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Self-similar signed growth-fragmentations*
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Abstract

Growth-fragmentation processes model the evolution of positive masses which undergo
binary divisions. The aim of this paper is twofold. First, we extend the theory of growth-
fragmentation processes to allow signed mass. Among other things, we introduce
genealogical martingales and establish a spinal decomposition for the associated
cell system, following [BBCK18]. Then, we study a particular family of such self-
similar signed growth-fragmentation processes which arise when cutting half-planar
excursions at horizontal levels. When restricting this process to the positive masses in
a special case, we recover part of the family introduced by Bertoin, Budd, Curien and
Kortchemski in [BBCK18].
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1 Introduction

Markovian growth-fragmentation processes were first introduced in [Ber17]. They
describe a system of positive masses, starting from a unique cell called the Eve cell,
which may evolve over time, and suddenly split into a mother cell and a daughter
cell. This happens with conservation of mass at dislocations: the sum of the mother
and daughter masses after dislocation is equal to the mass of the mother cell right
before. The latter daughter cells then evolve independently of each other, with the same
stochastic evolution as the mother cell, thereafter dividing in the same way, and giving
birth to granddaughter cells, and so on. Thus, newborn particles arise according to the
negative jumps of the mass of the mother cell.

Self-similar growth-fragmentation processes form a rich subclass of such models and
have been extensively studied in the seminal article [BBCK18]. Natural genealogical
martingales in particular arise from the so-called additive martingales in the branching
random walk setting (see the Lecture notes [Shi15]). These martingales depend on
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Self-similar signed growth-fragmentations

exponents which can be found as the roots of the growth-fragmentation cumulant
function κ. Performing the corresponding change of measure, [BBCK18] then completely
describes the spinal decomposition of the growth-fragmentation cell system. Under the
new tilted probability measure, all the cells roughly behave as in the original cell system,
except for the Eve cell, which behaves as some tilted version of it.

The article [BBCK18] further introduces a remarkable family of such processes that
are closely linked to θ–stable Lévy processes for 1

2 < θ ≤ 3
2 , and relates them to the

scaling limit of the exploration of a Boltzmann planar map. The case θ = 3
2 was later

recovered up to a time-change in [LGR20] when studying, among other things, the
boundary sizes of superlevel sets of Brownian motion indexed by the Brownian tree,
whereas the critical case θ = 1 appears in [AS22] when cutting a half-planar Brownian
excursion at horizontal levels. The growth-fragmentation processes associated with
parameters θ ∈ (1, 3

2 ) were also retrieved directly in the continuum in [MSW20] by
exploring a conformal loop ensemble on an independent quantum surface.

In [AS22], the masses of the cells correspond to the sizes of the excursions above
horizontal levels, defined as the difference between the endpoint and the starting point.
Note that, for these to fall into the growth-fragmentation framework, one has to remove
all the negative excursions of the system. Moreover, a Boltzmann planar map can be
seen as the gasket of a loop O(n) model (see [LGM11]), and from this standpoint, a
positive jump in the growth-fragmentation represent the discovery of a loop which has
not yet been explored.

The present work extends the study in [BBCK18] to the case when the masses may
be signed. We therefore allow positive jumps to be birth events and give rise to negative
cells, so that the conservation rule still holds at dislocations. Markov additive processes
and the Lamperti-Kiu representation provide a very natural framework for this.

We illustrate this with the following examples, which are a slight generalisation of
the growth-fragmentation embedded in the half-planar Brownian excursions studied in
[AS22]. For z0 > 0, we consider an excursion from 0 to z0 in the upper half-plane H,
where the imaginary part is a one-dimensional Brownian excursion, but the real part
is some instance of an α–stable process, with α ∈ (1, 2). For a > 0, if the excursion hits
the horizontal level {z ∈ C, =(z) = a}, it will make a countable number of excursions
(ea,+i , i ≥ 1) above this level. We record the sizes (∆ea,+i , i ≥ 1) of these excursions,
defined as the difference between the endpoint and the starting point. Because both
points have the same imaginary part, this yields a collection of real numbers. Our main
result investigates the branching structure of this collection of sizes: we show that it
behaves as a signed self-similar growth-fragmentation process. Furthermore, when
removing the negative sizes in the genealogy, we prove that this model gives back the
family of growth-fragmentation processes introduced in [BBCK18] for 1

2 < θ < 1.

Related work. In the pure fragmentation framework, multitype self-similar fragmen-
tation processes have been introduced and their structure described, in terms of the
underlying Markov additive process, in [Ste18].

The paper is organised as follows. In Section 2, we provide some background on
real-valued self-similar Markov processes and their Lamperti-Kiu representation. In
Section 3, we make use of a connection with multitype branching random walks to
introduce genealogical martingales similar to the ones in [BBCK18]. Section 4 is devoted
to proving that the form of these martingales only depend on the growth-fragmentation
itself. Along the way, we will define signed cumulant functions that are the analogs of
the cumulant function in the positive case. The spinal decomposition will be described in
Section 5. Finally, we will investigate in Section 6 a distinguished family of self-similar
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signed growth-fragmentations constructed by cutting half-planar excursions at horizontal
levels.

2 Real-valued self-similar Markov processes

We first recall some aspects of the Lamperti-Kiu theory for real-valued self-similar
Markov processes. The Lamperti representation [Lam72] reveals a correspondence
between positive self-similar Markov processes and Lévy processes. In the real-valued
case, there is a more general correspondence, called the Lamperti-Kiu representation,
between self-similar Markov processes and Markov additive processes, which are needed
to take into account the sign changes.

2.1 Markov additive processes

Let E be a finite set, endowed with the discrete topology, and (Gt)t≥0 a standard
filtration. A Markov additive process (MAP) with respect to (Gt)t≥0 is a càdlàg process
(ξ, J) in R×E with law P, such that (J(t), t ≥ 0) is a continuous–time Markov chain, and
the following property holds: for all i ∈ E, t ≥ 0,

Conditionally on J(t) = i, the process (ξ(t+ s)− ξ(t), J(t+ s))s≥0 is independent of Gt
and is distributed as (ξ(s)− ξ(0), J(s))s≥0 given J(0) = i.

We shall write Pi := P( · | ξ(0) = 0 and J(0) = i) for i ∈ E. Details on MAPs can be
found in [Asm08]. In particular, their structure is known to be given by the following
proposition.

Proposition 2.1. The process (ξ, J) is a Markov additive process if, and only if, there
exist independent sequences (ξni , n ≥ 0)i∈E and (Uni,j , n ≥ 0)i,j∈E , all independent of J ,
such that:

• for i ∈ E, (ξni , n ≥ 0) is a sequence of i.i.d. Lévy processes,

• for i, j ∈ E, (Uni,j , n ≥ 0) are i.i.d.,

• if (Tn)n≥0 denotes the sequence of jump times of the chain J (with the convention
T0 = 0), then for all n ≥ 0,

ξ(t) =
(
ξ(T−n ) + Un

J(T−n ),J(Tn)

)
1n≥1 + ξnJ(Tn)(t− Tn), Tn ≤ t < Tn+1. (2.1)

Proposition 2.1 describes (ξ(t), t ≥ 0) as a concatenation of independent Lévy pro-
cesses with law depending on the current state of J , with additional random jumps
occurring whenever the chain J has a jump.

We now turn to defining the matrix exponent of a MAP, which replaces the Laplace
exponent in the setting of Lévy processes. For simplicity, we assume that E = {1, . . . , N}
and that J is irreducible. We write Q = (qi,j)1≤i,j≤N for its intensity matrix. Also, we
denote for all i, j ∈ E, all on the same probability space, by ξi a Lévy process distributed
as the ξni ’s, and by Ui,j a random variable distributed as the Uni,j ’s, with the convention
Ui,i = 0 and Ui,j = 0 if qi,j = 0. Finally, we introduce the Laplace exponent ψi of ξi and
the Laplace transform Gi,j(z) := E

[
ezUi,j

]
of Ui,j (this defines a matrix G(z) with entries

Gi,j(z)). Then the matrix exponent F of (ξ, J) is defined as

F (z) := diag(ψ1(z), . . . , ψN (z)) +Q ◦G(z), (2.2)

where ◦ denotes pointwise multiplication of the entries. Then the following equality
holds for all i, j ∈ E, z ∈ C, t ≥ 0, whenever one side of the equality is defined:

Ei

[
ezξ(t)1J(t)=j

]
= (eF (z)t)i,j .
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2.2 The Lamperti-Kiu representation

In [Lam72], Lamperti proved that positive self-similar Markov processes can be
expressed as the exponential of a time-changed Lévy process. In the real-valued case,
one has to track the sign changes, but the same kind of representation holds. Let X be a
real-valued Markov process, which under Pz starts from z 6= 0, and denote by T0 its first
hitting time of 0. We assume that X is self-similar with index α in the following sense: for
any c > 0 and for all z 6= 0, the law of (cX(c−αt), t ≥ 0) under Pz is Pcz. The next theorem
summarises the main result of [CPR13]. Though it may appear intricate at first glance,
we insist that the gist of it is intrinsically simple. It should be streamlined as follows. As
long as X remains positive (resp. negative), it evolves as the exponential (resp. minus
the exponential) of a time-changed Lévy process. The Lévy processes keeping track of
the positive and negative parts must not necessarily be equal. In addition, an exponential
clock (modulo time-change) rings every time the sign of X changes, and at these times a
special jump occurs (again, the two exponential clocks and the law of the jumps may be
different depending on the current sign of X).

Theorem 2.2 (Lamperti-Kiu representation, [CPR13]). There exist independent sequences
(ξ±,k)k≥0, (ζ

±,k)k≥0, (U
±,k)k≥0 of i.i.d. variables fulfilling the following properties:

1. The ξ±,k are Lévy processes, the ζ±,k are exponential random variables with
parameter q±, and the U±,k are real-valued random variables.

2. For z 6= 0 and k ≥ 0, if we define:

• (ξz,k, ζz,k, Uz,k) :=

{
(ξ+,k, ζ+,k, U+,k) if sgn(z)(−1)k = 1

(ξ−,k, ζ−,k, U−,k) if sgn(z)(−1)k = −1

• T (z)
0 := 0 and T (z)

n :=
∑n−1
k=0 ζ

(z,k) for n ≥ 1

• N (z)
t := max{n ≥ 0, T (z)

n ≤ t} and σ(z)
t := t− T (z)

N
(z)
t

,

then, under Pz, X has the representation:

X(t) = z exp(E(z)
τ(t)), 0 ≤ t < T0,

where

E(z)
t := ξ

N
(z)
t

σ
(z)
t

+

N
(z)
t −1∑
k=0

(
ξ

(z,k)

ζ(z,k) + U (z,k)
)

+ iπN
(z)
t , t ≥ 0,

and

τ(t) := inf

{
s > 0,

∫ s

0

| exp(αE(z)
u )|du > t|z|−α

}
, t < T0.

Conversely, any process of this form is a self-similar Markov process with index α.

This can be rephrased in the language of Markov additive processes, as was pointed
out in [KKPW14].

Proposition 2.3. Let X be a real-valued self-similar Markov process, with Lamperti-Kiu
exponent E . Introduce for z 6= 0,

(ξ(z)(t), J (z)(t)) :=

(
<(E(z)

t ),

[
=(E(z)

t )

π
+ 1z>0

])
, t ≥ 0,

where [·] denotes reduction modulo 2.
Then (ξ(z)(t), J (z)(t)) is a MAP with state space {0, 1} and under Pz for all z 6= 0,

X(t) = z exp
(
ξ(z)(τ(t)) + iπ(J (z)(τ(t)) + 1)

)
, 0 ≤ t < T0,
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where, in terms of ξ(z),

τ(t) := inf

{
s > 0,

∫ s

0

exp(αξ(z)(u))du > t|z|−α
}
, t < T0.

3 Martingales in self-similar growth-fragmentation with signs

We follow closely [Ber17] and [BBCK18] to extend the construction to real-valued
driving processes. Let X be a càdlàg Feller process which is self-similar in the sense of
Section 2.2, with values inR∗. Denote by Pz the law of X started from z 6= 0, and assume
that X is either absorbed at a cemetery point ∂ after a finite time ζ or converges (to 0) as
t→∞ under Pz for all z. Introduce the MAP (ξ, J) associated to X via the Lamperti-Kiu
representation in Proposition 2.3, and denote by F its matrix exponent. Recall that this
matrix exponent is determined by the law of the Lévy processes ξ±, special jumps U±,
and random clocks ζ± (which are exponential with parameter q±) dealing with the parts
of the trajectory where X is positive or negative. Recall also the notation P± to denote
the law of X starting from ±1 (and E± for the corresponding expectation). We further
write ∆X(r) = X(r)−X(r−) for the jump of X at time r.

3.1 Self-similar signed growth-fragmentation processes

We now explain how to construct the cell system driven by X. As usual, we label
the cells using the Ulam tree U =

⋃∞
i=0N

i, where in our notation N = {1, 2 . . .}, and
N0 := {∅} refers to the Eve cell. A node u ∈ U is a list (u1, . . . , ui) of positive integers
where |u| = i is the generation of u. Then the offspring of u is labelled by the lists
(u1, . . . , ui, k), with k ∈ N.

We then define the cell system (Xu(t), u ∈ U) driven by X by recursion. Again, we
repeat the procedure in [BBCK18], except that we include the positive jumps in the
genealogy. First, set b∅ = 0 and X∅ to be distributed as X started from some mass z 6= 0.
Then at each jump of X∅, we will create a new particle with mass given by the opposite
of this jump (so that the mass is conserved at each splitting). Since X converges at
infinity, one can rank the sequence of jump sizes and times (x1, β1), (x2, β2), . . . of −X∅
by descending lexicographical order for the absolute value of the xi. Given this sequence
of jumps, we define the first generation Xi, i ∈ N, of our cell system as independent
processes with respective law Pxi , and we set bi = b∅+βi for the birth time of i and ζi for
its lifetime. The law of the n-th generation is constructed given generations 1, . . . , n− 1

following the same procedure. Therefore, a cell u′ = (u1, . . . , un−1) ∈ Nn−1 gives birth
to the cell u = (u1, . . . , un−1, i), with lifetime ζu, at time bu = bu′ + βi where βi is the i-th
jump of Xu′ (in terms of the same ranking as before). Moreover, conditionally on the
jump sizes and times of Xu′ , Xu has law Py with −y = ∆Xu′(βi) and is independent of
the other daughter cells at generation n. See Figure 1.

Beware that, in this construction, the cells are not labelled chronologically. Nonethe-
less, exactly as in [BBCK18], this uniquely defines the law Pz of the cell system driven by
X and started from z. The cell system (Xu(t), u ∈ U) is meant to describe the evolution of
a population of atoms u with size Xu(t) evolving with its age t and fragmenting in a binary
way. We stress once more that the difference with [BBCK18] is that the masses can be
negative and that the genealogy also carries the positive jumps (which corresponds to
negative newborn masses).

Then we may define for t ≥ 0

X(t) := {{Xu(t− bu), u ∈ U and bu ≤ t < bu + ζu}} ,

where the double brackets denote multisets. In other words, the signed growth-
fragmentation process X(t) is the collection of the sizes of all the cells in the system
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alive at time t. We denote by Pz the law of X started from z.

Remark 3.1. This construction does not require X to be self-similar.

Figure 1: Construction of the cell system from the driving process X. Each jump ∆X(s)

of X gives birth to a new particle (in colours), with size given by the intensity −∆X(s)

of the jump. These particles, in turn, give rise to the second generation (not shown in
this figure).

We now state a temporal version of the branching property. Introduce the natural
filtration (Ft)t≥0 of (X(t), t ≥ 0). As we shall need a stronger version of the branching
property, we also record the generations by setting

X(t) := {{(Xu(t− bu), |u|), u ∈ U and bu ≤ t < bu + ζu}} , t ≥ 0,

and we denote by (F t)t≥0 the filtration associated to X. We assume that X admits an
excessive function, that is a measurable function f : R∗ → [0,+∞) such that inf

|x|>a
f(x) > 0

for all a > 0, and

∀z ∈ R∗,∀t ≥ 0, Ez

 ∑
x∈X(t)

f(x)

 ≤ f(z). (3.1)

In this case, we may rank the elements X1(t), X2(t), . . . of X(t) in non-increasing order of
their absolute value. For self-similar processes, the existence of such excessive functions
will result from the assumptions that we will make later on. Then we have the following
branching property, analogous to Lemma 3.2 in [BBCK18].

Theorem 3.2. For every t ≥ 0, conditionally on X(t) = {{(xi, ni), i ≥ 1}}, the process
(X(t+ s), s ≥ 0) is independent of F t and is distributed as⊔

i≥1

Xi(s) ◦ θni , s ≥ 0,

where the Xi are independent processes distributed as X under Pxi , and θn is the shift
operator {{(yj , kj), j ≥ 1}} ◦ θn := {{(yj , kj + n), j ≥ 1}}.
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This theorem follows from the arguments given in Proposition 2 in [Ber17] which
holds as soon as X has an excessive function. Under the same condition, the self-
similarity of the driving cell process X can be transferred to the whole growth-fragmen-
tation process (see [Ber17, Theorem 2] for the nonnegative case, which extends easily).

Proposition 3.3. For all c > 0 and for all z 6= 0, the law of (cX(c−αt), t ≥ 0) under Pz is
Pcz.

3.2 Multitype branching random walks and a genealogical martingale

We use a connection with branching random walks to exhibit a genealogical martin-
gale as in [BBCK18]. We emphasize that the main difference with [BBCK18] is that in
the signed case one has to deal with types (signs) in the branching structure, so that the
relevant framework is provided by multitype branching random walks.

Multitype branching random walks. We start by recalling the main features of
multitype branching random walks. Let I = {1, . . . ,K} be a set of types with K ≥ 1.
The branching mechanism is then governed by K random sequences of displacements
Ξ(k) = (ξ

(k)
1 , . . . , ξ

(k)
ν ), and types η(k) = (η

(k)
1 , . . . , η

(k)
ν ), k ∈ I, where ν is also random and

can be infinite. Denote by Pk the law of (Ξ(k), η(k)). Start from a particle ∅ at position
X∅ = x ∈ R and with initial type k ∈ I. At time n = 1 this particle dies, giving birth
to a random cloud of particles whose displacements from their parent and types are
distributed as Ξ(k) and η(k) respectively. At time n = 2, all these particles die and give
birth in the same fashion to children of their own, independently of one another and
independently of the past. This construction is repeated indefinitely as long as there are
particles in the system. Therefore, if u ∈ U has type i ∈ I, it gives birth at the next gen-
eration to ν(u) particles with displacements (Xu1, . . . , Xuν(u)) and types (iu1, . . . , iuν(u))

according to Pi. Also, we write J∅, uK for the unique shortest path connecting the root
to the node u, so that

V (u) :=
∑

v∈J∅,uK

Xv,

is the position of particle u. We denote by (Fn)n≥0 the natural filtration of the multitype
branching random walk, i.e.

Fn := σ ((Xu, iu), |u| ≤ n) .

For q ∈ R define m(q) to be the K ×K–matrix with entries

mij(q) := Ei

[ ∑
|v|=1

e−qXv1iv=j

]
.

We then make the following assumption.

Assumption (A0): ∀i, j, Pi(∃1 ≤ l ≤ ν, η(i)
l = j) > 0.

Then the matrix m(q) is positive and we may apply Perron-Frobenius theory. Let eλ(q)

be its largest eigenvalue and v(q) = (v1(q), . . . , vK(q)) an associated positive eigenvector.
Then we have the following result.

Theorem 3.4. For any 1 ≤ i ≤ K, under Pi, the process

Mn :=
∑
|u|=n

viu(q)e−qV (u)−nλ(q), n ≥ 0,

is a martingale with respect to the filtration (Fn)n≥0.
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Proof. (Mn)n≥0 is (Fn)n≥0–adapted, and for n ≥ 0,

Ei [Mn+1 | Fn] = Ei

∑
|u|=n

∑
|w|=1

viuw(q)e−qV (u)−qXuw−(n+1)λ(q)

∣∣∣∣∣ Fn


=
∑
|u|=n

e−qV (u)−(n+1)λ(q)Ei

 ∑
|w|=1

viuw(q)e−qXuw

∣∣∣∣∣ Fn

 . (3.2)

By the branching property, for all |u| = n,

Ei

 ∑
|w|=1

viuw(q)e−qXuw

∣∣∣∣∣ Fn

 = Eiu

 ∑
|w|=1

viw(q)e−qXw

 .
Since v(q) is an eigenvector for m(q), this is

Ei

 ∑
|w|=1

viuw(q)e−qXuw

∣∣∣∣∣ Fn

 = eλ(q)viu(q).

Coming back to (3.2), we get

Ei [Mn+1 | Fn] =
∑
|u|=n

viu(q)e−qV (u)−nλ(q) = Mn.

The genealogical martingale of self-similar signed growth-fragmentations. It
is easily seen from the self-similarity of the cell processes and the branching struc-
ture of growth-fragmentations that if sgn(x) denotes the sign function, the process
(− log |Xu(0)|, sgn(Xu(0)))u∈U is a multitype branching random walk, where the set of
types is just I = {+,−}. Define

Gn := σ (Xu, |u| ≤ n) , n ≥ 0.

Note that in this setting, for any u ∈ U with |u| = n ≥ 1, Xu(0) is Gn−1–measurable. For
q ∈ R, m(q) is now a 2× 2–matrix with entries

mij(q) = Ei

[∑
s>0

|∆X(s)|q1sgn(−∆X(s))=j

]
. (3.3)

We work under the following assumption, analogous to Assumption (A0).

Assumption (A): The process X admits positive and negative jumps.

Again, for q such that m(q) is finite, we denote by eλ(q) the Perron-Frobenius eigenvalue
of m and by v(q) an associated positive eigenvector. We make the following additional
assumption.

Assumption (B): There exists ω ∈ R such that λ(ω) = 0.

We say that (v+, v−, ω) is admissible for X if m(ω) has Perron-Frobenius eigenvalue
1 (i.e. assumption (B) is satisfied) and (v+, v−) is an associated positive eigenvector.
This assumption is of Malthusian nature: it ensures that some mass is preserved in the
growth-fragmentation cell system (see Theorem 3.5 below). It also in particular implies
that there is no local explosion via excessiveness, cf. (3.1). Let us finally mention that
Assumption (B) is the analogue of the existence of a root of the cumulant function κ in
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[Ber17, BBCK18]. We will actually show in section 4.2 that ω can be seen as a root of
signed variants of κ.

Such an assumption is crucial, in both the nonnegative case and the signed one,
to obtain martingales for the growth-fragmentation cell system, as Theorem 3.4 then
translates to

Theorem 3.5. For u ∈ U, write vu := vsgn(Xu(0))(ω) for simplicity. For any z 6= 0, the
process

M(n) :=
∑

|u|=n+1

vu|Xu(0)|ω, n ≥ 0,

is a (Gn)n≥0–martingale under Pz.
We conclude this paragraph by a very simple but typical calculation leading to a first

temporal martingale for X.

Proposition 3.6. Under Pz, the process

M(s) := vsgn(X(s))(ω)|X(s)|ω +
∑

0<r≤s∧ζ

vsgn(−∆X(r))(ω)|∆X(r)|ω,

is a uniformly integrable martingale for the natural filtration (FXt )t≥0 of X, with terminal
value

∑
r>0 vsgn(−∆X(r))(ω)|∆X(r)|ω.

Proof. X is clearly adapted to the filtration. Let us prove that for s ≥ 0,

Ei

[∑
r>0

vsgn(−∆X(r))(ω)|∆X(r)|ω
∣∣∣∣FXs

]
= vsgn(X(s))(ω)|X(s)|ω +

∑
0<r≤s∧ζ

vsgn(−∆X(r))(ω)|∆X(r)|ω.

Indeed,

Ei

[∑
r>0

vsgn(−∆X(r))(ω)|∆X(r)|ω
∣∣∣∣FXs

]

= Ei

[∑
r>s

vsgn(−∆X(r))(ω)|∆X(r)|ω
∣∣∣∣FXs

]
+

∑
0≤r≤s∧ζ

vsgn(−∆X(r))(ω)|∆X(r)|ω. (3.4)

Then by the Markov property at time s and self-similarity of X, the first term is

Ei

[∑
r>s

vsgn(−∆X(r))(ω)|∆X(r)|ω
∣∣∣∣FXs

]

= |X(s)|ωEsgn(X(s))

(∑
r>0

vsgn(−∆X(r))(ω)|∆X(r)|ω
)
.

By definition of (v+(ω), v−(ω)),

Esgn(X(s))

(∑
r>0

vsgn(−∆X(r))(ω)|∆X(r)|ω
)

= vsgn(X(s))(ω),

and so

Ei

[∑
r>s

vsgn(−∆X(r))(ω)|∆X(r)|ω
∣∣∣∣FXs

]
= vsgn(X(s))(ω)|X(s)|ω.

Finally, equation (3.4) gives the desired result.
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Remark 3.7. In particular, this implies that the quantity f(x) = vsgn(x)(ω)|x|ω defines
an excessive function for the signed growth-fragmentation X. See [Ber17], Theorem 1,
which can be extended in the signed case.

3.3 A change of measure

We first define a new probability measure P̂z for z 6= 0 thanks to the martingale
(M(n))n≥0 in Theorem 3.5. This new measure is the analogue of the one defined in
Section 4.1 in [BBCK18]. It describes the law of a new cell system (Xu)u∈U together with
an infinite ray, or leaf, L ∈ ∂U = NN. On Gn, for n ≥ 0, it has Radon-Nikodym derivative
with respect to Pz given byM(n), normalized so that we get a probability measure, i.e.
for all Gn ∈ Gn,

P̂z(Gn) :=
1

vsgn(z)(ω)|z|ω
Ez (M(n)1Gn) .

Moreover, the law of the particular leaf L under P̂z is determined for all n ≥ 0 and all
u ∈ U such that |u| = n+ 1 by

P̂z
(
L(n+ 1) = u

∣∣Gn) :=
vu|Xu(0)|ω

M(n)
,

where for any ` ∈ ∂U, `(n) denotes the ancestor of ` at generation n. In other words, to
define the next generation of the spine, we select one of its jumps proportionally to its
size to the power ω (the spine at generation 0 being the Eve cell). One can check from
the martingale property and the branching structure of the system that these definitions
are compatible, and therefore this defines a probability measure by an application of the
Kolmogorov extension theorem.

We now introduce the tagged cell, that is the size of the cell associated to the leaf
L. First, we write b` = lim ↑ b`(n) for any leaf ` ∈ ∂U. Then, we define X̂ by X̂ (t) := ∂ if
t ≥ bL and

X̂ (t) := XL(nt)(t− bL(nt)), t < bL,

where nt is the unique integer n such that bL(n) ≤ t < bL(n+1).

Observe from the definition of P̂z that we have for all nonnegative measurable
function f and all Gn–measurable nonnegative random variable Bn,

vsgn(z)(ω)|z|ωÊz
(
f(XL(n+1)(0))Bn

)
= Ez

 ∑
|u|=n+1

vu|Xu(0)|ωf(Xu(0))Bn

 .

This extends to a temporal identity in the following way. Recall that we have enumerated
X(t) = {{Xi(t), i ≥ 1}} , t ≥ 0 (this is possible since, according to the remark following
Proposition 3.6, we know that X has an excessive function).

Proposition 3.8. For every t ≥ 0, every nonnegative measurable function f vanishing
at ∂, and every F t–measurable nonnegative random variable Bt, we have

vsgn(z)(ω)|z|ωÊz
(
f(X̂ (t))Bt

)
= Ez

∑
i≥1

vsgn(Xi(t))(ω)|Xi(t)|ωf(Xi(t))Bt

 .

Proof. We reproduce the proof of [BBCK18], though the ideas are the same, because the
martingale used in the change of measure is slightly different.

Let t ≥ 0. We restrict to proving the result for Bt which is F t ∩ Gk–measurable for
some k ∈ N. First, observe that since f(∂) = 0, almost surely,

f(X̂ (t))Bt1bL(n+1)>t −→n→∞ f(X̂ (t))Bt.
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Therefore, by monotone convergence,

Êz(f(X̂ (t))Bt) = lim
n→∞

Êz

(
f(X̂ (t))Bt1bL(n+1)>t

)
.

Now if we condition on Gn and decompose L(n+ 1) over the cells at generation n+ 1,
provided n > k so that Bt is Gn–measurable, we get

Êz

(
f(X̂ (t))Bt1bL(n+1)>t

)
=

1

vsgn(z)(ω)|z|ω
Ez

 ∑
|u|=n+1

vu|Xu(0)|ω1bu>tf(Xu(t)(t− bu(t)))Bt

 .

Here we wrote u(t) for the most recent ancestor of u at time t. We now decompose the
sum over the ancestor u(t) at time t. This gives

Ez

 ∑
|u|=n+1

vu|Xu(0)|ω1bu>tf(Xu(t)(t− bu(t)))Bt


= Ez

 ∑
|u′|≤n

∑
|u|=n+1

vu|Xu(0)|ω1bu>tf(Xu′(t− bu′))Bt1u(t)=u′

 , (3.5)

and by conditioning on F t and applying the temporal branching property stated in
Theorem 3.2,

Ez

 ∑
|u|=n+1

vu|Xu(0)|ω1bu>tf(Xu(t)(t− bu(t)))Bt


= Ez

 ∑
|u′|≤n

f(Xu′(t− bu′))Bt Ez

 ∑
|u|=n+1

vu|Xu(0)|ω1bu>t1u(t)=u′

∣∣∣∣F t


= Ez

 ∑
|u′|≤n

f(Xu′(t− bu′))Bt EXu′ (t−bu′ )

 ∑
|u|=n+1−|u′|

vu′u|Xu′u(0)|ω
1bu′≤t<bu′+ζu′


= Ez

 ∑
|u′|≤n

f(Xu′(t− bu′))Bt 1bu′≤t<bu′+ζu′ vsgn(Xu′ (t−bu′ ))(ω)|Xu′(t− bu′)|ω
 .

Finally, taking n→∞ and using monotone convergence, we obtain the desired result.

Corollary 3.9. The process

Mt :=

∞∑
i=1

vsgn(Xi(t))(ω)|Xi(t)|ω, t ≥ 0,

is a supermartingale with respect to (Ft, t ≥ 0).

Proof. Proposition 3.8 with f := 1x 6=∂ gives that Ez(Mt) ≤ vsgn(z)(ω)|z|ω and the super-
martingale property follows readily from the branching property.
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4 Universality ofM(n) and the signed cumulant functions

The construction in section 3.2 produces martingalesM(n) depending on X. We now
aim at proving that actually, these do not depend on the choice of the Eve process, in
the sense that any admissible triplet (v+, v−, ω) for X will also lead to a martingale for
any other cell process driving the same growth-fragmentation process. The strategy
is as follows. First, we prove universality for all constant sign driving cell processes
by defining signed cumulant functions which characterise the couple (v+/v−, ω). Then,
starting from a possibly signed Eve process X, we flip it every time its sign changes and
reduce to the previous case. Along the way, we extend the definition of signed cumulant
functions to signed processes. Using the constant sign case, this will provide universality
for all cell processes driving the same growth-fragmentation.

4.1 Signed cumulants and universality in the constant sign case

We introduce two key players in the study of self-similar signed growth-fragmentation
processes. We focus on the case when X has no sign change: in this case, particles born
with a positive mass will continue to have a positive mass until they die, and those with
negative mass will remain negative. Then the law of X under Pz is determined by its
self-similarity index α, and the Laplace exponents ψ+ and ψ− of the Lamperti exponents
ξ+ and ξ− underlying X, depending on the sign of z. It is convenient to consider

F (q) :=

(
ψ+(q) 0

0 ψ−(q)

)
, q ≥ 0,

as the matrix exponent of X (this is the analog of (2.2) in the simple case when there is
no sign change). In the constant sign case, because the Lamperti representation holds,
it is easy to compute λ(q) and to define signed cumulant functions which are analogs of
the cumulants in [BBCK18].

Indeed, let us compute E+

[∑
0<r<ζ vsgn(−∆X(r))(q)|∆X(r)|q

]
, for q ≥ 0. We will

assume that m(q) is finite all the way, so that in particular (v+(q), v−(q)) is well-defined.
Let Λ+ denote the Lévy measure of ξ+. Since we are summing over all times, we can
omit the Lamperti time-change. In addition, note that, because X is positive, the sign
of any jump of X is the same as the one of the corresponding jump of ξ+, so that the
previous expectation boils down to

E+

 ∑
0<r<ζ

vsgn(−∆X(r))(q)|∆X(r)|q
 = E+

[∑
r>0

vsgn(−∆ξ+(r))(q)
∣∣∣eξ+(r) − eξ+(r−)

∣∣∣q] .
From there, we can use the compensation formula for Lévy processes, i.e.

E+

 ∑
0<r<ζ

vsgn(−∆X(r))(q)|∆X(r)|q
 = E+

[∑
r>0

vsgn(−∆ξ+(r))(q)e
qξ+(r−)

∣∣∣e∆ξ+(r) − 1
∣∣∣q]

=

∫ ∞
0

drE+[eqξ+(r)]

∫
R

Λ+(dx)v−sgn(x)(q) |ex − 1|q .

Since we assumed that m(q) was finite, we get that ψ+(q) < 0 and
∫
R

Λ+(dx) |ex − 1|q <
∞. We obtain

E+

 ∑
0<r<ζ

vsgn(−∆X(r))(q)

v+(q)
|∆X(r)|q

 = − 1

ψ+(q)

∫
R

Λ+(dx)
v−sgn(x)(q)

v+(q)
|ex − 1|q .
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Therefore, if we set

K+(q) = ψ+(q) +

∫
R

Λ+(dx)
v−sgn(x)(q)

v+(q)
|ex − 1|q ,

we see that

E+

 ∑
0<r<ζ

vsgn(−∆X(r))(q)

v+(q)
|∆X(r)|q

 =

{
1− K+(q)

ψ+(q) if ψ+(q) < 0,

+∞ otherwise.
(4.1)

Equation (4.1) is reminiscent of Lemma 3 in [Ber17].
Likewise, under symmetrical assumptions on q (or applying the previous calculations

to −X),

E−

 ∑
0<r<ζ

vsgn(−∆X(r))(q)

v−(q)
|∆X(r)|q

 =

{
1− K−(q)

ψ−(q) if ψ−(q) < 0,

+∞ otherwise,
(4.2)

where, with obvious notations,

K−(q) = ψ−(q) +

∫
R

Λ−(dx)
vsgn(x)(q)

v−(q)
|ex − 1|q .

Then Assumption (B) translates to K+(ω) = K−(ω) = 0 (owing to the fact that, by Perron-
Frobenius theory, the leading eigenvalue is the only one associated with a positive
eigenvector). Therefore the roots of (K+,K−) give rise to martingales, as explained in
Theorem 3.5. We call K+ and K− the signed cumulant functions. We will also use the
term cumulant functions to refer to the one defined in [BBCK18]. More precisely, let X+

(resp. X−) be the growth-fragmentation process obtained from X by killing all the cells
with negative mass (resp. positive mass) together with their progeny, under P+ (resp.
P−). We define κ+ and κ− as the cumulant functions, in the sense of [BBCK18], of X+

and X− respectively. Recall that they are given by

κ+(q) := ψ+(q) +

∫ 0

−∞
Λ+(dx)|ex − 1|q, q ≥ 0,

and

κ−(q) := ψ−(q) +

∫ 0

−∞
Λ−(dx)|ex − 1|q, q ≥ 0,

so that for instance

K+(q) = κ+(q) +
v−(q)

v+(q)

∫ ∞
0

Λ+(dx)|ex − 1|q, q ≥ 0.

Moreover, it is well-known that κ+ and κ− are invariants of X+ and X−, and characterise
them respectively (see [Shi17] for more details). We now prove the universality of
(M(n))n≥0 in the constant sign case. Let X and X ′ be two driving Markov processes
with constant sign defining the growth-fragmentation processes X and X′ respectively.
We write m(q) and m′(q) for the corresponding matrices introduced in (3.3). Recall
that (v+, v−, ω) is said admissible for X if m(ω) has Perron-Frobenius eigenvalue 1 and
(v+, v−) is an associated positive eigenvector, so that the triplet (v+, v−, ω) defines a
martingale as explained in section 3.2.

Proposition 4.1. Suppose that X
L
= X′. If (v+, v−, ω) is admissible for X, then it is also

admissible for X ′.

EJP 28 (2023), paper 49.
Page 13/45

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP937
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Self-similar signed growth-fragmentations

Proof. By definition of (K+,K−), the triplet (v+, v−, ω) is admissible for X if, and only if,
K+(ω) = K−(ω) = 0. This, in turn, is equivalent to the system

v−
v+

= − κ+(ω)∫ ∞
0

Λ+(dx)|ex − 1|ω
,

0 = κ−(ω)κ+(ω)−
∫ ∞

0

Λ+(dx)|ex − 1|ω ·
∫ ∞

0

Λ−(dx)|ex − 1|ω.

Note that all the fractions are well defined because (v+, v−) is a positive eigenvector.
Since κ+ and κ− only depend on the growth-fragmentation X induced by X, the result
follows if we show that Λ

+
∣∣(0,+∞)

and Λ
−
∣∣(0,+∞)

also depend only on X. In fact, since X

and X′ share the same positive cumulant, for instance, we have for q ≥ 0, with obvious
notations

κ+(q) = ψ+(q) +

∫ 0

−∞
Λ+(dx)|ex − 1|q = ψ′+(q) +

∫ 0

−∞
Λ′+(dx)|ex − 1|q.

Up to translation, κ+ is a Laplace exponent, and therefore uniqueness in the Lévy-
Khintchine formula triggers that Λ

+
∣∣(0,+∞)

= Λ′
+
∣∣(0,+∞)

. Similarly, using invariance of

κ−, one has Λ
−
∣∣(0,+∞)

= Λ′
−
∣∣(0,+∞)

, and this concludes the proof of Proposition 4.1.

Corollary 4.2. Suppose that X
L
= X′. If (v+, v−, ω) is admissible for X, then under Pz,

the process

M ′(s) := vsgn(X′(s))(ω)|X ′(s)|ω +
∑

0<r≤s∧ζ

vsgn(−∆X′(r))(ω)|∆X ′(r)|ω,

is a uniformly integrable martingale for the natural filtration (FX
′

t )t≥0 of X ′, with

terminal value
∑
r>0

vsgn(−∆X′(r))(ω)

vi(ω) |∆X ′(r)|ω.

4.2 Universality ofM(n) in the general case

We now move from the constant sign case to the general case. To this end, we
construct from any Eve cell process X a constant sign process X↑ driving the same
growth-fragmentation. We then prove that the triplets (v+, v−, ω) are simultaneously
admissible for X and X↑.

Constructing a constant sign driving process from a signed Eve cell. To study
signed growth-fragmentation, it is reasonable to reduce to the constant sign case in
[BBCK18]. One natural choice for this, starting from a signed Eve process X with
positive mass at time 0, is to follow it until it jumps to the negatives, and then select
the particle this jump creates (which has positive mass, since the jump is negative). If
we continue by induction, this constructs some process X↑ which, under Pz for z > 0,
remains nonnegative at all times. Note that the jump times that we select (from pos-
itive to negative) could have an accumulation point. If this happens, then by [CPR13,
Proposition 3], this accumulation point is the first time that X↑ hits 0, in which case
we decide that X↑ is absorbed at 0. Likewise, we can construct X↑ starting from a
negative mass. A first observation is that the branching structure, Markov property
and self-similarity of X ensure that X↑ is a self-similar Markov process under Pz for all
z 6= 0. Moreover, it is plain that X↑ carries the same growth-fragmentation as X itself.
In short, X and X↑ are two driving cell processes for the same growth-fragmentation. If
we manage to make explicit the law of X↑ (or rather, its Lamperti exponent) in terms of
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X (or its Lamperti-Kiu characteristics), then we are in good shape to reduce the study
to constant sign driving cell processes. Let us focus on the case when X starts from
a positive mass z > 0, say, and recall the notation ξ+, q+ and U+ of section 2.1. Then
the independence and stationarity of increments of the Lévy process ξ+ imply that, up
to Lamperti-Kiu time change, going from X to X↑ amounts to adding jumps to ξ+ at
times ζ+, which are exponential clocks with parameter q+. Call H1 the first time when X
crosses 0. Then the intensity δ of these jumps is exactly what it takes, at the exponential

level, to go from X(H−1 ) to X↑(H1), i.e. δ = log
(
−∆X(H1)

X(H−1 )

)
= log(1 + eU+). Therefore,

the Lamperti exponent ξ↑+ of X↑ started from z > 0 results in the superposition of ξ+
and an independent compound Poisson process with rate q+ and jumps distributed as
the image Λ̃U+

(dx) of the law ΛU+
(dx) of U+, by the mapping x 7→ log(1 + ex). Hence its

Laplace exponent is

ψ↑+(q) = ψ+(q) + q+

(∫
R

(1 + ex)qΛU+
(dx)− 1

)
, q ≥ 0, (4.3)

and, in particular, its Lévy measure is

Λ↑+(dx) := Λ+(dx) + q+Λ̃U+
(dx). (4.4)

Note that these expressions only depend on the positive characteristics of X, and this is
coherent with the construction of X↑. The same calculations can be carried out in the
case when z < 0, and finally, we obtain

ψ↑−(q) = ψ−(q) + q−

(∫
R

(1 + ex)qΛU−(dx)− 1

)
, q ≥ 0. (4.5)

See Figure 2 for a drawing of X↑.

Universality of M(n) and the signed cumulant functions. We want to extend the
result of Proposition 4.1 to general signed driving processes. To do this, we resort to X↑

and link admissible triplets (v+, v−, ω) for X and X↑. First, we state a technical lemma,
that is probably superfluous, but simplifies calculations.

Lemma 4.3. The following points are equivalent:

(i) (v+, v−, ω) is admissible for X.

(ii) The process M defined in Proposition 3.6 with parameters (v+, v−, ω) is a uniformly
integrable martingale.

(iii) Let H1 be the first time X crosses 0. Then,

E± [M(H1)] = v±.

Proof. The implication (i)⇒ (ii) has already been proved in Proposition 3.6, and (ii)⇒
(iii) follows from an application of the optional stopping theorem and the uniform
integrability of M . Therefore only (iii) ⇒ (i) remains to be proved. Assume that we
know (iii). Denote by H0 = 0 < H1 < H2 < . . . the sequence of times when X crosses 0.
Then

E+

[∑
s>0

v−sgn(∆X(s))|∆X(s)|ω
]

=
∑
k≥0

E+

 ∑
Hk<s≤Hk+1

v−sgn(∆X(s))|∆X(s)|ω
 .
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Figure 2: Constructing a positive Eve cell process from X. The process X↑ (in bold) is
constructed from X by selecting the complementary positive cell created when X jumps
below 0, and then by induction.

By the Markov property and the self-similarity of X, this entails

E+

[∑
s>0

v−sgn(∆X(s))|∆X(s)|ω
]

=
∑
k≥0

E+ [|X(H2k)|ω]E+

 ∑
0<s≤H1

v−sgn(∆X(s))|∆X(s)|ω


+
∑
k≥0

E+ [|X(H2k+1)|ω]E−

 ∑
0<s≤H1

v−sgn(∆X(s))|∆X(s)|ω
 .

Making use of (iii), this means

E+

[∑
s>0

v−sgn(∆X(s))|∆X(s)|ω
]

=
∑
k≥0

E+ [|X(H2k)|ω] (v+ − v−E+[|X(H1)|ω])

+
∑
k≥0

E+ [|X(H2k+1)|ω] (v− − v+E−[|X(H1)|ω]) .

Using the Markov property backwards, we have

E+ [|X(H2k)|ω]E+[|X(H1)|ω] = E+ [|X(H2k+1)|ω] ,

and likewise E+ [|X(H2k+1)|ω]E−[|X(H1)|ω] = E+ [|X(H2k+2)|ω] for all k ≥ 0. We can
therefore simplify the previous expression by telescoping series (one can first use a
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truncated version of the series in order to split the sums). This gives

E+

[∑
s>0

v−sgn(∆X(s))|∆X(s)|ω
]

= v+

∑
k≥0

E+ [|X(H2k)|ω]− v+

∑
k≥0

E+ [|X(H2k+2)|ω] .

Therefore,

E+

[∑
s>0

v−sgn(∆X(s))|∆X(s)|ω
]

= v+.

Similarly,

E−

[∑
s>0

v−sgn(∆X(s))|∆X(s)|ω
]

= v−,

and so (v+, v−, ω) is admissible for X.

We may now bridge the gap between X and X↑.

Proposition 4.4. A triplet (v+, v−, ω) is admissible for X if, and only if, it is admissible
for X↑.

Proof. We use (iii) in Lemma 4.3 above. Define M↑ as the process in Proposition 3.6
associated with X↑ and with parameters (v+, v−, ω). The key remark is that M(H1) =

M↑(H1) a.s. Indeed, under P+ say, −∆X(H1) = X↑(H1) > 0, and −∆X↑(H1) = X(H1) <

0, a.s. Therefore, (v+, v−, ω) is admissible for X if and only if,

E±[M↑(H1)] = v±. (4.6)

It remains to prove that this is equivalent to (v+, v−, ω) being admissible for X↑. First,
the optional stopping theorem gives that if (v+, v−, ω) is admissible for X↑, then (4.6)
holds. Conversely, we can more or less run the same arguments as in the proof of
(iii)⇒ (i) in Lemma 4.3. For example, if we denote by T0 = 0 < T1 < T2 < . . . the times
corresponding to those special jumps of X↑ that correspond to sign changes for X, then
using the Markov property and self-similarity of X↑

E+

[∑
t>0

v−sgn(∆X↑(t))|∆X↑(t)|ω
]

=
∑
k≥0

E+

[
|X↑(Tk)|ω

]
E+

 ∑
0<t≤T1

v−sgn(∆X↑(t))|∆X↑(t)|ω


By (4.6), this is

E+

[∑
t>0

v−sgn(∆X↑(t))|∆X↑(t)|ω
]

= v+

∑
k≥0

E+

[
|X↑(Tk)|ω

] (
1−E+[|X↑(T1)|ω]

)
.

Yet by applying the Markov property backwards,∑
k≥0

E+

[
|X↑(Tk)|ω

] (
1−E+[|X↑(T1)|ω]

)
=
∑
k≥0

E+

[
|X↑(Tk)|ω

]
−
∑
k≥0

E+

[
|X↑(Tk+1)|ω

]
= 1.

Therefore

E+

[∑
t>0

v−sgn(∆X↑(t))|∆X↑(t)|ω
]

= v+,
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and similarly

E−

[∑
t>0

v−sgn(∆X↑(t))|∆X↑(t)|ω
]

= v−.

Thus (v+, v−, ω) is admissible for X↑.

Proposition 4.4, in turn, enables us to define general signed cumulant functions.
Recall from section 2.1 the notation G+,−(q) := E[eqU+ ] and G−,+(q) := E[eqU− ] for the
Laplace transforms of the special jumps.

Corollary 4.5. Let

K+(q) = ψ↑+(q) +

∫
R

Λ↑+(dx)
v−sgn(x)(q)

v+(q)
|ex − 1|q

= κ+(q) +
v−(q)

v+(q)

(∫ ∞
0

Λ+(dx)|ex − 1|q + q+G+,−(q)

)
,

and

K−(q) = ψ↑−(q) +

∫
R

Λ↑−(dx)
vsgn(x)(q)

v−(q)
|ex − 1|q

= κ−(q) +
v+(q)

v−(q)

(∫ ∞
0

Λ−(dx)|ex − 1|q + q−G−,+(q)

)
,

be the signed cumulant functions associated with X↑ – which we rephrased in terms of
X thanks to (4.3) and (4.5). Then the suitable martingale exponents ω for X are the
roots of (K+,K−).

The final end to the universality ofM(n) is provided by the next theorem.

Theorem 4.6. (Universality ofM(n))

Let X and X ′ be two possibly signed cell processes, driving the same growth-
fragmentation X = X′. Then (v+, v−, ω) is admissible for X if, and only if, it is admissible
for X ′.

Proof. This is a corollary of Propositions 4.1 and 4.4. We have the following equivalences:
(v+, v−, ω) is admissible for X if and only if it is admissible for X↑ (Proposition 4.4), i.e.
if and only if it is admissible for (X ′)↑ (Proposition 4.1), i.e. if and only if it is admissible
for X ′ (Proposition 4.4).

5 The spinal decomposition

This section is devoted to the study of self-similar signed growth-fragmentations
under the change of measure given in section 3.3. In particular, we aim at describing the
law of the tagged cell under P̂z. Roughly speaking, we shall see that by changing the
measure according to section 3.3, the tagged cell X̂ evolves as an explicit self-similar
Markov process Y , and conditionally on its evolution, the growth-fragmentations induced
by the jumps of X̂ are independent with law Px where −x is the jump size.

5.1 Description and results

Description of the Markov process Y . We first introduce a Markov process that
will describe the law of the spine in the next paragraph. Remember the couple of Lévy
measures (Λ↑+,Λ

↑
−) for the constant sign process constructed in paragraph 4.2. Let us

EJP 28 (2023), paper 49.
Page 18/45

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP937
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Self-similar signed growth-fragmentations

set some notation and write

σ+(q) :=
v−(ω)

v+(ω)

∫ ∞
0

|ex − 1|qΛ↑+(dx)

=
v−(ω)

v+(ω)

(∫ ∞
0

Λ+(dx)|ex − 1|q + q+G+,−(q)

)
, q ≥ 0,

and symmetrically,

σ−(q) :=
v+(ω)

v−(ω)

∫ ∞
0

|ex − 1|qΛ↑−(dx)

=
v+(ω)

v−(ω)

(∫ ∞
0

Λ−(dx)|ex − 1|q + q−G−,+(q)

)
, q ≥ 0.

Recall the notation (K+,K−) for the signed cumulant functions and (κ+, κ−) for the
cumulant functions (see section 4.1 and Corollary 4.5). Define the following matrix

F̂ (q) :=

(
κ+(ω + q) σ+(ω + q)

σ−(ω + q) κ−(ω + q)

)
, q ≥ 0.

Lemma 5.1. Let (ξ̂+, ξ̂−) be a pair of independent Lévy processes with Laplace expo-
nents

ψ̂+(q) := κ+(ω + q)− κ+(ω), q ≥ 0,

and

ψ̂−(q) := κ−(ω + q)− κ−(ω), q ≥ 0.

Furthermore, let q̂± := σ±(ω), and (Û+,−, Û−,+) be a pair of random variables with

respective Laplace transforms G+,−(q) := σ+(ω+q)
σ+(ω) and G−,+(q) := σ−(ω+q)

σ−(ω) for q ≥
0. Then the Markov additive process (ξ̂, Ĵ) defined piecewise as in (2.1) with these
characteristics has matrix exponent F̂ .

Remark 5.2. Note that for instance

κ+(ω + q)− κ+(ω) = ψ↑+(ω + q)− ψ↑+(ω) +

∫
(−∞,0)

(
(1− ex)ω+q − (1− ex)ω

)
Λ↑+(dx).

Therefore ξ̂+ can be obtained by the Lévy-Itô decomposition as a superposition of
a Lévy process η+ with Laplace exponent q 7→ ψ↑+(ω + q) − ψ↑+(ω), and a compound

Poisson process ν+ with Lévy measure eωxΛ̃
+
∣∣(−∞,0)

(dx), where Λ̃+ is the pushforward

measure of Λ↑+ by x 7→ log |1− ex|. In this decomposition, ν+ will in fact stand for special
jumps of the spine corresponding to changes in the generation of the spine (when we
select a negative jump), whereas η+ stems from biasing ξ+ according to its exponential
martingale.

Notation 5.3. We shall denote by Y the real-valued self-similar Markov process with
Lamperti-Kiu characteristics (α, F̂ ).

Proof of Lemma 5.1. The only point is to prove that F̂ is indeed the matrix exponent of
this MAP. This follows from straightforward calculations, using K+(ω) = K−(ω) = 0. For
example, the first entry of the matrix exponent should be

ψ̂+(q)−q̂+ = κ+(ω+q)−κ+(ω)−v−(ω)

v+(ω)

∫ ∞
0

|ex−1|ωΛ↑+(dx) = κ+(ω+q)−K+(ω) = κ+(ω+q).
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Rebuilding the growth-fragmentation from the spine. To give a precise statement
on the law of the growth-fragmentation under P̂z, we need to rebuild the growth-
fragmentation from the spine. As in section 3.1, the first step is to label the jumps of
X̂ . In general, we do not know if we can rank those in lexicographical order, and thus
we use the following procedure. Jumps of the tagged cell X̂ will be labelled by pairs
(n, j), n ≥ 0 denoting the generation of the tagged cell immediately before the jump, and
j ≥ 1 being the rank (in the usual lexicographical sense) of the jump among those of the
tagged cell at generation n (we also count the final jump, when the generation changes
to n+ 1). For each such (n, j), we can define the growth-fragmentation X̂n,j stemming
from the corresponding jump. More precisely, if the generation stays the same during
the (n, j)–jump, then we set

X̂n,j(t) := {{Xuw(t− buw + bu), w ∈ U and buw ≤ t+ bu < buw + ζuw}} ,

where u is the label of the cell born at the (n, j)–jump. On the contrary, if the (n, j)–jump
corresponds to a jump for the generation of the tagged cell, then the tagged cell jumps
from label u to label uk say, and we set

X̂n,j(t) := {{Xuw(t− buw + buk), w ∈ U \ {k} and buw ≤ t+ buk < buw + ζuw}} .

Finally, we agree that X̂n,j := ∂ when the (n, j)–jump does not exist, and this sets X̂n,j

for all n ≥ 0 and all j ≥ 1.

Description of the growth-fragmentation under P̂z. We are now set to describe
the law of X under P̂z. Recall the definition of Y from Notation 5.3, and that nt denotes
the generation of the spine at time t.

Theorem 5.4. Under P̂1, (X̂ (t), 0 ≤ t < bL) is distributed as (Y (t), 0 ≤ t < I). Moreover,
conditionally on (X̂ (t), nt)0≤t<bL , the processes X̂n,j , n ≥ 0, j ≥ 1, are independent and

each X̂n,j has law Px(n,j) where −x(n, j) is the size of the (n, j)–th jump.

Before we come to the proof, let us make some comments on this result.

Remark 5.5. 1. We can give the joint law of (X̂ (t), nt)0≤t<bL . Note that, unlike X̂ , the
law of nt depends on the choice of the Eve cell. For example, in the case when the
Eve cell is X↑, the joint law of (X̂ (t), nt)0≤t<bL is the same as (Y (t), N(τt))0≤t<I ,
where (N(t), t ≥ 0) is the Poisson process arising from the superposition of ν+ and
the compound Poisson process corresponding to the sign changes of Y (modulo
Lamperti time-change τt).

2. We can rephrase the theorem perhaps more tellingly by clarifying the character-
istics ξ̂±, q̂±, Û±,∓ describing the MAP. Let us do this for the positive part (the

negative one being analogous). As explained in Remark 5.2, the Lévy process ξ̂+
is the result of a superposition of a biased version of ξ+, and a compound Poisson
process. This compound Poisson process takes care of special jumps of the spine:
namely, it takes care of the eventuality that the spine selects a negative jump of
the driving process, so that the spine remains positive at the next generation. The
variable q̂+ is an exponential random variable which has parameter σ+(ω), that is
to say it corresponds to the first time the spine becomes negative. This happens
either because the driving process it follows does, or because the spine jumps to a
negative cell, and this is conspicuous in the two terms of σ+. Finally, the variable
U+ is the intensity of the jumps of the spine when it crosses 0 (again, both cases
can happen).

3. The signed growth-fragmentation X is characterised by (κ+, κ−). Theorem 5.4
shows that the law of the spine also characterises X.
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4. One can retrieve from the first entry of F̂ the description of the spine for unsigned
growth-fragmentation presented in [BBCK18], Theorem 4.2. Note, however, that
the exponent ω differs, and this is because of the h-transform used to condition
the spine to remain positive. We refer to [DDK17], Appendix 8, for details on these
harmonic functions for self-similar real-valued Markov processes. We will give
details of this for a particular family of signed growth-fragmentation processes in
the next section.

5. The process (Mt, t ≥ 0) in Corollary 3.9 is a supermartingale, but when is it a
martingale? Proposition 3.8 gives that

∀t ≥ 0, Ez[Mt] = vsgn(z)(ω)|z|ωP̂z(X̂ (t) ∈ R∗).

Therefore (Mt, t ≥ 0) is a martingale if, and only if, for all t ≥ 0, P̂z(X̂ (t) ∈ R∗) = 1.
This, in turn, is equivalent to Y having infinite lifetime. In particular, if ακ′+(ω) > 0

and ακ′−(ω) > 0, then αξ̂+ and αξ̂− both drift to +∞ (ξ̂+ and ξ̂− both drift to +∞ or

−∞ depending on the sign of ψ̂′±(0) = κ′±(ω)), and by Lamperti time-change Y has
infinite lifetime and (Mt, t ≥ 0) is a martingale. On the other hand, if ακ′+(ω) < 0

or ακ′−(ω) < 0, then for symmetric reasons (Mt, t ≥ 0) is not a martingale.

5.2 Proof of Theorem 5.4

Proof in the constant sign case. We look at the specific example when the Eve
cell X has no sign change. In this case, the Lamperti representation holds, and so the
compensation formula for Lévy processes makes it simpler to determine the law of the
spine X̂ . This paragraph is therefore an extension of [BBCK18], when we also take into
account the positive jumps.

Let us prove the first claim. First of all, we can restrict to the homogeneous case α = 0:
for a general index α, the result then stems from Lamperti time-change. Furthermore, the
definition of X̂ and the branching property ensure that (X̂ (t), t ≥ 0) is an homogeneous
Markov process, and therefore can be written as the exponential of a MAP. The claim
now boils down to finding its characteristics (Ξ±, Q±, V±,∓), and for obvious reasons of
symmetry, we restrict to finding (Ξ+, Q+, V+,−).

� Determining the law of Ξ+. This is essentially done in [BBCK18], but we recall
the main ideas for the sake of completeness. The branching structure enables us
to focus on the law of (Ξ+(t), 0 ≤ t ≤ bL(1)). Let f, g be two nonnegative measur-
able functions defined on the space of finite càdlàg paths and on R respectively.
Therefore, we want to compute

Ê1

[
f
(

log(X̂ (s)), 0 ≤ s < bL(1)

)
g

(
log
X̂ (bL(1))

X̂ (b−L(1))

)
1∀0≤s≤bL(1), X̂ (s)>0

]

= E+

[∑
t>0

|∆X(t)|ωf (log(X(s)), 0 ≤ s < t) g

(
log
−∆X(t)

X(t−)

)
1∆X(t)<0

]

= E+

[∑
t>0

eωξ+(t−)f (ξ+(s), 0 ≤ s < t) g
(

log
∣∣∣1− e∆ξ+(t)

∣∣∣) ∣∣∣1− e∆ξ+(t)
∣∣∣ω 1∆ξ+(t)<0

]

= E+

[∫ ∞
0

dteωξ+(t)f (ξ+(s), 0 ≤ s < t)

] ∫ 0

−∞
Λ+(dx) |1− ex|ω g (log |1− ex|)

= E+

[∫ ∞
0

dteωξ+(t)f (ξ+(s), 0 ≤ s < t)

] ∫ 0

−∞
Λ̃+(dx)eωxg(x),
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where we used the compensation formula. Thus, under P̂1, on the event that X̂ (s) >

0 for all s ∈ [0, bL(1)], the two processes log
X̂ (bL(1))

X̂ (b−L(1)
)

and
(

log(X̂ (s)), 0 ≤ s < bL(1)

)
are independent. The former has the law −ψ+(ω)−1eωxΛ̃

+
∣∣(−∞,0)

(dx), and the

latter is distributed as ξ+ killed according to exp(ωξ+(t)), so that it gives a Lévy
process with Laplace exponent q 7→ ψ+(ω + q). Note that, in particular, bL(1) is an
exponential random variable with parameter −ψ+(ω). On the second hand, we can
do the same for ξ̂+. Recall the notation (η+, ν+) from Remark 5.2. Denote by T1 the
first time when the compound Poisson process ν+ has a jump: T1 is exponential
with parameter −ψ+(ω). Since these jumps arise according to eωxdt · Λ̃

+
∣∣(−∞,0)

(dx),

its first jump ∆ν+(T1) is distributed according to −ψ+(ω)−1eωxΛ̃
+
∣∣(−∞,0)

(dx), and

is independent of the process (η+(s), 0 ≤ s < T1). The latter, in turn, is η+ killed
at an independent exponential time with parameter −ψ+(ω). Since the Laplace
exponent of η+ is by definition

ψη+
(q) := ψ+(ω + q)− ψ+(ω),

we get that (η+(s), 0 ≤ s < T1) has Laplace exponent q 7→ ψ+(ω + q). Therefore,
we obtain the same description, and this entails that Ξ+ and ξ̂+ have the same
distribution.

� Determination of Q+. Call Ĥ1 the first time when X̂ becomes negative. Since X
always remains positive when started from a positive mass, Ĥ1 corresponds to
the first time when the spine picks a positive jump in the change of measure 3.3.
Therefore, Ĥ1 can be written

Ĥ1 =

G∑
i=1

τi,

where G is a random variable corresponding to the generation of the spine at which
a negative particle is selected, and τi = bL(i) − bL(i−1), i ≥ 1. Since on the event
that the spine selects a negative jump, we have seen that bL(1) is exponential with
parameter −ψ+(ω), we may deduce from the branching property that the τi’s form
an independent family of exponential variables with parameter −ψ+(ω). Moreover,
G is a geometric variable on N∗ with probability of success p given by

p := P̂1(X̂ (bL(1)) < 0) = E+

(∑
t>0

v−(ω)

v+(ω)
|∆X(t)|ω 1∆X(t)>0

)
.

Again, the compensation formula for ξ+ yields

p = − 1

ψ+(ω)
· v−(ω)

v+(ω)

∫ ∞
0

Λ+(dx)|ex − 1|ω = −σ+(ω)

ψ+(ω)
.

As a sum of a geometric number of independent exponential variables, Ĥ1 is an
exponential random variable with parameter

Q+ = −ψ+(ω) · p = σ+(ω).

Therefore Q+ = q̂+.

� Determination of V+,−. For q ≥ 0, we have

Ê1[eqV+,− ] =

∞∑
i=1

Ê1

[(
|X̂ (Ĥ1)|
X̂ (Ĥ−1 )

)q
1G=i

]
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Let ai := Ê1

[(
|X̂ (Ĥ1)|
X̂ (Ĥ−1 )

)q
1G=i

]
, i ≥ 1. Then, for i ≥ 2, conditioning on the spine at

time bL(1) and using the Markov property yields

ai = E+

(∑
t>0

|∆X(t)|ω1∆X(t)<0 · Ê−∆X(t)

[(
|X̂ (Ĥ1)|
X̂ (Ĥ−1 )

)q
1G=i−1

])

= E+

(∑
t>0

|∆X(t)|ω1∆X(t)<0

)
· ai−1,

by self-similarity. Hence, (ai)i≥1 is a geometric progression with common ratio

E+

(∑
t>0

|∆X(t)|ω1∆X(t)<0

)
= − 1

ψ+(ω)

∫ 0

−∞
|ex − 1|ωΛ+(dx),

by an application of the compensation formula. Moreover, by another use of the
compensation formula, the first term is

a1 = Ê1

[(
|X̂ (Ĥ1)|
X̂ (Ĥ−1 )

)q
1G=1

]

= E+

[∑
t>0

1∆X(t)>0
v−(ω)

v+(ω)
|∆X(t)|ω

(
|∆X(t)|
X(t−)

)q]

=
v−(ω)

v+(ω)
E+

[∑
t>0

1∆ξ+(t)>0eωξ+(t−)
∣∣∣e∆ξ+(t) − 1

∣∣∣q+ω]

= −v−(ω)

v+(ω)
· 1

ψ+(ω)

∫ ∞
0

|ex − 1|q+ωΛ+(dx)

= −σ+(q + ω)

ψ+(ω)
.

Finally, we get that

Ê1[eqV+,− ] = − σ+(ω + q)

ψ+(ω) +

∫ 0

−∞
|ex − 1|ωΛ+(dx)

.

Using that K+(ω) = 0, we come to the conclusion that

Ê1[eqV+,− ] =
σ+(ω + q)

σ+(ω)
.

We have proved that (Ξ+, Q+, V+,−)
L
= (ξ̂+, q̂+, Û+,−). Therefore the first claim of Theo-

rem 5.4 follows readily from Lemma 5.1.

The spinal decomposition in the general case. We now prove the spinal decom-
position under the tilted measure P̂1 by restricting to the previous case. More precisely,
we want to prove that the law of (X̂ (t), nt)0≤t<bL under P̂1 is the same as under P̂↑1 ,
where P̂↑1 is the change of probability induced by X↑ via section 3.3. Indeed, since X↑ is
nonnegative, the case of P̂↑1 comes under the previous paragraph, for which the spinal
decomposition has just been established.

The definition of P̂1 clearly depends on the Eve cell. Note however that we have
proved in Theorem 4.6 that the exponent ω and the constants (v−(ω), v+(ω)) depend only
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on the growth-fragmentation (see also Proposition 4.4 for the relation between X and
X↑). Therefore, Proposition 3.8 entails that the marginal law of X̂ only depends on the
growth-fragmentation X. In order to prove that the law of X̂ itself is invariant within
the same growth-fragmentation, we need to extend Proposition 3.8 to finite-dimensional
distributions. To avoid cumbersome notation, we state and prove the result for two times
s < t. We want to show that for z 6= 0 and nonnegative measurable functions f, g such
that f(∂) = g(∂) = 0,

vsgn(z)(ω)|z|ωÊz
(
f(X̂ (t))g(X̂ (s))

)
= Ez

∑
j≥1

g(Xj(s))EXj(s)

∑
i≥1

vsgn(Xi(t−s))(ω)|Xi(t− s)|ωf(Xi(t− s))

 . (5.1)

If one is willing to accept that X̂ is a Markov process, then this follows readily from
Proposition 3.8. Otherwise, we can prove this directly. Let us mimic the proof of
Proposition 3.8. Splitting over u(t) as in equation (3.5) and then conditioning on F t and
using the branching property, we get

vsgn(z)(ω)|z|ωÊz
(
f(X̂ (t))g(X̂ (s))1bL(n+1)>t

)
= Ez

 ∑
|w|≤n

g(Xw(s)(s− bw(s)))vsgn(Xw(t−bw))(ω)|Xw(t− bw)|ωf(Xw(t− bw))1bw≤t

 .

We may then split this again over w(s) = w′. Using the branching property, this gives

vsgn(z)(ω)|z|ωÊz
(
f(X̂ (t))g(X̂ (s))1bL(n+1)>t

)
= Ez

( ∑
|w′|≤n

g(Xw′(s− bw′))1bw′<s

×EXw′ (s−bw′ )
[ ∑
|w|≤n−|w′|

vsgn(Xw(t−s−bw))(ω)|Xw(t−s−bw)|ωf(Xw(t−s−bw))1bw<t−s

])
.

Now taking n→∞ yields the desired identity (5.1).

Proof of the second assertion. We finally prove the second assertion of Theorem 5.4
directly in the general setting. We will limit ourselves to proving the statement for
the first generation (this is easily extended using the branching property). Let f be a
nonnegative measurable functional on the space of càdlàg trajectories, and gj , j ≥ 1, be
nonnegative measurable functionals on the space of multiset–valued paths. For t > 0,
denote by (∆j(t), j ≥ 1) the sequence consisting of the value of X∅(t), and all those
jumps of X∅ that happened strictly before time t, ranked in descending order of their
absolute value. Our goal is to show that

Ê1

f(X∅(s), 0 ≤ s ≤ bL(1))
∏
j≥1

gj(X̂0,j)


= Ê1

f(X∅(s), 0 ≤ s ≤ bL(1))
∏
j≥1

E∆j(bL(1)) [gj(X)]

 .
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But,

Ê1

f(X∅(s), 0 ≤ s ≤ bL(1))
∏
j≥1

gj(X̂0,j)


= E1

∑
t>0

vsgn(−∆X∅(t))(ω)

v+(ω)
|∆X∅(t)|ωf(X∅(s), 0 ≤ s ≤ t)

∏
j≥1

gj(X̂0,j)

 ,

and the definition of the X̂0,j together with the branching property give

Ê1

f(X∅(s), 0 ≤ s ≤ bL(1))
∏
j≥1

gj(X̂0,j)


= E1

∑
t>0

vsgn(−∆X∅(t))(ω)

v+(ω)
|∆X∅(t)|ωf(X∅(s), 0 ≤ s ≤ t)

∏
j≥1

E∆j(t) [gj(X)]

 .

Applying the change of measure backwards, we get the desired identity. Therefore
Theorem 5.4 is proved.

6 A distinguished family of signed growth-fragmentations

Following [AS22], we construct a particular family of signed growth-fragmentations.
These can be seen in the upper half-plane by cutting at heights a path with real part
given by a stable Lévy process, and imaginary part a positive Brownian excursion. This
can be done for any self-similarity index α in (0, 2), but for reasons that will be clarified
later on, we take α to be in (1, 2).

6.1 Notation and setup

We recall from [AS22] the following framework. All the definitions and results
basically extend directly from the half-planar Brownian case.

The excursion measure nα. Let (Ω,F ,P) be a complete probability space, on which
Xα is an α–stable Lévy process, and Y an independent Brownian motion. Recall that the
Laplace exponent of Xα is of the form

ψα(q) :=
c+ − c−
1− α

q +

∫
R

(eqy − 1− qey1|y|<1)να(y)dy, (6.1)

where

να(y) := csgn(y)|y|−α−1,

is the Lévy measure of Xα, and c+, c− are constants such that c+ + c− > 0. We will
choose the value of c+ and c− later on in Section 6.4. Call (Ft)t≥0 the standard filtration
associated with (Xα, Y ). Write X for the space of càdlàg functions x with finite duration
R(x), equipped with the standard σ-field generated by the coordinates. Let X0 be the
subset of such functions in X that are continuous and vanish at R(x). Finally, let

U := {u = (x, y) ∈X ×X0, u(0) = 0 and R(x) = R(y)} and U∂ := U ∪ {∂},

where ∂ is a cemetery state. For u ∈ U we shall write R(u) := R(x) = R(y). We endow
this set with the product σ–field Uδ and the filtration (Ft)t≥0 adapted to the coordinate
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process on U . Also, we write (Ls, s ≥ 0) for the local time at 0 of the Brownian motion Y
and Ts its inverse.

We define on (Ω,F ,P) the excursion process (εαs , s > 0) as in the case of planar
Brownian motion in [AS22], except that we take for the real part X the α–stable Lévy
process Xα (which has discontinuities), namely:

(i) if Ts − Ts− > 0, then

εαs : r 7→
(
Xα
r+Ts−

−Xα
Ts−

, Yr+Ts−

)
, r ≤ Ts − Ts− ,

(ii) if Ts − Ts− = 0, then εαs = ∂.

Then it is not difficult to see that the excursion process (εαs )s>0 is a (FTs)s>0–Poisson
point process (see [RY99], Chap. XII, Theorem 2.4, for the one-dimensional case). We
denote by nα its intensity, which is a measure on U , and we denote by nα+ and nα− its
restrictions to U+ := {u = (x, y) ∈ U, y ≥ 0} and U− := {u = (x, y) ∈ U, y ≤ 0}. An easy
calculation gives the following expression for nα.

Proposition 6.1. nα(dx, dy) = n(dy)P((Xα)R(y) ∈ dx), where n denotes the one-dimen-
sional (Brownian) Itô measure on X0, and (Xα)T := (Xt, t ∈ [0, T ]).

Figure 4 shows a drawing of such an excursion.

Descriptions of the excursion measure nα+. We first state for future reference the
Markov property of nα+. For any u ∈ U and any a > 0, let Ta := inf{0 ≤ t ≤ R(u), y(t) = a}
be the hitting time of a by y. Recall Ft := σ(u(s), 0 ≤ s ≤ t).
Proposition 6.2. (Markov property under nα+)

Under nα+, on the event {Ta < ∞}, the process (u(Ta + t)− u(Ta))0≤t≤R(u)−Ta is
independent of FTa and has the law of (Xα, Y ) killed at the first hitting time of {=(z) =

−a}.
The proof of Proposition 6.2 results from the Markov property under the Itô measure

n (cf. Theorem 4.1, Chap. XII in [RY99]), and the Markov property of Xα.
We now recall Bismut’s description of nα+, which is also a direct consequence of the

analogous description of Itô’s measure (see [RY99, Theorem XII.4.7]).

Proposition 6.3. (Bismut’s description of nα+)
Let nα+ be the measure defined on R+ × U+ by

nα+(dt,du) = 1{0≤t≤R(u)}dt n
α
+(du).

Then under nα+ the “law” of (t, (x, y)) 7→ y(t) is the Lebesgue measure da and conditionally
on y(t) = a, ut,← = (u(t− s)− u(t))0≤s≤t and ut,→ = (u(t+ s)− u(t))0≤s≤R(u)−t are inde-
pendent with respective laws (−Xα, Y ) and (Xα, Y ) killed when reaching {=(z) = −a}.

Note that, unlike the planar Brownian case, there is a minus sign for the left part of
the trajectory: this is because of the time-reversal, which involves the dual of the Lévy
process Xα. See Figure 3 for an illustration.

Disintegration of nα+. Finally, we disintegrate the infinite measure nα+ over the endpoint
z = x(R(u)). This defines probability measures γαz , z 6= 0, which are the laws of
excursions (Xα, Y ) conditionally on having displacement z. Introduce Pa→bα,r as the law of
an α–stable Lévy bridge of length r between a and b (see [Ber96, Chapter VIII]), and Πr

as the law of a three-dimensional Bessel (BES3) bridge of length r from 0 to 0. Moreover,
we denote by (pαt )t≥0 the transitions of the α–stable Lévy process.
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Figure 3: An illustration of Bismut’s description of nα+. Under nα+, conditionally on y(t),
the left part (in red) and right part (in blue) evolve independently and are identically
distributed up to time-reversal.

Proposition 6.4. We have the following disintegration formula

nα+ =

∫
R

dz
Csgn(z)

|z|1+α/2
γαz , (6.2)

where

C± =
α

2
√

2π

∫ ∞
0

rα/2pα1 (±r)dr,

and for z 6= 0, γαz is the probability measure defined by

γαz =

∫
R+

dv
pα1 (sgn(z)v−1/α)

2
√

2πCsgn(z)v3/2+1/α
P0→z
α,|z|αv ⊗Π|z|αv. (6.3)

Remark 6.5. The constants C± can be calculated (see [KP21], Section 1). For example,
if Xα is the so-called normalised stable process of index α, then

C+ =
α

2
√

2π
Γ
(α

2

)
sin
(παρ

2

)
,

where ρ = P(Xα(1) > 0).

Proof. Although the proof follows exactly the same lines as in [AS22], we include it here
to highlight the importance of the sign of z, which does not show up in the Brownian case
for symmetry reasons. Let f and g be two nonnegative measurable functions defined on
X and X0 respectively. Applying Itô’s description of n+ conditioned on its duration in
terms of a Bessel bridge (see [RY99], Chap. XII, Theorem 4.2), we get∫

U

f(x)g(y) nα+(dx, dy) =

∫
U

f(x)g(y)n+(dy)P
(

(Xα)R(y) ∈ dx
)

=

∫
R+

dr

2
√

2πr3

∫
X

f(x) Πr[g]P ((Xα)r ∈ dx) .
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Now, decomposing on the value of Xα(r) yields∫
U

f(x)g(y) nα+(dx, dy) =

∫
R+

dr

2
√

2πr3

∫
R

dz pαr (z)Πr[g]E0→z
α,r [f ] .

Using scale invariance, we have pαr (z) = r−1/αpα1 (r−1/αz). We finally perform the change
of variables v(r) = r/|z|α to get∫

U

f(x)g(y) nα+(dx, dy) =

∫
R

dz

|z|1+α/2

∫
R+

dv
pα1 (sgn(z)v−1/α)

2
√

2πv3/2+1/α
E0→z
α,v|z|α [f ] Πv|z|α [g].

The constants C+ and C− are then the normalising constants needed for γαz to be a
probability measure.

6.2 Slicing excursions above levels

We present the point of view that we will be interested in. We aim at describing a
branching structure that shows up when slicing excursions at heights.

Excursions above levels. We recall the following constructions from [AS22]. Let
u = (x, y) ∈ U+. For a ≥ 0, the set

I(a) = {s ∈ [0, R(u)], y(s) > a} ,

is a countable (possibly empty) union of disjoint open intervals, and for any such interval
I = (i−, i+), we write uI(s) := u(i−+ s)−u(i−), 0 ≤ s ≤ i+− i−, for the restriction of u to
I, and ∆uI = x(i+)− x(i−). We call ∆uI the size or length of uI , which may be negative.

For z = u(t), 0 ≤ t ≤ R(u), and 0 ≤ a < =(z), we define e(t)
a = uI , where I is the unique

open interval in the above partition of I(a) containing t.
Moreover, set

ut,← := (u(t− s)− u(t))0≤s≤t ,

ut,→ := (u(t+ s)− u(t))0≤s≤R(u)−t .

Define

F (t) : a ∈ [0,=(z)] 7→ ∆e(t)
a = ut,→(T t,→a )− ut,←(T t,←a ),

where

T t,←a := inf {s ≥ 0, y(t− s) = a} and T t,→a := inf {s ≥ 0, y(t+ s) = a} .

Observe that for nα+–almost every excursion, F (t) is right-continuous on (0, y(t)] for
all 0 ≤ t ≤ R(u) (use Lemma 4.8, Chapter 0 of [RY99], and the fact that, under nα+,
discontinuities of the real part and local minima of the imaginary part never occur at the
same time).

Loops above levels. As in [AS22], Proposition 6.3 enables to prove that excursions
under nα+ have no loop above any level.

Proposition 6.6. Let

L := {u ∈ U+, ∃0 ≤ t ≤ R(u), ∃0 ≤ a < y(t), ∆e(t)
a (u) = 0},

be the set of excursions u having a loop remaining above some level a. Then nα+ (L ) = 0.
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Proof. We repeat the arguments of [AS22, Proposition 2.7] for the sake of completeness.
We first prove the result under nα+, namely

nα+

(
{(t, u) ∈ R+ × U+, ∃0 ≤ a < y(t), ∆e(t)

a (u) = 0}
)

= 0.

Bismut’s description of nα+ gives

nα+

(
{(t, u) ∈ R+ × U+, ∃0 ≤ a < y(t), ∆e(t)

a (u) = 0}
)

= nα+
(
{(t, u) ∈ R+ × U+, ∃0 ≤ a < y(t), ut,→(T t,→a ) = ut,←(T t,←a )}

)
=

∫ ∞
0

dαP
(
∃0 < a ≤ α, X1(T 1

a ) = −X2(T 2
a )
)
,

where X1 and X2 are independent copies of Xα, and T 1
a and T 2

a are hitting times of a
of independent Brownian motions. Using for example Section 4, Chap. III of [RY99],
X1(T 1

a ) and X2(T 2
a ) are independent θ–stable Lévy processes with θ = α/2, and therefore

X1(T 1
a ) +X2(T 2

a ) is again a θ–stable process. Since θ < 1, points are polar for X1(T 1
a ) +

X2(T 2
a ) (see [Ber96], Chap. II, Section 5), so that P

(
∃0 < a ≤ α, X1(T 1

a ) = X2(T 2
a )
)

= 0.
This proves our claim under nα+.

To prove the result under nα+, notice that if u ∈ L , then the set of t’s satisfying the
definition of L has positive Lebesgue measure (it contains all the times until the loop
comes back to itself). This translates into

L ⊂

{
u ∈ U+,

∫ R(u)

0

1{∃0≤a<y(t), ∆e
(t)
a (u)=0}dt > 0

}
.

But, by the first step of the proof,

nα+

(∫ R(u)

0

1{∃0≤a<y(t), ∆e
(t)
a (u)=0}dt

)
= 0.

Thus

∫ R(u)

0

1{∃0≤a<y(t), ∆e
(t)
a (u)=0}dt = 0 for nα+-almost every excursion, and finally

nα+(L ) = 0.

The locally largest excursion. Following the strategy of [AS22], Proposition 2.8, one
can establish the existence of a unique time on the excursion corresponding to the locally
largest excursion.

Proposition 6.7. For u ∈ U+ and 0 ≤ t ≤ R(u), let

S(t) := sup
{
a ∈ [0, y(t)], ∀ 0 ≤ a′ ≤ a,

∣∣F (t)(a′)
∣∣ ≥ ∣∣F (t)(a′ −)− F (t)(a′)

∣∣} ,
and S := sup

0≤t≤R(u)

S(t). For almost every u under nα+, there exists a unique 0 ≤ t• ≤ R(u)

such that S(t•) = S. Moreover, S = =(z•) where z• = u(t•).

By definition of S,
(
e

(t•)
a

)
0≤a≤=(z•)

follows the largest excursion at each disloca-

tion: at any level a where F (t•) has a jump, the size F (t•)(a) of the excursion e
(t•)
a is

larger (in absolute value) than the length F (t•)(a−) − F (t•)(a) of the other excursion.

For this reason we refer to e
(t•)
a as the locally largest excursion at height a, and to(

Ξ(a) = ∆e
(t•)
a

)
0≤a≤=(z•)

as the locally largest fragment. See Figure 4.
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Figure 4: Drawing of an excursion in the upper half-plane H and the locally largest
excursion.

Proof. The proof being fairly technical, we just draw up a list with the main arguments.
The reader interested in the details of the proof can get more information in [AS22,
Proposition 2.8].

First, we prove that S is attained. For this, we take a convergent sequence (tn, n ≥ 1)

of times such that S(tn)→ S, and we denote by t• the limit of (tn, n ≥ 1). For any a < S,

there exists N ≥ 1 such that, for all n ≥ N , e(t•)
a = e

(tn)
a . This implies that, up to a, e(t•)

follows the locally largest excursion, i.e. S(t•) > a. Hence S(t•) ≥ S, and by maximality
of S, S(t•) = S.

Now we want to prove that S = y(t•). We claim that, for nα+–almost every excursion,
and 0 ≤ t ≤ R(u), the set

A(t) :=
{
a ∈ [0, y(t)], ∀ 0 ≤ a′ ≤ a,

∣∣F (t)(a′)
∣∣ ≥ ∣∣F (t)(a′ −)− F (t)(a′)

∣∣} , (6.4)

is open in [0, y(t)]. This follows from the right-continuity of F (t): if a ∈ A(t), a < y(t) and
F (t)(a) 6= 0 (which happens nα+–almost everywhere, see Proposition 6.6 above), then by
right-continuity one can find a neighbourhood of a where the inequality in (6.4) holds.
We then argue by contradiction: assume that S < y(t•). Since A(t•) is open, we have
A(t•) = [0, S). This means that, at level S, the reverse inequality to (6.4) holds, that is:∣∣F (t•)(S)

∣∣ < ∣∣F (t•)(S−)− F (t•)(S)
∣∣.

This implies that F (t•) has a jump at time S. Considering the excursion above S which

is detached from the one straddling t•, we get a set of times t for which e(t)
a = e

(t•)
a for

a < S, so that S(t) ≥ S, but actually also S ∈ A(t). Indeed, since t• does not correspond
to the locally largest fragment at height S, t should (dislocation into two excursions with
equal sizes is a nα+–negligible event). We conclude by the fact that A(t) is open that
S(t) > S hence a contradiction.

Finally, the uniqueness statement can be proved also by contradiction. Assume the
existence of two suitable times t < t′. Then, by considering the first height above which
the excursions straddling t and t′ differ, one sees that only one of them can correspond
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to the locally largest one (again owing to the fact that dislocation into two excursions
with equal sizes is nα+–negligible). Hence the contradiction.

6.3 The branching property and a key many-to-one formula

We here consider the path u<a obtained from u under nα+ after removing the excur-
sions above a, and closing up the time gaps. This can be defined formally as u<at := uτ<at
if t < A(R(u)) and u<at := u(R(u)) if t = A(R(u)) where

A(t) :=

∫ t

0

1{y(s)≤a}ds and τ<at := inf{s > 0 : A(s) > t}. (6.5)

We call Ga the σ-field generated by u<a, completed with the nα+–negligible sets, that is
the σ–field carrying all the information about the trajectory below level a.

We now let Ta := inf{s > 0, y(s) = a} and we argue on the event that Ta < ∞.
Let (Lat )t∈[0,R(u)] (resp. (τas )s∈[0,La

R(u)
]) be the (resp. inverse) local time process of u at

level a and let (eas , s ∈ (0, LaR(u))) be the excursion process at level a of u. It will be
convenient to define ea0 and eaLa

R(u)
respectively as the first and last parts of the trajectory

u between {=(z) = 0} and {=(z) = a}. Remark that, as a consequence of the strong
Markov property under nα+ at time Ta (cf. Proposition 6.2), on the event Ta < ∞ and
conditionally on FTa , (eas , s ∈ (0, LaR(u))) forms a Poisson point process with intensity nα+
for the filtration (Fτas , 0 ≤ s ≤ LaR(u)), stopped at the first time when an excursion hits
{=(z) = −a}.

For a ≥ 0, we will write (ea,+i )i≥1 for the possible excursions that u makes above a,
ranked by descending order of their sizes (za,+i )i≥1.

Proposition 6.8. (Branching property under γαz )
Let z ∈ R \ {0}. For any A ∈ Ga, and for all nonnegative measurable functions

G1, . . . , Gk : U+ → R+, k ≥ 1,

γαz

(
1{Ta<∞}1A

k∏
i=1

Gi(e
a,+
i )

)
= γαz

(
1{Ta<∞}1A

k∏
i=1

γα
za,+i

[Gi]

)
.

Proof. We only sketch the proof under nα+: going from nα+ to γαz is then a technical step
relying on disintegration over z and some continuity argument (the reader can find
more details for the Brownian case in [AS22]). We know from Lemma 6.2 that on the
event {Ta < ∞}, the trajectory u after time Ta is that of (Xα, Y ) killed when hitting
the line {=(z) = −a}. The Markov property at time Ta and excursion theory entail that
given the excursions below a, the excursions above a form a Poisson point process on
U+ with intensity LaR(u) n

α
+(du). Conditioned on the sizes (za,+i )i≥1, these excursions are

independent with law γα
za,+i

. The claim follows since Ga is generated by the excursions

below a and the process of the sizes of the excursions above a.

We call Bessel-stable (resp. dual Bessel-stable) process a process in the upper half-
plane whose real part is a copy of Xα (resp. −Xα) and whose imaginary part is an
independent three-dimensional Bessel process starting at 0. Under P, let h1 and h2 = hz2
be respectively two independent Bessel-stable and dual Bessel-stable processes starting
from h1(0) = 0 and h2(0) = z. Define the analogues of (6.5),

Ai(t) :=

∫ t

0

1{=(hi(s))≤a}ds, τi(t) := inf{s > 0 : Ai(s) > t}, for i ∈ {1, 2}, (6.6)

and also Sai := sup{t ≥ 0 : =(hi(t)) ≤ a} for the last passage time at a of hi, i ∈ {1, 2}.
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The following key formula is a kind of many-to-one formula for excursions cut at
heights, and will be crucial in the rest of the paper. Write V for the set of finite
planar trajectories with càdlàg real part and continuous imaginary part. Recall that
(τas )s∈[0,La

R(u)
] denotes the inverse local time at level a, and set

us1 :=
(
u(t), t ∈ [0, τas− ]

)
,

us2 :=
(
u(R(u)− t), t ∈ [0, R(u)− τas ]

)
.

Then u1 and u2 are elements of V which stand respectively for the trajectory of u before
the excursion eas and for the time-reversed trajectory of u after the excursion eas . We use
the shorthand s+ ∈ [0, LaR(u)] to denote times 0 ≤ s ≤ LaR(u) such that eas ∈ U+. Finally,
let θ := α/2.

Lemma 6.9. Let F : V × V → R+ be a nonnegative measurable function. Then

γαz

1{Ta<∞} ∑
s+∈[0,La

R(u)
]

C−1
sgn(∆eas )|∆e

a
s |1+θF (us1, u

s
2)


= C−1

sgn(z)|z|
1+θE

[
F ((h1(t), t ∈ [0, Sa1 ]) , (hz2(t), t ∈ [0, Sa2 ]))

]
(6.7)

Proof. The proof follows the same lines as for Equation (17) in [AS22]. We prove (6.7) for
F (u, v) = f(u)g(v), where f, g : V → R+ are two nonnegative measurable functions. We
first argue under the measure nα+. Recall from the discussion preceding Proposition 6.8
that on the event Ta <∞ and conditionally on FTa , the process (eas , s ∈ (0, LaR(u))) forms
a Poisson point process with intensity nα+, stopped when an excursion hits {=(z) = −a}.
Using the master formula [RY99, Proposition XII.1.10] and the disintegration property
(Proposition 6.4), we therefore get

nα+

(
1{Ta<∞}

∑
s+∈[0,La

R(u)
]

C−1
sgn(∆eas )|∆e

a
s |1+θf(us1)g(us2)

)
(6.8)

= nα+

(
1{Ta<∞}

∫ R(u)

0

f
(
u
Lar
1

)
dLar∫ +∞

−∞
dxE

[
g(x+ x′ +Xα(TY−a − s), a+ Y (TY−a − s), 0 ≤ s ≤ TY−a)

]
x′=Xr

)
,

where TY−a := inf{s > 0, Y (s) = −a} and Xr = <(u
Lar
1 (Lar)). The change of variables

x+Xr 7→ x shows that it is also

nα+

(
1{Ta<∞}

∫ R(u)

0

f
(
u
Lar
1

)
dLar

)
·
∫ +∞

−∞
dxE

[
g(x+Xα(TY−a − s), a+ Y (TY−a − s), 0 ≤ s ≤ TY−a)

]
.

Conditionally on Y , (Xα
s , 0 ≤ s ≤ TY−a) evolves as Xα stopped at time TY−a. By duality for

Lévy processes (see [Ber96, Section II.1]), conditionally on Y , the “law” of (x+Xα(TY−a−
s), 0 ≤ s ≤ TY−a) for x sampled according to the Lebesgue measure is the “law” of −Xα

with initial measure the Lebesgue measure, stopped at time TY−a. On the other hand, the
process (a + Y (TY−a − s), 0 ≤ s ≤ TY−a) is a 3-dimensional Bessel process starting from
0 and run until its last passage time at a, see Corollary 4.6, Chap. VII of [RY99]. In a
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nutshell,∫ +∞

−∞
dxE

[
g(x+X(TY−a − s), a+ Y (TY−a − s), 0 ≤ s ≤ TY−a)

]
=

∫ +∞

−∞
dzE

[
g(hz2(t), t ∈ [0, Sa2 ])

]
.

Moreover, by another application of the master formula,

nα+

(
1{Ta<∞}f

(
u
LaR(u)

1

))
= nα+

(
1{Ta<∞}

∫ R(u)

0

f(u
Lar
1 )dLar

)
nα−(T−a <∞).

Since nα−(T−a <∞) = nα+(Ta <∞), this yields

nα+

(
1{Ta<∞}

∫ R(u)

0

f(u
Lar
1 )dLar

)
= nα+

(
f
(
u
LaR(u)

1

)
| Ta <∞

)
.

Now under nα+(· | Ta <∞), u up to its last passage time at a has the law of h1 up to Sa1 ,
whence

nα+

(
1{Ta<∞}

∑
s+∈[0,La

R(u)
]

C−1
sgn(∆eas )|∆e

a
s |1+θf(us1)g(us2)

)

= E
[
f(h1(t), t ∈ [0, Sa1 ])

] ∫ +∞

−∞
dzE

[
g(hz2(t), t ∈ [0, Sa2 ])

]
.

Finally, we disintegrate nα+ over x(R(u)) (cf. Proposition 6.4) to get

∫ +∞

−∞
Csgn(z)

dz

|z|1+θ
γαz

1{Ta<∞} ∑
s+∈[0,La

R(u)
]

C−1
sgn(∆eas )|∆e

a
s |1+θf(us1)g(us2)


= E

[
f(h1(t), t ∈ [0, Sa1 ])

] ∫ +∞

−∞
dzE

[
g(hz2(t), t ∈ [0, Sa2 ])

]
.

By multiplying g by any measurable function of x(R(u)), this entails that for Lebesgue-
almost every z ∈ R,

γαz

1{Ta<∞} ∑
s+∈[0,La

R(u)
]

C−1
sgn(∆eas )|∆e

a
s |1+θf(us1)g(us2)


= C−1

sgn(z)|z|
1+θE

[
f(h1(t), t ∈ [0, Sa1 ])

]
E
[
g(hz2(t), t ∈ [0, Sa2 ])

]
.

With some continuity argument, one can then prove that this holds for all z.

6.4 The law of the locally largest evolution

Recall that θ = α
2 , so that 1

2 < θ < 1. We define ηθ under Pz as the θ–stable Lévy
process starting at z ∈ R. Recall that the Laplace exponent of ηθ is given by

ψθ(q) :=
c+ − c−

1− θ
q +

∫
R

(eqy − 1− qey1|y|<1)νθ(y)dy,

where the density of the Lévy measure

νθ(y) := csgn(y)|y|−θ−1, (6.9)
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depends on constants c+, c− such that c+ + c− > 0. An important feature is the positivity
parameter ρ := P0(ηθ1 > 0) which can be fixed by choosing c+, c− to equal

c− =
Γ(1 + θ)

π
sin(πθ(1− ρ)) and c+ =

Γ(1 + θ)

π
sin(πθρ). (6.10)

See [CC06] and [KP13]. Moreover, in order to retrieve the family with no killing in-
troduced in [BBCK18] for θ < 1, we will in this subsection choose the following ex-
plicit constants. First, we fix c+, c− so that θρ = 1/2, which gives c+ = Γ(1+θ)

π and

c− = −Γ(1+θ)
π cos(πθ). Notice that this implies α ∈ (1, 2), which justifies our choice.

Finally, we take Xα to be an α–stable Lévy process with positivity parameter ρ. It is
important to note that, since αρ = 1, Xα is spectrally negative, meaning that it only has
negative jumps, as can be seen from (6.10) with α replacing θ (see [Ber96, Chapter VIII]
for more background). The process Xα being fixed, we now claim the following result.

Theorem 6.10. Fix z > 0. Let Ξ = (Ξ(a), 0 ≤ a ≤ =(z•)) denote the size of the locally
largest fragment. Under γαz , (Ξ(a))0≤a<=(z•) is distributed as the positive self-similar
Markov process (Za)0≤a<ζ with index θ starting from z whose Lamperti representation is

Za = z exp(ξ(τ(z−θa))),

where ξ is the Lévy process with Laplace exponent

Ψ(q) =

∫
y>− ln(2)

(eqy − 1) e−θyνθ(−(ey − 1))dy, q < 2θ + 1, (6.11)

τ is the Lamperti time-change

τ(a) = inf

{
s ≥ 0,

∫ s

0

eθξ(u)du > a

}
,

and ζ = inf{a > 0, Za = 0}.
Remark 6.11. One can give a similar description, starting from a negative z < 0, for the
locally largest evolution (which gives a negative cell process). In this case one would
obtain a killing parameter in (6.11).

The remainder of this subsection is mostly devoted to the proof of Theorem 6.10. We
start by recalling the main ingredients of the proof of Theorem 3.5 in [AS22]. Let H be a
bounded continuous nonnegative function defined on the space of finite càdlàg paths,
and consider a ≥ 0. On the event {a < =(z•)}, we can write

H(Ξ(b), b ∈ [0, a]) =
∑

s+∈[0,La
R(u)

]

C−1
sgn(∆eas )|∆e

a
s |1+θF (us1, u

s
2),

where
F (us1, u

s
2) = Csgn(∆eas )|∆eas |−1−θH(Ξ(b), b ∈ [0, a])1{e(t

•)
a =eas}

. (6.12)

Note that the right-hand side is indeed a function of (us1, u
s
2) since (∆e

(t•)
b , b ∈ [0, a]) is a

measurable function of u<a, and hence of (us1, u
s
2). Apply the key formula (6.7):

γαz
[
H(Ξ(b), b ∈ [0, a])1{a<=(z•)}

]
= C−1

sgn(z)|z|
1+θE

[
F ((h1(t), t ∈ [0, Sa1 ]) , (hz2(t), t ∈ [0, Sa2 ]))

]
. (6.13)

Now let η be the process defined by ηb := h2(Sb2)− h1(Sb1) for b ≥ 0. For i ∈ {1, 2}, the
process <(hi(S

b
i )), b ≥ 0 is a θ–stable process (using Corollary VII.4.6 and then Section
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III.4 of [RY99]). More precisely η is a (càdlàg) θ–stable process with positivity parameter
ρ′ = 1 − ρ, that is η has law P̃z started from z given by the law of −ηθ under P−z. Let
∆ηb := ηb − ηb− stand for the jump of η at time b. By definition of F in (6.12), we have

F ((h1(t), t ∈ [0, Sa1 ]) , (hz2(t), t ∈ [0, Sa2 ]))

= Csgn(ηa)|ηa|−1−θH(ηb, b ∈ [0, a])1∀ b∈[0,a], |ηb|≥|∆ηb|.

Finally, (6.13) rewrites

γαz
[
H(Ξ(b), 0 ≤ b ≤ a)1a<=(z•)

]
= Ẽz

(
Csgn(ηa)

Csgn(z)

|z|1+θ

|ηa|1+θ
H(ηb, 0 ≤ b ≤ a)1∀0≤b≤a, |ηb|≥|∆ηb|

)
.

Observe that under P̃z, z > 0, on the event Ea := {∀0 ≤ b ≤ a, |ηb| ≥ |∆ηb|}, η remains
positive until time a. Therefore, the previous display simplifies to

γαz
[
H(Ξ(b), 0 ≤ b ≤ a)1a<=(z•)

]
= Ẽz

(
|z|1+θ

|ηa|1+θ
H(ηb, 0 ≤ b ≤ a)1∀0≤b≤a, |ηb|≥|∆ηb|

)
.

(6.14)
Furthermore, on the same event, η can be written using the Lamperti representation
of a θ–stable Lévy process killed when entering the negative half-line, found in [CC06]
(although we will take the form presented in [KP13]). More precisely, on this event,
under P̃z we can write ηb = zeξ

0(τ0(b)), where

τ0(b) := inf

{
s ≥ 0,

∫ s

0

zθeθξ
0(u)du ≥ b

}
=

∫ b

0

ds

(ηs)θ
,

and ξ0 is a Lévy process with Laplace exponent

Ψ0(q) := −c+
θ

+

∫
R∗

(eqy − 1)eyνθ(−(ey − 1))dy, −1 < q < θ. (6.15)

Note that compared to [KP13] we have inverted the role of the constants c+ and c−,
because η has the law of −ηθ. Furthermore, observe that in this correspondence, the
event Ea is {∀0 ≤ b ≤ τ0(a), ∆ξ0(b) > − log(2)}. Thus Theorem 6.10 is proved as soon as
we have established the following lemma.

Lemma 6.12. Under P̃z, the process

M (θ)
a := |z|1+θe−(1+θ)ξ0(a)1∀0≤b≤a, ∆ξ0(b)>− log(2), a ≥ 0,

is a martingale with respect to the canonical filtration of ξ0. Under the tilted probability
measure M (θ)

a · P̃z, the process (ξ0(b), 0 ≤ b ≤ a) is a Lévy process with Laplace exponent
Ψ given by equation (6.11).

Indeed, the result then follows by a simple application of the optional stopping
theorem. See also Lemma 17 in [LGR20] and Lemma 3.6 in [AS22]. We include the
arguments for completeness. Rephrasing (6.14), we have obtained

γαz [H(Ξ(b), 0 ≤ b ≤ a)1{a<=(z•)}] = Ẽz

[
M

(θ)
τ0(a)H

(
z exp(ξ0(τ0(b))), 0 ≤ b ≤ a

)]
.

By the optional stopping theorem, for any c > 0,

Ẽz

[
M

(θ)
τ0(a)H

(
z exp(ξ0(τ0(b))), b ∈ [0, a]

)
1{c>τ0(a)}

]
= Ẽz

[
M (θ)
c H

(
z exp(ξ0(τ0(b))), b ∈ [0, a]

)
1{c>τ0(a)}

]
.
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By Proposition 6.12, the right-hand side is

Ẽz
[
H (z exp(ξ(τ(b))), b ∈ [0, a])1{c>τ(a)}

]
,

where ξ is the Lévy process with Laplace exponent Ψ appearing in Theorem 6.10. It
remains to take c→∞ and use dominated convergence to conclude the proof of Theo-
rem 6.10. We now turn to proving Lemma 6.12.

Proof of Lemma 6.12. By self-similarity, we may focus on the case z = 1, in which case
we write P = P̃1 for simplicity. We aim at computing the quantity

E
[
e(q−1−θ)ξ0(a)1∀0≤b≤a, ∆ξ0(b)>− log(2)

]
.

To do this, we write ξ0(b) = ξ′(b) + ξ′′(b), where ξ′′(b) :=
∑

0≤b≤a ∆ξ0(b)1∆ξ0(b)≤− log(2) is
the Poisson point process of the small jumps of ξ0. Then ξ′ and ξ′′ are independent, and
so the previous expectation is

E
[
e(q−1−θ)ξ0(a)1∀0≤b≤a, ∆ξ0(b)>− log(2)

]
= P (ξ′′(a) = 0)E[e(q−1−θ)ξ′(a)].

If we denote by Ψ′ and Ψ′′ the Laplace exponents of ξ′ and ξ′′, then we have

E
[
e(q−1−θ)ξ0(a)1∀0≤b≤a, ∆ξ0(b)>− log(2)

]
= ea(Ψ′′(∞)+Ψ′(q−1−θ)).

Therefore the calculation boils down to computing Ψ′′(∞) + Ψ′(q− 1− θ). First of all, we
know that the Lévy measure of ξ′′ is the one of ξ0 restricted to (−∞,− log(2)], so that

Ψ′′(q) =

∫
y≤− log(2)

(eqy − 1)eyνθ(−(ey − 1))dy, q > −1. (6.16)

Hence, by the expression of νθ in (6.9),

Ψ′′(∞) = −c+
∫
y≤− log(2)

ey

(1− ey)1+θ
dy =

c+
θ

(1− 2θ).

It remains to compute q 7→ Ψ′(q − 1− θ). By independence of ξ′ and ξ′′, we have for all
−1 < q < θ, Ψ′(q) = Ψ0(q)−Ψ′′(q). Equations (6.15) and (6.16) provide

Ψ′(q) = −c+
θ

+

∫
y>− log(2)

(eqy − 1)eyνθ(−(ey − 1))dy, −1 < q < θ, (6.17)

This extends analytically to all q < θ. We now fix q < 2θ + 1, and we want to put
Ψ′(q − 1− θ) in a Lévy-Khintchine form. Replacing q by q − 1− θ in (6.17), we see that

Ψ′(q − 1− θ) = −k′ +
∫
y>− log(2)

(eqy − 1)e−θyνθ(−(ey − 1))dy.

with

k′ :=
c+
θ
−
∫ ∞
− log(2)

(1− e(1+θ)y)e−θyνθ(−(ey − 1))dy. (6.18)

In order to retrieve equation (6.11), it remains to prove that k′ = Ψ′′(∞). The above
integral can be computed as follows:∫ ∞

− log(2)

(1− e(1+θ)y)e−θyνθ(−(ey − 1))dy

= c+

∫ 0

− log(2)

(1− e(1+θ)y)
e−θy

(1− ey)θ+1
dy + c−

∫ ∞
0

(1− e(1+θ)y)
e−θy

(ey − 1)θ+1
dy. (6.19)
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Start with the first integral:∫ 0

− log(2)

(1− e(1+θ)y)
e−θy

(1− ey)θ+1
dy =

∫ 0

− log(2)

(e−(1+θ)y − 1)
ey

(1− ey)θ+1
dy.

By integration by parts (integrating y 7→ ey

(1−ey)θ+1 ), this is∫ 0

− log(2)

(1− e(1+θ)y)
e−θy

(1− ey)θ+1
dy = −(21+θ − 1)

2θ

θ
+

1 + θ

θ

∫ 0

− log(2)

e−(1+θ)y

(1− ey)θ
dy.

The change of variables x = ey provides∫ 0

− log(2)

(1− e(1+θ)y)
e−θy

(1− ey)θ+1
dy = −(21+θ − 1)

2θ

θ
+

1 + θ

θ
B 1

2
(1− θ,−(1 + θ)),

where B 1
2
(x, y) :=

∫ 1/2

0

tx−1(1− t)y−1dt is the incomplete beta function at 1
2 . A similar

calculation gives that the second integral in (6.19) is∫ ∞
0

(1− e(1+θ)y)
e−θy

(ey − 1)θ+1
dy = −1 + θ

θ
B(2θ + 1, 1− θ),

where B(x, y) :=

∫ 1

0

tx−1(1− t)y−1dt is the beta function. It is well-known that B(x, y) =

Γ(x)Γ(y)
Γ(x+y) , hence (6.19) boils down to

∫ ∞
− log(2)

(1− e(1+θ)y)e−θyνθ(−(ey − 1))dy

= −(21+θ − 1)
2θ

θ
c+ +

1 + θ

θ
c+B 1

2
(1− θ,−(1 + θ))− c−

1 + θ

θ

Γ(2θ + 1)Γ(1− θ)
Γ(θ + 2)

(6.20)

Now the two-variable function B 1
2
(a, b) can be extended analytically to all a, b /∈ −N

via the identity aB1/2(a, b + 1) − bB1/2(a + 1, b) = 2−a−b obtained by straightforward
integration by parts. We then need to evaluateB1/2 at (−θ,−θ). But for q > 0, B1/2(q, q) =
1
2B(q, q) = Γ(q)2

2Γ(2q) by symmetry. Uniqueness of analytic continuation implies that this

must still hold for all q /∈ −N. This allows to write that B1/2(−θ,−θ) = Γ(−θ)2

2Γ(−2θ) , and

therefore (1 + θ)B 1
2
(1− θ,−(1 + θ)) = 21+2θ + θ Γ(−θ)2

2Γ(−2θ) . In total, (6.20) becomes∫ ∞
− log(2)

(1−e(1+θ)y)e−θyνθ(−(ey−1))dy =
2θ

θ
c+ +c+

Γ(−θ)2

2Γ(−2θ)
−c−

1 + θ

θ

Γ(2θ + 1)Γ(1− θ)
Γ(θ + 2)

.

Recall that c+ = Γ(1+θ)
π and c− = −Γ(1+θ)

π cos(πθ). We can then see after some calcula-
tions, using Euler’s reflection formula, that the last two terms cancel out, leaving∫ ∞

− log(2)

(1− e(1+θ)y)e−θyνθ(−(ey − 1))dy =
2θ

θ
c+.

We finally come back to (6.18) and obtain k′ = c+
θ (1− 2θ) = Ψ′′(∞). This concludes the

proof as we retrieve the Laplace exponent Ψ of (6.11).

Our purpose is now to describe the law of the daughter excursions of the locally
largest one. We want to prove that the excursions which get detached along the way
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up to z• are conditionally independent, and distributed as half-plane excursions with
prescribed displacement. We rank these detached excursions (εi, i ≥ 1) by descending
order of their sizes (zi, i ≥ 1) and we write (ai, i ≥ 1) for the corresponding heights
where they appear. We stress that both (zi, i ≥ 1) and (ai, i ≥ 1) are measurable with
respect to Ξ, as they correspond to (opposite) jump sizes and jump times of Ξ. Let
z ∈ R\{0}.
Proposition 6.13. Under γαz , conditionally on (zi, ai)i≥1, the excursions (εi)i≥1, are
independent and each εi has law γαzi .

Proof. We repeat the main ideas of [AS22, Theorem 3.7]. Fix n ∈ N and take some
measurable functions f1, . . . , fn : U → R+ and g1, . . . , gn : R ×R+ → R+. Let (ε

(a)
i )i≥1

the sequence of sub-excursions detached from Ξ below a, ranked by descending order of
the absolute value of their sizes z(a)

i , and let bi the corresponding jump time. It is enough
to prove the claim for the n first largest excursions below level a, namely:

γαz

[
1{a<=(z•)}

n∏
i=1

fi(ε
(a)
i )gi(z

(a)
i , bi)

]
= γαz

[
1a<=(z•)

n∏
i=1

γα
z

(a)
i

(fi(ε
(a)
i ))gi(z

(a)
i , bi)

]
. (6.21)

In view of applying the key formula, write

n∏
i=1

fi(ε
(a)
i )gi(z

(a)
i , bi) =

∑
0<s+<La

R(u)

C−1
sgn(∆eas )|∆e

a
s |1+θF (us1, u

s
2),

where

F (us1, u
s
2) = Csgn(∆eas )|∆eas |−1−θ

n∏
i=1

fi(ε
(a)
i )gi(z

(a)
i , bi)1{e(t

•)
a =eas}

.

Hence by (6.7),

γαz

[
1{a<=(z•)}

n∏
i=1

fi(ε
(a)
i )gi(z

(a)
i , bi)

]
= E

[Csgn(ηa)

Csgn(z)

z1+θ

η1+θ
a

n∏
i=1

fi(εi)gi(z(εi), b(εi))1∀ b∈[0,a], |ηb|≥|∆ηb|

]
,

where the εi, i ≥ 1, form the ranked excursions of h1 and h2 above the future infimum
b(εi) of their imaginary parts before leaving {= ≤ a} forever and z(εi) is the size of the
excursion εi. But if we call (b, eb) the process of excursions of h1 or h2 above the future
infimum of their imaginary parts, then upon time-reversal, Lévy’s theorem (Theorem
VI.2.3 in [RY99]) and the Lévy property of Xα imply that it is a Poisson point process
with intensity 21R+db nα+(du). Conditionally on the heights and sizes {(b, z(eb)), b ≥ 0},
the excursions eb are independent with law γαz(eb), whence

γαz

[
1{a<=(z•)}

n∏
i=1

fi(e
(a)
i )gi(z

(a)
i , bi)

]
= E

[Csgn(ηa)

Csgn(z)

z1+θ

η1+θ
a

n∏
i=1

γαz(εi)(fi(εi))gi(z(εi), b(εi))1∀ b∈[0,a], |ηb|≥|∆ηb|

]
.

A backwards application of the key formula yields the claim (6.21).
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6.5 The temporal martingale

We first point out a temporal martingale for excursions cut at heights. For a ≥ 0,
recall that (ea,+i )i≥1 stands for the possible excursions that u makes above a, ranked by
descending sizes. Recall the notation (Ga)a≥0 for filtration of events occurring below level
a, and the definition of the constants C± introduced in the disintegration property 6.4.

Proposition 6.14. The process

Mα,+
a =

∑
i≥1

C−1

sgn(∆ea,+i )
· |∆ea,+i |

1+θ, a ≥ 0,

is a (Ga)-martingale.

This is a direct corollary of the key formula (taking F = 1 in Lemma 6.9), and the
branching property of excursions above levels in Proposition 6.8. We note that – once
we establish that the excursion sizes form a growth-fragmentation – Proposition 6.14
gives an example where the supermartingale in Corollary 3.9 is a martingale. However,
temporal analogues of the genealogical martingales of Section 3.2 are in general not
martingales (see Remark 5.5(v)).

The martingaleMα,+ points at a natural change of measure. Recall the definition of
u<a in Section 6.3, and take z 6= 0. By Kolmogorov extension theorem, we may define on
the same probability space a process (Uza, a > 0) such that for any a > 0, the law of Uza is
that of u<a under the probability measure Csgn(z)z

−1−θMα
adγz. Our goal is to describe

the law of (Uza, a ≥ 0).
Our description involves the processes h1 and hz2 of Section 6.3. Let a > 0 and recall

from (6.6) the definition of the time-changes A1 and A2 with respect to level a (and their
inverses τ1 and τ2). Set also Ai(∞) = limt→∞Ai(t), i = 1, 2. Under P, we define Ũza as
the process obtained by concatenating h1 and hz2 when they leave {=(z) ≤ a} forever,
and removing everything above level a. More precisely,

Ũza(t) :=

{
h1(τ1(t)) if t ∈ [0, A1(∞)),

hz2(τ2(A1(∞) +A2(∞)− t)) if t ∈ [A1(∞), A1(∞) +A2(∞)],

with the convention that hz2(τ2(A2(∞))) := hz2(τ2(A2(∞))−). Thus Ũza follows the trajectory
of h1 below level a until it leaves {= ≤ a} forever, makes a jump to the last passage point
at a of hz2, then follows the time-reversed trajectory of hz2 below a and finally ends up at z.

Theorem 6.15. For any z 6= 0, the process (Uza, a > 0) is distributed as (Ũza, a > 0).

Under the change of measure, the path u therefore splits into two infinite trajectories
from 0 and z to∞. See Figure 5 (the picture shows the spectrally negative case).

Proof. The claim is included in the key formula (6.7), by taking for F (us1, u
s
2) and all s

some measurable function of u<a.

Remark 6.16. 1. Assuming that the sizes of the excursions cut at heights form a
signed growth-fragmentation process X (this will be stated in the following section),
Theorem 6.15 describes the law of the spine defined in section 3.3. Indeed,
specifying the key formula (6.7) in the case when F (us1, u

s
2) is a function of the size

∆eas , we get that the value of the spine at height a for X is given by looking at
the size hz2(τ2(A2(∞)))− h1(τ1(A1(∞))) of the unbounded excursion of Ũza above a.
As the height a increases, the spine is therefore given by the time-reversal of the
difference of (the real part of) trajectories Rα and Lα coming down from infinity,
taken at a Brownian hitting time. For this reason, we say that the spine amounts to
targeting a point at infinity (in the picture given by h1, hz2). Finally, since the latter
hitting times are subordinators of index 1

2 and Xα is an α–stable Lévy process,
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Figure 5: Splitting the excursion according to the change of measure with respect to
the martingale Mα,+ (in the case when Xα is spectrally negative). The red and blue
trajectories are independent and evolve as h1 and hz2 respectively.

this yields a stable Lévy process of index θ = α
2 , and with positivity parameter

ρ′ := 1− ρ.
2. We remark that, in the spectrally negative case, this is consistent with the mar-

tingales appearing in [BBCK18]. Indeed, they have the same form with a power
given by ω+ = θ + 3

2 = (θ + 1) + 1
2 . Hence ω+ is the power appearing in Ma plus

one half. We can naturally retrieve this extra 1/2 in our setting as follows. First,
under γαz (with z > 0), let X+ denote the family of positive excursions obtained
by removing from X the negative sizes (together with their progeny). Then for
any nonnegative measurable function f , one can leverage the many-to-one formula
given in Lemma 6.9 and the description of the spine in Remark 6.16(i) to express

γαz

 ∑
e∈X+(a)

|∆e|θ+3/2f(∆e)

 = Ez

(
f(Y θ0 (a))

√
|Y θ0 (a)|

)
, (6.22)

where under Pz, Y θ0 is the θ–stable Lévy process killed below 0. On the other hand,
since we have chosen c+ and c− so that θ(1 − ρ′) = 1/2, the h-transform used to
condition the latter θ-stable process to remain positive is given by x 7→ xθ(1−ρ

′) =√
x (see [CC06]). Hence (6.22) rewrites

γαz

 ∑
e∈X+(a)

|∆e|θ+3/2f(∆e)

 = Ez
(
f(Y θ+(a))

)
,

where under Pz, Y θ0 is the θ–stable Lévy process conditioned to remain positive.
We thus recovered (embedded in X+) both the martingale exponent and the spine
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in the positive growth-fragmentation introduced in [BBCK18, Proposition 5.2] (in
the case 1/2 < θ < 1).

6.6 The growth-fragmentation embedded in half-planar excursions

We now turn to the description of the cell system in terms of a growth-fragmentation
process. The main results hold in general, but in order to retrieve the growth-fragmen-
tation processes with no killing introduced by [BBCK18] for 1

2 < θ < 1, we focus on the
case when Xα is spectrally negative, where the law of the locally largest fragment was
explicited in Theorem 6.10. Recall that this amounts to set the positivity parameter ρ of
Xα so that θρ = 1

2 . On the other hand, let (Za)0≤a<ζ the θ–self-similar Markov process
started from z > 0 defined in Theorem 6.10, and extend the construction to z < 0 by
Remark 6.11. Finally, construct the signed growth-fragmentation Z driven by Z. Building
on results from previous sections, we observe the following growth-fragmentation.

Theorem 6.17. Under γαz ,({{
∆ea,+i , i ≥ 1

}}
, a ≥ 0

) L
= (Z(a), a ≥ 0).

In particular, the process of the sizes of excursions cut at heights is a signed growth-
fragmentation process.

Proof. The claim is essentially included in our work from the previous sections. We
argue on the event that there is no loop above any level (Proposition 6.6), that local
minima of y are distinct, and that there is no dislocation into two excursions with the
same size, which has full γαz –probability. First, Theorem 6.10 gives that, under γαz the
law of the locally largest fragment Ξ in the stable-Brownian excursion is that of Z.
Secondly, the conditional independence and conditional law of the offspring of Ξ was
established in Proposition 6.13. The only non-trivial statement is that we indeed recover
all the excursions in the genealogy of Z. This statement does not bring any new idea
as it is merely technical, so that we refer to the Brownian case [AS22, Theorem 4.1].
Note that the discontinuities of u do not conflict with conservativity at times when the
growth-fragmentation cells divide: indeed, by independence, they almost surely occur at
levels which are not local minima for the Brownian motion.

We now determine the spine under the change of measure P̂z.
Theorem 6.18. The vector (C−1

+ , C−1
− , θ+1) is admissible for the locally largest evolution

Ξ. Under P̂z, the spine X̂ defined in section 3.3 evolves as a θ–stable Lévy process with
Lévy measure 2νθ(−y)dy and hence positivity parameter ρ′ = 1− ρ.

In particular, the positive growth-fragmentation X+ obtained by removing from X

all the negative cells and their descendants is the same as that of [BBCK18], for the
appropriate self-similarity index 1

2 < θ < 1. Indeed, by the many-to-one lemma, the law

of the spine X̂+ for the cell system of positive masses is that of X̂ conditioned to stay
positive, hence is distributed as the spine appearing in [BBCK18] for 1

2 < θ < 1 (see
Remark 6.16 (ii)). Yet [BBCK18, Theorem 5.1] entails that the spine characterises the
law of the growth-fragmentation, and thus X+ has the law of the growth-fragmentation
process described in [BBCK18] for 1

2 < θ < 1.

Proof. There are several ways to prove admissibility. For example, we use that (Mα,+
a , a ≥

0) is a martingale (Proposition 6.14), and we condition on the first generation (the off-
spring of Ξ) to obtain

C−1
sgn(z)|z|

1+θ = γαz [Mα,+
a ] = C−1

+ γαz [|Ξ(a)|1+θ1a<=(z•)] + γαz

[∑
s<a

C−1
sgn(−∆Ξ(s))|∆Ξ(s)|1+θ

]
.
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We then let a tend to infinity and get that

γαz

[∑
s>0

C−1
sgn(−∆Ξ(s))|∆Ξ(s)|1+θ

]
= C−1

sgn(z)|z|
1+θ.

The Lamperti-Kiu representation of stable processes was established in [CPR13] (see
Corollary 11): it is then a simple check to see that Theorem 5.4 gives the same matrix
exponent. Alternatively, we can use the description of Theorem 6.15 of the spine as the
difference of two θ–stable processes, together with a version of Proposition 3.8.

6.7 Conditioning to continuously absorb at the origin

We conclude by revealing another martingale for the growth-fragmentation cell
system. Unlike in Section 6.5, this martingale will only be genealogical (in the form
of Theorem 3.5). We will see that the martingale converges γαz –almost surely towards
the duration of the excursion, and describe the spine defined with respect to this change
of measure.

We start by observing from (6.3) that the law of the duration R under γα1 is

γα1 (R ∈ dr) =
pα1 (r−1/α)

2
√

2πC+r3/2+1/α
dr,

and likewise

γα−1(R ∈ dr) =
pα1 (−r−1/α)

2
√

2πC−r3/2+1/α
dr.

Moreover, the same equation shows that the duration R under γαz , z 6= 0, has the law
of |z|αRsgn(z), where R+ and R− denote the law of R under γα1 and γα−1 respectively.
Observe that, because α < 2, R+ and R− both have finite expectations that we denote by
w+ and w−.

We take the point of view of Section 6.6, and we index the genealogy of the locally
largest fragment Ξ by the tree U. In accordance with Section 3.2, the collection of sizes
at generation n will be written (Xu, |u| = n), and the σ–field generated by (Xu, |u| ≤ n)

denoted Gn. We can now claim:

Proposition 6.19. Under γαz , the process

Mα,−(n) =
∑
|u|=n

wsgn(Xu(0))|Xu(0)|α,

is a (Gn)–martingale. Furthermore, it is uniformly integrable and converges γαz –almost
surely and in L1 to the duration R of the excursion.

Proof. All the claims are a consequence of Lévy’s theorem and the following identity:

Mα,−(n) := γαz (R |Gn), γαz − a.s. (6.23)

Indeed, Lévy’s theorem then implies thatMα,−(n)→ γαz (R |G∞) (a.s. and in L1), where
G∞ =

⋃
n≥0 Gn. But since R is G∞–measurable, this meansMα,−(n)→ R. It remains to

prove (6.23). We restrict to n = 0 (the general case follows by the branching property).
We split R over the daughter excursions ei, i ≥ 1, of Ξ. Since the set of times 0 ≤ s ≤ R
which are not straddled by such an excursion is Lebesgue-negligible, we have R =∑

i≥1Ri, where Ri is the duration of the sub-excursion ei. We now use the conditional
law of the offspring (Proposition 6.13) to get

γαz (R |G0) =
∑
i≥1

γα∆ei(R).
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The self-similarity property discussed in the paragraph preceding the proposition entails

γαz (R |G0) =
∑
i≥1

wsgn(∆ei)|∆ei|
α,

which is precisely (6.23) for n = 0.

Now we turn to the description of the spine X̂− with respect to (Mα,−(n), n ≥ 0).
Recall the general change of measures in Section 3.3, from which we borrow the notation,
and write P̂−z for the change of measures started from z relative toMα,−. The many-to-
one formula in Proposition 3.8 gives, for all t ≥ 0, all nonnegative measurable function f
vanishing at ∂, and all F t–measurable nonnegative random variable Bt:

wsgn(z)|z|αÊ−z
(
f(X̂−(t))Bt

)
= Ez

∑
i≥1

wsgn(Xi(t))|Xi(t)|αf(Xi(t))Bt

 .

Denote by P̂+
z the change of measures relative to the other martingaleMα,+, presented

in Proposition 6.14, and X̂ the corresponding spine. Then the many-to-one formula for
P̂+
z brings to

wsgn(z)Csgn(z)|z|θ−1Ê−z
(
f(X̂−(t))Bt

)
= Ê+

z

(
wsgn(X̂ (t))Csgn(X̂ (t))|X̂ (t)|θ−1f(X̂ (t))Bt

)
.

(6.24)
The previous formula extends to functionals of (X̂−(s), s ≤ t). Hence X̂− is a Doob
h-transform of X̂ killed at the origin. Now recall from our description in Theorem 6.15
that X̂ is a θ–stable process. Thanks to [KRS19] (in the case θ < 1), we may deduce that
the law of X̂− is that of the stable process conditioned to absorb continuously at 0.

We saw that the change of measures relative toMα,+ has a nice interpretation in
terms of targeting a point at infinity (see Theorem 6.15 and Remark 6.16(i)). This is
reminiscent of the situation obtained in the scaling limit from the peeling exploration
of large Boltzmann planar maps. In [BBCK18], the authors point out the existence of
two martingalesM+ andM−, for which they give the following descriptions. On the
one hand, the spine relative to the martingaleM+ corresponds to targeting a point at
infinity in the infinite-volume version of the planar map. On the other hand, the spine
relative toM− corresponds to targeting a uniform point in the size-biased planar map.
As it turns out, this image persists in our excursion setting.

Theorem 6.20. Let z ∈ R∗ and define the probability measure

γαz (dt, du) := (wsgn(z)|z|α)−110≤t≤R(u)dtγ
α
z (du).

Under γαz , the size (X(t)(a) := ∆e
(t)
a , a > 0), of the uniform point t has the law of X̂−

under γαz , i.e. that of the θ–stable process conditioned to be absorbed continuously at
the origin.

Proof. Let f a nonnegative measurable function defined on the set of finite càdlàg
trajectories. From Bismut’s description of nα+ (Proposition 6.3), we see that

nα+(f(X(t)(b), 0 ≤ b ≤ a))1y(t)>a)

=

∫ ∞
0

dAE(f(X1(T 1
−(A−b)) +X2(T 2

−(A−b)), 0 ≤ b ≤ a))1A>a,

where X1 and X2 are independent copies of Xα, and T 1
−b and T 2

−b are hitting times of
−b of independent Brownian motions. With the same notation as in Section 6.4, call
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ηθb := X1(T 1
−b) +X2(T 2

−b), which is a θ–stable Lévy process. By the Markov property, and
a change of variables, this rewrites

nα+(f(X(t)(b), 0 ≤ b ≤ a))1y(t)>a) =

∫ ∞
a

dAE0(ha(ηθA−a)) =

∫ ∞
0

dAE0(ha(ηθA)),

where ha(x) := Ex(f(ηθa−b, 0 ≤ b ≤ a)). Again, applying Bismut’s description of nα+
backwards, one obtains

nα+(f(X(t)(b), 0 ≤ b ≤ a))1y(t)>a) = nα+(ha(x(R(u)))R(u)).

We then disintegrate nα+ over the endpoint:

nα+(f(X(t)(b), 0 ≤ b ≤ a))1y(t)>a) =

∫
R∗

dz

|z|1+θ
Csgn(z)γ

α
z (R)ha(z).

Now recall that in our notation, γαz (R) = wsgn(z)|z|α = wsgn(z)|z|2θ for all z ∈ R∗. Hence

nα+(f(X(t)(b), 0 ≤ b ≤ a))1y(t)>a) =

∫
R∗

dz

|z|1−θ
Csgn(z)wsgn(z)Ez(f(ηθa−b, 0 ≤ b ≤ a)).

By duality for the Lévy process ηθ (cf. [Ber96, Section II.1]), we can reverse the previous
equation in time:

nα+(f(X(t)(b), 0 ≤ b ≤ a))1y(t)>a) =∫
R∗

dx

|x|1−θ
wsgn(x)Csgn(x)Ẽx

(
wsgn(ηa)Csgn(ηa)

wsgn(x)Csgn(x)

|ηa|θ−1

|x|θ−1
f(ηb, 0 ≤ b ≤ a)

)
,

where under P̃x, η has the law of −ηθ under P−x. On the other hand, disintegrating the
left-hand side over the endpoint, we find

nα+(f(X(t)(b), 0 ≤ b ≤ a))1y(t)>a)

=

∫
R∗

dx

|x|1−θ
Csgn(x)wsgn(x)γ

α
x(f(X(t)(b), 0 ≤ b ≤ a))1y(t)>a).

Putting all the pieces together, we end up with∫
R∗

dx

|x|1−θ
wsgn(x)Csgn(x)γ

α
x(f(X(t)(b), 0 ≤ b ≤ a))1y(t)>a) =∫

R∗

dx

|x|1−θ
wsgn(x)Csgn(x)Ẽx

(
wsgn(ηa)Csgn(ηa)

wsgn(x)Csgn(x)

|ηa|θ−1

|x|θ−1
f(ηb, 0 ≤ b ≤ a)

)
.

Hence for Lebesgue-almost every x,

γαx(f(X(t)(b), 0 ≤ b ≤ a))1y(t)>a) = Ẽx

(
wsgn(ηa)Csgn(ηa)

wsgn(x)Csgn(z)

|ηa|θ−1

|x|θ−1
f(ηb, 0 ≤ b ≤ a)

)
.

(6.25)
A continuity argument that we feel free to skip ensures that (6.25) actually holds for
all x ∈ R∗. It remains to notice that the right-hand side of (6.25) is the same as in the
description (6.24) of the law of X̂− under γαx . We conclude that under γαx , X(t) evolves
as the θ–stable Lévy process η conditioned to absorb continuously at the origin.
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