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A note on the antisymmetry in the speed of a random walk
in reversible dynamic random environment

Oriane Blondel*

Abstract

In this short note, we prove that v(—¢) = —v(e). Here, v(¢) is the speed of a one-
dimensional random walk in a dynamic reversible random environment, that jumps
to the right (resp. to the left) with probability 1/2 + ¢ (resp. 1/2 — ¢) if it stands on
an occupied site, and vice-versa on an empty site. We work in any setting where
v(e),v(—¢) are well-defined, i.e. a weak LLN holds. The proof relies on a simple
coupling argument that holds only in the discrete setting.

Keywords: random walks in dynamic random environment; reversibility; coupling.
MSC2020 subject classifications: 82B41; 60G50.
Submitted to ECP on October 27, 2022, final version accepted on January 20, 2023.

1 Introduction

We consider the so-called “c-random walk”: a random walk in one-dimensional
dynamic random environment with two values that jumps to the right (resp. to the left)
with probability 1/2 + € (resp. 1/2 — ¢) if it stands on an occupied site, and vice-versa on
an empty site (Figure 1).

Figure 1: Jump rates for the e-random walk.

A lot of energy has been devoted to describing the behavior of this e<RW in various
random environments, mainly to find whether it satisfies the usual limit theorems (LLN,
CLT...). This is generally a hard problem, since the environment seen from the e-RW is
highly non-stationary (even when the environment is). Additionally, it belongs to the
class of nestling random walks, which do not have an a-priori preferred direction. It is
possible to find settings in which the LLN does not hold. [BHT18, Section 9] proposes
an example in which space-time traps lead the random walk into longer and longer
stretches of motion with drifts to the right or the left. Cases in which the LLN has been
shown include perturbative regimes (small ) [ABF18], well-known environments like
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Antisymmetry for e-RW

the exclusion process [HS15, HKT20] or the contact process [MV15], uniform mixing
hypotheses [204, AHR11, RV13], or fast enough decay of correlations [BHT18].

When the random walk does satisfy a law of large numbers, let us call v(¢g) its
asymptotic speed (we will simply say that v(e) is well-defined). We observed in [ABF16]
that, if the environment is given by a reversible Markov process with positive spectral
gap, and || is smaller than the spectral gap, v -in addition to being well-defined- satisfies
the antisymmetry property

v(—e) = —v(e). (1.1)

This property also holds in higher dimensions for random walks with a certain symmetry
property (Assumption 3 in [ABF16]). Simulations moreover suggest that this property
extends out of the perturbative regime of [ABF16] (where the law of large numbers was
not yet even established; see Figure 3 in [ABF16]). The proof relies on an expansion
of the speed in ¢, in which the terms of even degrees are shown to cancel due to
reversibility.

It is worth pointing out that this antisymmetry does not seem to follow from obvious
symmetry properties of the system. Indeed, it is tempting at first sight to think that the
(—e)-random walk reversed in time should have the same distribution as the e-random
walk, from which (1.1) would immediately follow. But closer inspection reveals that this
is not true and those two processes have very different trajectories in general (see for
instance Figure 4 in [ABF16]). Rather, (1.1) holds iff the speed of the e-random walk
is the same in the reversible environment and in its image under the mirror symmetry
x — —x. While this property is obvious for reversible systems invariant under mirror
symmetry (e.g. simple symmetric exclusion process), there exist reversible, translation
invariant processes which have no mirror-invariance. One that has been extensively
studied is the East model [JE91, FMRT13], in which particles appear (resp. disappear)
at site = at rate p (resp. 1 — p), but only if z + 1 is empty. This dynamics is reversible w.r.t.
the product Bernoulli measure of density p (it is easy to check detailed balance since
the constraint required to update n(z) does not involve n(x)), and clearly non mirror-
symmetric. In fact, any kinetically constrained model with non-symmetric constraint
would yield an example where the result below is non-empty.

To state our main result, let (X7 );>o be the trajectory of a e-RW started from 0. A
proper construction of this object is given in Section 2.

Theorem 1.1. Assume the environment is a translation invariant and reversible Markov
process. Moreover, assume that X¢ and X ~¢ satisfy a weak law of large numbers, i.e.
there exist v(e), v(—e) such that

1 +e P
SXE = o(ze). (1.2)

Then
v(—e) = —v(e). (1.3)

Checking that the weak law of large numbers holds is generally not easy. In [BHT18],
it was established under the condition that the environment has polynomially decaying
covariances with a high enough exponent. This includes Markov processes with positive
spectral gap. The East model mentioned above is an example of such a model with no
mirror symmetry.

One point that the theorem above does not address is whether the limiting speed is
non-zero. This is in general hard to settle. [HS15] gives a nice example in perturbative
settings where the update rates of the environment are either very large or very small.
[BHT18] also offers a sufficient criterion for non-zero speed, albeit rather limited in its
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application range. Theorem 1.1 does say that v(¢) is non-zero whenever v(—¢) is, which
is in itself not obvious.

Let us note that, to the statistical physics community, the hidden symmetry of
Theorem 1.1 in a reversible context may be reminiscent of Gallavotti-Cohen type results.
However, it is unclear what the connection is, if it exists at all. Indeed, the action
functional of the environment seen from the particle does not seem to give information
about the displacement of the particle.

The proof presented here relies on a coupling valid only for the discrete time e-
RW, which in turn allows to deduce the result for the continuous time. The coupling
relies heavily on the fact that we consider nearest-neighbor trajectories in dimension
1. However, as mentioned above, Theorem 1.1 is expected to hold also in higher
dimensions and for random walks allowing longer range jumps under appropriate
symmetry assumptions [ABF16]. Outside the perturbative region, this is still an open
problem.

2 Setting and construction of the random walk

We now give explicit constructions of the e-RW, in discrete and continuous time. In
the following, . = R4 when we consider the continuous time setting, . = IN in the
discrete time setting.

2.1 Environment

The environment is given by a collection 7 = (1;(%))(4,1)czx1 such that n;(z) € {0,1}
for all (z,t) € Z x IL.. We assume

1. (Stationarity) The distribution of the environment is invariant under space-time
shifts, i.e.

VeeZ,t €L, (Mis(z+-))ser = (0s(-))ser. in distribution. (2.1)

2. (Reversibility) The environment is given by a reversible process 7 = (7;)er On
{0,1}%, i.e.

forall T € L\ {0}, (n7-t)tco,rnn = (Mt)tefo,r)nr.  in distribution. (2.2)

2.2 -RW in discrete time

Let us consider a collection U = (U p)zez nen of iid U([0,1]) random variables. With
the environment 7 and the collection U we associate a set (A3, )zez nen (that will

prescribe the directions taken by the RW) in the following way:

z,n (2.3)

e _ {—1—1 if (nn(x) =land U,, < % +€) or (Un(l") =0and Uzn < % - 5)7
—1 else.

For x € 7Z, we denote by (X?°),cn the e-RW started at z. It is built iteratively as
follows:

1. Xg° =3
2. if X2 =y, XoF) = y+ A5 .
(d)

Note that by translation invariance of the environment, X*¢ — z = X%¢ for all x € Z.
Also, X7¢ has the same parity as n + z.
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2.3 ¢-RW in continuous time

We could use a similar construction, but it will be more convenient to alter it a little.
Let U = (Up)nen be a collection of iid ¢([0,1]) random variables and 7' = (T},)nen a
PPP(1) on R, . Assume (U, T,n) to be independent. The continuous time e-RW started at
z, (X%)ter, is built as follows:

1. X3¢ =u;
2. if X" =yandy ¢ {T,,ne N}, X" =y;
3. f X”* =yandt =T,

T y+1 if (pu(y) =1and U, < 1 +¢)or (m(y) =0and U, < 3 —¢),
! y—1 else.
(2.4)

3 Proof of Theorem 1.1 in the discrete setting

A key remark is that the reversibility assumption allows to construct jointly a e-RW
and a backwards (—¢)-RW, that is a (—¢)-RW evolving on the reversed environment
process (Ny_n)n<n for N € IN.

In order to simplify the notations, let us fix e € [-1,1], and N € IN. We let X = X0e,
and for z € Z we let ()?n)ng ~ be constructed as follows.

1. )/(:N—(E
2. forn < N, 1fXN n—y,XN n-1=Y— A N_p-

Note that the construction uses the same collection A¢ as the construction of X.
Reversibility of the environment clearly gives us the following property.

Lemma 3.1. ()?n)n<N (—) (XI’ie)n<N

Proof. This follows from the reversibility of 7. O

It is also not difficult to check that X and X cannot cross, in the following sense.
Lemma 3.2. Let X and X be built using the same collection A¢. Then, if )?0 and X
have the same parity,

(Xo — X0)(Xn — Xn) > 0. (3.1)

Proof. W1thout loss of generality, let us assume X N > X ~- Assume by contradiction that
Xo > Xo With our parity assumption, for any n < N, X — X, € 27, and that difference
only takes steps in {—2,0,2}. Let us look at the largest n < N such that X, = X,. Let
y = X,. Under our assumptions, necessarily Xn+1 =y+1: and X, 41 = y—1. In particular,
As, = —1, and therefore Xn 1=y+1> X, 1. Now, if Xn 1 > X,,_1, we reproduce the
previous argument to show Xn,g > X,,_o (unless n — 1 is zero, in which case we stop).
If )A(,L_l =Xp1=y+1, Ai+1,n—1 = —1, and we also end up with )?n_g =y+2> X, 9.
We can reproduce this argument until we reach time 0 to get a contradiction. O

With this non-crossing property, it becomes easy to show the antisymmetry property.

Proof of Theorem 1.1 (discrete setting). Without loss of generality, assume by contradic-
tion that § := v(e) + v(—¢) > 0. Fix N large enough that

X:ts
IP<‘ Jifv — v(£e)

> 5/4) <1/3. (3.2)
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Define Z = [(v(e) — §/2)N|. If & has the same parityas N, letz =Z. Letz =% +1

A

else. Define X, X as above. Consider the event

X X
E = {z\]rv > v(e) — /4 andNO—xzv(—s)—(S/él}. (3.3)

By Lemma 3.1, P(E) > 1/3, but by Lemma 3.2, E is empty, since Xy > Xy =z and
Xp < Xy on E. We have our contradiction. O

Remark 3.3. While the non-crossing property is elementary to check in the discrete
time setting, it is not easy to find a coupling with the same property in the continuous
time setting. One could think of associating independent Poisson clocks to every vertex
of Z, a direction A7 , with every clock ring and build X, X in a similar fashion. However,
the jumps starting from neighboring sites would not be simultaneous, and it is easy to
find examples where crossings occur. Fortunately, once we have the result in the discrete
time setting, we do not need to work hard to push it to the continuous time setting.

4 Proof of Theorem 1.1 in the continuous setting

Recall the construction of Section 2.3. Define for n € N, 0,, = n7,,. Theorem 1.1 will
be proved when we have checked the three points of the following lemma.

Lemma 4.1. 1. The process o is translation invariant and reversible.
2. If X¢ is the e-RW in continuous time defined on 1 as in Section 2.3, (X§, )nen is
equal in distribution to X°¢ the e~RW in discrete time defined on o.
3. X¢ satisfies the weak LLN (1.2) iff X does, with the same limit speed v(g).

Proof of Lemma 4.1. 1. This follows from the translation invariance and reversibility
of n and the PPP T, along with the independence of T" and 7.

2. This follows from the independence of U, T, 7, and a construction in the discrete
case analog to the one we use in Section 2.3.

3. This is an immediate consequence of the fact that 7,,/n — 1 almost surely. O
n—oo

Proof of Theorem 1.1 (continuous setting). We assume that both X¢ and X ~¢ satisfy the
weak LLN (1.2). By the third point of Lemma 4.1, X¢and X satisfy (1.2) with respective
speeds v(c), v(—¢). Therefore, the discrete time version of Theorem 1.1 applies to X¢,
X< and v(—e) = —uv(e). O
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