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Tightness for thick points in two dimensions*

Jay Rosen†

Abstract

Let Wt be Brownian motion in the plane started at the origin and let θ be the first exit
time of the unit disk D1. Let

µθ(x, ε) =
1

πε2

∫ θ

0

1{B(x,ε)}(Wt) dt,

and set µ∗θ(ε) = supx∈D1
µθ(x, ε). We show that√
µ∗θ(ε)−

√
2/π

(
log ε−1 − 1

2
log log ε−1

)
is tight.
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1 Introduction

Let Wt be Brownian motion in the plane started at the origin and let θ be the first
exit time of the unit disk D1. In [12] we showed that

lim
ε→0

sup
x∈D1

1

ε2 log2(ε)

∫ θ

0

1{B(x,ε)}(Wt) dt = 2, a.s., (1.1)

where B(x, ε) is the ball of radius ε centered at x. The integral above is the occupation
measure of B(x, ε), and points x with large occupation measure are referred to as thick
points. Taking square roots we can write this as

lim
ε→0

1

log(ε−1)

√
sup
x∈D1

1

πε2

∫ θ

0

1{B(x,ε)}(Wt) dt =
√

2/π, a.s. (1.2)
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Tightness for thick points

Let

µθ(x, ε) =
1

πε2

∫ θ

0

1{B(x,ε)}(Wt) dt, (1.3)

and set µ∗θ(ε) = supx∈D1
µθ(x, ε). Then (1.2) says that

√
µ∗θ(ε) ∼

√
2/π log ε−1, as ε → 0.

In this paper we obtain more detailed asymptotics. Let

mε =
√

2/π

(
log ε−1 − 1

2
log log ε−1

)
. (1.4)

We will say that the thick points in D1 are tight if
√
µ∗θ(ε)−mε is a tight family of random

variables. That is,

lim
K→∞

lim
ε→0

P

(∣∣∣√µ∗θ(ε)−mε

∣∣∣ > K

)
= 0. (1.5)

Theorem 1.1. The thick points in D1 are tight.

In fact we obtain the following improvement on the right tail of (1.5).

Theorem 1.2. On D1, for some 0 < C,C ′, z0 <∞ and all z ≥ z0,

lim
ε→0

P

(√
µ∗θ(ε)−mε ≥ z

)
≤ Cze−2

√
2π z, (1.6)

and

lim
ε→0

P

(√
µ∗θ(ε)−mε ≥ z

)
≥ C ′ze−2

√
2π z. (1.7)

It follows from Brownian scaling that Theorems 1.1 and 1.2 hold if D1 is replaced by
any disc centered at the origin.

For reasons of symmetry it is easier to work on the sphere S2, and derive our results
for thick points in D1 from results for thick points on S2. We use Bd(x, r) for the ball
centered at x of radius r, in the spherical metric d. To distinguish this, we use Be(x, r)
for the Euclidean ball in R2 centered at x of radius r.

Let Xt be Brownian motion on S2, see for example [11], started at some point v
(the ‘South Pole’). For some (small) r∗ let τ be the first hitting time of ∂Bd(v, r∗) (the
‘Antarctic Circle’). Let ωε = 2π(1− cos ε), the area of Bd(x, ε), and set

µ̄τ (x, ε) =
1

ωε

∫ τ

0

1{Bd(x,ε)}(Xt) dt, (1.8)

With µ̄∗τ,ε = supx∈S2 µ̄τ (x, ε) we will say that the thick points on S2 are tight if
√
µ̄∗τ,ε−

mε is a tight family of random variables.

Theorem 1.3. The thick points on S2 are tight.

As in Theorem 1.2 we obtain the following improvement for the right tail.

Theorem 1.4. On S2, for some 0 < C,C ′, z0 <∞ and all z ≥ z0,

lim
ε→0

P
(√

µ̄∗τ,ε −mε ≥ z
)
≤ Cze−2

√
2π z, (1.9)

and
lim
ε→0

P
(√

µ̄∗τ,ε −mε ≥ z
)
≥ C ′ze−2

√
2π z. (1.10)

Theorems 1.3 and 1.4 are stated and first proven for r∗ sufficiently small. In Section 8
we show that they hold for any 0 < r∗ < π.

In analogy with [12], rather than work directly with occupation measures, we work
with excursion counts. To define this let hl = 2 arctan(r0e

−l/2) with r0 small, see (2.5).
For some d0 ≤ 1/1000 let Fl be the centers of a d0hl covering of S2.

Let T τx,l be the number of excursions from ∂Bd (x, hl−1) to ∂Bd (x, hl) prior to τ . We
will obtain the following result for supx∈FL T

τ
x,L.
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Tightness for thick points

Theorem 1.5. On S2, for some 0 < z0, C, C
′ <∞, all L large and all z0 ≤ z ≤ logL,

C ′ze−2z ≤ P
(

sup
x∈FL

√
2T τx,L − (2L− logL) ≥ z

)
≤ Cze−2z. (1.11)

Equivalently

C ′ze−2z ≤ P
(

sup
x∈FL

T τx,L ≥ 2L (L− logL+ z)

)
≤ Cze−2z. (1.12)

Since L ∼ log h−1
L , Theorem 1.5 is then suggestive of Theorem 1.4 if we knew that on

average the occupation measure of Bd (x, hL) during an excursion from ∂Bd (x, hL) to
∂Bd (x, hL−1) was ‘about’ h2

L. While this is basically known for our choices of hL, hL−1,
see [12, Lemma 6.2], it is more delicate to get the precision necessary to show the
equivalence of Theorem 1.5 with (1.9).

We now write (1.11) in a more convenient form. Set

ρL = 2− logL

L
. (1.13)

We will prove the following version of Theorem 1.5.

Theorem 1.6. On S2, for some 0 < z0, C, C
′ <∞, all L large and all z0 ≤ z ≤ logL,

C ′ze−2z ≤ P
[

sup
x∈FL

√
2T τx,L ≥ ρLL+ z

]
≤ Cze−2z. (1.14)

1.1 Background

This paper is based in many ways on my work [7] with Belius and Zeituni on tightness
for the cover time of S2. The general approach is similar, and whenever results of that
paper could be used directly I did so. However, the mathematics often necessitated
different arguments.

The family

{µ̄τ (x, ε);x ∈ Bd(v, r∗), ε > 0}

is associated with a second order Gaussian chaos H(x, ε), x ∈ Bd(v, r
∗), ε > 0 by an

isomorphism theorem of Dynkin [18]. Intuitively,

H(x, ε) =

∫
Bd(x,ε)

G2
y dm(y)− E

(∫
Bd(x,ε)

G2
y dm(y)

)
(1.15)

where Gx is the mean zero Gaussian process with covariance u(x, y), the Green’s function
for Bd(v, r∗) and m denotes the standard surface measure on S2. Since u(x, x) =∞ for
all x, (1.15) is not a priori well defined. Nevertheless, this would suggest that there is a
close relationship between µ̄∗τ,ε = supx∈R2 µ̄τ (x, ε) and the supremum of Gaussian fields.
For details on H and the isomorphism theorem see [25, Section 2].

1.2 Open problems

1. Based on the analogy with the extrema of Branching random walks and log-
correlated Gaussian fields, one expects that Theorem 1.1 should be replaced by the
statement that the sequence of random variables

√
µ∗θ(ε)−mε converges in distribution

to a randomly shifted Gumbel random variable. The recent paper [24] contains a much
more precise conjecture about this limit. Let Ax,εt be the continuous additive functional
for planar Brownian motion started at the origin with Revuz measure γε which is uniform
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Tightness for thick points

measure on ∂Bε (x, ε). Planar Brownian motion does not have local times, but Ax,εt can
be thought of as an approximate local time at x. It is shown in [24] that

µε (F ) = log (1/ε) ε2
∫
F

e2
√

2π Ax,εθ dx (1.16)

converges in probability to a random Borel measure µ (F ) called the critical Brownian
multiplicative chaos. The conjecture is that for some c1, c2 > 0

lim
ε→0

P

(√
µ∗θ(ε) ≤ mε + z

)
= E (exp [−c1µ (D1) e(−c2z)]) . (1.17)

A key step in proving such convergence would be the improvement of the tail esti-
mates in Theorems 1.2 and 1.4 for z large, which in turn would require a corresponding
improvement of Theorem 1.6.

2. In [12] we also proved a conjecture of Erdös and Taylor concerning the number L∗n
of visits to the most visited site for simple random walk in Z2 up to step n. It was shown
there that

lim
n→∞

L∗n
(log n)2

= 1/π a.s. (1.18)

The approach in that paper was to first prove (1.1) for planar Brownian motion and
then to use strong approximation. Subsequently, in [29], we presented a purely random
walk method to prove (1.18) for simple random walk. See also [5] and more recently
[23]. A natural problem is to prove tightness for

√
L∗n. In fact, the conjecture in

[24] mentioned above was actually stated for the random walk, and also conjectures a
complete description for the landscape at high values of the field.

See [1, 9] for random walks on trees, and [2, 3] for planar random walks.

3. Following [12] we analyzed thick points for several other processes. See [13] for
transient symmetric stable process, [14] for spatial Brownian motion and [15] intersec-
tions of planar Brownian motion. One can ask about tightness or some analog for these
processes.

1.3 Structure of the paper

In Section 2 we obtain the upper bounds for excursion counts in Theorem 1.6, and
in Section 3 we derive the lower bounds. These sections employ many of the tools
developed in [7]. In Section 4 we show how to go from results on excursion counts
to Theorems 1.3 and 1.4 which involve µ̄τ (x, ε) in S2. Here we have to deal with a
new problem for the upper bounds: µ̄τ (x, ε) in S2 is not in general monotone in ε. This
requires interpolation and a continuity estimate which are developed in Sections 5 and 7.
In the short Section 8 we derive our results on thick points for the unit disc in the plane
from our results on thick points for S2, and use this to show that Theorems 1.3 and 1.4
hold for any 0 < r∗ < π. The last section is an Appendix containing the barrier estimates
we need for Sections 2 and 3.

1.4 Index of notation

The following are frequently used notation, and a pointer to the location where the
definition appears.
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µθ(x, ε) (1.3)
mε (1.4)
c∗ (1.6)
µ̄τ (x, ε) (1.8)
Bd(x, r), Be(x, r) page 2
ρL (1.13)
T τx,l (1.11)
rl, hl (2.2)
Fl (2.4)
T k→0
y,l (2.6)
lL (2.14)
αz,+(l) (2.15)
ky (2.16)
F ∗L (2.17)
FmL ,Hm,l (2.47)
Bm,l (2.49)
Cm,l (2.52)
Dm,l(j) (2.55)

Bγ,km,l (2.63)

T um,rl−2,n
y,r̃l

(2.66)

βz (l) (3.2)
αz,− (l) (3.3)

T 1
y,l, T

1,x2

y,l (3.3)

F 0
L (3.4)
Wy,k(n) (3.10)
Nk,a (3.11)
Nk, Iu (3.12)
Hk,a (3.18)
k+, k++ (3.52)

Îy,z (3.11)
Nk,a (3.11)
Nk (3.12)
Iy,z (3.13)
Hk,a (3.18)

J↑y,k (3.30)

By,k,a (3.31)
Mx,ε,a,b(n) (4.1)
tL (z) (4.5)
My,ε̄y,y0,a,b(n) (4.27)
D∗ (8.2)

2 Upper bounds for excursions

Let

h(r) = 2 arctan(r/2) (2.1)

and let

rl = r0e
−l, l = 0, 1, . . . , and hl = h(rl) (2.2)

for some r0 < 1. We can take r0 < 1 sufficiently small that for all 0 ≤ x ≤ r0

x− x3 ≤ h(x) ≤ x and |h′(x)− 1| ≤ x2. (2.3)

EJP 28 (2023), paper 18.
Page 5/45

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP910
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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For some d0 ≤ 1/1000 let Fl be the centers of an d0hl covering of S2. It follows from the
above that

|Fl| � cr−2
l = cr−2

0 e2l, l ≥ 0. (2.4)

Recall that T τx,l is the number of excursions from ∂Bd (x, hl−1) to ∂Bd (x, hl) prior to
τ . In this section we will assume that 2r∗ ≤ h0 so that for all y ∈ Bd(v, r

∗) we have
Bd(v, r

∗) ⊆ Bd(y, h0).
The reason for using h(r) is due to the following result for S2, see [7, (2.6)]. If HA is

the first hitting time of A, then for any u1 < u2 < u3

Px∈∂Bd(0,h(u2))
[
H∂Bd(0,h(u1)) < H∂Bd(0,h(u3))

]
=

log
(
u2

u3

)
log
(
u1

u3

) . (2.5)

The next Lemma provides simple bounds which will be adequate to handle points
which are close to the ‘South Pole’ v.

Lemma 2.1. For L large, any y ∈ Bcd (v, hk) and all |z| ≤ logL,

P
[√

2T τy,L ≥ ρLL+ z
]
≤ cke−2LLe−2z, (2.6)

for some c <∞ independent of 1 ≤ k ≤ L− 1.
If y ∈ Bd (v, hL−1)

P
[√

2T τy,L ≥ ρLL+ z
]
≤ ce−2LL2e−2z. (2.7)

Proof. For k ≤ l−1, let T k→0
y,l be the number of excursions from ∂Bd (y, hl−1) to ∂Bd (y, hl)

between H∂Bd(y,hk) and H∂Bd(y,h0). We first estimate probabilities involving T k→0
y,l . Using

(2.5), an excursion from ∂Bd (y, hk) hits Bd (y, hl−1) before exiting Bd(y, h0) with proba-
bility k/(l− 1), and then the probability to hit ∂Bd (y, hl) before exiting Bd(y, h0) is 1− 1

l .
Thus, using the strong Markov property,

P
[
T k→0
y,l ≥ n

]
=

k

l − 1

(
1− 1

l

)n
(2.8)

≤ k

l − 1
e−

n
l ,

for n large. Since (recall (1.13))

(ρLL+ z)2 = (ρLL)2 + 2zρLL+ z2

= 4L2 − 4L logL+ 4zL+ z2 − 2z logL+ log2 L, (2.9)

it follows that for L large

P
[√

2T k→0
y,L ≥ ρLL+ z

]
≤ cke−2LLe−2z. (2.10)

(2.6) follows since for y ∈ Bcd (v, hk) we have T τy,L ≤ T k→0
y,L .

For (2.7) we note that for y ∈ Bd (v, hL−1) we have T τy,L ≤ T
L−1→0
y,L .

Lemma 2.2. For L large and all 0 ≤ z ≤ logL,

P

[
sup

y∈FL∩Bd(v,hlogL)

√
2T τy,L ≥ ρLL+ z

]
≤ ce−2z, (2.11)

for some c <∞.
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Proof. By Lemma 2.1 the probability in (2.11) is bounded by

L−2∑
k=logL

P

[
sup

y∈FL∩Bd(v,hk)∩Bcd(v,hk+1)

√
2T τy,L ≥ ρLL+ z

]
(2.12)

+P

[
sup

y∈FL∩Bd(v,hL−1)

√
2T τy,L ≥ ρLL+ z

]

≤
L−2∑

k=logL

|FL ∩Bd (v, hk) ∩Bcd (v, hk+1) |cke−2LLe−2z

+|FL ∩Bd (v, hL−1) |ce−2LL2e−2z

≤ cLe−2z
∞∑

k=logL

ke−2k ≤ ce−2z.

Thus we only need deal with y ∈ Bcd (v, hlogL). However, Lemma 2.1 would give, for
example, that

P

[
sup

y∈FL∩Bcd(v,h1)

√
2T τy,L ≥ ρLL+ z

]
≤ CLe−2z, (2.13)

which would be disastrous if we let L→∞. To deal with this we introduce a barrier.
Let

lL = l ∧ (L− l). (2.14)

Fix z and set

αz,+ (l) = α (l, L, z) = ρLl + z + l
1/4
L . (2.15)

Let

ky = inf{k | y ∈ Bcd (v, hk)}, (2.16)

and

F ∗L = FL ∩Bcd (v, hlogL) . (2.17)

Since αz,+ (L) = ρLL + z and ky ≤ logL for y ∈ F ∗L, our desired upper bound will
follow from the next Lemma.

Lemma 2.3. There exists z0 > 0 such that for all z0 ≤ z ≤ logL and all L large

P
[
∃y ∈ F ∗L, l ∈ {ky + 1, . . . , L} s.t. T τy,l ≥ α2

z,+ (l) /2
]
≤ cze−2z. (2.18)

Although this formulation looks more complicated and demanding than our desired
upper bound, it will allow us to proceed level by level and to eventually use a barrier
estimate. The next Lemma will be used in our proof.

Lemma 2.4. For L large, any y ∈ Bcd (v, hk) and all 0 ≤ z ≤ logL,

P
[
T τy,l ≥ α2

z,+ (l) /2
]
≤ ckle−2le−2(z+l

1/4
L )−(z+l

1/4
L )2/2l, (2.19)

for some c <∞ independent of k ≥ 1 and l ∈ {k + 1, . . . , L}.

Proof. As in (2.8)

P
[
T τy,l ≥ α2

z,+ (l) /2
]
≤ c k

l − 1
e−

α2
z,+(l)

2l (2.20)
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and

α2
z,+ (l) = l2ρ2

L + 2(z + l
1/4
L )lρL + (z + l

1/4
L )2

= l2
(

4− 4
logL

L
+

log2 L

L2

)
+ 2(z + l

1/4
L )l

(
2− logL

L

)
+(z + l

1/4
L )2 (2.21)

Hence

α2
z,+ (l) /2l =

(
2l − 2

l

L
logL

)
+ 2(z + l

1/4
L ) + (z + l

1/4
L )2/2l + oL(1)

≥ (2l − 2 log l) + 2(z + l
1/4
L ) + (z + l

1/4
L )2/2l + oL(1), (2.22)

using the concavity of the logarithm. Our result follows.

The proof of (2.18) will be provided in Sections 2.1-2.3, and is split into two cases.
For l which are not too large, i.e. l ≤ L− (4 logL)

4, we can deal with (2.18) one level at a
time. This is the content of Section 2.1. For larger l’s, which are handled in Section 2.2,
and in particular for l = L, we need to proceed inductively and make use of the facts
established for lower levels. This method can be traced back to Bramson’s work [10].
Some crucial auxiliary estimates are postponed to Section 2.3.

2.1 Proof of (2.18) for l not too large

Proposition 2.5. There exists z0 > 0 such that for all z0 ≤ z ≤ logL and all L large

P
[
∃y ∈ F ∗L, l ∈

{
ky + 1, . . . , L− (4 logL)

4
}
s.t. T τy,l ≥ α2

z,+ (l) /2
]
≤ ce−2z. (2.23)

Proof. We use a packing argument. Let φ(l) = e.25 l
1/4
L . Considering separately the case

of l ≤ L/2 and L/2 < l ≤ L− (4 logL)
4, we see that for some m0

l
1/4
L ≥ 4 log l, m0 ≤ l ≤ L− (4 logL)

4
, (2.24)

so that
l

φ(l)
=

l

e.25 l
1/4
L

≤ 1, m0 ≤ l ≤ L− (4 logL)
4
. (2.25)

We define modified radii by

r−l−1 =

(
1− 1

φ(l − 1)

)
rl−1 and r+

l =

(
1 +

1

φ(l)

)
rl for l ≥ 1. (2.26)

Note that

h(rl+log φ(l))
(2.3)
≤ rl+log φ(l)

(2.2)
=

rl
φ(l)

=
rl−1

e φ(l)
≤ rl−1

φ(l − 1)
. (2.27)

Using this and (2.3) we have for φ(l) large enough

h(r−l−1) +
1

103
h(rl+log φ(l)) ≤ h(rl−1) and h(rl) +

1

103
h(rl+log φ(l)) ≤ h(r+

l ). (2.28)

For each y ∈ S2 let yl denote the point in Fl closest to y (breaking ties in some
arbitrary way). By the definition of Fl+log φ(l), recalling that d0 ≤ 10−3, we have

d
(
y, yl+log φ(l)

)
≤ 1

103
h(rl+log φ(l)), (2.29)
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so that using (2.28) we see that for all y ∈ S2

Bd (y, hl) ⊂ Bd
(
yl+log φ(l), h(r+

l )
)
⊂ Bd

(
yl+log φ(l), h(r−l−1)

)
⊂ Bd (y, hl−1) . (2.30)

Now for k ≤ l − 1 set

r−k,l =

(
1− 1

φ(l)

)
rk and r+

0,l =

(
1 +

1

φ(l)

)
r0 for l ≥ 0. (2.31)

As in the proof of (2.28) we have

h(r−k,l) +
1

103
h(rl+log φ(l)) ≤ h(rk) and h(r0) +

1

103
h(rl+log φ(l)) ≤ h(r+

0,l),

so that (2.29) also implies that

Bd

(
yl+log φ(l), h(r−k,l)

)
⊂ Bd (y, h(rk)) ⊂ Bd (y, h(r0)) ⊂ Bd

(
yl+log φ(l), h(r+

0,l)
)
. (2.32)

For each y ∈ Fl+log φ(l) let T̃ k→0
y,l be the number of excursions from ∂Bd

(
y, h(r−l−1)

)
to

∂Bd
(
y, h(r+

l )
)

prior to the first excursion from ∂Bd

(
y, h(r−k,l)

)
to ∂Bd

(
y, h(r+

0,l)
)

. Then

define
T̃ k→0
y,l = T̃ k→0

yl+log φ(l),l
, for y ∈ S2\Fl+log φ(l) for all l ≥ k + 1.

It follows from (2.30) and (2.32) that T̃ ky→0
y,l ≥ T ky→0

y,l ≥ T τy,l for all l ≥ ky + 1. Thus

Lemma 2.6. For all y ∈ S2, l ≥ ky + 1 we have that

T̃ ky→0
y,l ≥ T τy,l. (2.33)

Because of this the probability in (2.23) is bounded above by

logL∑
k=1

L−(4 logL)4∑
l=k+1

∑
y∈Bd(v,h(rk−1))∩Fl+log φ(l)

P
[
T̃ k→0
y,l ≥ α2

z,+ (l) /2
]

(2.34)

=

logL∑
k=1

L−(4 logL)4∑
l=k+1

∣∣Bd (v, h(rk−1)) ∩ Fl+log φ(l)

∣∣P [T̃ k→0
y,l ≥ α2

z,+ (l) /2
]

≤ c

logL∑
k=1

L−(4 logL)4∑
l=k+1

e.5 l
1/4
L e2(l−k)P

[
T̃ k→0
y,l ≥ α2

z,+ (l) /2
]
,

for some arbitrary y ∈ Fl+log φ(l). We show below that for all k ≤ l

P
[
T̃ k→0
y,l ≥ α2

z,+(l)/2
]
≤ ce−2l−l1/4L e−2z, (2.35)

and since
∞∑
k=1

L∑
l=1

e.5 l
1/4
L e2(l−k)e−2l−l1/4L e−2z ≤ ce−2z,

this will complete the proof of (2.23).
We now turn to the proof of (2.35). Let

pl =
log
(
r−l−1/r

+
0,l

)
log
(
r+
l /r

+
0,l

) =

log

((
1− 1

φ(l−1)

)(
1 + 1

φ(l)

)−1

e−(l−1)

)
log (e−l)

=
l − 1 + 2/φ(l) +O(φ(l)−2)

l
= 1− 1− 2/φ(l) +O(φ(l)−2)

l
, (2.36)
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and

ql =
log
(
r−k,l/r

+
0,l

)
log
(
r−l−1/r

+
0,l

) =

log

((
1− 1

φ(l)

)(
1 + 1

φ(l)

)−1

e−k
)

log

((
1− 1

φ(l−1)

)(
1 + 1

φ(l)

)−1

e−(l−1)

)
=

k + 2/φ(l) +O(φ(l)−2)

l − 1 + 2/φ(l) +O(φ(l)−2)
=
k +O(φ(l)−1)

l − 1
.

Using the fact that pl < 1 together with (2.36) we can write

pl = 1− 1− bl/φ(l)

l
(2.37)

with 1− bl/φ(l) > 0. In addition, using (2.25) and possibly increasing m0,

lbl
φ(l)

≤ 3, l ≥ m0. (2.38)

Since ql is the probability for an excursion from ∂Bd

(
y, h(r−k,l)

)
to hit Bd

(
y, h(r−l−1)

)
before ∂Bd

(
y, h(r+

0,l)
)

, and pl is the probability for an excursion from Bd
(
y, h(r−l−1)

)
to

hit ∂Bd
(
y, h(r+

l )
)

before ∂Bd
(
y, h(r+

0,l)
)

, we see that as in (2.8)

P
[
T̃ k→0
y,l ≥ α2

z,+(l)/2
]
≤ ck

l
e
−
α2
z,+(l)

2l

(
1− bl

φ(l)

)
. (2.39)

By (2.22) we have that

α2
z,+(l)

2l
≥ (2l − 2 log l) + 2(z + l

1/4
L ) + z2/2l + oL(1), (2.40)

so that, for k ≤ l

P
[
T̃ k→0
y,l ≥ α2

z,+(l)/2
]
≤ cl2e−

(
2l+2(z+l

1/4
L )+z2/2l

)(
1− bl

φ(l)

)
. (2.41)

We claim that
z2

2l

(
1− bl

φ(l)

)
− 2zbl/φ(l) > 0,

that is

z

(
1− bl

φ(l)

)
> 4lbl/φ(l)

for z ≥ z0 sufficiently large. For l > m0, this follows from (2.38), and for l ≤ m0 we can
just increase z further. Thus for such z

P
[
T̃ k→0
y,l ≥ α2

z,+(l)/2
]
≤ cl2e−

(
2l+2l

1/4
L

)(
1− bl

φ(l)

)
e−2z. (2.42)

For k ≤ l ≤ m0 this already proves (2.35) with c sufficiently large. For l > m0, using
(2.38) again we now have

P
[
T̃ k→0
y,l ≥ α2

z,+(l)/2
]
≤ cl2e−

(
2l+2l

1/4
L

)
e−2z. (2.43)

and (2.24) completes the proof of (2.35).
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2.2 Proof of (2.18) for l very large

We will show that for some small but fixed constant c̃ to be chosen later we have that
for all L sufficiently large and all z0 ≤ z ≤ logL

P

[
∃y ∈ F ∗L ∩Bd (0, c̃h0) and ky + 1 ≤ l ≤ L

such that
√

2T τy,l ≥ αz,+(l)

]
≤ cze−2z. (2.44)

Here 0, the center of Bd (0, c̃h0), is used to denote an arbitrary point in S2. A simple
union bound (over ∼ (1/c̃h0)2 balls) then completes the proof of (2.18).

Now consider

Gl =
{√

2T τy,l′ ≤ αz,+(l′) for all l′ = ky + 1, . . . , l and ∀y ∈ F ∗L ∩Bd (0, c̃h0)
}
.

Let L′ = L− (4 logL)
4. With

Hl =
{
∃y ∈ F ∗L ∩Bd (0, c̃h0) s.t.

√
2T τy,l ≥ αz,+(l), ky < l

}
, (2.45)

we will prove that for all l > L′

P [Hl ∩ Gl−2] ≤ cze−l
1/4
L −2z, (2.46)

so that we have

P [GcL] ≤
L∑

l=L′+1

P [Gcl ∩ Gl−1] + P [GcL′ ]

≤
L∑

l=L′+1

P [Hl ∩ Gl−2] + P [GcL′ ]

≤
L∑

l=L′+1

cze−l
1/4
L −2z + P [GcL′ ] ≤ cze−2z,

by Proposition 2.5, which will prove (2.44).
Setting FmL = FL ∩Bcd (v, hm) ∩Bd (v, hm−1), so that ky = m for y ∈ FmL , and for any

l > m

Hm,l =
{
∃y ∈ FmL ∩Bd (0, c̃h0) s.t.

√
2T τy,l ≥ αz,+(l)

}
, (2.47)

we will prove that for all l > L′

logL∑
m=1

P [Hm,l ∩ Gl−2] ≤ cze−l
1/4
L −2z, (2.48)

which gives (2.46) since, recall (2.17), F ∗L = FL ∩Bcd (v, hlogL).
To prove (2.48) we need to work with the following localized version of Hm,l. For any

l > m let
Bm,l =

{
∃x ∈ FmL ∩Bd (um, c̃hl) s.t.

√
2T τx,l ≥ αz,+(l)

}
, (2.49)

where um is used to denote an arbitrary point in FmL . By a union bound, P [Hm,l ∩ Gl−2]

is bounded above by
ce2(l−m) × P [Bm,l ∩ Gl−2] . (2.50)

Hence it suffices to show that

logL∑
m=1

e−2mP [Bm,l ∩ Gl−2] ≤ cze−2l−l1/4L −2z. (2.51)
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Since Gl−2 ⊂ Cm,l, where

Cm,l =
{√

2T τum,l′ ≤ αz,+(l′) for all l′ = m+ 1, . . . , l − 2
}
, (2.52)

it suffices to show that

logL∑
m=1

e−2mP [Bm,l ∩ Cm,l] ≤ cze−2l−l1/4L −2z. (2.53)

We show in the next Section that for all l ≥ L− (4 logL)
4

P

[
Bm,l ∩

{√
2T τum,l−2 ≤

1

2
αz,+(l − 2)

}]
≤ ce−c

′L2

. (2.54)

It follows from this that with

Dm,l(j) =
{√

2T τum,l−2 ∈ Iαz,+(l−2)+j

}
, (2.55)

where Is = [s, s+ 1], it suffices to show that

logL∑
m=1

e−2m

1
2αz,+(l−2)∑

j=0

P [Bm,l ∩ Cm,l ∩ Dm,l(−j)] ≤ cze−2l−l1/4L −2z. (2.56)

We also show in the next Section that we can find a fixed j0 such that for all j0 ≤
j ≤ 1

2α+,z(l − 2), uniformly in 1 ≤ m ≤ logL and z0 ≤ z ≤ logL, for any C̃m,l ∈
F
(
T τum,k, k = 1, . . . , l − 2

)
P
[
Bm,l

∣∣ C̃m,l ∩ Dm,l(−j)] ≤ Ce−4j , (2.57)

by taking c̃ > 0 sufficiently small.
It follows from the barrier estimate (9.5) that for 0 ≤ j ≤ 1

2αz,+(l − 2),

P [Cm,l ∩ Dm,l(−j)] ≤ ce−2l−2z−2l
1/4
L +2j ×m2

(
1 + z +m+ l

1/4
L

)
(1 + j) . (2.58)

Combining the last 2 displays we can bound the left hand side of (2.56) by

Cze−2l−2z−l1/4L

∞∑
j=0

e−4j1{j≥j0}+2j(1 + j), (2.59)

which proves (2.56).

2.3 Proof of the continuity estimate (2.57) and the bound (2.54)

We first prove that for some j0 fixed and all j0 ≤ j ≤ 1
2α+,z(l), uniformly in 1 ≤ m ≤

logL and z0 ≤ z ≤ logL, for any C̃m,l ∈ F
(
T τum,k, k = 1, . . . , l − 2

)
P
[
Bm,l

∣∣ C̃m,l ∩ Dm,l(−j)] ≤ Ce−4j . (2.60)

Proof. For each γ ∈ (0, 1] and y, let T τy,r̃l be the number of excursions from ∂B (y, h(r̃l−1))

to ∂B (y, h(r̃l)) prior to τ , where

r̃l−1 = rl−1 (1− γ) , r̃l = rl (1 + γ) . (2.61)
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Note that
T τy′,r̃l ≥ T

τ
y,l for all y′ such that d (y, y′) ≤ γrl

2
, (2.62)

since then

Bd (y, hl−1) ⊃ Bd (y′, h(rl−1 (1− γ))) ⊃ Bd (y′, h(rl (1 + γ))) ⊃ Bd (y, hl) .

Let
Bγ,km,l =

{
∃y ∈ Fmk ∩Bd (um, c̃ hl) such that

√
2T τy,r̃l ≥ α+,z(l)

}
. (2.63)

Note Fmk not FmL . From now on we fix

γ =
1

α+,z(l)− j
, and k = log (2(α+,z(l)− j)) + l. (2.64)

We will show that with these values

P

[
Bγ,km,l

∣∣∣∣ C̃m,l ∩ Dm,l(−j)] ≤ Ce−4j . (2.65)

Using (2.62) this will imply (2.60), since for each y ∈ FmL ∩ Bd (um, c̃hl) there exists a
representative y′ ∈ Fmk ∩Bd (um, c̃hl) such that

d (y, y′) ≤ rk =
1

2(α+,z(l)− j)
rl =

γrl
2
.

To show (2.65), we first show that for some c3 > 0

P

[√
2T τum,r̃l ≥ α+,z(l)−

j

2

∣∣∣∣ C̃m,l ∩ Dm,l(−j)] ≤ c′e−c3j2 . (2.66)

Let T um,rl−2,n
y,r̃l

be the number of excursions from ∂B (y, h(r̃l−1)) to ∂B (y, h(r̃l)) during
the first n excursions from ∂B (um, hl−2) to ∂B (um, hl−3). Using the Markov property
we have that

P

[√
2T τum,r̃l ≥ α+,z(l)−

j

2

∣∣∣∣ C̃m,l ∩ Dm,l(−j)] (2.67)

= P

[√
2T τum,r̃l ≥ α+,z(l)−

j

2

∣∣∣∣Dm,l(−j)]
= P

[√
2T τum,r̃l ≥ α+,z(l)−

j

2

∣∣∣∣√2T τum,l−2 ∈ Iαz,+(l)−j

]
= P

[√
2T

um,rl−2,T τum,l−2

um,r̃l
≥ α+,z(l)−

j

2

∣∣∣∣√2T τum,l−2 ∈ Iαz,+(l)−j

]
.

To prove (2.66) it suffices to show that show that uniformly for s ∈ Iαz,+(l)−j

P

[√
2T um,rl−2,s2/2
um,r̃l

≥ α+,z(l)−
j

2

]
≤ c′e−c3j

2

. (2.68)

To see this, let s = αz,+(l) − j + ζ, where 0 ≤ ζ ≤ 1. Set n = s2/2 and θ =(
α+,z(l)− j

2

)2
/2,

q̄ = Pu∈∂Bd(um,hl−2)
[
H∂Bd(um,h(rl(1+γ))) < H∂Bd(um,hl−3)

]
=

log rl−3 − log rl−2

log rl−3 − log(rl (1 + γ))
=

1

3 +O (γ)
, (2.69)
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and

p̄ = Pu∈∂Bd(um,h(rl−1(1−γ)))
[
H∂Bd(um,hl−3) < H∂Bd(um,h(rl(1+γ)))

]
=

log(rl−1 (1− γ))− log(rl (1 + γ))

log rl−3 − log(rl (1 + γ))
=

1 +O (γ)

3 +O (γ)
. (2.70)

[6, Lemma 4.6] states that if θ ≤ np̄/q̄ then

P
[
T um,rl−2,n
um,r̃l

≤ θ
]
≤ e−(

√
q̄n−
√
p̄θ)

2

. (2.71)

The same proof shows that if θ ≥ np̄/q̄ then

P
[
T um,rl−2,n
um,r̃l

≥ θ
]
≤ e−(

√
q̄n−
√
p̄θ)

2

. (2.72)

Translating back this shows that

P

[√
2T um,rl−2,s2/2
um,r̃l

≥ α+,z(l)−
j

2

]
≤ e−(

√
q̄(α+,z(l)−j+ζ)−

√
p̄(α+,z(l)− j2 ))

2
/2 (2.73)

once we have verified that

αz,+(l)− j

2
≥ (α+,z(l)− j + 1)

√
q/p.

But the right hand side

= (α+,z(l)− j + 1)(1 +O (γ)) = (α+,z(l)− j) +O (1) ,

since γ (α+,z(l)− j) = 1. Thus we can use (2.73) for all j ≥ c3 for some c3 <∞. For such
j we therefore have

P

[√
2T um,rl−2,s2/2
um,r̃l

≥ α+,z(l)−
j

2

]
≤ ce−

1
6 (− j2 +ζ+O(γ(α+,z(l)− j2 )))

2

,

and since γ (α+,z(l)− j) = 1 and j ≤ 1
2α+,z(l) so that j ≤ (α+,z(l)− j), it follows that

γ

(
α+,z(l)−

j

2

)
= γ (α+,z(l)− j) + γ

j

2
≤ 2,

so that we obtain (2.68) for all j ≥ c3. By enlarging c′ we then have (2.68) for all j.
We now bound

P

[
Bγ,km,l

∣∣∣∣ C̃m,l ∩ Dm,l(−j)] ≤ P [√2T τum,r̃l ≥ α+,z(l)−
j

2

∣∣∣∣ C̃m,l ∩ Dm,l(−j)]
+P

[
Bγ,km,l ∩

{√
2T τum,r̃l < α+,z(l)−

j

2

} ∣∣∣∣ C̃m,l ∩ Dm,l(−j)] . (2.74)

Because of the bound (2.66), to prove (2.65) it suffices to show that

P

[
Bγ,km,l ∩

{√
2T τum,r̃l < α+,z(l)−

j

2

} ∣∣∣∣ C̃m,l ∩ Dm,l(−j)] ≤ Ce−4j . (2.75)

We use a chaining argument. Assign to each y ∈ Fml+i ∩Bd (um, c̃hl) a unique “parent”
ỹ ∈ Fml+i−1 ∩ Bd (um, c̃hl) such that d (ỹ, y) ≤ rl+i. In particular, for i = 1 we set ỹ = um.
Let q = q(ỹ, y) = d (ỹ, y) /rl and set

Ai =
{

sup
y∈Fml+i∩Bd(um,c̃hl)

∣∣T τy,r̃l − T τỹ,r̃l ∣∣ ≤ d0ji (α+,z(l)− j)
√
q
}
, (2.76)
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where d0 will be chosen later, but small enough that d0

∑
i≥1 ie

−i/2 ≤ 1
8 .

We note that as i increases y and ỹ will be closer together so we expect
∣∣∣T τy,r̃l − T τỹ,r̃l ∣∣∣

to decrease, and on the right i
√
q is also decreasing in i, but we are now taking the sup

over a larger set. As we will see, this combination will allow us to complete the chaining
argument to prove (2.75).

We now show that

k−l⋂
i=1

Ai ∩
{√

2T τum,r̃l < α+,z(l)−
j

2

}
(2.77)

⊆
{√

2T τy,r̃l < α+,z(l), ∀y ∈ Fmk ∩Bd (um, c̃hl)
}
.

For this, we use q = d (ỹ, y) /rl ≤ rl+i/rl = e−i for y ∈ Fml+i to see that for any trajectory
in the left hand side of (2.77) and all y ∈ Fmk ∩Bd (um, c̃h(rl))

T τy,r̃l ≤
(
α+,z(l)−

j

2

)2

/2 + j (α+,z(l)− j) d0

∑
i≥1

ie−i/2,

which, since d0

∑
i≥1 ie

−i/2 ≤ 1
8 , implies that

T τy,r̃l ≤
(
α+,z(l)− j

2

)2
/2 + 1

8j (α+,z(l)− j)
= α2

+,z(l)/2− α+,z(l)j/2 + ( j2 )2/2 + 1
8α+,z(l)j − j2

8

< α2
+,z(l)/2.

This establishes (2.77) and taking complements we see that

Bγ,km,l =
{
∃y ∈ Fmk ∩Bd (um, c̃hl) such that

√
2T τy,r̃l ≥ α+,z(l)

}
(2.78)

⊆
k−l⋃
i=1

Aci ∪
{√

2T τum,r̃l ≥ α+,z(l)−
j

2

}
.

It follows that

Bγ,km,l ∩
{√

2T τum,r̃l < α+,z(l)−
j

2

}
⊆
k−l⋃
i=1

Aci . (2.79)

We can thus bound P

[
Bγ,km,l ∩

{√
2T τum,r̃l < α+,z(l)− j

2

} ∣∣∣∣ C̃m,l ∩ Dm,l(−j)] by

k−l∑
i=1

P

[
sup

y∈Fml+i∩Bd(um,c̃hl)

∣∣T τy,r̃l − T τỹ,r̃l ∣∣ ≥ d0ji (α+,z(l)− j)
√
q

∣∣∣∣ C̃m,l ∩ Dm,l(−j)
]
. (2.80)

Since
∣∣Fml+i ∩Bd (um, c̃hl)

∣∣ ≤ ce2i, a union bound gives that (2.80) is at most

c

k−l∑
i=1

e2i sup
y∈Fml+i∩Bd(um,c̃hl)

P

[∣∣T τy,r̃l − T τỹ,r̃l ∣∣ ≥ d0ji (α+,z(l)− j)
√
q

∣∣∣∣ C̃m,l ∩ Dm,l(−j)] . (2.81)

We can write the last probability as

P

[∣∣∣T um,rl−2,T τum,l−2

y,r̃l
− T um,rl−2,T τum,l−2

ỹ,r̃l

∣∣∣ ≥ d0ji (α+,z(l)− j)
√
q

∣∣∣∣ C̃m,l ∩ Dm,l(−j)] . (2.82)
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Using [7, Lemma 5.6] with θ = d0ji and n = (α+,z(l) − j)2/2, we find that for an
appropriate choice of d0, c̃, the last probability is bounded by ce−8ji ≤ ce−4(j+i) since
i, j ≥ 1. To apply [7, Lemma 5.6] we must verify several points.

First, we need to verify that for some small c̄0 we have θ ≤ c̄0(n− 1), that is d0ji ≤
c̄′0(α+,z(l) − j)2. For this it suffices to note that for j, l in our range i/(α+,z(l) − j) ≤
(k − l)/(α+,z(l)− j) = (log 2(α+,z(l)− j))/(α+,z(l)− j) goes to 0 as L→∞.

Secondly, we need to show that θ ≤ ((n − 1)q)2. Since we have already seen that
θ ≤ c̄0(n− 1), it suffices to show that (n− 1)q2 ≥ c22 for some c2 > 0, or equivalently that√

2n q ≥ c′2 > 0. That is, (α+,z(l) − j)d (ỹ, y) /rl ≥ c′2. Assume that d (ỹ, y) ≥ c3rk for a
small c3 > 0, so that, see (2.64),

(α+,z(l)− j)d (ỹ, y) /rl ≥ c3(α+,z(l)− j)e−(k−l) = c3/2.

With the Fl constructed appropriately we can indeed assume that either d (ỹ, y) ≥ c3rk
for a small c3 > 0, or that y = ỹ, in which case the corresponding term in the sum in
(2.81) is zero. Also, by taking c̃ = q0/2 we will have d (ỹ, y) /rl ≤ q0.

Thus we see that (2.81) is at most

c
k−l∑
i=1

e2ie−4(j+i) ≤ Ce−4j . (2.83)

This completes the proof of (2.75).

Proof of (2.54). As in (2.62)

T τum,r̃l ≥ T
τ
y,l for all y such that d (y, um) ≤ γrl

2
, (2.84)

where we take γ to be some fixed small number. Hence under Bm,l we have
√

2T τum,r̃l ≥

αz,+(l). The fact that for all l ≥ L− (4 logL)
4

P

[√
2T τum,l−2 ≤

1

2
αz,+(l − 2),

√
2T τum,r̃l ≥ αz,+(l)

]
≤ ce−c

′L2

(2.85)

then follows easily as in the proof of (2.68). (In fact, the proof uses the same ideas but is
much easier).

3 Lower bounds for excursions

In this section we will prove the following.

Lemma 3.1. There exist 0 < c1, c2 <∞ such that for all L large and all 0 ≤ z ≤ logL,

P

[
sup
y∈FL

√
2T τy,L ≥ ρLL+ z

]
≥ c1

(1 + z)e−2z

(1 + z)e−2z + c2
. (3.1)

This will immediately give the lower bounds in Theorems 1.6 and 1.5 and hence
complete the proofs of those Theorems.

Note that for any z0 it suffices to show that (3.1) holds for all z0 ≤ z ≤ logL, since by
adjusting c1 we then get (3.1) for all 0 ≤ z ≤ logL.

Let
βz (l) = ρLl + z, (3.2)

and
αz,− (l) = αz,− (l, L, z) = ρLl + z − l1/4L . (3.3)
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Tightness for thick points

For each k ≥ 1 we define T k,my,l be the number of excursions from ∂Bd (y, hl−1) to
∂Bd (y, hl) during the first m excursions from ∂Bd (y, hk) to ∂Bd (y, hk−1). We abbreviate

T 1
y,l = T 1,x2

y,l with x fixed.
Choose r0 in (2.2) sufficiently small that 4h(r−1) ≤ r∗. (Recall that τ is the first hitting

time of ∂Bd(v, r∗).) Let r̂ = h1/20, and with F 0 := Bd(v, r̂) we set

F 0
L = F 0 ∩ FL, so that c1e

2L ≤ |F 0
L| ≤ c2e2L, (3.4)

where we can take c1, c2 independent of r0. Compare (2.4).
In this section we show that

Lemma 3.2. There exists a 0 < c <∞ such that for all 0 < r0 sufficiently small, L large
and all 0 ≤ z ≤ logL,

P

[
sup
y∈F 0

L

√
2T 1
y,L ≥ ρLL+ z

]
≥ (1 + z)e−2z

(1 + z)e−2z + c
. (3.5)

Since the probability of x2 excursions from ∂Bd(v, h1 − r̂) to ∂Bd(v, h0 + r̂) before τ is
greater than 0 and does not depend on L, (3.5) will imply Lemma 3.1. We note that the r0

used in this Lemma, and hence all hl, are smaller than the corresponding quantities used
until now. This is for notational convenience and, as can easily be seen, does not affect
Lemma 3.1 which concerns large L. We could have kept the original r0 and in place of hl
used hl+k for some fixed k, but this would have made the notation cumbersome.

The proof of Lemma 3.2 uses a modified second moment method and occupies the
rest of this section.

We introduce the events Iy,z, beginning with a barrier event. Let

Îy,z =
{√

2T 1
y,l ≤ αz,− (l) for l = 1, . . . , L− 1 and

√
2T 1
y,L ≥ ρL + z

}
, (3.6)

for y ∈ FL. As discussed in [7], we need to augment Îy,z by information on the angular
increments of the excursions. Instead of keeping track of individual excursions, we track
the empirical measure of the increments, by comparing it in Wasserstein distance to a
reference measure. This will suffice for the decoupling arguments used in [7, Section
4.5] which we will use. Recall that the Wasserstein L1-distance between probability
measures on R is given by

d1
Wa(µ, ν) = inf

ξ∈P2(µ,ν)

{∫
|x− y| dξ(x, y)

}
, (3.7)

where P2(µ, ν) denotes the set of probability measures on R×R with marginals µ, ν. If µ
is a probability measure on R with finite support and if θi, 1 ≤ i ≤ n denotes a sequence
of i.i.d µ-distributed random variables then it follows from [19, Theorem 2] that for some
c0 = c0(µ)

Prob

{
d1

Wa

(
1

n

n∑
i=1

δθi , µ

)
>
c0x√
n

}
≤ 2e−x

2

. (3.8)

Let Wt be Brownian motion in the plane. For each k let νk be the probability measure
on [0, 2π] defined by

νk(dx) = P (rk,0)
(

arg WH∂B(0,rk−1)
∈ dx

)
, (3.9)

where arg x for x ∈ R2 is the argument of x measured from the positive x-axis and Pw is
the law of W· started from w.
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Tightness for thick points

Returning to Xt, our Brownian motion on the sphere, and using isothermal coordi-
nates, see [7, Section 2], let 0 ≤ θk,i ≤ 2π, i = 1, 2, . . . be the angular increments centered
at y, mod 2π, from XHi

∂B(y,hk)
to XHi

∂B(y,hk−1)
, the endpoints of the i’th excursion between

∂B(y, hk) and ∂B(y, hk−1). By the Markov property the θk,i, i = 1, 2, . . . are independent,
and using [7, Section 2] we see that each θk,i has distribution νk. We set, for n a positive
integer,

Wy,k(n) =

{
d1

Wa

(
1

n

n∑
i=1

δθk,i , νk

)
≤ c0 log(L− k)

2
√
n

}
. (3.10)

We are ready to define the good events Iy,z. For a ∈ Z+ let

Nk,a = [(ρLk + z − a+ 1)2/2]. (3.11)

We set
Nk = Nk,a if

√
2T 1
y,k ∈ IρLk+z−a, (3.12)

where Is = [s, s + 1]. With L+ = L − (500 logL)4 and d∗ a constant to be determined
below, let

Iy,z = Îy,z ∩L−d
∗

k=L+
Wy,k (Nk) , (3.13)

and define the count
Jz =

∑
y∈F 0

L

1Iy,z . (3.14)

To obtain (3.5), we need a control on the first and second moments of Jz, which is
provided by the next two lemmas. In fact, (3.5) will follow directly from these two
Lemmas as in the proof of [7, Proposition 4.2], taking into account that |F 0

L| does not
depend on r0. Most of this section is devoted to their proof. We emphasize that in the
statements of the lemma, the implied constants are uniform in r0 smaller than a fixed
small threshold.

Lemma 3.3 (First moment estimate). There is a large enough d∗, such that for all L
sufficiently large, all 0 ≤ z ≤ logL, and all y ∈ F 0

L,

P (Iy,z) � (1 + z)e−2Le−2z. (3.15)

Let

(3.16)

G0 = {(y, y′) : y, y′ ∈ FL s.t. d (y, y′) > 2h0} ,
Gk = {(y, y′) : y, y′ ∈ FL s.t. 2hk < d (y, y′) ≤ 2hk−1} for 1 ≤ k < L,

GL = {(y, y′) : y, y′ ∈ FL s.t. 0 < d (y, y′) ≤ 2hL−1} .

Recall from (2.14) that kL = k ∧ (L− k).

Lemma 3.4 (Second moment estimate). There are large enough d∗, c′, such that for all
L sufficiently large, all 0 ≤ z ≤ logL and all (y, y′) ∈ Gk, 1 ≤ k ≤ L,

P (Iy,z ∩ Iy′,z) ≤ c′(1 + z)e−4L+2ke−2ze−ck
1/4
L . (3.17)

Before turning to the proofs, we introduce some notation and record some simple
estimates that will be useful in calculations. Recall (3.2), (3.11)-(3.12) and for a ∈ Z+ let

Hk,a =
{√

2T 1
y,k ∈ IρLk+z−a

}
=
{√

2T 1
y,k ∈ Iβz(k)−a

}
. (3.18)

Note that on Hk,a we have Nk = Nk,a.
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Tightness for thick points

Before proceeding we need to state a deviation inequality of Gaussian type for the
Galton-Watson process Tl, l ≥ 0 under PGW

n , the law of a critical Galton-Watson process
with geometric offspring distribution with initial offspring n. The proof is very similar to
[6, Lemma 4.6], and is therefore omitted.

Lemma 3.5. For all n = 1, 2, 3, . . ., and all l,

PGW
n

(∣∣∣√2Tl −
√

2T0

∣∣∣ ≥ θ) ≤ ce− θ22l , θ ≥ 0. (3.19)

Using (2.5) and the strong Markov property, it is easy to see that

the P-law of T x,nl , l ≥ 0, is PGW
n . (3.20)

Therefore, we obtain the following estimates from Lemma 3.5, for θ ∈ R:

P

(√
2T

x,n2/2
l ≤ θ

)
≤ ce−(n−θ)2/2l, if θ ≤ n, (3.21)

and

P

(√
2T

x,n2/2
l ≥ θ

)
≤ ce−(n−θ)2/2l, if θ ≥ n. (3.22)

In the proof of our moment estimates we will need the following.

Lemma 3.6. For any a, b ≤ L/ logL and k < L

P

[√
2T k,(βz(k)−a)2/2
y,L ≥ ρLL+ z − b

]
(3.23)

≤ ce−2(L−k)−2(a−b)− (a−b)2
2(L−k)L2

(L−k)
L .

Proof. By (3.22) we have that for all θ > n ≥ 1

P
[
T k,n

2/2
y,L ≥ θ2/2

]
≤ c exp

(
− (θ − n)

2

2(L− k)

)
. (3.24)

We apply this with θ = ρLL+ z − b and

n = βz(k)− a = ρLk + z − a

so that
θ − n = ρL (L− k) + a− b,

and hence

(θ − n)
2

2(L− k)
≥ 2 (L− k)− 2

(L− k)

L
(logL) + 2(a− b) +

(a− b)2

2(L− k)
+OL(1).

This gives (3.23).

3.1 First moment estimate

In this subsection we prove Lemma 3.3.
For the lower bound we have that

P [Iy,z] ≥ P
[
Îy,z

]
−

L−d∗∑
k=L+

P
[
Îy,z

⋂
W c
y,k (Nk)

]
(3.25)

≥ c(1 + z)e−2Le−2z −
L−d∗∑
k=L+

P
[
Îy,z

⋂
W c
y,k (Nk)

]
,
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Tightness for thick points

where for P
[
Îy,z

]
we have used the barrier estimate (9.12) of Appendix I. We note that

P
[
Îy,z

⋂
W c
y,k (Nk)

]
≤

∑
a≥k1/4L

P
(
Îk,ay,z

)
, (3.26)

where
Îk,ay,z = Îy,z

⋂
Hk,a

⋂
W c
y,k (Nk,a) . (3.27)

We show below that for all L+ ≤ k ≤ L− d∗ and 0 ≤ z ≤ logL,∑
a≥k1/4L

P
(
Îk,ay,z

)
≤ c′(1 + z)

(
e−2Le−2z

)
e−c log2(L−k), (3.28)

which will finish the proof of the lower bound for (3.15) for d∗ sufficiently large.
Furthermore, it is easily seen using (3.23) and the fact that L− k ≤ (500 logL)4 that

the sum in (3.28) over a ≥ L3/4 is much smaller than the right hand side of (3.28), hence
it suffices to show that

L3/4∑
a≥k1/4L

P
(
Îk,ay,z

)
≤ c′(1 + z)

(
e−2Le−2z

)
e−c log2(L−k), (3.29)

We now turn to the proof of (3.29). Let

J↑y,k =
{√

2T 1
y,l ≤ ρLl + z for l = 1, . . . , k

}
, (3.30)

and

By,k,a =

{√
2T k,(βz(k)−a)2/2
y,L ≥ ρLL+ z

}
. (3.31)

Then with
Kk,p,a = J↑y,k−3

⋂
Hk−3,p

⋂
Hk,a

⋂
W c
y,k (Nk,a)

⋂
By,k,a

we have

P
(
Îk,ay,z

)
≤

L3/4∑
p≥(k−3)

1/4
L

P (Kk,p,a) , (3.32)

plus a term which is much smaller than the right hand side of (3.28).
Let

W∈xy,k(n) =

{
d1

Wa

(
1

n

n∑
i=1

δθk,i , νk

)
∈ c0√

n
Ix

}
, (3.33)

so that
Wc
y,k(Nk,a) ⊆ ∪∞m=log(L−k)W

∈m
y,k (Nk,a), (3.34)

and consequently, setting

Lk,m,p,a = Kk,p,a ∩W∈my,k (Nk,a), (3.35)

we have

P (Kk,p,a) ≤
∞∑

m=log(L−k)

P (Lk,m,p,a) . (3.36)

Let
L′k,m,p,a =: J↑y,k−3

⋂
Hk−3,p

⋂
Hk,a

⋂
W∈my,k (Nk,a) .

To prove (3.28) it suffices to prove that for all m ≥ log(L− k),

L3/4∑
a≥k1/4L

L3/4∑
p≥(k−3)

1/4
L

P
(
By,k,a ∩ L′k,m,p,a

)
≤ c′(1 + z)

(
e−2Le−2z

)
e−cm

2

. (3.37)
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Lemma 3.7.

P
(
L′k,m,p,a

)
= P

(
J↑y,k−3

⋂
Hk−3,p

⋂
Hk,a

⋂
W∈my,k (Nk,a)

)
(3.38)

≤ C(1 + z) (1 + p) e−2k−2(z−p)e−c(p−a)2e−m
2

.

Proof. By (3.8)

P
(
W∈my,k (Nk,a) |Hk,a

)
≤ e−m

2

. (3.39)

By (3.23)
P (Hk,a |Hk−3,p) ≤ ce−c(p−a)2 , (3.40)

and by (9.14) we see that

P
(
J↑y,k−3

⋂
Hk−3,p

)
≤ C(1 + z) (1 + p) e−2k−2(z−p). (3.41)

The presence of W∈my,k (Nk,a) in L′k,m,p,a will allow us to effectively decouple By,k,a
from L′k,m,p,a. More precisely, it follows as in the proof of [7, Lemma 4.7] that for some
M0 <∞

P
(
By,k,a ∩ L′k,m,p,a

)
≤ P

{√
2T k,(βz(k)−a)2/2
y,L ≥ ρLL+ z −M0m

}
(3.42)

×P
(
L′k,m,p,a

)
+ e−4L.

We note that by (3.23)

P

{√
2T k,(βz(k)−a)2/2
y,L ≥ ρLL+ z −M0m

}
≤ ce−2(L−k)−2(a−M0m)− (a−M0m)2

2(L−k) , (3.43)

Putting this all together with (3.38), and using |a− p| ≤ 1 + (p− a)2 we find that

P
(
By,k,a ∩ L′k,m,p,a

)
≤ C(1 + z)e−2L−2ze−m

2/2 (1 + p) e−c(p−a)2e−
a2

2(L−k) . (3.44)

Summing first over p and then over a it is easy to see, using a fraction of the exponent
m2/2, that (3.37) holds for all m ≥ log(L − k). This completes the proof of the lower
bound in (3.15).

Since Iy,z ⊆ Îy,z the upper bound in (3.15) follows from the barrier estimate (9.11)
of Appendix I.

3.2 Second moment estimate: branching in the bulk

We prove the second moment estimate for y, y′ ∈ F 0
L with

2hk−1 < d(y, y′) ≤ 2hk−2.

In this subsection we prove Lemma 3.4 for

(500 logL)4 < k ≤ L− (500 logL)4. (3.45)

Here we will not have to keep track of the angles.
We need to “give ourselves a bit of space”, and we therefore define

k+ = k + d100 logLe. (3.46)

Let
Îy,z;k±3 =

{√
2T 1
y,l ≤ ρLl + z; l = 1, . . . , k − 4, k + 4, . . . , L− 1

}
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∩
{√
T 1
y,L ≥ ρLL+ z

}
, (3.47)

where we have skipped the barrier condition for k − 3, . . . , k + 3. To obtain the two point
bound for the range (3.45) we will bound the probability of

Îy,z;k±3 ∩

{√
2T k

+,α2
z,−(k+)/2

y′,L ≥ ρLL+ z

}
, (3.48)

which contains the event Iy,z ∩ Iy′,z.
Let Gy′ denote the σ-algebra generated by the excursions from ∂Bd(y

′, hk−1) to
∂Bd(y

′, h(rk+)). Note that Îy,z;k±3 ∈ Gy
′
. Since{√

2T k
+,α2

z,−(k+)/2

y′,L ≥ ρLL+ z

}

is measurable with respect to the first α2
z,−(k+) excursions from ∂Bd(y

′, h(rk+)) to

∂Bd(y
′, h(rk+−1)), we can effectively decouple Îy,z;k±3 from

{√
2T k

+,α2
z,−(k+)/2

y′,L ≥ρLL+z

}
.

More precisely, it follows from the basic ideas in [6, sub-section 6.2] that

P

[
Îy,z;k±3,

√
2T k

+,α2
z,−(k+)/2

y′,L ≥ ρLL+ z

]
(3.49)

≤ cP
[
Îy,z;k±3

]
P

[√
2T k

+,α2
z,−(k+)/2

y′,L ≥ ρLL+ z

]
.

By Lemma 9.3

P
[
Îy,z;k±3

]
≤ c(1 + z)e−2Le−2z. (3.50)

Using (3.23) for the last term in (3.49) together with the fact that in the range (3.45)
we have (k+)

1/4
L ≥ 500 logL, we find that (3.49) is bounded by

c(1 + z)e−2Le−2ze−2(L−k+)−2(k+)
1/4
L L2, (3.51)

≤ c(1 + z)e−2LL202e−2(L−k)−2(k+)
1/4
L e−2z.

≤ c(1 + z)e−2Le−2(L−k)−k1/4L e−2z.

3.3 Second moment estimate: early branching

In this subsection we prove Lemma 3.4 for

1 ≤ k < (500 logL)4.

Since we no longer have k1/4
L ≥ logL we will have to use barrier estimates to control

the factors of L such as arise in the first line of (3.51). On the other hand, since the
number of excursions at lower levels is not so great we don’t need such a large separation.
Let

k̃ = k + d100 log ke, kz = k + d100 log ze. (3.52)

For v ∈ {y, y′}

J↓
v,s,k̃

=

{√
2T k̃,s

2/2
v,l ≤ ρLl + z for l = k̃ + 1, . . . , L− 1;√

2T k̃,s
2/2

v,L ≥ ρLL+ z

}
,
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with the barrier condition applied only for l ≥ k̃.
We first consider the case where z ≤ 100k. Then

P (Iy,z ∩ Iy′,z) ≤
αz,−(k̃)∑
n=1

P
(
J↓
y,n,k̃

∩ Îy′,z;k±3

)
. (3.53)

Let Gy denote the σ-algebra generated by the excursions from ∂Bd(y, hk−1) to
∂Bd(y, h(rk̃)). Note that Îy′,z;k±3 ∈ Gy. Since, under our assumption that z ≤ 100k,
the number of excursions from ∂Bd(y, hk−1) to ∂Bd(y, h(rk̃)) is dominated by n = O(k2),
it follows as in (3.49) that

P
(
J↓
y,n,k̃

∩ Îy′,z;k±3

)
≤ cP

(
J↓
y,n,k̃

)
P
(
Îy′,z;k±3

)
. (3.54)

By the barrier estimate (9.16) of Appendix I, with n = βz(k̃)− t

P
(
J↓
y,n,k̃

)
≤ ct n1/2e−2(L−k̃)−2t ≤ ck202e−2(L−k)−2k

1/4
L . (3.55)

where the last step followed from the fact that k1/4
L ≤ k̃1/4

L ≤ t ≤ βz(k̃) ≤ ck. Since, under
our assumption that z ≤ 100k, the number of terms in (3.53) is ≤ ck2, and using (3.50),
we find that (3.53) is bounded by

ck204e−2(L−k)−2k
1/4
L (1 + z)e−2Le−2z (3.56)

≤ c(1 + z)e−4L+2k−k1/4L e−2z.

Thus we can assume that
z ≥ 100k. (3.57)

We have

P (Iy,z ∩ Iy′,z) (3.58)

=

αz,−(kz)∑
n=1

1{n=βz(kz)−t; t≥z/2}P
({√

2T 1
y,kz

= n
}
∩ Iy,z ∩ Iy′,z

)

+

αz,−(kz)∑
n=1

1{n=βz(kz)−t; t<z/2}P
({√

2T 1
y,kz

= n
}
∩ Iy,z ∩ Iy′,z

)
Since in the above sums n ≤ cz in view of (3.57), we can bound the first sum in (3.58)

by

αz,−(kz)∑
n=1

1{n=βz(kz)−t; t≥z/2}P
(
J↓y,n,kz ∩ Îy′,z;k±3

)
(3.59)

≤ c
αz,−(kz)∑
n=1

1{n=βz(kz)−t; t≥z/2}P
(
J↓y,n,kz

)
P
(
Îy′,z;k±3

)

≤ c
αz,−(kz)∑
n=1

1{n=βz(kz)−t; t≥z/2}P
(
J↓y,n,kz

)
(1 + z)e−2Le−2z,

as before. Instead of (3.55) we now have

P
(
J↓y,n,kz

)
≤ ct z1/2e−2(L−kz)−2t ≤ cz202e−2(L−k)−z/2, (3.60)
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where the last inequality used t ≥ z/2. In view of (3.57) and the fact that the number of
terms in the sum is ≤ cz, this gives the desired bound for the first sum in (3.58).

Note next that if t < z/2 then we must have n = βz(kz)− t ≥ z/2, (but we still have
n ≤ cz by (3.57)). Thus we can bound the second sum in (3.58) by

αz,−(kz)∑
n,n′=1

1{n≥z/2}P
({√

2T 1
y,kz

= n
}
∩ J↓y,n,kz ∩ J

↓
y′,n′,kz

)
(3.61)

≤ c
αz,−(kz)∑
n,n′=1

1{n≥z/2}P
({√

2T 1
y,kz

= n
}
∩ J↓y,n,kz

)
P
(
J↓y′,n′,kz

)
.

as before. Then by the Markov property, this is bounded by

c

αz,−(kz)∑
n,n′=1

1{n≥z/2}P
({√

2T 1
y,kz

= n
})
P
(
J↓y,n,kz

)
P
(
J↓y′,n′,kz

)
. (3.62)

By (3.21)-(3.22) with n ≥ z/2 and then (3.57)

P
({√

2T 1
y,kz

= n
})
≤ e−z

2/4kz ≤ e−10z, (3.63)

while now, instead of (3.60), we use

P
(
J↓y,n,kz

)
≤ ct z1/2e−2(L−kz)−2t ≤ cz202e−2(L−k), (3.64)

and a similar bound for P
(
J↓y′,n′,kz

)
. Thus (3.62) is bounded by

c

αz,−(kz)∑
n,n′=1

e−10zz404e−4(L−k) ≤ ce−10zz408e2ke−4L+2k.

In view of (3.57), this gives the desired bound for the second sum in (3.58).

3.4 Second moment estimate: late branching

In this subsection we prove Lemma 3.4 for L− (500 logL)4 ≤ k < L− 1.
Consider first the case

L− (500 logL)4 ≤ k < L− d∗.

We will bound the probability of

A =

{√
2T k,α

2
z,−(k)/2

y,L ≥ ρLL+ z

}
∩Wy,k (Nk) ∩ Îy′,z;k±3, (3.65)

(which contains the event Iy,z ∩ Iy′,z).
The presence of Wy,k (Nk) in A will allow us to effectively decouple the event{√
2T k,α

2
z,−(k)/2

y,L ≥ ρLL+ z

}
from Îy′,z;k±3. More precisely, it follows as in the proof

of [7, Lemma 4.7] that for some M0 <∞

P (A) ≤ P

{√
2T k,α

2
z,−(k)/2

y,L ≥ ρLL+ z −M0 log(L− k)

}
(3.66)

×P
(
Îy′,z;k±3

)
+ e−4L.
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Using (3.23) and (3.50) this shows that

P (A) ≤ ce−2(L−k)+2M0 log(L−k)−2k
1/4
L (1 + z)e−2Le−2z + e−4L (3.67)

By taking d∗ sufficiently large we will have M0 log(L − k) ≤ k
1/4
L /2, which then gives

(3.15).
For L−d∗ ≤ k < L−1 we simply bound the term P (Iy,z ∩ Iy′,z) by P (Iy,z) and obtain

from (3.15) the following upper bound

P (Iy,z ∩ Iy′,z) ≤ c(1 + z)e−2Le−2z ≤ cd∗(1 + z)e−(4L−2k)−ck1/4L e−2z. (3.68)

4 Excursion counts and occupation measure on S2

In this section we prove Theorems 1.3 and 1.4.
For 0 < ε < a < b < π, letMx,ε,a,b(n) be the total occupation measure of Bd(x, ε) until

the end of the first n excursions from ∂Bd (x, a) to ∂Bd (x, b). With ωε = 2π(1 − cos(ε)),
the area of Bd (x, ε), let

Mx,ε,a,b(n) =
1

ωε
Mx,ε,a,b(n). (4.1)

In particular, when starting from ∂Bd(x, a),

Mx,ε,a,b(1) =
1

ωε

∫ H∂Bd(x,b)

0

1{Bd(x,ε)}(Xt) dt. (4.2)

The following Lemma is proven in Section 6.

Lemma 4.1. For some c > 0, uniformly in x ∈ S2, and hk/100 ≤ ε ≤ hk,

P

(
Mx,ε,hk,hk−1

(n) ≤ 1

π
(1− δ) n

)
≤ e−cδ

2n (4.3)

and

P

(
Mx,ε,hk,hk−1

(n) ≥ 1

π
(1 + δ) n

)
≤ e−cδ

2n (4.4)

Recall µ̄τ (y, ε) from (1.8) and set

tL (z) = 2L (L− logL+ z) . (4.5)

Lemma 4.2. We can find 0 < c, c′, z0 < ∞ such that for L large, all z0 ≤ z ≤ logL, and
all εy, y ∈ FL such that hL/100 ≤ εy ≤ hL,

c′ze−2z ≤ P
(
∃y ∈ FL s.t. µ̄τ (y, εy) ≥ 1

π
tL (z)

)
≤ cze−2z. (4.6)

For the sphere, it suffices to take εy = ε independent of y. The present formulation
is needed for the plane, as we will see in Section 8. To clarify the connection with
(1.9)-(1.10) we note that for some 0 < c∗ = c∗(r0) <∞,

(mhL + z)
2

=
1

π
tL

(√
2πz + c∗ + oL(1)

)
. (4.7)

In fact, using the last two displays for hL+1 ≤ ε ≤ hL would prove the lower bound (1.10),
but for the upper bound (1.9) we need the sup over all y not just y ∈ FL. We will deal
with this in Lemma 4.4.
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4.1 The upper bound for (4.6)

We first show that, with F+
L = FL ∩Bd (v, hlogL),

P1 =: P

(
∃y ∈ F+

L s.t. µ̄τ (y, εy) ≥ 1

π
tL (z)

)
≤ cze−2z. (4.8)

If

ÂL,z =

{
sup
y∈F+

L

√
2T τy,L ≥ ρLL+ z

}
,

then by (2.11)

P1 ≤ P
(
ÂL,z

)
+ P

(
ÂcL,z,∃y ∈ F+

L s.t. µ̄τ (y, εy) ≥ 1

π
tL (z)

)
≤ ce−2z + P

(
ÂcL,z,∃y ∈ F+

L s.t. µ̄τ (y, εy) ≥ 1

π
tL (z)

)
.

Recalling the notation FmL = FL ∩Bcd (v, hm) ∩Bd (v, hm−1), we then bound

P

(
ÂcL,z,∃y ∈ F+

L s.t. µ̄τ (y, εy) ≥ 1

π
tL (z)

)
(4.9)

≤
L−2∑

m=logL

ce2(L−m)

sup
y∈FmL

P

(√
2T τy,L ≤ ρLL+ z, µ̄τ (y, εy) ≥ 1

π
tL (z)

)
+c sup

y∈FL∩Bd(v,hL−1)

P

(√
2T τy,L ≤ ρLL+ z, µ̄τ (y, εy) ≥ 1

π
tL (z)

)
.

We treat the case in the sum. The case of y ∈ FL ∩ Bd (v, hL−1) can be treated
similarly.

We can write

P

(√
2T τy,L ≤ ρLL+ z, µ̄τ (y, εy) ≥ 1

π
tL (z)

)
(4.10)

=

z+ML1/2∑
j=1

P

(√
2T τy,L ∈ IρLL+z−j and µ̄τ (y, εy) ≥ 1

π
tL (z)

)

+P

(√
2T τy,L ≤ ρLL−ML1/2 and µ̄τ (y, εy) ≥ 1

π
tL (z)

)
.

Lemma 4.3. For all y ∈ FmL , logL ≤ m ≤ L and j ≤ z +ML1/2

P

(√
2T τy,L ∈ IρLL+z−j and µ̄τ (y, εy) ≥ 1

π
tL (z)

)
(4.11)

≤ cme−2LLe−2(z−j)e−c
′j2 ,

and

P

(√
2T τy,L ≤ ρLL−ML1/2 and µ̄τ (y, εy) ≥ 1

π
tL (z)

)
≤ ce−4L. (4.12)

Proof of Lemma 4.3. By (2.9)

(ρLL+ z − j)2
/2 ≤ tL

(
z − j + 2M2

)
(4.13)
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for all j ≤ z +ML1/2. Hence for such j

P

(√
2T τy,L ∈ IρLL+z−j and µ̄τ (y, εy) ≥ 1

π
tL (z)

)
≤ P

(√
2T τy,L ∈ IρLL+z−j , My,εy,hL,hL−1

(
tL
(
z − j + 2M2

))
≥ 1

π
tL (z)

)
.

Using the Markov property and then (2.6), we have for y ∈ FmL this is

= P
(√

2T τy,L ∈ IρLL+z−j

)
P

(
My,εy,hL,hL−1

(
tL
(
z − j + 2M2

))
≥ 1

π
tL (z)

)
≤ cme−2LLe−2(z−j)P

(
My,εy,hL,hL−1

(
tL
(
z − j + 2M2

))
≥ 1

π
tL (z)

)
.

Consider first the case of 4M2 ≤ j. We now apply (4.4) with

n = tL
(
z − j + 2M2

)
= tL (z)− 2(j − 2M2)L ∼ L2

and
δ = 2(j − 2M2)L/tL

(
z − j + 2M2

)
� 1

for 4M2 ≤ j ≤ z +ML1/2 to see that

P

(
My,εy,hL,hL−1

(
tL
(
z − j + 2M2

))
≥ 1

π
tL (z)

)
(4.14)

= P
(
My,εy,hL,hL−1

(
tL
(
z − j + 2M2

))
≥ 1

π

(
tL
(
z − j + 2M2

)
+ 2(j − 2M2)L

))
= P

(
My,εy,hL,hL−1

(
tL
(
z − j + 2M2

))
≥ 1

π

(
1 +

2(j − 2M2)L

tL (z − j + 2M2)

)
tL
(
z − j + 2M2

))

≤ e
−c ((j−2M2)L)

2

tL(z−j+2M2) ≤ e−c
′j2 .

For j < 4M2 we simply bound the probability in the first line of (4.14) by 1 which we
can bound by Ce−c

′j2 for C sufficiently large.
Similarly, for (4.12) we use

P

(√
2T τy,L ≤ ρLL−ML1/2 and µ̄τ (y, εy) ≥ 1

π
tL (z)

)
(4.15)

≤ P
(
My,εy,hL,hL−1

(
tL

(
−ML1/2 + 2M2

))
≥ 1

π
tL (z)

)
≤ e−4L

by (4.14) with z − j = −ML1/2, for M sufficiently large.

Then using (4.9) and Lemma 4.3 we see that

P

(
ÂcL,z,∃y ∈ F+

L s.t. µ̄τ (y, εy) ≥ 1

π
tL (z)

)
(4.16)

≤ C
L∑

m=logL

cmLe2(L−m)
z+ML1/2∑

j=1

e−2Le−2(z−j)e−c
′j2 +

L∑
m=logL

ce−4L.

This is easily seen to be bounded by the right hand side of (4.8).
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Recalling the notation F ∗L = FL ∩Bcd (v, hlogL) from (2.17), to complete the proof of
the upper bound for (4.6) it remains to show that

P2 =: P

(
∃y ∈ F ∗L s.t. µ̄τ (y, εy) ≥ 1

π
tL (z)

)
≤ cze−2z. (4.17)

Note that with ky as in (2.16), if

AL,z =
{
∃y ∈ F ∗L, l ∈ {ky + 1, . . . , L} s.t. T τy,l ≥ α2

z,+ (l) /2
}
, (4.18)

then

P2 ≤ P (AL,z) + P

(
AcL,z,∃y ∈ F ∗L s.t. µ̄τ (y, εy) ≥ 1

π
tL (z)

)
≤ cze−2z + P

(
AcL,z,∃y ∈ F ∗L s.t. µ̄τ (y, εy) ≥ 1

π
tL (z)

)
,

by (2.18). Recalling again the notation FmL = FL ∩Bcd (v, hm)∩Bd (v, hm−1), we have that

P

(
AcL,z,∃y ∈ F ∗L s.t. µ̄τ (y, εy) ≥ 1

π
tL (z)

)
(4.19)

=

logL∑
m=1

P

(
AcL,z,∃y ∈ FmL s.t. µ̄τ (y, εy) ≥ 1

π
tL (z)

)
Since

AcL,z =
{

sup
y∈F∗L

T τy,l ≤ α2
z,+ (l) /2, ky + 1 ≤ l ≤ L

}
(4.20)

and ky = m for y ∈ FmL , we see that

P

(
AcL,z,∃y ∈ FmL s.t. µ̄τ (y, εy) ≥ 1

π
tL (z)

)
(4.21)

≤ ce2(L−m)

sup
y∈FmL

P

(
T τy,l ≤ α2

z,+ (l) /2,m+ 1 ≤ l ≤ L and µ̄τ (y, hL) ≥ 1

π
tL (z)

)
.

With

ByL,m,z =
{
T τy,l ≤ α2

z,+ (l) /2,m+ 1 ≤ l ≤ L− 1
}

(4.22)

we have for y ∈ FmL ,

P

(
T τy,l ≤ α2

z,+ (l) /2,m+ 1 ≤ l ≤ L and µ̄τ (y, εy) ≥ 1

π
tL (z)

)
(4.23)

=

z+ML1/2∑
j=1

P

(
ByL,m,z,

√
2T τy,L ∈ Iαz,+(L)−j and µ̄τ (y, εy) ≥ 1

π
tL (z)

)

+P

(
ByL,m,z,

√
2T τy,L ≤ αz,+ (L)− z −ML1/2 and µ̄τ (y, εy) ≥ 1

π
tL (z)

)
.

Here, M ≥ 1 is a fixed constant to be chosen shortly.
Recalling, see (2.15), that αz,+ (L) = ρLL+ z, and using (4.13) we see that

(αz,+ (L)− j)2
/2 ≤ tL

(
z − j + 2M2

)
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for all j ≤ z +ML1/2. It follows that for such j

P

(
ByL,m,z,

√
2T τy,L ∈ Iαz,+(L)−j and µ̄τ (y, εy) ≥ 1

π
tL (z)

)
≤ P

(
ByL,m,z,

√
2T τy,L ∈ Iαz,+(L)−j ,My,εy,hL,hL−1

(
tL
(
z − j + 2M2

))
≥ 1

π
tL (z)

)
= P

(√
2T τy,l ≤ αz,+ (l) ,m+ 1 ≤ l ≤ L− 1,

√
2T τy,L ∈ Iαz,+(L)−j

)
×P

(
My,εy,hL,hL−1

(
tL
(
z − j + 2M2

))
≥ 1

π
tL (z)

)
,

by the Markov property. Using the barrier estimate (9.5) of Appendix I, and recalling
that m = ky < logL, this is bounded by

ce−2Le−2(z−j) ×m2j (z +m)P

(
My,εy,hL,hL−1

(
tL
(
z − j + 2M2

))
≥ 1

π
tL (z)

)
. (4.24)

The rest of the proof of (4.17) follows as in the proof of (4.8). This completes the
proof of the upper bound in Lemma 4.2.

We now remove the restriction that y ∈ FL in the upper bound, subject to a continuity
restriction on εy. As mentioned, this will complete the proof of the upper bound (1.9).

Lemma 4.4. We can find 0 < c,C, z0 < ∞ such that for L large, all z0 ≤ z ≤ logL, and
all hL/20 ≤ εy ≤ hL+1 such that |εy − εy′ | ≤ C d(y, y′)/L for all y, y′ ∈ S2,

P

(
∃y s.t. µ̄τ (y, εy) ≥ 1

π
tL (z)

)
≤ cze−2z. (4.25)

Proof of Lemma 4.4. Let F ′L be the centers of a d0
L hL covering of S2 which contains FL.

For any y ∈ S2 we can find y′ ∈ F ′L such that d(y, y′) ≤ d0
L hL, so that by our assumptions

|εy − εy′ | ≤ C d0
L2hL. If we set ε̄y =

(
1 + 1

L

)
εy for all y ∈ S2 we see that for L large

hL/30 ≤ ε̄y ≤ 2hL+1 and |ε̄y − ε̄y′ | ≤ d0
L hL. It follows from Lemma 5.1 below that it

suffices to prove that

P

(
∃y ∈ F ′L s.t. µ̄τ (y, ε̄y) ≥ 1

π
tL (z)

)
≤ cze−2z. (4.26)

We note that there are too many points in F ′L to prove (4.26) using the methods used
to prove (4.6). We will need to use the continuity estimates of Section 7.

For 0 < ε < a < b < π, letMy,ε̄y,y0,a,b(n) be the total occupation measure of Bd(y, ε̄y)

during the first n excursions from ∂Bd (y0, a) to ∂Bd (y0, b). With ωε = 2π(1− cos(ε)), the
area of Bd (y, ε), let

My,ε̄y,y0,a,b(n) =
1

ωε̄y
My,ε̄y,y0,a,b(n). (4.27)

For y0 ∈ FL let
Dy0 = {y ∈ F ′L | d (y, y0) ≤ d0hL/2}. (4.28)

Following the proof of the upper bound for Lemma 4.2, to prove (4.26) it suffices to show
that

P

(
sup
y∈Dy0

My,ε̄y,y0,hL,hL−1

(
tL
(
z − j + 2M2

))
≥ 1

π
tL (z)

)
≤ ce−c

′j2 (4.29)

for j ≤ z +ML1/2 sufficiently large. Setting ε = supy∈Dy0 ε̄y and using our condition on
|ε̄y − ε̄y′ | to control the denominator in (4.27), we see that it suffices to show that

P

(
sup
y∈Dy0

My,ε,y0,hL,hL−1

(
tL
(
z − j + 2M2

))
≥ 1

π
tL
(
z −M2/2

))
≤ ce−c

′j2 . (4.30)
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Abbreviating Y (n)
y =My,ε,y0,hL,hL−1

(n) where n = tL
(
z − j + 2M2

)
we have that

P

(
sup
y∈Dy0

My,ε,y0,hL,hL−1

(
tL
(
z − j + 2M2

))
≥ 1

π
tL
(
z −M2/2

))
(4.31)

≤ P
(
My0,ε,hL,hL−1

(
tL
(
z − j + 2M2

))
≥ 1

π
tL
(
z − j/2−M2/2

))
+P

(
sup
y∈Dy0

|Y (n)
y − Y (n)

y0 | ≥ jL/2

)
.

As in the proof of Lemma 4.3, the first term on the right hand side is bounded by ce−c
′j2

for j ≤ z +ML1/2 sufficiently large. We then bound

P

(
sup
y∈Dy0

|Y (n)
y − Y (n)

y0 | ≥ jL/2

)
(4.32)

≤
log2 L∑
l=1

P

(
sup

y,y′∈Dy0 , d(y,y′)≈2−ld0hL

|Y (n)
y − Y (n)

y′ | ≥ jL/2l
2

)

≤
log2 L∑
l=1

22l sup
y,y′∈Dy0 , d(y,y′)≈2−ld0hL

P
(
|Y (n)
y − Y (n)

y′ | ≥ jL/2l
2
)
.

It follows from Lemma 7.2 with n = tL
(
z − j + 2M2

)
∼ 2L2 as above and θ =

j/23/2l2, d̄(y, y′) = 2−ld0 that for some C0 > 0

22l sup
y,y′∈Dy0 , d(y,y′)≈2−ld0hL

P
(
|Y (n)
y − Y (n)

y′ | ≥ jL/2l
2
)

(4.33)

≤ 22l exp
(
−C0j

22l/2/8d
1/2
0 l4

)
whose sum over l is bounded by ce−c

′j2 . In order to apply Lemma 7.2 we have to verify
that θ ≤

√
d̄(y, y′)n/2. In our situation this means that j/23/2l2 ≤ 2−l/2d

1/2
0 L/2, for all

j ≤ 2ML1/2. Thus we have to verify that 21/2M2l/2/l2 ≤ d
1/2
0 L1/2, which follows from

the fact that l ≤ log2 L, L is large and d0,M are fixed.

4.2 The lower bound for (4.6)

Recall the notation T 1
y,l = T x

2,1
y,l from the beginning of Section 3. Let τy be the time

needed to complete x2 excursions from ∂Bd (y, h1) to ∂Bd (y, h0), and set

µ̄τy (y, ε) =
1

ωε

∫ τy

0

1{Bd(y,ε)}(Xt) dt. (4.34)

Recall F 0
L from (3.4). We will prove the following analogue of Lemma 3.2.

Lemma 4.5. There exists a 0 < c <∞ such that for all 0 < r0 sufficiently small, L large,
all 0 ≤ z ≤ logL, and all hL/100 ≤ εy ≤ hL

P

[
sup
y∈F 0

L

µ̄τy (y, εy) ≥ 1

π
tL (z)

]
≥ (1 + z)e−2z

(1 + z)e−2z + c
. (4.35)

As before, the lower bound in (4.6) will follow from this, and hence combined with
(4.25) we see that for some 0 < z0, and all z0 ≤ z ≤ logL

c′ze−2z ≤ P
(
∃y s.t. µ̄τ (y, εy) ≥ 1

π
tL (z)

)
≤ cze−2z. (4.36)
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Combined with (4.7) it is easy to check that this implies Theorem 1.4.
To prove (4.35) set

Ĩy,z+d = Iy,z+d ∩ {µ̄τy (y, εy) ≥ 1

π
tL (z)} (4.37)

for some d < ∞ to be chosen shortly. We use the second moment method used in the
proof of Lemma 3.2. Indeed, since Ĩy,z+d ⊆ Iy,z+d all upper bounds needed follow from
those used in the proof of Lemma 3.2, and it only remains to prove the appropriate lower
bound for Ĩy,z+d.

As in (3.25)-(3.26) we have

P
(
Ĩy,z+d

)
≥ P

(
Îy,z+d, µ̄τy (y, hL) ≥ 1

π
tL (z)

)
(4.38)

−
L−d∗∑
k=L+

∑
a≥k1/4L

P
[
Îy,z+d

⋂
Hk,a

⋂
W c
y,k (Nk,a)

]
.

Using the Markov property and then the barrier estimate (9.12) of Appendix I,

P

(
Îy,z+d, µ̄τy (y, εy) ≥ 1

π
tL (z)

)
(4.39)

≥ P
(
Îy,z+d and My,εy,hL,hL−1

(tL (z + d)) ≥ 1

π
tL (z)

)
= P

(
Îy,z+d

)
P

(
My,εy,hL,hL−1

(tL (z + d)) ≥ 1

π
tL (z)

)
≥ c̄(1 + z)e−2Le−2(z+d)

P

(
My,εy,hL,hL−1

(tL (z + d)) ≥ 1

π
(tL (z + d)− dL)

)
= c̄(1 + z)e−2Le−2(z+d)

P

(
My,εy,hL,hL−1

(tL (z + d)) ≥ 1

π

(
1− dL

tL (z + d)

)
tL (z + d)

)
≥ c̄(1 + z)e−2Le−2(z+d)(1− e−c

′′ (dL)2

tL(z+d) ),

where the last line used (4.3). It should be clear from the structure of tL (z + d) that

we can choose some d <∞ so that e
−c′′ (dL)2

tL(z+d) ≤ 1/2 uniformly in 0 ≤ z ≤ logL. Finally,
after fixing such a d, we can show as in the proof of the first moment estimate in Section
3.1, that for d∗ large enough, the last line in (4.38) is much smaller than the last line of
(4.39).

Thus we have completed the proof of Theorem 1.4.

4.3 The left tail

Lemma 4.6. There exists a 0 < c <∞ such that for all 0 < r0 sufficiently small, L large,
all 0 ≤ z ≤ logL, and all hL/100 ≤ εy ≤ hL

P

[
sup
y∈F 0

L

µ̄τy (y, εy) ≥ 1

π
tL (−z)

]
≥ e2z

e2z + c
. (4.40)

This will complete the proof of Theorem 1.3 since, as discussed right after the
statement of Lemma 3.2, the probability of completing x2 excursions from ∂Bd (y, h1) to
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∂Bd (y, h0) before time τ for all y ∈ F 0
L is a strictly positive function of r0 which goes to 1

as r0 → 0.
The proof of Lemma 4.6 is very similar to our proof of the lower bound on the right tail,

except we now have to change the upper barrier to allow for negative z. Fix |z| ≤ logL.
We fix x̂ > 0 once and for all. We abbreviate,

β̂z (l) = fx̂,ρLL+z (l;L) = x̂

(
1− l

L

)
+

(
ρLl + z

l

L

)
, (4.41)

and
γ̂z,− (l) = γ̂z,− (l, L, z) = β̂z (l)− l1/4L . (4.42)

The barrier estimates needed are given in Lemma 9.6. We point out that the factors
(1 + z) which appear on the right hand side of (4.35) but not (4.40) come from the
difference in the initial points of the barriers.

5 Interpolation used to reduce (4.25) to (4.26)

Recall, (1.8), that

µ̄τ (y, εy) =
1

ωεy

∫ τ

0

1{Bd(y,εy)}(Xt) dt, (5.1)

where ωεy = 2π(1− cos εy), the area of Bd(y, εy), and, (4.5),

tL (z) = 2L (L− logL+ z) . (5.2)

Lemma 5.1. Assume that d(y, y′) ≤ ahLL , |εy − εy′ | ≤ b hLL , and hL/30 ≤ εy, εy′ ≤ 2hL+1.
We can find a d1 <∞ such that for all L large and z ≤ logL, if

µ̄τ (y′, εy′) ≥
1

π
tL (z) , (5.3)

then for any c1 ≥ 30(a+ b),

µ̄τ (y, (1 + c1/L) εy) ≥ 1

π
tL (z − d1) . (5.4)

Proof. Under our assumptions, for any z ∈ Bd(y′, εy′) we have d(z, y) ≤ d(z, y′)+d(y, y′) ≤
εy′ + ahLL ≤

(
1 + c1

L

)
εy so that

Bd(y
′, εy′) ⊆ Bd (y, (1 + c1/L) εy) . (5.5)

It follows that

µ̄τ (y′, εy′) =
1

ωεy′

∫ τ

0

1{Bd(y′,εy′ )}(Xt) dt (5.6)

≤ 1

ωεy′

∫ τ

0

1{Bd(y,(1+c1/L)εy)}(Xt) dt

=
ω(1+c1/L)εy

ωεy′
µ̄τ (y, (1 + c1/L) εy).

Hence

µ̄τ (y′, εy′) ≥
1

π
tL (z) (5.7)

implies that

µ̄τ (y, (1 + c1/L) εy) ≥
ωεy′

ω(1+c1/L)εy

1

π
tL (z) . (5.8)

But under our assumptions
ωεy′

ω(1+c1/L)εy

= 1 +O (1/L) . (5.9)

This gives (5.4).
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6 Green’s functions and proof of Lemma 4.1

Let Ga(x, y) denote the potential density for Brownian motion killed the first time
it leaves Be(0, a), that is, the Green’s function for Be(0, a). Recall that Be(x, r) is the
Euclidean ball in R2 centered at x of radius r. We have, see [15, Section 2] or [17,
Chapter 2, (1.1)],

Ga(x, y) = − 1

π
log |x− y|+ 1

π
log

(
|y|
a
|x− y∗a|

)
, y 6= 0, (6.1)

where

y∗a =
a2y

|y|2
, (6.2)

and

Ga(x, 0) = − 1

π
log |x|+ 1

π
log a. (6.3)

Let v denote the south pole of S2. If σ denotes stereographic projection, then
σ (Bd(v, h(a))) = Be(0, a), see [7, (2.4)]. We claim that in the isothermal coordinates
induced by stereographic projection σ, the Green’s function for σ (Bd(v, h(a))) = Be(0, a)

is just Ga(x, y). To see this we must show that if ∆S2 is the Laplacian for S2 in isothermal
coordinates and dV (y) is the volume measure, then

1

2
∆S2

∫
Ga(x, y)f(y) dV (y) = −f(x) (6.4)

for all continuous f compactly supported in Be(0, a).
For x = (x1, x2), let

g(x) =
1

(1 + 1
4 (x2

1 + x2
2))2

. (6.5)

As shown in [30, Chapter 7, p. 6-9], the stereographic projection σ is an isometry if we
give R2 the metric

g(x) (dx1 ⊗ dx1 + dx2 ⊗ dx2) . (6.6)

Because of (6.6) the Laplace-Beltrami operator takes the form

1

g(x)

(
∂2
x1

+ ∂2
x2

)
. (6.7)

Thus, ∆S2 = 1
g∆ and dV (y) = g(y) dy, so that (6.4) holds.

Proof of Lemma 4.1. Let ε = h(α) so that h(α) ≤ hk. lf τhk−1
is the first exit time

of Bd(v, hk−1) and ρhk is uniform measure on ∂Bd(v, hk), then by symmetry, for any
z ∈ ∂Bd(v, hk)

J1 =: Ez
(∫ τhk−1

0

1{Bd(v,ε)}(Xt) dt

)
(6.8)

= Eρhk

(∫ τhk−1

0

1{Bd(v,ε)}(Xt) dt

)
.

Since uniform measure ρhk on ∂Bd(v, hk) goes over to uniform measure γrk on
∂Be(0, rk), using the discussion at the beginning of this section we have

J1 =

∫
Be(0,α)

∫
∂Be(0,rk)

Grk−1
(x, y) dγrk(x)g(y) dy. (6.9)
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We recall, [27, Chapter 2, Prop. 4.9] or [17, Chapter 1, (5.4), (5.5)], that∫
∂Be(0,b)

log (|x− y|) dγb(x) = log (b ∨ |y|) . (6.10)

This shows that for y ∈ Be(0, rk)∫
∂Be(0,rk)

Grk−1
(x, y) dγrk(x) (6.11)

=
1

π

∫
∂Be(0,rk)

(
− log |x− y|+ log

(
|y|
rk−1

|x− y∗rk−1
|
))

dγrk(x)

=
1

π

(
− log rk + log

(
|y|
rk−1

|y∗rk−1
|
))

=
1

π
(− log rk + log rk−1) =

1

π
log(rk−1/rk) =

1

π
.

Thus

J1 =
1

π

∫
Be(0,α)

g(y) dy =
1

π
Area (Bd(v, h(α))) =

1

π
ωh(α) =

1

π
ωε. (6.12)

It follows that for any z ∈ ∂Bd(v, hk)

Ez
(
Mv,ε,hk,hk−1

(1)
)

=
1

π
. (6.13)

By the Kac moment formula, for any z ∈ ∂Bd(v, hk), with x = σ(z)

Ez
((∫ τhk−1

0

1{Bd(v,ε)}(Xt) dt

)n)
(6.14)

= n!

∫
Bne (0,α)

Grk−1
(x, y1)

n∏
j=2

Grk−1
(yj−1, yj)

n∏
i=1

g(yi) dyi

≤ cnn!

∫
Bne (0,α)

Grk−1
(x, y1)

n∏
j=2

Grk−1
(yj−1, yj)

n∏
i=1

dyi

≤ cnn!α2n (log (rk−1/α) + c0)
n

where the last inequality follows as in the proof of [15, Lemma 2.1]. It follows that for
any z ∈ ∂Bd(v, hk)

Ez
((
Mv,ε,hk,hk−1

(1)
)n) ≤ cnn! (log (rk−1/α) + c0)

n
. (6.15)

By (2.3), our assumption that hk/100 ≤ ε ≤ hk implies that e ≤ rk−1/α ≤ 200e. Using
(6.13) and (6.15), our Lemma then follows as in the proof of [16, Lemma 2.2] which
uses moment inequalities to show that excursion times are concentrated around their
mean.

7 Continuity estimates

The goal of this Section is to prove the continuity estimate Lemma 7.2 which was
used in the proof of (4.26).

For fixed u ∈ S2, let τa be the first exit time of Bd(u, a) and let ρm be uniform measure
on ∂Bd(u,m). Recall that for some d0 ≤ 1/1000, we take Fl to be the centers of an d0hl
covering of S2.
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Lemma 7.1. If d(u, v), d(u, ṽ) ≤ d0hL/2, d0/L ≤ d̄ =: d(v, ṽ)/hL ≤ d0, and hL/20 ≤ ε ≤
hL+1, then

EρhL

(∫ τhL−1

0

1{Bd(v,ε)}(Xt) dt−
∫ τhL−1

0

1{Bd(ṽ,ε)}(Xt) dt

)
= 0, (7.1)

EρhL

((∫ τhL−1

0

1{Bd(v,ε)}(Xt) dt−
∫ τhL−1

0

1{Bd(ṽ,ε)}(Xt) dt

)2
)
≤ cε4d̄2, (7.2)

and

sup
x∈∂Bd(u,hL)

Ex

((∫ τhL−1

0

1{Bd(v,ε)}(Xt) dt−
∫ τhL−1

0

1{Bd(ṽ,ε)}(Xt) dt

)2
)
≤ cε4d̄2. (7.3)

Proof of Lemma 7.1. As in (6.8)-(6.9) we have

J2 = EρhL

(∫ τhL−1

0

1{Bd(v,ε)}(Xt) dt−
∫ τhL−1

0

1{Bd(ṽ,ε)}(Xt) dt

)
=

∫ ∫
GrL−1

(x, y) dγrL(x) dµv,ṽ(y), (7.4)

where
dµv,ṽ(y) =

(
1{σ(Bd(v,ε))} − 1{σ(Bd(ṽ,ε))}

)
(y)g(y) dy. (7.5)

Then by (6.11)-(6.12) we have that

J2 =
1

π

∫
dµv,ṽ(y) (7.6)

=
1

π
(Area (Bd(v, ε))− Area (Bd(ṽ, ε))) = 0,

since all balls of radius ε on the sphere have area ωε = 2π(1− cos ε). This completes the
proof of (7.1).

We next observe that

EρhL

((∫ τhL−1

0

1{Bd(v,ε)}(Xt) dt−
∫ τhL−1

0

1{Bd(ṽ,ε)}(Xt) dt

)2
)

(7.7)

= 2

∫ ∫ ∫
GrL−1

(x, y)GrL−1
(y, z) dγrL(x) dµv,ṽ(y) dµv,ṽ(z)

=
2

π

∫ ∫
GrL−1

(y, z) dµv,ṽ(y) dµv,ṽ(z)

as above.
We note that for b < a

Ga(bx, by) = − 1

π
log (b |x− y|) +

1

π
log

(
b
|y|
a/b
|x− y∗a/b|

)
= Ga/b(x, y), (7.8)

since

(by)∗a =
a2by

b2|y|2
= by∗a/b. (7.9)

Using this to scale by rL we see that∫ ∫
GrL−1

(y, z) dµv,ṽ(y) dµv,ṽ(z) = r4
L

∫ ∫
Ge(y, z) dµL,v,ṽ(y) dµL,v,ṽ(z), (7.10)
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where

dµL,v,ṽ(y) =
(
1{σ(Bd(v,ε))} − 1{σ(Bd(ṽ,ε))}

)
(rLy)g(rLy) dy

=
(

1{ 1
rL
σ(Bd(v,ε))} − 1{ 1

rL
σ(Bd(ṽ,ε))}

)
(y)g(rLy) dy. (7.11)

For y in our range we have g(rLy) = 1 + O(ε), and it is easy to check that up to
errors of order ε, 1

rL
σ(Bd(v, ε)) and 1

rL
σ(Bd(ṽ, ε)) can be replaced by Be(v′, ε/rL) and

Be(v
′ − (0, δε/rL), ε/rL) for some v′ with |v′| ≤ d0 and 0 < δ ≤ c2d̄.

Hence with

dνv′(y) =
(
1{Be(v′,ε/rL)} − 1{Be(v′−(0,δε/rL),ε/rL)}

)
(y) dy, (7.12)

it remains to show that ∫ ∫
Ge(y, z) dµv′(y) dµv′(z) ≤ Cδ2. (7.13)

The symmetric difference of Be(v′, s) and Be(v
′ − (0, δs), s) consist of two disjoint

pieces we denote by A,B. They have the same area

Area (A) = 2s2 arcsin

(
δ

2

)
+
δs

2

√
(4− δ2)s2 � δs2. (7.14)

We observe that

lim
y→0

|y|
a
|z − y∗a| = lim

y→0

|y|
a

(|y∗a|+O(1)) = lim
y→0

|y|
a

(
a2|y|
|y|2

+O(1)

)
= a. (7.15)

It follows that for y, z in our range, log
(
|y|
e |z − y

∗
e |
)

is bounded, hence to prove (7.13) it

suffices to show that ∫ ∫ ∣∣ log |y − z|
∣∣ dµv′(y) dµv′(z) ≤ Cδ2. (7.16)

It is then easy to see that we need only show that∫
A

∫
A

∣∣ log |y − z|
∣∣ dy dz ≤ Cδ2. (7.17)

It is also clear that we only need to consider |y− z| ≤ 1/2. Writing y = (y1, y2), z = (z1, z2)

we see that ∫
A

∫
A

∣∣ log |y − z|
∣∣1{|y−z|≤1/2} dy dz (7.18)

≤
∫

[0,1]×[0,δ]

∫
[0,1]×[0,δ]

∣∣ log |y − z|
∣∣1{|y−z|≤1/2} dy1 dy2 dz1 dz2

≤
∫

[0,1]×[0,δ]

∫
[0,1]×[0,δ]

∣∣ log |y1 − z1|
∣∣ dy1 dy2 dz1 dz2 ≤ Cδ2,

which completes the proof of (7.17).
To obtain (7.3), arguing as before we need to show that

K1 = sup
x∈∂Be(0,rL)

∫ ∫
GrL−1

(x, y)GrL−1
(y, z) dµv,ṽ(y) dµv,ṽ(z) ≤ cε4δ2. (7.19)

Scaling in rL as before shows that

K1 = r4
L sup
x∈∂Be(0,1)

∫ ∫
Ge(x, y)Ge(y, z) dµL,v,ṽ(y) dµL,v,ṽ(z) (7.20)

But for y in our range, Ge(x, y) is bounded uniformly in x ∈ ∂Be(0, 1), so that (7.3) follows
as before.
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The same proof shows that

sup
x∈∂Bd(u,hL)

Ex

((∫ τhL−1

0

1{Bd(v,ε)}(Xt) dt−
∫ τhL−1

0

1{Bd(ṽ,ε)}(Xt) dt

)2n
)

≤ (2n)!c2n1 ε4nd̄2n. (7.21)

and hence by the Cauchy-Schwarz inequality

sup
x∈∂Bd(u,hL)

Ex
(∣∣∣ 1

ωε

∫ τhL−1

0

1{Bd(v,ε)}(Xt) dt−
1

ωε

∫ τhL−1

0

1{Bd(ṽ,ε)}(Xt) dt
∣∣∣n)

≤ n!cn2 d̄
n. (7.22)

Recall (4.27) and set
Y (n)
y =My,ε,u,hL,hL−1

(n)

Lemma 7.2. For some d0 > 0 we can find C0 > 0 such that, if d(u, v), d(u, ṽ) ≤ d0hL/2,
d0/L ≤ d̄(v, ṽ) =: d(v, ṽ)/hL ≤ d0, hL/20 ≤ ε ≤ hL+1, and θ ≤

√
d̄(v, ṽ)n/2, then

P
(
|Y (n)
v − Y (n)

ṽ | ≥ θ
√
n
)
≤ e−C0θ

2/d̄1/2(v,ṽ). (7.23)

Proof of Lemma 7.2. We follow the proof of [7, Lemma 5.1].
Let Ti denote the successive excursion times T∂Bd(u,hL)◦θT∂Bd(u,hL−1)

from ∂Bd(u, hL−1)

to ∂Bd(u, hL) and set

Yv,i =
1

ωε

∫ τhL−1

0

1{Bd(v,ε)}(Xt+Ti) dt, (7.24)

so that

Y (n)
v =

n∑
i=1

Yv,i. (7.25)

Let J be a geometric random variable with success parameter p3 > 0, independent of
{Yv,i, Yṽ,i}. It follows from (7.22) and the proof of [7, Corollary 5.3] that, abbreviating
d̄ = d̄(v, ṽ), if c2d̄λ ≤ p3/2 then for some c4

sup
x∈∂Bd(u,hL)

Ex

(
exp

(
λ

J−1∑
i=1

|(Yv,i − Yṽ,i)|

))
≤ ec4d̄λ/p3 , (7.26)

and from (7.22) together with (7.1) and the proof and notation of [7, Lemma 5.5] it
follows that, after perhaps enlarging c4

E

(
exp

(
λ

J2−1∑
i=J1

(Yv,i − Yṽ,i)
(
Xi
·
)))

≤ ec4(d̄λ/p3)
2

. (7.27)

The essence of [7, Lemma 5.5] is to use a renewal argument to allow one to take
advantage of (7.1) to eliminate the linear term in the expansion of the exponential so
that, as opposed to (7.26), we now have a quadratic term in the exponential.

Then, instead of [7, (5.33)] we set

δ = θ/
√
d̄n ≤ 1/2.

With this it follows from the proof of [7, Lemma 5.1] that for c2d̄λ ≤ p3/2

P
(
|Y (n)
v − Y (n)

ṽ | ≥ θ
√
n
)

(7.28)

≤ e−c̄θ
2/d̄ + exp

(
c4λ

2d̄2n/p3 + 2c4λθ
√
d̄n− λθ

√
n
)
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By taking d0 sufficiently small we can be sure that c2d̄ ≤ 1, so the above holds for any
λ ≤ p3/2. If we set

λ = p3θ/
√
d̄n ≤ p3/2

we see that

exp
(
c4λ

2d̄2n/p3 + 2c4λθ
√
d̄n− λθ

√
n
)

= exp
(
c4p3θ

2d̄+ 2c4p3θ
2 − p3θ

2/
√
d̄
)
,

which completes the proof of (7.23) for d0 sufficiently small.

8 From the sphere to the plane, and back

Using (6.7) it follows from [28, Chapter 5, Theorem 1.9], that we can find a planar
Brownian motion Wt such that in the isothermal coordinates induced by stereographic
projection,

Xt = WUt , where Ut =

∫ t

0

1

g(Xs)
ds. (8.1)

where g is defined in (6.5).
We take the v of this paper to be v = (0, 0, 0). Let

D∗ = σ (Bd (v, r∗)) = Be ((0, 0), 2 tan(r∗/2)) . (8.2)

For the last equality see [7, (2.4)]. If θ is the first hitting time of ∂D∗ by Wt, then under
the coupling (8.1) we see that θ = Uτ . Set

µθ(x, ε) =
1

πε2

∫ θ

0

1{Be(x,ε)}(Wt) dt. (8.3)

Lemma 8.1. For some −∞ < d1, d2, d3, d4 <∞, all x ∈ D∗ and all ε sufficiently small

µθ(x, ε) ≤ (1 + d1 ε) µ̄τ (x, g1/2(x)ε(1 + d2ε)), (8.4)

and
µθ(x, ε) ≥ (1 + d3 ε) µ̄τ (x, g1/2(x)ε(1 + d4ε)). (8.5)

Proof of Lemma 8.1. We first note that for ε sufficiently small, we can find c1 < c2 such
that uniformly in x′ ∈ Be(x, 2ε) and x ∈ D∗

g(x)(1 + c1ε) ≤ g(x′) ≤ g(x)(1 + c2ε). (8.6)

For x′ ∈ Be(x, ε), with xt = x+ t(x′ − x)

d(x, x′) ≤
∫ 1

0

g1/2(xt)|x′ − x| dt ≤ g1/2(x)|x′ − x|(1 + c3ε). (8.7)

Hence
Be(x, ε) ⊆ Bd(x, g1/2(x)ε(1 + c3ε)). (8.8)

Similarly, for some c4 < c3

Be(x, ε) ⊇ Bd(x, g1/2(x)ε(1 + c4ε)). (8.9)

Consider ∫ τ

0

1{Bd(x,g1/2(x)ε(1+c3ε))}(WUt) dt. (8.10)
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By the nature of Ut in (8.1) it follows that whenever the path WUt enters Bd(x, g1/2(x)ε(1+

c3ε)) it is slowed by a variable factor between 1
g(x)(1+c5ε)

and 1
g(x)(1+c6ε)

. Hence the

amount of time spent in Bd(x, g1/2(x)ε(1 + c3ε)) during each incursion is multiplied by a
variable factor between g(x)(1 + c7ε) and g(x)(1 + c8ε). Thus∫ τ

0

1{Bd(x,g1/2(x)ε(1+c3ε))}(WUt) dt ≥ g(x)(1+c7ε)

∫ θ

0

1{Bd(x,g1/2(x)ε(1+c3ε))}(Wt) dt, (8.11)

and∫ τ

0

1{Bd(x,g1/2(x)ε(1+c3ε))}(WUt) dt ≤ g(x)(1+c8ε)

∫ θ

0

1{Bd(x,g1/2(x)ε(1+c3ε))}(Wt) dt, (8.12)

It follows from (8.8) and (8.11) that∫ θ

0

1{Be(x,ε)}(Wt) dt (8.13)

≤
∫ θ

0

1{Bd(x,g1/2(x)ε(1+c3ε))}(Wt) dt

≤ 1

g(x)(1 + c7ε)

∫ τ

0

1{Bd(x,g1/2(z)ε(1+c3ε))}(WUt) dt.

Since ωδ = 2π (1− cos (δ)), we see that if we set δx = g1/2(x)ε(1 + c3ε), then uniformly in
x ∈ D∗ and sufficiently small ε

(1 + f ′0ε) ≤
ωδx

πg (x) ε2
≤ (1 + f0ε),

so that by (8.13)

µθ(x, ε) =
1

πε2

∫ θ

0

1{Be(x,ε)}(Wt) dt

≤ 1

πε2g(x)(1 + c7ε)

∫ τ

0

1{Bd(x,g1/2(z)ε(1+c3ε))}(WUt) dt

=
1

(1 + c7ε)

ωδx
πg (x) ε2

µ̄τ (x, g1/2(x)ε(1 + c3ε))

≤ (1 + d̂ ε) µ̄τ (x, g1/2(x)ε(1 + c3ε)), (8.14)

where

(1 + d̂ ε) =
1 + f0ε

1 + c7ε
.

This completes the proof of (8.4).
The lower bound (8.5) is proven similarly using (8.9) and (8.12).

Lemma 8.2. We can find 0 < c, c′, z0 <∞ such that for L large and all 1
12hL ≤ ε ≤

1
3hL

and z0 ≤ z ≤ logL,

c′ze−2
√

2πz ≤ P

(√
sup
y
µθ(y, ε) ≥ mε + z

)
≤ cze−2

√
2πz. (8.15)

Proof of Lemma 8.2. We consider the upper bound. By (8.4) it suffices to show that

P

(√
sup
y
µ̄τ (y, g1/2(y)ε(1 + d2ε)) ≥ mε + z

)
≤ cze−2

√
2πz. (8.16)
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Since for ε in our range

(mε + z)
2

=
1

π
tL

(√
2π z +O(1)

)
,

(compare (4.7)), (8.16) follows from Lemma 4.4 once we verify the condition that |εy −
εy′ | ≤ C d(y, y′)/L, where now εy = g1/2(y)ε(1+d2ε)). This follows easily since g is smooth
and we can assume that 4

5 ≤ g
1/2(y) ≤ 1. We also point out that for 1

12hL ≤ ε ≤
1
3hL and

L large we have 1
20hL ≤ εy ≤ hL+1.

The lower bound is similar.

We note that 1
3hL+1 = 1

3ehL ≥
1
12hL, so all ε are covered by Lemma 8.2.

Lemma 8.2 is the analog of Theorem 1.2, but where now θ is the first hitting time of
∂D∗, see (8.2). Theorem 1.2 then follows by Brownian scaling. To spell this out for later
use, let θa be the first hitting time of ∂Be(0, a) and set

µa(x, ε) =
1

πε2

∫ θa

0

1{B(x,ε)}(Wt) dt. (8.17)

Then it follows from Brownian scaling that for any a, b > 0,

{µa(x, εx); x, εx}
law
= {µba(bx, bεx); x, εx}. (8.18)

The left tail and then Theorem 1.1 can be proven similarly.

8.1 From r∗ small to any r∗ < π

We first note the following extension of Lemma 8.2.

Lemma 8.3. We can find 0 < c, c′, z0 <∞ such that for L large and all 1
12hL ≤ εy ≤

1
3hL

with |εy − εy′ | ≤ C|y − y′|/L and z0 ≤ z ≤ logL,

c′ze−2z ≤ P
(

sup
y
µθ(y, εy) ≥ 1

π
tL (z)

)
≤ cze−2z. (8.19)

This follows as in the proof of Lemma 8.2, once we observe that in Lemma 8.1 we
can allow the ε to depend on x.

It follows from (8.18) that for any fixed a > 0, Lemma 8.3 holds with θ replaced by θa.
We now show that Theorem 1.4 holds for any 0 < r∗ < π. This is done by using

Lemma 8.1. That is, with a = 2 tan(r∗/2) we have that for some −∞ < d1, d2, d3, d4 <∞,
all x ∈ Da and all ε sufficiently small

µ̄τ (x, ε) ≤ (1 + d1 ε) µθa(x, g−1/2(x)ε(1 + d2ε)), (8.20)

and
µ̄τ (x, ε) ≥ (1 + d3 ε) µθa(x, g−1/2(x)ε(1 + d4ε)), (8.21)

Theorem 1.4 then follows from Lemma 8.3 just as Lemma 8.2 followed from Lemma 4.4.
Theorem 1.3 can be proven similarly.

9 Appendix I: barrier estimates

In what follows, we use the notation Hy,δ = [y, y + δ] from [8]. The following is a
variant of [8, Theorem 1.1], which can be proven similarly. We set

fa,b (l;L) = a+ (b− a)
l

L
. (9.1)
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Theorem 9.1. a) For all fixed δ > 0, C ≥ 0, η > 1 and ε ∈
(
0, 1

2

)
we have, uniformly in√

2 ≤ x, y ≤ ηL such that x2/2 ∈ N, any 0 ≤ x ≤ a, 0 ≤ y ≤ b, that

PGW
x2/2

(√
2Tl ≤ fa,b (l;L) + Cl

1
2−ε
L , l = 1, . . . , L− 1,

√
2TL ∈ Hy,δ

)
≤ c (1 + a− x) (1 + b− y)

L

√
x

yL
e−

(x−y)2
2L . (9.2)

b) Let TubeC,C̃(l;L) = [fx,y (l;L) − C̃l
1
2 +ε

L , fa,b (l;L) − Cl
1
2−ε
L ] . If, in addition to the

conditions in part a), we also have (1 + a− x) (1 + b− y) ≤ ηL, max(xy, |y − x|) ≥ L/η

and [y, y + δ] ∩
√

2Z 6= ∅, and TubeC,C̃(l;L) ∩
√

2N 6= ∅ for all l=1,. . . ,L-1, then

PGW
x2/2

(√
2Tl ∈ TubeC,C̃(l;L), l = 1, . . . , L− 1,

√
2TL ∈ Hy,δ

)
≥ c (1 + a− x) (1 + b− y)

L
×
(√

x

yL
∧ 1

)
e−

(x−y)2
2L , (9.3)

and the estimate is uniform in such x, y, a, b and all L.
Similar results hold if we delete the barrier condition on some fixed finite interval.

For the last statement, we simply note that following the proof of [8, Lemma 2.3] we
can show that the analogue of [8, Theorem 1.1] holds where we skip some fixed finite
interval.

Recall that

ρL = 2− logL

L
, αz,± (l) = α (l, L, z) = ρLl + z ± l1/4L . (9.4)

Lemma 9.2. Let m = ky + 1 ≤ logL. For any k ≥ L − (logL)
4, 0 ≤ j ≤ αz,+(k)/2 and

z ≤ logL

P
[√

2T τy,l ≤ αz,+(l), l = m, . . . , k − 1;
√

2T τy,k ∈ Iαz,+(k)−j

]
(9.5)

≤ ce−2k−2z−2k
1/4
L +2j ×m2

(
1 + z +m+ k

1/4
L

)
(1 + j) .

Proof of Lemma (9.2). Using the Markov property, the probability in (9.5) is bounded by

αz,+(m)∑
s=0

P
[√

2T τy,m ∈ Is
]

× sup
x∈Is

P

[√
2T

m,x2/2
y,l ≤ αz,+(l), l = m+ 1, . . . , k − 1;√

2T
m,x2/2
y,k ∈ Iαz,+(k)−j

]
, (9.6)

and using the fact that T τy,m ≤ Tm,0y,m and (2.8), we see that (9.6) is bounded by

αz,+(m)∑
s=0

e−s
2/2m sup

x∈Is
P

[√
2T

m,x2/2
y,l ≤ αz,+(l), l = m+ 1, . . . , k − 1;√

2T
m,x2/2
y,k ∈ Iαz,+(k)−j

]
. (9.7)

Recall that αz,+(l) = ρLl + z + l
1/4
L . Using this we can write the last probability as

K1,s := P

[√
2T

m,x2/2
y,l ≤ ρLl + z + l

1/4
L for l = m+ 1, . . . , k − 1;√

2T
m,x2/2
y,k ∈ I

ρLk+z+k
1/4
L −j

]
. (9.8)
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Using the fact that for all 1 ≤ l ≤ k − 1

l
1/4
L ≤ l1/4k + k

1/4
L , (9.9)

see [7], it follows that

K1,s ≤ PGW
x2/2

[√
2Tl ≤ ρL (m+ l) + z + (m+ l)

1/4
k + k

1/4
L ,

for l = 1, . . . , k −m− 1;
√

2Tk−m ∈ IρLk+z+k
1/4
L −j

]
. (9.10)

Thus using (9.2), with a = ρLm + z + (m
1/4
k + k

1/4
L ) and b = ρLk + z + k

1/4
L , y =

ρLk + z + k
1/4
L − j,

K1,s ≤ c
(1 + a− x) (1 + j)

k −m

√
x

y (k −m)
e−

(ρLk+z+k1/4L
−j−x)

2

2(k−m) .

We have

e−
(ρLk+z+k1/4L

−j−x)
2

2(k−m) ≤ ce−
(ρLk)

2

2k(1−m/k) e
−2
(
z+k

1/4
L −j−x

)
≤ ce2k logL

L e−2(k+m)−2z−2k
1/4
L +2j+2x,

1
k−m

√
x

y(k−m) e
2k logL

L �
√
x, and by assumption,

a− x ≤ c
(
k

1/4
L +m+ z

)
.

Hence we can bound (9.7) by

c
(

1 + k
1/4
L +m+ z

)
(1 + j) e−2k−2z−2k

1/4
L +2j

αz,+(m)∑
s=0

√
se−(s−2m)2/2m.

Our Lemma follows.

Lemma 9.3. For all L sufficiently large, and all 0 ≤ z ≤ logL,

P
[√

2T 1
y,l ≤ αz,− (l) for l = 1, . . . , L− 1;

√
2T 1

y,L ≥ ρL + z
]

≤ P
[√

2T 1
y,l ≤ ρLl + z for l = 1, . . . , L− 1;

√
2T 1

y,L ≥ ρLL+ z
]

≤ c(1 + z)e−2L−2z−z2/4L. (9.11)

and

P
[√

2T 1
y,l ≤ αz,− (l) for l = 1, . . . , L− 1;

√
2T 1

y,L ∈ IρLL+z

]
≥ c(1 + z)e−2L−2z−z2/4L. (9.12)

Similar results hold if we delete the barrier condition on some fixed finite interval.

Proof of Lemma 9.3. The first inequality in (9.11) is obvious. Theorem 9.1 requires that
y ≤ b which we will not have if we go all the way to L. Instead, using the Markov property
at l = L− 1 and (3.22) we bound

P
[√

2T 1
y,l ≤ ρLl + z for l = 1, . . . , L− 1;

√
2T 1

y,L ≥ ρL + z
]

≤ c
ρL(L−1)+z∑

j=1

P
[√

2T 1
y,l ≤ ρLl + z for l = 1, . . . , L− 2;

√
2T 1

y,L−1 ∈ IρL(L−1)+z−j

]
e−j

2/2. (9.13)
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If j ≥ L/2, then e−j
2/2 ≤ e−L

2/8 so we get a bound much smaller than (9.11). Thus
we need only bound the sum over 1 ≤ j ≤ L/2.

It follows from (9.2), with a = z, b = ρL(L− 1) + z, y = ρL(L− 1) + z − j that the last
probability is bounded by

c
(1 + z) (1 + j)

L

√
1

L2
e−(ρL(L−1)+z−j)2/2(L−1)

≤ c(1 + z) (1 + j) e−2L−2(z−j)−(z−j)2/4L,

and our upper bound follows after summing over j.
The lower bound follows similarly using (9.3). The last statement in our Lemma

comes from the last statement in Theorem 9.1.

Lemma 9.4. If k ≥ L/2, 0 ≤ z ≤ logL and L is sufficiently large, then uniformly in
0 ≤ p ≤ k,

P
[√

2T 1
y,l ≤ ρLl + z for l = 1, . . . , k − 1;

√
2T 1
y,k ∈ IρLk+z−p

]
(9.14)

≤ C(1 + z) (1 + p) e−2k−2(z−p)−(z−p)2/4k.

Proof of Lemma 9.4. Using Theorem 9.1 with a = z, y = ρLk + z − p, b = ρLk + z this is
bounded by

c
(1 + z) (1 + p)

k

√
1

k2
e−(ρLk+z−p)2/2k (9.15)

≤ C (1 + z) (1 + p)

k2
e2 log(L)k/Le−2k−2(z−p)−(z−p)2/4k.

(9.14) follows since by the convexity of log we have e2 log(L)k/L ≤ e2 log(k) = k2.

Lemma 9.5. If k ≤ log5 L, 0 ≤ z ≤ logL and L is sufficiently large, then uniformly in
m = ρLk + z − t,

P

[√
2T k,m

2/2
y,l ≤ ρLl + z for l = k + 1, . . . , L− 1;

√
2T k,m2

y,L ≥ ρLL+ z

]
≤ c(1 + t)m1/2e−2(L−k)−2t−t2/4(L−k). (9.16)

Proof of Lemma 9.5. As before, we can bound the probability by

ρL(L−1)+z∑
j=0

P

[√
2T k,m

2/2
y,l ≤ ρLl + z for l = k + 1, . . . , L− 2; (9.17)

√
2T

k,m2/2
y,L−1 ∈ IρL(L−1)+z−j

]
e−j

2/2.

Also, as before, we need only bound the sum over 1 ≤ j ≤ L/2.
It follows from (9.2), with the x of that estimate given by m = a−t and a = ρLk+z, b =

ρL(L− 1) + z, y = ρL(L− 1) + z − j that the last probability is bounded by

c
(1 + t) (1 + j)

L− k

√
m

L(L− k)
e−

(ρL(L−k−1)+t−j)2

2(L−k−1) , (9.18)

and

e−
(ρL(L−k−1)+t−j)2

2(L−k−1)

≤ ce−
(ρL(L−k−1))2

2(L−k−1)
−2(t−j)−(t−j)2/2(L−k)

≤ Ce2 log(L)(L−k)/Le−2(L−k)−2(t−j)−(t−j)2/2(L−k). (9.19)
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This gives

P

[√
2T k,m

2/2
y,l ≤ ρLl + z for l = k + 1, . . . , L− 1;

√
2T k,m

2/2
y,L ≥ ρLL+ z

]

≤ C
ρL(L−1)+z∑

j=0

(1 + t) (1 + j)

L− k

√
m

L(L− k)
L

2(L−k)
L

e−2(L−k)−2(t−j)−(t−j)2/2(L−k)e−j
2/2.

(9.16) follows since by the convexity of log, e2 log(L)(L−k)/L ≤ e2 log((L−k)) = (L−k)2.

The following Lemma states the barrier estimates needed for the proof of the left
tail estimates in Theorem 1.3. For notation see Section 4.3. The proof of this Lemma is
similar to the proofs of Lemmas 9.3-9.5.

Lemma 9.6. For all L sufficiently large, and all |z| ≤ logL,

P
[√

2T 1
y,l ≤ γ̂z,− (l) for l = 1, . . . , L− 1;

√
2T 1

y,L ≥ ρLL+ z
]

≤ P
[√

2T 1
y,l ≤ β̂z(l) for l = 1, . . . , L− 1;

√
2T 1

y,L ≥ ρLL+ z
]

≤ ce−2L−2z−z2/4L. (9.20)

and

P
[√

2T 1
y,l ≤ γ̂z,− (l) for l = 1, . . . , L− 1;

√
2T 1

y,L ∈ IρLL+z

]
≥ ce−2L−2z−z2/4L. (9.21)

Similar results hold if we delete the barrier condition on some fixed finite interval.
If k ≥ L/2, |z| ≤ logL, and L is sufficiently large, then uniformly in p ≤ k,

P
[√

2T 1
y,l ≤ β̂z(l) for l = 1, . . . , k − 1;

√
2T 1
y,k ∈ Iβ̂z(k)−p

]
(9.22)

≤ C (1 + p) e−2k−2(z−p)−(z−p)2/4k.

If k ≤ log5 L, |z| ≤ logL, and L is sufficiently large, then uniformly in m = β̂z(k)− t,

P

[√
2T k,m2

y,l ≤ β̂z(l) for l = k + 1, . . . , L− 1;
√

2T k,m2

y,L ≥ ρL + z

]
(9.23)

≤ c(1 + t)m1/2e−2(L−k)−2t−t2/4(L−k).
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