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Abstract

For a directed polymer model in random environment, a characterization of the weak
disorder phase in terms of the moment of the renormalized partition function has
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1 Introduction

We consider a model of a directed polymer in random environment. Let (X = (Xj)j≥0,

P SRW) be the simple random walk on Zd starting at the origin and ((ωj,x)(j,x)∈N×Zd ,P)

be a sequence of independent and identically distributed random variables satisfying

eλ(β) := E
[
eβω0,0

]
<∞ for all β ≥ 0. (1.1)

Then we define the law of the polymer of length n at inverse temperature β ≥ 0 by

dµβω,n(dX) =
1

Zβn(ω)
exp

(
β

n∑
j=1

ωj,Xj

)
P SRW(dX), (1.2)

where Zβn(ω) = ESRW[exp(β
∑n
j=1 ωj,Xj )] is the normalizing constant, called the partition

function of the model. Under this measure, the random walk is attracted by the sites
where ω is positive, and repelled by the sites where it is negative. Thus we expect that
the behavior of the polymer is strongly affected by the environment when β is large.

This intuition is made precise in [2, 3] under the assumption E
[
eβω0,0

]
< ∞ for all

β ∈ R. In spatial dimension d ≥ 3, there exists βcr ∈ (0,∞) such that for 0 < β < βcr,

e−nλ(β)Zβn(ω)
n→∞−−−−→W β

∞(ω) > 0, P-a.s., (1.3)
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Moment characterization of weak disorder in unbounded environments

whereas for β > βcr,

e−nλ(β)Zβn(ω)
n→∞−−−−→ 0, P-a.s. (1.4)

As one can readily verify that the annealed partition function satisfies E[Zβn ] = enλ(β),
the above shows that the quenched and annealed partition functions are comparable for
β < βcr and contrary for β > βcr. This indicates that the effect of disorder is weak in the
former phase and strong in the latter phase with a drastic change in behavior across βcr.
We refer the interested reader to [2, 3].

The proof of the aforementioned results relies on the fact that W β
n (ω) := e−nλ(β)Zβn(ω)

is a non-negative martingale under P with the filtration Fn := σ(ωj,x : j ≤ n, x ∈ Zd), and
one can further show that the phase (1.3) is characterized by the uniform integrability
of W β

n (ω). But in order to further analyze the weak disorder phase, it is desirable to
have a stronger property for (W β

n (ω))n≥0. The second author has recently proved in [6]
that for β < βcr, the martingale (W β

n (ω))n≥0 is Lp-bounded for some p > 1, under the
assumption that the random potential ω is bounded from above. The main result of this
paper extends this characterization to a large class of unbounded environments.

2 Main result

We introduce the following condition for the environment ω.

Condition 1. For β > 0, there exist A1 = A1(β) > 1 and c1 = c1(β) > 0 such that, for all
A > A1,

E
[
e2βω

∣∣ ω > A
]
≤ c1e2βA. (2.1)

This condition strengthens the assumption (1.1) of finite exponential moments by
requiring a control on the overshoot when ω is conditioned to be large. It does not seem
to be very restrictive and holds for many commonly used distributions, although we
stress that there are distributions that satisfy (1.1) but not Condition 1. We elaborate on
these matters in Section 5.

The following is the main result of this paper.

Theorem 2.1. Let β be such that P(W β
∞ > 0) > 0 and assume that ω satisfies (1.1) and

Condition 1. Then there exists p = p(β) > 1 such that

sup
n∈N
‖W β

n ‖p <∞. (2.2)

Moreover, the set of p > 1 such that (2.2) holds is open.

Remark 2.2. If limn→∞W β
n = 0, then (W β

n )n∈N is not uniformly integrable and hence
(2.2) necessarily fails. Thus the weak disorder is characterized by the finiteness of a p-th
moment.

Remark 2.3. In [6], it was further shown that if ω is bounded from below, then
supnE[W

−ε
n ] <∞ for some ε > 0. The argument in this paper can easily be generalized

to show that the same holds whenever ω satisfies the straightforward generalization of
Condition 1 to the negative tail.

Remark 2.4. It is an interesting problem to describe the dependence of the optimal
exponent p∗(β) := sup{p : (W β

n )n∈N is Lp-bounded} as a function of β. For bounded
environments, it has been shown in [5] that p∗(β) ≥ 1 + 2/d whenever W β

∞ > 0, so
that β 7→ p∗(β) has a discontinuity at βcr. It is natural to expect that the same holds in
general.
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Moment characterization of weak disorder in unbounded environments

3 Extension of Condition 1

As will be explained in detail below, the main step in proving Theorem 2.1 is to control
the overshoot of Wτ at a stopping time τ , which takes the form

W β
τ

W β
τ−1

=
∑
x

αxe
βωτ,x−λ(β) (3.1)

for a certain choice of probability weights (αx)x∈Zd . The purpose of the current section
is to translate Condition 1 on ω into a statement on such convex combinations.

First, we state a condition satisfied by eβω−λ(β) whenever ω satisfies Condition 1. In
the following, the random variable Y plays the role of eβω−λ(β).

Condition 2. The random variable Y is non-negative with E[Y ] = 1, E[Y 2] < ∞ and
there exist A2 > 1 and c2 > 0 such that, for all p ∈ [1, 2] and A ≥ A2,

E [Y p | Y > A] ≤ c2Ap. (3.2)

The next condition requires additionally that (3.2) extends to convex combinations.

Condition 3. The random variable Y is non-negative with E[Y ] = 1, E[Y 2] < ∞ and
there exist A3 > 1 and c3 > 0 such that the following holds: If I is countable, (Yi)i∈I are
i.i.d. copies of Y and (αi)i∈I is a collection of non-negative numbers with

∑
i∈I αi = 1,

then for all p ∈ [1, 2] and A ≥ A3

E
[(∑

i∈I αiYi

)p ∣∣∣ ∑i∈I αiYi > A
]
≤ c3Ap. (3.3)

We now show that both conditions follow from Condition 1.

Lemma 3.1. (i) If ω satisfies Condition 1, then Y := eβω−λ(β) satisfies Condition 2.

(ii) If a random variable Y satisfies Condition 2, then it also satisfies Condition 3.

Proof. The proof of part (i) is simple. For A ≥ A2 := eβA1(β)−λ(β), we can use Condition 1
to get

E[Y 2|Y > A] = E
[
e2βω

∣∣∣ ω > 1

β
(logA+ λ(β))

]
e−2λ(β)

≤ c1(2β)e2β
1
β (logA+λ(β))e−2λ(β)

=: c2A
2.

The extension to p ∈ [1, 2) follows from Jensen’s inequality.
The proof of part (ii) is more involved. In the following, we use C for positive

constants depending only on E[Y 2
i ], A2 and c2, whose values may change from line to line.

Let A ≥ A3 := A2 and N :=
∑
i 1{αiYi>A}. We separately consider the case where all the

summands are small (N = 0) and the cases where the event
∑
i αiYi > A is realized due

to a single large summand (N ≥ 1). In the first case, we have

E
[(∑

i αiYi

)2
1{N=0}

∣∣∣ ∑i αiYi > A
]
≤ E

[(∑
i αiYi1{αiYi≤A}

)2 ∣∣∣ ∑i αiYi > A
]

(3.4)

since Yi = Yi1{αiYi≤A} for all i on {N = 0}. Let τ := inf{i :
∑
j≤i αjYj > A} and observe

that on {
∑
i αiYi > A} = {τ <∞},∑

i≤τ

αiYi1{αiYi≤A} ≤
∑
i<τ

αiYi + ατYτ1{ατYτ≤A} ≤ 2A.
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Note also that conditioned on τ = i, the remaining variables (Yj+i)j≥1 obey the uncondi-
tioned law P. Therefore,

E

[(∑
i αiYi

)2
1{N=0}

∣∣∣∣ ∑i αiYi > A

]
≤ E

[(
2A+

∑
i>τ αiYi

)2 ∣∣∣∣ τ <∞]
≤ E

[(
2A+

∑
i∈I αiYi

)2]
≤ C(A2 + 1),

(3.5)

where in the last line, we have used
∑
i∈I αi = 1 and that Y1 has a finite second moment.

In the second case N ≥ 1, we use {N ≥ 1} ⊆ {
∑
i αiYi > A} to obtain

E
[(∑

i αiYi

)2
1{N≥1}

∣∣∣ ∑i αiYi > A
]
≤ E

[(∑
i αiYi

)2 ∣∣∣ N ≥ 1
]
. (3.6)

Let Qi := {αiYi > A} and qi := P(Qi | N ≥ 1) and observe that

α2
iE[Y

2
i | N ≥ 1] = α2

iE[Y
2
i | Qi]qi + α2

iE[Y
2
i | Qci ,

⋃
j 6=iQj ]P(Q

c
i | N ≥ 1)

= α2
iE[Y

2
i | Qi]qi + α2

iE[Y
2
i | Qci ](1− qi)

≤ c2A2qi + α2
iE[Y

2
i ].

(3.7)

The first equality uses {Qci ,
⋃
j 6=iQj} = {Qci , N ≥ 1}, and the second equality uses that Yi

and Qci are independent of
⋃
j 6=iQj . For the inequality, we have used Condition 2 for the

first term (note that A/αi ≥ A2) and the negative correlation between Y 2
i and 1Qci for

the second term.
Similarly, for i 6= j, let qi,j := P(Qi, Qj | N ≥ 1) and observe that

αiαjE[YiYj | N ≥ 1]

= αiαj

(
qi,jE[YiYj | Qi, Qj ] + P(Qi, Qcj | N ≥ 1)E[YiYj | Qi, Qcj ]

+ P(Qci , Qj | N ≥ 1)E[YiYj | Qci , Qj ] + P(Qci , Qcj | N ≥ 1)E[YiYj | Qci , Qcj ]
)

≤ C
(
qi,jA

2 + αjqiA+ αiqjA+ αiαj
)
.

(3.8)

In the equality, we have used {Qci , Qcj ,
⋃
k 6=i,jQk} = {Qci , Qcj , N ≥ 1} and that Yi, Yj and

Qci , Q
c
j are independent of

⋃
k 6=i,j Qk for the last term. In the inequality, we have first

dropped events Qci and Qcj from the probability factors and factorized the conditional
expectations by using independence. Then we have used Condition 2 for terms of the
form E[Yk|Qk] and E[Yk|Qck] ≤ E[Yk] = 1, which is again due to the negative correlations.

Now, to bound the right-hand side of (3.6), we are going to sum (3.7) over i and (3.8)
over i 6= j. Note that

∑
i qi = E[N | N ≥ 1] and

∑
i 6=j qi,j ≤ E[N2 | N ≥ 1]. We will prove

the following bounds on these quantities in Lemma 3.2 below:

E[N | N ≥ 1] ≤ 2 and E[N2 | N ≥ 1] ≤ 5. (3.9)

Summing (3.7) over i and (3.8) over i 6= j and then using (3.9), we find that the left-hand
side of (3.6) is bounded by C(A2 + 1). Combining this with (3.5) and recalling A ≥ 1, we
get

E
[(∑

i αiYi

)2 ∣∣∣ ∑i αiYi > A
]
≤ C(A2 + 1) ≤ 2CA2.

Finally, the claim for p ∈ [1, 2) follows as before by applying Jensen’s inequality to the
above.
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Lemma 3.2. In the above setup, it holds that E[N | N ≥ 1] ≤ 2 and E[N2 | N ≥ 1] ≤ 5.

Proof. Let σ = inf{i : αiYi > A} and write N = 1{σ<∞} +
∑
i>σ 1{αiYi>A}. Conditioned

on σ = i, the random variables (Yi+j)j≥1 obey the unconditioned law P. Therefore,

E[N | N ≥ 1] = E[N | σ <∞] ≤ 1 + E[N ],

E[N2 | N ≥ 1] = E[N2 | σ <∞] ≤ E[(1 +N)2],

and hence it suffices to prove that E[N ] ≤ 1 and E[N2] ≤ 2. Both follow from the Markov
inequality:

E[N ] =
∑
i

P(Yi > A/αi) ≤ E[Y1]
∑
i

αi
A

=
E[Y1]

A
,

E[N2] =
∑
i

P(Yi > A/αk) +
∑
i6=j

P(Yi > A/αi)P(Yj > A/αj)

≤ E[Y1]
A

+
E[Y1]

2

A2
.

Recalling E[Y1] = 1 and A ≥ 1, these imply the desired bounds.

4 Proof of the main result

4.1 Outline of the argument from [6]

Before proving Theorem 2.1, we think it is helpful to recall the argument from [6,
Theorem 1.1(ii)] and explain the role of the boundedness of the environment.

The first step is to prove that E[supnW
β
n ] <∞, which is done in [6, Theorem 1.1(i)]

and does not require any assumptions on the environment. Note that for the exceedance
time defined by

τ(t) := inf
{
n ∈ N : W β

n > t
}
, (4.1)

we have P(supnW
β
n > t) = P(τ(t) < ∞). Thus from the integrability of supnW

β
n , we

conclude that t 7→ P(τ(t) <∞) is integrable, and in particular

for every ε > 0 there exists t = t(ε) > 1 such that P(τ(t) <∞) ≤ ε

t
. (4.2)

Next, we define the pinned version of W β
n as follows:

W β
n,x := ESRW

[
exp

(
n∑
t=1

(βωt,Xt − λ(β))

)
;Xn = x

]
. (4.3)

Then, by using the Markov property for the simple random walk, we write on {τ(t) ≤ n}

W β
n =

∑
x∈Zd

W β
τ(t),x

(
W β
n−τ(t) ◦ θτ(t),x

)
=W β

τ(t)

∑
x∈Zd

µβω,τ(t)(Xτ(t) = x)
(
W β
n−τ(t) ◦ θτ(t),x

)
,

(4.4)

where θk,x stands for the time-space shift of the environment, defined by (θk,xω)(l, y) =

ω(k + l, x+ y). By (4.4) and Jensen’s inequality, we have, for any k ≤ n,

E
[(
W β
n

)p
1{τ(t)=k}

]
≤ E

[(
W β
k

)p
1τ(t)=kE

[∑
x

µβω,k(Xk = x)
(
W β
n−k ◦ θk,x

)p∣∣∣Fk]]
= E

[(
W β
k

)p
1{τ(t)=k}

]
E
[(
W β
n−k

)p]
.

(4.5)

ECP 28 (2023), paper 41.
Page 5/9

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP545
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Moment characterization of weak disorder in unbounded environments

The argument up to this point works for general environments. To continue the argument,
we needed the following bound on the first factor, uniformly in t > 1 and p ∈ [1, 2]:

E
[(
W β
k

)p
1{τ(t)=k}

]
≤ CtpP(τ(t) = k). (4.6)

In [6], the assumption ωt,x ≤ K was used to ensure that (W β
k )

p ≤ e2βKtp on {τ(t) = k}.
Now, to conclude we sum (4.5) over k ≤ n and apply (4.6) together with the fact that

k 7→ E[(W β
k )

p] is increasing, which gives

E[(W β
n )

p] ≤ tp + CtpP(τ(t) <∞)E[(W β
n )

p].

Since t is arbitrary, we can choose the value t( 1
4C ) from (4.2) and then choose p > 1 small

enough that tp−1 ≤ 2. The previous display becomes

E[(W β
n )

p] ≤ tp + 1

2
E[(W β

n )
p].

Since n is arbitrary, we obtain supnE[(W
β
n )

p] ≤ 2tp by rearranging.

4.2 Proof of Theorem 2.1

We stress that the assumption of boundedness was only used in one place, namely,
(4.6), and it is thus enough to replace this part of the argument. We will do so by using
Lemma 3.1.

Proof. Let c3 and A3 be the constants obtained by applying Lemma 3.1(i)–(ii). We now
bound the left-hand side in (4.6) by considering the cases W β

k ≤ A3t and W β
k > A3t

separately. The first case is simple:

E
[(
W β
k

)p
1{τ(t)=k,Wβ

k ≤A3t}

]
≤ (A3t)

pP
(
τ(t) = k,W β

k ≤ A3t
)
. (4.7)

In the second case, we consider the conditional expectation given Fk−1 to write

E
[(
W β
k

)p
1{τ(t)=k,Wβ

k >A3t}

]
= E

[(
W β
k−1
)p

1{τ(t)>k−1}E
[(
W β
k /W

β
k−1

)p
1{Wβ

k >A3t}

∣∣∣ Fk−1]] . (4.8)

We further rewrite1

W β
k /W

β
k−1 =

∑
x αxYx and

{
W β
k > A3t

}
=
{∑

x αxYx > A
}
,

where αx := µβω,k−1(Xk = x), Yx := eβωk,x−λ(β) and A := A3t/W
β
k−1. Then, noting that

• (eβωk,x−λ(β))x∈Zd is independent of Fk−1,
• µβω,k−1(Xk = x) is an Fk−1-measurable probability measure on Zd and

• t/W β
k−1 ≥ 1 on {τ(t) > k − 1},

we can apply Lemma 3.1 under P(· | Fk−1) to obtain

E
[(
W β
k /W

β
k−1
)p

1{Wβ
k >A3t}

∣∣∣ Fk−1] ≤ c3(A3t/W
β
k−1
)p
P
(
W β
k /W

β
k−1 > A3t/W

β
k−1

∣∣∣ Fk−1).
Substituting this into (4.8) yields

E
[(
W β
k

)p
1{τ(t)=k,Wβ

k >A3t}

]
≤ c3A2

3t
pP(τ(t) = k,W β

k > A3t). (4.9)

Combining this bound with (4.7), we obtain (4.6).
As explained above, the conclusion now follows from the same argument as in [6].

1In the following equation, we regard µβω,k−1 as a measure on the space of infinite path while the interaction

with the environment is restricted to time interval [0, k − 1].

ECP 28 (2023), paper 41.
Page 6/9

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP545
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Moment characterization of weak disorder in unbounded environments

5 Discussion on Condition 1

In this section, we discuss Condition 1. First, although it looks natural, it does not
hold in general. For example, if ω is supported on {k2}k∈N, then regardless the concrete
form of the distribution of ω, we have

E
[
e2βω

∣∣ ω > k2
]
= E

[
e2βω

∣∣ ω ≥ (k + 1)2
]
≥ e2β(k+1)2

and hence Condition 1 fails.
Next, we see that Condition 1 is valid under a one-sided tail regularity assumption,

which holds under certain upper and lower bounds on the tail.

Proposition 5.1. Let ω be a real-valued random variable.

(i) Assume that there exist K > 0 and M > 2β such that

lim sup
x→∞

sup
y≥K

P(ω > x+ y)eMy

P(ω > x)
<∞. (5.1)

Then Condition 1 holds.

(ii) Assume that there exist c > 0 and a convex function f satisfying limx→∞
f(x)
x =∞

such that, for x large enough,

c−1e−f(x) ≤ P(ω > x) ≤ ce−f(x). (5.2)

Then Condition 1 holds for all values of β.

(iii) Assume that there exist c > 0 and an increasing function f satisfying f(x + y) ≥
f(x)f(y) such that, for x large enough,

c−1e−cf(x) ≤ P(ω > x) ≤ ce−f(x)/c. (5.3)

Then Condition 1 holds for all values of β.

This proposition covers many commonly used distributions.

• If ω has a logarithmically concave Lebesgue density, then x 7→ P(ω > x) is also
logarithmically concave (see [7, Theorem 2]) and hence (5.2) holds with f(x) :=

− logP(ω > x). Note also that limx→∞
f(x)
x = ∞ already follows from (1.1). This

covers, for example, the Gaussian distribution or the Weibull distribution (with
P(ω > x) = ce−c

′xα for α > 1).

• For the Poisson distribution, it is not hard to check (5.1) directly.

• The (negative) Gumbel distribution, with P(ω > x) = exp(−e(x−c)/c′), further
satisfies (5.3). More generally, we can take f(x) = ex

α

with α ≥ 1 in (5.3).

Proof. Part (i): We first observe

E[e2βω1ω>A] =
∫ ∞
0

P(e2βω1ω>A > t)dt

=

∫ ∞
0

P
(
ω > A ∨ log(t)/2β

)
dt

≤ e2β(A+K)P(ω > A) +

∫ ∞
e2β(A+K)

P(ω > log(t)/2β)dt.

(5.4)

To estimate the second term, note that by (5.1), there exist A1 > 1 and C > 0 such that,
for y ≥ K, A > A1 and u > K +A,

P(ω > u) ≤ CP(ω > A)e−Mu+MA.
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Thus, ∫ ∞
e2β(A+K)

P(ω > log(t)/2β)dt

≤ CP(ω > A)eMA

∫ ∞
e2β(A+K)

e−M log(t)/2βdt

=
C

M/2β − 1
P(ω > A)eMAe2β(A+K)(1−M/2β)

≤ C

M/2β − 1
P(ω > A)e2β(A+K),

where we have used the assumption M > 2β to ensure the convergence of the last
integral. Together with (5.4), we see that Condition 1 holds with c1 := (1 + C

M/2β−1 )e
2βK .

For part (ii), it is now enough to verify (5.1). The convexity and the assumption
on superlinear growth imply that there exists x0 > 0 such that the right derivative
D+f(x0) ≥ 3β. Then for x ≥ x0 and y > 0, we have f(x+ y)− f(x) ≥ 3βy and hence

P(ω > x+ y)

P(ω > x)
≤ c2e−(f(x+y)−f(x)) ≤ c2e−3βy.

This implies (5.1).
For part (iii), note that by the super-additive theorem there exists C > 0 such that

f(x) ≥ eCx, hence for y > 2 log(c)/C and x large enough,

P(ω > x+ y)

P(ω > x)
≤ c2 exp

(
− f(x)

(f(x+ y)

cf(x)
− c
))
≤ c2e−f(x)(f(y)/c−c) ≤ c2e−3βy.

This again implies (5.1) and we are done.

Remark 5.2. In Section 3, we rephrased Condition 1 in terms of the random variable
Y := eβω−λ(β). Since some authors use this Y as the random potential in the directed
polymer model (see, for example, [4, 8]), it might be of interest to rephrase also (5.1),
which reads

there exist K > 1 and M > 2 such that lim sup
y→∞

sup
λ≥K

λM
P(Y > λy)

P(Y > y)
<∞. (5.5)

This is a one-sided regular variation condition. It appears, for example, in [1, Theo-
rem 2.0.1] and inspecting its proof, one can see that (5.5) follows from

there exist K > 1,M > 2 and ρ < K−M such that sup
λ∈[K,K2]

lim sup
y→∞

P(Y > λy)

P(Y > y)
< ρ.

(5.6)

There are plenty of distributions that satisfy (5.5). For instance, if there exist c, C > 0

and γ > 0 such that

c exp(−Cyγ) ≤ P(Y > y) ≤ C exp(−cyγ) (5.7)

holds for all sufficiently large y, then

P(Y > λy)

P(Y > y)
≤ C

c
exp(−(cλγ − C)yγ),

and (5.5) follows. A similar argument applies to the case where yγ in (5.7) is replaced by
exp(yγ) (γ > 0) or exp(logα y) (α > 1).
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