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Abstract

The asymptotic behaviors of the integrated density of states N(λ) of Schrödinger
operators with nonpositive potentials associated with Gibbs point processes are
studied. It is shown that for some Gibbs point processes, the leading terms of N(λ) as
λ ↓ −∞ coincide with that for a Poisson point process, which is known. Moreover, for
some Gibbs point processes corresponding to pairwise interactions, the leading terms
of N(λ) as λ ↓ −∞ are determined, which are different from that for a Poisson point
process.
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1 Introduction

We consider the random Schrödinger operator on L2(Rd, dx) defined by

Hηω = −∆ + Vηω , Vηω (x) =

∫
Rd
u0(x− y)ηω(dy), (1.1)

where u0 is a nonpositive measurable function on Rd, and ηω is a point process (see
Section 2). We call u0 the single site potential. We assume that ηω is stationary and
ergodic (see Section 2). The integrated density of states (IDS) N(λ) of the Schrödinger
operator is the nondecreasing function formally given by

lim
L→∞

1

|ΛL|
#{eigenvalues of HD

ηω,L less than or equal to λ},
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IDS associated with Gibbs point process

where ΛL is the box (−L/2, L/2)d ⊂ Rd, |ΛL| denotes Lebesgue measure of ΛL, and
HD
ηω,L

is the operator Hηω restricted to ΛL with Dirichlet boundary condition. Because of
the ergodicity of ηω, both N(λ) and the spectrum of Hηω are independent of ω almost
surely. Moreover, N(λ) increases only on the spectrum. See [2, 12] for the precise
definition and the properties of the IDS.

The asymptotic behaviors of the IDS near the infimums of the spectra are well-studied.
For a stationary Poisson point process (see [3] for the definition) and a nonpositive and
integrable single site potential u0 which is continuous at the origin and has a minimum
value of less than zero there, the spectrum is R apart from some exceptional cases (see
[1] for details), and it holds that

logN(λ) ∼ −λ log |λ|
u0(0)

(λ ↓ −∞), (1.2)

which is proved by Pastur in [11] (see also [12, (9.4) Theorem]), where we write f(λ) ∼
g(λ) (λ ↓ −∞) if f(λ)/g(λ) converges to one as λ ↓ −∞. See [9] for the asymptotic
behavior for a singular nonpositive single site potential, and [6, 10, 11] for that for a
nonnegative single site potential.

The aim of this work is to investigate the asymptotic behaviors of N(λ) as λ ↓ −∞
for nonpositive single site potentials and Gibbs point processes: point processes with
interactions between the points. We mainly deal with pairwise interaction processes
(i.e. Gibbs point processes corresponding to pairwise interactions: the energy of the
points {xj} is

∑
i<j ϕ(xi − xj), where ϕ is a nonnegative symmetric function on Rd with

compact support). In [16], Sznitman proved a result that is equivalent to determining
the leading term of the asymptotic behavior of the IDS for a nonnegative single site
potential with compact support and a pairwise interaction process.

From the proof of (1.2) in [12, (9.4) Theorem], we can find that for a Poisson point
process, the probability that many points exist in a small domain affects the leading term
of the IDS. Therefore, for a Gibbs point process corresponding to a weak interaction
that does not prevent the points from gathering (e.g. Example 3.2), we expect that
the IDS satisfies (1.2). This is proved in Theorem 3.3. However, for a general Gibbs
point process, (1.2) does not hold. In Corollary 4.2, for a pairwise interaction process
satisfying some conditions, we determine the leading term of the asymptotic behavior of
the IDS:

logN(λ) ∼ − ϕ(0)

2‖u0‖2S
λ2 (λ ↓ −∞), (1.3)

where ‖u0‖2S , defined in Section 4, depends only on u0 and the support S of ϕ. This
implies that the IDS decays much faster than that for a Poisson point process. In this
case, because of the repulsion of the points, the probability that some clusters of many
points occur affects the leading term of the IDS (see (4.5) and (4.6)). The main tools
for the proof of (1.3) are Proposition 3.4, which is used in the proof of (1.2) in [12, (9.4)
Theorem], and the upper estimate of the Laplace functional in Proposition 4.6.

This paper is organized as follows. Section 2 introduces the Gibbs point processes
(see e.g. [3, 13, 14]). In Section 3, we prove that the leading term of the asymptotic
behavior of the IDS for a Gibbs point process corresponding to a weak interaction
is identical to (1.2). In Section 4, we treat a pairwise interaction process satisfying
some conditions and determine the leading term of the asymptotic behavior of the
corresponding IDS, which is different from (1.2).

2 Gibbs point processes

Let (C,F) denote the space of all locally finite measures on (Rd,B(Rd)) which can be
written as a countable sum

∑n
j=1 δxj (n ∈ Z≥0 ∪ {+∞}, xj ∈ Rd, xi 6= xj for any i 6= j),
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IDS associated with Gibbs point process

equipped with the σ-algebra F generated by {MΛ}Λ∈B(Rd), where δx denotes the Dirac
measure at x ∈ Rd, and for every Λ ∈ B(Rd), MΛ is the function on C defined by
MΛ(η) = #(Λ ∩ supp η). We note that all η ∈ C is simple (i.e. η({x}) ≤ 1 for any x ∈ Rd).
We call a C-valued random element a point process.

Let Cf be the set of all finite measures in C. We introduce an energy function to define
the interaction between the points.

Definition 2.1. An energy function is a measurable function U from Cf to R ∪ {+∞}
such that:

• U maps the null measure to 0;

• if U(η) = +∞, then U(δx + η) = +∞ for all x ∈ Rd \ supp η;

• U(τxη) = U(η) for any η ∈ Cf and any x ∈ Rd, where τxη(·) = η(τ−x ·), and τx is the
translation by vector x.

We introduce a pairwise energy function: an energy function corresponding to a
pairwise interaction.

Definition 2.2. An energy function defined by

U(η) =
∑

{x,y}⊂ supp η
x6=y

ϕ(x− y) (2.1)

is called a pairwise energy function, where ϕ is a measurable and symmetric (i.e.
ϕ(x) = ϕ(−x)) function from Rd to R≥0 ∪ {+∞} with compact support.

For a pairwise energy function U defined by (2.1) and a bounded Λ ∈ B(Rd), we
define

UΛ(η) =
∑

{x,y}⊂ supp η
{x,y}∩Λ6=∅, x6=y

ϕ(x− y) (η ∈ Cf ).

For an energy function U except for pairwise energy functions and a bounded Λ ∈ B(Rd),
we set

UΛ(η) = U(η)− U(ηΛc) (η ∈ Cf ),

where ηΛ denotes the measure η(· ∩ Λ), Λc = Rd \ Λ, and ∞−∞ = 0 for convenience.
We can see UΛ(η) means the variation of the energy when adding ηΛ to ηΛc .

In this paper, we assume the finite range property:

Definition 2.3. We say that an energy function U has a finite range R > 0 if for all
bounded Λ ∈ B(Rd) and all η ∈ Cf , it holds that

UΛ(η) = UΛ(ηΛ+B(0,R)),

where B(x,R) is the closed ball centered at x with radius R, and Λ + B(0, R) denotes
the set {x+ y | x ∈ Λ, y ∈ B(0, R)}.

A pairwise energy function defined by (2.1) has a finite range R > 0 if and only if the
support of ϕ is included in B(0, R).

For an energy function U with a finite range R > 0, we can define

UΛ(η) = UΛ(ηΛ+B(0,R)), h(x, η) = U{x}(η + δx)
(
η ∈ C, x ∈ Rd \ supp η

)
.

The function h is called the local energy function, which means the variation of the
energy when adding δx to η.

Let FΛ denote the σ-algebra generated by {MΛ′}Λ′⊂Λ, Λ′∈B(Rd). When an energy
function U has a local energy function bounded below, for every γ ∈ C and every bounded
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Λ ∈ B(Rd) with positive Lebesgue measure, we define the probability measure PΛ,γ on
(C,FΛ) by

PΛ,γ(dη) =
1

ZΛ(γ)
e−UΛ(ηΛ+γΛc )π1(dη),

where πz is the distribution of the Poisson point process with intensity z (see [3] for the
definition), and ZΛ(γ) is a normalizing constant: ZΛ(γ) =

∫
e−UΛ(ηΛ+γΛc )π1(dη). We see

ZΛ(γ) ≥
∫
{MΛ=0}

π1(dη) = e−|Λ| > 0. (2.2)

Moreover, if the local energy function h is bounded below by a ∈ R, since for any distinct
points x1, . . . , xn ∈ Λ,

UΛ

(
n∑
j=1

δxj + γΛc

)
=

n∑
j=1

h

(
xj ,

j−1∑
i=1

δxi + γΛc

)
≥ an,

we have

ZΛ(γ) ≤
∫
C
e−aMΛ(η)π(dη) = exp

(
|Λ|
(
e−a − 1

))
< +∞. (2.3)

Now we introduce the Gibbs point processes.

Definition 2.4. We assume that an energy function U has a finite range, and its local
energy function is bounded below. A point process is a Gibbs point process for the
energy function U if its distribution P on C satisfies the following conditions:

• for all bounded Λ ∈ B(Rd) with positive Lebesgue measure and all bounded F -
measurable function f , it holds that∫

C
f(η)P (dη) =

∫
C

∫
C
f(ηΛ + γΛc)PΛ,γ(dη)P (dγ); (2.4)

• for P -almost all γ ∈ C, U(η) < +∞ whenever η ∈ Cf and supp η ⊂ supp γ.

The equation (2.4) is called the Dobrushin-Lanford-Ruelle equation (DLR equation).
We call a Gibbs point process for a pairwise energy function a pairwise interaction
process. We note that if U is identically zero, the corresponding Gibbs point process is
the Poisson point process with intensity one.

We say a point process is stationary if its distribution P satisfies P (τxA) = P (A) for
all x ∈ Rd and all A ∈ F . Under the assumption in Definition 2.4, at least one stationary
Gibbs point process for U exists (see [4, 5]).

A point process with a distribution P is called ergodic if P (A) is either zero or one
for any A ∈ F such that P (A 	 τxA) = 0 for all x ∈ Rd, where A 	 B denotes the
symmetric difference of A and B. If an energy function with a finite range R > 0 has
a local energy function bounded below by a ∈ Rd, and Rde−a is sufficiently small, then
the corresponding DLR equation has a unique solution (see [8] for more details). The
uniqueness guarantees the stationarity and ergodicity of the corresponding Gibbs point
process (see [13, Section 4]).

We end this section by introducing stochastic domination. We say that a measurable
function f on (C,F) is increasing, if f(η) ≤ f(γ) whenever supp η ⊂ supp γ. If an energy
function U has a local energy function bounded below by − log z for some z > 0, then
the corresponding probability measure PΛ,γ is stochastically dominated by πz: for any
bounded Λ ∈ B(Rd) and any bounded FΛ-measurable increasing function f , it holds that∫

C
f dPΛ,γ ≤

∫
C
f dπz,
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(see [7] for the proof). If there is a Gibbs point process for U , then for its distribution P ,
we also have ∫

C
f dP ≤

∫
C
f dπz, (2.5)

from the DLR equation.

3 Weak interactions

As we see below, for a nonpositive bounded integrable single site potential and a
stationary and ergodic Gibbs point process with a local energy function bounded below,
the Schrödinger operator (1.1) is essentially self-adjoint on C∞c almost surely, and the
corresponding IDS exists, where C∞c denotes the set of all smooth functions on Rd

with compact support. We note that all Schrödinger operators in this paper have these
properties.

Let P be the distribution of the Gibbs point process. From (2.5), for any p ∈ [1,∞)

and any bounded Λ ∈ B(Rd), we have∫
C

∫
Λ

|Vη(x)|p dxP (dη) ≤
∫
C

∫
Λ

|Vη(x)|p dxπz(dη) <∞, (3.1)

where z > 0 is a constant such that the local energy function is bounded below by
− log z. The essential self-adjointness is proved in [2, Proposition V.3.2] using (3.1) and
the stationarity. For the existence of the IDS, see [2, Chapter VI].

Now, in this section, we consider a Gibbs point process for an energy function
satisfying the following condition.

(W) There exists a positive constant ε0 and a positive function r on (1,∞), such that

lim
x→∞

r(x) = 0, lim
x→∞

log r(x)

log x
= 0,

and for any 0 < ε ≤ ε0,

sup
M
Rd

(ηB(0,r(x)))=d(1+ε)xe
U(ηB(0,r(x))) = o(x log x) (x→∞),

where dxe denotes the least integer greater than or equal to x.

Condition (W) implies that the interaction between many points in a small region is
sufficiently weak.

Example 3.1 (Energy function with a bounded local energy function). Some energy
functions have bounded local energy functions. An example is an area energy function:

U

(
n∑
j=1

δxj

)
=

∣∣∣∣ n⋃
j=1

B(xj , R)

∣∣∣∣,
which has the local energy function h satisfying 0 ≤ h ≤ |B(0, R)|, where R > 0 is a
constant. If a local energy function h of an energy function U is bounded above by a ∈ R,
then we have U(η) ≤ aMRd(η) for all η ∈ Cf . Hence, the energy function U satisfies
condition (W).

Example 3.2 (Pairwise energy function). In general, local energy functions of pair-
wise energy functions are unbounded. However, a pairwise energy function such
that the closer the two points approach, the weaker the interaction gets, could sat-
isfy condition (W). For example, a pairwise energy function defined by (2.1) such
that ϕ(x) = O(exp(−|x|−p)) (|x| → 0) for some p > 0, satisfies condition (W) (let
r(x) = 2−1(log x)−1/p).
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The main result in this section is the following.

Theorem 3.3. Let an energy function U with a finite range satisfy condition (W), its
local energy function be bounded below, and a single site potential u0 be nonpositive,
integrable, continuous at the origin, and have a minimum value of less than zero
there. We assume that a Gibbs point process for U is stationary and ergodic. Then the
corresponding IDS satisfies that

logN(λ) ∼ −λ log |λ|
u0(0)

(λ ↓ −∞). (3.2)

The asymptotic behavior (3.2) coincides with (1.2): the asymptotic behavior of the
IDS for a Poisson point process.

One of the main tools in this paper is the following, which is proved by the Dirichlet-
Neumann bracketing and the path integral representation of the Laplace transform of
the IDS (see [12, (9.1) Theorem and (9.2) Theorem] and [2] for the proof).

Proposition 3.4. For a stationary and ergodic Gibbs point process with a local energy
function bounded below, and a nonpositive bounded integrable single site potential u0,
the following hold:

• for any ε > 0 and any δ ∈ (0, 1/2), there exists λ0 < 0 such that for any λ < λ0,

logN(λ) ≥ logP
(

sup
|x|<δ

V·(x) ≤ (1 + ε)λ
)

; (3.3)

• for any t > 1 and any λ ∈ R,

logN(λ) ≤ λt+ log

(∫
C

exp

(
−t
∫
Rd
u0(−x)η(dx)

)
P (dη)

)
, (3.4)

where P is the distribution of the Gibbs point process.

The integral
∫

exp(−t
∫
u0(−x)η(dx))P (dη) on the right-hand side of (3.4) is called

the Laplace functional.

Proof of Theorem 3.3. Let P be the distribution of the Gibbs point process.

(Lower bound) For simplicity, we put u(x) = −u0(−x) (i.e. u is nonnegative, and
Vη(x) = −

∫
u(y − x)η(dy)). We assume that the energy function U has a finite range

R > 0, and the local energy function is bounded below by − log z for some z > 0.

Fix nonempty bounded Λ ∈ B(Rd) and n ∈ N. Let A = {MΛ = n, MΛR\Λ = 0} ∈ FΛR ,
where ΛR = Λ +B(0, R). For all η ∈ A and P -almost all γ ∈ C, we have

UΛR(ηΛR + γ(ΛR)c) = U(ηΛ + γΛ2R\ΛR)− U(γΛ2R\ΛR)

= U(ηΛ) ≤ sup
M
Rd

(ηΛ)=n

U(ηΛ).

Hence, from the DLR equation and (2.3), we obtain

P (MΛ = n) ≥ P (A) ≥
∫
C

∫
C

1

ZΛR(γ)
1A(ηΛR)e−UΛR

(ηΛR
+γ(ΛR)c )π1(dη)P (dγ)

≥ e−z|ΛR| |Λ|
n

n!
exp
(
− sup
M
Rd

(ηΛ)=n

U(ηΛ)
)
,

(3.5)

where 1A is the indicator function of A.
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Let U satisfy condition (W) with a constant ε0 > 0 and a function r. Fix ε ∈ (0, u(0))

such that (1 + ε)/(u(0)− ε) ≤ (1 + ε0)/u(0). We find δ ∈ (0, 1/2) such that u(0)− ε ≤ u(x)

whenever |x| ≤ 2δ, and we have

sup
|x|<δ

Vη(x) ≤ −
(
u(0)− ε

)
MB(0,δ)(η).

From (3.3) and (3.5), for all sufficiently small λ < 0, we get

logN(λ) ≥ logP
(
−
(
u(0)− ε

)
MB(0,δ) ≤ (1 + ε)λ

)
≥ logP

(
MΛ(λ) = n(λ)

)
≥ − log n(λ)!− z|B(0, 2R)|+ n(λ) log |Λ(λ)| − sup

M
Rd

(ηΛ(λ))=n(λ)

U(ηΛ(λ)),

where we put Λ(λ) = B(0, r(|λ|/u(0))) and n(λ) = d(1 + ε)|λ|/(u(0)− ε)e.
From condition (W), we have

n(λ) log |Λ(λ)| − sup
M
Rd

(ηΛ(λ))=n(λ)

U(ηΛ(λ)) = o(λ log |λ|) (λ ↓ −∞).

Hence, we obtain

lim inf
λ↓−∞

logN(λ)

|λ| log |λ|
≥ lim inf

λ↓−∞

− log n(λ)!

|λ| log |λ|
= − 1 + ε

u(0)− ε
,

where we use Stirling’s formula in the last equation. This implies that

lim inf
λ↓−∞

logN(λ)

|λ| log |λ|
≥ 1

u0(0)
.

(Upper bound) From (2.5) and (3.4), for all t > 1 and all λ ∈ R, we obtain

logN(λ) ≤ λt+ log

(∫
C

exp

(
t

∫
Rd
u(x)η(dx)

)
πz(dη)

)
.

We substitute t = (log |λ|)/u(0), and with the simple calculation of the Laplace functional
of the Poisson point process (see [12, (9.4) Theorem]), we obtain that

lim sup
λ↓−∞

logN(λ)

|λ| log |λ|
≤ 1

u0(0)
.

4 Pairwise interactions

4.1 Main results

In this section, we consider a pairwise interaction process corresponding to a pairwise
interaction such that the repulsion does not fade as the two points approach each other
(cf. Example 3.2). For such a pairwise interaction process, the leading term of the
asymptotic behavior of the IDS could be affected by the values of the single site potential
that are not necessarily the minimum value (cf. (1.2)). To represent the effect, we define

‖u‖2S = sup

{ ∞∑
j=1

u(xj)
2 | {xj}∞j=1 ⊂ Rd, xi − xj ∈ Sc for any i 6= j

}
,

for every bounded S ∈ B(Rd) and every measurable function u on Rd. We introduce the
following condition associated with the range of the interaction.
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(S) S ∈ B(Rd) is nonempty, bounded and symmetric (i.e. S = −S), and for any α ∈ (0, 1),

αS ⊂ IntS,

where S denotes the closure of S, IntS is the interior of S, and for a ∈ R, aS
denotes the set {ax | x ∈ S}.

We remark that S ∈ B(Rd) satisfying condition (S) is a bounded star domain (i.e. αS ⊂ S
for any α ∈ (0, 1)) including the origin in its interior; however, the converse is false.

The following theorem gives the upper and lower estimates of the asymptotic behavior
of the IDS for a pairwise interaction process.

Theorem 4.1. Let S ∈ B(Rd) satisfy condition (S), and u0 be a continuous integrable
nonpositive single site potential satisfying 0 < ‖u0‖2S <∞. Moreover, we assume that a
pairwise interaction process for an energy function U defined by (2.1) having a finite
range is stationary and ergodic. Then, we have the following:

(a) If ϕ is upper semi-continuous at the origin, ϕ(0) > 0, and ϕ(x) = 0 whenever x ∈ Sc,
then it holds that

lim inf
λ↓−∞

λ−2 logN(λ) ≥ − ϕ(0)

2‖u0‖2S
; (4.1)

(b) If u0 has a compact support, and there exists a positive constant a such that
ϕ(x) ≥ a whenever x ∈ S, then it holds that

lim sup
λ↓−∞

λ−2 logN(λ) ≤ − a

2‖u0‖2S
. (4.2)

From Theorem 4.1, we determine the leading terms of the asymptotic behaviors of
the IDS for some pairwise interaction processes:

Corollary 4.2. Let a single site potential u0 be a nonpositive continuous function that is
not identically zero, with compact support, and ϕ be continuous at the origin and satisfy
that ϕ(0) > 0, ϕ(x) ≥ ϕ(0) for any x ∈ S, and ϕ(x) = 0 for any x ∈ Sc, where S ∈ B(Rd)

satisfies condition (S). We assume that a pairwise interaction process for a pairwise
energy function defined by (2.1) is stationary and ergodic. Then the corresponding IDS
satisfies that

logN(λ) ∼ − ϕ(0)

2‖u0‖2S
λ2 (λ ↓ −∞).

Remark 4.3. When ϕ is not upper semi-continuous at the origin and is bounded on a
neighborhood there, we can apply Theorem 4.1 (a) by replacing the value of ϕ(0) so that
ϕ is upper semi-continuous at the origin. Similarly, Corollary 4.2 could be applied by
replacing ϕ(0) so that ϕ is continuous at the origin. These are justified by the fact that
the pairwise interaction processes are independent of the value of ϕ(0).

Remark 4.4. Corollary 4.2 includes the Strauss processes (i.e. ϕ = a1B(0,R) for some
a,R ∈ (0,∞)) introduced in [15]. In this remark, we fix a single site potential satisfying
the condition of Corollary 4.2. Theorem 4.1 implies that for a pairwise interaction
process such that c1 < ϕ < c2 on a neighborhood of the origin for some c1, c2 ∈ (0,∞),
the corresponding IDS satisfies that

log | logN(λ)| ∼ 2 log |λ| (λ ↓ −∞). (4.3)

For a hardcore process (i.e. ϕ = +∞ on a neighborhood of the origin), the corresponding
IDS does not satisfy (4.3). In this case, there is a constant β such that Vη > β for
P -almost all η ∈ C, where P is the distribution of the hardcore process, and hence
N(λ) = 0 whenever λ is less than β.
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4.2 Proof of Theorem 4.1 (a)

To apply (3.3), we use (4.5) unlike either case of a Gibbs point process in Section 3 or
a Poisson point process. Let P be the distribution of the pairwise interaction process in
Theorem 4.1 (a).

Proof of Theorem 4.1 (a). For simplicity, we put u(x) = −u0(−x). We fix ε0 > 0. From
the continuity of u and condition (S), we can find finite points x1, . . . xk ∈ Rd such that
u(xj) is positive, xi − xj ∈ (S)c (i 6= j), and

‖u‖2S − ε0 ≤
k∑
j=1

u(xj)
2. (4.4)

By continuity of u and upper semi-continuity at the origin of ϕ, for any ε ∈ (0,minj u(xj)),
there exists δ ∈ (0, 1/2) such that:

• x− y ∈ Sc for any x ∈ B(xi, δ) and any y ∈ B(xj , δ) (i 6= j);

• u(x) > u(xj)− ε whenever x ∈ B(xj , 2δ) (j = 1, . . . , k);

• ϕ(x) < ϕ(0) + ε whenever x ∈ B(0, 2δ).

We put Λj = B(xj , δ), Γ =
⋃k
j=1(Λj + S), and Γ0 = Γ \

⋃k
j=1 Λj . We fix n1, . . . , nk ∈ N.

Let A denote the event {MΛ1 = n1, . . . , MΛk = nk, MΓ0 = 0} ∈ FΓ. Since for all γ ∈ C
and all η ∈ A, we have UΓ(ηΓ + γΓc) = U(ηΓ), from the DLR equation, we obtain

P (MΛj = nj ; j = 1, . . . , k) ≥ P (A) ≥
∫
C

1A(ηΓ)e−U(ηΓ)π1(dη)

≥
k∏
j=1

1

nj !
|Λj |nje−(ϕ(0)+ε)n2

j/2e−|Γ|,

where we use the fact that ZΓ(γ) ≤ 1 (see (2.3)).
This implies that there exists n0 ∈ N such that for any n1, . . . , nk ≥ n0,

logP (MΛj = nj ; j = 1, . . . , k) ≥ −(1 + ε)
ϕ(0) + ε

2

k∑
j=1

n2
j . (4.5)

We note that

sup
|x|<δ

Vη(x) ≤ −
k∑
j=1

(
u(xj)− ε

)
MΛj (η),

and from (3.3) and (4.5), for all sufficiently small λ < 0, we obtain

logN(λ) ≥ logP

(
−

k∑
j=1

(
u(xj)− ε

)
MΛj ≤ (1 + ε)λ

)

≥ logP

(
MΛj =

⌈
(1 + ε)cj |λ|
u(xj)− ε

⌉
; j = 1, . . . , k

)
≥ −(1 + ε)4ϕ(0) + ε

2

k∑
j=1

(
cj

u(xj)− ε

)2

λ2,

(4.6)

where cj = u(xj)
2/
∑k
j=1 u(xj)

2.
From (4.4) and (4.6), we obtain (4.1).
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4.3 Proof of Theorem 4.1 (b)

For the proof, we set the simple functions that approximate u, where u(x) = −u0(−x).
For every n ∈ N, we put

un(x) =
∑
j∈Zd

un,j1Λn,j (x), (4.7)

where un,j = supy∈Λn,j
u(y), and Λn,j denotes the box {x+ j/n | x ∈ (0, 1/n]d}.

Lemma 4.5. Let S ∈ B(Rd) satisfy condition (S). Then for any b > 0, it holds that

lim
n→∞

‖un‖2Sb/n = ‖u‖2S ,

where Sb/n denotes the set (Sc +B(0, b/n))c.

Proof. We note that u is a nonnegative continuous function with compact support. Fix a
constant b > 0. It is easy to see that for all n ∈ N,

‖un‖2Sb/n ≥ ‖u‖
2
S . (4.8)

Since dist(Sc, αS) > 0 for any α ∈ (0, 1), we can find a monotonically non-increasing
sequence (βn)∞n=n0

(n0 ≥ 1) convergent to one, such that

dist

(
Sc,

1

βn
S

)
> b/n (n ≥ n0),

where for every Λ,Γ ∈ B(Rd), dist(Λ,Γ) means inf{|x− y| | x ∈ Λ, y ∈ Γ}. This implies
that

S ⊂ βnSb/n (n ≥ n0). (4.9)

We fix ε > 0. We find L > 0 such that suppun ⊂ B(0, L) for all n ∈ N. For each n ≥ n0, we
note that ‖un‖Sb/n <∞, and choose finite points xn,1, . . . xn,kn ∈ Rd such that |xn,j | ≤ L,
xn,i − xn,j ∈ (Sb/n)c (i 6= j), and

‖un‖2Sb/n − ε ≤
kn∑
j=1

un(xn,j)
2. (4.10)

We can find a constant K > 0 independent of ε such that kn ≤ K for all n ≥ n0. We put
yn,j = βnxn,j . From (4.9), we get

yn,i − yn,j ∈ βn(Sb/n)c ⊂ Sc (i 6= j), |xn,j − yn,j | ≤ (βn − 1)L. (4.11)

Since u is uniformly continuous, and un is uniformly convergent to u, there exists δ > 0

such that for all sufficiently large n ∈ N, |un(x)− u(y)| < ε whenever |x− y| < δ. Hence,
from (4.10) and (4.11), for all sufficiently large n ∈ N, we obtain

‖un‖2Sb/n − ε ≤
kn∑
j=1

(
u(yn,j) + ε

)2 ≤ ‖u‖2S + 2εmK + ε2K, (4.12)

where m is the maximum value of u. The lemma is proved by combining this and (4.8).

Let P be the distribution of the Gibbs point process in Theorem 4.1 (b). The key to
the proof of Theorem 4.1 (b) is the next proposition: the upper estimate of the Laplace
functional as t→∞.
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Proposition 4.6. We put

v(x) =

k∑
j=1

vj1Λj (x),

where v1, . . . , vk > 0, Λ1, . . . ,Λk ∈ B(Rd) are disjoint bounded sets with positive Lebesgue
measure such that for each j = 1, . . . , k, x− y ∈ S whenever x, y ∈ Λj . Then we have

lim sup
t→∞

t−2 log

(∫
C

exp

(
t

∫
Rd
v(x)η(dx)

)
P (dη)

)
≤ 1

2a
max
J∈K

∑
j∈J

vj
2, (4.13)

where K denotes the set{
J ⊂ {1, . . . , k} | for all i 6= j ∈ J ,

there are x ∈ Λi and y ∈ Λj such that x− y ∈ Sc
}
.

The proof of Proposition 4.6 proceeds via two lemmas.

Lemma 4.7. For the sets Λ1, . . . ,Λk ∈ B(Rd) in Proposition 4.6 and any ε ∈ (0, 1), there
exists n0 ∈ N such that for any n1, . . . , nk ≥ n0,

logP (MΛj = nj ; j = 1, . . . , k) ≤ −(1− ε)a
2

k∑
j=1

n2
j − a

∑
(i,j)∈I

ninj ,

where I = {(i, j) ∈ N2 | 1 ≤ i < j ≤ k, and x− y ∈ S for any x ∈ Λi, y ∈ Λj}.

Proof. Let A denote the event {MΛj = nj ; j = 1, . . . , k} and Λ =
⋃k
j=1 Λj . It is obvious

that UΛ(ηΛ + γΛc) ≥ U(ηΛ) for all η, γ ∈ C. By the DLR equation and (2.2), we obtain

P (A) ≤ e|Λ|
∫
C

1A(ηΛ)e−U(ηΛ)π1(dη)

≤
k∏
j=1

|Λj |nj
nj !

exp

(
−a

2

k∑
j=1

nj(nj − 1)− a
∑

(i,j)∈I

ninj

)
,

which proves the lemma.

Lemma 4.8. Let c > 0, v1, . . . , vk > 0, and I be a subset of {(i, j) ∈ N2 | 1 ≤ i < j ≤ k}.
Then, for any ε > 0, there exists T > 0 such that for all t > T ,

∞∑
n1=0

· · ·
∞∑

nk=0

exp

(
−c

k∑
j=1

n2
j − 2c

∑
(i,j)∈I

ninj + t

k∑
j=1

vjnj

)

≤ exp

(
(1 + ε)

(
max
J∈KI

∑
j∈J

v2
j

)
t2

4c

)
,

(4.14)

where KI = {J ⊂ {1, . . . , k} | (i, j) /∈ I whenever i, j ∈ J}.
The idea of the proof is to change of variables:

∞∑
n1=0

∞∑
n2=0

exp
(
−(n1 + n2)2

)
=

∞∑
m1=0

∑
m2∈{m1,m1−2,...,−m1}

exp
(
−m2

1

)
,

where we put m1 = n1 + n2, m2 = n1 − n2.
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Proof of Lemma 4.8. We fix ε > 0. Let G(t; I) denote the left-hand side of (4.14). We
have

G(t; ∅) =

∞∑
n1=0

· · ·
∞∑

nk=0

exp

(
−c

k∑
j=1

n2
j + t

k∑
j=1

vjnj

)

≤
k∏
j=1

(∫ ∞
0

exp
(
−cx2 + tvjx

)
dx+ max

x∈[0,∞)
exp
(
−cx2 + tvjx

))

≤ exp

(
(1 + ε)

k∑
j=1

v2
j

t2

4c

)
,

(4.15)

for all sufficiently large t > 0.
Now we investigate the case that I 6= ∅. We assume that (1, 2) ∈ I without loss of

generality. We consider

G0(t) =

∞∑
n1=0

∞∑
n2=0

exp
(
−c
(
n2

1 + n2
2

)
− 2c(n1n2 + n1X + n2Y ) + t(v1n1 + v2n2)

)
(4.16)

in the left-hand side of (4.14), where we put

X =
∑

(1,j)∈I
j 6=2

nj , Y =
∑

(2,j)∈I

nj .

We put m1 = n1 + n2, m2 = n1 − n2 and have

G0(t) =

∞∑
m1=0

exp

(
−cm2

1 −
(
cX + cY − tv1

2
− tv2

2

)
m1

)
×

∑
m2∈{m1,m1−2,...,−m1}

exp

((
−cX + cY +

tv1

2
− tv2

2

)
m2

)

≤
∞∑
m=0

(m+ 1) exp

(
−cm2 −

(
cX + cY − tv1

2
− tv2

2

)
m

)
×
{

exp

((
−cX + cY +

tv1

2
− tv2

2

)
m

)
+ exp

((
cX − cY − tv1

2
+
tv2

2

)
m

)}
≤

∞∑
n1=0

exp
(
−cn2

1 − 2cn1X + (1 + ε)tv1n1

)
+

∞∑
n2=0

exp
(
−cn2

2 − 2cn2Y + (1 + ε)tv2n2

)
,

for all t > T ′, where T ′ = 1/(εminj vj). Hence, for all t > T ′, we obtain

G(t; I) ≤
∑

nj≥0, for j 6=2

exp

(
−c
∑
j 6=2

n2
j − 2c

∑
(i,j)∈I2

ninj + (1 + ε)t
∑
j 6=2

vjnj

)

+
∑

nj≥0 for j 6=1

exp

(
−c
∑
j 6=1

n2
j − 2c

∑
(i,j)∈I1

ninj + (1 + ε)t
∑
j 6=1

vjnj

)
,

where Il = {(i, j) ∈ I | i, j 6= l} (l = 1, 2).
If I1 6= ∅ or I2 6= ∅, the above procedure can be repeated. We iterate 2k−1 − 1 times at

most, and for all t > T ′, we obtain

G(t; I) ≤ 2k
∑

{m1,...,ml}∈KI

∞∑
n1=0

· · ·
∞∑
nl=0

exp

(
−c

l∑
j=1

n2
j + (1 + ε)kt

l∑
j=1

vmjnj

)
. (4.17)

The lemma is proved by (4.15) and (4.17).
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Proof of Proposition 4.6. We fix ε ∈ (0, 1). Let [k] denote the set {1, . . . , k}.
From Lemma 4.7, for n0 ∈ N large enough, we have∫

C
exp

(
t

∫
Rd
v(x)η(dx)

)
P (dη)

=
∑
J⊂[k]

∑
nj>n0 for j∈J,

0≤nj≤n0 for j∈[k]\J

exp

(
t

k∑
j=1

vjnj

)
P
(
MΛj = nj ; j ∈ [k]

)

≤ k(n0 + 1) exp

(
tn0

k∑
j=1

vj

)
+

∑
J(6=∅)⊂[k]

k(n0 + 1) exp

(
tn0

∑
j∈[k]\J

vj

)

×
∑

nj>n0 for j∈J
exp

(
t
∑
j∈J

vjnj

)
P (MΛj = nj ; j ∈ J)

≤ k(n0 + 1) exp

(
tn0

k∑
j=1

vj

){
1 +

∑
J( 6=∅)⊂[k]

∑
nj≥0 for j∈J

× exp

(
−(1− ε)a

2

∑
j∈J

n2
j − (1− ε)a

∑
(i,j)∈I(J)

ninj + t
∑
j∈J

vjnj

)}
,

where I(J) = {(i, j) ∈ J × J | i < j, and x− y ∈ S for any x ∈ Λi, y ∈ Λj}.
From Lemma 4.8, for any nonempty subset J ⊂ {1, . . . , k} and all sufficiently large

t > 0, we obtain∑
nj≥0 for j∈J

exp

(
−(1− ε)a

2

∑
j∈J

n2
j − (1− ε)a

∑
(i,j)∈I(J)

ninj + t
∑
j∈J

vjnj

)

≤ exp

(
1 + ε

1− ε

(
max

J′∈K(J)

∑
j∈J′

vj
2

)
t2

2a

)
,

where K(J) = {J ′ ⊂ J | (i, j) 6= I(J) whenever i, j ∈ J ′}.
Since K(J) ⊂ K, we obtain (4.13).

Proof of Theorem 4.1 (b). We put u(x) = −u0(−x) and un as (4.7). We note that for each
n ∈ N, un,j = 0 except for finitely many j ∈ Zd. We fix ε > 0. From Proposition 4.6, for
all sufficiently large n ∈ N and all sufficiently large t > 0, we have

log

(∫
C

exp

(
t

∫
Rd
u(x)η(dx)

)
P (dη)

)
≤ log

(∫
C

exp

(
t

∫
Rd
un(x)η(dx)

)
P (dη)

)
≤ (1 + ε)

(
max
J∈Kn

∑
j∈J

un,j
2

)
t2

2a
,

where for each n ∈ N, we put

Kn =
{
J ⊂ Zd | for all i 6= j ∈ J , there exist x ∈ Λn,i and y ∈ Λn,j

such that x− y ∈ Sc
}
.

If {i, j} ∈ Kn (i 6= j), then for any x ∈ Λn,i and any y ∈ Λn,j , we have x− y ∈ (S2
√
d/n)c.

This implies that

log

(∫
C

exp

(
t

∫
Rd
u(x)η(dx)

)
P (dη)

)
≤ (1 + ε)‖un‖2S2

√
d/n

t2

2a
, (4.18)
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for all sufficiently large n ∈ N and all sufficiently large t > 0.
We put

t =
a|λ|

(1 + ε)‖un‖2S2
√
d/n

,

and from (3.4), (4.18), and Lemma 4.5 we obtain (4.2).
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