22 = O(p−2). Hence Z2 = O(p−2), which completes
the treatment of Z2.
Proof of (212). Using (33), obtain:

Ej

[
χbj

]
= Ej [

∑
s/∈{b,j}

−xT
s A1xjx

T
b A2xsQjje

T
s Qjξ(j,−j)]

Since Ej [xT
s A1xje

T
s Qjξ(j,−j)] = 0, we get:

Ej

[
χbj

]
= Ej [

∑
s/∈{b,j}

−xT
s A1xjx

T
b A2xse

T
s Qjξ(j,−j)(Qjj − E[Qjj ])]

Applying Cauchy-Schwartz inequality, we can bound E[|Ejχbj |2] as:

E[|Ejχbj |2]

≤ E

[∣∣ ∑
s/∈{b,j}

√
Ej

[
|eTs Qjξ(j,−j)|2

]√
Ej [|xT

s A1xj |2|Qjj − E[Qjj ]|2]|xT
b A2xs|2

∣∣2]
(222)

≤ E

[ ∑
s/∈{b,j}

Ej

[
|eTs Qjξ(j,−j)|2

] ∑
s/∈{b,j}

Ej

[
|xT

s A1xj |2|Qjj − E[Qjj ]|2
]
|xT

b A2xs|2
]

(223)

Using Corollary 2, it can be shown that
∑

s/∈{b,j} Ej [|eTs Qjξ(j,−j)|2] can be
bounded by |�z|−2O(1). On the other hand, it follows from Lemma 8 that
E[|Qjj − E[Qjj |2]] = Oz(p−1+ε). Noting that for s /∈ {b, j}, both quantities
|xT

s A1xj |2 and |xT
b A2xs|2 are O(p−1), we show (212) by applying Lemma 5.

A.5 Proof of Lemma 13

Recall that Qk = (Φk − zIn)−1. From the resolvent identity Q−Qk = Q(Φk −
Φ)Qk, we have:

Qlr − [Qk]lr =
n∑

m=1

n∑
s=1

Qlm

(
[Φk]ms − Φms

)
[Qk]sr

= −
∑
m �=k

√
pQlm

(
(xT

k xm)2 − 1
p2 trC[k]C[m]

)[
Qk

]
kr

−
∑
s �=k

√
pQlk

( (
xT
k xs

)2 − 1
p2 trC[k]C[s]

)
[Qk]sr

= −
∑
s �=k

√
pQlk

((
xT
k xs

)2 − 1
p2 trC[k]C[s]

)
[Qk]sr (224)
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where the last equality follows from the fact that [Qk]kr = 0 when r �= k. Using
(224), we obtain:∑

l �=k

∑
r �=k

E [blcrQlr − blcr [Qk]lr]

= −
∑
l �=k

∑
r �=k

∑
s �=k

√
pE
[
blcrQlk [Qk]sr

(
(xT

k xs)2 −
1
p2 tr(C[k]C[s])

)]

=
∑
l �=k

∑
r �=k

∑
s �=k

√
pE
[
blcre

T
l Qkξ(k,−k)Qkk [Qk]sr

(
(xT

k xs)2 −
1
p2 trC[k]C[s]

)]

= E
[
bTQkξ(k,−k)c

TQkξ(k,−k)Qkk

]
(225)

= E

[
bTQkξ(k,−k)c

TQkξ(k,−k)(Qkk − E[Qkk])
]

(226)

+ E[Qkk]E
[
bTQkξ(k,−k)c

TQkξ(k,−k)

]
(227)

It follows from Corollary 2 that:

Ek

[
bTQkξ(k,−k)c

TQkξ(k,−k)

]
≤ ‖Qk‖2‖b‖‖c‖O(1

p
)

Hence, using Lemma 5,

E

[
bTQkξ(k,−k)c

TQkξ(k,−k)

]
= Oz(p−1+ε) (228)

On the other hand, using Lemma 10 along with Corollary 3, we can easily see
that:

E

[
bTQkξ(k,−k)c

TQkξ(k,−k)(Qkk − E[Qkk])
]

= Oz(p−1+ε) (229)

Combining (228) and (229), we thus prove the sought-for result.

A.6 Proof of Lemma 12

For ease of notations, we shall drop the subscript j, p from matrices Ak,j,p,
k = 1, 2, 3, 4. Call θ̂j,kr,b the quantity:

θ̂j,kr,b = xT
b A1xkx

T
b A2xjx

T
kA3xrx

T
r A4xjQbr

and let Θ be:
Θ =

∑
r/∈{j,k}

∑
b/∈{j,r,k}

θ̂j,kr,b

With these notations, Lemma 12 is equivalent to showing:

E

[
|Θ|2
]

= O(p−3+ε) (230)

Decomposing Θ as:
Θ = Θ − Ej [Θ] + Ej [Θ] (231)
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we obtain:

E

[
|Θ|2
]
≤ 2E

[
|Θ − Ej [Θ]|2

]
+ 2E

[
|Ej [Θ]|2

]
= 2E[varj(Θ)] + 2E

[
|Ej [Θ]|2

]
where varj is the variance with respect to the distribution of xj . To prove the
desired result, we will prove that

E[varj(Θ)] = Oz(p−3+ε) (232)
E[|Ej(Θ)|2] = Oz(p−3+ε) (233)

Proof of (232) Based on Poincaré-Nash inequality, and using the differentiation
formula in (29), varj(Θ) can be bounded as:

varj(Θ) ≤
p∑

l=1

Ej

[∣∣ ∑
r/∈{j,k}

∑
b/∈{r,j,k}

∂θj,kr,b

∂Zlj

∣∣2] ≤ 8(ξ1 + ξ2 + ξ3 + ξ4) (234)

where

ξ1 =
p∑

l=1

∣∣ ∑
r/∈{j,k}

∑
b/∈{r,j,k}

xT
b A1xkx

T
kA3xr

1
√
p

[
C

1
2
[j]A2xb

]
l
xT
r A4xjQbr

∣∣2 (235)

ξ2 =
p∑

l=1

∣∣ ∑
r/∈{j,k}

∑
b/∈{r,j,k}

xT
b A1xkx

T
kA3xr

1
√
p

[
C

1
2
[j]A2xb

]
l
xT
b A2xjQbr

∣∣2 (236)

ξ3=
p∑

l=1

∣∣ ∑
r/∈{j,k}

∑
b/∈{r,j,k}

∑
s �=j

xT
b A1xkx

T
kA3xrx

T
b A2xjx

T
r A4xj(xT

s xj)[C
1
2
[j]xs]lQbjQsr

∣∣2
(237)

ξ4 =
p∑

l=1

∣∣ ∑
r/∈{j,k}

∑
b/∈{r,j,k}

∑
s �=j

xT
b A1xkx

T
kA3xrx

T
b A2xjx

T
r A4xj

× (xT
s xj)[C

1
2
[j]xs]lQjrQsb

∣∣2. (238)

The treatment of ξ1 and ξ2 is similar. The same also holds for ξ3 and ξ4. We
will thus only show that ξ1 = O(p−3) and ξ3 = O(p−3). Then (232) follows from
Lemma 5.
Treatment of ξ1. For t = 1, · · · , 4, and j = 1, · · · , n, denoting by Dj,t the
diagonal matrix whose r-th diagonal element is given by xT

r Atxjδr/∈{k,j} and by
Sj the n× n matrix with entries:

[Sj ]b1,b2 = xT
b1A1xkx

T
b2A1xkx

T
b1A2C[j]A2xb2δb1 �=kδb1 �=kδb2 �=k

we may write ξ1 in a matrix form as:

ξ1 = 1
p
xT
kA3XDj,4(Q−D(Q))Sj(QH −D(QH))Dj,4X

TA3xk
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where we recall that D(Q) denotes the diagonal matrix formed by the diagonal
elements of Q and X = [x1, · · · , xn]. Since ‖Sj‖ = O(p−1) and ‖Dj,4‖ = O(p− 1

2 ),
we obtain:

ξ1 = O(p−3).
Treatment of ξ3. To treat ξ3, we decompose it as the difference between two
terms associated with indexes b /∈ {j, k} and b = r. In doing so, we obtain:

ξ3 ≤ 2(ξ31 + ξ32) (239)

where

ξ31=
p∑

l=1

∣∣∣ ∑
r/∈{j,k}

∑
b/∈{j,k}

∑
s �=j

xT
b A1xkx

T
kA3xrx

T
b A2xjx

T
r A4xjx

T
s xj [C

1
2
[j]xs]lQbjQsr

∣∣∣2
(240)

ξ32 =
p∑

l=1

∣∣∣ ∑
r/∈{j,k}

∑
s �=j

xT
r A1xkx

T
kA3xrx

T
r A2xjx

T
r A4xjx

T
s xj [C

1
2
[j]xs]lQrjQsr

∣∣∣2
(241)

Let S̃j the n× n matrix with elements:

[S̃j ]s1,s2 = xT
s1xjx

T
s1C[j]xs2x

T
s2xjδs1 �=jδs2 �=j

Quantity ξ31 can be written in a matrix form as:

ξ31 =
p∑

l=1

∣∣∣∑
s �=j

[
xT
kA3XDj,4Q

]
s

[
xT
j A2XDk,1Q

]
j
xT
s xj [C

1
2
[j]xs]l

∣∣∣2 (242)

=
∣∣∣[xT

j A2XDk,1Q
]
j

∣∣∣2xT
kA3XDj,4QS̃jQ

HDj,4X
TA3xk (243)

= O(p−3) (244)

where the last estimate stems from the fact that ‖Dj,t‖ = O(p− 1
2 ) and ‖S̃j‖ =

O(p−1).
Similarly, ξ32 can be written in a matrix form as:

ξ32 =
p∑

l=1

∣∣∣[QDk,1Dk,3Dj,4Dj,2Q
]
sj

[C
1
2
[j]xs]l(xT

s xj)
∣∣∣2 (245)

=
[
QDk,1Dk,3Dj,4Dj,2QS̃jQ

HDk,1Dk,3Dj,4Dj,2Q
H
]
jj

(246)

= O(p−5) (247)

Combining (244) with (247) we get ξ3 = O(p−3).
Proof of (233). Using the integration by part formula, we may simplify Ej(Θ)
as:

Ej(Θ) = Θj,1 + Θj,2 + Θj,3 (248)
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where Θj,1,Θj,2 and Θj,3 are given by:

Θj,1 =
∑

r/∈{j,k}

∑
b/∈{j,k,r}

Ej

[1
p
xT
b A1xkx

T
b A2C[j]A4xrx

T
kA3xrQbr

]
(249)

Θj,2 = −2
√
p

∑
r/∈{j,k}

∑
b/∈{j,k,r}

Ej

[∑
s �=j

xT
b A1xkx

T
b A2xjx

T
kA3xrx

T
r A4C[j]xs

× xT
s xjQjbQsr

]
(250)

Θj,3 = −2
√
p

∑
r/∈{j,k}

∑
b/∈{j,k,r}

Ej

[∑
s �=j

xT
b A1xkx

T
b A2xjx

T
kA3xrx

T
r A4C[j]

× xsx
T
s xjQjrQsb

]
(251)

The proof of (233) amounts to showing that for i = 1, 2, 3, E[|Θj,i|2] = Oz(p−3+ε).

Treatment of E[|Θj,1|2]. Using Cauchy-Schwartz inequality, we can bound
|Θj,1|2 as:

E[|Θj,1|2] ≤ E

[ ∑
r/∈{j,k}

|xT
kA3xr|2
p2

∑
r/∈{j,k}

∣∣∣ ∑
b/∈{j,k,r}

Ej

[
xT
b A1xkx

T
b A2C[j]A4xrQbr

]∣∣∣2]
(252)

= Oz(p−3+ε) (253)

where the last estimate follows by using the fact that
∑

r/∈{j,k} |xT
kA3xr|2 =

O(1) and that E[
∣∣∣∑b/∈{j,k,r}

[
xT
b A1xkx

T
b A2C[j]A4xrQbr

]∣∣∣2 = Oz(p−2+ε)] from
Lemma 11.

Treatment of E[|Θj,2|2]. To begin with, we decompose Θj,2 as the sum of two
terms associated with index s /∈ {j, r} and with s = r, respectively:

Θj,2 = Θj,2,1 + Θj,2,2 (254)

where

Θj,2,1 = −2
√
p

∑
r/∈{j,k}

∑
b/∈{j,k,r}

Ej

[ ∑
s/∈{j,r}

xT
b A1xkx

T
b A2xjx

T
kA3xrx

T
r A4C[j]xs

× xT
s xjQjbQsr

]
Θj,2,2 = −2

√
p

∑
r/∈{j,k}

∑
b/∈{j,k,r}

Ej

[
xT
b A1xkx

T
b A2xjx

T
kA3xrx

T
r A4C[j]xr

× xT
r xjQjbQrr

]
(255)
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The term E|Θj,2,1|2 can be handled using Cauchy-Schwartz inequality in com-
bination with Lemma 11 as follows:

E[|Θj,2,1|2]

≤ 4
p
E

[ ∑
r/∈{j,k}

|xT
r A3xk|2 (256)

×
∑

r/∈{j,k}

∣∣Ej

[ ∑
b/∈{j,k,r}

xT
b A1xkx

T
b A2xjQbj

∑
s/∈{j,r}

xT
r A4C[j]xs(xT

s xj)Qsr

]∣∣2]
(257)

≤ 4
p
E

[ ∑
r/∈{j,k}

|xT
r A3xk|2

∑
r/∈{j,k}

Ej

[∣∣∣ ∑
b/∈{j,k,r}

xT
b A1xkx

T
b A2xjQbj

∣∣∣2]

× Ej

[∣∣∣ ∑
s/∈{j,r}

xT
r A4C[j]xs(xT

s xj)Qsr

∣∣∣2]] (258)

Using Lemma 11 along with Lemma 5, we obtain E[|Θj,2,1|2] = Oz(p−3+ε). On
the other hand, using the fact that E|EjX|2 ≤ E|X|2, we can upper-bound
E

[
|Θj,2,2|2

]
as:

E

[
|Θj,2,2|2

]
≤ 8

p
E

[∣∣ ∑
r/∈{j,k}

xT
kA3xr(xT

r xj)Qrr

∣∣2∣∣ ∑
b/∈{j,k}

xT
b A1xkx

T
b A2xjQjb

∣∣2]
(259)

+ 8
p
E

[∣∣ ∑
r/∈{j,k}

xT
kA3xrx

T
r xjQrrx

T
r A1xkx

T
r A2xjQjr

∣∣2] (260)

= Oz(p−3+ε) (261)

where the last estimate follows by Lemma 11.

Treatment of E[|Θj,3|2]. Writing Θj,3 in a matrix form, we get:

Θj,3

= − 2
√
p

∑
r/∈{j,k}

Ej

[
xT
kA3xrx

T
r A4C[j]XD{xT

s xjδs �=j}QD{xT
b A2xjδb/∈{j,k,r}}

×XTC[j]xkQjr

]
Using the facts that:

xT
kA3xr = O(p− 1

2 )

‖D{xT
s xjδs �=j}‖ = O(p− 1

2 )
E[|Qjr|2] = Oz(p−1+ε)

we obtain E|Θj,3|2 = Oz(p−3+ε).
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Appendix B Proof of Proposition 1 and Proposition 2

B.1 Proof of Proposition 1

To simplify the exposition of the proof, we remove the subscript n in the notation
of ak,n and bk,n and the argument z from Υ(a, b, z). In addition, we introduce
the following quantity:

gk = z + ξT(k,−k)Qkξ(k,−k)

Using (33) and (32), we may decompose Υ(a, b) as:

Υ(a, b) =
n∑

k=1

∑
r �=k

akbrE
[
eTr Qkξ(k,−k)g

−1
k

]
(262)

=
n∑

k=1

∑
r �=k

akbrE
[
eTr Qkξ(k,−k)(Ek(gk))−1] (263)

−
n∑

k=1

∑
r �=k

akbrE
[eTr Qkξ(k,−k)

(
ξT(k,−k)Qkξ(k,−k) − Ek[ξT(k,−k)Qkξk]

)
gk(Ek(gk))

]
(264)

= Υ1(a, b) + ε(a, b) (265)

where

Υ1(a, b) =
n∑

k=1

∑
r �=k

akbrE
[
eTr Qkξ(k,−k)(Ek(gk))−1]

ε(a, b) = −
n∑

k=1

∑
r �=k

akbrE
[eTr Qkξ(k,−k)

(
ξT(k,−k)Qkξ(k,−k) − Ek[ξT(k,−k)Qkξk]

)
gkEk(gk)

]

Based on (265), the proof amounts to showing that:

Υ1(a, b) = −
n∑

k=1

∑
r �=k

akbrα̃k,rE(Qkk) + Oz(p−
1
2+ε) (266)

ε(a, b) = Oz(p−
1
2+ε) (267)

and to check that the estimates in (266) and (267) hold true with an error
Oz(p−1+ε) when

∑n
k=1 |bk| is uniformly bounded in n.

Proof of (266) Taking the expectation with respect to xk, we obtain:

Υ1(a, b) =
n∑

k=1

∑
r �=k

akbr
∑
l �=k

E

[
[Qk]rl

1
√
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))(Ek(gk))−1
]

(268)
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=
n∑

k=1

∑
r �=k

akbr
∑
l �=k

E

[
[Qk]rl

1
√
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))(gk)−1
]

(269)

+
n∑

k=1

∑
r �=k

akbr
∑
l �=k

E

[
[Qk]rl

1
√
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))
(gk − Ek(gk))
gk(Ek(gk))

]

(270)
= Υ11(a, b) + ε1(a, b) (271)

where

Υ11(a, b) =
n∑

k=1

∑
r �=k

akbr
∑
��=k

E

[
[Qk]rl

1
√
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))(gk)−1
]

(272)

ε1(a, b) =
n∑

k=1

∑
r �=k

∑
��=k

E

[ akbr[Qk]rl√
p (xT

l C[k]xl − 1
p tr(C[k]C[l]))(gk − Ek(gk))

gk(Ek(gk))

]
(273)

To control ε1(a, b), we use the fact that Qk is independent of xk to obtain:

ε1(a, b)=−
n∑

k=1

∑
r �=k

∑
l/∈{r,k}

E

[ akbr[Qk]rl√
p (xT

l C[k]xl − 1
p tr(C[k]C[l]))(gk − Ek(gk))2

gk(Ekgk)2
]

−
n∑

k=1

∑
r �=k

akbrE

[
[Qk]rr

1
√
p
(xT

r C[k]xr −
1
p

tr(C[k]C[r]))
(gk − Ek(gk))2

gk(Ekgk)2

]

(274)

Both terms involved in the expression of ε1(a, b) can be shown to be Oz(p−1+ε).
Indeed, the first term can be upper-bounded using Cauchy-Schwartz inequality
as follows:∣∣∣ n∑

k=1

∑
r �=k

akbr
∑

l/∈{r,k}
E

[
[Qk]rl

1
√
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))
|gk − E(gk)|2
gk(Ekgk)2

] ∣∣∣
(275)

≤ |�z|−3
n∑

k=1

∑
r �=k

|ak||br|
√√√√E

[∣∣∣ ∑
l/∈{r,k}

[Qk]rl
1
√
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))
∣∣∣2]

×
√

E|gk − Ek(gk)|4 (276)

where we used in (276) the fact that max(|(gk)−1|, |(Ek(gk))−1|) ≤ |�z|−1. To
continue, we leverage Lemma 9 and Lemma 6 along with Lemma 5 to show that

E

[∣∣ 1
√
p

∑
l �=r

[Qk]rl(xT
l C[k]xl −

1
p

tr(C[k]C[l]))
∣∣2] = Oz(p−2+ε) (277)
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and
E|gk − Ek(gk)|4 = Oz(p−2+ε) (278)

Using these estimates, we can easily check that the upper bound in (276) is
Oz(p−1+ε). Similarly, using the fact that

1
√
p
(xT

r C[k]xr −
1
p

tr(C[k]C[r])) = O(p−1)

together with (278), we prove that the second term in the right-hand side of
(274) is also Oz(p−1+ε).

Now, recalling that Qkk = −(gk)−1, Υ11(a, b) can be decomposed as:

Υ11(a, b) = −
n∑

k=1

∑
r �=k

akbr
∑
l �=k

E
[
[Qk]rl

1
√
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))E(Qkk)
]

+
n∑

k=1

∑
r �=k

akbr
∑
l �=k

E
[
[Qk]rl

1
√
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))(E(Qkk) −Qkk)
]
(279)

Obviously the second term in the right-hand side of (279) is Oz(p−
1
2+ε) and

becomes Oz(p−1+ε) when
∑n

k=1 |bk| is uniformly bounded in n. This can be
shown by decomposing it as in (274) and then using Lemma 8 together with
(277). We thus obtain

Υ11(a, b) = −
n∑

k=1

∑
r �=k

akbr
∑
l �=k

E
[
[Qk]rl

1
√
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))E(Qkk)
]

+ Oz(p−
1
2+ε)

and the estimate becomes O(p−1+ε) when
∑n

k=1 |bk| is uniformly bounded in n.
To complete the proof of (266), we first note that by Lemma 134,

n∑
k=1

∑
r �=k

akE[Qkk]br
∑
l �=k

E

[
[Qk]rl

1
√
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))
]

(280)

=
n∑

k=1

∑
r �=k

akE[Qkk]br
∑
l �=k

E

[
[Q]rl

1
√
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))
]

+ Oz(p−1+ε)

(281)

Here, it is worth mentioning that (266) is not exactly proved since, to make αr

appear, first, the index l should be different from r (and not different from k)
and second matrix C[k] should be C[r] instead. For the moment, we focus on
fixing the first problem and consider showing that:

n∑
k=1

∑
r �=k

akE[Qkk]br
∑
l �=k

E

[
[Q]rl

1
√
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))
]

4Here, we apply Lemma 13 with vector c =
{
xT
r C[k]xr − 1

p
tr(C[k]C[r])

}n
r=1

.
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=
n∑

k=1

∑
r �=k

akE[Qkk]br
∑
l �=r

E

[
[Q]rl

1
√
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))
]

+ Oz(p−
1
2+ε)

(282)

where the error in (282) becomes Oz(p−1+ε) when
∑n

r=1 |bn| is bounded. To
show (282), we start from the following decomposition:

n∑
k=1

∑
r �=k

akE[Qkk]br
∑
l �=k

E

[
[Q]rl

1
√
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))
]

=
n∑

k=1

∑
r �=k

akE[Qkk]br
∑

l/∈{r,k}
E

[
[Q]rl

1
√
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))
]

+
n∑

k=1

∑
r �=k

akE[Qkk]brE
[
[Q]rr

1
√
p
(xT

r C[k]xr −
1
p

tr(C[k]C[r]))
]

(283)

=
n∑

k=1

∑
r �=k

akE[Qkk]br
∑
l �=r

E

[
[Q]rl

1
√
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))
]

−
n∑

k=1

∑
r �=k

akE[Qkk]brE
[
[Q]rk

1
√
p
(xT

kC[k]xk − 1
p

tr(C[r]C[k]))
]

+
n∑

k=1

∑
r �=k

akE[Qkk]brE
[
[Q]rr

1
√
p
(xT

r C[k]xr −
1
p

tr(C[k]C[r]))
]

(284)

=
n∑

k=1

∑
r �=k

akE[Qkk]br
∑
l �=r

E

[
[Q]rl

1
√
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))
]

+ Oz(p−
1
2+ε)

(285)

and the error in (285) becomes Oz(p−1+ε) when
∑n

r=1 |br| is bounded. To obtain
(285), we used the fact that

∑n
k=1
∑

r �=k |ak||br| = O(p) and becomes O(√p)
when

∑n
r=1 |br| is bounded together with 1√

p (xT
l C[r]xl− 1

p tr(C[r]C[l])) = O(p−1)
and E|Qrk|2 = Oz(p−1+ε). All this allows us to show that the second term in
(284) satisfies:

E

[ ∣∣∣∣∣∣
n∑

k=1

∑
r �=k

akE[Qkk]brE
[
[Q]rk

1
√
p
(xT

kC[r]xk − 1
p

tr(C[r]C[k]))
]∣∣∣∣∣∣
]

= Oz(p−
1
2+ε)

(286)
and becomes O(p−1+ε) when

∑n
r=1 |br| is bounded. The last term in (284) can

be handled by noticing that E[ 1√
p (xT

r C[k]xr − 1
p tr(C[k]C[l]))] = 0, which allows

us to write it as:
n∑

k=1

∑
r �=k

akE[Qkk]brE
[
[Q]rr

1
√
p
(xT

r C[k]xr −
1
p

tr(C[k]C[r]))
]
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=
n∑

k=1

∑
r �=k

akE[Qkk]brE
[
([Q]rr − E[Qrr])

1
√
p
(xT

r C[k]xr −
1
p

tr(C[k]C[r]))
]

(287)

Using the facts that

E

[
|Qrr − E[Qrr]|2

]
= Oz(p−1+ε) 1

√
p
(xT

r C[k]xr −
1
p

tr(C[k]C[r])) = O(p−1)

n∑
k=1

∑
r �=k

akE[Qkk]brE
[
[Q]rr

1
√
p
(xT

r C[k]xr −
1
p

tr(C[k]C[r]))
]

= Oz(p−
1
2+ε)

(288)
and becomes Oz(p−1+ε) when

∑n
r=1 |br| is bounded. Combining (286) and (288)

we thus prove (285) and hence (266).
Proof of (267). First, considering the decomposition of g−1

k as:

g−1
k = (Ekgk)−1 + (Ek(gk) − gk)(gk)−1(Ekgk)−1 (289)

= (Ekgk)−1 − (ξT(k,−k)Qkξ(k,−k) − Ek[ξT(k,−k)Qkξ(k,−k)])(gk)−1(Ekgk)−1

(290)

we can write ε(a, b) as:

ε(a, b) = ε2(a, b) + ε3(a, b)

where

ε2(a, b)=−
n∑

k=1

∑
r �=k

E
[akbreTr Qkξ(k,−k)

(
ξT(k,−k)Qkξ(k,−k)−Ek[ξT(k,−k)Qkξ(k,−k)]

)
(Ekgk)2

]
(291)

ε3(a, b)=
n∑

k=1

∑
r �=k

E
[akbreTr Qkξ(k,−k)

(
ξT(k,−k)Qkξ(k,−k)−Ek[ξT(k,−k)Qkξ(k,−k)]

)2
(Ekgk)2gk

]
(292)

Based on Cauchy-Schwartz inequality, we can upper-bound ε3(a, b) as:

|ε3(a, b)| ≤
n∑

k=1

∑
r �=k

|ak||br||�z|−3
√

E[|eTr Qkξ(k,−k)|2]

×
√

E[|ξT(k,−k)Qkξ(k,−k) − Ek[ξT(k,−k)Qkξ(k,−k)]|4] (293)

and hence, using Lemma 6 and Lemma 10, we can easily check that ε3(a, b) =
Oz(p−

1
2+ε) and becomes Oz(p−1+ε) when

∑n
k=1 |bk| is uniformly bounded in n.
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It remains thus to check that ε2(a, b) = Oz(p−1+ε). The proof relies on comput-
ing the expectation of ε3(a, b) with respect to xk. For that, it suffices to compute
the following quantity:

Γr = Ek

[
eTr Qkξ(k,−k)

(
ξT(k,−k)Qkξ(k,−k) − Ek[ξT(k,−k)Qkξ(k,−k)]

)]
Particularly, we prove that Γr is given by:

Γr = 8Γ1,r + 4Γ2,r (294)

with

Γ1,r =
∑
l �=k

∑
m �=k

∑
q �=k

p−
3
2 [Qk]rl[Qk]mqx

T
mC[k]xqx

T
q C[k]xlx

T
l C[k]xm (295)

Γ2,r =
∑
l �=k

∑
m �=k

∑
q �=k

p−
3
2 [Qk]rl[Qk]mq

(
xT
q C[k]xq −

1
p

tr(C[k]C[q])
)

(xT
l C[k]xm)2

(296)

Before proving (294), let us see how it leads to (267). Indeed, in view of (292)
and Lemma 5, it suffices to check that:∑

r �=k

brΓ1,r = O(p−1) (297)

∑
r �=k

brΓ2,r = O(p− 3
2 ) (298)

and that
∑

r �=k brΓ1,r = O(p− 3
2 ) when

∑n
k=1 |bn,k| is uniformly bounded in n.

To prove (297), we write
∑

r �=k brΓ1,r in a matrix form as:
∑
r �=k

brΓ1,r = p−
3
2 bTQkD

{
XT

k C[k]Xk

(
Qk �XT

k C[k]Xk

)
XT

k C[k]Xk

}
1n

where X = [x1, · · · , xn] and Xk is matrix X with the k-th column and the k-th
row replaced by zero vectors. Then (297) follows by applying Lemma 1 and using
the fact that the spectral norm of XT

k C[k]Xk is O(1). Moreover, we can easily
see that when

∑n
k=1 |bn,k| is uniformly bounded in n,

∑
r �=k brΓ1,r = O(p− 3

2 ).
Similarly, we may write

∑
r �=k brΓ2,r in a matrix form as:

∑
r �=k

brΓ2,r

=p−
3
2 bTQk

(
XT

k C[k]Xl �XT
k C[k]Xl

)
QkD
{(

xT
q C[k]xq−

1
p

tr(C[k]C[q])
)
δq �=k

}n
q=11

and hence (298) holds true. To complete the proof, it remains thus to check
(294). For that, we decompose ξ(k,−k) as:

ξ(k,−k) = ξ(k,−k) − Ek[ξ(k,−k)] + Ek[ξ(k,−k)]
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and expand ξT(k,−k)Qkξ(k,−k) as:

ξT(k,−k)Qkξ(k,−k) =
(
ξT(k,−k) − Ek[ξT(k,−k)]

)
Qk

(
ξ(k,−k) − Ek[ξ(k,−k)]

)
+ 2Ek[ξTk,−k]Qk

(
ξ(k,−k) − Ek[ξ(k,−k)]

)
+ Ek[ξTk,−k]QkEk[ξk,−k] (299)

Using (299), Γr can be further written as:

Γr = Ek

[
eTr Qkξ(k,−k)

(
ξT(k,−k) − Ek[ξT(k,−k)]

)
Qk

(
ξ(k,−k) − Ek[ξ(k,−k)]

)]
+ 2Ek

[
eTr Qkξ(k,−k)Ek[ξTk,−k]Qk

(
ξ(k,−k) − Ek[ξ(k,−k)]

)]
+ Ek

[
eTr Qkξ(k,−k)Ek[ξT(k,−k)]QkEk[ξ(k,−k)]

]
− Ek

[
eTr Qkξ(k,−k)Ek[ξT(k,−k)]Qkξ(k,−k)

]
(300)

Using again (299), the first term in (300) is also given by:

Ek

[
eTr Qkξ(k,−k)

(
ξT(k,−k) − Ek[ξT(k,−k)]

)
Qk

(
ξ(k,−k) − Ek[ξ(k,−k)]

)]
=Ek

[
eTr Qk(ξ(k,−k)−Ek[ξ(k,−k)])

(
ξT(k,−k)−Ek[ξT(k,−k)]

)
Qk

(
ξ(k,−k)−Ek[ξ(k,−k)]

)]
+ Ek

[
eTr QkEk[ξ(k,−k)]

(
ξT(k,−k) − Ek[ξT(k,−k)]

)
Qk

(
ξ(k,−k) − Ek[ξ(k,−k)]

)]
(301)

= p
3
2
∑
l �=k

∑
m �=k

∑
q �=k

[Qk]rlEk

[
((xT

l xk)2 −
1
p
xT
l C[k]xl)((xT

mxk)2 −
1
p
xT
mC[k]xm)

× [Qk]mq((xT
q xk)2 −

1
p
xT
q C[k]xq)

]
+ p

3
2
∑
l �=k

∑
m �=k

∑
q �=k

[Qk]rl
1
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))

× Ek

[
((xT

mxk)2 −
1
p
xT
mC[k]xm)[Qk]mq((xT

q xk)2 −
1
p
xT
q C[k]xq)

]
(302)

Now, using the fact that E(zT1 A1z1 − trA1)(zT1 A2z1 − trA2)(zT1 A3z1 − trA3) =
8 trA1A2A3 and E(zT1 A1z1 − trA1)(zT1 A2z1 − trA2) = 2 trA1A2 where z is a
real standard Gaussian vector, we obtain,

Ek

[
eTr Qkξ(k,−k)

(
ξT(k,−k) − Ek[ξT(k,−k)]

)
Qk

(
ξ(k,−k) − Ek[ξ(k,−k)]

)]
= 8p− 3

2
∑
l �=k

∑
m �=k

∑
q �=k

[Qk]rl[Qk]mq(xT
l C[k]xm)(xT

q C[k]xl)(xT
q C[k]xl)

+ 2p− 3
2
∑
l �=k

∑
m �=k

∑
q �=k

[Qk]rl[Qk]mq
1
p
(xT

l C[k]xl −
1
p

tr(C[k]C[l]))(xT
mC[k]xq)2

(303)

In the same way, we handle the second term in (300) to obtain:

2Ek

[
eTr Qkξ(k,−k)Ek[ξTk,−k]Qk

(
ξ(k,−k) − Ek[ξ(k,−k)]

)]
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= 4p− 3
2
∑
l �=k

∑
m �=k

∑
q �=k

[Qk]rl[Qk]mq
1
p
(xT

mC[k]xm − 1
p

tr(C[k]C[m]))(xT
q C[k]xl)2

(304)

The third term in (300) can be simplified as:

Ek

[
eTr Qkξ(k,−k)Ek[ξT(k,−k)]QkEk[ξ(k,−k)]

]
= p−

3
2
∑
l �=k

∑
m �=k

∑
q �=k

[Qk]rl[Qk]mq(xT
l C[k]xl −

1
p

tr(C[k]C[l]))

× (xT
mC[k]xm − 1

p
tr(C[k]C[m]))(xT

q C[k]xq −
1
p

tr(C[k]C[q])) (305)

Finally, to treat the last term in (300), we use Lemma 6 to get:

− Ek

[
eTr Qkξ(k,−k)Ek[ξT(k,−k)]Qkξ(k,−k)

]
= −2p− 3

2
∑
l �=k

∑
m �=k

∑
q �=k

[Qk]rl[Qk]mq(xT
l C[k]xm)2(xT

q C[k]xq −
1
p

tr(C[k]C[q]))

− p−
3
2
∑
l �=k

∑
m �=k

∑
q �=k

[Qk]rl[Qk]mq(xT
l C[k]xl −

1
p

tr(C[k]C[l])) (306)

× (xT
mC[k]xm − 1

p
tr(C[k]C[m]))(xT

q C[k]xq −
1
p

tr(C[k]C[q])) (307)

Taking the sum of (303)-(307), we can see that (305) and the second term in
(303) cancels out with the first term in (307), thus yielding (294). This completes
the proof.

B.2 Proof of Proposition 2

Using the Integration by Part formula, we decompose α̃r,j as:

α̃r,j = χ1 + χ2

where

χ1 = −2
p

∑
k �=j

∑
b �=k

E
[
xT
b C[k]C[r]xkx

T
b xkQkkQbj

]

χ2 = −2
p

∑
k �=j

∑
b �=k

E
[
xT
b C[k]C[r]xkx

T
b xkQkjQbk

]

We will prove that:

χ1 = − 2
p2

n∑
b=1

n∑
k=1

E[Qkk]E[Qbj ]
1
p

tr((C◦)4) + Oz(p−
5
4 ) (308)
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χ2 = Oz(p−
5
4 ) (309)

which obviously leads to the desired result.
Treatment of χ1. Using Lemma 11, we can prove that:

χ1 = −2
p

∑
k �=j

∑
b �=k

E
[
xT
b C[k]C[r]xkx

T
b xkQbj

]
E[Qkk] + Oz(p−

3
2+ε)

From the Integration by Parts formula, it follows that:

χ1 = χ11 + χ12 + χ13 + Oz(p−
3
2+ε) (310)

where χ11, χ12 and χ13 are given by:

χ11 = −
∑
k �=j

∑
b �=k

2
p2E
[
xT
kC[b]C[k]C[r]xkQbj

]
EQkk (311)

χ12 = 4
p

3
2

∑
k �=j

EQkk

∑
b �=k

∑
s �=b

E
[
xT
s xbx

T
s C[b]C[k]C[r]xkx

T
k xbQsjQbb

]
(312)

χ13 = 4
p

3
2

∑
k �=j

EQkk

∑
b �=k

∑
s �=b

E
[
xT
s xbx

T
s C[b]C[k]C[r]xkx

T
k xbQbjQsb

]
(313)

The quantity χ11 can be worked out as:

χ11 = − 2
p2

n∑
b=1

E

[( n∑
k=1

xT
kC[b]C[k]C[r]xk − 1

p
trC[k]C[b]C[k]C[r]

)
Qbj

]
EQkk

(314)

− 2
p2

n∑
b=1

n∑
k=1

1
p

trC[k]C[b]C[k]C[r]EQbjEQkk + Oz(p−
3
2+ε) (315)

= − 2
p2

n∑
b=1

n∑
k=1

1
p

trC[k]C[b]C[k]C[r]EQbjEQkk + Oz(p−
3
2+ε) (316)

= − 2
p2

n∑
b=1

n∑
k=1

(1
p

trC[k]C[b]C[k]C[r] −
1
p

tr
((
C◦)4))

EQbjEQkk

− 2
p2

n∑
b=1

n∑
k=1

EQkkEQbj
1
p

tr
((
C◦)4)+ Oz(p−

3
2+ε) (317)

= − 2
p2

n∑
b=1

n∑
k=1

EQkkEQbj
1
p

tr
((
C◦)4)+ Oz(p−

5
4 ) (318)

where (316) follows from the fact
(∑n

k=1 x
T
kC[b]C[k]C[r]xk − 1

p trC[k]C[b]C[k]C[r]

)
is O(1) and (318) from EQbj = Oz(p−1+ε) for b �= j and 1

p trC[k]C[b]C[k]C[r] −
1
p tr
(
(C◦)4

)
= O(p− 1

4 ) by (11). It remains thus to study the two last terms in
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χ1. We start by decomposing χ13 as:

χ13 = 4
p

3
2

∑
k �=j

E[Qkk]
∑
b �=k

∑
s/∈{b,k}

E

[
xT
s xbx

T
s C[b]C[k]C[r]xkx

T
k xbQbjQsb

]
(319)

+ 4
p

3
2

∑
k �=j

E[Qkk]
∑
b �=k

∑
s/∈{b,k}

E

[
(xT

k xb)2xT
kC[b]C[k]C[r]xkQbjQkb

]
(320)

Both terms can be shown to be Oz(p−
3
2+ε) by using Cauchy-Schwartz inequality

and invoking Lemma 11. We will treat only the first term as the second one can
be treated in a similar fashion.∣∣∣E[ 4

p
3
2

∑
k �=j

E[Qkk]
∑
b �=k

∑
s/∈{b,k}

E

[
xT
s xbx

T
s C[b]C[k]C[j]xkx

T
k xbQbjQsb

]∣∣∣ (321)

≤ 4
p

3
2

∑
k �=j

|E[Qkk]|
∑
b �=k

√
E[|xT

k xb|2]|Qbj |2
√√√√E

∣∣∣ ∑
s/∈{b,k}

xT
s xbxT

s C[b]C[k]C[j]xkQsb

∣∣∣2
(322)

= Oz(p−
3
2+ε) (323)

The treatment of χ12 is more difficult. First, using the same calculations as for
χ13, we can approximate χ12 as:

χ12 = 4
p

3
2

∑
k �=j

E[Qkk]
∑
b �=k

E[Qbb]
∑
s �=b

E

[
xT
s xbx

T
s C[b]C[k]C[r]xkx

T
k xbQsj

]
+Oz(p−

3
2 )

(324)

It can be readily seen that the summand corresponding to s ∈ {j, k} leads to a
quantity that is Oz(p−

3
2 ). Indeed, for s = j, we have:

4
p

3
2

∑
k �=j

E[Qkk]
∑
b �=k

E[Qbb]E
[
xT
j xbx

T
j C[b]C[k]C[r]xkx

T
k xbQjj

]

= 4
p

3
2

∑
k �=j

E[Qkk]
∑

b/∈{k,j}
E[Qbb]E[Qjj ]E

[
xT
j xbx

T
j C[b]C[k]C[r]xkx

T
k xb

]
+ Oz(p−

3
2+ε)

= 4
p

3
2

∑
k �=j

E[Qkk]
∑

b/∈{k,j}
E[Qbb]E[Qjj ]

1
p3 tr(C[j]C[b]C[k]C[r]C[k]C[b]) + Oz(p−

3
2+ε)

= Oz(p−
3
2+ε) (325)

Similarly, the contribution of the summand corresponding to s = k can be
proven to be Oz(p−

3
2+ε). As a matter of fact,

4
p

3
2

∑
k �=j

E[Qkk]
∑
b �=k

E[Qbb]E
[
(xT

k xb)2xT
kC[b]C[k]C[r]xkQkj

]
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= 4
p

3
2

∑
k �=j

E[Qkk]
∑

b/∈{k,j}
E[Qbb]E

[
(xT

k xb)2xT
kC[b]C[k]C[r]xkQkj

]
+ Oz(p−

3
2+ε)

(326)

which is Oz(p−
3
2+ε) by Lemma 11. Combining (325) and (326) leads to:

χ12 (327)

= 4
p

3
2

∑
k �=j

E[Qkk]
∑
b �=k

E[Qbb]
∑

s/∈{b,k,j}
E

[
xT
s xbx

T
s C[b]C[k]C[r]xkx

T
k xbQsj

]
+ Oz(p−

3
2 )

(328)

= 4
p

3
2

n∑
s=1

∑
k/∈{s,j}

∑
b/∈{k,s}

E[Qkk]E[Qbb]E
[
xT
s xbx

T
s C[b]C[k]C[r]xkx

T
k xbQsj

]
+Oz(p−

3
2 )

(329)

Denote by κs the following quantity:

κs =
∑

k/∈{s,j}

∑
b/∈{k,s}

E[Qkk]E[Qbb]xT
s xbx

T
s C[b]C[k]C[r]xkx

T
k xb

Then, χ12 can be given by:

χ12 = 4
p

3
2

n∑
s=1

E[κsQsj ] = 4
p

3
2

n∑
s=1

E[(κs − E[κs])]Qsj ] + 4
p

3
2
E[κs]E[Qsj ]

To conclude it suffices to show that:

E[κs] = Oz(1) (330)
var(κs) = Oz(p−1) (331)

Indeed if (330) and (331) are satisfied, then χ12 = Oz(p−
3
2+ε) since for s �= j

E[Qsj ] = Oz(p−1+ε) from Corollary 3 and E[|Qsj |2] = Oz(p−1+ε) from Lemma
10. The proof of (330) follows by computing the expectation over the variables
xs, xk, xb while (331) follows easily by invoking Poincaré-Nash inequality. We
omit the details for the sake of brevity.

Treatment of χ2. Using again the Integration by Part formula, we obtain

χ2 = χ21 + χ22 + χ23 + χ24 + χ25

where

χ21 = − 2
p2

∑
k �=j

∑
b �=k

E
[
xT
b C[k]C[r]C[k]xbQkjQbk

]

χ22 = 4
p
√
p

∑
k �=j

∑
b �=k

∑
s �=k

E
[
xT
s xkx

T
s C[k]xbx

T
b C[k]C[r]xkQkkQsjQbk

]
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χ23 = 4
p
√
p

∑
k �=j

∑
b �=k

∑
s �=k

E
[
xT
s xkx

T
s C[k]xbx

T
b C[k]C[r]xkQkjQskQbk

]

χ24 = 4
p
√
p

∑
k �=j

∑
b �=k

∑
s �=k

E
[
xT
s xkx

T
s C[k]xbx

T
b C[k]C[r]xkQbkQskQkj

]

χ25 = 4
p
√
p

∑
k �=j

∑
b �=k

∑
s �=k

E
[
xT
s xkx

T
s C[k]xbx

T
b C[k]C[r]xkQkkQsbQkj

]

We can prove that χ21 is Oz(p−
5
4 ). Indeed, χ21 can be further decomposed as:

χ21 = − 2
p2

∑
k �=j

∑
b �=k

E

[(
xT
b C[k]C[r]C[k]xb −

1
p

trC[b]C[k]C[r]C[k]

)
QkjQbk

]

− 2
p2

∑
k �=j

∑
b �=k

1
p

trC[b]C[k]C[r]C[k]E [QkjQbk]

where the first term in the right-hand side of the above equation is Oz(p−
3
2+ε)

due to Lemma 9 while the second term is Oz(p−
5
4 ) since:

2
p2

∑
k �=j

∑
b �=k

1
p

trC[b]C[k]C[r]C[k]E [QkjQbk]

= 2
p2

1
p

tr
(
(C◦)4

)∑
k �=j

∑
b �=k

E [QkjQbk] + Oz(p−
5
4 )

= 2
p2

1
p

tr
(
(C◦)4

)
E

[[
1T (Q−D(Q)) (Q−D(Q))

]
j

]
+ Oz(p−

5
4 )

= Oz(p−
5
4 )

where D(Q) denotes the diagonal matrix whose diagonal elements are those of
Q. To handle χ22, we start by decomposing it as:

χ22 = 4
p
√
p

∑
k �=j

∑
s �=k

∑
b/∈{k,s}

E
[
xT
s xkx

T
s C[k]xbx

T
b C[k]C[r]xkQkkQsjQbk

]

+ 4
p
√
p

∑
k �=j

∑
s �=k

E
[
xT
s xkx

T
s C[k]xsx

T
s C[k]C[r]xkQkkQsjQsk

]

Using Lemma 11, the first term in χ22 can be treated as follows:∣∣∣ 4
p
√
p

∑
k �=j

∑
s �=k

∑
b/∈{k,s}

E
[
xT
s xkx

T
s C[k]xbx

T
b C[k]C[r]xkQkkQsjQbk

]∣∣∣
≤ 4

p
√
p

∑
k �=j

∑
s �=k

√
E

[∣∣xT
s xkQsj

∣∣2|Qkk|2
]√√√√E

∣∣∣ ∑
b/∈{k,s}

xT
s C[k]xbxT

b C[k]C[r]xkQbk

∣∣∣2

= Oz(p−
3
2+ε)
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The second term in χ22 is obviously Oz(p−
3
2+ε) which implies that:

χ22 = Oz(p−
3
2+ε)

Using a similar decomposition to that used in χ22, we can also prove that
χ23 = Oz(p−2+ε) and χ24 = Oz(p−2+ε). As for χ25, we can easily see that the
contribution of the summand associated with s /∈ {b, k} is Oz(p−

3
2+ε), leading

to:

χ25 = 4
p
√
p

∑
k �=j

∑
b �=k

E
[
xT
b xkx

T
b C[k]xbx

T
b C[k]C[r]xkQkjQbbQkk

]
+ Oz(p−

3
2+ε)

= 4
p
√
p

∑
k �=j

∑
b �=k

E
[
xT
b xkx

T
b C[k]C[r]xkQkj

] 1
p

tr
((
C[k]C[b]

))
EQbbEQkk

+ Oz(p−
3
2+ε) = Oz(p−

3
2+ε)

where the last approximation follows from the application of Lemma 11.

Appendix C Proofs of Theorem 5 and Theorem 6

C.1 Proof of Theorem 5

Let λ be an isolated eigenvalue of Φ̃. Being an isolated eigenvalue, λ lies outside
the support Sε defined in Theorem 4. Then, from linear algebra results, we have:

det
(

Φ + 1
p

[
J 1n

] [A a
aT β

] [
J 1n

]T − λIn

)
= 0

or equivalently:

det
(
Q−1

λ + 1
p

[
J 1n

] [A a
aT β

] [
J 1n

]T) = 0.

where Qλ = (Φ − λIn)−1. Since λ is not in the spectrum of Φ, Qλ is well defined
with probability 1 for n and p sufficiently large. An isolated eigenvalue of matrix
Φ̃ satisfies thus:

det
(
In + Qλ

1
p

[
J 1n

] [A a
aT β

] [
J 1n

]T) = 0.

Using Sylvester’s identity, we thus obtain:

det
(
Ic+1 +

[ 1
pJ

TQλJ
1
pJ

TQλ1n
1
p1TnQλJ

1
p1TnQλ1n

] [
A a
aT β

])
= 0.

or equivalently:

det
[
Ic + 1

pJ
TQλJA + 1

pJ
TQλ1naT 1

pJ
TQλJa + β 1

pJ
TQλ1n

1
p1TnQλJA + 1

p1TnQλ1naT 1 + 1
p1TnQλJa + β 1

p1TnQλ1n

]
= 0.
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Evaluating the determinant as a block-matrix determinant, we then find that
an isolated eigenvalue of matrix Φ̃ should satisfy:(

1 + 1
p
1TnQλJa + β

1
p
1TnQλ1n

)

× det
[
Ic + 1

p
JTQλJA + 1

p
JTQλ1naT

−

(
1
pJ

TQλJa + β 1
pJ

TQλ1n
)(

1
p1TnQλJA + 1

p1TnQλ1naT
)

1 + 1
p1TnQλJa + β 1

p1TnQλ1n

]
= 0. (332)

As discussed before, from Weyl’s inequalities, we know that the largest eigen-
value of Φ̃ is unbounded, while the n−1 remaining eigenvalues are bounded and
thus are located asymptotically in a compact interval of the form [−C,C] where
C is some constant greater almost surely than c0Ω + ω2

Ω + ‖ 1
pJAJ

T + 1
pJa1

T
n +

1
p1naTJT ‖2 + ε where ε > 0 is a small positive real. Among these eigenvalues,
we focus on isolated eigenvalues that lie in [−C,C] \Sε. For such eigenvalues,
and for any small ε, there exists a positive constant C ′ such that:∣∣∣∣1 + 1

p
1TnQλJa + β

1
p
1TnQλ1n

∣∣∣∣ ≥ √
p (C ′ − ε) (333)

To prove the above statement, it suffices to notice that:

1
√
p

(
1 + 1

p
1TnQλJa + β

1
p
1TnQλ1n

)
− β

√
p

c0m(λ)
1 − c20Ω2m2(λ)

a.s.−→ 0.

and hence for n and p sufficiently large:

1
√
p

∣∣∣∣1 + 1
p
1TnQλJa + β

1
p
1TnQλ1n

∣∣∣∣ ≥ β
√
p

c0|m(λ)|
|1 − c20Ω2m2(λ)| − ε

where ε can be taken as small as desired. To continue, we use the fact that
function λ �→ m(λ) is analytic on [−C,C] \Sε, hence for all λ ∈ [−C,C]\Sε,
|m(λ)| is bounded by some constant L. From the relation m(λ) = − 1

λ+ω2c0m2(λ) ,
we thus have:

|m(λ)| ≥ 1
C + ω2c0L

, ∀λ ∈ [−C,C]\Sε.

Moreover,
∣∣∣ 1
1−Ω2c20m

2(z)

∣∣∣ ≥ 1
1+Ω2c20L

2 . All this together gives:

β
√
p

c0|m(λ)|
|1 − c20Ω2m2(λ)| ≥

β
√
p
c0
(
C + ω2c0L

)−1 (1 + Ω2c20L
2)−1

which proves (333). We thus showed that an isolated eigenvalue of Φ lying in a
compact interval necessarily satisfies for sufficiently large n and p:

Ĥ(λ) := det
[
Ic + 1

p
JTQλJA + 1

p
JTQλ1naT
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−

(
1
pJ

TQλJa + β 1
pJ

TQλ1n
)(

1
p1TnQλJA + 1

p1TnQλ1naT
)

1 + 1
p1TnQλJa + β 1

p1TnQλ1n

]
= 0 (334)

Using Theorem 2, and exploiting the fact that the fact cTA = 0 where c =
[c1, . . . , cc]T , we can prove that Ĥ(λ) converges to H(λ) given by:

H(λ) � det [Ic + c0m(λ)T ] .

Let ρ be such that that H(ρ) = 0. Then ρ satisfies

det (Ic + c0m(ρ)T ) = 0 (335)

or equivalently m(ρ) = − 1
c0ν

where ν is one of the c−1 non-zero eigenvalues of T .
Since λ �→ m(λ) is an increasing function from (2√c0ω,∞) onto (−1/(√c0ω), 0)
and from (−∞,−2√c0ω) onto (0, 1/(√c0ω)), the condition for existence of ρ
satisfying (335) is that there exists ν, a non-zero eigenvalue of T such that c0ν >√
c0ω, in which case a spike appears at the position ρ = c0ν+ ω2

ν . Since the rank
of T is at most c−1, there can be no more than c−1 spikes ρ1 . . . ρc−1 associated
with ν1, · · · , νc−1 non-zero-eigenvalues of T . They are eventually located at
positions ρi = c0νi + ω2

νi
, on condition that νi >

ω√
c0

. Going back to (332), the
largest eigenvalue of Φ̃, which we denote by κ satisfies:

1 + 1
p
1TnQκJa + β

1
p
1TnQκ1n = 0. (336)

We can show that there exists C1 and C2 positive constants such that:

C1
√
p ≤ κ ≤ C2

√
p

One possible way to show that is to start off from the observation that:

c0β − ‖Φ‖2 ≤ κ ≤ c0β + ‖Φ‖2

and exploit the fact that for ε > 0 chosen as small as desired, and n and p
sufficiently large,

‖Φ‖ ≤ max(2
√
c0ω, c0Ω + ω2

Ω ) + ε.

Since: ∣∣∣∣1p1TnQκJa

∣∣∣∣ ≤ | 1
√
p
1Tn |‖

1
√
p
Ja‖ 1

κ

we have:
1
p
1TnQκJa

a.s.−→ 0,

On the other hand,
β

1
p
1TnQκ1n + β

c0
κ

a.s.−→ 0.

Using (336), we thus obtain:

κ
√
p
− βc0√

p

a.s.−→ 0.
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C.2 Proof of Theorem 6

C.2.1 Proof of (27)

We first recall that:

α
ρij
a α

ρij

b = 1√
na

√
nb

jTa ûρij
ûT
ρij

jb = 1
c0
√
ca
√
cb

1
p

[
JTΠλJ

]
a,b

(337)

where Πλ = ûρij
ûT
ρij

. Then, for any a, b ∈ {1, . . . , c}, From residue calculus, we
have:

1
p
JTΠλJ = − 1

2πı

∮
Cρ

1
p
JT
(
Φ̃ − zIn

)−1
J

for n sufficiently large, where Cρ is a complex (positively oriented and with
winding number one) contour circling around ρij only. Using (16), we can easily
see that:

1
p
JTΠλJ = − 1

2πı

∮
Cρ

1
p
JT
(
Φ − zIn

)−1
J + o(1)

where Φ is defined in (17) as:

Φ = Φ + 1
p

[
J 1n

] [A a
aT β

] [
J 1n

]T
Using Woodbury matrix inverse identity, we may write:

1
p
JT
(
Φ − zIn

)−1
J

= 1
p
JTQ(z)J −

[ 1
pJ

TQ(z)JA + 1
pJ

TQ(z)1naT 1
pJ

TQ(z)Ja + β 1
pJ

TQ(z)1n
]

×G(z)−1
[ 1
pJ

TQ(z)J
1
p1TnQ(z)J

]

where

G(z) =
[
Ic + 1

pJ
TQ(z)JA + 1

pJ
TQ(z)1naT 1

pJ
TQ(z)Ja + β 1

pJ
TQ(z)1n

1
p1TnQ(z)JA + 1

p1TnQ(z)1naT 1 + 1
p1TnQ(z)Ja + β

p 1TnQ(z)1n

]

Define b(z), l(z) and γ(z) as:

b(z) = 1
p
JTQ(z)Ja + β

1
p
JTQ(z)1n

l(z) = 1
p
AJTQ(z)1n + 1

p
1TnQ(z)1na

γ(z) = 1 + 1
p
1TnQ(z)Ja + β

p
1TnQ(z)1n
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Let R(z) =
(
Ic + 1

pJ
TQ(z)JA + 1

pJ
TQ(z)1naT − b(z)l(z)T

γ(z)

)−1
. Then,

G−1(z) =
[

R(z) −R(z)b(z)
γ(z)

− lT (z)R(z)
γ(z) γ−1(z) + γ−2(z)lT (z)R(z)b(z)

]

Using these notations, we thus obtain:

1
p
JT (Φ − zIn)−1J

= 1
p
JTQ(z)J −

[
A11(z) + A12(z) A21(z) + A22(z)

] [ 1
pJ

TQ(z)J
1
p1TnQ(z)J

]

where

A11(z) = 1
p
JTQ(z)JAR(z) + 1

p
JTQ(z)1naTR(z) (338)

A12(z) = −1
p
JTQ(z)Jal

T (z)R(z)
γ(z) − β

1
p
JTQ(z)1n

lT (z)R(z)
γ(z) (339)

A21(z) = −1
p
JTQ(z)R(z)JA b(z)

γ(z) − 1
p
JTQ(z)1naTR(z) b(z)

γ(z) (340)

A22(z) =
(
γ−1(z) + γ−2(z)lTR(z)b(z)

)
b(z) (341)

Now exploiting Theorem 2, the following approximations are obtained for z ∈ Cρ:

1
p
JTQ(z)J − c0m(z)D(c) − c30Ω2m2(z)

1 − c20m
2(z)Ω2 cc

T a.s.−→ 0,

1
p
1TnQ(z)J − c0m(z)cT

1 − Ω2c20m
2(z)

a.s.−→ 0.

1
p
1TnQ(z)1n − m(z)c0

1 − c20Ω2m2(z)
a.s.−→ 0,

from which we obtain the following convergence results,

A11(z) − c0m(z)D(c)AD(c) 1
2 (Ic + c0m(z)T )−1 D(c)− 1

2

− m(z)c0caT

1 − c20Ω2m2(z)D(c) 1
2 (Ic + c0m(z)T )−1 D(c)− 1

2
a.s.−→ 0,

A12(z) + m(z)c0caT

1 − Ω2c20m
2(z)D(c) 1

2 (Ic + c0m(z)T )−1 D(c)− 1
2

a.s.−→ 0,

A21(z)
a.s.−→ 0,

A22(z) − c
a.s.−→ 0

by using the facts that (Ic + c0m(z)T )−1√c = √
c, aT c = 0 and Ac = 0. It

can be proven using for instance Vitali’s convergence Theorem [8, Theorem
3.11] that the convergence of all the above terms is uniform on Cρ. Now since
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(Ic + c0m(z)T )−1√c = √
c, the terms involving (Ic + c0m(z)T )−1√c

√
c will

produce zero-residue when integrated over Cρ. We thus obtain after calculations:

− 1
2πı

∮
Cρ

1
p
JT
(
Φ̃ − zIn

)−1
J

− 1
2πı

∮
Cρ

c0m(z)D(c) 1
2 (Ic + c0m(z)T )−1 D(c) 1

2 dz
a.s.−→ 0.

Assuming a multiplicity 1 for νρij
the eigenvalue of T mapped with the value

ρij for which (Ic + c0m(ρij )T ) is singular. Let Vρij
∈ R

c×1 be its associated
eigenvector. We finally get after residue calculus,

1
p
JTΠλJ − c0(1 − ω2

c0ν2
ρij

)D(c) 1
2Vρij

V T
ρij

D(c) 1
2

a.s.−→ 0.

from which it follows:

α
ρij
a α

ρij

b
a.s.−→ (1 − ω2

c0ν2
ρij

)
[
Vρij

V T
ρij

]
a,b

C.2.2 Proof of (28)

To evaluate σa
ρi1ρi2

, we start by expanding σa
ρi1ρi2

as:

σa
ρi1ρi2

= ûT
ρi1

D(ja)ûρi2
− α

ρi1
a α

ρi2
a

We will prove later that it suffices to compute 1
pJ

TΠλ1DaΠλ2J and Da = D(ja).
where Πλ1 = ûρi1

ûT
ρi1

and Πλ2 = ûρi2
ûT
ρi2

, which according to the Cauchy
integral relation is given by:

1
p
JTΠλ1DaΠλ2J

= 1
(2πı)2

∮
Cρ1

∮
Cρ2

1
p
JT
(
Φ − z1In

)−1
Da

(
Φ − z2In

)−1
Jdz1dz2 + o(1)

where Cρ1 and Cρ2 are complex contours circling around ρi1 and ρi2 respectively.
Based on the same approach as before, applying Woodbury’s identity on each
inverse

(
Φ − z1In

)−1 and noticing that the generated cross-terms will have zero
residue, we obtain that almost surely:

1
p
JTΠλ1DaΠλ2J = 1

(2πı)2

∮
Cρ1

∮
Cρ2

[
A11(z1) + A12(z1) A21(z1) + A22(z1)

]

×
[ 1
pJ

TQ(z1)DaQ(z2)J 1
pJ

TQ(z1)DaQ(z2)1n
1
p1TnQ(z1)DaQ(z2)J 1

p1TnQ(z1)DaQ(z2)1n

] [
A11(z2)T + A12(z2)T
A21(z2)T + A22(z2)T

]
dz1dz2

+ o(1)
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Anticipating that the terms of type A21(z)+A22(z) will not provide any residue
at the end of calculus, we will thus focus on evaluating:

1
(2πı)2

∮
Cρ1

∮
Cρ2

(A11(z1) + A12(z1))
1
p
JTQ(z1)DaQ(z2)J

(
A11(z2)T + A12(z2)T

)
Now, from Theorem 3, we have:

1
p
JTQ(z1)DaQ(z2)J −

{
c0cam(z1)m(z2)D({δi=a}ci=1)

+ cac
2
0ω

2 m2(z1)m2(z2)
(1 − ω2c0m(z1)m(z2))

D(c) + q1(z1, z2)c (c)T

+ q2(z1, z2)D({δi=a}ci=1)1c (c)T + q3(z1, z2)c1Tc D({δi=a}ci=1)
}

a.s.−→ 0

where qj(z1, z2), j = 1, . . . , 3, are analytic functions on Cρ1 and Cρ2 , where here
{δi=a}ci=1 is the c×1 vector of all zeros except 1 at position a. Again, using the
fact that (Ic + c0m(z)T )−1√c = √

c, we deduce that the quantities qj(z1, z2),
j = 1, . . . , 3 will not contribute to a residue in the final expression. We thus
obtain:

1
p
JTΠλ1DaΠλ2J

− 1
(2πı)2

∮
Cρ1

∮
Cρ2

c0m(z1)m(z2)D(c) 1
2 (Ic + c0m(z1)T )−1 D({δi=a}ci=1)

× (Ic + c0m(z2)T )−1 D(c) 1
2 dz1dz2

− 1
(2πı)2

∮
Cρ1

∮
Cρ2

c20ω
2ca

m2(z1)m2(z2)
(1 − ω2c0m(z1)m(z2))

D(c) 1
2 (Ic + c0m(z1)T )−1

× (Ic + c0m(z2)T )−1 D(c) 1
2 dz1dz2

a.s.−→ 0.

Then, after residue calculus, we obtain:

1
p
JTΠλ1DaΠλ2J

− 1
c0

m(ρi1)m(ρi2)
m′(ρi1)m′(ρi2)νi1νi2

D(c) 1
2Vρi1

V T
ρi2

D({δi=a}ci=1)Vρi2
V T
ρi2

D(c) 1
2

−
δρi1=ρi2

ω2cam
2(ρi1)m2(ρi2)D(c) 1

2Vρi1
V T
ρi1

D(c) 1
2

(1 − ω2c0m(ρi1)m(ρi2))m′(ρi1)m′(ρi2)νi1νi2
a.s.−→ 0.

Exploiting the fact that m(ρij ) = − 1
c0νij

for i = 1, 2 and the relation m′(z) =

m2(z)
(
1 − ω2c0m

2(z)
)−1, we thus obtain:

1
p
JTΠλ1DaΠλ2J
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a.s.−→ c0

(
1 − ω2

c0ν2
i1

)(
1 − ω2

c0ν2
i2

)
D(c) 1

2Vρi1
V T
ρi1

D({δi=a}ci=1)Vρi2
V T
ρi2

D(c) 1
2

+ ω2ca
ν2
i1

(
1 − ω2

c0ν2
i1

)
D(c) 1

2Vρi1
V T
ρi1

D(c) 1
2 δρi1=ρi2

With the above convergence at hand, we are now ready to study the convergence
of σa

ρi1ρi2
. First, we prove that if ρi1 �= ρi2 , then

σa
ρi1ρi2

a.s.−→ 0.

For that, we consider two different cases.
Case 1. Either [Vρi1

]a = 0 or [Vρi2
]a = 0. In this case,

Assume that
[
Vρi1

]
a

or
[
Vρi2

]
a

is zero. Then, if ρi1 �= ρi2 , it is easy to see
that 1

pJ
TΠλ1DaΠλ2J

a.s.−→ 0 and 1
pJ

TΠλ1J
a.s.−→ 0. Let di1 and di2 be such

that lim inf
∣∣∣∣ 1√

ndi1
ûT
ρi1

jdi1

∣∣∣∣ > 0 and lim inf
∣∣∣∣ 1√

ndi2
ûT
ρi2

jdi2

∣∣∣∣ > 0. Such di1 and

di2 must exist according to the asymptotic analysis in the previous section. We
can thus write:

σa
ρi1ρi2

=

[
1
pJ

TΠλ1DaΠλ2J
]
di1di2

1
pj

T
di1

ûρi1
ûT
ρi2

jdi2

− α
ρi1
a α

ρi2
a (342)

and hence under the condition that
[
Vρi1

]
a

or
[
Vρi2

]
a

are zero and ρi1 �= ρi2 ,
σa
ρi1ρi2

→ 0. Now, if ρi1 = ρi2 and
[
Vρi1

]
a

or
[
Vρi2

]
a

are zero, then α
ρi1
a α

ρi2
a → 0

infinitely often. Using (342)

σa
ρi1ρi1

a.s.−→ ω2ca
c0ν2

i1

Now assume that
[
Vρi1

]
a

and
[
Vρi2

]
a

are different from zero. Then, di1 and di2
can be chosen equal to a. if ρi1 �= ρi2 , then:

σa
ρi1ρi2

=

[
1
pJ

TΠλ1DaΠλ2J
]
aa√[

1
pJ

TΠλ1J
]
aa

√[
1
pJ

TΠλ2J
]
aa

sign
(
α
ρi1
a α

ρi2
a

) − α
ρi1
a α

ρi2
a

where sign(x) returns 1 if x > 0 and −1 if x < 0. If ρi1 �= ρi2 , one can easily
check using the above equation that

σa
ρi1ρi2

a.s.−→ 0.

while if ρi1 = ρi2 , we have similarly to above:

σa
ρi1ρi1

a.s.−→ ω2ca
c0ν2

i1

In conclusion, we thus have:

σa
ρi1ρi2

a.s.−→ ω2ca
c0ν2

i1

δρi1=ρi2
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