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Abstract: Envelope methodology is succinctly pitched as a class of proce-
dures for increasing efficiency in multivariate analyses without altering tra-
ditional objectives [5, first sentence of page 1]. This description comes with
the additional caveat that efficiency gains obtained by envelope method-
ology are mitigated by model selection volatility to an unknown degree.
Recent strides to account for model selection volatility have been made on
two fronts: 1) development of a weighted envelope estimator to account for
this variability directly in the context of the multivariate linear regression
model; 2) development of model selection criteria that facilitate consistent
dimension selection for more general settings. We unify these two direc-
tions and provide weighted envelope estimators that directly account for
the variability associated with model selection and are appropriate for gen-
eral multivariate estimation settings. Our weighted estimation technique
provides practitioners with robust and useful variance reduction in finite
samples. Theoretical and empirical justification is given for our estima-
tors and validity of a nonparametric bootstrap procedure for estimating
their asymptotic variance are established. Simulation studies and a real
data analysis support our claims and demonstrate the advantage of our
weighted envelope estimator when model selection variability is present.
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1. Introduction

Let X1, . . ., Xn be an independent sample and θ ∈ R
p with p fixed is a target

parameter that we want to estimate. Suppose that θ̃ = θ̃(X1, . . ., Xn) is a
√
n-

consistent and asymptotically normal estimator of θ with asymptotic variance
Σ > 0 such that √

n
(
θ̃ − θ

)
d→ N(0,Σ), (1.1)

as n → ∞. The goal of envelope methodology is to consistently estimate θ with
as little variance as possible. This is achieved by exploiting a parametric link
between θ and Σ in which only a part of Σ is relevant for the estimation of θ
[7, 10, 5]. Envelope methodology originated as a method to reduce the variability
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of a regression coefficient matrix β in the multivariate linear regression model
[7, 27, 28, 8, 5]. The key insight behind envelope methodology as a variance
reduction tool was the observation that some linear combinations of the response
vector may be invariant to changes in the predictors. Such linear combinations
represent variability in the response vector that is not directly relevant to the
estimation of β and should be discarded. [10] extended envelope methodology to
the general setting where one only has a target parameter θ, a

√
n consistent and

asymptotically normal estimator of θ as in (1.1), and a
√
n consistent estimator

Σ̂ of Σ.

In both the multivariate linear regression model and the general estimation
framework (1.1), variance reduction obtained through envelope methodology
arises from exploiting a subspace of the spectral structure of Σ with dimension
u < p that contains span(θ). The dimension of the envelope space u is unknown
in practice. In many envelope modeling contexts one can estimate u with in-
formation criteria, likelihood ratio tests, or cross-validation. [36] proposed new
model-free information criteria that can estimate u consistently. With u esti-
mated, the variability of the envelope estimator is assessed via the bootstrap.
However, most bootstrap implementations are conditional on u = û where û
is the estimated dimension of the envelope space. These procedures ignore the
variability associated with model selection. [16] provided a weighted envelope
bootstrap to alleviate this problem in the context of the multivariate linear
regression model. In this context the variability of the weighted envelope esti-
mator was appreciably lower than that obtained by bootstrapping the multi-
variate linear regression model parameters as in [15]. A double bootstrap pro-
cedure that incorporates model selection variability for envelope estimation of
expected Darwinian fitness from an aster model [21, 26] has also been developed
[18]. This procedure demonstrated useful variance reduction empirically. That
being said, the theoretical motivations for each of these bootstrap procedures
are not applicable for envelope estimation in general settings. The weights in
[16] are constructed from the Bayesian Information Criterion (BIC) values of
the multivariate linear regression model evaluated at all envelope estimators fit
at dimension u = 1, . . ., p. Model selection volatility is taken into account in
[18] by criteria that also require a likelihood.

In this paper we provide weighted envelope estimators that are appropriate
for envelope estimation in the general setting (1.1). We will not require the exis-
tence of a likelihood function as in [16] and we do not require conditioning on an
estimated envelope dimension to obtain inference. We then provide bootstrap
procedures which estimate the variability of our weighted envelope estimators.
Formal asymptotic justification for these procedures is provided. Importantly,
our bootstrap procedures target the variability of the envelope estimator at
the true, unknown, dimension u with an additional minor cost associated with
the variability in the weights. As n → ∞ this cost disappears. This is because
the weight at the true unknown dimension u converges to 1 fast enough to
not incorporate influences from other envelope dimensions. One concern with
bootstrapping a weighted envelope estimator is that the computational cost of
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the procedure can be burdensome [33]. This concern is alleviated through the
parallel nature of computations. Both estimation for different envelope dimen-
sions and the bootstrap procedure can be done in parallel. In finite samples,
our weighted envelope estimators are robust to model misspecification associ-
ated with not knowing u. Our methodology unifies the separate methodologies
proposed in [16] and [36].

Others have studied bootstrapping procedures that incorporate variability
in model selection and have demonstrated applicability for envelope models. A
double bootstrap procedure that incorporate variability in model selection was
proposed by [19]. This procedure is applicable for exponential families, and it
has been applied to envelope methodology within this context [18, 17]. [18] did
not provide any asymptotic justification for the bootstrap procedures that are
implemented. [36] also considered bootstrap schemes that incorporate model se-
lection variability in their numerical studies, but they do not provide theoretical
properties. In addition to providing asymptotic justification for our bootstrap
procedures, the weighted envelope estimators that we develop are appropriate
for a more general class of envelope models than either [19] or [18] can claim.
The weighted envelope estimation methodology that we develop in this paper
extends to partial envelopes [27], inner envelopes [28], scaled envelopes [8], pre-
dictor envelopes [9], sparse response envelopes [29], tensor response regression
[24], matrix-variate response regression [13, 14], and envelope models with non-
linearity and heteroscedasticity [35]. We now motivate envelope methodology
and weighted estimation techniques.

2. Envelope preliminaries

We first provide the definition of a reducing subspace and an envelope.

Definition 2.1 (Reducing subspace). A subspace R ⊂ R
p is a reducing sub-

space of a matrix M if MR ⊂ R and MRc ⊂ Rc where Rc is the orthogonal
complement of R relative to the usual inner product.

A reducing subspace R of a matrix M allows one to decompose M as M =
PRMPR + QRMQR where PR is the projection into R and QR = I − PR.
When the eigenvalues of M are distinct, a reducing subspace is a direct sum of
eigenspaces of M .

Definition 2.2 (Envelope). The M envelope of span(U) is defined as the in-
tersection of all reducing subspaces R of M which satisfies span(U) ⊆ R. The
envelope subspace is denoted by EM (U).

The subspace EM (U) is a targeted part of the spectral structure of M which
contains the span(U). Let u be the dimension of EM (U), where 0 < u ≤ p. In
practical settings, all envelope modeling quantities, including u, require estima-
tion.

In general settings where the likelihood function is not known, [36] proposed
to estimate a semi-orthogonal basis matrix Γ ∈ R

p×u of EM (U) by minimizing
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the generic moment-based objective function:

Jn(Γ) = log | ΓT M̂Γ | + log | ΓT (M̂ + Û)−1Γ |, (2.1)

where M̂ and Û are
√
n-consistent estimators of M and U . In the general setting,

M̂ = Σ̂ and Û = θ̃θ̃T . We denote Γ̂ as the minimizer of (2.1). The motivations
for (2.1) comes from its population counterpart, J(Γ) = log | ΓTMΓ | + log |
ΓT (M + U)−1Γ |, where [11] showed that any Γ which minimizes J(Γ) must
satisfy the envelope condition that span(U) ⊆ span(Γ). We thus take Γ as a semi-
orthogonal basis for the envelope space, where Γ is also a basis for elements in
a Grassmann manifold [11]. We will therefore refer to the minimization of (2.1)
as Full Grassmannian (FG) optimization.

Assuming that the true envelope dimension u is supplied, the estimated pro-
jection Γ̂Γ̂T into the envelope space is

√
n-consistent [11, Proposition 3]. This

motivates the envelope estimator θ̂FG = Γ̂Γ̂T θ̃ where θ̃ is an estimator satisfy-
ing (1.1). We will also consider envelope estimators constructed with a sequential
one-dimensional (1D) coordinate optimization algorithm [11, 10], see Section 3.2
for details on the 1D algorithm. In the next section we motivate general weighted
envelope estimation with respect to an envelope estimator θ̂ computed using FG
or 1D optimizations, or any other valid envelope optimization routine [6, 23, 31].
We will then discuss theoretical properties and bootstrap routines for weighted
envelope estimators computed using FG or 1D optimizations.

We note that in this section we motivate θ̂ with the true dimension specified.
Therefore, we will often write θ̂u to emphasize this point. We will also write θ̂k
as the envelope estimator at dimension k.

3. Weighted envelope methodology

We introduce model-free weighted envelope estimation that offers a balance
between variance reduction and model misspecification in finite samples. The
weighted envelope estimators that we propose are of the form

θ̂w =
p∑

k=1

wkθ̂k, wk = fk(In(1), . . . , In(p)), (3.1)

where θ̂k is an envelope estimator at dimension k, In(k) is an information criteria
that assess the fit of envelope dimension k, and fk is a function of all information
criteria at proposed dimension k. We note that we do not consider the case u = 0
in (3.1), this case corresponds to a degenerate problem in which θ is the zeros
vector.

As is standard in model averaging, we require that fk and In(k) be chosen so
that wk ≥ 0 and

∑
k wk = 1. However, unlike typical model averaging contexts,

θ̂k is consistent for all weight choices that satisfy
∑p

k=u wk → 1 as n → ∞ where
wk ≥ 0 for k ≥ u. Such weight choices induce a consistent estimator since the
envelope estimator θ̂k is a consistent estimator for θ for all k ≥ u. It is of course
more desirable to select In(k) and fk so that wu → 1.
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We specifically study two specific choices of In(·) and one choice of fk so that
wu → 1 at a fast enough rate to facilitate reliable estimation of the variability
of θ̂u, u unknown, via a nonparametric bootstrap. The weights will be of the
form

wk = exp {−nIn(k)}∑p
j=1 exp {−nIn(j)} . (3.2)

The choice of fk that yields the weights (3.2) is motivated by [16], where in that
context In(k) is the BIC value of a multivariate linear regression model with
the envelope estimator at dimension k plugged in.

The two choices of In(k) that we study here facilitate weighted envelope
estimation within the general envelope estimation context (1.1). The first choice
of In(k), denoted IFG

n (k) where the superscript FG denotes envelope estimation
with respect to full Grassmannian optimization. The second choice of In(k),
denoted I1D

n (k), corresponds to optimization via the 1D algorithm, hence the
1D superscript. Our simulations, and the simulations presented in [36] find that
the choice of I1D

n (k) exhibits greater empirical variance reduction than the choice
of IFG

n (k). However, we find that FG optimization offers more stability than the
1D algorithm which conflicts with advice in envelope software packages [31, 34].

3.1. Weighted envelope estimation via quasi-likelihood optimization

In this section we construct θ̂w in (3.1) using IFG
n (k) as the chosen the informa-

tion criteria. At candidate dimension k, define Γ̂k ∈ R
p×k as the minimizer of

the objective function (2.1). Thus Γ̂k is the estimated basis of the envelope sub-
space with dimension k. After obtaining Γ̂k, the envelope estimator at candidate
dimension k is θ̂FG

k = Γ̂kΓ̂T
k θ̃. This envelope estimator is the original estima-

tor projected into the estimated envelope subspace at dimension k. When the
true dimension u is known, then θ̂FG

u is
√
n-consistent and has been shown to

have lower variability than θ̃ in finite samples [7, 10, 5]. The weighted envelope
estimator corresponding to IFG

n (k) is

θ̂FG
w =

p∑
k=1

wFG
k θ̂FG

k , wFG
k =

exp
{
−nIFG

n (k)
}∑p

j=1 exp {−nIFG
n (j)} , (3.3)

In the remaining part of this section we construct IFG
n (k) and demonstrate

how this information criteria choice supplements Section 4.1 to yield estimation
of the variability of θ̂FG

u .
[36] showed that optimization of Jn in (2.1) is the same as optimization

of a partially minimized quasi-likelihood function. Define this quasi-likelihood
function as,

ln(M, θ) = log | M | + tr
[
M−1

{
M̂ + (θ̃ − θ)(θ̃ − θ)T

}]
, (3.4)
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and, for some candidate dimension k = 1, . . ., p, define the constraint set for
the minimization of (3.4) to be,

Ak =
{
(M, θ) : M = ΓΩΓT + ΓoΩoΓT

o > 0,
θ = Γη, η ∈ R

k, (Γ,Γo)T (Γ,Γo) = Ip
}
.

(3.5)

Minimization of (3.4) over the constraint set (3.5) is the same as minimizing Jn
in (2.1).

Lemma 3.1. [36, Lemma 3.1]. The minimizer of ln(M, θ) in (3.4) under the
envelope parameterization (3.5) is M̂ = Γ̂Γ̂T Ω̂Γ̂Γ̂T + Γ̂oΓ̂T

o Ω̂oΓ̂oΓ̂T
o and θ̂ =

Γ̂Γ̂T θ̃ where Γ̂ is the minimizer of the partially optimized objective function
ln(Γ) = minΩ,Ωo,η ln(Γ,Ω,Ωo, η) = Jn(Γ) + log | M̂ + Û | +p where Û = θ̃θ̃T .

Now define

IFG
n (k) = Jn(Γ̂k) + Ck log(n)

n
, (k = 1, . . . p), (3.6)

as in [36] where C > 0 is a constant. The envelope dimension is selected as
ûFG = argmin1≤k≤pIn(k). Theorem 3.1 in [36] showed that P(ûFG = u) → 1
as n → ∞, provided that C > 0 and M̂ and Û are

√
n-consistent estimators

of M and U respectively. We use IFG
n (k) in (3.6) to construct θ̂FG

w in (3.3).
This construction yields consistent estimation of θ as seen in Section 3.3 and
estimation of the variability of θ̂FG

u through Theorem 4.1.

3.2. Weighted envelope estimation via the 1D algorithm

In this section we construct θ̂w in (3.1) where the information criteria I1D
n (k)

is derived from the 1D algorithm. The 1D algorithm performs a sequence of
optimizations that each return a basis vector of the envelope space (in the
population) or a

√
n-consistent estimator of a basis vector for the envelope space

(in finite-samples). The number of optimizations corresponds to the dimension of
the envelope space and is provided by the user. The returned envelope estimator
is θ̂1D

u = Γ̂Γ̂θ̃ where the estimated basis matrix Γ̂ is obtained from the 1D
algorithm. The weighted envelope estimator corresponding to I1D

n (k) is

θ̂1D
w =

p∑
k=1

w1D
k θ̂1D

k , w1D
k =

exp
{
−nI1D

n (k)
}∑p

j=1 exp {−nI1D
n (j)} . (3.7)

We briefly state the 1D algorithm: Set uo ≤ p − 1 to be the user inputted
number of optimizations. For step k = 0, . . ., uo, let gk ∈ R

p denote the k-th
direction to be obtained by the 1D algorithm. Define Gk = (g1, . . ., gk), and
(Gk, G0k) to be an orthogonal basis for R

p and set initial value go = G0 = 0.
Define Mk = GT

0kMG0k, Uk = GT
0kUG0k, and the objective function after k

steps φk(v) = log(vTMkv) + log{vT (Mk + Uk)−1v}. The (k + 1)-th envelope
direction is gk+1 = G0kvk+1 where vk+1 = argmaxvφk(v) subject to vT v = 1.
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Replacing M and U with
√
n-consistent estimators M̂ and Û yields

√
n-

consistent estimates Ĝk = (ĝ1, . . . , ĝk) ∈ R
p×k, k = 1, . . ., p by optimizing

φk,n(v) = log(vT M̂kv)+log{vT (M̂k+Ûk)−1v}. The resulting envelope estimator
θ̂1D
u is therefore

√
n-consistent [10]. Now define,

I1D
n (k) =

k∑
j=1

φj,n(v̂j) + Ck logn
n

, (k = 1, . . . , p); (3.8)

where C > 0 is a constant. When C = 1, the terms nI1D
n (k) in (3.8) are BIC

values corresponding to the asymptotic log likelihood the envelope model of
dimension k. The envelope dimension selected is û1D = argmin1≤k≤pI1D

n (k).
Theorem 3.2 in [36] showed that P(û1D = u) → 1 as n → ∞. We use I1D

n (k)
in (3.8) to construct θ̂1D

w in (3.7). This construction yields consistent estimation
of θ as seen in Section 3.3 and estimation of the variability of θ̂1D

u through
Theorem 4.2.

3.3. Consistency properties of weighted envelope estimators

Weighted envelope estimators exhibit desirable consistency properties. First of
all, the weights in (3.3) and (3.7) can be constructed so that they both satisfy
wFG

u
P→ 1 and w1D

u
P→ 1 as n → ∞, where P→ means convergence in probability.

Lemma 3.2. For any constant C > 0 and
√
n-consistent M̂ and Û in (3.6)

and (3.8), wFG
u

P→ 1 and w1D
u

P→ 1 as n → ∞.

The proof of technical results are included in the Mathematical Appendix.
This lemma facilitates consistent estimation of θ using θ̂FG

w and θ̂1D
w .

Lemma 3.3. For any constant C > 0 and
√
n-consistent M̂ and Û in (3.6)

and (3.8), both θ̂FG
w

P→ θ and θ̂1Dw
P→ θ as n → ∞.

The proof of Lemma 3.3 immediately follows from Lemma 3.2 and [36, Propo-
sition 2.1]. While consistency is desirable, Lemma 3.3 does not provide knowl-
edge about the asymptotic variability of θ̂FG

w or θ̂1D
w . We expect that θ̂FG

w and
θ̂1D
w will have lower asymptotic variance than θ̃ when u < p, but explicit compu-

tations of the asymptotic variance for both estimators are cumbersome. We will
instead estimate the asymptotic variability of θ̂FG

w and θ̂1D
w with a nonparametric

bootstrap that is developed in the next section.

4. Bootstrapping procedures

Let X1, . . ., Xn be the original data. We will estimate the variability of θ̂FG
u

and θ̂1D
u by bootstrapping with respect to the weighted estimators θ̂FG

w and
θ̂1D
w via the nonparametric bootstrap. For each iteration of this nonparametric
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bootstrap procedure we denote the resampled data by X∗
1 , . . ., X∗

n where each
X∗

i , i = 1, . . ., n is sampled, with replacement, from the original data with equal
probability 1/n. At candidate envelope dimension k we define the bootstrapped
envelope estimators θ̂FG∗

k = θ̂FG
k

(
X∗

1 , . . . ,X∗
n

)
, θ̂1D∗

k = θ̂1D
k

(
X∗

1 , . . . ,X∗
n

)
, and

the bootstrapped version of the original estimator θ̃ as θ̃∗ = θ̃(X∗
1 , . . .X∗

n).
Define M̂∗ and Û∗ in the same manner as M̂ and Û with respect to the starred
data. Following Remark 1 in Section 3 of [3], we define O∗

P as an analog to OP

that is conditional on the original sample.

4.1. For quasi-likelihood optimization

In this section we provide justification for the nonparametric bootstrap as a
method to estimate the variability of θ̂FG

w . Define

J∗n (Γ) = log | ΓT M̂∗Γ | + | ΓT
(
M̂∗ + Û∗)−1

Γ |, (4.1)

as the starred analog to Jn in (2.1) and define,

l∗n(M, θ) = log | M | +tr
[
M−1

{
M̂∗ + (θ̃∗ − θ)(θ̃∗ − θ)T

}]
, (4.2)

as the starred analog to ln in (3.4). Define Γ̂∗ as the minimizer to (4.1). We then
let θ̂FG∗

u = Γ̂∗Γ̂∗T θ̃∗. We show that bootstrapping with respect to our weighted
envelope estimator estimates the variability of the envelope estimator θ̂FG

u at
the true unknown dimension.

Theorem 4.1. Let θ̃ be a
√
n-consistent and asymptotically normal estimator.

Let θ̂FG
k be the envelope estimator obtained from full Grassmannian optimization

at dimension k = 1, . . ., p and let θ̂FG
w be the weighted envelope estimator with

weights wFG. Let θ̂FG∗
k and θ̂FG∗

w denote the corresponding quantities obtained
by resampled data. Then as n tends to ∞,

√
n
(
θ̂FG∗
w − θ̂FG

w

)
=

√
n
(
θ̂FG∗
u − θ̂FG

u

)
+ O∗

P

{
n(1/2−C)

}
+ O∗

P

{
n(Cu+1/2)

}
e−n|O∗P (1)|.

(4.3)

Remarks:

1. Theorem 4.1 shows that our bootstrap procedure can be used to estimate
the asymptotic variability of θ̂FG

u when u is unknown. We see that the
second O∗

P term in (4.3) vanishes quickly in n. These terms are associated
with under selecting the true envelope dimension. Therefore it is more
likely that our bootstrap procedures will conservatively estimate the vari-
ability of θ̂FG

u in finite samples.
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2. We advocate for the case with C = 1 because of the close connection that
IFG
n (k) has with BIC, similar reasoning was given in [36]. The Ck log(n)/n

penalty term in IFG
n (k) facilitates the decaying bias in n represented by

the O∗
P terms in (4.3). Redefining IFG

n (k) to have a penalty term that is
fixed in n, similar to that of AIC, fundamentally changes the O∗

P terms
in (4.3). Specifically, the OP (n−1/2) term (when C = 1) disappears and
the weights wFG

k fail to vanish for k > u. Therefore unknown non-zero
asymptotic weight is given to candidate models with dimension k > u.
Weighting in this manner is therefore suboptimal and is not advised.

3. The weights wFG
k have a similar form to the weights which appear in the

model averaging literature [1, 2, 22, 4, 30]. These weights are of the form

wk =
exp

{
−nIFG

n (k)/2
}∑p

j=0 exp {−nIFG
n (j)/2} (4.4)

and they correspond to a posterior probability approximation for model
k under the prior that assigns equal weight to all candidate models, given
the observed data. The weights (4.4) do not have the same asymptotic
properties as our weights. The difference between the two is a rescaling of
C. Weights (4.4) replace the constant C in (4.3) with C/2. When C = 1,
nonzero asymptotic weight would be placed on the envelope model with
dimension k = u + 1. Therefore, weighting according to (4.4) leads to
higher estimated variability than is necessary.

4.2. For the 1D algorithm

In this section we provide justification for the nonparametric bootstrap as a
method to estimate the variability of θ̂1D. We verify that bootstrapping with
respect to θ̂1D

w is asymptotically the same as bootstrapping with respect to
θ̂1D
u . We now define the quantities of the 1D algorithm applied to the starred

data. Set uo ≤ p− 1 to be the user inputted number of optimizations. For step
k = 0, . . ., uo, let ĝ∗k ∈ R

p denote the k-th direction to be obtained. Define
Ĝ∗

k = (ĝ∗1 , . . ., ĝ∗k ), and (Ĝ∗
k , Ĝ∗

0k) to be an orthogonal basis for R
p and set

initial value ĝ∗o = Ĝ∗
0 = 0. Define M̂∗

k = Ĝ∗T
0k M̂∗Ĝ∗

0k, Û∗
k = Ĝ∗T

0k Û∗Ĝ∗
0k, and

the objective function after k steps as φ∗k,n(v) = log(vT M̂∗
k v) + log{vT (M̂∗

k +
Û∗
k )−1v}. The (k + 1)-th envelope direction is ĝ∗k+1 = Ĝ∗

0kv
∗
k+1 where v∗k+1 =

argmaxvT vφ
∗
k (v). After uo steps we set Γ̂∗ = Ĝ∗

uo
and θ̂1D∗

u = Γ̂∗Γ̂∗T θ̃∗. We
show that bootstrapping θ̂1D

w estimates the variability of the envelope estimator
θ̂1D
u at the true unknown dimension.

Theorem 4.2. Let θ̃ be a
√
n-consistent and asymptotically normal estimator.

Let θ̂1Dk be the envelope estimator obtained from the 1D algorithm at dimension
k = 1, . . ., p and let θ̂1Dw be the weighted envelope estimator with weights w1D.
Let θ̂1D

∗
k and θ̂1D

∗
w denote the corresponding quantities obtained by resampled
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Table 1

Description of bootstrap estimators.

Quantity Description
θ̂FG∗
w or θ̂1D∗

w The weighted envelope estimator θ̂FG
w or θ̂1D

w computed with respect to
resampled data. We will refer to these estimators as “weighted” in
simulation results.

θ̂FG∗
k or θ̂1D∗

k The envelope estimator θ̂FG
k or θ̂1D

k fit at dimension k computed with
respect to resampled data. This estimator will be referred to as “true” in
simulation results when k = u.

θ̂FG∗
ûFG

or θ̂1D∗
û1D

The envelope estimator θ̂FG
ûFG

or θ̂1D
û1D

fit at the dimension estimated
from the original sample ûFG or û1D and is then computed with respect
to resampled data. We call this the fixed u regime, and these estimators
will be referred to as “fixedu” in simulation results.

θ̂FG∗
û∗FG

or θ̂1D∗
û∗1D

The envelope estimator θ̂FG
ûFG

or θ̂1D
û1D

fit at the dimension estimated
from resampled data ûFG∗ or û1D∗ and is then also computed with
respect to resampled data. We call this the variable u regime, and
these estimators will be referred to as “varu” in simulation results.
These estimators are similar to the consistent model-free estimators
developed by [36].

r(θ̃, θ̂env) A column vector containing ratios of bootstrapped standard errors
se∗(θ̃j)/se∗(θ̂env,j), j = 1, . . . , p where θ̃ is the estimator (1.1) and θ̂env
refers to one of the above envelope estimators.

data. Then as n tends to ∞,

√
n
(
θ̂1D

∗
w − θ̂1Dw

)
=

√
n
(
θ̂1D

∗
u − θ̂1Du

)
+ O∗

P

{
n(1/2−C)

}
+ O∗

P

{
n(Cu+1/2)

}
e−n|O∗P (1)|.

(4.5)

The remarks to Theorem 4.2 are similar to those for Theorem 4.1. The sec-
ond OP term in (4.5) vanishes quickly in n. These terms are associated with
under selecting the true envelope dimension. Therefore it is more likely that our
bootstrap procedures will conservatively estimate the variability of θ̂1D

u in finite
samples. We advocate for the case with C = 1 because of the close connection
that I1D

n (k) has with BIC. Manuals for available software recommend use of
one-directional optimizations, such as the 1D algorithm or the ECD algorithm
[12], because they are faster, stable, and less sensitive to initial values than FG
optimization [31, 34]. The simulations in the next section paint a more nuanced
picture.

5. Examples

In this section we demonstrate the utility of weighted envelope estimation via
the bootstrapping procedures developed in the previous section. We will con-
sider several bootstrap estimators and evaluation metrics. The specific bootstrap
estimators under consideration are summarized in Table 1.
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We demonstrate our model-free weighted envelope estimation techniques for
exponential family generalized linear models (GLM) using normal predictors as
justified in [10]. In this setting envelope estimators are not parameterized within
the likelihood function as is typically the case in multivariate linear regression.
Thus the only part of “model” that is used is the MLE and Fisher information
matrix so that (1.1) holds. In these simulations we demonstrate that useful
variance reduction is obtained while accounting for model selection variability.
Estimation is performed using functionality in the TRES R package [31].

5.1. Exponential family GLM simulations with p = 6

We simulate two different exponential family GLM settings where p = 6 and
u = 3. One setting is for a logistic regression model and the other is for a
Poisson regression model. Predictors are generated by X ∼ N(0,ΣX), where
ΣX = ΓΩΓT + ΓoΩoΓT

o . We construct the regression coefficient vector as θ =
ΓΓT v where Γ and v are provided in the supplementary materials. In the lo-
gistic regression simulations we generate Yi ∼ Bernoulli(logit−1(θTXi)), and in
the Poisson regression simulations we generate Yi ∼ Poisson(exp(θTXi)). Our
simulation settings are:

• Logistic regression: Ω has diagonal elements 0.25, 0.5, and 1, Ωo has diag-
onal elements exp(−4), exp(−2), and exp(1). We construct θ = −v1/4 −
v2/4−3v3/4 where vj are the jth eigenvector of the envelope basis matrix
Γ.

• Poisson regression: Ω has diagonal elements exp(0), exp(1) and exp(2), and
Ωo has diagonal elements exp(−4), exp(−3), and exp(−1). We construct
θ = −v1/2−v2/2−v3/10 where vj are the jth eigenvector of the envelope
basis matrix Γ.

We preform our simulations for four sample sizes, n = 200, 400, 600, 800 and
a Monte Carlo sample size of 400. A nonparametric bootstrap routine with
bootstrap sample size of 1000 is performed for each Monte Carlo iterate at each
considered sample size. Both FG and 1D envelope estimators are considered,
see Table 1 for a description of these estimators.

We consider envelope estimation performance metrics for each simulation set-
ting. First and foremost we consider componentwise ratios of the bootstrapped
standard deviations of each envelope estimator to the bootstrapped standard
deviation corresponding to the maximum likelihood estimator. These ratios
r(θ̃, θ̂env) are column vectors with elements se∗(θ̃j)/se∗(θ̂env,j), j = 1, . . . , p.
The standard deviation se∗(θ̂j) is computed as(

1
B

B∑
b=1

(θ̃∗bj − θ̃j)(θ̃∗bj − θ̃j)T
)1/2

,

where θ̃∗bj is θ̃j computed from the resampled data in the bth iteration of a
nonparametric bootstrap routine. Any element of r(θ̃, θ̂env) that is greater than
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Fig 1. Averages of Monte Carlo simulations for ratios of envelope estimators to the MLE
across all components of the parameter vector in our logistic regression example in Section 5.1.
Ratios greater than 1 indicate superior performance for envelope estimation.

1 indicates that variance reduction is obtained using θ̂env,j in place of θ̃j . Com-
ponentwise ratios for both simulations are presented in Figures 1 and 4.

We also compute componentwise coverage probabilities averaged over Monte
Carlo iterates for both simulations. For each component we compute coverage
probabilities as the proportion of bootstrap iterations in which a 95% Wald-type
confidence interval covers the true parameter, where the standard errors used
to form these confidence intervals are estimated from the bootstrap samples.
Coverage probabilities are presented in Figures 2 and 5.
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Fig 2. Coverage probabilities of all estimators averaged across Monte Carlo replicates for all
components of the parameter vector in our logistic regression example in Section 5.1.

We also depict the empirical distribution of the estimated envelope dimension
using FG optimization and the 1D algorithm in Figures 3 and 6. This distribu-
tion is averaged over Monte Carlo iterates. In both simulations the simulation
truth is u = 3.

In each of these simulations we find that envelope estimation provides use-
ful variance reduction. In the logistic regression setting we find that the fixed
u regime (see Table 1) that is estimated with the 1D algorithm provides the
largest variance reduction. However, these gains are offset by problematic under
coverage that does not disappear as the sample size increases. See Figures 1
and 2 for the particulars. Moreover, we see that u is frequently underestimated
by the 1D algorithm (Figure 3). These findings indicate that not accounting
for model selection variability can lead to promising variance reduction which
comes with the cost of inconsistent envelope estimation. These finding are in
conflict with the recommendations in the TRES package manual which state that
“the FG optimization is often associated with likelihood-based estimation but
requires heavy computation and good initialization; the one-directional opti-
mization approaches (ECD [12] and 1D algorithms) are faster, stable and does
not require carefully chosen initial values” [31].

The weighted envelope estimator and the variable u regimes (see Table 1)
estimated with 1D optimization provide the largest variance reduction after the
fixed u regime in our logistic regression simulations. These envelope estimators
exhibit far better coverage than the fixed u envelope estimation regime men-
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Fig 3. Empirical distribution of u averaged across Monte Carlo replicates for our logistic
regression example in Section 5.1.

tioned in the previous paragraph. We find that the FG optimization routine
yields envelope estimators with much more modest gains than those computed
using the 1D algorithm. These modest gains come with less weight placed on
an envelope dimension smaller than the truth.

Our Poisson regression simulations show massive variance reduction using en-
velope methods. In this simulation the fixed u regime now gives proper coverage
while the weighted and variable u envelope estimators fit with 1D estimation
exhibit problematic under coverage for small sample sizes. However, the under
coverage improves quickly as the sample size increases. See Figures 4 and 5 for
the particulars. We also see that envelope methods fit with FG optimization
exhibit higher variance reduction and better coverage properties than the 1D
algorithm. These finding are again in conflict with the recommendations in the
TRES package manual which promote the 1D algorithm as more reliable. We find
that both FG optimization and the 1D algorithm better estimate the correct
envelope dimension as the sample size increases (Figure 6).

We now summarize results from these simulations. First and foremost, we
find that envelope estimation provides useful and in some case massive variance
reduction. We find that FG optimization is more reliable than the 1D algorithm,
a finding that conflicts with the recommendations in the TRES package manuals.
We find that the weighted envelope estimator exhibits a slight advantage but
otherwise similar performance to the variable u regime. This finding was also
confirmed in simulations conducted by Xin Zhang and his students (personal
communication). We find that the fixed u regime can lead to misleading mas-
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Fig 4. Averages of Monte Carlo simulations for ratios of envelope estimators to the MLE
across all components in our Poisson regression example in Section 5.1. Ratios greater than
1 indicate superior performance for envelope estimation.

Fig 5. Coverage probabilities of all estimators averaged across Monte Carlo replicates.
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Fig 6. Empirical distribution of u averaged across Monte Carlo replicates for our Poisson
regression example in Section 5.1.

sive variance reduction which comes at the expense of inconsistent estimation.
This conflicts with the philosophy of envelope methodology which is that this
methodology is a class of procedures for increasing efficiency in multivariate
analyses without altering traditional objectives [5, first sentence of page 1]. We
see that weighting and the variable u regimes fit with the 1D algorithms are
not perfect, they can lead to under coverage in small sample sizes although that
under coverage largely disappears as the sample size increases. The overall find-
ing is that our weighted envelope estimation technique provides useful variance
reduction that accounts for possible model selection variability.

5.2. Logistic regression simulation with p = 15

We also perform a logistic regression simulation when p = 15 and u = 5. This
simulation follows a similar setup of the previous simulations where predictors
are generated by X ∼ N(0,ΣX), ΣX = ΓΩΓT + ΓoΩoΓT

o , and we construct the
regression coefficient vector as θ = ΓΓT v where Γ, θ, and v are provided in the
supplementary materials.

The results of increasing p in this simulation are interesting and more en-
couraging for the fixed u regime. First of all, we see that the fixed u estimator
provides extremely large variance reduction, and variance reduction obtained
from the weighted and variable u regimes is much more modest. See Figure 7
for the particulars and note that we only display results for the first 12 compo-
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Fig 7. Averages of Monte Carlo simulations for ratios of envelope estimators to the MLE
across all components for our logistic regression example in Section 5.2. Ratios greater than
1 indicate superior performance for envelope estimation.

nents for purely visual reasons. The remaining components are displayed in the
supplementary materials.

As before, variance reduction provided by the fixed u regime yields subpar
coverage for some of the components of the target parameter vector. Figure 8
displays each estimators coverage for the first component only. We see that
the fixed u regime with estimation conducted via the 1D algorithm provides
problematic under coverage. Coverage probability results for all components
are included in the supplementary materials, and these materials reveal that
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Fig 8. Coverage probabilities of all estimators averaged across Monte Carlo replicates for the
first component of θ for the logistic regression example in Section 5.2.

problematic under coverage is only observed for the first four components of the
target parameter vector. Unlike before, the fixed u regime with estimation con-
ducted via FG optimization provides large variance reduction while also yielding
desirable coverage for all of the components of the target parameter vector. See
the supplementary materials for these details. The tradeoffs in performances
among the 1D algorithm and FG optimization for the fixed u regime likely
resulted from dramatic under estimation of u when dimension estimation was
conducted via the 1D algorithm.

5.3. Real data illustration

We examine the influence of several variables on a positive diagnosis of diabetes.
We will let a positive diagnosis of diabetes be when an individual’s hemoglobin
percentage (also known as HbA1c) exceeds a value of 6.5% [25]. We will consider
an individual’s height, weight, age, hip size, waist size, and gender, all of which
are easy to measure, inexpensive, and do not require any laboratory testing,
and a measure of their stabilized glucose as predictors for a positive diagnosis
of diabetes. The data in this analysis come from a population-based sample of
403 rural African-Americans in Virginia [32], and is taken from the faraway R
package [20]. We considered a logistic regression model with response variable
denoting a diagnosis of diabetes (1 when HbA1c > 6.5% and 0 otherwise) that
includes log transformed values for each continuous covariate and a main effect
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Fig 9. Empirical distribution of u averaged across Monte Carlo replicates for the logistic
regression example in Section 5.2.

for gender. The log transformation was used to transform these variables to
univariate normality while maintaining a scale that is interpretable.

We will compare the performance of weighted envelope estimation and both
the fixed u and variable u regimes (see Table 1) using both FG optimization
and the 1D algorithm. A nonparametric bootstrap with sample size 5000 is used
to estimate the variability of these estimators. Performance will be assessed
via variance reduction caveated with the empirical distribution of the envelope
dimension. Ratios of standard deviations are displayed in Table 2. These ratios
compare the bootstrapped standard deviation of each envelope estimator to the
bootstrapped standard deviation of the MLE.

From Table 2 we see that the fixed u regime provides massive variance re-
duction while the weighted estimator and variable u regime provide similar
modest but appreciable variance reduction. The variance reduction discrepancy
between the fixed u regime and the the weighted estimator and variable u regime
is due to large model selection variability. Specifically, the selected dimension
probabilities across our nonparametric bootstrap procedure when estimation is
performed using the 1D algorithm are p(û1D = 1) = 0.567, p(û1D = 2) = 0.362,
p(û1D = 3) = 0.065, and p(û1D = 4) = 0.006. The empirical dimension of û
when estimation is performed using FG optimization is p(ûFG = 1) = 0.238,
p(ûFG = 2) = 0.354, p(ûFG = 3) = 0.216, p(ûFG = 4) = 0.113, p(ûFG = 5) =
0.054, p(ûFG = 6) = 0.019, and p(ûFG = 7) = 0.005. It is clear that unac-
counted model selection variability may lead users astray when they use the
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Table 2

The ratios of bootstrap standard deviations of all envelope estimators to the those of the
MLE.

r(θ̃, θ̂1D
û1D

) r(θ̃, θ̂1D
û∗
1D

) r(θ̃, θ̂1D
w ) r(θ̃, θ̂FG

ûFG
) r(θ̃, θ̂FG

û∗
FG

) r(θ̃, θ̂FG
w )

log(Age) 1.20 1.23 1.26 1.20 1.08 1.10
log(Weight) 6.99 1.50 1.61 6.99 1.14 1.18
log(Height) 53.82 1.17 1.28 53.82 0.99 1.03
log(Waist) 11.43 1.51 1.64 11.43 1.12 1.17
log(Hip) 17.34 1.31 1.41 17.34 1.07 1.10
log(Stab. Gluc.) 1.25 1.13 1.13 1.25 1.05 1.06
Female 1.20 1.17 1.20 1.20 1.06 1.08

fixed u regime in estimating standard deviations via bootstrapping. This exam-
ple shows how difficult it can be to report reliable variance reduction in practice,
and how tempting it can be to ignore model selection variability.

5.4. Replicating and expanding upon simulations in [36]

We now compare the performance of our weighted envelope estimators to the
variable u regime using the simulation settings in [36]. For our first comparison
we reproduce the Monte Carlo simulations in Section 4.2 of [36] and add both
weighted estimators (θ̂FG

w and θ̂1D
w ) to the list of estimators under comparison

in [36]. Performance of all estimators at a sample size of n = 75 is also assessed.
The data generating models that are considered are a single predictor linear
regression model with 10 responses and a logistic regression model with a 10
predictors, and a Cox proportional hazards model with 10 predictors. In these
modeling setups, the true dimension of the envelope space is set at u = 2. In-
depth details about this simulation setup are presented in [36]. The Monte Carlo
sample size is 200, as in [36].

Table 3 displays the results. From Table 3 we see that the weighted envelope
estimators perform very similarly to the consistent envelope estimators. This
suggests that the variability in model selection is captured by all envelope esti-
mators. This finding is expected in larger samples when the correct dimension
selected percentage approaches 1, and it is a direct consequence of Lemma 3.3
and Theorem 3.2 in [36]. On the other hand, this finding is illuminating for
sample sizes where the correct dimension selected percentages are nowhere near
1. Some variability in selection of u which was used is incorporated into these
simulations since u is estimated at every iteration.

We now estimate the variability of envelope estimators under the simula-
tion settings in [36] which were not designed to showcase weighted envelope
estimation techniques. The Cox proportional hazards model is ignored in our
simulation since appreciable envelope estimation was not observed in the original
Monte Carlo simulations. For this simulation, we generated one data set corre-
sponding to the linear and logistic regression models in the previous simulation
at sample sizes n = 75, 150, 300. We then perform a nonparametric bootstrap
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Table 3

Monte Carlo simulation results for different envelope estimators with respect to three
different envelope models in the spirit of Table 3 from [36]. Left panel includes percentages
of correct selection for these envelope estimators. Right panel includes means of ‖θ̂ − θ‖F

for the standard estimator and the envelope estimators with either true or estimated
dimensions.

Correct Selection % Estimation Error ‖θ̂ − θ‖F
Standard Envelope

Model n 1D FG true u 1D FG W1D WFG
75 74 63.5 0.69 0.50 0.55 0.55 0.54 0.55

Linear 150 93 81 0.49 0.31 0.33 0.33 0.34 0.33
300 99 92 0.33 0.19 0.19 0.20 0.19 0.19
600 99 92.5 0.23 0.13 0.14 0.14 0.14 0.14
75 22.5 42 4.04 1.04 1.06 1.00 1.09 1.08

Logistic 150 72 77.5 2.16 0.56 0.67 0.60 0.67 0.64
300 92 89.5 1.40 0.34 0.35 0.34 0.37 0.36
600 98 94 0.98 0.22 0.22 0.24 0.24 0.24
75 35 38 2.07 1.99 1.95 1.96 2.04 2.05

Cox 150 57.5 53.5 1.33 1.24 1.21 1.22 1.27 1.28
300 83 75.5 0.98 0.90 0.89 0.90 0.93 0.93
600 100 93 0.79 0.72 0.72 0.72 0.75 0.75

Table 4

Ratios of standard deviations for envelope estimators relative to the MLE.

Model n r(θ̃, θ̂u) r(θ̃, θ̂1D
û1D

) r(θ̃, θ̂FG
ûFG

) r(θ̃, θ̂1D
û∗
1D

) r(θ̃, θ̂FG
û∗
FG

) r(θ̃, θ̂1D
w ) r(θ̃, θ̂FG

w )
75 0.992 2.024 1.768 0.991 0.947 1.094 1.024

Linear 150 1.076 1.592 1.524 1.033 1.008 1.105 1.046
300 1.236 2.219 2.108 1.173 1.102 1.264 1.171
75 1.013 1.054 1.022 0.978 0.966 1.079 1.033

Logistic 150 1.548 2.741 2.459 1.231 1.008 1.374 1.079
300 4.525 7.338 5.738 1.331 1.003 1.450 1.042

to estimate the variability of each envelope estimator using a bootstrap sample
size of 200 iterations. We repeat this process 25 times, and report the average
ratios of standard deviations relative to the standard estimator across these 25
Monte Carlo samples. Note that estimates of u are allowed to (and do) vary
across the iterations of the 25 Monte Carlo samples.

Table 4 displays the results with respect to the first component of the param-
eter vector (other components behave similarly) in both regression settings. In
Table 4 we see that weighted envelope estimation provides slight but important
efficiency gains over the variable u regime (see Table 1) and is comparable to
oracle estimation in most settings. The fixed u regime (see Table 1) outper-
forms weighted envelope estimation. However, this variance reduction is due to
underestimation of u in many of the original samples. Thus, weighted envelope
estimation provides a desirable balance between model variance reduction and
robustness to model misspecification.
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6. Discussion

As previously mentioned, a limitation of bootstrapping weighted envelope esti-
mators is that it can be computationally expensive, especially when p is large
[33]. Parallel computing with several cores can alleviate these computations since
both estimation for different envelope dimensions and the bootstrap procedure
can be done in parallel. As an example, our largest simulation configuration,
which bootstraps all candidate envelope estimators and the MLE with p = 15,
n = 800, and 500 bootstrap iterations, can be executed in less than 3 hours
on a 20 core machine. In such settings where computational costs are burden-
some even with parallel computing, we recommend investigating if the range
of candidate dimensions can reasonably be reduced to a less computationally
burdensome set of values or using the variable u regime as in [36] when estimat-
ing the envelope dimension at every iteration of the nonparametric bootstrap.
Existing envelope software implements the former approach in the context of
multivariate linear regression [23]. Our simulations provide some empirical jus-
tification for the performance of these approaches.

[33] developed a novel hypothesis testing procedure with respect to the mul-
tivariate linear envelope model. They showed that model averaging in [16] is
successful and exhibits comparable performance to their proposed methodology.
They dismissed the model averaging technique by saying, “the model average
estimator is not that viable. We may recall that the original motivation for ap-
plying the envelope model is to achieve dimension reduction. When one obtains
θ̂w,. . . it becomes unclear which subspace is being projected to as a result.”
The motivation for envelope methodology is not to “achieve dimension reduc-
tion,” rather the motivation for envelope methodology is to increase efficiency
in multivariate analyses without altering traditional objectives [5, first sentence
of page 1]. Dimension reduction is at the core of envelope methodology, but it
is just a means to an end for achieving useful variance reduction. The reporting
of a specific subspace is not of foundational importance to practitioners seeking
variance reduction, especially when there is both uncertainty in the subspace
selected and its dimension. When there is uncertainty about the correct enve-
lope dimension, model averaging with our weighted envelope estimator provides
a desirable balance between variance reduction and correct model specification.

Appendix

Mathematical results

Proof of Lemma 2. We first show that wFG
u

P→ 1. Note that

wFG
k =

exp
{
−nIFG

n (k)
}∑p

j=0 exp {−nIFG
n (j)} =

exp
[
n
{
IFG
n (u) − IFG

n (k)
}]∑p

j=0 exp [n {IFG
n (u) − IFG

n (j)}] .

By definition of IFG
n (k), we have that

n
{
IFG
n (k) − IFG

n (u)
}

= n
{
Jn(Γ̂k) − Jn(Γ̂u)

}
+ C(k − u) log(n). (A.1)
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We show that wFG
k

P→ 0 as n → ∞ for all k �= u by following a similar argument
as the proof of Theorems 3.1 and 3.2 in [36]. Lemma 3.2 in [36] states that
J(Γu) < J(Γk) < 0 for all k = 0, . . ., u−1, and J(Γk) = J(Γu) for all k = u+1,
. . ., p. First suppose that k = 0, . . ., u − 1. In this setting, we have that (A.1)
tends to ∞ as n → ∞. Now suppose that k = u, . . ., p. In this setting, we have
that n

{
Jn(Γ̂k) − Jn(Γ̂u)

}
= OP (1) in (A.1). Therefore (A.1) tends to ∞ as

n → ∞ when k = u + 1, . . ., p. Putting this together implies that wFG
k

P→ 0 for
all k �= u and wFG

u
P→ 1 as n → ∞.

We now show that w1D
u

P→ 1. Note that

w1D
k =

exp
{
−nI1D

n (k)
}∑p

j=0 exp {−nI1D
n (j)} =

exp
[
n
{
I1D
n (u) − I1D

n (k)
}]∑p

j=0 exp [n {I1D
n (u) − I1D

n (j)}] . (A.2)

We show that w1D
k

P→ 0 as n → ∞ for all k �= u by following a similar argument
as the proof of Theorems 3.1 and 3.2 in [36]. First suppose that k > u and
observe that

n
{
I1D
n (u) − I1D

n (k)
}

= n

⎧⎨⎩
k∑

j=u+1
φj,n(v̂j) + C(u− k) log(n)

n

⎫⎬⎭ .

We have that φj,n(v̂j) = OP

(
n−1). Therefore

n
{
I1D
n (u) − I1D

n (k)
}
→ −∞

as n → ∞. From (A.2) we can conclude that w1D
k

P→ 0 as n → ∞ for all k > u.
Now suppose that k < u. Let

n
{
I1D
n (u) − I1D

n (k)
}

= n

⎧⎨⎩
u∑

j=k+1

φj,n(v̂j) + C(u− k) log(n)
n

⎫⎬⎭ .

The function φj,n(v̂j) → φj(vj) < 0 in probability as shown in the proof of
Propositions 5 and 6 in [11]. Therefore n

{
I1D
n (u) − I1D

n (k)
}
→ −∞ as n → ∞.

From (A.2) we can conclude that w1D
k

P→ 0 as n → ∞ for all k < u. Therefore
w1D

k
P→ 0 as n → ∞ for all k �= u which implies that w1D

u
P→ 1 as n → ∞.

We now proceed with the bootstrap Theorems in Section 4 of the main
manuscript. Following Remark 1 in Section 3 of [3], we define O∗

P as an analog
to OP that is conditional on the original sample.

Proof of Theorem 1. Notice that

√
n
(
θ̂FG∗
w − θ̂FG

w

)
=

√
n
(
wFG∗

u θ̂FG∗
u − wFG

u θ̂FG
u

)
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as n → ∞ where the rates of the bound are given by the displayed equation in
Theorem 1 of the main text. We have that
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(A.3)

The same steps as (A.3) yield
√
nwFG∗

k ‖θ̂FG∗
k − θ̂FG∗

u ‖

≤ O∗
P

(
nC(u−k)+1/2

)
exp

[
n
{
J∗n (Γ̂∗u) − J∗n (Γ̂∗k )

}]
.

(A.4)

For 0 ≤ k < u, we have that Jn(Γ̂u) − Jn(Γ̂k) = J(Γu) − J(Γk) + op(1) where
J(Γu) < J(Γk) as in the proof of [36, Theorem 3.1]. Similarly we have that

J∗n (Γ̂∗u) − J∗n (Γ̂∗k ) = J(Γu) − J(Γk) + o∗P (1).

Therefore the rates for the exponent in the last line of (A.3) and the right
hand side of (A.4) are −n|O∗

P (1)|. Notice that the rates in the last line of (A.3)
and the right hand side of (A.4) are upper bounded when k = 0. Putting this
together yields

√
nwFG

k ‖θ̂FG
k − θ̂FG

u ‖ = O∗
P

(
nCu+1/2

)
exp {−n|OP (1)|} ,
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√
nwFG∗

k ‖θ̂FG∗
k − θ̂FG∗

u ‖ = O∗
P

(
nCu+1/2

)
exp

{
−n|O∗

P (1)|
}

;

for all 0 ≤ k < u.
Now consider u < k ≤ p. From the proof of [36, Theorem 3.1] we have that

Jn(Γ̂u) − Jn(Γ̂k) = O∗
P (n−1). Combining this result with the steps in (A.3)

yields
√
nwFG

k ‖θ̂FG
k − θ̂FG

u ‖ ≤ O∗
P

(
nC(u−k)+1/2

)
. (A.5)

A similar argument applied to the starred data gives

√
nwFG∗

k ‖θ̂FG∗
k − θ̂FG∗

u ‖ ≤ O∗
P

(
nC(u−k)+1/2

)
. (A.6)

The rates in both (A.5) and (A.6) are upper bounded when k = u− 1. Putting
this together yields

√
nwFG

k ‖θ̂FG
k − θ̂FG

u ‖ = O∗
P

(
n1/2−C

)
,

√
nwFG∗

k ‖θ̂FG∗
k − θ̂FG∗

u ‖ = O∗
P

(
n1/2−C

)
;

for all u < k ≤ p. Therefore

√
n

⎧⎨⎩
p∑

k �=u

wFG∗
k

(
θ̂FG∗
k − θ̂FG

u

)
−

p∑
k �=u

wFG
k

(
θ̂FG
k − θ̂FG

u

)⎫⎬⎭
= O∗

P

(
n1/2−C

)
+ O∗

P

(
nCu+1/2

)
exp

{
−n|O∗

P (1)|
}
,

as desired and the conclusion follows.

Proof of Theorem 2. Notice that

√
n
(
θ̂1D∗
w − θ̂1D

w

)
=

√
n
(
w∗u θ̂1D∗

u − wuθ̂
1D
u

)
+
√
n

⎛⎝ p∑
k �=u

w∗k θ̂∗k −
p∑

k �=u

wkθ̂k

⎞⎠
=

√
n
(
θ̂∗u − θ̂u

)
+

√
n

⎧⎨⎩
p∑

k �=u

w∗k
(
θ̂∗k − θ̂∗u

)
−

p∑
k �=u

wk

(
θ̂k − θ̂u

)⎫⎬⎭ .

We show that wk, w∗k → 0 such that

√
n‖

p∑
k �=u

w∗k
(
θ̂∗k − θ̂∗u

)
−

p∑
k �=u

wk

(
θ̂k − θ̂u

)
‖

≤
p∑

k=1

(√
nw∗k ‖θ̂∗k − θ̂∗u‖ +

√
nwk‖θ̂k − θ̂u‖

)
→ 0



544 D. J. Eck

as n → ∞ for all k �= u and find the rates at which they vanish. We have that

√
nwk‖θ̂k − θ̂u‖ =

√
n exp

{
−nI1D

n (k)
}∑p

j=0 exp {−nI1D
n (j)}‖θ̂k − θ̂u‖

≤
√
n exp

{
nI1D

n (u) − nI1D
n (k)

}
‖θ̂k − θ̂u‖

=
√
n exp

⎧⎨⎩n

u∑
j=1

φj,n(v̂j) − n

k∑
j=1

φj,n(v̂j) + (u− k)C logn
n

⎫⎬⎭ ‖θ̂k − θ̂u‖

= n{C(u−k)+1/2} exp

⎧⎨⎩n

u∑
j=1

φj,n(v̂j) − n

k∑
j=1

φj,n(v̂j)

⎫⎬⎭ ‖θ̂k − θ̂u‖

= O∗
P

[
n{C(u−k)+1/2}

]
exp

⎧⎨⎩n

u∑
j=1

φj,n(v̂j) − n

k∑
j=1

φj,n(v̂j)

⎫⎬⎭
(A.7)

where the last equality follows from the fact that ‖θ̂k − θ̂u‖ = |O∗
P (1)| for all

k = 1, . . ., p. This is because θ̂k → θ for all k = u, . . ., p and ‖θ̂k‖ → a ≤ ‖θ‖
for all k = 1, . . ., u − 1 since the envelope estimator exhibits shrinkage when
k = 1, . . ., u− 1. First suppose that k = 1, . . ., u− 1. In this setting φk,n(v̂k) →
φk(vk) < 0 as n → ∞ [11, proof of Theorems 5 and 6]. From (A.7) we have

√
nwk‖θ̂k − θ̂u‖ ≤ O∗

P

[
n{C(u−k)+1/2}

]
exp

⎧⎨⎩n

u∑
j=k−1

φj,n(v̂j)

⎫⎬⎭
= O∗

P

[
n{C(u−k)+1/2}

]
exp

{
−n|O∗

P (1)|
}
.

(A.8)

Now suppose that k = u + 1, . . ., p. In this setting, φk,n(v̂k) = O∗
P

(
n−1) [36,

proof of Theorem 3.1]. From (A.7) we have

√
nwk‖θ̂k − θ̂u‖ ≤ O∗

P

[
n{C(u−k)+1/2}

]
exp

⎧⎨⎩−n

k∑
j=u+1

φj,n(v̂j)

⎫⎬⎭
= O∗

P

[
n{C(u−k)+1/2}

]
.

(A.9)

The same steps in (A.8) and (A.9) apply to the starred data so that

√
nw∗k ‖θ̂∗k − θ̂∗u‖ ≤ O∗

P

[
n{C(u−k)+1/2}

]
exp

{
−n|O∗

P (1)|
}
, (k = 1, ..., u− 1),

(A.10)
and

√
nw∗k ‖θ̂∗k − θ̂∗u‖ = O∗

P

[
n{C(u−k)+1/2}

]
, (k = u + 1, ..., p). (A.11)
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Our conclusion follows by noting that (A.8), (A.9), (A.10), and (A.11) implies
that
√
nwk‖θ̂k − θ̂u‖ ≤ O∗

P

[
n{Cu+1/2}

]
exp

{
−n|O∗

P (1)|
}
, (k = 1, ..., u− 1);

√
nwk‖θ̂k − θ̂u‖ ≤ O∗

P

{
n(1/2−C)

}
, (k = u + 1, ..., p);

√
nw∗k ‖θ̂∗k − θ̂∗u‖ ≤ O∗

P

[
n{Cu+1/2}

]
exp

{
−n|O∗

P (1)|
}
, (k = 1, ..., u− 1);

√
nw∗k ‖θ̂∗k − θ̂∗u‖ ≤ O∗

P

{
n(1/2−C)

}
, (k = u + 1, ..., p);

respectively.
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