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High-Dimensional Bayesian Network
Classification with Network Global-Local

Shrinkage Priors

Sharmistha Guha∗ and Abel Rodriguez†

Abstract. This article proposes a novel Bayesian binary classification framework
for networks with labeled nodes. Our approach is motivated by applications in
brain connectome studies, where the overarching goal is to identify both regions
of interest (ROIs) in the brain and connections between ROIs that influence how
study subjects are classified. We propose a novel binary logistic regression frame-
work with the network as the predictor, and model the associated network coef-
ficient using a novel class of global-local network shrinkage priors. We perform a
theoretical analysis of a member of this class of priors (which we call the Network
Lasso Prior) and show asymptotically correct classification of networks even when
the number of network edges grows faster than the sample size. Two representa-
tive members from this class of priors, the Network Lasso prior and the Network
Horseshoe prior, are implemented using an efficient Markov Chain Monte Carlo
algorithm, and empirically evaluated through simulation studies and the analysis
of a real brain connectome dataset.
Keywords: brain connectome, high-dimensional binary regression, global-local
shrinkage prior, node selection, network predictor, posterior consistency.

1 Introduction
Statistical models for the analysis of individual networks have received substantial atten-
tion in the literature. Examples include random graph models (Erdos and Rényi, 1960),
exponential random graph models (Frank and Strauss, 1986), social space models (Hoff
et al., 2002; Hoff, 2005, 2009; Guhaniyogi and Rodriguez, 2020; Sosa and Rodríguez,
2021) and stochastic block models (Nowicki and Snijders, 2001; Rodriguez, 2012). How-
ever, there are many important applications in which network data is available for every
individual in the sample, and interest lies in using such networks as predictors to explain
an outcome of interest, rather than understanding the underlying process that drives
network formation. Section 6 in this article presents one such example from a brain
connectome study. In this study, brain connectome networks are available for multiple
individuals who are classified as subjects with high or low IQ (Intelligence Quotient).
To construct the networks, the human brain has been divided according to the Desikan
Atlas (Desikan et al., 2006) that identifies 34 cortical regions of interest (ROIs), both
in the left and the right hemispheres of the human brain, implying 68 cortical ROIs in
all. A brain network for each subject is represented by a symmetric adjacency matrix
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whose rows and columns correspond to the different ROIs (shared among networks for
all individuals) and whose entries correspond to estimates of the number of fibers con-
necting pairs of brain regions. The scientific goals in this setting are (1) to develop a
predictive rule for classifying a new subject as having low or high IQ based on his/her
observed brain network, and (2) to identify influential brain regions (nodes in the brain
network) as well as significant connections between different brain regions (links in the
network) that are predictive of IQ.

Much of the early literature on network and graph classification was motivated
by the problem of classification of chemical compounds, where a graph represents a
compound’s molecular structure. In such analyses, discriminative patterns in a graph
were identified and used as features for training a standard classification method (e.g.,
see Srinivasan et al., 1996, Helma et al., 2001, Deshpande et al., 2005 and Fei and
Huan, 2010). Similar approaches, based on summary measures such as average degree,
clustering coefficient and average path length, have also been employed in the context of
neuroscience applications (e.g., see Bullmore and Sporns, 2009, Olde Dubbelink et al.,
2013, Daianu et al., 2013 and references therein). Alternative approaches use kernels
defined on graph spaces to construct similarity metrics between two networks (e.g., see
Vishwanathan et al., 2010), which in turn can be used to build, for example, nearest-
neighbor classifiers. While all these methods scale well with the size of the network, it
is our experience that the choice of features/kernels (which is typically ad-hoc) has a
dramatic influence on the results. Furthermore, these type of methods typically do not
allow for a full exploration of which nodes/edges are influential on the responses. Other
relevant references in this area include Vogelstein et al. (2013), who propose to look for a
minimal set of nodes which best explains the difference between two groups of networks,
and Durante et al. (2018), who propose a high-dimensional Bayesian tensor factorization
model for a population of networks that allows to test for local edge differences between
two groups of subjects. Both of these approaches tend to focus mainly on classification
and are not designed to detect important nodes and edges impacting the response.

An alternate approach to constructing classifiers based on network data is to vec-
torize the network predictor and treat the edge weights as a long vector of predictors
(e.g., see Richiardi et al., 2011, Craddock et al., 2009 and Zhang et al., 2012) in a bi-
nary regression setting. This approach can take advantage of recent developments in
high-dimensional regression, either penalized likelihood estimation (e.g., see Tibshirani,
1996) or Bayesian shrinkage (e.g., see Park and Casella, 2008, Carvalho et al., 2010, Ar-
magan et al., 2013a, and Du and Ghosal, 2018). However, such an approach treats the
links of the network as exchangeable, ignoring the fact that coefficients involving com-
mon nodes can be expected to be correlated a-priori. In other words, it does not capture
the fact that we expect, a priori, higher correlation among coefficients that share one
node in common. Being agnostic to the structure of the network predictor, the ordinary
shrinkage priors are not well adapted to node-level (as opposed to edge-level) inference.

This article develops a high-dimensional Bayesian network classifier that can identify
both influential nodes and specific edges impacting classification. To achieve this goal,
we formulate a high-dimensional logistic regression model with the binary response
regressed on the network predictor. While the model can be represented as a linear
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function of the network data, we carefully add structure to the network coefficient
and design prior distributions to exploit the network topology and draw inference on
influential network nodes. More concretely, the coefficients associated with the network
predictor are assigned a prior from the class of network global-local shrinkage priors. In
the context of linear regression, Guha and Rodriguez (2021) develop a special case of the
network shrinkage prior, known as the Network Lasso prior. This article generalizes the
earlier approach to develop a broader class of network shrinkage priors. In particular,
this article introduces another member of this broad class of priors, called the Network
Horseshoe prior, and presents a comparative study of the empirical performance of
these two priors in various simulation settings and in the brain network data. Another
related approach has been proposed by Relión et al. (2019), who develop a method
that relies on a combination of regular and group Lasso penalties within a logistic
regression framework to carry out network classification. One key advantage of our
Bayesian approach over this penalized likelihood method is our ability to fully quantify
the uncertainty associated with our estimates.

A major contribution of this article is a careful study of the asymptotic properties
of the resulting binary network classification framework. Theory for posterior contrac-
tion for high-dimensional regression models has gained traction over the last 10 years.
For example, Castillo et al. (2012) and Belitser and Nurushev (2015) have established
posterior concentration and variable selection properties for certain point-mass priors
in linear regression models. The latter article also establishes asymptotically nominal
coverage of Bayesian credible sets (see also Castillo et al., 2015 and Martin et al., 2017).
In the same thread, Jeong and Ghosal (2021) develop posterior contraction properties
for sparse generalized linear models with variable selection priors on coefficients. In con-
trast, the literature on posterior contraction properties for high-dimensional Bayesian
shrinkage priors is less well developed. Armagan et al. (2013b) were the first to show
posterior consistency in the ordinary linear regression model with shrinkage priors for
low-dimensional settings under the assumption that the number of covariates does not
exceed the number of observations. Using direct calculations, Van Der Pas et al. (2014)
have shown that the posterior based on the ordinary horseshoe prior concentrates at the
optimal rate for normal-mean problems. More recently, Song and Liang (2017) consider
a general class of global-local continuous shrinkage priors and obtain posterior contrac-
tion rates in ordinary high-dimensional linear regression models. Bai and Ghosh (2018),
and later Zhang and Ghosh (2019), have developed posterior contraction theory for
global-local shrinkage priors in the context of multivariate regression frameworks. An
insightful review on properties of the posterior distribution under global-local shrinkage
priors is available in Bhadra et al. (2019). Notably, the posterior contraction literature
for global-local shrinkage priors on binary logistic regression is limited, with a few excep-
tions, such as Wei and Ghosal (2020). In this article we develop posterior contraction
theory for the Network Lasso prior. Our development requires considerably different
techniques and results compared to Wei and Ghosal (2020). In fact, developing the the-
ory for network classification with the Network Lasso prior proposed in this article faces
two major challenges. First, our prior has a low-rank structure in the prior mean of the
edge coefficients, based on node specific latent variables (Guha and Rodriguez, 2021),
as well as an additional shrinkage structure through the variance. Second, we introduce
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a variable selection prior on the node-specific latent variables. The combination of these
two structures adds substantial theoretical challenges over and above Wei and Ghosal
(2020), so that different proof techniques are required (see Section 1 of the Supplemen-
tary Material (Guha and Rodriguez, 2023)). Second, we aim to prove a challenging but
practically desirable result of asymptotically correct classification when the number of
edges in the network predictor grows at a super-linear rate as a function of the sample
size. Both these features present obstacles which we overcome in this work. The theoret-
ical results provide insights on how the number of nodes in the network predictor, the
dimensions of node-specific latent variables, and the structure and sparsity in the true
network predictor coefficients can vary with the sample size n to achieve asymptotically
correct classification.

The remainder of the manuscript is organized as follows: Section 2 develops the
model and the prior distributions. Section 3 discusses theoretical developments justify-
ing the asymptotically desirable prediction from the proposed model. Section 4 details
posterior computation. Results from various simulation experiments and a brain con-
nectome data analysis have been presented in Sections 5 and 6, respectively. Finally,
Section 7 concludes the article with a brief discussion of the proposed methodology.

2 Model Framework
2.1 Notation
For i = 1, . . . , n, let Ai ∈ R

V×V denote the weighted undirected network predictor with
V nodes, and yi ∈ {0, 1} be the binary response corresponding to the i-th individual.
The entry ai,k,l ∈ R of Ai indicates the strength of association between the k-th and l-th
nodes of the network. Our framework allows entries of Ai to be continuous, binary or
count. In this paper, we focus on networks that have no self relationships, i.e., ai,k,l ≡ 0
when k = l, and are undirected (ai,k,l = ai,l,k), but generalizations to directed networks
are straightforward.

2.2 Model Formulation
In the context of network classification, we propose a high-dimensional logistic regression
model of the binary response yi ∈ {0, 1} on the undirected network predictor Ai as

yi ∼ Ber (G(ψi)) , ψi = μ + 〈Ai,Γ〉F , (2.1)

where G : R → [0, 1] is a link function and Γ is a V × V symmetric network coefficient
matrix whose (k, l)-th element is given by γk,l/2, with γk,k = 0, for all k = 1, . . . , V . The
notation 〈Ai,Γ〉F denotes the Frobenius inner product between the two matrices Ai

and Γ, defined as the sum of the element-wise product between the two matrices. For
conciseness, we focus on logistic models in this paper, where G(z) = [1 + exp {−z}]−1,
but our prior formulation can be easily adapted to other link functions.

Model (2.1) can be expressed in the form of a generalized linear model. To be more
specific, 〈Ai,Γ〉F =

∑
1≤k<l≤V

ai,k,lγk,l, due to the symmetry and zero diagonal entries
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in Ai and Γ, so that
ψi = μ +

∑
1≤k<l≤V

ai,k,lγk,l.

Furthermore, note that, if xi = (ai,1,2, . . . , ai,(V−1),V )′ ∈ R
V (V−1)/2 is the collection

of all upper triangular elements of Ai, and γ = (γ1,2, . . . , γ(V−1),V )′ ∈ R
V (V−1)/2 is the

vector of corresponding upper triangular elements of 2Γ, then the linear predictor can
be written as ψi = μ + x′

iγ.

Specifying an ordinary high-dimensional shrinkage prior on γ, such as the ones
described in Carvalho et al. (2010); Armagan et al. (2013a); Park and Casella (2008), is
unsatisfactory in our context since (a) it loses information on network nodes and makes
inference on influential network nodes (with uncertainty) difficult; and (b) it does not
capture the fact that we expect, a priori, higher correlation among coefficients that
share one node in common. These shortcomings motivate the development of the priors
in the next Section.

2.3 Network Global-Local Shrinkage Priors

Let u1, ..,uV be a collection of R-dimensional latent variables, one for each of the
V nodes in the network. In this article, we consider a N(0, 1) prior for the common
intercept parameter μ and propose a general class of network global-local shrinkage
priors on the edge coefficients γk,l’s given by,

γk,l | sk,l, σ2 ∼ N(u′
kΛul, σ

2s2
k,l), σ ∼ H1(·), sk,l ∼ H2(·), (2.2)

where Λ = diag(λ1, . . . , λR) is an R×R diagonal matrix, with the r-th diagonal entry λr.
In this framework, E (Γ) = U ′ΛU , where U is a matrix whose k-th column corresponds
to uk. This representation, related to the eigenvalue decomposition of Γ, provides an
embedding into an R ≤ V dimensional latent space. This kind of embedding has been
widely used to construct sparse models for network data that can capture common
properties such as transitivity (Hoff, 2005). Furthermore, the multiplicative structure
associated with the prior variance allows for both global (controlled by σ2) and local
(controlled by the sk,l’s) shrinkage effects.

The formulation in (2.2) leads to a wide variety of network shrinkage priors by choos-
ing different forms for H1(·) and H2(·). For example, setting H1(σ) as a point mass at
1 and H2(s2

k,l) as an exponential distribution, s2
k,l ∼ Exp(θ/2) with θ ∼ Gamma(ζ, ι),

corresponds to the Network Lasso prior discussed in Guha and Rodriguez (2021). Al-
ternatively, setting both H1 and H2 to be half-Cauchy distributions, leads to what we
call the Network Horseshoe prior (see Carvalho et al., 2010).

In order to identify which nodes are actively related to the response, we assign a
zero-inflated Gaussian prior on the latent factors u1, . . . ,uV

uk | ξk,M ∼ ξkN(0,M) + (1 − ξk)δ0, M ∼ IW (ν, I), (2.3)
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where ξk | Δ ∼ Ber(Δ) and Δ ∼ Beta(aΔ, bΔ). Here, δ0 is the Dirac-delta function at 0,
M is a R×R covariance matrix and IW (ν, I) denotes an inverse-Wishart distribution
with parameters ν and I. The parameter Δ corresponds to the prior probability of the
nonzero uk. Note that, if the k-th node of the network predictor is inactive in predicting
the response, then a-posteriori ξk should assign high probability to 0. Thus, we can use
the posterior probability of the event {ξk = 0} to identify influential nodes. Assigning a
prior distribution to Δ ensures multiplicity correction in the simultaneous selection of
multiple uk’s (Scott and Berger, 2010).

An important aspect of these models is the selection of the model rank R. In order
to learn the effective dimension of the latent space in which the matrix of coefficients is
being embedded, we employ a hierarchical prior of the form

λr ∼ Ber(πr), πr ∼ Beta(1, rη), η > 1.

Note that, if λr = 0, the r-th component of the vectors u1, . . . ,uV has no effect on the
value of the regression coefficients. Hence, Reff =

∑R
r=1 λr ≤ R can be interpreted as

the effective dimensionality of the model. In this context, the choice of hyper-parameters
of the beta distribution is crucial. In particular, note that E[λr] = 1/(1 + rη) → 0 as
r → ∞ and that

∑R
r=1 var(λr) =

∑R
r=1

rη

(1+rη)2(2+rη) < ∞ as R → ∞. The first
property provides (weak) identifiability of the different latent dimensions, while the
second ensures that limR→∞ var(uk) < ∞ as long as the prior for the uk’s has a finite
second moment. For our empirical investigations in Sections 5 and 6, we set η = 1.1.

Under the previous formulation, we can think about selecting R as similar to select-
ing the truncation level of a large dimensional model. As long as R is “large enough”,
the results should be robust to our choice (and further increasing R would lead to neg-
ligible changes). Natural analogies are the truncation of a Dirichlet process mixture
model which results in an (approximate) finite mixture model, and the truncation of
the stick-breaking construction of the Indian Buffet process (Teh et al., 2007). In our
illustrations, we perform sensitivity analyses to determine an optimal value of R that
balances computational efficiency and inferential accuracy, noting that further increases
in R beyond the optimal value do not lead to any significant change in model perfor-
mance. Along with R, sensitivity analyses regarding the choice of hyper-parameters
ι, ζ, aΔ, bΔ and ν are also performed and recorded in the simulation studies.

3 Posterior Contraction of the Binary Network
Classification Model

This section establishes convergence results for (2.1) under the Network Lasso shrinkage
prior given by γk,l | sk,l ∼ N(u′

kΛul, s
2
k,l), s2

k,l ∼ Exp(θn/2). For the theoretical study, a
common practice is to fix θn as a function of n (Armagan et al., 2013a). Our theoretical
investigations fix this function, with the exact expression given in Condition (6) in
Section 3.2.

In our analysis, we consider an asymptotic setting in which the number of nodes in
the network predictor, Vn, grows with the sample size n. This framework attempts to
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capture the fact that the number of coefficients, qn = Vn(Vn−1)
2 , will typically be much

larger than n. This creates theoretical challenges, which are related to (but distinct from)
those faced in showing posterior consistency for high-dimensional continuous (Armagan
et al., 2013a) and binary regressions (Wei and Ghosal, 2020).

3.1 True Data Distribution and Assumption for the True Network
Coefficient

Let yn = (y1, . . . , yn)′ be the vector of observations. Using the subscript 0 to indicate
the true parameter values, the data generating model is assumed to be

yi ∼ Ber

(
exp {ψi,0}

1 + exp {ψi,0}

)
, ψi,0 = μ0 + 〈Ai,Γ0〉F , (3.1)

where μ0 is the true intercept in the network predictor and Γ0 is the true symmetric
network coefficient matrix. We assume that Γ0 can be represented by the sum of a
symmetric low-dimensional matrix and a symmetric sparse matrix. Thus, we assume
that γk,l,0 = u′

k,0Λul,0 + ϑk,l,0, where uk,0 is a R0 dimensional vector, k = 1, . . . , Vn.
Also, ϑ0 is the vector of all ϑk,l,0, k < l, and we denote the number of nonzero elements
of ϑ0 by hn,0, i.e., ||ϑ0||0 = hn,0.

For any ε > 0, define An =
{

(μ,Γ) : 1
n

n∑
i=1

|pμ,Γ(yi = 1) − pμ0,Γ0(yi = 1)| ≤ ε

}
as a

neighborhood around the true density. This neighborhood construction has been used
in Ghosal et al. (2006) in the context of density estimation in nonparametric binary re-
gression with Gaussian processes. Further, let πn(·) and Πn(·) be the prior and posterior
densities of (μ,Γ) based on yn, such that

Πn(Ac
n) =

∫
Ac

n
pμ,Γ(yn)πn(μ,Γ)dμdΓ∫
pμ,Γ(yn)πn(μ,Γ)dμdΓ

,

where pμ,Γ(yn) denotes the likelihood of the n-dimensional response vector yn.

3.2 Main Results

To show the posterior contraction results, we generally follow Wei and Ghosal (2020)
and Armagan et al. (2013a), but with substantial modifications required due to the
nature of our proposed network lasso prior distribution. In proving the results, we make
a couple of simplifications. First, it is assumed that the dimension Rn of uk is the same
as R0,n, the dimension of uk,0, and that both of them increase with n. Consequently, the
effective dimensionality of the latent space does not need to be estimated and Λ = I is
a non-random matrix. Second, we assume that M is non-random and M = I. Finally,
we set hyper-parameters aΔ = bΔ = 1 in proving our theoretical results. We emphasize
that these assumptions are not essential for the contraction result to be true, and are
only introduced in order to simplify the derivations.



1138 Bayesian Network Classification

For two sequences {C1,n}n≥1 and {C2,n}n≥1, C1,n = o(C2,n) if C1,n/C2,n → 0, as
n → ∞. The following theorem shows contraction of the posterior asymptotically under
mild sufficient conditions on Vn and hn,0. The proof of the theorem is provided in Section
1 of the Supplementary Material (Guha and Rodriguez, 2023).

Theorem 3.1. Assume

1. sup
r=1,..,Rn;k=1,..,Vn

|uk,r,0| < Mu < ∞;

2. RnVn = o
(

n
log(n)

)
; Vn → ∞ as n → ∞.

3. ‖Ai‖∞ is bounded for all i = 1, .., n, w.l.o.g., assume ||Ai||∞ ≤ 1.

4. hn,0 log(qn) = o(n)

5. ‖ϑ0‖∞ is bounded; w.l.g. ‖ϑ0‖∞ < 1

6. θn = C
qnnρ/2 log(n) for some C > 0 and some ρ ∈ (1, 2).

Under assumptions (1)-(6) for the Network Lasso prior on Γ, Πn(Ac
n) → 0 as n → ∞,

for any ε > 0.

Conditions (1), (3) and (5) are technical conditions ensuring that each of the entries
in the true network coefficient and the network predictor are bounded. Condition (2)
puts an upper bound on the growth of the number of network nodes and dimensions of
node specific latent variables vis-a-vis the sample size to achieve asymptotically correct
classification of networks. Similarly, (4) puts a restriction on the number of nonzero
elements of ϑ0 with respect to n.

The proof bears some connections with the proofs of results in Wei and Ghosal
(2020), but is significantly different from it, mainly due to the introduction of net-
work shrinkage priors. Notably, the proof of Theorem 3.1 is built upon Lemma A.1 and
Lemma A.2 (see Section 1 of Supplementary Material (Guha and Rodriguez, 2023)),
where Lemma A.2 is a new result specifically needed to address the network lasso prior
structure in our framework. Additionally, as part of the proof of Theorem 3.1, we needed
to establish that the posterior probability − log Π(||W − W 0||∞ < η1

2nρ/2 ) grows sub-
linearly with the sample size n, for a constant η1 > 0, where W = (u′

1u2, . . . ,u
′
Vn−1uVn)′,

W 0 = (u′
1,0u2,0, . . . ,u

′
Vn−1,0uVn,0)′, uk = (uk,1, . . . , uk,Rn)′ and uk = (uk,1,0, . . . , uk,Rn,0)′,

for k = 1, .., Vn. This result is also novel and specific to our construction of the Bayesian
network lasso shrinkage prior. While the other parts in the proof of Theorem 3.1 exploit
known techniques, they have been tailored specific to the result. The next few sections
show empirical performance of the proposed class of priors.

4 Posterior Computation
We have implemented Markov chain Monte Carlo (MCMC) samplers for posterior in-
ference for both the Network Lasso and Network Horseshoe shrinkage priors on Γ. We
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use the result discussed in Theorem 1 of Polson et al. (2013) to obtain

p(yi|Ai,Γ) = exp {yi(μ + 〈Ai,Γ〉F )}
1 + exp {μ + 〈Ai,Γ〉F }

= exp {(yi − 0.5)(μ + 〈Ai,Γ〉F )}
∫

exp(−ωi(μ + 〈Ai,Γ〉F )2/2)p(ωi)dωi,

where p(ωi) is the density for PG(1,0) distribution. We exploit this result and rely on
data augmentation approach as outlined in Polson et al. (2013) to introduce variables
ω1, . . . , ωn in the likelihood and write the likelihood function associated with our model
as

p(y |A1, ..,An,Γ,ω) ∝
n∏

i=1
p(yi |Ai,Γ, ωi)

∝
n∏

i=1
exp

{
(yi − 0.5)(μ + 〈Ai,Γ〉F ) − ωi(μ + 〈Ai,Γ〉F )2/2

}

∝
n∏

i=1
exp

{
−ωi

2

[
(yi − 0.5)

ωi
− (μ + 〈Ai,Γ〉F )

]2
}
.

Hence, while the original conditional posterior distributions for the parameters are
not available in closed forms, the augmented full conditional distributions mostly belong
to standard families. Sections 2 and 3 in the supplementary material provide details of
the algorithms for the Network Lasso and Network Horseshoe priors on γ, respectively.

Let Γ(1), . . . ,Γ(L) and μ(1), . . . , μ(L) be the L MCMC samples for Γ and μ, respec-
tively, obtained after suitable burn-in and thinning. To classify a newly observed network
A∗ as a member of one of the two groups, we compute

S(l) = exp(μ(1) + 〈A∗,Γ(l)〉)
1 + exp(μ(1) + 〈A∗,Γ(l)〉)

for l = 1, . . . , L. Then A∗ is classified as a member of group ‘low’ or ‘high’ if 1
L

∑L
l=1 S

(l)

is less than or greater than a selected cut-off value tc, respectively. Similarly, node k is
recognized to be influential in the classification process if 1

L

∑L
l=1 ξ

(l)
k > tn for a pre-

specified threshold tn, where ξ
(1)
k , . . . , ξ

(L)
k are the L post burn-in MCMC samples of ξk.

In the same spirit, we employ the algorithm described in Section 4 of the supplementary
material to postprocess the posterior samples and identify the influential edges impact-
ing the response. The algorithm takes care of multiplicity correction by controlling the
false discovery rate (FDR). Finally, we obtain an estimate of the posterior distribution
of the effective dimensionality, Pr(Reff = r |Data) ≈ 1

L

∑L
l=1 I(

∑R
m=1 λ

(l)
m = r), where

I(A) for an event A is 1 if the event A happens and 0 otherwise, and λ
(1)
m , . . . , λ

(L)
m are

the L post burn-in MCMC samples of λm.
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5 Simulation Studies
This section evaluates the inferential and classification ability of two of our proposed
network classification priors, the Bayesian Network Lasso classifier (BNLC) and the
Bayesian Network Horseshoe classifier (BNHC), vis-a-vis a number of competitors using
synthetic networks generated under various simulation settings. In each simulation, we
assess the ability of the various approaches to correctly identify influential nodes and
edges, to accurately estimate edge coefficients, and to classify a network with precise
characterization of uncertainties.

5.1 Simulation Setup

For all of our simulations, data is generated from a logistic regression model of the form

yi | Ai,Γ0 ∼ Ber

(
exp(μ0 + 〈Ai,Γ0〉F )

1 + exp(μ0 + 〈Ai,Γ0〉F )

)
, (5.1)

where Γ0 is a symmetric matrix with zero diagonal entries. We fix the value of the
intercept μ0 at 2 in all simulation scenarios, and then consider different mechanisms for
constructing the matrix covariates A1, . . . ,An and the matrix of coefficients Γ0. In all
of our experiments, we work with V = 25 nodes and n = 250 samples.

We study two different schemes for generating the network Ai, referred to as Simu-
lation 1 and Simulation 2, respectively. In Simulation 1, the values associated with the
network edges are simulated from a standard normal distribution. In contrast, in Simu-
lation 2, the nodes in each network are organized into communities so that nodes in the
same community tend to have stronger connections than nodes belonging to different
communities (i.e., the networks are generated from a blockmodel). This pattern closely
mimics real brain connectome networks (Bullmore and Sporns, 2009). More specifically,
in Simulation 2 we assign each node a community label, fk ∈ {1, 2, 3}, k = 1, . . . , V .
The node assignments are the same for all networks in the population, and the size of
the communities are approximately the same. Given the community labels, the (k, k′)th
element of Ai is simulated from N(mfk,fk′ , σ

2
0), where mk,l = 0.5 when k = l. When

k = l, i.e., when the concerned edges connect nodes belonging to different communities,
we sample a fixed number of edge locations randomly and simulate the values from
N(0, 1), assigning the values at the remaining locations to be 0. In all cases, we set
σ2

0 = 1.

On the other hand, the true matrix of coefficients Γ0 is constructed as the sum
of a low-rank matrix Γ0,1, which provides the majority of the structure, and a sparse
contamination matrix ϑ0. To construct the matrix Γ0,1, we draw V latent variables
uk,0, each of dimension R0, from a mixture distribution given by

uk,0 ∼ �0N (0.51R0 , IR0) + (1 − �0)δ0, k ∈ {1, . . . , V }, (5.2)

where 1R0 is a vector of ones of length R0, IR0 is an identity matrix of size R0 × R0,
and �0 is the probability that any uk,0 is nonzero. Then, we define the (k, l)-th element
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of Γ0,1 as u′
k,0ul,0

2 , k < l and as 0 if k = l. We refer to (1 − �0) as the node sparsity
parameter in the context of the data generation mechanism.

On the other hand, the matrix ϑ0 is constructed by randomly selecting a proportion
�0,2 of entries to be non-zero. We refer to (1 − �0,2) as the residual edge sparsity.
We consider three different strategies to generate the non-zero elements of ϑ0. Under
Strategy 1, the non-zero entries of ϑ0 are simulated from a normal distribution with
mean 1 and variance 0.1. Under Strategy 2, they are simulated from normal distribution
with mean 0.5 and variance 0.1. Finally, under Strategy 3, the non-zero entries are fixed
at 0.5.

For each of Simulation 1 and Simulation 2 we consider four different experiments
that combine different levels of node sparsity, edge sparsity, true and maximum latent
dimensions R0 and R, as well as different strategies for generating ϑ0 (see Tables 1
and 2). In particular, note that the various experiments allow model mis-specification
with unequal choices of R and R0. As competitors, we use generic variable selection and
shrinkage methods that ignore the network structure in the predictor and treat edges
as a long predictor vector to fit high-dimensional binary regression with a logit link
function. In particular, we compare the performance of our model with a binary logistic
regression with the Lasso penalty (Tibshirani, 1996) on the coefficients. With a slight
abuse of terminology, we call it Lasso hereon. We also compare our approach to ordinary
high-dimensional binary logistic regression with Bayesian Lasso (BLasso in short) prior
(Park and Casella, 2008), and Bayesian Horseshoe (BHS in short) prior (Carvalho et al.,
2010) on coefficients, which are popular Bayesian shrinkage regression methods. We used
the glmnet package in R (Friedman et al., 2010) to implement the frequentist Lasso for
binary logistic regression, while we have written our own codes for BLasso and BHS.
A comparison with these methods will indicate any relative advantage of exploiting the
structure of the network predictor. We have also compared our methods to a frequentist
approach that develops network classification in the presence of a network predictor
and a binary response (Relión et al., 2019). However, we find that all the competitors
outperform this approach, and hence we have not included the results for the same.

Cases R0 R Node Residual Edge Strategy
Sparsity (1 − �0) Sparsity (1 − �0,2)

Case - 1 2 2 0.5 0.95 Strategy 1
Case - 2 3 5 0.6 0.95 Strategy 1
Case - 3 2 5 0.5 0.90 Strategy 2
Case - 4 2 5 0.4 0.90 Strategy 3

Table 1: Table presents different cases for Simulation 1 . The true dimension R0 is the
dimension of vector object uk,0 using which data has been generated. The maximum
dimension R is the dimension of vector object uk using which the model has been fitted.
Node sparsity and residual edge sparsity are described in the text.

For all Bayesian models we generate 50, 000 MCMC samples, out of which the first
30, 000 are discarded as burn-ins. Convergence is assessed by comparing different simu-
lated sequences of representative parameters starting at different initial values (Gelman
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Cases R0 R Node Residual Edge Strategy
Sparsity (1 − �0) Sparsity (1 − �0,2)

Case - 1 2 2 0.5 0.95 Strategy 1
Case - 2 2 4 0.5 0.95 Strategy 1
Case - 3 2 3 0.7 0.95 Strategy 1
Case - 4 2 5 0.4 0.90 Strategy 3

Table 2: Table presents different cases for Simulation 2 . The true dimension R0 is the
dimension of vector object uk,0 using which data has been generated. The maximum
dimension R is the dimension of vector object uk using which the model has been fitted.
Node sparsity and residual edge sparsity are described in the text.

et al., 2014b). We monitor the auto-correlation plots and effective sample sizes of the log
likelihood function. In our analysis, we set ν = 20 and aΔ = bΔ = 1. For BNLC, there
are two additional hyper-parameters ι and ζ, both of which are set to 1. Note that the
choice of aΔ = bΔ = 1 ensures that the prior on models is such that we have a uniform
distribution on the number of active nodes, and conditional on the size of the model, a
uniform distribution on all possible models of that size. The choice of ν = 20 ensures
that the prior distribution on M is concentrated around a scaled identity matrix. Since
the model is invariant to rotations of the latent positions, we want the prior on uk’s
to also be invariant under rotation. This requires that we center M around a matrix
that is proportional to the identity. Our choice of ι and ζ set the prior mean of sk,l at
0.5, which is the suggested prior mean for the local parameters proposed in Park and
Casella (2008). Sensitivity to the choice of hyper-parameters is discussed in Section 5.6
for simulation studies and in Section 6.2 for the real data analysis.

5.2 Classification Accuracy and Estimation of Edge Coefficients
To evaluate the out-of-sample predictive performance of the different models, Figure 1
presents the area under the receiver operating characteristic curves (AUCs) obtained
by using different classification thresholds tc (recall the discussion in Section 4). Under
Simulation 1, BNLC consistently outperforms all other models, with BNHC a very close
second. The performance is quite good for models, with AUCs above 0.9 in all four cases.
On the other hand, under Simulation 2 the order appears to switch and BNHC seems
to be the best performing model, closely followed by BNLC. AUC values are also high in
this case, but uniformly lower than in Simulation 1. This suggests that the presence of
structure in the network predictor can affect the accuracy of the classification. Among
the methods that ignore the network structure associated with the predictor, BLasso
tends to have the worse performance, particularly under Simulation 2.

In addition to classification rates, we also compute mean squared errors (MSE) asso-
ciated with the point estimates of the edge coefficients under each model (see Tables 3
and 4). For the Bayesian approaches, point estimates are computed using the posterior
means of the edge coefficients. In all cases, BNLC yields point estimates with the low-
est MSE. BNHC is the second best-performing method under this metric in almost all
cases, closely followed by BLasso.
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Figure 1: Figure shows classification performance in the form of Area under Curve
(AUC) of Receiver Operating Characteristic (ROC) curve for all cases in Simulations 1
and 2.

MSE
Cases BNLC BNHC Lasso BLasso BHS

Case - 1 0.164 0.683 1.197 0.980 1.160
Case - 2 2.349 3.568 3.943 3.502 3.993
Case - 3 0.106 0.467 0.906 0.695 0.856
Case - 4 0.166 0.200 0.485 0.329 0.415

Table 3: Performance of BNLC and BNHC vis-a-vis competitors for cases in Simulation
1. Parametric inference in terms of point estimation of edge coefficients has been cap-
tured through the Mean Squared Error (MSE). The minimum MSE among competitors
for any case is made bold.

MSE
Cases BNLC BNHC Lasso BLasso BHS

Case - 1 0.279 0.418 0.807 0.712 0.739
Case - 2 0.225 0.396 0.772 0.695 0.728
Case - 3 0.134 0.549 0.906 0.748 0.883
Case - 4 0.066 0.106 0.167 0.137 0.141

Table 4: Performance of BNLC and BNHC vis-a-vis competitors for cases in Simulation
2. Parametric inference in terms of point estimation of edge coefficients has been cap-
tured through the Mean Squared Error (MSE). The minimum MSE among competitors
for any case is made bold.
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5.3 Estimation of the Effective Dimensionality

Figures 2 and 3 present posterior distribution of Reff , the effective dimensionality of
the latent space, for BNLC and BNHC in Simulations 1 and 2, respectively. In all eight
experiments, the mode of the posterior distribution corresponds to the true dimension of
the latent space. Furthermore, compared to BNLC, note that the posterior distribution
of Reff under BNHC tends to concentrate more sharply around the true value.

5.4 Identification of Influential Nodes

Figures 4 and 5 show the posterior probability of the k-th node being detected as
influential, i.e., Pr(ξk = 1 | Data), under BNLC and BNHC for each node and each case
within Simulations 1 and 2, respectively. Generally speaking, in Simulation 1, BNLC
tends to outperform BNHC, with the two methods having comparable true positive
rates, but BNHC having a much higher false positive rate (at the standard threshold
tn = 0.5). BNHC behaves particularly poorly in case 2, where it identifies 4 false positive
nodes and one false negative node (against a perfect separation for BNLC), and in case
3, where it identifies all but one node as influential.

The pattern is similar for Simulation 2, with both methods having comparable true
positive rates but with BNHC having consistently higher false positive rates and again
performing particularly poorly in case 3. However, there are also some notable differ-
ences. For example, the true positive rates tend to be lower in Simulation 2 than in
Simulation 1 for both methods. Similarly, the false positive rate for BNHC seems to
be lower in Simulation 2 than in Simulation 1. Finally, in Simulation 2 both models
struggle with case 3 (which was not the case in Simulation 1 ), although they do it in
slightly different ways. BNLC shows relatively high rates for both false positives and
false negatives (16% in both cases), while BNHC shows a very high false positive rate
(32%) but a low false negative rate (4%).

5.5 Identification of Influential Edges

We use the algorithm described in Section 4 of the Supplementary Material (Guha and
Rodriguez, 2023) to estimate (local) false discovery rates (FDR) for each of the edge
coefficients under the various shrinkage priors. These, in turn, can be used to identify
influential edges in the network while controlling for the overall FDR of the procedure.
In this section, we attempt to control FDR so that it does not exceed 0.05.

Table 5 shows the realized FDR after applying the procedure to each simulated
dataset, as well as true positive rates (TPR) and false positive rates (FPR). The best
performing prior is BNLC, where our procedure seems to be well calibrated (realized
FDR rates seem to be roughly consistent with the desired nominal rate of 0.05), FPRs
tend to be quite low, and TPRs range between 0.46 and 0.72. On the other hand, BNHC
tends to yield higher TPRs (ranging between 0.59 and 0.86) in most cases, but at the
cost of uniformly higher FPRs, which in turn lead to FDR above the nominal value.
The other three variable selection procedures (Lasso, Bayesian Lasso and Horseshoe)
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Figure 2: Plots showing posterior probability distribution of effective dimensionality for
BNLC and BNHC models in all 4 cases in Simulation 1. Filled bullets indicate the true
value of effective dimensionality.
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Figure 3: Plots showing posterior probability distribution of effective dimensionality for
BNLC and BNHC models in all 4 cases in Simulation 2. Filled bullets indicate the true
value of effective dimensionality.
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Figure 4: Simulation 1: Clear background denotes uninfluential and dark background
denotes influential nodes in the truth for BNLC and BNHC models. Note that there are
25 rows (corresponding to 25 nodes) and 4 columns corresponding to 4 different cases
in Simulation 1. The model-detected posterior probability of being influential has been
super-imposed onto the corresponding node.

BNLC BNHC Lasso BLasso BHS
Sim Cases TPR FPR FDR TPR FPR FDR TPR FPR FDR TPR FPR FDR TPR FPR FDR

1

1 0.65 0.01 0.07 0.72 0.12 0.10 0.50 0.22 0.19 0.54 0.19 0.16 0.50 0.18 0.14
2 0.64 0.00 0.00 0.63 0.02 0.08 0.40 0.14 0.16 0.48 0.18 0.16 0.46 0.11 0.12
3 0.45 0.00 0.00 0.86 0.40 0.17 0.42 0.22 0.14 0.44 0.20 0.13 0.46 0.12 0.12
4 0.72 0.09 0.10 0.70 0.12 0.11 0.54 0.16 0.16 0.64 0.20 0.15 0.62 0.15 0.13

2

1 0.63 0.00 0.00 0.84 0.08 0.07 0.44 0.20 0.12 0.44 0.20 0.16 0.52 0.12 0.14
2 0.59 0.00 0.00 0.64 0.14 0.12 0.45 0.22 0.14 0.44 0.20 0.18 0.45 0.19 0.15
3 0.46 0.02 0.07 0.59 0.08 0.06 0.31 0.16 0.17 0.36 0.18 0.20 0.32 0.15 0.18
4 0.68 0.03 0.06 0.75 0.06 0.08 0.34 0.12 0.14 0.31 0.14 0.16 0.31 0.12 0.13

Table 5: True Positive Rates (TPR), False Positive Rates (FPR) and Realized False
Discovery Rate (FDR) for edges for cases in Simulation 1 and Simulation 2.

that ignore the network structure in the predictor perform the worst, as they yield lower
FPRs and higher FPRs and FDRs.

5.6 Sensitivity to the Choice of Hyperparameters

This section assesses the sensitivity of the inferences from BNLC and BNHC to the
choice of hyperparameters. In our sensitivity analysis for BNLC, we consider five sce-
narios that correspond to alternative values for various subsets of hyperparameters:
(i) aΔ = 1, bΔ = 9; (ii) ν = 20, ζι = 5 (iii) ν = 50, ζ

ι = 5 (iv) ν = 20, ζι = 0.2 (v)
ν = 50, ζ

ι = 0.2. Combination (i) ensures small prior mean for ξk’s, while combinations
(ii)-(v) allow a range of prior means for θ and M . On the other hand, for BNHC we
employ three different alternative combinations of hyperparameters: (i) aΔ = 1, bΔ = 9
(ii) ν = 10 (iii) ν = 50. To keep the discussion concise, we only present here results for
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Figure 5: Simulation 2: Clear background denotes uninfluential and dark background
denotes influential nodes in the truth for BNLC and BNHC models. Note that there are
25 rows (corresponding to 25 nodes) and 4 columns corresponding to 4 different cases
in Simulation 2. The model-detected posterior probability of being influential has been
super-imposed onto the corresponding node.

BNLC BNHC
Prior Orig (i) (ii) (iii) (iv) (v) Orig (i) (ii) (iii)
MSE 0.16 0.14 0.30 0.22 0.10 0.22 0.20 0.19 0.28 0.28

Table 6: Mean Squared Error (MSE) of estimating the network coefficient in BNLC and
BNHC for different combinations of hyper-parameters.

Case 4 in Simulation 1, but the outcomes are similar for all other experiments.

Table 6 presents the MSE associated with the network coefficients under the different
priors. There seems to be a moderate effect of the priors on the MSE, particularly
for BNLC. In particular, prior (ii) under BNLC seems to perform quite poorly when
compared with the rest. Figure 6 shows the posterior probabilities of a node being
identified as influential under each prior. Again, there seems to be a moderate impact
of the prior on the estimated posterior probabilities. Indeed, for most nodes, Pr(ξk =
1 | Data) is quite comparable across all priors, and the nodes identified as influential
by each model (at the standard threshold tn = 0.5) are almost identical across all
priors. However, there are some notable exceptions. For example, Pr(ξ4 = 1 | Data)
under BNHC is estimated to be 0 under prior (i), but it is estimated to be 1 under the
original specification as well as the other two alternatives. Finally, Table 7 offers TPR
and FPR values corresponding to the identification of influential edges for BNLC and
BNHC under various combinations of hyper-parameters. For BNLC, all alternative prior
specifications lead to higher TPRs, at the cost of higher FPRs. In the case BNHC, the
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Figure 6: Figure shows P (ξk = 1|Data) for BNLC and BNHC under different hyper-
parameter combinations in the simulated data for Case 4 (Simulation 1). The first
column in each matrix shows the values corresponding to the original prior specification.

BNLC BNHC
Combinations Orig. (i) (ii) (iii) (iv) (v) Orig. (i) (ii) (iii)

TPR 0.72 0.80 0.76 0.82 0.83 0.78 0.70 0.64 0.88 0.82
FPR 0.09 0.16 0.21 0.17 0.21 0.18 0.12 0.19 0.24 0.18

Table 7: True Positive Rates (TPR) and False Positive Rates (FPR) of identifying
influential edges in BNLC and BNHC for different combinations of hyper-parameters.

results are mixed, with prior (i) performing quite poorly (higher FPR and lower TPR
than the original prior), and priors (ii) and (iii) exhibiting the same trade offs (higher
TPR at the cost of also higher FDR) as the various alternative priors for BNLC.

Overall, we note that the prior can have a moderate impact on the inference. This
should not be surprising. Since this is a high-dimensional regression paradigm with num-
ber of parameters far exceeding the sample size, one expects the prior hyper-parameters
to have some effect on the inference.

6 Brain Connectome Application
In this section, we apply the BNLC and BNHC priors to study the relationship between
a subject’s brain connectome and its intelligence based on a sample of n = 114 subjects,
using the MRN (Mind Research Network) dataset collected at the University of New
Mexico, and available at https://neurodata.io. This dataset contains information on
the full scale intelligence quotient (FSIQ) for multiple individuals. Full scale intelligence

https://neurodata.io
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quotient (FSIQ) is a measure of an individual’s complete cognitive capacity, and is
designed to provide a measure of an individual’s overall level of general cognitive and
intellectual functioning. FSIQ is derived by administering selected sub-tests from the
Wechsler Intelligence Scales (WIS) that measure acquired knowledge, verbal reasoning,
attention to verbal material, fluid reasoning, spatial processing, attention to detail and
visual-motor integration (Caplan et al., 2011). A substantial body of literature has
suggested that there is an IQ threshold (usually described as an IQ of approximately
120 points) that may be characterized as superior reasoning ability (Brown et al., 2009;
Carson et al., 2003). Following this literature, we have converted the FSIQ scores into
a binary response variable y, which takes value 0 if FSIQ is less or equal to 120, and
takes value 1 if FSIQ is greater than 120. Thus, we classify the subjects in our study as
belonging to the low IQ group if y = 0, and the high IQ group if y = 1.

Along with FSIQ measurements, brain connectome information was gathered using
weighted diffusion tensor imaging (DTI). DTI is a brain imaging technique that enables
measurement of the restricted diffusion of water in tissue in order to produce neural tract
images. The brain imaging data we use has been pre-processed using the NeuroData
MRI to Graphs (NDMG) pipeline (Kiar et al., 2016, 2017a,b). For the purpose of our
analysis, the human brain is divided according to the Desikan atlas (Desikan et al.,
2006), which identifies 34 cortical regions of interest (ROIs) both in the left and right
hemispheres of the human brain, implying 68 cortical ROIs in all. This results in a
brain network of a 68×68 matrix for each individual. Our scientific goals in this setting
include identification of brain regions or network nodes significantly related to FSIQ
and classification of a subject into the low IQ or high IQ group based on his/her brain
connectome information.

The analyses we present in this section use the same hyperparameters as our sim-
ulation studies. BNLC and BNHC are both fitted with R = 4, which is found to be
sufficient for this study (see sensitivity analysis in Section 6.2). The MCMC chains
are run for 50, 000 iterations, with the first 30, 000 iterations discarded as burn-in. As
before, convergence is assessed by comparing different simulated sequences of represen-
tative parameters started at different initial values (Gelman et al., 2014a). The posterior
mean for the effective dimensionality of the model is 2.17 for BNLC and 2 for BNHC,
and the posterior probabilities associated with 4 dimensions for BNLC and BNHC are
given by 0.0082 and 0.0000, respectively.

6.1 Findings from the Brain Connectome Application
We first focus on identifying ROIs that are influential on FSIQ. At a threshold of tn =
0.5, BNLC identifies 38 influential ROIs, 20 in the left and 18 in the right hemisphere.
On the other hand, using the same threshold, BNHC identifies 48 influential ROIs, 26
in the left hemisphere and the rest in the right hemisphere. Table 8 lists the 29 ROIs
that are identified as influential by both methods. A large number of these are part
of the frontal lobes in both the hemispheres. Numerous studies have linked the frontal
region to an individual’s intelligence and cognitive functions (e.g., see Yoon et al., 2017;
Stuss et al., 1985; Razumnikova, 2007; Miller and Milner, 1985; Kolb and Milner, 1981).
The methods also agree in finding a significant association between FSIQ and ROIs in
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Hemisphere Lobe Node

Left

Temporal fusiform, middle temporal gyrus, parahippocampal,
temporal pole, transverse temporal

Cingulate isthmus cingulate cortex
Frontal pars opercularis, pars orbitalis, pars triangularis, frontal pole
Occipital lingual
Parietal inferior parietal lobule, precuneus, supramarginal gyrus
Insula insula

Right

Temporal parahippocampal, superior temporal gyrus, temporal pole
Cingulate caudal anterior cingulate, isthmus cingulate cortex
Frontal lateral orbitofrontal, medial orbitofrontal, pars opercularis,

pars orbitalis, rostral middle frontal gyrus, superior frontal gyrus
Occipital pericalcarine
Parietal supramarginal gyrus
Insula insula

Table 8: Nodes identified as influential by both BNLC and BNHC.

the left inferior parietal lobule, the left precuneus and the supramarginal gyri in both
the hemispheres, and in the parietal lobe. These regions have also been found to be
significantly related to FSIQ in Yoon et al. (2017).

Figure 7(a) shows the values of Pr(ξk | Data) under BNHC for the nine nodes that
were identified as influential by BNLC but not by BNHC. Note that most of these prob-
abilities seem to be much lower than 0.5, indicating that BNHC is relatively confident
about excluding these nodes. Similarly, Figure 7(b) shows the node inclusion probabil-
ities under BNLC for those nodes that BNHC identified as influential but BNLC did
not. In contrast to Figure 7(a), in this case the probabilities tend to be close to 0.5,
suggesting that BNLC is not very confident about excluding these nodes. These obser-
vations, together with the fact that BNHC tends to include more nodes overall, matches
what we saw in our simulation studies and suggests that BNLC is more conservative in
identifying influential nodes.

Figure 8 shows the significant edges identified by the BNLC and BNHC models. In
this part of the analysis, we only consider edges that connect nodes that were identified
as being influential by each prior. BNLC and BNHC identify 142 and 291 edges as being
influential, respectively. For the most part, these significant edges are spread across the
various nodes. However, we can clearly see that some nodes have no significant edges
involving them. Under BNLC (which, as we discussed before, seems to be more con-
servative) there are only three such nodes (the frontal and temporal poles in the left
hemisphere, and the temporal pole in the right hemisphere). However, under BNHC,
there are 14 nodes with no significant links (including the middle temporal and par-
sopercularis regions of the left hemisphere and the precental and precuneus regions of
the right hemisphere, among others). While this might be somewhat surprising at first
sight, it is not a mistake. Recall that the edges highlighted in the plots were identified
by controlling FDR, so they should be interpreted as the set of edges that are most
likely to be influential, rather than as a comprehensive list. Interestingly, the sets of
nodes with at least one significant edge are very similar in the two models, and both
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Figure 7: Posterior probabilities of nodes selected as influential by one method, but not
by another, of being active.

contain the set of 29 common influential nodes that we listed in Table 8.

Finally, in order to examine the predictive ability of the Bayesian network classi-
fication model, we carry out a 10-fold cross validation exercise and report in Table 9
the (average) AUC for BNLC and BNHC, along with all competing methods. Overall,
all AUC values are relatively low. BNLC seems to perform best, followed by BNHC
and Lasso. The other two approaches (BLasso and BHS) perform quite poorly in this
setting, yielding AUC values below 0.5.

BNLC BNHC Lasso BLasso BHS
0.617 0.598 0.532 0.461 0.484

Table 9: Average AUC values for a 10-fold cross validation exercise involving the com-
peting approaches.

6.2 Sensitivity to the Choice of Hyperparameters

In this section, we carry out a sensitivity analysis using the same alternative set of
hyperparameters introduced in Section 5.6. First, we report in Table 10 the number of
nodes identified as influential under each alternative hyperparameter setting, as well as
the number of these nodes that intersect with those identified in the original analysis.
While there is some variation in the number and exact identity of influential nodes, the
different hyperparameter settings largely seem to agree with each other (31 nodes are
common to all hyperparameter settings under BNLC, and 40 are common to all under
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Figure 8: Plot showing whether an edge connecting two influential nodes is influential
or not. Note that the map is a M ×M symmetric matrix, where M denotes the number
of influential nodes, and each cell denotes an edge connecting the corresponding pair
of nodes. The axis labels are the abbreviated names of the influential ROIs in the left
(starting with ‘lh -’) and the right (starting with ‘rh -’) hemispheres of the brain. Full
names of the ROIs can be obtained from the widely available Desikan brain atlas. A
white cell represents an influential edge, while a red cell represents a non-influential
edge.
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BNHC). Next, we identify significant edges that connect nodes identified as influential
by all sets of hyperparameters under each model (see Table 11). As before, the overlap
is substantial. Finally, we investigate the sensitivity of the models to the choice of R. To
accomplish this, we rerun each of our two models with R = 8 and R = 10, and report the
posterior means of the effective dimensionality, along with AUC (see Table 12). While
we see a small increase in Reff as R increases (particularly for BNHC), the change has
almost no effect on the AUC.

BNLC BNHC
Combinations (i) (ii) (iii) (iv) (v) (i)’ (ii)’ (iii)’

# Nodes detected 35 39 34 40 37 45 49 44
# Intersections with original analysis 34 36 34 37 37 42 45 43
Table 10: Number of nodes identified as influential for all combinations are presented.
The table also presents the number of intersections of influential nodes between different
combinations and the original analysis.

BNLC BNHC
Combinations (i) (ii) (iii) (iv) (v) (i)’ (ii)’ (iii)’

# Edges detected 122 113 125 118 107 272 265 262
# Intersections with original analysis 117 112 119 111 101 263 264 257
Table 11: Number of edges identified as influential for all combinations are presented.
The table also presents the number of intersections of influential nodes between different
combinations and the original analysis.

BNLC BNHC
R = 4 R = 8 R = 10 R = 4 R = 8 R = 10

Posterior mean Eff. Dim. 2.17 2.78 2.96 2.00 2.74 3.04
AUC 0.61 0.63 0.59 0.59 0.60 0.59

Table 12: AUC and posterior mean of effective dimensionality for BNLC and BNHC
under different choices of R.

7 Conclusion
We have developed a binary Bayesian network regression model that enables the clas-
sification of multiple networks with labeled nodes, identifies influential network nodes
and edges, and predicts the class in which a newly observed network belongs. Our con-
tribution lies in carefully constructing a class of network global-local shrinkage priors
on the network predictor coefficient while recognizing the latent network structure in
the predictor variable. Our simulation studies show competitive performance in terms of
inference and classification. On the other hand, the results we obtain in our application
to brain connectome data both corroborate results that had already been described in
the literature and suggest new relationships between brain ROIs and FSIQ scores.
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There are several natural directions for future research. A major contribution of the
proposed framework is a theoretical analysis of the asymptotic properties of the model
under a condition in which the size of the predictor matrix increases with the sample
size at a superlinear rate. Developing a similar theory for the Network Horseshoe prior
proposed in this article faces more challenges due to the more complex prior structure
in the parameters. We plan to tackle this problem as part of future work. It is also
important to note that the theoretical results in this article hinge upon the assumption
that the rank of the true network coefficient is known. As part of future work, we will
investigate the model theoretically when the fitted network coefficient is low-rank but
the true network coefficient is full rank. We also emphasize that Theorem 3.1 guaran-
tees asymptotically consistent classification, but provides no consistency guarantee for
the regression coefficients or their effective dimension. While Wei and Ghosal (2020)
have established such a result for ordinary high-dimensional logistic regression, a sim-
ilar result would be substantially more challenging to establish in our framework. We
will consider this as a part of our future theoretical explorations. Finally, this article
illustrates our approach on a dataset where a continuous outcome FSIQ is discretized
to construct a discrete response variable. We plan to do future work emphasizing effi-
cacy of our approach on a real data application with a network predictor and a binary
outcome.

Supplementary Material
Supplementary Material: High-Dimensional Bayesian Network Classification with Net-
work Global-Local Shrinkage Priors (DOI: 10.1214/23-BA1378SUPP). The supplemen-
tary material has four sections. Section 1 discusses the proof of Theorem 3.1. Section 2
discusses the MCMC algorithm for the Network Lasso Shrinkage prior. Section 3 dis-
cusses the MCMC algorithm for the Network Horsheshoe Shrinkage prior. Section 4
discusses the edge selection procedure.
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