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Should we estimate a product of density
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Abstract: In this paper, we consider the inverse problem of estimating
the product fg of two densities, given a d-dimensional n-sample of i.i.d.
observations drawn from each distribution. We propose a general method
of estimation encompassing both projection estimators with model selec-
tion device and kernel estimators with bandwidth selection strategies. The
procedures do not consist in making the product of each density estimator,
but in plugging an overfitted estimator of one of the two densities, in an
estimator based on the second sample. Our findings are a first step toward
a better understanding of the good performances of overfitting in regression
Nadaraya-Watson estimator.
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1. Introduction

In this work, we consider that we have n observations Xi, i = 1, . . . , n in Rd

independent and identically distributed (i.i.d.) with density f and independent
from n additional observations Yi, i = 1, . . . , n in Rd, i.i.d. with density g. We
study the question of estimating the product function fg from these observa-
tions. Note that the resulting function is not − in general − a density, and none
of the observations are directly related to this product. In that sense, we face
an inverse problem. Our framework contains the case where f = g and the goal
is to estimate f2 by splitting a 2n-sample. These quantities may be of interest
in some testing problems or as a first step for estimating the L2-norm of f , see
Laurent and Massart [22]; other product problems are considered in Butucea et
al. [7].

However, we must explain that we considered this problem as a simplified
setting (a toy-problem, in some sense) for a more complicated question. Let us
explain it. Consider a regression model in dimension d = 1 with Yi = b(Xi) + εi
with i.i.d. and independent sequences (Xi)1≤i≤n and (εi)1≤i≤n. The question
is to estimate the regression function b(·) from observations (Xi, Yi)1≤i≤n. A
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popular proposal is the Nadaraya-Watson estimator (see Györfi et al. [17])

b̂h(x) =
1
nh
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i=1 YiK

(
Xi−x

h

)
1
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i=1 K

(
Xi−x

h

) =
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wn,i,hYi, wn,i,h =
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(
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)∑n
i=1 K

(
Xi−x

h

) ,
where K is a kernel and h a bandwidth parameter. This estimator can be seen
as a weighted combination of the Yi’s (second equality) or as a ratio of an es-
timator of bf , where f is still the density of the Xi’s, divided by an estimator
of f (first equality). In this last case, it is not clear that the same bandwidth
h must be chosen for the numerator and the denominator. Surprisingly, Comte
and Marie [13] proposed sophisticated strategies for these two terms, but no-
ticed in the simulation experiments that, if the numerical results obtained for
both functions separately were excellent, the performance of the ratio was al-
most systematically defeated by the single bandwidth method selected from a
least squares criterion relying on the weighted view of the question. The unique
bandwidth selected in this case is small, but the ratio of these two bad and
overfitted estimators is undoubtedly very good, at least for not too high noise
level (see a related discussion in Section 4.1 of Bartlett et al. [2]). This is why we
wondered if the product of two functional estimators was a good estimator of
the product of two functions; we took these functions as densities for simplicity.
Thus our motivation is mainly theoretical, but we believe that the question is
of general interest.

Now, let us see why making a product of density estimators can be seen as
an inadequate (sub-optimal) strategy. Assume that we set f̂ g := f̂ × ĝ, where f̂
and ĝ are minimax optimal estimators of f and g respectively. To get an upper
bound result, there is no other way than to separate the role of each estimate:
both individual risks of f̂ and ĝ would emerge. Then, the resulting rate is the
slowest between the rates of estimation of f and g: it is the rate induced by
the less regular density between f and g, say g without loss or generality for
the remaining of this discussion. Clearly, this is not optimal if the product fg is
more regular than g. For instance, if d = 1 and for f a β(p, p) density with p ≥ 2,
p integer and g a uniform density, i.e. a β(1, 1). Then on R, f has regularity
p − 1 and g regularity 0, but fg = f has regularity p − 1. Therefore, one can
wonder if in these cases it is possible to build an estimator directly adapted to
the regularity of the product fg.

A related disadvantage of an upper bound separating the roles of f and g
is that it does not treat this problem as an inverse problem: both individual
regularities of f and g intervene whereas one expects that the sole regularity of
fg should matter. Especially since, depending on the regularity classes which
are considered, there is often no universal rule relating the regularities of f and
g to the one of the product.

To complete this discussion, notice that it is easy to derive a lower bound
result, inspired by the former example on beta distributions. Denote by Σ(s, L),
where s = (s1, . . . , sd) with positive si, i = 1, . . . , d and L, a ball of radius L in
space of functions with regularity s. Then it holds, for any measurable function
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T of (Xi, Yi)1≤i≤n,

sup
fg∈Σ(s,L)

‖T − fg‖2 ≥ sup
fg∈Σ(s,L)

Suppf⊂[0,1]d
g=1[0,1]d

‖T − fg‖2 = sup
f∈Σ(s,L)

Suppf⊂[0,1]d

‖T − f‖2.

It follows that

inf
T

sup
fg∈Σ(s,L)

‖T − fg‖2 ≥ inf
T

sup
f∈Σ(s,L)

Suppf⊂[0,1]d

‖T − f‖2, (1.1)

we recover on the right side the lower bound of the direct density estimation
problem. To summarize, if the regularity set Σ(s, L) contains a [0, 1]d supported
density f0, a lower bound for the product is given by a lower bound for the
direct estimation of f0. This is enough to state that the upper bound results
presented below are optimal. For instance in dimension d = 1, we recover rates
in n− 2s

2s+1 if (fg) ∈ Σ(s, L), a Sobolev class of regularity s, that are minimax.
The plan of the paper is the following. We propose in section 2.1 a general

estimation strategy: we define a function estimator of the product fg and prove
a non-asymptotic risk bound under general assumptions. This general strategy
encompasses projection and kernel methods, for which we check the assumptions
and present spectific results in Section 2.2. Then we study in a particular projec-
tion case the resulting rate, related to the regularity of fg: it can be reached for
a well-chosen dimension of the projection space (see section 2.4). As this choice
depends on unknown parameters, we then propose in Section 3.1 a general pa-
rameter selection strategy of Goldenshluger and Lepski [15] type, and prove
that the resulting estimator automatically reaches the squared-bias/variance
compromise. This general method applies to projection and kernel methods.
However in both cases and in dimension 1 alternative methods are used in the
simulations, which outperform Goldenshluger and Lepski procedures numeri-
cally; they are simpler to calibrate with faster execution times. Note that an
invariable difficulty in the theoretical study of these procedures is that even if
we have i.i.d. variables, our estimates are built from sums of dependent vari-
ables (see e.g. (2.6) or (2.7)). Numerical comparisons of the different methods
and associated strategies for product estimators are conducted in section 4, and
concur to our theoretical findings. Several additional questions are presented
in the concluding remarks of section 5. Lastly, proofs are gathered in section 6
for the results of section 2 and in section 7 for the adaptive results stated in
sections 3 and 4.

2. General estimates of the product and examples

2.1. Functional estimator and first risk bound

We consider a general family K of functions K : I2 �→ R, where I ⊂ Rd, that
are symmetric (i.e. ∀x, y ∈ I,K(x, y) = K(y, x)).
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In the sequel, we denote by ψK the quantity ψK(x) :=
∫
K(x, y)ψ(y)dy for

any function ψ. The collection K must be chosen such that ψK can be a good ap-
proximation of ψ. Examples of possible collection K are provided in Section 2.2.

For such a function K∗ ∈ K, we define an estimator of f by

f̂K∗(x) = 1
n

n∑
i=1

K∗(Xi, x), x ∈ I. (2.1)

This estimator is considered in Lerasle et al. [24] and for specific choices of
K∗, it covers for instance projection estimators, kernel estimators or weighted
projection estimators. The first two examples are detailed in Section 2.2. Remark
that E(f̂K∗) = fK∗ is expected to be a good approximation of f .

Following an analogous way, we propose as an estimator of fg, for K ∈ K,

(̂fg)
K,K∗(x) = 1

n

n∑
i=1

f̂K∗(Yi)K(Yi, x), x ∈ I. (2.2)

Indeed, if f̂K∗ is near of f , and as E(f(Y1)K(Y1, .)) = (fg)K, we get a relevant
estimator of fg if, again, for K ∈ K, (fg)K is a good approximation of fg. Note
that in definition (2.2), X1 and Y1 must have the same dimension.

We set the following assumptions on K:

(A1) ∃C1 > 0,∀ψ ∈ L2(I), ‖ψK‖2 =
∫ (∫

ψ(y)K(y, x)dy
)2

dx ≤ C1‖ψ‖2.
(A2) L(K) := supy∈I

∫
K2(y, x)dx < ∞.

Moreover, we require the following assumptions on f̂K∗ :

(A3) ∃C3 > 0,
∫ (

E[f̂K∗(y)]
)2

dy = ‖fK∗‖2 ≤ C3.

(A4) ∃C4 > 0,
∫

Var
(
f̂K∗(y)

)
dy ≤ C4.

(A5) ∃C5 > 0, ∀ψ ∈ L2(I), E

[〈
ψ, f̂K∗ − E[f̂K∗ ]

〉2
]
≤ C5

‖ψ‖2

n .

These assumptions are related to K∗ and therefore to the density f only. Now, we
can establish the following upper bound on the mean integrated risk of (̂fg)

K,K∗ .

Proposition 2.1. Let K,K∗ belong to K. Assume that assumptions (A1)-(A5)
hold and that g is bounded on I with bound denoted by ‖g‖∞. Let (̂fg)

K,K∗ be
the estimator defined by (2.2). Then, we have

E[‖(̂fg)
K,K∗ − fg‖2] ≤ 2‖(fg)K − fg‖2 + 2C1‖g‖2

∞‖f − fK∗‖2 + C(f, g)L(K)
n

,

(2.3)
where C(f, g) := ‖g‖∞(C3 + C4 + C5).

Strategy suggested by (2.3). The risk bound (2.3) contains two standard
terms, the squared bias ‖(fg)K−fg‖2 and the variance C(f, g)L(K)/n, requiring
a standard selection for K (see Lerasle et al. [24]). It also involves the bias term
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‖f−fK∗‖2 which has no counterpart: thus K∗ can and should be chosen in order
to make it negligible and f̂K∗ can thus be taken overfitted.

If, in the initial problem, f and g have symmetric roles, this is no longer
true in the definition (2.2) of the estimator, where one of the two densities
is estimated first. As a matter of fact, Proposition 2.1 suggests to plug in the
product estimator (2.2) an over-fitted estimator, eliminating a selection issue for
K∗. When possible we select for this over-fitted estimator the one corresponding
to the smoother density. Indeed, this should make the additional bias term
decrease faster. However, the information about which is smoother between
f and g, is not available. From theoretical viewpoint, both ‖f − fK∗‖2 and
‖g − gK∗‖2 can be rendered negligible by assuming a minimal regularity for f
and g, and by relevant choice of K∗. From a practical point of view and in
dimension 1, we propose to consider that the smoother density is the one for
which a selection method for the direct density estimation of f and g leads to
the smallest complexity L(K) (i.e. the smallest selected dimension in projection
or the largest bandwidth for kernels, see section 2.2 hereafter).

In the sequel, we may write (̂fg)
K

instead of (̂fg)
K,K∗ when there is no am-

biguity, as K∗ can be fixed.

2.2. Assumptions (A1)-(A5) for projection and kernel estimators

We consider the following two examples:
[ P ] Projection function: for a multi-index m = (m1, . . . ,md) ∈ Nd, let

Km(x, y) =
∑

0≤j≤m−1

ϕj(x)ϕj(y)

where (ϕj)0≤j≤m−1 is an L2(I)-orthonormal basis, I = I1 × . . .× Id, with

ϕj(x) = (ϕj1 ⊗ . . .⊗ ϕjd)(x) = ϕj1(x1) × . . .× ϕjd(xd)

and

L(m) :=

∥∥∥∥∥∥
∑

0≤j≤m−1

ϕ2
j

∥∥∥∥∥∥
∞

=
d∏

j=1

⎛⎝ sup
xj∈Ij

mj−1∑
kj=0

ϕkj (xj)2
⎞⎠=:

d∏
j=1

L(mj) < +∞.

We denote by Sm the Dm-dimensional linear subspace of L2(I) spanned
by ϕ0, . . . , ϕm−1, where Dm =

∏d
j=1 mj .

[ Ker ] Kernel function:

Kh(x, u) = K
(
x− u

h

)
=

d∏
j=1

1
hj

K

(
xj − uj

hj

)
for K an integrable and square-integrable symmetric function (K(−z) =
K(z)) defined on R, such that

∫
I
K = 1 and h ∈ [0, 1]d. We denote by

Kh(x) :=
∏d

j=1 h
−1
j K(xj/hj) and set L(h) =

∏d
j=1 L(hj) where L(h) =

‖K‖2/h.
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First we state that the above functions fulfill Assumptions (A1)-(A2):

Proposition 2.2. The functions Km defined in [P] and Kh defined in [Ker]
satisfy Assumptions (A1)-(A2) and belong to K.

The order of L(Km) := L(m) depends on the choice of the basis. In dimension
1, for the trigonometric basis for m odd and I = [0, 1], it holds L(m) = m.
For the Hermite basis where I = R, we have L(m) ≤ CH

√
m (see Lemma

1 in Comte and Lacour [12] and section 2.4). For the Legendre polynomial
basis where I = [−1, 1] it holds that L(m) = m2, see Cohen et al. [9], p.831.
In any case, we consider that L(m) ≥ 1, which holds at least for m ≥ m0.
Extension to dimension d is straightforward by tensorization of the bases, and
L(m) =

∏d
i=1 L(mj). In the kernel case, we simply have L(Kh) := L(h).

Next we prove that Assumptions (A3)-(A5) are verified for the projection
estimator of f

f̂Km∗ := f̂m∗ =
∑

0≤j≤m∗−1

âjϕj, âj = 1
n

n∑
i=1

ϕj(Xi), (2.4)

where
∑

0≤j≤m∗−1 stands for
∑m∗

1−1
j1=0 . . .

∑m∗
d−1

jd=0 , and for the kernel estimator

f̂Kh∗ := f̂h∗(x) = 1
n

n∑
i=1

Kh∗(Xi − x). (2.5)

Proposition 2.3. Assume that f is bounded. Then the estimators of f :

• f̂m∗ in case [P] under L(m∗) ≤ n,
• f̂h∗ in case [Ker] under L(h∗) ≤ n,

satisfy Assumptions (A3)-(A5).

The conditions L(m∗) ≤ n and L(h∗) ≤ n represent a stronger version of
Assumption (A2). Moreover fKm

= fm =
∑

0≤j≤m−1 ajϕj, with aj = 〈f, ϕj〉
is the projection of f on Sm: it is a good approximation of f for m large (in
the sense that min1≤j≤d mj is large). Analogously, fKh

= f � Kh with u � v
denoting the convolution product of two L2(I) functions, gets close to f for
small h (in the sense that max1≤j≤d hj is small) under mild conditions, see e.g.
Tsybakov [26] or Goldenshluger and Lepski [16].

This allows to derive from Proposition 2.1 in the following section upper-
bound results for projection and kernel estimators that we introduce below.

2.3. A corollary in the projection or kernel case

In a purely projection approach where we take K and K∗ in the same collection
of the form [P], we obtain the following estimator of fg:

(̂fg)
Km,Km∗ := (̂fg)m,m∗ =

∑
0≤j≤m−1

â
(m∗)
j ϕj, â

(m∗)
j = 1

n

n∑
i=1

ϕj(Yi)f̂m∗(Yi).

(2.6)
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Clearly, E(â(m∗)
j ) = 〈ϕj, fm∗g〉, which shows that our estimator is indeed close

to fm∗g, which in turn should be near of fg for large m∗. Choosing m∗ large is
possible since the variance of f̂m∗ does not appear in the risk bound. It is worth
noting that the sum in the right hand side of (2.6) is composed of identically
distributed but dependent variables: indeed, dependency appears through f̂m∗ ,
which is based on the X-sample.

In a purely kernel approach where we take K and K∗ in the same collection
of the form [Ker], we consider the estimator of fg:

(̂fg)h,h∗(x) = 1
n

n∑
i=1

f̂h∗(Yi)Kh(Yi − x). (2.7)

A straightforward consequence of Proposition 2.1 is the corollary:

Corollary 2.1. Assume that f and g are bounded.
Let (̂fg)m,m∗ be defined by (2.6). For any m∗ such that L(m∗) ≤ n, we have

E

(
‖(̂fg)m,m∗ − fg‖2

)
≤ 2‖(fg)m−fg‖2+2‖g‖2

∞‖f−fm∗‖2+C1
L(m)
n

, (2.8)

where fg = fg1I , C1 := ‖g‖∞(1 + 2‖f‖∞) and (fg)m is the orthogonal projec-
tion of fg on Sm, fm∗ the orthogonal projection of f on Sm∗ .

Let (̂fg)h,h∗ be defined by (2.7). For any h∗ such that L(h∗) ≤ n, we have

E

(
‖(̃fg)h,h∗ − fg‖2

)
≤ 2‖(fg)h − fg‖2 + 2‖g‖2

∞‖K‖2
1‖fh∗ − f‖2 + C2L(h)

n
,

(2.9)
where C2 = ‖g‖∞(1 + 2‖K‖2

1‖f‖∞).

It is also possible to consider a mixed strategy where K∗ is selected in collec-
tion [P] and K in [Ker], or vice-versa, and a similar result is obtained. This
strategy is investigated in the numerical section. Then, the two bias terms
‖(fg)K − fg‖2 and ‖f − fK∗‖2 refer to different regularity spaces, see the dis-
cussion below and the next section.

The bound (2.9) suggests to choose h∗ the smallest as possible, in order to
make this term negligible. For instance if f belongs to a Nikols’ki ball with
regularity parameter α = (α1, . . . , αd) (see Goldenshluger and Lepski [16], Def-
inition 1), ‖fh∗ − f‖2 has order

∑d
j=1(h∗

j )2αj if the kernel K has order at least
maxj�αj� (where �α� is the largest integer such that �α� < α and the order of
the kernel is understood as in section 3.2 of Goldenshluger and Lepski [16]). It
follows that if minj αj > 1/2 and h∗

j = 1/n, ∀j, this term has order less than
1/n and is negligible. Then, only the bandwidth h requires to be selected.

If in addition fg belongs to a Nikols’ki ball with regularity parameter β and
K has order at least maxj�βj�, then the estimator reaches the minimax rate

n−2β/(2β+d) for 1
β

= 1
d

d∑
j=1

1
βj

,
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(see Goldenshluger and Lepski [16]), for hj chosen of order n−β/
(
βj(2β+1)

)
. Such

a choice of h is not feasible since β is unknown, a data driven procedure for
selecting h must be proposed.

In the following section we provide a more precise evaluation of the rates of
estimation in the projection case in dimension 1.

2.4. Projection strategy: Rates on Sobolev Hermite spaces

In this section we focus on the case d = 1 and give an example of rate induced
by the bound (2.8), in the case of the Hermite basis and associated Sobolev
spaces (see Comte and Lacour [12] Definition 1 for the general case d ≥ 1). The
Hermite functions (ϕj)j≥0 are defined from Hermite polynomials (Hj)j≥0 by:
for x ∈ R

ϕj(x) = cjHj(x)e−x2/2, Hj(x) = (−1)jex
2 dj

dxj
(e−x2

), cj = (2jj!
√
π)−1/2.

(2.10)
The Hermite polynomials (Hj)j≥0 are orthogonal with respect to the weight
function e−x2 , that is:

∫
R
Hj(x)Hk(x)e−x2

dx = 2jj!
√
πδj,k (see Abramowitz and

Stegun [1], chap 22.2.14). Therefore, the Hermite basis (ϕj)j≥0 is an orthonormal
basis on R. We note also that ϕj is bounded:

||ϕj ||∞ = sup
x∈R

|ϕj(x)| ≤ Φ0, with Φ0 � 1, 086435/π1/4 � 0, 8160 (2.11)

(see Abramowitz and Stegun [1], chap.22.14.17). Moreover, as recalled above
supx∈R

∑m−1
j=0 ϕ2

j (x) ≤ CH
√
m for a finite constant CH > 0 (see Lemma 1 of

Comte and Lacour [12]).
For s > 0, the Sobolev-Hermite ball (see Bongioanni and Torrea [6]) is defined

by:
W s

H(D) =
{
θ ∈ L2(R),

∑
k≥0

ksa2
k(θ) ≤ D

}
, D > 0, (2.12)

where ak(θ) = 〈θ, ϕk〉. It is proved in Belomestny et al. [4] that, for s an integer,
s ≥ 1, f ∈ W s

H = {θ ∈ L2(R),
∑

k≥0 k
sa2

k(θ) < +∞} is equivalent to: f admits
derivatives up to order s which satisfy: f , f ′, . . . , f (s), xs−�f (�) for � = 0, . . . , s−1
belong to L2(R). Moreover, for any function f ∈ W s

H(D), we have ‖f − fm‖2 ≤
Dm−s. It is also easy to see that if, in addition, s > 1, then f is bounded. Indeed

|
∑
j≥0

ajϕj | ≤ Φ0(|a0| +
∑
j≥1

(|aj |js/2)j−s/2) ≤ Φ0(‖f‖ +
√∑

j≥1
jsa2

j

∑
j≥1

j−s).

As f and g are assumed to be bounded, it holds

|〈fg, ϕj〉| ≤ min(‖f‖∞|〈g, ϕj〉|, ‖g‖∞|〈f, ϕj〉|).

Thus if fg ∈ W s
H(D), f ∈ W s′

H (D′) and g ∈ W s′′

H (D′′), then s ≥ max(s′, s′′).
Consequently, we obtain as a straightforward consequence of bound (2.8), the

following result.
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Proposition 2.4. Let s ≥ s′ ≥ 1/2 and assume that fg ∈ W s
H(D), f ∈ W s′

H (D′)
with f and g bounded and g ∈ L2(R). Then choosing mopt = [n1/(s+1/2)] and
m∗

n = n2/C2
H , we have

E

(
‖(̂fg)mopt,m∗

n
− fg‖2

)
≤ C(D,D′, ‖f‖∞, ‖g‖∞)n− 2s

2s+1 .

We can conclude that the resulting rate is of order n−2s/(2s+1), and is optimal,
see (1.1).

3. Adaptive procedure

3.1. General adaption result

We propose a Goldenschluger and Lepski [15] method. Define Kn = {Kτ}τ∈Tn

a family of symmetric functions indexed by a parameter τ , satisfying (A1)-
(A2). For simplicity, we write ψτ instead of ψKτ and L(τ) instead of L(Kτ ). For
example in the previous examples the parameter τ is a d dimensional vector
of integers m in the projection case and a bandwidth h ∈ [0, 1]d in the kernel
context. We add the following assumptions

(A6) ∀x, y ∈ I,∀τ, τ ′ ∈ Tn,
∫
Kτ (x, z)Kτ ′(z, y)dz =

∫
Kτ (y, z)Kτ ′(z, x)dz.

(A7) f and g are bounded and ∀τ ∈ Tn, ‖fτ‖∞ ≤ C7.
(A8) The collection of models is such that Card(Tn) ≤ nd, and ∀c > 0,∑

τ∈Tn

e−c
√
L(τ) ≤ Σ < +∞

where Σ = Σ(c) is a constant depending on c but not on n.
(A9) ∀τ ∈ Tn, supx,y |Kτ (x, y)|2 ≤ C9L

2(τ).
(A10) The parameter τ∗ is such that L(τ∗) ≤ ‖f‖∞

2(d+3)(1+
√
C9)

n
log(n) .

Define
(̂fg)τ,τ ′(x) =

∫
Kτ ′(y, x)(̂fg)τ (y)dy.

Under (A6) note that (̂fg)τ,τ ′ = (̂fg)τ ′,τ . Now, set{
A(τ) = supτ ′∈Tn

[
‖(̂fg)τ,τ ′ − (̂fg)τ ′‖2 − κV (τ ′)

]
+
,

V (τ) = κ(C1 ∨ C2
1 )(‖f‖2

∞ + ‖g‖2
∞)L(τ)

n .
(3.1)

The selection of τ is done by the rule

τ̂ = arg min
τ∈Kn

{A(τ) + κ′V (τ)}

for some positive constants κ and κ′ to be selected. The estimator f̂Kτ∗ of f
defined in (2.1) relies now on the symmetric function Kτ∗ ∈ Kn and is rewritten
f̂τ∗ with K∗ = Kτ∗ and we note fKτ∗ by fτ∗ .
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Theorem 3.1. Assume that Assumptions (A1)-(A10) are fulfilled. Then we
have, for κ′ ≥ κ,

E(‖(̂fg)τ,τ̂ − fg‖2) ≤ C inf
τ∈Tn

{
(C1 ∨ 1)‖(fg)τ − fg‖2 + κ′V (τ)

}
+42(C1 ∨ C2

1 )‖g‖2
∞‖f − fτ∗‖2 + C ′

n
,

where C is a numerical constant and C ′ depends on ‖f‖∞, ‖g‖∞ and on a
constant specific to the collection K.

Theorem 3.1 shows that the adaptive procedure automatically realizes the
squared bias-variance tradeoff up to negligible terms, as soon as τ∗ is such
that ‖f − fτ∗‖2 has order less than O(1/n). This result is general and allows
to consider any collection K such that (A1)-(A10) are satisfied. For example, a
mixed strategy where a kernel estimator of f is plugged in a projection estimator
of the product is possible. It is worth stressing that the proof of Theorem 3.1
relies on the Talagrand inequality and does not involve the study of a U-statistics
(see Lerasle et al. [24] and our Theorem 4.2 below).

3.2. Assumptions (A6)-(A10) for projection and kernel estimators

In this section, we present assumptions ensuring (A1)-(A10) for the previous
procedures. First, in the projection case (2.6), we define the collection of pro-
posals for m as follows

Mn = {m ∈ {1, . . . , n}d, L(m) ≤ n},

and set the following set of assumptions:

[P1] f and g are bounded on I.
[P2] The basis functions are bounded: ∀j ∈ Nd,∀x ∈ I, |ϕj(x)| ≤ Cϕ.
[P3] The model m∗ is such that L(m∗) ≤ ‖f‖∞

4(d+3)
n

log(n) .
[P4] The collection of models is such that Card(Mn) ≤ nd, and ∀c > 0,∑

m∈Mn
e−c

√
L(m) ≤ Σ < +∞ where Σ = Σ(c) is a constant depending

on c but not on n.
[P5] There exist b ∈ (1,∞)d and Cb > 0, which need not to be known,
such that

∑
j≥1 jba2

j (f) ≤ Cb < +∞, where jb = jb11 . . . jbdd .

Corollary 3.1. In the projection case [P], Assumptions [P1]-[P5] imply (A1)-
(A10).

In Assumption [P3], the maximal value of m∗ depends on ‖f‖∞. This cons-
traint can be replaced by L(m∗) ≤ n/ log3/2(n) and the result follows for n large
enough. Assumptions [P2] and [P4] are classical, for instance they are fulfilled
by trigonometric and Hermite bases. Condition [P5] is a minimal regularity
constraint. For instance for d = 1, it requires that the function f has a minimal
regularity of 1/2 on Sobolev-Fourier spaces for I = [0, 1] and 1 on Hermite
Sobolev spaces.
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Second, for the kernel estimator (2.7), denote by Tn a discrete collection Hn of
bandwidths in (1/n, 1)d with cardinality less than nd. We consider the following
set of assumptions:

[K1] f and g are bounded on I.
[K2] The kernel K is even, bounded and integrable.
[K3] The bandwidth h∗ is such that L(h∗) ≤ ‖f‖∞

2(d+3)(1+ ‖K‖∞
‖K‖2 )

n
log(n) .

[K4] The discrete collection Hn of bandwidths in (1/n, 1)d has cardinality
less than nd and for any c1 > 0,

∑
h∈Hn

exp(−c1
√

L(h)) ≤ Σ = Σ(c1) <
+∞.

Note that as
∫

K = 1, ‖K‖1 ≥ 1. Similarly to [P3], we can replace in [K3] the
bound by n log(n)−3/2 ≥ L(h∗), for large enough n, to get rid of the unknown
constant ‖f‖∞ in the bound defining h∗. Assumption [K4] is fulfilled for

Hn =
{

h ∈
{

1
n
,
2
n
, . . . ,

n− 1
n

, 1
}d

}
.

Contrary to the projection, the kernel method does not require any regularity
constraint of type [P5].

Corollary 3.2. In the kernel case [K], Assumptions [K1]-[K4] imply (A1)-
(A10).

4. Numerical study

4.1. Numerically efficient adaptive procedures in dimension 1

For the numerical study we focus on dimension d = 1 and do not implement the
adaptive procedure described in Section 3.1. Indeed, the Goldenschluger and
Lepski method is often difficult to calibrate from an implementation viewpoint
(see Comte and Rebafka [14]) and suffers from important computational costs.
Indeed, it involves the calibration of two constants, κ′ and κ. This preliminary
calibration step is difficult, probably because these constants act simultaneously
on the bias and variance terms. In the kernel case, the “double” convolution
which appears when computing f̂ gh,h′ is numerically time consuming. Instead
we propose two numerically efficient procedures: model selection and PCO, for
which the squared bias-variance tradeoff is also attained under [P1]-[P5] and
[K1]-[K4] respectively.

4.1.1. Model selection for projection estimators

We present, under the above Assumptions [P1]-[P5], a result for a more standard
and simpler model selection procedure. More precisely, define

γn(t) = ‖t‖2 − 2
n

n∑
i=1

f̂m∗(Yi)t(Yi). (4.1)
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Then select m̃ with the criterion

m̃ := arg min
m∈Mn

{
min
t∈Sm

γn(t) + pen(m)
}
, pen(m) = κ(‖f‖2

∞ + ‖g‖2
∞)L(m)

n

where κ is a numerical constant. Note that

min
t∈Sm

γn(t) = γn((̂fg)m,m∗) = −‖(̂fg)m,m∗‖2.

With the same tools as those used in the proof of Theorem 3.1, we can prove
the following result.

Theorem 4.1. In the projection case [P], if Assumptions [P1]-[P5] hold, then,
there exists κ0 such that, for any κ ≥ κ0, we have

E(‖(̂fg)m̃,m∗ − fg‖2)≤ inf
m∈Mn

{
3‖fg − (fg)m‖2 + 4κ(‖f‖2

∞ + ‖g‖2
∞)L(m)

n

}
+16‖g‖2

∞‖f − fm∗‖2 + C

n
, (4.2)

where C is a constant depending on ‖f‖∞, Cb.

The proof is omitted but details can be found in the preprint version Comte
and Duval [11], version 1, which also indicates that κ0 = 8×12 = 96 would suit.
In practice, this theoretical value is always too large, and has to be calibrated
on preliminary simulation experiments. Note that, the estimate (̂fg)m̃,m∗ is
replaced by its positive part, for which the same risk bound holds. Moreover,
it can be easily checked that this proof also holds in a mixed strategy where a
kernel estimator for f is plugged in a projection estimator of the product, i.e.
K∗ in [Ker] and K in [P]. This justifies why for numerical results we experiment
this mixed strategy with a penalised criterion for adaptation.

The values ‖f‖∞, ‖g‖∞ in the penalty term are unknown and must be re-
placed by estimates. The bound ‖f‖∞ can be estimated by the maximal value of
a projection estimate of f on a middle-sized space, for instance supx∈I |f̂[

√
n](x)|

and an analogous approach can be adopted for ‖g‖∞. Let us denote these esti-
mators by ‖̂f‖∞ and ‖̂g‖∞. This strategy is theoretically studied in Theorem
12 p.594 (Appendix A: Random penalty) in Lacour [20].

We consider in the numerical Section the estimator f̂m̃,m∗ and adopt the follo-
wing strategy. The penalty is obtained from the theory as the sum of the bounds
on two terms, a bound on 1

n

∑m−1
j=1 E

(
ϕ2
j (Y1)[f̂m∗(Y1)]2

)
and a bound on an

additional term given by ‖f‖∞‖g‖∞L(m)/n. Following ideas in Massart [25]
(see also Theorem 7.6 p.216, in the density case), we replace the first term by

p̂en1(m) = 1
n2

n∑
i=1

m−1∑
j=0

[
f̂m∗(Yi)ϕj(Yi)

]2
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and the second term by p̂en2(m) = ‖̂f‖∞‖̂g‖∞L(m)/n. So, in the Hermite basis
where L(m) = CH

√
m (with unknown CH), our global penalty is

p̂en1(m) + κ‖̂f‖∞‖̂g‖∞
√
m

n
. (4.3)

The constant κ is calibrated by preliminary simulations, see section 4.2.

4.1.2. Bandwidth selection with PCO

We describe here a method called “PCO” (“Penalized Comparison to Overfit-
ting”) introduced for kernel density estimation by Lacour et al. [21]. The PCO
method is more complicated from theoretical point of view, because it involves
the study of several U -statistics of order 2. But, it is much easier to calibrate
and implement in practice.

Let us describe the PCO method. Denote by (̂fg)h the estimator (2.7) (omit-
ting h∗ for simplicity), we select

h̃ = arg min
h∈Hn

{
‖(̂fg)h − (̂fg)hmin

‖2 + 2pen(h)
}

with hmin = min{h, h ∈ Hn},

pen(h) = pen1(h)+pen2(h) where pen1(h) = 1
n2 〈Kh,Khmin〉

n∑
i=1

f̂2
h∗(Yi), (4.4)

pen2(h) = κ
c0(f, g,K)

nh
, c0(f, g,K) = 4‖K‖3

1‖K‖∞(‖g‖2
∞ + ‖f‖2

∞). (4.5)

Note that pen1 and pen2 are both of order 1/(nh). This is obvious for pen2;
for pen1, observe that |〈Kh,Khmin〉| ≤ ‖K‖∞‖K‖1/h and that, under [K3],
(1/n)

∑n
i=1 f̂

2
h∗(Yi) is bounded with large probability, see (7.6).

Theorem 4.2. Consider the kernel case [K]. Assume that Assumptions [K1]-
[K4] hold and that 1/(nhmin) ≤ 1. Then, for any κ ≥ 1/4, we have

E

(
‖(̂fg)h̃ − fg‖2

)
≤ c1 inf

h∈Hn

{
‖(fg)h − fg‖2 + (1 + κ

1 + θ
)c0(f, g,K)

nh

}
+c2‖(fg)hmin − fg‖2 + c3‖fh∗ − f‖2 + C

log(n)
n

,

where c3 and C are positive constants depending on f, g,K and (c1, c2) =
(3.6, 10.4) would suit.

The risk bound of Theorem 4.2 involves four terms. The first term in the first
line is the minimal risk among the collection of estimators, up to multiplicative
constants. The two following terms, ‖(fg)hmin − fg‖2 and ‖fh∗ − f‖2 are bias
terms corresponding to small bandwidths, they are negligible if hmin is of order
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1/n and h∗ of order log(n)/n (as required by assumption [K3]), and if the
functions f and fg have regularity larger that 1/2. The last term log(n)/n has
negligible order compared to the first one. Therefore, the adaptive estimator
achieves the intended squared bias-variance compromise given at the end of
section 2.3.

4.2. Description of the implemented procedures

We illustrate the performances of the projection estimator with Hermite basis
(see section 2.4) and kernel estimator with kernel built as a Gaussian mixture
defined by:

K(x) = 2n1(x) − n2(x), (4.6)
where nj(x) is the density of a centered Gaussian with a variance equal to j.
This kernel is of order 3 (i.e.

∫
xjK(x)dx = 0, for j = 1, 2, 3). We consider four

examples:
[BU] X ∼ f = B(7, 5) and Y ∼ g = U(0, 1),
[GE] X ∼ f = Γ(4, 1/4) and Y ∼ g = E(1/4),
[NL] X ∼ f = N (0, 3) and Y ∼ g Laplace,
[NC] X ∼ f = N (0, 3) and Y ∼ g Cauchy.
We compute normalized L2-risks to allow the numerical comparaison of the

different examples for which
∫

(fg)2 varies a lot. Namely, we evaluate

E[‖(̂fg) − fg‖2]
‖fg‖2

and the associated deviations, from N = 100 independent datasets with different
values of sample size n = 200, 1000 and 2000. All adaptive methods require the
calibration of constants κ’s in penalties. This is done by preliminary simulation
experiments. For calibration strategies (dimension jump and slope heuristics),
the reader is referred to Baudry et al. [3], and to Lerasle [23] for theoretical
justifications. Here, we test a grid of values of κ’s, the tests are conducted on a
set of densities which are different from the one considered hereafter, to avoid
overfitting. The different estimators are computed on the same datasets and
compared.

• Product: This estimator is obtained as the product of f̂ ĝ where each
estimator is an adaptive optimal estimator. In the projection case, the product
is f̂m̂1 ĝm̂2 , where f̂m̂ is defined by (2.4) with

m̂1 = arg min
m∈{1,...,Dmax}

⎧⎨⎩−‖f̂m‖2 + 4
n2

n∑
i=1

m−1∑
j=0

ϕ2
j (Xi)

⎫⎬⎭ ,

and ĝm̂2 is defined analogously. In the kernel case, f̃h̃1
g̃h̃2

, where f̃h̃1
is defined

by (2.5) with

h̃1 = arg min
h∈{1/k,k=1,...,n}

{
‖f̃h − f̃ 1

n
‖2 + 4

n
〈Kh,K 1

n
〉
}
,
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and g̃h̃2
is defined analogously.

• First X: In all our examples f is smoother than g. The theoretical results
suggest that one should consider for the preliminary estimate the dataset X

which has density f . In the projection setting our estimate is (̂fg)m̃,m∗ of Theo-
rem 4.1 and penalty given by (4.3), where ‖̂f‖2

∞ is estimated by supx∈I |f̂2
10(x)|,

‖̂g‖2
∞ is estimated similarly, and with κ = 0.15 after calibration. In the kernel

case we consider the estimator (̃fg)h̃ of Theorem 4.2 with penalty given by (4.4)
where pen2 is replaced by

p̂en2 = 0.32 ‖̂f‖
2
∞ + ‖̂g‖2

∞
nh

,

where ‖̂f‖2
∞ is estimated by supx∈I |f̃2

logn/
√
n
(x)|, ‖̂g‖2

∞ is estimated similarly.
Note that ‖K‖1 � 1.133 and ‖K‖∞ � 0.516, ‖K‖3

1‖K‖∞ � 0.75.
• Optimal first: As the information about compared smoothness of f and

g is unavailable in practice, we have proposed an adaptive method for choosing
which estimate is plugged in: we perform a classical penalized (resp. PCO) pro-
cedure (see step Product) to the datasets X and Y and we take as preliminary
projection (resp. kernel) estimate the one for which m̂ (resp. h̃) is the smallest
(resp. largest). Indeed, the optimal dimension (resp. bandwidth) is asymptoti-
cally a decreasing (resp. increasing) function of the regularity. For instance, if
m̂1 < m̂2 we proceed as in First X step, otherwise the roles of X and Y are
switched. We count the number of times where Y is selected first; when this
count is zero, First X and Optimal first are the same and give the same
result.

• Oracle (optimal first): Our benchmark is computed as follows. We
consider for all dimensions or bandwidths the estimators of the step Opti-
mal first and select the oracle that minimizes m �→ E[‖(̂fg)m,m∗ − fg‖2] or
h �→ E[‖(̃fg)h − fg‖2]. This quantity provides a numerical lower bound for the
L2-risk of our procedure.

4.3. Numerical results

Let us comment the results of Tables 1-4. First, we compare separately projec-
tion and kernel procedures. Let us start with the two fully data driven methods
Product and Optimal first. We observe that the results of the corresponding
columns nicely confirm the theory: the risks of our procedure is almost syste-
matically and significantly smaller (see Table 2 in particular). Besides, the risk
of Optimal first is always comparable and even sometimes better than the risk
of the First X method which uses the unavailable knowledge of the smoothest
density. The risk of Optimal first has the same order as the Oracle even if a
multiplicative factor larger than 2 is observed. Lastly, as the risks are normal-
ized we can compare the risks of the different Tables; we see that the first two
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Table 1

Case [BU]: L2-risks with std in parenthesis (both multiplied by 102), Dmax = 130. For
“Optimal first”, the bold sub-script is the number of times where Y is selected first.
n Product First X Optimal first Oracle

Hermite Kernel Hermite Kernel Hermite Kernel Hermite Kernel
200 18.2 3.21 12.3 21.0 7.79 5.80 2.08 4.69

(1.85) (2.97) (3.32) (3.96) (2.32,100) (8.60,79) (1.64) (8.00)

1000 4.41 1.22 3.79 1.05 2.19 0.93 0.54 0.74
(0.57) (1.05) (1.09) (0.68) (0.66,100) (0.6,26) (0.40) (0.54)

2000 2.26 0.43 1.92 0.45 1.18 0.40 0.27 0.31
(0.38) (0.29) (0.46) (0.32) (0.37,100) (0.28,47) (0.21) (0.23)

Table 2

Case [GE]: L2-risks with std in parenthesis (both multiplied by 102), Dmax = 100. For the
Optimal first the bold sub-script is the number of times where Y is selected first.

n Product First X Optimal first Oracle
Hermite Kernel Hermite Kernel Hermite Kernel Hermite Kernel

200 27.4 16.6 10.5 5.21 10.5 5.21 4.27 3.79
(8.13) (9.11) (5.07) (3.36) (5.07,0) (3.36,0) (2.87) (2.18)

1000 38.1 10.1 3.86 2.77 3.86 2.80 1.52(1.02) 1.25
(6.63) (7.29) (1.43) (2.12) (1.43,0) (2.13,2) (1.02) (0.77)

2000 36.2 11.0 2.62 1.75 2.62 1.75 0.90 0.80
(4.98) (10.8) (0.80) (1.57) (0.80,0) (1.57,0) 0.64) (0.55)

Table 3

Case [NL]: L2-risks with std in parenthesis (both multiplied by 102), Dmax = 100. For the
Optimal first the bold sub-script is the number of times where Y is selected first.

n Product First X Optimal first Oracle
Hermite Kernel Hermite Kernel Hermite Kernel Hermite Kernel

200 5.45 6.81 5.68 6.50 5.65 6.66 3.43 3.18
(2.61) (7.42) (1.47) (3.49) (1.44,51) (3.59,29) (1.58) (2.04)

1000 4.62 4.36 2.25 2.94 2.53 2.80 1.16 0.98
(0.93) (6.96) (0.93) (2.39) (0.95,100) (2.32,42) (0.60) (0.57)

2000 2.27 2.46 1.39 2.34 1.46 2.62 0.74 0.62
(1.57) (2.37) (0.33) (2.44) (0.41,55) (2.68,26) (0.34) (0.35)

Table 4

Case [NC]: L2-risks with std in parenthesis (both multiplied by 102), Dmax = 50. For the
Optimal first the bold sub-script is the number of times where Y is selected first.

n Product First X Optimal first Oracle
Hermite Kernel Hermite Kernel Hermite Kernel Hermite Kernel

200 4.60 49.8 3.24 5.19 3.24 5.18 2.43 2.65
(2.59) (71.8) (2.14) (2.48) (2.14,48) (2.48,23) (1.67) (1.86)

1000 2.31 72.3 1.84 2.51 1.87 2.46 0.84 0.78
(0.74) (74.6) (0.54) (1.87) (0.50,100) (1.87,13) (0.52) (0.68)

2000 0.92 64.1 0.73 1.88 0.83 1.77 0.43 0.39
(0.74) 85.4) (0.49) (1.73) (0.53,95) (1.66,10) (0.30) (0.31)

examples (Tables 1 and 2) are slightly more difficult which was expected: these
densities are less regular as functions on R.

Second, we can compare projection and kernel methods. The kernel method
is much more time consuming that the projection method (by a factor more
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than 10). We can see that for the operational Optimal first method the kernel
strategy seems better for the first two examples while the projection method
wins in the two other cases. Nevertheless, the gap between the risks is never
very large.

Mixed kernel and projection strategy Finally, we implement a mixed
strategy where a kernel estimator for f , based on the kernel (4.6), is plugged
in a Hermite projection estimator of the product fg. The selection procedure is
performed via model selection as described above. Following the same strategies
as previously, we display the estimated normalized L2- risks for the four exam-
ples. The adaptive Optimal first strategy is conducted by adaptively selecting
the smoothest density with a model selection procedure, even if the plugged-in
estimator is a kernel. Comparing the results displayed in Table 5 with above re-
sults, we observe an analog behavior for the mixed strategy as for the projection
or kernel ones.

Table 5

Mixed Kernel-Projection : L2-risks with std in parenthesis (both multiplied by 102). For the
Optimal first the bold sub-script is the number of times where Y is selected first.

Product First X Optimal first
n 1000 2000 1000 2000 1000 2000

[BU] 0.71 0.69 2.52 1.14 4.43 2.10
(0.45) (0.29) (0.67) (0.32) (0.94,100) (0.37,100)

[GE] 21.14 22.16 4.54 3.22 4.54 3.22
(6.82) (9.40) (1.66) (0.86) (1.66,0) (0.86,0)

[NL] 3.65 2.52 3.96 2.49 3.44 2.40
(2.49) (0.61) (1.21) (0.71) (1.20,98) (0.60,100)

[NC] 2.03 1.01 2.07 1.50 2.05 1.47
(2.44) (0.38) (0.43) (0.49) (0.45,99) (0.50,98)

5. Concluding remarks

In this paper, we have shown that an optimal strategy for estimating a product
of densities is not to make a product of estimators but to plug an overfitted
estimator of one of the densities in the estimator of the product. This can
be done both with projection and kernel estimators and adequate model or
bandwidth selection methods are proved to deliver adaptive estimators. We have
implemented these methods and proved their good numerical performances in
dimension 1.

We assume that the two samples have the same sizes but the case where the
X-sample has size nX and the Y sample size nY is worth being studied, for
instance if nX = γn, nY = n, γ ∈ (0,∞). Following the steps of the proof in the
projection case suggests that the procedure can be adapted and leads to similar
results with rate induced by the smallest sample size (1 ∧ γ)n.

We considered a product of two densities but generalizations to product of
other functions or product of more than two densities may be worth studying.
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Lastly, it is likely that our methods would extend to dependent variables, pro-
vided that the two sequences remain independent, but this should be further
investigated.

If we come back to the Nadaraya-Watson problem that initiated our question,
we justified in our context that plugging an overfitted estimator is an optimal
strategy. Other contexts where overfitting has been recognized as judicious exist
(see Chinot and Lerasle [8]). The next step, as the original problem is a ratio,
is to address the question of estimating 1/f when f is a density.

6. Proofs of Section 2

6.1. Proof of Proposition 2.1

Consider the classical bias variance decomposition

E[‖(̂fg)
K
− fg‖2] = E[‖(̂fg)

K
− E[(̂fg)

K
]‖2] + ‖E[(̂fg)

K
] − fg‖2 := V + B.

We first study the bias term B, note that E[(̂fg)
K
] = (E[f̂K∗ ]g)K =

(
fK∗g

)
K
, it

follows that

B ≤ 2
(
‖
(
fK∗g

)
K
− (fg)K‖2 + ‖(fg)K − fg‖2) := 2(B1 + B2),

where B2 = ‖(fg)K − fg‖2 is the standard integrated squared bias of fg. Using
(A1) we write

B1 =
∫ (∫

(fK∗(y) − f(y))g(y)K(y, x)dy
)2

dx ≤ C1‖(fK∗ − f)g‖2

≤ C1‖g‖2
∞‖fK∗ − f‖2.

Next we split V to involve the conditional variance given (X1, . . . , Xn) = X

V = E

⎡⎣∥∥∥∥∥ 1
n

n∑
i=1

f̂K∗(Yi)K(Yi, .) − E

[
f̂K∗(Y1)K(Y1, .)

∣∣X]∥∥∥∥∥
2
⎤⎦

+ E

[
‖
(
(f̂K∗ − fK∗)g

)
K
‖2

]
:= V1 + V2,

as E
[
f̂K∗(Y1)K(Y1, .)

∣∣X]
= (f̂K∗g)K. For the first term, as the sum is composed

of centered terms we get

V1 = E

[∫
Var

(
1
n

n∑
i=1

f̂K∗(Yi)K(Yi, x)
∣∣X)

dx

]

≤ 1
n

∫
E

[
f̂K∗(Y1)2K(Y1, x)2

]
dx

= 1
n

{∫
E

[(
f̂K∗(Y1) − fK∗(Y1)

)2
K(Y1, x)2

]
dx + E

[∫
fK∗(Y1)2K(Y1, x)2dx

]}
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≤ 1
n

[∫∫
E

[
(f̂K∗(y) − fK∗(y))2

]
K(y, x)2g(y)dydx+

∫∫
fK∗(y)2K(y, x)2g(y)dydx

]
= 1

n

[∫
Var(f̂K∗(y))g(y)

∫
K(y, x)2dxdy +

∫
fK∗(y)2g(y)

∫
K(y, x)2dxdy

]
≤ ‖g‖∞

L(K)
n

(C4 + C3) ,

where we used successively (A2), (A4) and (A3). Finally, we write using (A5)

V2 = E

[∫ 〈
f̂K∗ − fK∗ , gK(., x)

〉2
dx

]
≤ C5

n

∫∫
K(y, x)2g(y)2dydx

≤ C5

n
L(K)‖g‖2,

where we used (A2) to obtain the last line. Using ‖g‖2 ≤ ‖g‖∞ and gathering
all bounds completes the proof.

6.2. Proof of Proposition 2.2

In case [P], we have, denoting by ψm the orthogonal projection of ψ on the
linear space Sm :=span(ϕ0, . . . , ϕm−1),

∫ ⎛⎝∫ ∑
0≤j≤m−1

ϕj(x)ϕj(y)ψ(y)dy

⎞⎠2

dx =
∫ ⎡⎣ ∑

0≤j≤m−1

(∫
ϕj(y)ψ(y)dy

)
ϕj(x)

⎤⎦2

dx

=
∑

0≤j≤m−1

(∫
ϕj(y)ψ(y)dy

)2

=‖ψm‖2 ≤ ‖ψ‖2.

So Assumption (A1) holds with C1 = 1. On the other hand, for (A2), we have

sup
y∈I

∫ ⎛⎝ ∑
0≤j≤m−1

ϕj(x)ϕj(y)

⎞⎠2

dx = sup
y∈I

∑
0≤j≤m−1

ϕ2
j (y) = L(m) < +∞.

In case [Ker], we denote by u � v(x) =
∫
u(y)v(x − y)dy the convolution

product. Then by the Young inequality (8.1), we get

∫ (∫
ψ(y)Kh(x− y)dy

)2
dx = ‖ψ � Kh‖2 ≤ ‖Kh‖2

1‖ψ‖2 = ‖K‖2d
1 ‖ψ‖2.

Thus (A1) holds with C1 = ‖K‖2d
1 . As ∀j,

∫
K2

h(yj −xj)dxj =
∫
K2(u)du/hj <

+∞, Assumption (A2) is satisfied and L(Kh) = ‖K‖2d ∏d
j=1 h

−1
j .
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6.3. Proof of Proposition 2.3

In case [P], we have E[f̂m∗(y)] = fm∗(y) where fm∗ is the projection of f on
Sm∗ = span(ϕ0, . . . , ϕm∗−1). Therefore

∫ (
E[f̂m∗(y)]

)2
dy = ‖fm∗‖2 ≤ ‖f‖2 ≤

‖f‖∞, and (A3) holds with C3 = ‖f‖2 or C3 = ‖f‖∞. Next we write

∫
Var

(
f̂m∗(y)

)
dy =

∫
Var

⎡⎣ 1
n

n∑
i=1

⎛⎝ ∑
0≤j≤m∗−1

ϕj(Xi)ϕj(y)

⎞⎠⎤⎦ dy

= 1
n

∫
Var

⎛⎝ ∑
0≤j≤m∗−1

ϕj(X1)ϕj(y)

⎞⎠ dy

≤ 1
n

∫
E

⎡⎢⎣
⎛⎝ ∑

0≤j≤m∗−1

ϕj(X1)ϕj(y)

⎞⎠2
⎤⎥⎦ dy

= 1
n
E

⎛⎝ ∑
0≤j≤m∗−1

ϕ2
j (X1)

⎞⎠ ≤ L(m∗)
n

.

Therefore (A4) holds with C4 = 1. Lastly, recalling that âj = n−1 ∑n
i=1 ϕj(Xi),

and noting that aj = 〈ϕj, f〉 = E(âj), we have

E

(
|〈ψ, f̂m∗ − Ef̂m∗〉|2

)
=

∫∫
ψ(u)ψ(v)E

⎛⎝ ∑
0≤j≤m∗−1

(âj − aj)ϕj(u)
∑

0≤k≤m∗−1

(âk − ak)ϕk(v)

⎞⎠ dudv

= 1
n

∫∫
ψ(u)ψ(v)

∑
0≤j,k≤m∗−1

cov(ϕj(X1)ϕj(u), ϕk(X1)ϕk(v))dudv

≤ 1
n

∫∫
ψ(u)ψ(v)

∑
0≤j,k≤m∗−1

E(ϕj(X1)ϕj(u)ϕk(X1)ϕk(v))dudv

as the omitted term is the opposite of a nonnegative quantity (it can be written
as the opposite of a square). It follows that

E

(
|〈ψ, f̂m∗ − Ef̂m∗〉|2

)
≤ 1

n

∑
0≤j,k≤m∗−1

∫∫∫
ψ(u)ψ(v)ϕj(x)ϕj(u)ϕk(x)ϕk(v)f(x)dudvdx

= 1
n

∫ ⎡⎣∫ ⎛⎝ ∑
0≤j≤m∗−1

ϕj(x)ϕj(u)

⎞⎠ψ(u)du

⎤⎦2

f(x)dx
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≤ ‖f‖∞
n

∫ ⎡⎣∫ ⎛⎝ ∑
0≤j≤m∗−1

ϕj(x)ϕj(u)

⎞⎠ψ(u)du

⎤⎦2

dx

≤ ‖f‖∞
n

∑
0≤j,k≤m∗−1

∫∫
ψ(u)ψ(v)

(∫
ϕj(x)ϕk(x)dx

)
ϕj(u)ϕk(v)dudv

Finally

E

(
|〈ψ, f̂m∗ − Ef̂m∗〉|2

)
≤ ‖f‖∞

n

∑
0≤j≤m∗−1

(∫
ψ(u)ϕj(u)du

)2

= ‖f‖∞
n

‖ψm∗‖2 ≤ ‖f‖∞
n

‖ψ‖2.

We obtain that (A5) holds with C5 = ‖f‖∞.
Now we consider case [Ker] and note that E(f̂h∗(x)) = f � Kh∗(x). As by

Young Inequality (8.1), ‖f � Kh∗‖2 ≤ ‖Kh∗‖2
1‖f‖2 = ‖K‖2

1‖f‖2, Assump-
tion (A3) is satisfied with C3 = ‖K‖2d

1 ‖f‖2 (or C3 = ‖K‖2d
1 ‖f‖∞). A stan-

dard bound (see Tsybakov [26], proposition 1.4) yields
∫

Var
(
f̂h∗(x)

)
dx ≤

‖K‖2d/(n
∏d

j=1 h
∗
j ) ≤ 1, so that (A4) holds with C4 = 1. Lastly

E

(
〈ψ, 1

n

n∑
i=1

Kh∗(Xi − ·) − f �Kh∗〉2
)

= 1
n

Var (〈ψ,Kh∗(X1 − .)〉)

≤ 1
n
E
(
〈ψ,Kh∗(X1 − .)〉2

)
≤ 1

n

∫ (∫
ψ(u)Kh∗(x− u)du

)2

f(x)dx

≤ ‖f‖∞
n

‖ψ � Kh∗‖2 ≤ ‖f‖∞‖K‖2
1
‖ψ‖2

n
= ‖f‖∞‖K‖2d

1
‖ψ‖2

n
,

where we used Young’s inequality. Therefore (A5) is holds with C5 =‖f‖∞‖K‖2d
1 .

7. Proofs of adaptive results

7.1. Proof of Theorem 3.1

The proof starts by decompositions which are standard when studying Golden-
schluger and Lepski [15] methods and bounds. For κ′ ≥ κ, we get (see Comte [10],
sec 4.2)

E

(
‖(̂fg)τ̂ − fg‖2

)
≤ 3E(‖(̂fg)τ − fg‖2) + 6κ′V (τ) + 6E(A(τ)). (7.1)

The first right-hand-side term has expectation controlled by applying Propo-
sition 2.1 and the term V (τ) can be associated with it. Only A(τ) must be
studied. We write

‖(̂fg)τ ′ − (̂fg)τ,τ ′‖2 ≤ 3(‖(̂fg)τ ′ − (fg)τ ′‖2 + ‖(fg)τ ′ − (fg)τ,τ ′‖2
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+ ‖(̂fg)τ,τ ′ − (fg)τ,τ ′‖2).

The bound on the middle term is obtained with (A1)

‖(fg)τ ′ − (fg)τ,τ ′‖2 ≤ C1‖(fg)τ − (fg)‖2

which refers to an adequate bias term. For the last term, we use (A1) and get

‖(̂fg)τ,τ ′ − (fg)τ,τ ′‖2 ≤ C1‖(̂fg)τ − (fg)τ‖2.

The expectation of this term is also studied in Proposition 2.1, with E(‖(̂fg)τ −
(fg)τ‖2) = V + B1 with the notation of this proof. Next

‖(̂fg)τ ′ − (fg)τ ′‖2 ≤ 2(‖(̂fg)τ ′ − (fτ∗g)τ ′‖2 + ‖(fτ∗g)τ ′ − (fg)τ ′‖2)

where we have the bound ‖(fτ∗g)τ ′ − (fg)τ ′‖2 ≤ C1‖g‖2
∞‖fτ∗ − f‖2 from (A1).

Now we notice that ‖(̂fg)τ − (fτ∗g)τ‖2 = supt∈B(0,1) ν
2
n(t) where B(0, 1) is a

countable set of square integrable functions with ‖t‖ = 1 and the empirical
process is defined by

νn(t) = 〈(̂fg)τ − (fτ∗g)τ , t〉.
Therefore we have

‖(̂fg)τ − (fg)τ‖2 ≤ 2
(

sup
t∈B(0,1)

ν2
n(t) + C1‖g‖2

∞‖fτ∗ − f‖2

)
.

Reminding the definition of A(τ) given by (3.1), we have

E(A(τ)) ≤ 6E
(

sup
τ ′∈Kn

sup
t∈B(0,1)

ν2
n(t) − κ

6V (τ ′)
)

+ 3C1E(‖(̂fg)τ − (fg)τ‖2)

+ 6C2
1‖g‖2

∞‖fτ∗ − f‖2 + 6C1‖(fg)τ − (fg)‖2. (7.2)

Thus, the result of Theorem 3.1 holds if we prove that, for two constants c1, c2,
we have ∑

τ ′∈Kn

E

(
sup

t∈B(0,1)
ν2
n(t) − c1V (τ ′)

)
≤ C

n
. (7.3)

Indeed, plugging (7.3) in (7.2) and the result in (7.1) is the result of Theorem 3.1.
We prove (7.3). We split νn in four terms: νn = νn,1 +νn,2 +νn,3 +νn,4 where

for some positive constant c0 to be defined in the sequel, we set

A(x) = {|f̂τ∗(x) − fτ∗(x)| < c0},

and

νn,1(t) = 1
n

n∑
i=1

[(f̂(Yi) − fτ∗(Yi))1A(Yi)〈Kτ (Yi, .), t〉 − 〈((f̂ − fτ∗)1Ag)τ , t〉],
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νn,2(t) = 1
n

n∑
i=1

[(f̂(Yi) − fτ∗(Yi))1(A(Yi))c〈Kτ (Yi, .), t〉 − 〈((f̂ − fτ∗)1Acg)τ , t〉],

νn,3(t) = 〈((f̂−fτ∗)g)τ , t〉 = 1
n

n∑
i=1

ψt(Xi), ψt(X) =
〈(

(Kτ∗(X, .)−fτ∗
)
g)τ , t

〉
,

νn,4(t) = 1
n

n∑
i=1

[fτ∗(Yi)〈Kτ (Yi, .), t〉 − 〈(fτ∗g)τ , t〉].

Study of νn,2 We start by the study of νn,2 as it leads to fix c0, and we first
establish that E(supt∈B(0,1) |νn,2(t)|) ≤ n−p for some positive p. It holds that

E

[
sup

t∈B(0,1)
[ν2

n,2(t)]
∣∣∣X]

≤ E

[∥∥∥∥ 1
n

n∑
i=1

[(f̂τ∗(Yi) − fτ∗(Yi))1(A(Yi))cKτ (Yi, .) − ((f̂τ∗ − fτ∗)1Acg)τ ]
∥∥∥∥2∣∣∣X]

≤ 1
n

∫
E

[
(f̂τ∗(Y1) − fτ∗(Y1))21(A(Y1))cKτ (Y1, x)2

∣∣∣X]
dx

≤ 2L(τ)
n

∫
E

[
(f̂τ∗(Y1)2 + fτ∗(Y1))21(A(Y1))c

∣∣∣X]
dx.

Using (A9) we obtain that f̂τ∗(Y1)2 ≤ C9L
2(τ∗) ≤ C10n

2 (where the last in-
equality follows from (A10)), and with (A7) that

E

[
sup

t∈B(0,1)
[ν2

n,2(t)]
∣∣∣X]

≤ 2(C10n
2 + C2

7 )L(τ)
n

P(Ac(Y1))

≤ 2(C10n
2 + C2

7 )P(Ac(Y1)).

Therefore,

E

(
sup

t∈B(0,1)
[ν2

n,2(t)]
)

≤ 2(C10n + C2
7 )

∫
P(|f̂(y) − fτ∗(y)| > c0)g(y)dy. (7.4)

We complete by applying the Bernstein inequality to Zi = Kτ∗(Xi, y) yielding

P

(
|f̂τ∗(y) − fτ∗(y)| > c0

)
≤ 2 exp

(
− nc20

2(v2
2 + b2c0)

)
with v2

2 a bound on Var(Zi) and b2 an a.s. bound on Zi. We find with (A9) that
b2 =

√
C9L(τ∗) suits and with (A2) Var(Zi) ≤ ‖f‖∞L(τ∗) = v2

2 . Therefore,
choosing

c0 = ‖f‖∞, (7.5)
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and using (A10), it follows that

P

(
|f̂τ∗(y) − fτ∗(y)| > c0

)
≤ 2n−(d+3). (7.6)

Then, gathering (7.4) and (7.6) leads to

E( sup
t∈B(0,1)

ν2
n,2(t)) ≤ 4(C10n

2 + C2
7 )n−(d+3).

As a consequence under (A8), we get∑
τ∈Kn

E( sup
t∈B(0,1)

[ν2
n,2(t)]) ≤

C

n
. (7.7)

Study of νn,1 We apply the Talagrand inequality (see Lemma 8.1) to νn,1
conditionally to X. Using that t �→ νn,1(t) is linear and the Cauchy-Schwarz
inequality and ‖t‖2 = 1, we get(
E

(
sup

t∈B(0,1)
|νn,1(t)| |X

))2

≤ E

(
sup

t∈B(0,1)
ν2
n,1(t)|X

)

≤ 1
n

∫
Var[(f̂τ∗(Y1) − fτ∗(Y1))1A(Y1)Kτ (Y1, y)|X]dy

≤ 1
n

∫
E[(f̂τ∗(Y1) − fτ∗(Y1))21A(Y1)Kτ (Y1, y)2|X]dy

≤c20L(τ)
n

:= H2
1 .

Next, note that

sup
x,t

|(f̂τ∗(x) − fτ∗(x))1A(x)〈Kτ (x, .), t〉| ≤ c0 sup
t,x

|〈Kτ (x, .), t〉|

≤ c0‖Kτ (x, .)‖ = c0
√

L(τ) := b1 (7.8)

sup
t

Var((f̂τ∗(Y1) − fτ∗(Y1))1A(Y1)〈Kτ (Y1, .), t〉|X)

≤ sup
t

E[(f̂τ∗(Y1)21A(Y1)〈Kτ (Y1, .), t〉|X)

= sup
t

∫
f̂τ∗(u)21A(y)〈Kτ (y, .), t〉|X)g(y)dy ≤ C1C

2
7c

2
0‖g‖∞ := v2

1 , (7.9)

where we used (A1) and (A7). Applying Lemma 8.1 with δ = 1
2 , it follows that

E

[(
sup

t∈B(0,1)
|νn,1(t)|2 − 4c

2
0L(τ)
n

)
+

∣∣∣X]
≤ 4c20

nK1

(
C1C

2
7‖g‖∞ exp(−K1

L(τ)
2‖g‖∞

)

+ 49
K1C2(1/2) exp(−K1C(1/2)

7
√
n)

)
,
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using L(τ) ≤ n. Since the latter bound does not depend on X, the inequality
holds unconditionally in expectation. Therefore under (A8) and as L(τ) ≥ 1,
we get, for C a positive constant, and using (7.5),

∑
τ∈Kn

E

[(
sup

t∈B(0,1)
|νn,1(t)|2 − 4‖f‖

2
∞L(τ)
n

)
+

]
≤ C

n
. (7.10)

Study of νn,3 Similarly to νn,1 we apply the Talagrand inequality(
E

(
sup

t∈B(0,1)
|νn,3(t)|

))2

≤ E

[∥∥((f̂τ∗ − fτ∗)g
)
τ

∥∥2
]

= 1
n

∫
Var

((
Kτ∗(X1, .)g

)
τ
(y)

)
dy

≤ 1
n

∫
E
((
Kτ∗(X1, .)g

)
τ
(y)2

)
dy

= 1
n

∫ ∫ (∫
Kτ (x, y)Kτ∗(z, x)g(x)dx

)2

f(z)dzdy

≤ C1
‖f‖∞
n

∫∫
g(x)2Kτ (x, y)2dxdy ≤ C1

‖f‖∞‖g‖2

n
L(τ) := H2

3 ,

using (A1) and (A2). Next, note that using Cauchy-Schwarz inequality and (A1)

sup
x,t

∣∣〈((Kτ∗(x, .) − fτ∗
)
g)τ , t

〉∣∣ ≤ C1 sup
x

∥∥(Kτ∗(x, .) − fτ∗
)
g
∥∥

≤ C1‖g‖∞
(√

L(τ∗) +
√

C7

)
≤ 2C1

√
n‖g‖∞ := b3,

using (A7) with ‖fτ∗‖ ≤
√
‖fτ∗‖∞ and (A10). Finally, (A1) enables to write

sup
t

Var
(〈(

(Kτ∗(X, .) − fτ∗
)
g)τ , t

〉)
≤ sup

t
E
[〈(

Kτ∗(X, .)
)
g)τ , t

〉2]
≤ C1‖f‖∞ sup

t

∫ (∫
Kτ (u, v)t(u)du

)2
g2(v)dv

≤ C2
1‖f‖∞‖g‖2

∞ := v2
3 .

Applying Lemma 8.1 with δ = 1
2 , it follows that

E

[(
sup

t∈B(0,1)
|νn,3(t)|2 − 4C1‖f‖∞‖g‖∞

L(τ)
n

)
+

]

≤ 4C2
1‖g‖2

∞
K1 n

(
‖f‖∞e−K1

L(τ)
2C1‖g‖∞ + 49 × 4C2

1
K1C2(1/2)e

−K1C(1/2)
√
‖f‖∞

14
√

C1‖g‖∞

√
L(τ)

)
.

Therefore under (A8), we get, for C a positive constant,

∑
τ∈Kn

E

[(
sup

t∈B(0,1)
|νn,3(t)|2 − 4C1‖f‖∞‖g‖∞

L(τ)
n

)
+

]
≤ C

n
. (7.11)
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Study of νn,4 Again we apply the Talagrand inequality, similar computa-
tions enable to derive from (A1) and (A7) H2

4 = C1‖f‖∞‖g‖∞L(τ)/n, v2
4 =

C1C7‖g‖∞ and b4 = C7
√
n. It follows, by applying Lemma 8.1 with δ = 1

2 ,
that

E

[(
sup

t∈B(0,1)
|νn,4(t)|2 − 4C1‖f‖∞‖g‖∞

L(τ)
n

)
+

]

≤ 4
K1

(
C1C7‖g‖∞

n
e−K1

L(τ)‖f‖∞
2C7 + 49 × C2

7
K1nC2(1/2)e

−K1C(1/2)
14

√
C1‖f‖∞‖g‖∞

C7

√
n

)
.

Therefore under (A8) we get, for C a positive constant,

∑
τ∈Kn

E

[(
sup

t∈B(0,1)
|νn,4(t)|2 − 4C1

‖f‖∞‖g‖∞L(τ)
n

)
+

]
≤ C

n
. (7.12)

As a consequence, gathering (7.7)-(7.10)-(7.11) and (7.12) gives the result (7.3)
for C a positive finite constant, depending on a, ‖f‖∞, ‖g‖∞, C1 and C7.

7.2. Proof of Corollary 3.1

We already checked that [P] satisfies (A1) and (A2), and that for f bounded,
Assumptions (A3)-(A5) hold under L(m∗) ≤ n, which is ensured by [P3]. For
(A6), we write∫ ∑

0≤j≤m−1

ϕj(x)ϕj(z)
∑

0≤k≤m′−1

ϕk(z)ϕk(y)dz

=
∑

0≤j≤m−1

∑
0≤k≤m′−1

ϕj(x)ϕk(y)
∫

ϕj(z)ϕk(z)dz︸ ︷︷ ︸
=δj,k

=
∑

0≤j≤m∧m′−1

ϕj(x)ϕj(y),

which is clearly symmetric in m, m′. Therefore (A6) is fulfilled.
To check (A7) we have to bound ‖fm∗‖∞. Under [P2], we have

|fm∗(x)| =

∣∣∣∣∣∣a0(f)ϕ0(x) +
∑

1≤j≤m∗−1

aj(f)ϕj(x)

∣∣∣∣∣∣ ≤ Cϕ

⎛⎝|a0| +
∑
j≥1

|aj(f)|

⎞⎠ .

Then using [P5], we have

|fm∗(x)| ≤ Cϕ

⎛⎝Cϕ +
√∑

j≥1

jba2
j (f)

∑
j≥1

j−b

⎞⎠
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≤ Cϕ

⎛⎝Cϕ +
√
Cb

∑
j≥1

j−b

⎞⎠ := C(b, ϕ) < +∞

since min1≤j≤d bj > 1. Thus, Assumptions [P5] and [P2] imply that (A7) holds
with C7 = C(b, ϕ).

Assumption [P4] is analogous to (A8). Lastly

sup
x,y

∣∣∣∣∣∣
∑

0≤j≤m−1

ϕj(x)ϕj(y)

∣∣∣∣∣∣
2

≤ sup
x

⎛⎝ ∑
0≤j≤m−1

ϕ2
j (x)

⎞⎠2

= L2(m),

so that (A9) holds with C9 = 1, and therefore [P3] is (A10).

7.3. Proof of Corollary 3.2

We already checked that [Ker] satisfies (A1) and (A2), and that for f bounded,
Assumptions (A3)-(A5) hold under L(h∗) ≤ n, which is ensured by [K3] (for n
large enough). Next we compute∫

Kh(x− z)Kh′(z − y)dz =
∫

Kh(u)Kh′(x− u− y)du

=
∫

Kh(v − y)Kh′(x− v)dz,

where we made successively the affine changes of variables u = x − z and v =
u + y. Using that K is even it follows that Assumption (A6) is fulfilled. Using
[K1], we easily bound ‖fh∗‖∞ ≤ ‖f‖∞‖K‖1, implying that (A7) holds with
C7 = ‖f‖∞‖K‖1. Assumption [K4] implies (A8). Lastly, supx,y |Kh(x, y)|2 ≤
L2(h)‖K‖2

∞/‖K‖4, so that (A9) holds with C9 = ‖K‖2
∞/‖K‖4 and [K3] implies

(A10).

7.4. Proof of Theorem 4.2

Following the first step in Lacour et al. [21], we write

‖(̂fg)h̃ − fg‖2 ≤ ‖(̂fg)h − fg‖2 + (pen(h) − ψn(h))− (pen(h̃)− ψn(h̃)) (7.13)

with
ψn(h, hmin) = 〈(̂fg)h − fg, (̂fg)hmin

− fg〉.
As in Comte and Marie [13], we decompose ψn in

ψn(h, hmin) = ψ1,n(h, hmin) + ψ2,n(h, hmin) + ψ3,n(h, hmin).

First,

ψ1,n(h, , hmin) := 〈Kh,Khmin〉
n2

n∑
i=1

f̂2
h∗(Yi)+ U(h, hmin)

n2 = pen1(h)+ U(h, hmin)
n2 ,
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where

Un(h, h′) :=
∑

1≤i �=j≤n

〈f̂h∗(Yi)Kh(Yi − ·) − (fg)h, f̂h∗(Yj)Kh′(Yj − ·) − (fg)h′〉.

(7.14)
Indeed,

〈Kh,Khmin〉
n2

n∑
i=1

f̂2
h∗(Yi) = 1

n2

n∑
i=1

〈f̂h∗(Yi)Kh(Yi − ·), f̂h∗(Yi)Khmin(Yi − ·)〉.

Second,

ψ2,n(h, hmin) := + 1
n
〈(fg)h, (fg)hmin〉

− 1
n2

(
n∑

i=1
〈f̂h∗(Yi)Khmin(Yi − ·), (fg)h〉 +

n∑
i=1

〈f̂h∗(Yi)Kh(Yi − ·), (fg)hmin〉
)

(7.15)

and lastly

ψ3,n(h, hmin) := Vn(h, hmin) + Vn(hmin, h) + 〈(fg)h − fg, (fg)hmin − fg〉

with Vn(h, h′) := 〈(̂fg)h − (fg)h, (fg)h′ − fg〉.
We state a series of Lemmas that permit to establish Theorem 4.2.

Lemma 7.1. Under the assumptions of Theorem 4.2, it holds that

E

(
sup

h,h′∈Hn

|ψ2,n(h, h′)|
)

≤ C

n
,

where C = C(f, g,K) is a positive constant depending on f , g, K.

Lemma 7.2. Under the assumptions of Theorem 4.2, for every ϑ ∈ (0, 1), it
holds

E

(
sup
h,h′

{
|Vn(h, h′)| − ϑ‖(fg)h′ − fg‖2}) ≤ 1

2ϑ‖K‖2
1‖g‖∞‖fh∗−f‖2+C

log(n)
n

.

Lemma 7.3. Under the assumptions of Theorem 4.2, for every ϑ ∈ [0, 1], it
holds

E

(
sup
h∈Hn

{
|Un(h, hmin)|

n2 − ϑ
c0(f, g,K)

nh

})
≤ ϑ‖fh∗ − f‖2 + C log(n)

n
.

We deduce from (7.13) that

‖(̂fg)h̃ − fg‖2 ≤ ‖(̂fg)h − fg‖2 + 2 (pen1(h) − ψn(h)) + 2pen2(h)

−2(pen1(h̃) − ψn(h̃)) − 2pen2(h̃). (7.16)
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We have for all positive h

ψn(h) − pen1(h) = Un(h, hmin)
n2 + ψ2,n(h, hmin) + Vn(h, hmin) + Vn(hmin, h)

+ 〈(fg)h − fg, (fg)hmin − fg〉.

We note that for all positive θ

|〈(fg)h − fg, (fg)hmin − fg〉| ≤ θ

2‖(fg)h − fg‖2 + 1
2θ‖(fg)hmin − fg‖2.

Applying these for h = h̃ we get

E

(∣∣∣ψn(h̃) − pen1(h̃)
∣∣∣− pen2(h̃)

)
≤ E

(∣∣∣∣∣Un(h̃, hmin)
n2

∣∣∣∣∣− θ
c0(f, g,K)

nh̃

)

+ E

(
|Vn(h̃, hmin)| − θ

2‖(fg)hmin − fg‖2
)

+ E

(
|Vn(hmin, h̃)| − θ

2‖(fg)h̃ − fg‖2
)

+ E

(
θ‖(fg)h̃ − fg‖2 + (θ − κ)c0(f, g,K)

nh̃

)
+ 1

2(θ + 1
θ
)‖(fg)hmin − fg‖2 + C

n
.

where we used Lemma 7.1. Now, using Lemmas 7.2 and 7.3, we get

E

(∣∣∣ψn(h̃) − pen1(h̃)
∣∣∣− pen2(h̃)

)
≤ 1

2(θ + 1
θ
)‖(fg)hmin − fg‖2 + c1(f, g,K, θ)‖fh∗ − f‖2

+θE

(
‖(fg)h̃ − fg‖2 + (1 − κ

θ
)c0(f, g,K)

nh̃

)
+ C

log(n)
n

.

Observe that ‖(̂fg)h − fg‖2 = ‖(̂fg)h − (fg)h‖2 + ‖(fg)h − fg‖2 + 2Vn(h, h). It
follows that for all θ ∈ (0, 1

2 ),

(1 − 2θ)
(
‖(fg)h − fg‖2 + (1 − κ

θ
)c0(f, g,K)

nh

)
− ‖(̂fg)h − fg‖2

= −2
(
Vn(h, h) + θ‖(fg)h − fg‖2) + (1 − 2θ)(1 − κ

θ
)c0(f, g,K)

nh

− ‖(̂fg)h − (fg)h‖2

≤ −2
(
Vn(h, h) + θ‖(fg)h − fg‖2) ≤ 2(|Vn(h, h)| − θ‖(fg)h − fg‖2)

provided that 1 − κ/θ ≤ 0. Therefore we choose κ ≥ θ and apply Lemma 7.2
again. We obtain

E

(∣∣∣ψn(h̃) − pen1(h̃)
∣∣∣− pen2(h̃)

)
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≤ 1
2(θ + 1

θ
)‖(fg)hmin − fg‖2 + c2(f, g,K)‖fh∗ − f‖2

+ θ

1 − 2θE
(
‖(̂fg)h̃ − fg‖2

)
+ C

log(n)
n

.

Similarly, we get

E (|ψn(h) − pen1(h)| + pen2(h))

≤ 1
2(θ + 1

θ
)‖(fg)hmin − fg‖2 + c2(f, g,K)‖fh∗ − f‖2

+ θ

(
‖(fg)h − fg‖2 + (1 + κ

θ
)c0(f, g,K)

nh

)
+ C

log(n)
n

.

Plugging the last two bounds in the expectation of (7.16) implies(
1 − 2θ

1 − 2θ

)
E

(
‖(̂fg)h̃ − fg‖2

)
≤ E

(
‖(̂fg)h − fg‖2

)
+ 2θ

(
‖(fg)h − fg‖2 + (1 + κ

θ
)c0(f, g,K)

nh

)
+ 2(θ + 1

θ
)‖(fg)hmin − fg‖2 + 4c2(f, g,K)‖fh∗ − f‖2 + C

log(n)
n

.

Now applying Proposition 2.9 with a rougher bound on the variance (the con-
stant is larger), we get for θ ∈ (0, 1/4), and κ ≥ θ,(

1 − 2θ
1 − 2θ

)
E

(
‖(̂fg)h̃ − fg‖2

)
≤ 2(1 + θ)‖(fg)h − fg‖2 + 2(1 + θ + κ)c0(f, g,K)

nh

+ 2(θ + 1
θ
)‖(fg)hmin − fg‖2 + 4c2(f, g,K)‖fh∗ − f‖2 + C

log(n)
n

.

We conclude that for κ ≥ 1/4 and all θ ∈ (0, 1/4),

E

(
‖(̂fg)h̃−fg‖2

)
≤ 2(1 + c1(θ)) inf

h∈Hn

{
‖(fg)h − fg‖2 + (1 + κ

1 + θ
)c0(f, g,K)

nh

}
+c2(θ)‖(fg)hmin − fg‖2 + c3‖fh∗ − f‖2 + C

log(n)
n

,

where

c1(θ) = 2θ(1 − θ)/(1 − 3θ) > 0, c2(θ) = 2(1 + θ2)(1 − 2θ)
θ(1 − 2θ) > 0,

and c3 and C are positive constants depending on θ, f, g,K. Taking θ = 0.2 we
get the result given in Theorem 4.2.
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7.4.1. Proof of Lemma 7.1

For the study of ψ2,n, note that |〈(fg)h, (fg)h′〉| ≤ ‖fg � Kh‖‖fg � Kh′‖ ≤
‖K‖2

1‖fg‖2 and observe that

E(|f̂h∗(Y1)|) ≤
√
E(f̂2

h∗(Y1)) ≤
√
‖g‖∞(‖K‖2 + ‖K‖2

1‖f‖2).

As a consequence, for all positive h, h′,

E

(
sup

h,h′∈Hn

∣∣∣∣∣ 1n
n∑

i=1
〈f̂h∗(Yi)Kh(Yi − ·), (fg)h′〉

∣∣∣∣∣
)

≤ E

(
|f̂h∗(Y1)| sup

h,h′
|〈Kh(Y1 − ·), (fg)h′〉|

)
≤ E(|f̂h∗(Y1)|)‖K‖2

1‖fg‖∞

≤
√

‖g‖∞(‖K‖2 + ‖K‖2
1‖f‖2)‖K‖2

1‖fg‖∞.

From the definition of ψ2,n given by (7.15), il follows that the result of Lemma 7.1
holds with C = (2

√
‖g‖∞(‖K‖2 + ‖K‖2

1‖f‖2) + ‖g‖∞)‖fg‖∞‖K‖2
1.

7.4.2. Proof of Lemma 7.2 and study of Vn(h, h′)

We decompose Vn(h, h′) = Vn,1(h, h′) + Vn,2(h, h′) + Vn,3(h, h′) with

Vn,1(h, h′) = 〈(̂fg)h − (f̂h∗g)h, (fg)h′ − fg〉,
Vn,2(h, h′) = 〈(f̂h∗g)h − (fh∗g)h, (fg)h′ − fg〉,
Vn,3(h, h′) = 〈(fh∗g)h − (fg)h, (fg)h′ − fg〉.

We have for all positive θ

|Vn,3(h, h′)| = |〈(fh∗g)h − (fg)h, (fg)h′ − fg〉|

≤ ϑ

2 ‖(fg)h
′ − fg‖2 + 1

2ϑ‖K‖2
1‖g‖2

∞‖fh∗ − f‖2,

implying that

E

(
sup
h,h′

{
|Vn,3(h, h′)| − ϑ

2 ‖(fg)h
′ − fg‖2

})
≤ 1

2ϑ‖K‖2
1‖g‖∞‖fh∗ − f‖2.

(7.17)
Next, we write

Vn,2(h, h′) = 1
n

n∑
i=1

(Zi − E(Zi)),
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where Zi − E(Zi) := 〈[(Kh∗(Xi − ·) − fh∗(·)g(·)] � Kh, (fg)h′ − fg〉 and apply
Bernstein Inequality. Using that K is even, the variance bound is obtained by

VarZ1 ≤ E(Z2
1 ) =

∫
〈[(Kh∗(u− ·) g(·)] � Kh, (fg)h′ − fg〉2f(u)du

=
∫

[Kh∗ � (g [Kh � ((fg)h′ − fg)])(u)]2 f(u)du

≤ ‖f‖∞‖Kh∗ � (gKh � ((fg)h′ − fg))‖2

≤ ‖f‖∞‖Kh∗‖2
1‖(gKh � ((fg)h′ − fg))‖2

≤ ‖f‖∞‖g‖2
∞‖K‖4

1‖(fg)h′ − fg)‖2 := v2
h,h′ .

On the other hand, we have

|Z1| ≤ sup
z

∣∣∣∣∫ Kh∗(z − x)g(x)((fg)h′ − fg) � Kh)(x)dx
∣∣∣∣

≤ ‖g‖∞ sup
x

|((fg)h′ − fg) � Kh)(x)|
∫

|Kh∗(z)|dz

≤ ‖g‖∞‖K‖1 sup
x

|((fg)h′ − fg)(x)|
∫

|Kh(u)|du

≤ ‖g‖∞‖K‖2
1(1 + ‖K‖1)‖fg‖∞ := bh,h′ .

Therefore, Bernstein Inequality (8.2) implies that with probability larger than
1 − 2e−λ

|Vn,2(h, h′)| ≤

√
2λv2

h,h′

n
+ λ

n
bh,h′

≤ θ

4‖(fg)h
′ − fg)‖2 + λ

n
‖f‖∞‖g‖2

∞‖K‖2
1(2

‖K‖2
1

θ
+ 1 + ‖K‖1).

This together with (8.3) and |Hn| = n leads to

E

(
sup
h,h′

{
|Vn,2(h, h′)| − ϑ

4 ‖(fg)h
′ − fg‖2

})
≤ C

log(n)
n

. (7.18)

For Vn,1, we write Vn,1(h, h′) = V b
n,1(h, h′) + V c

n,1(h, h′) with

V b
n,1(h, h′) = 1

n

n∑
i=1

∫ (
f̂ b
h∗(Yi)Kh(Yi − x) − (f̂ b

h∗g) � Kh(x)
)

((fg)h′ −fg)(x)dx

where
f̂ b
h∗(x) = f̂h∗(x)1|f̂h∗ (x)|≤d0

d0 = 2‖f‖∞‖K‖1.

Here, we apply the Bernstein inequality conditionally to X, with bh,h′ =
‖f‖∞‖fg‖∞‖K‖2

1(1 + ‖K‖1) and v2
h,h′ = ‖f‖2

∞‖g‖∞‖K‖4
1‖(fg)h′ − fg‖2. The
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orders of bh,h′ and vh,h′ being the same as for Vn,2 and independent of X, the
result for V b

n,1 is:

E

(
sup
h,h′

{
|V b

n,1(h, h′)| − ϑ

4 ‖(fg)h
′ − fg‖2

})
≤ C

log(n)
n

. (7.19)

Lastly, by noticing that |f̂h∗(x)| ≤ |f̂h∗(x) − fh∗(x)| + ‖f‖∞‖K‖1, we get

P(|f̂h∗(x)| > d0) ≤ P(|f̂h∗(x)−fh∗(x)| > ‖f‖∞‖K‖1) ≤ P(|f̂h∗(x)−fh∗(x)| > c0)

as ‖f‖∞‖K‖1 ≥ ‖f‖∞ = c0 by reminding of (7.5). Now using as in (7.6) Bern-
stein Inequality, we get, under [K3],

P(|f̂h∗(x)| > d0) ≤ 2n−4. (7.20)

Indeed condition [K3] is the translation of (A1) with d=1 and C = ‖K‖2
∞/‖K‖4.

Then as ‖(fg)h − fg‖∞ ≤ ‖fg‖∞(‖K‖1 + 1) ≤ 2‖fg‖∞‖K‖1, we get that

E

(
sup

h,h′∈Hn

|V c
n,1(h, h′)|

)
≤

∑
h,h′∈Hn

4‖K‖∞
h∗ ‖fg‖∞‖K‖1

∫
P(|f̂h∗(x)|>d0)g(x)dx

≤ C(f, g,K)|Hn|2
n4h∗ ≤ C

n
.

Note that the last bound is obtained using |Hn| ≤ n, L(h∗) � n under as-
sumption [K3]. Gathering this with (7.17), (7.18), (7.19) gives the result of
Lemma 7.2.

7.4.3. Proof of Lemma 7.3 and study of Un(h, h′)

Warning. For the study of this term, in order to avoid burdensome technicali-
ties, we assume that f̂h∗ is bounded by 2‖K‖1‖f‖∞. We proved in the study of
Vn (see (7.20)) that that the probability of the complement is 1/n4 under [K3].

Recall that Un(h, h′) is defined by (7.14). We write that

f̂h∗(Yi)Kh(Yi − ·) − (fg)h = f̂h∗(Yi)Kh(Yi − ·) − (f̂h∗g) � Kh︸ ︷︷ ︸
(1)h

+(f̂h∗g) � Kh − (fh∗g) � Kh︸ ︷︷ ︸
(2)h

+(fh∗g) � Kh − (fg)h︸ ︷︷ ︸
(3)h

so that Un(h, hmin) can be splitted into 9 terms, denoted with obvious super-
indices (k, �) for k, � ∈ {1, 2, 3}. These 9 terms can be reduced to 6 by symmetry
arguments, denoted by U

(i),(j)
n (h, hmin) for i ≤ j ∈ {1, 2, 3}.
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• Treatment of U (1),(1)
n (h, hmin) we have, by analogy with Lemma 6.2 in Comte

and Marie [13], that, for every ϑ ∈ [0, 1],

E

(
sup
h∈Hn

{
|U (1),(1)

n |(h, hmin)
n2 − ϑ‖K‖2‖K‖2

1‖f‖2
∞

nh

}
|X

)
≤ C log(n)

n
(7.21)

and it is easy to see that all bounds do note depend on X so de-conditioning is
straightforward.

• Treatment of U
(3),(3)
n (h, hmin) it is easy to handle thanks to the equality

U (3),(3)
n (h, hmin) = n(n− 1)〈(fh∗g) � Kh − (fg)h, (fh∗g) � Khmin − (fg)hmin〉

leading to the bound

|U (3),(3)
n (h, hmin)

n2 | ≤ ‖[(fh∗ − f)g] � Kh‖‖[(fh∗ − f)g] � Khmin‖

≤ ‖K‖2
1‖g‖2

∞‖fh∗ − f‖2. (7.22)

• Treatment of U
(2),(3)
n (h, hmin) first note that U

(2),(3)
n (h, hmin)/n2 = [(n −

1)/n]〈(2)h, (3)hmin〉 where 〈(2)h, (3)hmin〉 is equal to

〈[(f̂h∗g) − (fh∗g)] � Kh,((fh∗ − f)g) � Khmin〉
= 〈[(f̂h∗g) − (fh∗g)], ((fh∗ − f)g) � Khmin � Kh〉
= 〈[(f̂h∗g) − (fh∗g)], ((fh∗ − f)g) � Kh � Khmin〉
= 〈[(f̂h∗g) − (fh∗g)] � Khmin , ((fh∗ − f)g) � Kh〉

and thus 〈(2)h, (3)hmin〉 = 〈(2)hmin , (3)h〉, so that

U (2),(3)
n (h, hmin) = U (3),(2)

n (h, hmin).

Now, the process can be written as

1
n

n∑
i=1

(Z2,3
i − E(Z2,3

i )), Z2,3
i := 〈Kh∗(Xi − ·)g, [(fh∗ − f)g] � Kh � Khmin〉.

To apply Bernstein Inequality, we need to bound the variance and infinite norm
of the Z2,3

i ’s. For the moment of order 2, we have

E[(Z2,3
1 )2] =

∫
f(x)

(∫
Kh∗(x− u)g(u)[(f − fh∗)g] � Kh � Khmin(u)du

)2

dx

≤ ‖f‖∞‖Kh∗ � [g[(fh∗ − f)g] � Kh � Khmin ]‖2

≤ ‖f‖∞‖Kh∗‖2
1‖[g[(fh∗ − f)g] � Kh � Khmin ]‖2

≤ ‖f‖∞‖g‖2
∞‖K‖6

1‖fh∗ − f‖2 := v.
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For the upper bound, it holds:

sup
x

∣∣∣∣∫ Kh∗(x− u)g(u)[(f − fh∗)g] � Kh � Khmin(u)du
∣∣∣∣

≤ ‖g‖∞ sup
u

|[(f − fh∗)g] � Kh � Khmin(u)| sup
x

∫
|Kh∗(x− u)|du

≤ ‖g‖∞‖K‖1 sup
v

||[(f − fh∗)g] � Kh(v)| sup
u

∫
|Khmin(u)|du

≤ ‖g‖2
∞‖K‖3

1(‖f‖∞ + sup
u

|f � Kh∗(u)|) ≤ ‖g‖2
∞‖K‖3

1(1 + ‖K‖1)‖f‖∞ := b.

Then Bernstein Inequality implies that with probability larger than 1 − 2e−λ,
λ > 0, for any ϑ ∈ (0, 1),

|U (2),(3)
n (h, hmin)|/n2

≤ |〈(2)h, (3)hmin〉| ≤
√

2vλ
n

+ λ

n
b ≤ ϑ‖f − fh∗‖2 + C(K, f, g) λ

ϑn
.

As a consequence, we obtain

P

(
sup
h,h′

(∣∣∣∣U (2),(3)(h, h′)
n2

∣∣∣∣− ϑ‖f − fh∗‖2
)

≥ C(K, f, g) λ

ϑn

)
≤ 2|Hn|2e−λ.

Then it follows from (8.3) and |Hn| = n that

E

(
sup
h,h′

∣∣∣∣U (2),(3)(h, h′)
n2

∣∣∣∣− ϑ‖f − fh∗‖2

)
+

≤ C ′ log(n)
n

. (7.23)

• Treatment of U
(1),(3)
n (h, hmin).

Write that U (1),(3)
n (h, hmin)/n2 = [(n−1)/n]〈(1)h, (3)hmin〉 and 〈(1)h, (3)hmin〉

is
1
n

n∑
i=1

〈f̂h∗(Yi)Kh(Yi − ·) − (f̂h∗g) � Kh, [(fh∗ − f)g] � Khmin〉.

We apply Bernstein Inequality conditionally to X, recalling that we consider
f̂h∗ bounded by 2‖f‖∞‖K‖1.

E

(
〈f̂h∗(Yi)Kh(Yi − ·), [(fh∗ − f)g] � Khmin〉2 |X

)
=

∫ (∫
f̂h∗(y)Kh(y − u)[(fh∗ − f)g] � Khmin(u)du

)2

g(y)dy

≤ 4‖K‖2
1‖f‖2

∞‖g‖∞ ‖|Kh| � |(fh∗ − f)g| � |Khmin |‖
2

≤ 4‖K‖6
1‖f‖2

∞‖g‖3
∞‖fh∗ − f‖2,

by iterative application of Young Inequality. Next for the infinite norm

sup
y

|〈f̂h∗(y)Kh(y − ·), [(fh∗ − f)g] � Khmin〉|
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≤ 2‖f‖∞‖K‖1 sup
y

∫
|Kh(y − u)||[(fh∗ − f)g] � Khmin(u)|du

≤ 2‖f‖∞‖K‖1

∫
|Kh(v)|dv sup

u
|[(fh∗ − f)g] � Khmin(u)|

≤ 2‖f‖∞‖K‖3
1 sup

z
|(fh∗ − f)(z)g(z)| ≤ 2‖f‖2

∞‖g‖∞‖K‖3
1(1 + ‖K‖1).

The bounds do not depend on X, it holds:

E

(
sup
h,h′

∣∣∣∣U (1),(3)(h, h′)
n2

∣∣∣∣− ϑ‖f − fh∗‖2

)
+

≤ C
log(n)

n
(7.24)

for a constant C > depending on f, g,K. Moreover, the bounds do not depend
on h, hmin so the same bound hold for U

(3),(1)
n (h, hmin)/n2.

• Treatment of U
(1),(2)
n (h, hmin).

Write U
(1),(2)
n (h, hmin)/n2 = [(n− 1)/n]〈(1)h, (2)hmin〉 where 〈(1)h, (2)hmin〉 is

1
n

n∑
i=1

〈f̂h∗(Yi)Kh(Yi − ·) − (f̂h∗g) � Kh, [(f̂h∗ − fh∗)g] � Khmin〉.

First, we apply a Bernstein Inequality conditionally to X. The variance term is:

E

(
〈f̂h∗(Yi)Kh(Yi − ·), [(f̂h∗ − fh∗)g] � Khmin〉2

)
≤ 4‖f‖∞‖g‖∞‖K‖4

1‖Kh � [(f̂h∗ − fh∗)g]‖2 := v.

For the upper bound, we get

sup
y

|〈f̂h∗(y)Kh(y − ·), [(f̂h∗ − fh∗)g] � Khmin〉| ≤ 6‖K‖4
1‖f‖2

∞‖g‖∞ := b

with usual tricks. Now, we can notice that

E

(
‖Kh � [(f̂h∗ − fh∗)g]‖2

)
≤ ‖g‖∞‖K‖2

1‖K‖2

nh
. (7.25)

So we write

E

[
sup
h∈Hn

(
U

(1),(2)
n (h, hmin)

n2 − 4ϑ‖g‖∞‖K‖2
1‖K‖2

nh

)]

≤ E

{
E

[
sup
h∈Hn

(
U

(1),(2)
n (h, hmin)

n2 − ϑ‖Kh � [(f̂h∗ − fh∗)g]‖2

)
|X

]}

+ϑE

[
sup
h∈Hn

(
‖Kh � [(f̂h∗ − fh∗)g]‖2 − 4‖g‖∞‖K‖2

1‖K‖2

nh

)]
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The first term is bounded by taking the expectation of the conditional Bernstein,
where constants are independent of the Xi, which writes with the terms b, v:

E

[
sup
h∈Hn

(
U

(1),(2)
n (h, hmin)

n2 − ϑ‖Kh � [(f̂h∗ − fh∗)g]‖2

)]
≤ C

log(n)
n

. (7.26)

For the second, we use Talagrand Inequality, relying on the linear process

νn(t) = 〈Kh � [(f̂h∗ − fh∗)g], t〉

which fulfills supt∈B(0,1) ν
2
n(t) = ‖Kh � [(f̂h∗ − fh∗)g]‖2 where B(0, 1) is a count-

able dense subset of {t ∈ L2(R), ‖t‖2 = 1}. To apply Talagrand inequality, we
compute H2, v, b. We have from (7.25) that

H2 = ‖g‖∞‖K‖2
1‖K‖2

nh
.

Then we compute v2.

sup
‖t‖=1

Var
(∫∫

Kh(x− u)Kh∗(X1 − u)t(x)dxdu
)

≤ sup
‖t‖=1

E

[(∫∫
Kh(x− u)Kh∗(X1 − u)t(x)dxdu

)2
]

= sup
‖t‖=1

E

[
(Kh∗ � Kh � t(X1))2

]
≤ ‖f‖∞ sup

‖t‖=1
‖Kh∗ � Kh � t‖2 ≤ ‖f‖∞‖K‖4

1 := v2.

Next, for b, we find

sup
‖t‖=1

sup
y

|Kh∗ � Kh � t(y)| ≤ sup
‖t‖=1

sup
y

[∫
t2(x)dx

∫
(Kh � Kh∗(y − x))2dx

]1/2

= ‖Kh � Kh∗‖ ≤ ‖K‖1‖K‖√
h

:= b.

The Talagrand Inequality gives

E

[
sup
h∈Hn

(
‖Kh � [(f̂h∗ − fh∗)g]‖2 − 4‖g‖∞‖K‖2

1‖K‖2

nh

)
+

]

≤ C

n

( ∑
h∈Hn

exp(−c1/h) + card(Hn) exp(−C2
√
n)

)
.

As a consequence, as under [K4] and h ≤ 1,
∑

h∈Hn
exp(−c1/h) ≤ Σ and

card(Hn) ≤ n, we get

E

[
sup
h∈Hn

(
U

(1),(2)
n (h, hmin)

n2 − 4ϑ‖g‖∞‖K‖2
1‖K‖2

nh

)]
≤ C

log(n)
n

. (7.27)
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• Treatment of U
(2),(2)
n (h, hmin). Write

U (2),(2)
n (h, hmin)/n2 = [(n− 1)/n]〈(2)h, (2)hmin〉

where 〈(2)h, (2)hmin〉 is

〈[(f̂h∗ − fh∗)g] � Kh, [(f̂h∗ − fh∗)g] � Khmin〉.

The decomposition of this term involves first a U-statistics related to X:

UX
n (h, hmin)

n2 := 1
n2

∑
1≤i �=j≤n

∫ (∫
(Kh∗(Xi−u)−f � Kh∗(u))g(u)Kh(x− u)du

)

×
(∫

(Kh∗(Xj − v) − f � Kh∗(v))g(v)Khmin(x− v)dv
)
dx

and terms corresponding to i = j that are studied separately:

1
n2

n∑
i=1

∫ (∫
(Kh∗(Xi − u) − f � Kh∗(u))g(u)Kh(x− u)du

)
×
(∫

(Kh∗(Xi − v) − f � Kh∗(v))g(v)Khmin(x− v)dv
)
dx.

First, developing the latter product leads to the study of the four following
terms. Two cross-terms that are are bounded by

1
n2

n∑
i=1

∣∣∣∣∫ f � (Kh∗g) � Kh � Khmin(x)Kh∗(Xi − x)g(x)dx
∣∣∣∣

≤ ‖g‖∞
n

sup
x

|f � (Kh∗g) � Kh � Khmin(x)|
∫

|Kh∗(z)|dz

≤ ‖g‖∞‖K‖2
1

n
sup
x

|f � (Kh∗g) � Kh(x)| ≤ ‖g‖2
∞‖K‖3

1
n

sup
x

|f � Kh∗(x)|

≤ ‖f‖∞‖g‖2
∞‖K‖4

1
n

.

The product of last terms can be written

1
n

∣∣∣∣∫ (f � Kh∗g) � Kh(x)(f � Kh∗g) � Khmin(x)dx
∣∣∣∣

≤ 1
n
‖(f � Kh∗g) � Kh‖‖(f � Kh∗g) � Khmin‖

≤ 1
n
‖Kh‖1‖Khmin‖1‖g‖2

∞‖f � Kh∗‖2

≤ ‖K‖4
1‖g‖2

∞‖f‖2

n
.
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Finally, the product of the first terms is∣∣∣∣∣ 1
n2

n∑
i=1

∫∫∫
Kh∗(Xi− u)Kh∗(Xi− v)Kh(x− u)Khmin(x− v)g(u)g(v)dudvdx

∣∣∣∣∣
≤ ‖g‖2

∞
n2

n∑
i=1

∫
|Kh∗ | � |Kh|(Xi − x)|Kh∗ | � |Khmin |(Xi − x)dx

= ‖g‖2
∞

n

∫
|Kh∗ | � |Kh|(z)|Kh∗ | � |Khmin |(z)dz

≤ ‖g‖2
∞

n
sup
z

|Kh∗ | � |Kh|(z)
∫

|Kh∗ | � |Khmin |(z)dz

≤ ‖g‖2
∞‖K‖3

1‖K‖∞
nh

,

implying that, for Hi(u, v, x) := Kh∗(Xi−u)Kh∗(Xi−v)Kh(x−u)Khmin(x−v)

sup
h

(∣∣∣∣∣ 1
n2

n∑
i=1

∫∫∫
Hi(u, v, x)g(u)g(v)dudvdx

∣∣∣∣∣− ‖g‖2
∞‖K‖3

1‖K‖∞
nh

)
≤ 0.

Let us deal with the U -statistics UX
n (h, hmin). We follow the line of the proof

of Lemma 6.2 in Comte and Marie [13] and write UX
n (h, hmin) =

∑
1≤i �=j≤n

Gh,hmin(Xi, Xj) where

Gh,hmin(Xi, Xj) = 〈[(Kh∗(Xi − ·)− fh∗)g] �Kh, [(Kh∗(Xj − ·)− fh∗)g] �Khmin〉.

Indeed, Gh,hmin(Xi, Xj) = Ghmin,h(Xi, Xj) as for all functions u, v it holds

〈u�Kh, v�Khmin〉 = 〈u, v�Khmin �Kh〉 = 〈u, v�Khmin �Kh〉 = 〈u�Khmin , v�Kh〉.

We apply the deviation inequality for U-statistics of order 2, as in Lacour et
al. [21], see Theorem 3.4 in Houdré and Reynaud-Bouret [18]. Following the
notations of the aforementionned papers, we have to compute four bounds
an, bn, cn, dn.

� First an is a bound on supz,z′ |Gh,hmin(z, z′)|.

sup
z,z′

|Gh,hmin(z, z′)|

≤ sup
z,z′

(
sup
x

|[(Kh∗(z− ·) − fh∗)g] � Khmin(x)|∫
|[(Kh∗(z′− ·) − fh∗)g] � Kh(u)|du

)
≤ sup

z,z′

(
‖Khmin‖∞‖(Kh∗(z− ·) − fh∗)g‖1∫

|[(Kh∗(z′ − ·) − fh∗)g](u)|du
∫
|Kh(u)|du

)
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≤ 2‖K‖∞
hmin

‖g‖∞‖K‖1 × 2‖g‖∞‖K‖2
1 = 4‖g‖

2
∞‖K‖3

1‖K‖∞
hmin

:= an.

Thus
anλ

2

n2 ≤ 4λ2 ‖g‖2
∞‖K‖3

1‖K‖∞
n

.

� Next b2
n is a bound on n supz E[G2

h,hmin
(z,X1)], we write

n sup
z

E[G2
h,hmin

(z,X1)]

≤ n sup
z

‖[(Kh∗(z − ·) − fh∗)g] � Kh‖2E(‖[(Kh∗(X1 − ·) − fh∗)g] � Khmin‖2)

≤ ‖Kh‖2‖Khmin‖2 sup
z

‖[(Kh∗(z − ·) − fh∗)g]‖2
1E(‖[(Kh∗(X1 − ·) − fh∗)g]‖2

1)

≤ 4n‖K‖4‖K‖4
1‖g‖2

∞
hhmin

:= b2
n.

We obtain

bnλ
3/2

n2 ≤ 2λ3/2 ‖K‖2‖K‖2
1‖g‖∞√

hhminn3/2 ≤ θ
‖K‖2‖K‖2

1‖g‖2
∞

nh
+ λ3

θ

‖K‖2‖K‖2
1

n2hmin
.

� We compute c2n which is a bound on n2E
[
G2

h,hmin
(X1, X2)

]
. Decompose

the term E

[
G2

h,hmin
(X1, X2)

]
which is

E
[
〈[(Kh∗(X1·) − fh∗)g] � Kh, [(Kh∗(X2 − ·) − fh∗)g] � Khmin〉2

]
into four squared terms. First,

〈fh∗g�Kh, fh∗g�Khmin〉2 ≤ ‖K‖4
1‖fh∗g‖4 ≤ ‖g‖4

∞‖K‖8
1‖f‖4≤ ‖g‖4

∞‖K‖8
1‖f‖2

∞.

Second

〈fh∗g�Kh, (Kh∗(X2 − ·)g) � Khmin〉2

≤
{

sup
z

|fh∗g � Kh(z)|
∫

|(Kh∗(X2 − ·)g) � Khmin(z)|dz
}2

≤
{
‖K‖1 sup

z
|(fh∗g)(z)|‖K‖1

∫
|Kh∗(X1 − u)g(u)|du

}2

≤
{
‖K‖2

1‖f‖∞‖g‖∞ × ‖g‖∞‖K‖2
1
}2 = (‖f‖∞‖g‖2

∞‖K‖4
1)2.

The twin term in hmin, h has clearly the same bound. Lastly

E
[
〈(Kh∗(X1 − ·)g) � Kh, (Kh∗(X2 − ·)g) � Khmin〉2

]
=

∫∫ (∫
Kh∗(u− ·)g � Kh(x)Kh∗(v − ·)g � Khmin(x)dx

)2

f(u)f(v)dudv
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≤ ‖g‖4
∞

∫∫ (∫
|Kh∗ | � |Kh|(u−x)|Kh∗ | � |Khmin|(v−x)dx

)2

f(u)f(v)dudv

= ‖g‖4
∞

∫∫
[|Kh∗ | � |Kh| � |Kh∗ | � |Khmin|(u− v)]2 f(u)f(v)dudv

≤ ‖g‖4
∞‖f‖2

∞‖|Kh∗ | � |Kh| � |Kh∗ | � |Khmin|‖2

≤ ‖g‖4
∞‖f‖2

∞‖K‖6
1
‖K‖2

h
.

We get

c2n = n2

h
‖g‖4

∞‖f‖2
∞‖K‖6

1
(
‖K‖2 + 3‖K‖2

1
)
.

Thus, for all positive θ, λ it holds

cn
√
λ

n2 ≤ θ
‖g‖4

∞‖f‖2
∞‖K‖6

1
nh

+ λ(‖K‖2 + 3‖K‖2
1)

4n θ
.

� Lastly, the term dn is a bound on

sup
a,b

∑
1≤i �=j≤n

E [Gh,hmin(Xi, Xj)ai(Xi)bj(Xj)] ,

where ak(·), bk(·) for k = 1, . . . , n is such that E(
∑n

k=1 a
2
k(Xk)) ≤ 1 and

E(
∑n

k=1 b
2
k(Xk)) ≤ 1. Using the independence for i �= j between functions of Xi

and functions of Xj , we get that the term inside the sup is less than〈
n∑

i=1
E (Hi � |Kh||ai(Xi)|) ,

n∑
j=1

E (Hj � |Khmin ||bj(Xj)|)
〉
, (7.28)

where Hi = |Kh∗(Xi − ·)g − fh∗g|. First we have
n∑

i=1
E (|Kh∗(Xi − ·)g − fh∗g| � |Kh||ai(Xi)|)

≤
√
n

{
n∑

i=1
[E (|Kh∗(Xi − ·)g − fh∗g| � |Kh||ai(Xi)|)]2

}1/2

≤
√
n

{
n∑

i=1
E

[
(|Kh∗(Xi − ·)g − fh∗g| � |Kh|)2

]
E(a2

i (Xi))
}1/2

As

E

[
(|Kh∗(Xi − ·)g − fh∗g| � |Kh|)2

]
≤2‖f‖∞‖g‖2

∞[‖|Kh∗ |�|Kh|‖2+‖fh∗�|Kh|‖2]

we get
n∑

i=1
E (|Kh∗(Xi − ·)g − fh∗g| � |Kh||ai(Xi)|) ≤

√
2n‖f‖∞‖g‖∞‖K‖1‖Kh‖.
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Plugging this in formula (7.28), and setting r =
√

2‖f‖∞‖g‖∞‖K‖1‖Kh‖, we
get

〈
n∑

i=1
E (Hi � |Kh||ai(Xi)|) ,

n∑
i=1

E (Hj � |Khmin ||bj(Xj)|)〉

≤
√
n r

n∑
j=1

E

(∫
|Kh∗(Xj − ·)g − fh∗g| � |Khmin(u)|du |bj(Xj)|

)

≤
√
n r× 2‖K‖2

1‖g‖∞

⎛⎝ n∑
j=1

E(bj(Xj)|)

⎞⎠
≤ 2

√
2n‖f‖∞‖g‖2

∞‖K‖2
1‖Kh‖ ×

√
n.

Therefore,
dn := 2

√
2‖f‖∞‖g‖2

∞‖K‖2
1‖K‖ n√

h
.

It follows that
dnλ

n2 ≤ θ
‖f‖2

∞‖g‖4
∞‖K‖4

1‖K‖2

nh
+ 2λ

2

n
.

Applying the deviation inequality for U-statistics of order 2 (see Lacour et al. [21]
and Theorem 3.4 in Houdré and Reynaud-Bouret [18]) leads thus to

E

{
sup
h∈Hn

(
UX
n (h, hmin)

n2 − θ
‖f‖2

∞‖g‖4
∞‖K‖4

1‖K‖2

nh

)}
≤ C

log(n)
n

.

Therefore

E

{
sup
h∈Hn

(
U

(2),(2)
n (h, hmin)

n2 − θ
‖f‖2

∞‖g‖4
∞‖K‖4

1‖K‖2

nh

)}
≤ C

log(n)
n

. (7.29)

The result of Lemma 7.3 follows by gathering the bounds (7.21), (7.26),
(7.27), (7.29), (7.24), (7.23), (7.22).

8. Appendix

In the paper we make an extensive use of the following:

• The Young Inequality: for u ∈ Lp(Rd) and v ∈ Lq(Rd), 1 ≤ p, q ≤ r ≤ ∞,

‖u � v‖r ≤ ‖u‖p‖v‖q,
1
r

+ 1 = 1
p

+ 1
q
, (8.1)

• The Bernstein inequality.
For i.i.d. random variables Zi, set Sn = 1

n

∑n
i=1(Zi−E[Zi]). If E[Z2

1 ] ≤ v

and |Z1| ≤ b a.s. then with probability larger than 1−2e−λ, for any λ > 0,

|Sn| ≤
√

2vλ
n

+ λ

n
b. (8.2)
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• Deriving a bound in expectation from a bound on probability: If P(Z ≥
κλ
n ) ≤ n2e−λ for all λ > 0, then it holds

E[Z+] ≤ c
log(n)

n
. (8.3)

Indeed, for all positive A we have

E[Z+] =
∫ ∞

0
P(Z ≥ x)dx = κ

n

∫ ∞

0
P(Z ≥ κλ

n
)dλ ≤ κ

n

(
A + 2n2e−A

)
,

and A = 2 log(n) gives the result.

The Talagrand inequality. The result below follows from the Talagrand con-
centration inequality given in Klein and Rio [19] and arguments in Birgé and
Massart [5] (see the proof of their Corollary 2 page 354).

Lemma 8.1 (Talagrand Inequality). Let Y1, . . . , Yn be independent random
variables and let F be a countable class of uniformly bounded measurable func-
tions. Consider νn, the centered empirical process defined by

νn(f) = 1
n

n∑
i=1

[f(Yi) − E(f(Yi))]

for f ∈ F . Assume there exists three positive constants b, H and v such that

sup
f∈F

‖f‖∞ ≤ b, E

[
sup
f∈F

|νn(f)|
]
≤ H, sup

f∈F

1
n

n∑
k=1

Var(f(Yk)) ≤ v2.

Then, for any δ > 0 the following holds

E

[
sup
f∈F

|νn(f)|2 − 2(1 + 2δ)H2
]
+

≤ 4
K1

(
v2

n
exp(−K1δ

nH2

v2 ) + 49b2

K1n2C2(δ) exp(−K1C(δ)
√

2δ
7

nH

b
)
)
,

with C(δ) =
√

1 + δ − 1 and K1 = 1/6.

By standard density arguments, this result can be extended to the case where
F is a unit ball of a linear normed space, after checking that f �→ νn(f) is
continuous and F contains a countable dense family.
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