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Abstract. The problem of estimating location (scale) parameters θ1 and θ2
of two distributions when the ordering between them is known apriori (say,
θ1 ≤ θ2) has been extensively studied in the literature. Many of these studies
are centered around deriving estimators that dominate the best location (scale)
equivariant estimators, for the unrestricted case, by exploiting the prior infor-
mation that θ1 ≤ θ2. Several of these studies consider specific distributions
such that the associated random variables are statistically independent. In this
paper, we consider a general bivariate model and a general loss function, and
unify various results proved in the literature. We also consider applications of
these results to a bivariate normal and a Cheriyan and Ramabhadran’s bivari-
ate gamma model. A simulation study is also considered to compare the risk
performances of various estimators under bivariate normal and Cheriyan and
Ramabhadran’s bivariate gamma models.

1 Introduction

Let X = (X1,X2) be a random vector having a joint probability density function (pdf) be-
longing to location (scale) family

fθ (x1, x2) = f (x1 − θ1, x2 − θ2), (x1, x2) ∈ �2, (1.1)(
fθ (x1, x2) = 1

θ1θ2
f

(
x1

θ1
,
x2

θ2

)
, (x1, x2) ∈ �2,

)
(1.2)

where θ = (θ1, θ2) ∈ � = �2(�2++) is the vector of unknown location (scale) parameters
and f (·, ·) is a specified pdf on �2; here �2 = (−∞,∞) × (−∞,∞) and �2++ = (0,∞) ×
(0,∞). Generally, X = (X1,X2) would be a minimal-sufficient statistic based on a bivariate
random sample or two independent random samples, as the case may be. In many real life
situations, ordering between the parameters θ1 and θ2 may be known apriori (say, θ1 ≤ θ2) and
it may be of interest to estimate θ1 and θ2 (see, for example, Barlow et al. (1972), Robertson,
Wright and Dykstra (1988), Kumar and Sharma (1988), Kubokawa and Saleh (1994), Hwang
and Peddada (1994) and references cited therein).

Let �0 = {θ ∈ � : θ1 ≤ θ2} be the restricted parameter space. There is an extensive lit-
erature on estimation of θ1 and θ2 (simultaneously, as well as, componentwise) when it is
known apriori that θ ∈ �0. A natural question that arises in these problems is whether the
best location (scale) equivariant estimator(s) (BLEE (BSEE)) for the unrestricted case (i.e.,
when the prior information θ ∈ �0 is not available) can be improved by exploiting the prior
information that θ ∈ �0. Many researchers have studied this and related aspects of the prob-
lem. However, several of these studies are focussed to specific distributions, having indepen-
dent marginals, and specific loss functions. Some of the contributions in this direction are
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due to Cohen and Sackrowitz (1970), Brewster and Zidek (1974), Lee (1981), Kumar and
Sharma (1988), Kumar and Sharma (1989), Kelly (1989), Kushary and Cohen (1989), Gupta
and Singh (1992), Pal and Kushary (1992), Misra and Singh (1994), Vijayasree, Misra and
Singh (1995), Misra and Dhariyal (1995), Misra, Dhariyal and Kundu (2002), Misra, Iyer and
Singh (2004), Oono and Shinozaki (2006), Chang and Shinozaki (2015), Petropoulos (2010),
Petropoulos (2017), Bobotas (2019a), Bobotas (2019b) and Patra, Kumar and Petropoulos
(2021). For a few contributions to this problem under general setting (general probability
model and/or general loss function) readers may refer to Blumenthal and Cohen (1968),
Sackrowitz (1970), Hwang and Peddada (1994), Kubokawa and Saleh (1994) and Iliopoulos
(2000). For a detailed account of contributions in this area of research one may refer to the
research monograph by van Eeden (2006).

Kubokawa and Saleh (1994) considered the location (scale) model (1.1) ((1.2)) with

f (z1, z2) = f1(z1)f2(z2), −∞ < zi < ∞, i = 1,2,

where f1 and f2 are specified pdfs on the real line �. They dealt with estimation of the
smaller location (scale) parameter θ1 when it is known apriori that θ ∈ �0. They assumed
that

fi ∈ PL =
{
g : g(y + c1)

g(y + c2)
is non-decreasing in y ∈ �, for every c1 < c2

}
, i = 1,2, (1.3)

(
fi ∈ PS =

{
g : g(c1y)

g(c2y)
is non-decreasing in y ∈ �++, for every 0 < c1 < c2

}
, i = 1,2,

)
(1.4)

and considered a quite general bowl-shaped loss function

L1(θ , a) = W(a − θ1), θ ∈ �0, a ∈ �,

(
L1(θ , a) = W

(
a

θ1

)
, θ ∈ �0, a ∈ �++

)
,

where �++ = (0,∞) and, W : � → [0,∞) is such that W(0) = 0 (W(1) = 0), W(t) is
strictly decreasing for t < 0 (t < 1) and strictly increasing for t ≥ 0 (t ≥ 1). Under the above
set-up, they derived conditions that ensure improvements over the best location (scale) equiv-
ariant estimator of θ1. They found explicit expressions of the dominating estimators. In fact,
Kubokawa and Saleh (1994) dealt with estimation of the smallest location (scale) parameter
of k (≥2) independent location (scale) families of probability distributions when it is known
apriori that the corresponding location (scale) parameters θ1, θ2, . . . , θk satisfy the tree order-
ing (θ1 ≤ θi , i = 2,3, . . . , k). Under the set-up considered by Kubokawa and Saleh (1994),
the random variables X1 and X2 are independently distributed. In this paper, we extend the
study of Kubokawa and Saleh (1994) to situations where X1 and X2 may be statistically
dependent. As in Kubokawa and Saleh (1994), we will closely follow the IERD (Integral
expression risk difference) approach of Kubokawa (1994), to obtain improvements over the
BLEE/BSEE of θ1 and θ2. We also consider estimation of the larger location (scale) parame-
ter θ2 that has not been addressed by Kubokawa and Saleh (1994). To avoid some notational
and presentation difficulties, throughout the paper, we extend the usual orders “≤” and “<”
in the real line to the extended real line �∪{−∞,∞} with the following convention. For any
positive (negative) real number “b”, we take b

0 = ∞ (−∞) and, for any real number “c”, we
take −∞ < c < ∞.

In Section 2 (3), we consider a general bivariate location (scale) family of distributions
and deal with componentwise estimation of order restricted location (scale) parameters θ1
and θ2 under a quite general loss function. We derive sufficient conditions that guarantee
improvements over the BLEE (BSEE). The explicit expressions of dominating estimators
are obtained. In Section 2.3 (3.3), we provide applications of various results derived in the
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paper. In Section 2.4 (3.4), we consider a simulation study for comparing risk performances
of various estimators of smaller location (scale) parameter under bivariate normal (Cheriyan
and Ramabhadran’s bivariate gamma) model.

2 Improving the Best Location Equivariant Estimators (BLEEs)

Firstly, we will introduce some notations in connection with the probability model (1.1). Let
Zi = Xi − θi , i = 1,2, and Z = (Z1,Z2), so that Z has the joint pdf f (t1, t2), (t1, t2) ∈ �2.
Let Si be the distributional support of Zi = Xi − θi , i = 1,2. Let Z = Z2 − Z1 and fi be the
pdf of Zi , i = 1,2. Then

f1(s) =
∫ ∞
−∞

f (s, t) dt, s ∈ �, f2(s) =
∫ ∞
−∞

f (t, s) dt, s ∈ �.

For any s ∈ Si , let Z
(i)
s denote a random variable having the same distribution as condi-

tional distribution of Z given Zi = s, i = 1,2. Then the pdf and the distribution function (df)
of Z

(1)
s (s ∈ S1) are given by

h1(t |s) = f (s, t + s)

f1(s)
, t ∈ �, and H1(t |s) =

∫ t
−∞ f (s, z + s) dz

f1(s)
, t ∈ �,

respectively, and the pdf and the df of Z
(2)
s (s ∈ S2) are given by

h2(t |s) = f (s − t, s)

f2(s)
, t ∈ �, and H2(t |s) =

∫ t
−∞ f (s − z, s) dz

f2(s)
, t ∈ �,

respectively.
For the location model (1.1), consider estimation of θi under the loss function

Li(θ , a) = W(a − θi), θ ∈ �,a ∈ A = �, i = 1,2, (2.1)

where W : � → [0,∞) is a specified non-negative function. We make the following assump-
tions on the function W(·):

A1: W : � → [0,∞) is absolutely continuous, W(0) = 0, W(t) is decreasing on (−∞,0)

and increasing on (0,∞). Further W ′(t) is non-decreasing on the set D0 (the set of points at
which W(·) is differentiable).

First consider estimation of θi , i = 1,2, under the unrestricted parameter space � = �2

and the loss function (2.1). Under this set-up, the problem of estimating θi (i = 1,2) is
invariant under the additive group of transformation G = {gc1,c2 : (c1, c2) ∈ �2}, where
gc1,c2(x1, x2) = (x1 + c1, x2 + c2), (x1, x2) ∈ �2, (c1, c2) ∈ �2. Any (non-randomized) un-
restricted location equivariant estimator δi of θi is of the form δc,i(X1,X2) = Xi − c,
i = 1,2, for some constant c ∈ �. The risk function of δc,i is given by Ri(θ , δc,i) =
Eθ [Li(θ , δc,i(X))], θ ∈ �, i = 1,2.

The risk function of any unrestricted location invariant estimator δc,i of θi is constant (does
not depend on θ ∈ �). For the existence of unrestricted (θ ∈ �) BLEE, we need the following
assumption:

A2: The equation E[W ′(Zi − c)] = 0 has the unique solution, say c = c0,i , i = 1,2.
Since the risk function of any unrestricted equivariant estimator of θi is constant on � (see

Theorem 1 on p. 245 of Berger (2013)), under assumptions A1 and A2, the unique BLEE of
θi is

δc0,i ,i (X) = Xi − c0,i , i = 1,2, (2.2)

where c0,i is the unique solution of the equation∫ ∞
−∞

W ′(z − c)fi(z) dz = 0, i = 1,2. (2.3)
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Now consider estimation of location parameter θi , i = 1,2, under the restricted param-
eter space �0 = {(x1, x2) ∈ � : x1 ≤ x2} and the loss function (2.1). Under the restricted
parameter space �0, the location family of distributions (1.1) is not invariant under the group
of transformations G = {gc1,c2 : (c1, c2) ∈ �2}, considered above. An appropriate group of
transformations ensuring invariance under restricted parameter space �0 is K = {kc : c ∈ �},
where kc(x1, x2) = (x1 + c, x2 + c), (x1, x2) ∈ �2, c ∈ �. Under the group of transformations
K, the problem of estimating θi , under θ ∈ �0 and the loss function (2.1), is invariant. Any
location equivariant estimator of θi is of the form

δψi
(X) = Xi − ψi(D), (2.4)

for some function ψi : � → �, i = 1,2, where D = X2 − X1. Here the risk function

Ri(θ , δψi
) = Eθ

[
Li

(
θ , δψi

(X)
)]

, θ ∈ �0, (2.5)

of any location equivariant estimator δψi
of θi , i = 1,2, may not be constant on �0, and it

depends on θ ∈ �0 only through λ = θ2 − θ1 ∈ [0,∞).
The following lemma will be useful in proving the main results of the paper. The proof of

the lemma is straight forward and hence omitted.

Lemma 2.1. Let s0 ∈ � and let M : � → � be such that M(s) ≤ 0, ∀ s < s0, and M(s) ≥ 0,
∀ s > s0. Let Mi : � → [0,∞), i = 1,2, be non-negative functions such that M1(s)M2(s0) ≥
(≤)M1(s0)M2(s), ∀ s < s0, and M1(s)M2(s0) ≤ (≥)M1(s0)M2(s), ∀ s > s0. Then,

M2(s0)

∫ ∞
−∞

M(s)M1(s) ds ≤ (≥)M1(s0)

∫ ∞
−∞

M(s)M2(s) ds.

The facts stated in the following lemma are well known in the theory of stochastic orders
(see Shaked and Shanthikumar (2007)). The proof of the lemma is straight forward, hence
skipped.

Lemma 2.2. If, for any fixed � ≥ 0 and t ∈ �, hi(t − �|s)/hi(t |s) is non-decreasing (non-
increasing) in s ∈ Si , then Hi(t − �|s)/Hi(t |s) is non-decreasing (non-increasing) in s ∈ Si

and hi(t |s)/Hi(t |s) is non-increasing (non-decreasing) in s ∈ Si , i = 1,2.

In the next section, we consider equivariant estimation of location parameter θ1 under the
loss function L1, defined by (2.1), when it is known apriori that θ ∈ �0. We aim to find
estimators that dominate the BLEE δc0,i ,i (X), i = 1,2 (defined through (2.2) and (2.3)) by
exploiting the prior information that θ ∈ �0.

2.1 Improvements over the BLEE of θ1

Consider estimation of θ1 under the loss function L1(θ , a) = W(a−θ1), θ ∈ �0, a ∈ �, when
it is known apriori that θ ∈ �0. Throughout this section, we will assume that the function
W(·) satisfies assumptions A1 and A2.

In the following theorem, we provide a class of estimators that improve upon the BLEE
δc0,1,1(X) = X1 − c0,1, defined by (2.2) and (2.3).

Theorem 2.1. Consider a location equivariant estimator δψ1(X) = X1 − ψ1(D) of θ1,
where ψ1(t) is non-increasing (non-decreasing) in t , limt→∞ ψ1(t) = c0,1 and

∫ ∞
−∞ W ′(s −

ψ1(t))H1(t |s)f1(s) ds ≥ (≤) 0, ∀ t . Then

R1(θ, δψ1) ≤ R1(θ , δc0,1,1), ∀ θ ∈ �0.
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Proof. Let us fix θ ∈ �0 and let λ = θ2 − θ1, so that λ ≥ 0. Consider the risk difference

�1(λ) = R1(θ , δc0,1,1) − R1(θ , δψ1)

= Eθ

[
W(Z1 − c0,1) − W

(
Z1 − ψ1(Z + λ)

)]
= Eθ

[∫ ∞
Z+λ

{
d

dt
W

(
Z1 − ψ1(t)

)}
dt

]

= Eθ

[∫ ∞
Z

(−ψ ′
1(t + λ)

)
W

(
Z1 − ψ1(t + λ)

)
dt

]

= −
∫ ∞
−∞

ψ ′
1(t + λ)Eθ

[
W ′(Z1 − ψ1(t + λ)

)
I(−∞,t](Z)

]
dt,

where, for any set A, IA(·) denotes its indicator function. Since ψ1(t) is a non-increasing
(non-decreasing) function of t , it suffices to show that, for every t and λ ≥ 0,

Eθ

[
W ′(Z1 − ψ1(t + λ)

)
I(−∞,t](Z)

] ≥ (≤) 0. (2.6)

Since W ′(t) is non-decreasing function of t and ψ1(t) is a non-increasing (non-decreasing)
function of t , for λ ≥ 0, we have

Eθ

[
W ′(Z1 − ψ1(t + λ)

)
I(−∞,t](Z)

] ≥ (≤)Eθ

[
W ′(Z1 − ψ1(t)

)
I(−∞,t](Z)

]
=

∫ ∞
−∞

W ′(s − ψ1(t)
)
H1(t |s)f1(s) ds,

which, in turn, implies (2.6). �

Now we will prove two useful corollaries to the above theorem. The following corollary
provides the Brewster–Zidek (1974) type (B–Z type) improvement over the BLEE δc0,1,1.

Corollary 2.1. (i) Suppose that, for any fixed � ≥ 0 and t , H1(t − �|s)/H1(t |s) is non-
decreasing (non-increasing) in s ∈ S1. Further suppose that, for every fixed t , the equation

k1(c|t) =
∫ ∞
−∞

W ′(s − c)H1(t |s)f1(s) ds = 0

has the unique solution c ≡ ψ0,1(t) ∈ S1. Then

R1(θ , δψ0,1) ≤ R1(θ , δc0,1,1), ∀ θ ∈ �0,

where δψ0,1(X) = X1 − ψ0,1(D).

(ii) In addition to assumptions of (i) above, suppose that ψ1,1 : � → � is such that
ψ1,1(t) ≤ (≥)ψ0,1(t), ∀ t , ψ1,1(t) is non-increasing (non-decreasing) in t and
limt→∞ ψ1,1(t) = c0,1. Then

R1(θ , δψ1,1) ≤ R1(θ , δc0,1,1), ∀ θ ∈ �0,

where δψ1,1(X) = X1 − ψ1,1(D).

Proof. It suffices to show that ψ0,1(t) satisfies conditions of Theorem 2.1. Note that the
hypothesis of the corollary, along with the assumption A2, ensure that limt→∞ ψ0,1(t) = c0,1.
To show that ψ0,1(t) is a non-increasing (non-decreasing) function of t , suppose that, there
exist numbers t1 and t2 such that t1 < t2 and ψ0,1(t1) �= ψ0,1(t2). We have k1(ψ0,1(t1)|t1) = 0.
Also, using the hypotheses of the corollary and the assumption A1, it follows that ψ0,1(t2)

is the unique solution of k1(c|t2) = 0 and k1(c|t2) is a non-increasing function of c. Let
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s0 = ψ0,1(t1), M(s) = W ′(s − s0)f1(s), M1(s) = H1(t2|s) and M2(s) = H1(t1|s), s ∈ S1.
Then, under assumption A1, using Lemma 2.1, we get

H1
(
t1|ψ0,1(t1)

) ∫ ∞
−∞

W ′(s − ψ0,1(t1)
)
H1(t2|s)f1(s) ds

≤ (≥)H1
(
t2|ψ0,1(t1)

) ∫ ∞
−∞

W ′(s − ψ0,1(t1)
)
H1(t1|s)f1(s) ds = 0.

=⇒ k1
(
ψ0,1(t1)|t2) =

∫ ∞
−∞

W ′(s − ψ0,1(t1)
)
H1(t2|s)f1(s) ds ≤ (≥) 0.

This implies that k1(ψ0,1(t1)|t2) < (>)0, as k1(c|t2) = 0 has the unique solution c ≡ ψ0,1(t2)

and ψ0,1(t1) �= ψ0,1(t2). Since k1(c|t2) is a non-increasing function of c, k1(ψ0,1(t2)|t2) = 0
and k1(ψ0,1(t1)|t2) < (>)0, it follows that ψ0,1(t1) > (<)ψ0,1(t2).

The proof of part (ii) is an immediate by-product of Theorem 2.1 using the fact that, for
any t , k1(c|t) is a non-increasing function of c ∈ �. �

In the following corollary, we provide the Stein (1964) type improvements over the BLEE
δc0,1,1(X).

Corollary 2.2. (i) Suppose that, for any fixed � ≥ 0 and t , h1(t − �|s)/h1(t |s) is non-
decreasing (non-increasing) in s ∈ S1. Let ψ0,1(t) ∈ S1 be as defined in Corollary 2.1. In
addition suppose that, for any t , the equation

k2(c|t) =
∫ ∞
−∞

W ′(s − c)h1(t |s)f1(s) ds = 0

has the unique solution c ≡ ψ2,1(t) ∈ S1. Let ψ∗
2,1(t) = max{c0,1,ψ2,1(t)} (ψ∗

2,1(t) =
min{c0,1,ψ2,1(t)}) and δψ∗

2,1
(X) = X1 − ψ∗

2,1(D). Then

R1(θ , δψ∗
2,1

) ≤ R1(θ , δc0,1,1), ∀ θ ∈ �0.

(ii) In addition to assumptions of (i) above, suppose that ψ3,1 : � → � be such that
ψ3,1(t) ≤ (≥)ψ2,1(t), ∀ t and ψ3,1(t) is non-increasing (non-decreasing) in t . Define
ψ∗

3,1(t) = max{c0,1,ψ3,1(t)} (ψ∗
3,1(t) = min{c0,1,ψ3,1(t)}) and δψ∗

3,1
(X) = X1 − ψ∗

3,1(D).
Then

R1(θ , δψ∗
3,1

) ≤ R1(θ , δc0,1,1), ∀ θ ∈ �0.

Proof. It suffices to show that ψ∗
2,1(·) satisfies conditions of Theorem 2.1. Under the assump-

tion that, for any fixed � ≥ 0 and t , h1(t − �|s)/h1(t |s) is non-decreasing (non-increasing)
in s ∈ S1, on following the line of arguments used in proving Corollary 2.1, it can be con-
cluded that ψ2,1(t) (and hence ψ∗

2,1(t)) is non-increasing (non-decreasing) in t . To show
that limt→∞ ψ∗

2,1(t) = c0,1, we will show that ψ2,1(t) ≤ (≥)ψ0,1(t), ∀ t . Let us fix t . Then
k1(ψ0,1(t)|t) = k2(ψ2,1(t)|t) = 0.

The hypothesis of the corollary and Lemma 2.2, imply that, for every fixed t , h1(t |s)/
H1(t |s) is non-increasing (non-decreasing) in s ∈ S1. Let s0 = ψ0,1(t), M(s) = W ′(s −
s0)f1(s), M1(s) = h1(t |s) and M2(s) = H1(t |s), s ∈ S1. Using assumption A1, the mono-
tonicity of h1(t |s)/H1(t |s), Lemma 2.1 and the fact that k1(ψ0,1(t)|t) = 0, we conclude that

H1
(
t |ψ0,1(t)

) ∫ ∞
−∞

W ′(s − ψ0,1(t)
)
h1(t |s)f1(s) ds

≤ (≥)h1
(
t |ψ0,1(t)

) ∫ ∞
−∞

W ′(s − ψ0,1(t)
)
H1(t |s)f1(s) ds = 0

=⇒ k2
(
ψ0,1(t)|t) =

∫ ∞
−∞

W ′(s − ψ0,1(t)
)
h1(t |s)f1(s) ds ≤ (≥) 0. (2.7)
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Since k2(c|t) is a non-increasing function of c and ψ2,1(t) is the unique solution of k2(c|t) =
0, using (2.7), we conclude that ψ0,1(t) ≥ (≤)ψ2,1(t). Hence, c0,1 = limt→∞ ψ0,1(t) ≥
(≤) limt→∞ ψ2,1(t) and limt→∞ ψ∗

2,1(t) = max{c0,1, limt→∞ ψ2,1(t)} = c0,1
(limt→∞ ψ∗

2,1(t) = min{c0,1, limt→∞ ψ2,1(t)} = c0,1). Note that ψ∗
2,1(t) ≤ (≥)ψ0,1(t), ∀ t .

Since k1(c|t) is a non-increasing function of c, we have

k1
(
ψ∗

2,1(t)|t
) ≥ (≤)k1

(
ψ0,1(t)|t) = 0, ∀ t.

Hence, the result follows. �

The proof of part (ii) of Corollary 2.2 is immediate from Theorem 2.1 on noting that
ψ∗

3,1(t) ≤ (≥)ψ∗
2,1(t), ∀ t , and k1(c|t) is a non-increasing function of c, for every t .

Remark 2.1. It is straightforward to see that the Brewster–Zidek (1974) type estimator δψ0,1 ,
derived in Corollary 2.1 (i), is the generalized Bayes estimator with respect to the non-
informative prior density π(θ1, θ2) = 1, (θ1, θ2) ∈ �0.

The results reported in Theorem 2.1, Corollary 2.1 (i) and Corollary 2.2 (i) are extensions
of results proved by Kubokawa and Saleh (1994) for the special case when X1 and X2 are
independently distributed. The results for estimating the larger location parameter θ2 can be
obtained along the same lines. For brevity, in the following section, we state these results
without providing their proofs.

2.2 Improvements over the BLEE of θ2

Under assumptions A1 and A2, consider estimation of θ2 under the loss function L2(θ , a) =
W(a − θ2), θ ∈ �0, a ∈ �, when it is known apriori that θ ∈ �0.

The following theorem provides a class of estimators that improve upon the BLEE,
δc0,2,2(X) = X2 − c0,2, of θ2, defined by (2.2) and (2.3).

Theorem 2.2. Let δψ2(X) = X2 − ψ2(D) be a location equivariant estimator of θ2 such
that ψ2(t) is non-decreasing (non-increasing) in t , limt→∞ ψ2(t) = c0,2 and

∫ ∞
−∞ W ′(s −

ψ2(t))H2(t |s)f2(s) ds ≤ (≥) 0, ∀ t . Then

R2(θ, δψ2) ≤ R2(θ , δc0,2,2), ∀ θ ∈ �0.

The following corollary provides the B–Z type improvements over the BLEE δc0,2,2(·).
Corollary 2.3. Suppose that, for any fixed � ≥ 0 and t , H2(t − �|s)/H2(t |s) is non-
increasing (non-decreasing) in s ∈ S2. Further suppose that, for every fixed t , the equation

k3(c|t) =
∫ ∞
−∞

W ′(s − c)H2(t |s)f2(s) ds = 0

has the unique solution c ≡ ψ0,2(t).
(i) Let δψ0,2(X) = X2 − ψ0,2(D). Then

R2(θ , δψ0,2) ≤ R2(θ , δc0,2,2), ∀ θ ∈ �0.

(ii) Let ψ1,2 : � → � be such that ψ1,2(t) ≥ (≤)ψ0,2(t), ∀ t , ψ1,2(t) is non-decreasing (non-
increasing) in t and limt→∞ ψ1,2(t) = c0,2. Then

R2(θ , δψ1,2) ≤ R2(θ , δc0,2,2), ∀ θ ∈ �0,

where δψ1,2(X) = X2 − ψ1,2(D).
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In the following corollary we provide the Stein type improvement over the BLEE
δc0,2,2(X).

Corollary 2.4. Suppose that, for any fixed � ≥ 0 and t , h2(t − �|s)/h2(t |s) is non-
increasing (non-decreasing) in s ∈ S2 and let ψ0,2(t) be as defined in Corollary 2.3. Further
suppose that, for every t , the equation

k4(c|t) =
∫ ∞
−∞

W ′(s − c)h2(t |s)f2(s) ds = 0

has the unique solution c ≡ ψ2,2(t).
(i) Let ψ∗

2,2(t) = min{c0,2,ψ2,2(t)} (ψ∗
2,2(t) = max{c0,2,ψ2,2(t)}) and δψ∗

2,2
(X) = X2 −

ψ∗
2,2(D). Then

R2(θ , δψ∗
2,2

) ≤ R2(θ , δc0,2,2), ∀ θ ∈ �0.

(ii) Suppose that ψ3,2 : � → � is such that ψ3,2(t) ≥ (≤)ψ2,2(t), ∀ t and ψ3,2(t) is non-
decreasing (non-increasing) in t . Define ψ∗

3,2(t) = min{c0,2,ψ3,2(t)} (ψ∗
3,2(t) = max{c0,2,

ψ3,2(t)}) and δψ∗
3,2

(X) = X2 − ψ∗
3,2(D). Then

R2(θ , δψ∗
3,2

) ≤ R2(θ , δc0,2,2), ∀ θ ∈ �0.

Proofs of Theorem 2.2 and Corollaries 2.3–2.4 are on the same lines as proofs of Theo-
rem 2.1 and Corollaries 2.1–2.2, respectively. For brevity, these proofs have been provided in
Section 2 of the supplementary material (Garg and Misra (2022)).

It is straightforward to see that the B–Z type estimator δψ0,2(·), derived in Corollary 2.3
(i), is the generalised Bayes estimator with respect to the non-informative prior density
π(θ1, θ2) = 1, (θ1, θ2) ∈ �0. Theorems 2.1–2.2 (or Corollaries 2.1–2.2 and Corollaries 2.3–
2.4) are applicable to a variety of situations studied in the literature for specific probability
models, having independent marginals, and specific loss functions (e.g., Kushary and Cohen
(1989), Misra and Singh (1994), Vijayasree, Misra and Singh (1995), Misra, Iyer and Singh
(2004), etc.). Theorems 2.1–2.2 (or Corollaries 2.1–2.2 and Corollaries 2.3–2.4) also extend
the results of Kubokawa and Saleh (1994) to general bivariate location models.

2.3 Applications

In the sequel we demonstrate an application of Theorems 2.1–2.2 (or Corollaries 2.1–2.2
and Corollaries 2.3–2.4) to a situation where results of Kubokawa and Saleh (1994) are not
applicable.

Example 2.1. Let X = (X1,X2) have the bivariate normal distribution with joint pdf given
by (1.1), where, for known σi > 0, i = 1,2, and ρ ∈ (−1,1),

f (z1, z2) = 1

2πσ1σ2

√
1 − ρ2

e
− 1

2(1−ρ2)
[ z2

1
σ2

1
−2ρ

z1z2
σ1σ2

+ z2
2

σ2
2

]
, z = (z1, z2) ∈ �2.

Consider estimation of location parameter θi , i = 1,2, under the squared error loss function
(i.e., W(t) = t2, t ∈ �). Here the BLEE of θi is δ0,i (X) = Xi (i.e., c0,i = 0), i = 1,2. Also,

for any s ∈ �, and t ∈ �, hi(t |s) = 1
ξi

φ(
t− sμi

σi

ξi
) and Hi(t |s) = 
(

t− sμi
σi

ξi
), i = 1,2, where

μ1 = ρσ2 − σ1, μ2 = σ2 − ρσ1, ξ2
1 = (1 − ρ2)σ 2

2 and ξ2
2 = (1 − ρ2)σ 2

1 . For μi < (>)0, it
is easy to verify that, for any fixed � ≥ 0 and t ∈ �, hi(t − �|s)/hi(t |s) is non-decreasing
(non-increasing) in s ∈ �, i = 1,2. Using Lemma 2.2, this ensures that, for any fixed � ≥ 0
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and t ∈ �, Hi(t − �|s)/Hi(t |s) is non-decreasing (non-increasing) in s ∈ �, i = 1,2. For
any t ∈ �,

ψ0,i(t) =
∫ ∞
−∞ sHi(t |s)fi(s) ds∫ ∞
−∞ Hi(t |s)fi(s) ds

=
∫ ∞
−∞ s
(

t− sμi
σi

ξi
) 1
σi

φ( s
σi

) ds

∫ ∞
−∞ 
(

t− sμi
σi

ξi
) 1
σi

φ( s
σi

) ds

, i = 1,2,

and ψ2,i(t) =
∫ ∞
−∞ shi(t |s)fi(s) ds∫ ∞
−∞ hi(t |s)fi(s) ds

=
∫ ∞
−∞ s

ξi
φ(

t− sμi
σi

ξi
) 1
σi

φ( s
σi

) ds

∫ ∞
−∞ 1

ξi
φ(

t− sμi
σi

ξi
) 1
σi

φ( s
σi

) ds

, i = 1,2.

It is easy to verify that ψ0,1(t) = −(β0 − 1)τ
φ( t

τ
)


( t
τ
)
, t ∈ �, ψ0,2(t) = −β0τ

φ( t
τ
)


( t
τ
)
, t ∈ �,

ψ2,1(t) = (β0 − 1)t , t ∈ �, and ψ2,2(t) = β0t , t ∈ �, where τ 2 = σ 2
1 + σ 2

2 − 2ρσ1σ2 and

β0 = 1 + σ1μ1
τ 2 = σ 2

2 −ρσ1σ2

σ 2
1 +σ 2

2 −2ρσ1σ2
= σ2μ2

τ 2 .

Estimation of θ1:
For μ1 < 0, i.e., ρ < σ1

σ2
(μ1 > 0, i.e., ρ > σ1

σ2
), we have β0 < (>)1, limt→∞ ψ0,1(t) = 0 =

c0,1 and, ψ0,1(t) and ψ2,1(t) are non-increasing (non-decreasing) functions of t ∈ �. Thus,
functions ψ0,1(t) and ψ2,1(t) satisfy hypotheses of Theorem 2.1 and Corollaries 2.1 and 2.2.
For μ1 < 0, i.e., ρ < σ1

σ2
(μ1 > 0, i.e., ρ > σ1

σ2
), we have

ψ∗
2,1(t) = max

{
0,ψ2,1(t)

} =
{
(β0 − 1)t, if t < 0

0, if t ≥ 0(
ψ∗

2,1(t) = min
{
0,ψ2,1(t)

} =
{
(β0 − 1)t, if t ≤ 0

0, if t > 0

)
.

Using Corollaries 2.1 (i) and 2.2 (i), we obtain the B–Z type and the Stein type improvements
over the BLEE δψ0,1(X) = X1 as

δψ0,1(X) = X1 − ψ0,1(D) = X1 + σ1μ1

τ

φ(D
τ
)


(D
τ
)

= X1 + (β0 − 1)τ
φ(D

τ
)


(D
τ
)

(2.8)

and δψ∗
2,1

(X) = X1 − ψ∗
2,1(D) =

{
X1, if X1 ≤ X2

β0X1 + (1 − β0)X2, if X1 > X2
, (2.9)

respectively, where β0 = 1 + σ1μ1
τ 2 = σ 2

2 −ρσ1σ2

σ 2
1 +σ 2

2 −2ρσ1σ2
.

It is worth mentioning here that δψ0,1(·) is the generalized Bayes estimator θ1 with respect
to non-informative prior on �0 and δψ∗

2,1
(·) is the restricted maximum likelihood estimator of

θ1 (see Patra and Kumar (2017)).
Note that, when μ1 = 0 (i.e., ρ = σ1

σ2
and β0 = 1), we have ψ0,1(t) = ψ2,1(t) = ψ∗

2,1(t) =
c0,1 = 0, ∀ t ∈ �. Thus, for ρ = σ1

σ2
, we are not able to get improvements over the BLEE using

our results. Interestingly, in this case, the BLEE is also the restricted maximum likelihood
estimator and the generalized Bayes estimator with respect to non-informative prior on �0.

From the above discussion we conclude that, for ρ �= σ1
σ2

, the generalized Bayes estimator
δψ0,1(·) and the restricted MLE δψ∗

2,1
(·) dominate the BLEE δ0,1(X) = X1.

Now, we will illustrate an application of Corollary 2.1 (ii). Define

ψ1,1,α(t) = τ(1 − α)
φ( t

τ
)


( t
τ
)
, t ∈ �, α ∈ �.
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For μ1 < 0 and β0 ≤ α < 1 (μ1 > 0 and 1 < α ≤ β0), note that β0 < 1 (β0 > 1), ψ1,1,α(t)

is a non-increasing (non-decreasing) functions of t ∈ �, limt→∞ ψ1,1,α(t) = 0 = c0,1 and
ψ1,1,α(t) ≤ (≥)ψ0,1(t), ∀ t ∈ �. Let

δψ1,1,α
(X) = X1 − ψ1,1,α(D) = X1 − τ(1 − α)

φ(D
τ
)


(D
τ
)
, α ∈ �.

Using Corollary 2.1 (ii) it follows that, for μ1 < (>)0 (i.e., ρ < (>) σ1
σ2

), the estimators
{δψ1,1,α

: β0 ≤ α < 1} ({δψ1,1,α
: 1 < α ≤ β0}) dominate the BLEE δ0,1(X) = X1.

To see an application of Corollary 2.2 (ii), let

ψ3,1,α(t) =
{
(α − 1)t, if t < 0

(β0 − 1)t, if t ≥ 0
, α ∈ �.

For μ1 < 0 and β0 ≤ α < 1 (μ1 > 0 and 1 < α ≤ β0), note that β0 < 1 (β0 > 1), ψ3,1,α(t) ≤
(≥)ψ2,1(t) = (β0 − 1)t , ∀ t ∈ �, and ψ3,1,α(t) is a non-increasing (non-decreasing) function
of t ∈ �. Let

ψ∗
3,1,α(t) = max

{
0,ψ3,1,α(t)

}(
min

{
0,ψ3,1,α(t)

}) =
{
(α − 1)t, if t < 0

0, if t ≥ 0

and δψ∗
3,1,α

(X) = X1 − ψ∗
3,1,α(D) =

{
αX1 + (α − 1)X2, if X2 < X1

X1, if X2 ≥ X1
, α ∈ �.

Using Corollary 2.2 (ii), it follows that, for ρ < (>) σ1
σ2

, the estimators {δψ∗
3,1,α

: β0 ≤ α < 1}
({δψ∗

3,1,α
: 1 < α ≤ β0}) dominate the BLEE δ0,1(X) = X1.

Estimation of θ2:
For μ2 < 0, that is, ρ > σ2

σ1
(μ2 > 0, that is, ρ < σ2

σ1
), we have β0 < (>)0, limt→∞ ψ0,2(t) =

0 = c0,2 and, ψ0,2(t) and ψ2,2(t) are non-increasing (non-decreasing) functions of t ∈ �. Let

ψ∗
2,2(t) = max

{
0,ψ2,2(t)

} =
{
β0t, if t ≤ 0

0, if t > 0(
ψ∗

2,2(t) = min
{
0,ψ2,2(t)

} =
{
β0t, if t ≤ 0

0, if t > 0

)
.

Applications of Corollaries 2.3 (i) and 2.4 (i), yield the B–Z type and the Stein type improve-
ments over the BLEE δ0,2(X) = X2 as

δψ0,2(X) = X2 − ψ0,2(D) = X2 + σ2μ2

τ

φ(D
τ
)


(D
τ
)

= X2 + β0τ
φ(D

τ
)


(D
τ
)

(2.10)

and δψ∗
2,2

(X) = X2 − ψ∗
2,2(D) =

{
β0X1 + (1 − β0)X2, if X2 ≤ X1

X2, if X2 > X1
, (2.11)

respectively. Note that δψ0,2(·) is the generalized Bayes estimators of θ2 under the non-
informative prior on �0 and δψ∗

2,2
(·) is the restricted MLE of θ2.

For μ2 = 0 (that is, ρ = σ2
σ1

), we have β0 = 0 and ψ0,2(t) = ψ2,2(t) = ψ∗
2,2(t) = 0, ∀ t ∈ �.

Thus, for μ2 = 0, our results do not provide improvements over the BLEE δψ0,2(X) = X2. In
this case, the BLEE is also the restricted maximum likelihood estimator and the generalized
Bayes estimator with respect to non-informative prior on �0.

From the above discussion we conclude that, for ρ �= σ2
σ1

, the generalized Bayes estimator
δψ0,2(·) and the restricted MLE δψ∗

2,2
(·) dominate the BLEE δ0,2(X) = X2.
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To see an application of Corollary 2.3 (ii), define

ψ1,2,α(t) = −ατ
φ( t

τ
)


( t
τ
)
, t ∈ �, α ∈ �.

For μ2 < 0 and β0 ≤ α < 0 (μ2 > 0 and 0 < α ≤ β0), note that β0 < (>)0, ψ1,2,α(t) is a non-
increasing (non-decreasing) function of t ∈ �, limt→∞ ψ1,2,α(t) = 0 = c0,2 and ψ1,2,α(t) ≤
(≥)ψ0,2(t) = β0τ

φ( t
τ
)


( t
τ
)
, ∀ t ∈ �. Define

δψ1,2,α
(X) = X2 − ψ2,2,α(D) = X2 + ατ

φ(D
τ
)


(D
τ
)
, α ∈ �.

Using Corollary 2.3 (ii), for ρ > (<) σ2
σ1

, it follows that the estimators {δψ1,2,α
: β0 ≤ α < 0}

({δψ1,2,α
: 0 < α ≤ β0}) dominate the BLEE δ0,2(X) = X2.

Now consider an application of Corollary 3.4 (ii). Define

ψ3,2,α(t) =
{
αt, if t < 0

β0t, if t ≥ 0
, α ∈ �.

For μ2 < 0 and β0 ≤ α < 0 (μ2 > 0 and 0 < α ≤ β0) note that, β0 < (>)0, ψ3,2,α(t) is
non-increasing (non-decreasing) in t ∈ � and ψ3,2,α(t) ≤ (≥)ψ2,2(t) = β0t , ∀ t ∈ �. Let

ψ∗
3,2,α(t) = max

{
0,ψ3,2,α(t)

}(
min

{
0,ψ3,2,α(t)

}) =
{
αt, if t < 0

0, if t ≥ 0

and δψ∗
3,2,α

(X) = X2 − ψ∗
3,2,α(D) =

{
αX1 + (α − 1)X2, if X2 < X1

X2, if X2 ≥ X1.

Using Corollary 2.4 (ii), it follows that, for ρ > (<)σ2
σ1

, the class of the estimators {δψ∗
3,2,α

:
β0 ≤ α < 0} ({δψ∗

3,2,α
: 0 < α ≤ β0}) dominate the BLEE δ0,2(X) = X2.

2.4 Simulation study for estimation of location parameters θ1 and θ2

In Example 2.1, under the squared error loss function, we have considered component-wise
estimation of the smaller mean θ1 and the larger mean θ2 of a bivariate normal distribution
with unknown order restricted means (that is, θ1 ≤ θ2), known variances (σ 2

1 and σ 2
2 ) and

known correlation coefficient (ρ), and obtained improvement over the BLEEs δ0,1(X) = X1
and δ0,2(X) = X2 of θ1 and θ2, receptively. To further evaluate the performances of various
estimators of θ1 under the squared error loss function, in this section, we compare the risk
performances of estimators BLEE δ0,1(X) = X1, the B–Z estimator δψ0,1 and the Stein (1964)
type estimator δψ∗

2,1
(as defined in (2.8) and (2.9)), numerically, through Monte Carlo simu-

lations. Similarly, to evaluate the performances of various estimators of θ2 under the squared
error loss function, we compare the risk performances of estimators BLEE δ0,2(X) = X2,
the B–Z estimator δψ0,2 and the Stein (1964) type estimator δψ∗

2,2
(as defined in (2.10) and

(2.11)), numerically, through Monte Carlo simulations. The simulated risks of the BLEE, the
B–Z estimator and the Stein estimator (restricted MLE) have been computed based on 50,000
simulations from relevant distributions. Note that the B–Z estimator is the generalized Bayes
estimator and the Stein estimator is the restricted MLE under θ ∈ �0.

The simulated values of risks of various estimators of θ1 are plotted in Figure 1. The
following observations are evident from Figure 1:

(i) The risk function values of the B–Z type and the Stein type estimators are nowhere
larger than the risk function values of the BLEE, which is in conformity with theoretical
findings of Example 2.1.
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Figure 1 Estimators of θ1: Risk plots of δ0,1 (BLEE), δψ0,1 (B–Z type estimator) and δψ∗
2,1

(Stein type estimator)

estimators against the values of θ2 − θ1.
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(ii) There is no clear cut winner between the B–Z type estimator δψ0,1 and the Stein type
estimator δψ∗

2,1
. The Stein type estimator performs better than the B–Z type estimator, for

small values of θ2 − θ1, and the B–Z type estimator dominates the Stein type estimator for
the large values of θ2 − θ1.

The simulated values of risks of various estimators of θ2 are plotted in Figure 2. Similar
observations, as mentioned above for three estimators of θ1, are evident from Figure 2.

3 Improving the Best Scale Equivariant Estimators (BSEEs)

In this section, we consider the bivariate scale model (1.2) and deal with the problem of
estimating scale parameters θi , i = 1,2, when it is known apriori that θ ∈ �0 = {(x, y) ∈
�2++ : x ≤ y}. The following notations will be used throughout this section. Let Zi = Xi

θi
,

i = 1,2, Z = (Z1,Z2) and Z = Z2
Z1

. The pdf of Z = (Z1,Z2) is f (z1, z2), (z1, z2) ∈ �2. Let
Si denote the support of random variable Zi , i = 1,2. Under the above notations, assume
that {(z1, z2) ∈ �2 : f (z1, z2) > 0} ⊆ �2++, so that S1 ⊆ �++ and S2 ⊆ �++. Let fi denote
the pdf of Zi , i = 1,2, so that f1(s) = ∫ ∞

0 f (s, t) dt , s ∈ �++ and f2(s) = ∫ ∞
0 f (t, s) dt ,

s ∈ �++.
For any s ∈ Si , let Z

(i)
s denote a random variable having the same distribution as the con-

ditional distribution of Z given Zi = s, i = 1,2. Then, the pdf and the df of Z
(1)
s (s ∈ S1) are

given by

h1(t |s) = s
f (s, st)

f1(s)
, t ∈ �++, and H1(t |s) =

∫ t

0
h1(z|s) dz, t ∈ �++,

respectively, and the pdf and the df of Z
(2)
s (s ∈ S2) are given by

h2(t |s) = s

t2

f (s
t
, s)

f2(s)
, t ∈ �++, and H2(t |s) =

∫ t

0
h2(z|s) dz, t ∈ �++,

respectively.
For the scale model (1.2), consider estimation of the scale parameter θi under the loss

function

Li(θ , a) = W

(
a

θi

)
, θ ∈ �,a ∈ A= �++, i = 1,2, (3.1)

where W : � → [0,∞) is a specified non-negative function. Throughout, we make the fol-
lowing assumptions on the function W(·):

A3: W : � → [0,∞) is absolute continuous, W(1) = 0, W(t) is decreasing on (−∞,1)

and increasing on (1,∞). Further W ′(t) is non-decreasing on the set D0 (the set of points at
which W(·) is differentiable).

A4: The equation E[ZiW
′(cZi)] = 0 has the unique solution, say c = c0,i , i = 1,2.

Under the unrestricted case (� = �++), the problem of estimating θi , under the loss
function (3.1), is invariant under the multiplicative group of transformations G0 = {gb1,b2 :
(b1, b2) ∈ �2++}, where gb1,b2(x1, x2) = (b1x1, b2x2), (x1, x2) ∈ �2, (b1, b2) ∈ �2++, and the
best scale equivariant estimator of θi is δc0,i ,i (X) = c0,iXi , i = 1,2, where c0,i is the unique
solution of the equation

∫ ∞
0 sW ′(cs)fi(s) ds = 0, i = 1,2.

Under the restricted parameter space �0, the problem of estimating θi , under the loss
function (3.1), is invariant under the group of transformations G = {gb : b ∈ (0,∞)}, where
gb(x1, x2) = (bx1, bx2), (x1, x2) ∈ �2, b ∈ (0,∞). Any scale equivariant estimator of θi has
the form

δψi
(X) = ψi(D)Xi, (3.2)
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Figure 2 Estimators of θ2: Risk plots of δ0,2 (BLEE), δψ0,2 (B–Z type estimator) and δψ∗
2,2

(Stein type estimator)

estimators against the values of θ2 − θ1.
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for some function ψi : �++ → �, i = 1,2, where D = X2
X1

. The risk function

Ri(θ , δψi
) = Eθ

[
Li

(
θ , δψi

(X)
)]

, θ ∈ �0, (3.3)

of any scale equivariant estimator δψi
of θi , i = 1,2, depends on θ ∈ �0 only through λ =

θ2
θ1

∈ [1,∞).
The following dual of Lemma 2.2 will be useful in proving the results of this section.

Lemma 3.1. If, for any fixed � ≥ 1 and t , hi(
t
�

|s)/hi(t |s) is non-decreasing (non-
increasing) in s ∈ Si , then Hi(

t
�

|s)/Hi(t |s) is non-decreasing (non-increasing) in s ∈ Si

and hi(t |s)/Hi(t |s) is also non-increasing (non-decreasing) in s ∈ Si , i = 1,2.

In Section 3.1 (3.2), we consider the equivariant estimation of scale parameter θ1 (θ2)
under the loss function L1 (L2), defined by (3.1), when it is known apriori that θ ∈ �0. In
Section 3.3, we provide an application of our results to a bivariate gamma distribution, not
studied before in the literature. In Section 3.4, we report a simulation study on comparison of
various competing estimators for smaller scale parameter in the Cheriyan and Ramabhadran’s
bivariate gamma distribution.

3.1 Improvements over the BSEE of θ1

The following theorem provides a class of estimators that improve upon the BSEE
δc0,1,1(X) = c0,1X1, where c0,1 is the unique solution of the equation

∫ ∞
−∞ zW ′(cz) ×

f1(z) dz = 0.

Theorem 3.1. Let δψ1(X) = ψ1(D)X1 be a scale equivariant estimator for estimating θ1
such that limt→∞ ψ1(t) = c0,1, ψ1(t) is a non-decreasing (non-increasing) function of t and∫ ∞

0 sW ′(ψ1(t)s)H1(t |s)f1(s) ds ≥ (≤)0, ∀ t . Then, ∀ θ ∈ �0, the estimator δψ1(X) domi-
nates the BSEE δc0,1,1(X) = c0,1X1.

Proof. For θ ∈ �0 and λ = θ2
θ1

(so that λ ≥ 1), the risk difference can be written as

�1(λ) = Eθ

[
W

(
c0,1X1

θ1

)]
− Eθ

[
W

(
ψ1(D)X1

θ1

)]

= Eθ

[∫ ∞
λZ

ψ ′
1(t)Z1W

′(ψ1(t)Z1
)
dt

]

= λEθ

[∫ ∞
Z

ψ ′
1(λt)Z1W

′(ψ1(λt)Z1
)
dt

]

= λ

∫ ∞
0

ψ ′
1(λt)Eθ

[
Z1W

′(ψ1(λt)Z1
)
I(0,t](Z)

]
dt.

In light of the hypotheses of the theorem, it is enough to prove that, for every fixed t and
λ ≥ 1,

Eθ

[
Z1W

′(ψ1(λt)Z1
)
I(0,t](Z)

] ≥ (≤) 0. (3.4)

Since W ′(t) is non-decreasing function of t and ψ1(t) is non-decreasing (non-increasing)
function of t , for λ ≥ 1, we have

Eθ

[
Z1W

′(ψ1(λt)Z1
)
I(0,t](Z)

] ≥ (≤)Eθ

[
Z1W

′(ψ1(t)Z1
)
I(0,t](Z)

]
=

∫ ∞
0

sW ′(ψ1(t)s
)
H1(t |s)f1(s) ds

which, in turn, implies (3.4). �
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The following corollary gives us the B–Z type improvements over the BSEE δc0,1,1(X).

Corollary 3.1. Suppose that, for any fixed � ≥ 1 and t , H1(
t
�

|s)/H1(t |s) is non-decreasing
(non-increasing) in s ∈ S1. Further suppose that, for every fixed t , the equation

l1(c|t) =
∫ ∞

0
sW ′(cs)H1(t |s)f1(s) ds = 0

has the unique solution c ≡ ψ0,1(t).
(i) Then the estimator δψ0,1(X) = ψ0,1(D)X1 dominates the BSEE δc0,1,1(X), ∀ θ ∈ �0.
(ii) Suppose that ψ1,1 : �++ → � is such that ψ1,1(t) ≥ (≤)ψ0,1(t), ∀ t , ψ1,1(t) is non-

decreasing (non-increasing) in t and limt→∞ ψ1,1(t) = c0,1. Then the estimator δψ1,1(X) =
ψ1,1(D)X1 dominates the BSEE δc0,1,1(X), ∀ θ ∈ �0.

Proof. It is sufficient to prove that ψ0,1(t) satisfies conditions of Theorem 3.1. To prove that
ψ0,1(t) is an non-decreasing (non-increasing) function of t , suppose that, there exist positive
numbers t1 and t2 such that t1 < t2 and ψ0,1(t1) �= ψ0,1(t2). Then l1(ψ0,1(t1)|t1) = 0. Since
W ′(t) is an non-decreasing function of t ∈ �, it follows that l1(c|t2) is a non-decreasing
function of c and ψ0,1(t2) is the unique solution of l1(c|t2) = 0. Let s0 = 1

ψ0,1(t1)
, M(s) =

sW ′( s
s0

)f1(s), M1(s) = H1(t2|s) and M2(s) = H1(t1|s), s ∈ S1. Then, using hypotheses of
the corollary and the Lemma 2.1, we get

l1
(
ψ0,1(t1)|t2) =

∫ ∞
0

sW ′(ψ0,1(t1)s
)
H1(t2|s)f1(s) ds < (>) 0,

as l1(c|t2) = 0 has the unique solution c = ψ0,1(t2) and ψ0,1(t1) �= ψ0,1(t2). Since l1(c|t2) is a
non-decreasing function of c and l1(ψ0,1(t2)|t2) = 0, this implies that ψ0,1(t1) < (>)ψ0,1(t2).

Also, l1(ψ0,1(t)|t) = 0 and the assumption A2 ensures that limt→∞ ψ0,1(t) = c0,1. Hence,
the assertion follows.

The proof of part (ii) is immediate from Theorem 3.1, since l1(c|t) is a non-decreasing
function of c ∈ �, ∀ t . �

The following corollary gives us the Stein type improvements over the BSEE δc0,1,1(X).

Corollary 3.2. Suppose that, for any fixed � ≥ 1 and t , h1(
t
�

|s)/h1(t |s) is non-decreasing
(non-increasing) in s ∈ S1. In addition suppose that, for any t , the equation

l2(c|t) =
∫ ∞

0
sW ′(cs)h1(t |s)f1(s) ds = 0

has the unique solution c ≡ ψ2,1(t).
(i) Let ψ∗

2,1(t) = min{c0,1,ψ2,1(t)} (ψ∗
2,1(t) = max{c0,1,ψ2,1(t)}) and δψ∗

2,1
(X) =

ψ∗
2,1(D)X1. Then, ∀ θ ∈ �0, the estimator δψ∗

2,1
(X) dominates the BSEE δc0,1,1(X) = c0,1X1.

(ii) Let ψ3,1 : �++ → � be such that ψ3,1(t) ≥ (≤)ψ2,1(t), ∀ t and ψ3,1(t) is non-
decreasing (non-increasing) in t . Define ψ∗

3,1(t) = min{c0,1,ψ3,1(t)}(ψ∗
3,1(t) = max{c0,1,

ψ3,1(t)}). Then, ∀ θ ∈ �0, the estimator δψ∗
3,1

(X) = ψ∗
3,1(D)X1 dominates the BSEE

δc0,1,1(X).

Proof. It suffices to show that ψ∗
2,1(·) satisfies conditions of Theorem 3.1. On using argu-

ments similar to the ones used in the proof of Corollary 3.1, it can be shown that ψ2,1(t) (and
hence ψ∗

2,1(t)) is non-decreasing (non-increasing) in t . Now to show that limt→∞ ψ∗
2,1(t) =

c0,1, we will show that ψ2,1(t) ≥ (≤)ψ0,1(t), ∀ t . Let us fix t , then l1(ψ0,1(t)|t) = 0 and
l2(ψ2,1(t)|t) = 0.
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Let s0 = 1
ψ0,1(t)

, M(s) = sW ′( s
s0

)f1(s), M1(s) = h1(t |s) and M2(s) = H1(t |s), s ∈ �++.
Using hypotheses of the corollary, Lemma 3.1 and Lemma 2.1, we conclude that

l2
(
ψ0,1(t)|t) ≤ (≥)

h1(t |s0)

H1(t |s0)
l1

(
ψ0,1(t)|t) = 0.

Since l2(c|t) is a non-decreasing function of c (using A3) and ψ2,1(t) is the unique solu-
tion of l2(c|t) = 0, we conclude that ψ0,1(t) ≤ (≥)ψ2,1(t). Hence, c0,1 = limt→∞ ψ0,1(t) ≤
(≥) limt→∞ ψ2,1(t) and limt→∞ ψ∗

2,1(t) = min{c0,1, limt→∞ ψ2,1(t)} = c0,1
(limt→∞ ψ∗

2,1(t) = max{c0,1, limt→∞ ψ2,1(t)} = c0,1). Note that ψ∗
2,1(t) ≥ (≤)ψ0,1(t), ∀ t .

Since l1(c|t) is a non-decreasing function of c, we have

l1
(
ψ∗

2,1(t)|t
) ≥ (≤)l1

(
ψ0,1(t)|t) = 0, ∀ t.

Hence, the result follows.
The proof of part (ii) is immediate using Theorem 3.1 and the fact that l1(c|t) is a non-

decreasing function of c. �

It is straightforward to see that the estimator δψ0,1 , defined in Corollary 3.1 (i), is the
generalized Bayes estimator with respect to the non-informative density π(θ1, θ2) = 1

θ1θ2
,

(θ1, θ2) ∈ �0.

3.2 Improvements over the BSEE of θ2

As proofs of various results stated in this section are similar to the proofs of similar results of
the last section, they are being provided in supplementary material. The following theorem
provides a class of estimators that improve upon the BSEE δc0,2,2(X) = c0,2X2, where c0,2 is
the unique solution of the equation

∫ ∞
−∞ zW ′(cz)f2(z) dz = 0.

Theorem 3.2. Let δψ2(X) = ψ2(D)X2 be a scale equivariant estimator for estimating θ2
such that limt→∞ ψ2(t) = c0,2, ψ2(t) is an non-increasing (non-decreasing) function of t and∫ ∞

0 sW ′(ψ2(t)s)H2(t |s)f2(s) ds ≤ (≥)0, ∀ t . Then, ∀ θ ∈ �0, the estimator δψ2(X) domi-
nates the BSEE δc0,2,2(X) = c0,2X2.

The following corollary provides the B–Z type improvements over the BSEE δc0,2,2(X) =
c0,2X2.

Corollary 3.3. (i) Suppose that, for any fixed � ≥ 1 and t , H2(
t
�

|s)/H2(t |s) is non-
increasing (non-decreasing) in s ∈ S2. Further suppose that, for every fixed t , the equation

l3(c|t) =
∫ ∞

0
sW ′(cs)H2(t |s)f2(s) ds = 0

has the unique solution c ≡ ψ0,2(t). Then, the estimator δψ0,2(X) = ψ0,2(D)X2 improves
upon the BSEE δc0,2,2(X) = c0,2X2, ∀ θ ∈ �0.

(ii) In addition to assumptions of (i) above, suppose that ψ1,2 : �++ → � is such
that ψ1,2(t) ≤ (≥)ψ0,2(t), ∀ t , ψ1,2(t) is non-increasing (non-decreasing) in t and
limt→∞ ψ1,2(t) = c0,2. Then, ∀ θ ∈ �0, the estimator δψ1,2(X) = ψ1,2(D)X2 dominates the
BSEE δc0,2,2(X) = c0,2X2.

In the following corollary we provide the Stein type improvements over the BSEE
δc0,2,2(X).
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Corollary 3.4. (i) Suppose that for any fixed � ≥ 1 and t , h2(
t
�

|s)/h2(t |s) is non-increasing
(non-decreasing) in s ∈ S2 and let ψ0,2(t) be as defined in Corollary 3.3. In addition suppose
that, for any t , the equation

l4(c|t) =
∫ ∞

0
sW ′(cs)h2(t |s)f2(s) ds = 0

has the unique solution c ≡ ψ2,2(t). Let ψ∗
2,2(t) = max{c0,2,ψ2,2(t)} (ψ∗

2,2(t) = min{c0,2,

ψ2,2(t)}) and δψ∗
2,2

(X) = ψ∗
2,2(D)X2. Then

R2(θ , δψ∗
2,2

) ≤ R2(θ , δc0,2,2), ∀ θ ∈ �0.

(ii) In addition to assumptions of (i) above, suppose that ψ3,2 : �++ → � is such that
ψ3,2(t) ≤ (≥)ψ2,2(t), ∀ t and ψ3,2(t) is non-increasing (non-decreasing) in t . For fixed t , de-
fine ψ∗

3,2(t) = max{c0,2,ψ3,2(t)}(ψ∗
3,2(t) = min{c0,2,ψ3,2(t)}) and δψ∗

3,2
(X) = ψ∗

3,2(D)X2.
Then

R2(θ , δψ∗
3,2

) ≤ R2(θ , δc0,2,2), ∀ θ ∈ �0.

It is easy to verify that the B–Z type estimator δψ0,2(·), derived in Corollary 3.3 (i), is the
generalized Bayes estimator with respect to the non-informative prior density π(θ1, θ2) =

1
θ1θ2

, (θ1, θ2) ∈ �0.
The results of Theorems 3.1–3.2 (or Corollaries 3.1–3.2 and Corollaries 3.3–3.4) are appli-

cable to various studies carried out in the literature for specific bivariate probability models,
having independent marginals, and specific loss function (e.g., Misra and Dhariyal (1995),
Vijayasree, Misra and Singh (1995), etc.). These results also extend the study of Kubokawa
and Saleh (1994) to general bivariate scale models.

Now we provide an application of the results derived in Sections 3.1–3.2 to a situation
where results of Kubokawa and Saleh (1994) are not applicable.

3.3 Applications

In the following example, we consider a bivariate model due to Cheriyan and Ramabhadran’s
(see Kotz, Balakrishnan and Johnson (2000)) and study estimation of order restricted scale
parameters.

Example 3.1. Let X1 and X2 be two dependent random variables with joint pdf (1.2), where
θ = (θ1, θ2) ∈ �0 and

f (z1, z2) =

⎧⎪⎪⎨
⎪⎪⎩

e−z1
(
1 − e−z2

)
, if 0 < z2 < z1

e−z2
(
1 − e−z1

)
, if 0 < z1 < z2

0, otherwise.

The above bivariate distribution is a special case of Cheriyan and Ramabhadran’s bivariate
gamma distribution (see Kotz, Balakrishnan and Johnson (2000)). Here random variable Xi

follows Gamma distribution with pdf fi(
x
θi

) = x

θ2
i

e
− x

θi , x > 0, i = 1,2.

For estimation of θi , i = 1,2, consider the squared error loss function Li(θ , a) = ( a
θi

−1)2,

θ ∈ �0, a ∈ �++, i = 1,2. The BSEE of θi is δc0,i ,i (X) = 1
3Xi , i = 1,2 (c0,i = 1

3 , i = 1,2).
We have S1 = S2 = [0,∞).
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Estimation of θ1:

For any s ∈ S1, the pdf and df of Z
(1)
s , respectively, are

h1(t |s) =

⎧⎪⎪⎨
⎪⎪⎩

1 − e−st , if 0 < t < 1

e−s(t−1)(1 − e−s), if 1 ≤ t < ∞
0, otherwise

and H1(t |s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if t < 0

t − 1

s
+ e−st

s
, if 0 ≤ t < 1

1 − 1

s
+ e−s

s
+ (1 − e−s)(1 − e−s(t−1))

s
, if t ≥ 1

.

It is easy to see that, for any fixed � ≥ 1 and t , h1(
t
�

|s)/h1(t |s) (and hence, H1(
t
�

|s)/
H1(t |s)) is non-decreasing in s ∈ S1 = �++. We have

ψ0,1(t) =
∫ ∞
−∞ sH1(t |s)f1(s) ds∫ ∞
−∞ s2H1(t |s)f1(s) ds

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2t − 1 + 1
(t+1)2

6t − 2 + 2
(t+1)3

, if 0 < t < 1

2 − 1
t2 + 1

(t+1)2

6 − 2
t3 + 2

(t+1)3

, if t ≥ 1

,

ψ2,1(t) =
∫ ∞
−∞ sh1(t |s)f1(s) ds∫ ∞
−∞ s2h1(t |s)f1(s) ds

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

3

1 − 1
(t+1)3

1 − 1
(t+1)4

, if 0 < t < 1

1

3

1
t3 − 1

(t+1)3

1
t4 − 1

(t+1)4

, if t ≥ 1

and ψ∗
2,1(t) = min

{
c0,1,ψ2,1(t)

} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

3

1 − 1
(t+1)3

1 − 1
(t+1)4

, if 0 < t < 1

1

3
min

{
1,

1
t3 − 1

(t+1)3

1
t4 − 1

(t+1)4

}
, if t ≥ 1

.

Here ψ0,1(t) and ψ2,1(t) are non-decreasing in t ∈ �++ and limt→∞ ψ0,1(t) = 1
3 = c0,1.

Using Corollary 3.1 (i), the B–Z type estimator dominating the BSEE δc0,1,1(X) = 1
3X1 is

δψ0,1(X) = ψ0,1(D)X1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2D − 1 + 1
(D+1)2

6D − 2 + 2
(D+1)3

X1, if X1 > X2

2 − 1
D2 + 1

(D+1)2

6 − 2
D3 + 2

(D+1)3

X1, if X1 ≤ X2

. (3.5)

Here δψ0,1(·) is also the generalized Bayes estimator with respect to the non-informative prior
density on �0.

Using Corollary 3.2 (i), the Stein type estimator dominating the BSEE δc0,1,1(X) = 1
3X1 is

δψ∗
2,1

(X) = ψ∗
2,1(D)X1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

3

1 − 1
(D+1)3

1 − 1
(D+1)4

X1, if X1 > X2

1

3
min

{
1,

1
D3 − 1

(D+1)3

1
D4 − 1

(D+1)4

}
X1, if X1 ≤ X2

. (3.6)
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Estimation of θ2:

For any s ∈ S2 = [0,∞), the pdf and df of Z
(2)
s , respectively, are

h2(t |s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e− s
t es(1 − e−s)

t2 , if 0 < t < 1

(1 − e− s
t )

t2 , if 1 ≤ t < ∞
0, elsewhere

and H2(t |s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if t ≤ 0

e−s( 1
t
−1) − e− s

t

s
, if 0 < t < 1

1 − 1

t
+ 1

s
− e− s

t

s
, if t ≥ 1

.

One can easily see that, for any fixed � ≥ 1 and t , h2(
t
�

|s)/h2(t |s) (and hence H2(
t
�

|s)/
H2(t |s)) is non-increasing in s ∈ (0,∞). Let ψ0,2(·) and ψ2,2(·) be as defined in Corollar-
ies 3.3 (i) and 3.4 (i), respectively, so that for fixed t , we have

ψ0,2(t) =
∫ ∞
−∞ sH2(t |s)f2(s) ds∫ ∞
−∞ s2H2(t |s)f2(s) ds

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2t

1 − 1
(1+t)2

1 − 1
(1+t)3

, if 0 < t < 1

3 − 2
t
− t2

(1+t)2

8 − 6
t
− 2t3

(1+t)3

, if t ≥ 1

,

ψ2,2(t) =
∫ ∞
−∞ sh2(t |s)f2(s) ds∫ ∞
−∞ s2h2(t |s)f2(s) ds

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

3t

1 − 1
(1+t)3

1 − 1
(1+t)4

, if 0 < t < 1

1

3

1 − t3

(1+t)3

1 − t4

(1+t)4

, if t ≥ 1

and ψ∗
2,2(t) = max

{
c0,2,ψ2,2(t)

} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

3
max

{
1,

1

t

1 − 1
(1+t)3

1 − 1
(1+t)4

}
, if 0 < t < 1

1

3
, if t ≥ 1

.

Here ψ0,2(t) and ψ2,2(t) are non-increasing in t ∈ �++ and limt→∞ ψ0,2(t) = 1
3 .

Using Corollary 3.3 (i), the B–Z type estimator dominating the BSEE δc0,2,2(X) = 1
3X2 is

δψ0,2(X) = ψ0,2(D)X2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2D

1 − 1
(1+D)2

1 − 1
(1+D)3

X2, if X1 > X2

3 − 2
D

− D2

(1+D)2

8 − 6
D

− 2D3

(1+D)3

X2, if X1 ≤ X2

. (3.7)

Using Corollary 3.4 (i), the Stein type estimator dominating the BSEE δc0,2,2(X) = 1
3X2 is

δψ∗
2,2

(X) = ψ∗
2,2(D)X2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

3
max

{
1,

1

D

1 − 1
(1+D)3

1 − 1
(1+D)4

}
X2, if X1 > X2

1

3
X2, if X1 ≤ X2

. (3.8)
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Figure 3 Estimators of θ1: Risk plot of δc0,1,1 (BSEE), δψ0,1 (B–Z type estimator) and δψ∗
2,1

(Stein type estima-

tor) estimators against the values of θ2
θ1

.

3.4 Simulation study for estimation of scale parameters θ1 and θ2

In Example 3.1, we have considered a Cheriyan and Ramabhadran’s bivariate gamma distri-
bution with unknown order restricted scale parameters (that is, θ1 ≤ θ2). To further evaluate
the performances of various estimators of θ1 under the scaled squared error loss function, in
this section, we compare the risk performances of the BSEE δc0,1,1(X) = X1

3 , the B–Z estima-
tor δψ0,1 and the Stein (1964) type estimator δψ∗

2,1
(as defined in (3.5) and (3.6)), numerically,

through Monte Carlo simulations. Also, to evaluate the performances of various estimators
of θ2 under the scaled squared error loss function, we compare the risk performances of the
BSEE δc0,2,2(X) = X2

3 , the B–Z estimator δψ0,2 and the Stein (1964) type estimator δψ∗
2,2

(as
defined in (3.7) and (3.8)), numerically, through Monte Carlo simulations. The simulated
risks of the BSEEs, the B–Z estimators and the Stein estimators have been computed based
on 50,000 simulations from relevant distributions.

The simulated values of risks of various estimators of scale parameter θ1 are plotted in
Figure 3. The following observations are evident from Figure 3:

(i) The B–Z type and the Stein type estimators always perform better than the BSEE, which
is in conformity with theoretical findings of Example 3.1.

(ii) There is no clear cut winner between the B–Z type estimator δψ0,1 and the Stein type
estimator δψ∗

2,1
. The Stein type estimator performs better than the B–Z type estimator, for

small values of θ2
θ1

, and the B–Z type estimator dominates the Stein type estimator for the

large values of θ2
θ1

.
Figure 4 shows the simulated risks for different estimators of the scale parameter θ2. Sim-

ilar observations, as mentioned above for three estimators of θ1, are evident from Figure 4.

4 Concluding remarks

The problem of estimation of order restricted location/scale parameters is widely studied for
specific probability models, having independent marginals, and specific loss functions. In this
paper, we unify these studies by considering a general bivariate location/scale model and a
general loss function. We drive a class of estimators dominating over BLEE/BSEE using the
IERD approach of Kubokawa (1994). We also obtain the Brewster and Zidek (1974) type
and the Stein (1964) type estimators that dominate the BLEE/BSEE under the general loss
function. We also demonstrate applications of our results to two bivariate probability models
which have not been studied in the literature.
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Figure 4 Estimators of θ2: Risk plot of δc0,2,2 (BSEE), δψ0,2 (B–Z type estimator) and δψ∗
2,2

(Stein type estima-

tor) estimators against the values of θ2
θ1

.
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