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Posterior Representations for Bayesian Context
Trees: Sampling, Estimation and Convergence∗

Ioannis Papageorgiou† and Ioannis Kontoyiannis‡

Abstract. We revisit the Bayesian Context Trees (BCT) modelling framework
for discrete time series, which was recently found to be very effective in numerous
tasks including model selection, estimation and prediction. A novel representa-
tion of the induced posterior distribution on model space is derived in terms of a
simple branching process, and several consequences of this are explored in theory
and in practice. First, it is shown that the branching process representation leads
to a simple variable-dimensional Monte Carlo sampler for the joint posterior dis-
tribution on models and parameters, which can efficiently produce independent
samples. This sampler is found to be more efficient than earlier MCMC samplers
for the same tasks. Then, the branching process representation is used to estab-
lish the asymptotic consistency of the BCT posterior, including the derivation
of an almost-sure convergence rate. Finally, an extensive study is carried out on
the performance of the induced Bayesian entropy estimator. Its utility is illus-
trated through both simulation experiments and real-world applications, where it
is found to outperform several state-of-the-art methods.

Keywords: discrete time series, Bayesian context trees, branching processes,
exact sampling, consistency, model selection, prediction, entropy estimation,
context-tree weighting.

1 Introduction
The statistical modelling and analysis of discrete time series are important scientific and
engineering tasks, with a very wide range of applications. Numerous Markovian model
classes have been developed in connection with these and related problems, including
mixture transition distribution (MTD) models (Raftery, 1985; Berchtold and Raftery,
2002), variable-length Markov chains (VLMC) (Bühlmann and Wyner, 1999; Bühlmann,
2000; Mächler and Bühlmann, 2004) and sparse Markov chains (Jääskinen et al., 2014;
Xiong et al., 2016). Alternative approaches also include the use of multinomial logit or
probit regression (Zeger and Liang, 1986), categorical regression models (Fokianos and
Kedem, 2003), and conditional tensor factorisation (Sarkar and Dunson, 2016).

A popular and useful class of relevant models for discrete time series are the context-
tree sources, introduced by Rissanen (1983a, 1983b, 1986) as descriptions of variable-
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memory Markov chains, a flexible and rich class of chains that admit parsimonious repre-
sentations. Their key feature is that the memory length of the chain is allowed to depend
on the most recently observed symbols, providing a richer model class than ordinary
Markov chains. Context-tree sources have been very successful in information-theoretic
applications in connection with data compression (Weinberger et al., 1994; Willems
et al., 1995), and the celebrated context tree weighting (CTW) algorithm (Willems
et al., 1995; Willems, 1998), also based on context-tree sources, has been used widely as
an efficient compression method with extensive theoretical guarantees and justifications.

Recently, Kontoyiannis et al. (2022) revisited context-tree models and the CTW
algorithm from a Bayesian inference point of view. A general modelling framework,
called Bayesian Context Trees (BCT), was developed for discrete time series, along
with a collection of efficient algorithmic tools both for exact inference and for posterior
sampling via Markov chain Monte Carlo (MCMC). The BCT methods were found to
be very effective in important statistical tasks, including model selection, estimation,
prediction and change-point detection (Papageorgiou et al., 2021; Lungu et al., 2022a,b);
see also the R package BCT (Papageorgiou et al., 2020).

In this work we derive an alternative representation of the posterior distribution in-
duced by the BCT framework, and explore several ways in which it facilitates inference,
both in theory and in practice. Our first main contribution is described in Sections 3.1
and 3.2, where we show that both the prior and posterior distributions on model space
admit explicit representations as simple branching processes. In particular, sampling
tree models from the prior or the posterior is shown to be equivalent to generating
trees via an appropriate Galton-Watson process (Athreya and Ney, 2004; Harris, 1963),
stopped at a given depth. Therefore, in some sense the BCT model prior acts as a
‘conjugate’ prior for variable-memory Markov chains. An immediate first practical con-
sequence of this representation is that it facilitates direct Monte Carlo (MC) sampling
from the posterior, where independent and identically distributed (i.i.d.) samples can
be efficiently obtained from the joint posterior distribution on models and parameters.
This variable-dimensional sampler and its potential utility in a wide range of applica-
tions (including model selection, parameter estimation and Markov order estimation)
are described in Section 3.3.

The Bayesian perspective adopted in this work is neither purely subjective nor purely
objective. For example, we think of the model posterior distribution as a summary of
the most accurate, data-driven representation of the regularities present in a given
time series, but we also examine the frequentist properties of the resulting inferential
procedures (Gelman et al., 1995; Chipman et al., 2001; Bernardo and Smith, 2009).
Indeed, in Section 4 we employ the branching process representation to show that the
posterior asymptotically almost surely concentrates on the “true” underlying model
(Theorem 4.1), and in Theorem 4.2 we derive an explicit rate for this convergence as a
function of the sample size. Analogous results are established in Theorems 4.3 and 4.4
in the case of out-of-class modelling, when the data are generated by a model outside
the BCT class. Importantly, the limiting model is explicitly identified in this case. The
branching process representation is also used in Proposition 4.1 to provide a simple,
explicit representation of the posterior predictive distribution. These theoretical results
are the second main contribution of this work.
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Our last contribution, in Section 5, is a brief experimental evaluation of the utility
of the MC sampler of Section 3, and a careful examination of the performance of the
induced Bayesian entropy estimator. In Section 5.1, the new i.i.d. sampler is compared
with the MCMC samplers introduced by Kontoyiannis et al. (2022) on simulated data.
As expected, it is found that the i.i.d. sampler has superior performance, both in terms
of estimation accuracy and, as expected, in terms of mixing.

Finally, in Section 5.2 we consider the important problem of estimating the en-
tropy rate of a discrete time series. Starting with the original work of Shannon (1951),
many different approaches have been developed for this task, including Lempel-Ziv (LZ)
estimators (Ziv and Lempel, 1977; Wyner and Ziv, 1989), prediction by partial match-
ing (PPM) (Cleary and Witten, 1984), the CTW algorithm (Gao et al., 2008), and
block sorting methods (Cai et al., 2004); for an extensive review of the relevant lit-
erature, see Verdú (2019). Entropy estimation has also received a lot of attention in
the neuroscience literature (Strong et al., 1998; London et al., 2002; Nemenman et al.,
2004; Paninski, 2003), in an effort to describe and quantify the amount of information
transmitted by neurons.

In contrast with most earlier work, here we adopt a fully-Bayesian approach. Since
the entropy rate is a functional of the model and associated parameters, the branching
process sampler of Section 3 makes it possible to effectively sample from (and hence
estimate) the actual posterior distribution of the entropy rate. This of course provides a
much richer picture than the simple point estimates employed in most applications. The
performance of the BCT entropy estimator is illustrated both on simulated data and
real-world applications from neuroscience, finance and animal communication, where it
is seen to outperform several of the state-of-the-art methods.

In closing this introduction, we mention that there are, of course, numerous other ap-
proaches to the problem of inference for discrete time series. In addition to the extensive
review given by Kontoyiannis et al. (2022), those include the class of reversible variable-
memory chains examined by Bacallado (2011); Bacallado et al. (2013, 2016), and the
Bayesian analyses of discrete models with priors that encourage sparse representations
developed in Heiner et al. (2019); Heiner and Kottas (2022).

2 Bayesian context trees
In this section, we briefly review the BCT model class, the associated prior structure,
and some relevant properties and results that will be needed in subsequent sections.

The BCT model class consists of variable-memory Markov chains, where the mem-
ory length of the process may depend on the values of the most recently observed sym-
bols. Variable-memory Markov chains admit natural representations as context trees.
Let {Xn} be a dth order Markov chain, for some d ≥ 0, taking values in the alphabet
A = {0, 1, . . . ,m− 1}. The model describing {Xn} as a variable-memory chain is repre-
sented by a proper m-ary tree T as in the example in Figure 1, where a tree T is called
proper if any node in T that is not a leaf has exactly m children.
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Each leaf of the tree T corresponds to a string s determined by the sequence of sym-
bols along the path from the root node λ to that leaf. At each leaf s, there is an associated
set of parameters θs that form a probability vector, θs = (θs(0), θs(1), . . . , θs(m − 1)).
At every time n, the conditional distribution of the next symbol Xn, given the past d
observations (xn−1, . . . , xn−d), is given by the vector θs associated to the unique leaf s
of T that is a suffix of (xn−1, . . . , xn−d). Throughout this paper, every variable-memory
Markov chain is described by a tree model T and a set of associated parameters
θ = {θs ; s ∈ T}, where T is viewed as the collection of its leaves.

Figure 1: Tree model representation of a 5th order variable-memory chain.

Model prior Given a maximum depth D ≥ 0, let T (D) denote the collection of all
proper m-ary trees with depth no greater than D. In Kontoyiannis et al. (2022), the
following prior distribution is introduced on T (D),

π(T ) = πD(T ;β) = α|T |−1β|T |−LD(T ), (2.1)

where β ∈ (0, 1) is a hyperparameter, α is given by α = (1−β)1/(m−1), |T | is the number
of leaves of T , and LD(T ) is the number of leaves of T at depth D.

This prior clearly penalises larger trees by an exponential amount, and larger values
of β make the penalisation more severe. We adopt the default value β = 1 − 2−m+1

for β; see Kontoyiannis et al. (2022) for an extensive discussion of the properties of this
prior and the choice of β.

Prior on parameters Given a tree model T ∈ T (D), an independent Dirichlet prior
with parameters (1/2, 1/2, . . . , 1/2) is placed on each θs, so that:

π(θ|T ) =
∏
s∈T

π(θs) =
∏
s∈T

Dir(1/2, 1/2, . . . , 1/2). (2.2)

Let x = (x−D+1, . . . , x0, x1, . . . , xn) denote a time series with values in A. For each i ≤ j,
we write xj

i for the segment (xi, xi+1, . . . , xj), so that x consists of the observations xn
1

along with an initial context x0
−D+1 of length D.

One of the main observations of Kontoyiannis et al. (2022) is that the prior predictive
likelihood, averaged over both models and parameters,

P (x) =
∑

T∈T (D)

∫
θ

P (x|T, θ)π(θ|T )π(T )dθ, (2.3)
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can be computed exactly and efficiently by a version of the CTW algorithm (where
P (x|T, θ) denotes the probability of x under model T with parameters θ), which of course
facilitates numerous important statistical tasks. For a given time series x = xn

−D+1, the
CTW algorithm uses the estimated probabilities Pe,s defined as follows. For any tree
model T ∈ T (D) and any context s (not necessarily a leaf),

Pe,s = Pe(as) =
∏m−1

j=0 [(1/2)(3/2) · · · (as(j) − 1/2)]
(m/2)(m/2 + 1) · · · (m/2 + Ms − 1) , (2.4)

where the elements of each count vector as = (as(0), as(1), . . . , as(m− 1)) are given by,

as(j) = # times symbol j ∈ A follows context s in xn
1 , (2.5)

and Ms = as(0) + as(1) + · · · + as(m− 1).

CTW: The context tree weighting algorithm

1. Build the tree TMAX, which is the smallest proper tree that contains all the con-
texts xi

i−D+1, i = 1, 2, . . . , n, as leaves. Compute Pe,s as given in (2.4) for each
node s of TMAX.

2. Starting at the leaves and proceeding recursively towards the root, for each node s
of TMAX compute the weighted probabilities Pw,s, given by,

Pw,s =
{

Pe,s, if s is a leaf,
βPe,s + (1 − β)

∏m−1
j=0 Pw,sj , otherwise, (2.6)

where sj is the concatenation of context s and symbol j.

As shown in Kontoyiannis et al. (2022), the weighted probability Pw,λ produced by the
CTW algorithm at the root λ, is indeed exactly equal to the prior predictive likelihood
in (2.3). A family of Markov chain Monte Carlo (MCMC) samplers for the posterior
π(T |x) or π(T, θ|x) were also introduced in Kontoyiannis et al. (2022). However, as will
be seen below, the representation of Section 3 leads to a simple i.i.d. MC sampler that
typically outperforms these MCMC samplers.

3 Branching process representations
In this section we show that the BCT model prior π(T ) = πD(T ;β) of (2.1) and the
resulting posterior π(T |x) both admit natural and easily interpretable representations
in terms of simple branching processes. We also discuss how the posterior representation
leads to efficient samplers that can be used for model selection and estimation.
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3.1 The prior branching process

Given D ≥ 0 and β ∈ (0, 1), let T = {λ} consist of only the root node λ and consider
the following procedure:

• If D = 0, stop.

• If D > 0, then, with probability β, mark the root as a leaf and stop, or, with
probability (1 − β), add all m children of λ at depth 1 to T . If D = 1, stop.

• If D > 1, examine each of the m new nodes, and either mark a node as a leaf
with probability β, or add all m of its children to T with probability (1 − β),
independently from node to node.

• Continue recursively, at each step examining all non-leaf nodes at depths strictly
smaller than D, until no more eligible nodes remain to be examined.

• Output the resulting tree T ∈ T (D).

The above construction is a simple Galton-Watson process (Athreya and Ney, 2004;
Harris, 1963) with offspring distribution (β, (1−β)) on {0,m}, stopped at generation D.
The following proposition states that the distribution of a tree T generated by this
process is exactly the prior πD(T ;β). Note that this also implies that the expression
for πD(T ;β) given in (2.1) indeed defines a probability distribution on T (D), giving an
alternative proof of Kontoyiannis et al. (2022, Lemma 2.1).

Proposition 3.1. For any D ≥ 0 and any β ∈ (0, 1), the probability that the above
branching process produces any particular tree T ∈ T (D) is given by πD(T ;β) as
in (2.1).

Proof. When D = 0, T (D) consists of a single tree, T = {λ}, which has probability 1
under both πD and the branching process construction. Assume D ≥ 1. Note that every
tree T ∈ T (D) can be viewed as a collection of a number, k, say, of m-branches, since
every node in T has either zero or m children. The proposition is proven by induction
on k. The result is trivial for k = 0, since the only tree with no m-branches is T = {λ}
and its probability under both πD and the branching process construction is equal to β.

Suppose the claim of the proposition is true for all trees with k m-branches, and let
T ′ ∈ T (D) consist of (k+1) m-branches. Then T ′ can be obtained from some T ∈ T (D)
that has k m-branches, by adding a single m-branch to one of its leaves, s, say. Two
cases are considered.

(i) If s is at depth D − 2 or smaller, then the probability πb(T ′) of T ′ under the
branching process construction is,

πb(T ′) = πb(T )
β

(1 − β)βm = πD(T ;β)
β

(1 − β)βm = α|T |−1β|T |−LD(T )

β
αm−1βm,
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where the second equality follows from the inductive hypothesis and the third from the
definition of πD(T ;β). Therefore, since |T ′| = |T | + m − 1 and no leaves are added at
depth D, so that LD(T ′) = LD(T ),

πb(T ′) = α[|T |+m−1]−1β|T |+m−1−LD(T ) = α|T ′|−1β|T ′|−LD(T ′) = πD(T ′;β),

as required.

(ii) If s is at depth D − 1, we similarly find that,

πb(T ′) = πb(T )
β

(1 − β) = πD(T ;β)
β

(1 − β) = α|T |−1β|T |−LD(T )

β
αm−1,

and since |T ′| = |T | + m− 1, but now, LD(T ′) = LD(T ) + m,

πb(T ′) = α[|T |+m−1]−1β[|T |+m−1]−[LD(T )+m] = α|T ′|−1β|T ′|−LD(T ′) = πD(T ′;β),

completing the proof.

Apart from being aesthetically appealing, this representation also offers a simple
and practical way of sampling from πD(T ;β). Moreover, using well-known properties of
the Galton-Watson process we can perform some direct computations that offer better
insight into the nature and specific properties of the BCT prior.

Interpretation and choice of β The branching process description of πD(T, β) further
clarifies the role of the hyperparameter β: It is exactly the probability that, when a
node is added to the tree T , it is marked as a leaf and its children are not included in T .

In terms of choosing the value of the hyperparameter β appropriately, recall that,
for a Galton-Watson process, the expected number of children of each node, in this case
ρ = m(1−β), governs the probability of extinction Pe: If ρ ≤ 1 we have Pe = 1, whereas
if ρ > 1, Pe is strictly less than one. Therefore, in the binary case m = 2, the original
choice β = 1/2 used in the CTW algorithm gives an expected number of children equal
to the critical value ρ = 1. This suggests that a reasonable choice for general alphabets
could be β = 1−1/m, which keeps ρ = 1, so that the resulting prior would have similar
qualitative characteristics with the well-studied binary case. This is also in line with the
observation of Kontoyiannis et al. (2022) that β should decrease with m.

Now suppose T is a random model generated by the prior and let Ld(T ) denote
the number of nodes at depth d = 0, 1, . . . , D. Then, standard Galton-Watson theory
(Athreya and Ney, 2004; Harris, 1963) provides the useful expressions,

E [Ld(T )] = ρd, Var [Ld(T )] =
{

σ2d, if ρ = 1,
σ2ρd−1 1−ρd

1−ρ , if ρ �= 1,

where σ2 = m2β(1 − β).
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3.2 The posterior branching process
Given a time series x = xn

−D+1, a maximum depth D, and β ∈ (0, 1), for any context s
with length strictly smaller than D we define the branching probabilities Pb,s as,

Pb,s := βPe,s

Pw,s
, (3.1)

where the estimated and weighted probabilities, Pe,s and Pw,s, are defined in (2.4)-(2.6),
and with the convention that Pb,s = β for all contexts s that do not appear in x. Starting
with T = {λ}, the following construction produces a sample model T ∈ T (D) from the
posterior π(T |x):

• If D = 0, stop.

• If D > 0, then, with probability Pb,λ, mark the root as a leaf and stop, or, with
probability (1 − Pb,λ), add all m children of λ at depth 1 to T . If D = 1, stop.

• If D > 1, examine each of the m new nodes and either mark a node s as a leaf
with probability Pb,s, or add all m of its children to T with probability (1−Pb,s),
independently from node to node.

• Continue recursively, at each step examining all non-leaf nodes at depths strictly
smaller than D, until no more eligible nodes remain.

• Output the resulting tree T ∈ T (D).

Proposition 3.2. For any D ≥ 0 and any β ∈ (0, 1), the probability that the above
branching process produces any particular tree T ∈ T (D) is given by π(T |x).

The proof, which follows along the same lines as that of Proposition 3.1, is given in
Section A of the Supplementary Material (Papageorgiou and Kontoyiannis, 2023). It is
perhaps somewhat remarkable that the posterior π(T |x) on the vast model space T (D)
admits such a simple description. Indeed, the posterior branching process is of exactly
the same form as that of the prior, which can then naturally be viewed as a conjugate
prior on T (D).

Model posterior probabilities Proposition 3.2 allows us to write an exact expression
for the posterior of any model T ∈ T (D) in terms of the branching probabilities Pb,s,

π(T |x) =
∏
s∈To

(1 − Pb,s)
∏
s∈T

Pb,s, (3.2)

where To denotes the set of all internal nodes of T , and with the convention that Pb,s = 1
for all leaves of T at depth d = D. This expression will be the starting point in the
proofs of the asymptotic results of Section 4 for π(T |x).

In terms of inference, the main utility of Proposition 3.2 is that it offers a practical
way of obtaining exact i.i.d. samples directly from the model posterior, as described in
the next section.
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3.3 Sampling from the posterior
The branching process representation of π(T |x) readily leads to a simple way for obtain-
ing i.i.d. samples {T (i)} from the posterior on model space. And since the full conditional
density of the parameters π(θ|T, x) is explicitly identified by Kontoyiannis et al. (2022)
as a product of Dirichlet densities,

π(θ|T, x) =
∏
s∈T

Dir (1/2 + as(0), 1/2 + as(1), . . . , 1/2 + as(m− 1)) , (3.3)

for each T (i) we can draw a conditionally independent sample θ(i) ∼ π(θ|T (i), x), pro-
ducing a sequence of exact i.i.d. samples {(T (i), θ(i))} from the joint posterior π(T, θ|x).

This facilitates numerous applications. For example, effective parameter estimation
can be performed by simply keeping the samples {θ(i)}, which come from the marginal
posterior distribution π(θ|x). Similarly, Markov order estimation can be performed by
collecting the sequence of maximum depths of the models {T (i)}. And in model selection
tasks, the model posterior can be extensively explored, offering better insight and deeper
understanding of the underlying structure and dependencies present in the data.

Although a family of MCMC samplers was introduced and successfully used for the
same tasks in Kontoyiannis et al. (2022), MCMC sampling has well-known limitations
and drawbacks, including potentially slow mixing, high correlation between samples, and
the need for convergence diagnostics (Gelman and Rubin, 1992; Cowles and Carlin, 1996;
Robert and Casella, 2004). Partly for these reasons, being able to obtain i.i.d. samples
from the posterior is generally much more desirable, as illustrated in Section 5.1.

Estimation of general functionals Consider the general Bayesian estimation problem,
where the goal is to estimate an arbitrary functional F = F (T, θ) of the underlying
variable-memory chain, based on data x. Using the above sampler, the entire posterior
distribution of the statistic F can be explored, by considering the i.i.d. samples F (i) =
F (T (i), θ(i)), distributed according to the desired posterior π(F |x).

In connection with classical estimation techniques, and in order to evaluate estima-
tion performance more easily in practice, several reasonable point estimates can also
be obtained. The most common choices are the empirical average approximation to the
posterior mean,

F̂MC = 1
N

N∑
i=1

F (i) = 1
N

N∑
i=1

F (T (i), θ(i)), (3.4)

or the posterior mode, i.e., the maximum a posteriori probability (MAP) estimate,
F̂MAP. In cases where the conditional mean F̄ (T ) = E(F (T, θ)|x, T ) can be computed
for any model T (as e.g. in the case of parameter estimation), a lower-variance Rao-
Blackwellised estimate (Blackwell, 1947; Gelfand and Smith, 1990) for the posterior
mean can also be obtained as, F̂RB = 1

N

∑N
i=1 F̄ (T (i)).

Importantly, as this posterior sampler provides access to the entire posterior dis-
tribution π(F |x) of the statistic of interest F , standard Bayesian methodology can be
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applied to quantify the resulting uncertainty of any estimator F̂ , for example by ob-
taining credible intervals in terms of the π(F |x).

An interesting special case of particular importance in practice is the estimation of
the entropy rate H of the underlying process, F (T, θ) = H(T, θ). The performance of
all methods discussed above, with emphasis on the estimation of the entropy rate, is
illustrated through simulated experiments and real-world applications in Section 5.2.

4 Theoretical results
Using the branching process representation of Proposition 3.2, we show how to derive
precise results on the asymptotic behaviour of the BCT posterior π(T |x) on model space,
and provide an explicit, useful expression for the posterior predictive distribution.

Let {Xn} be a variable-memory chain with model T ∈ T (D). The specific model T
that describes the chain is typically not unique, for the same reason, e.g., that every
i.i.d. process can also trivially be described as a first-order Markov chain: Adding m
children to any leaf of T which is not at maximal depth, and giving each of them the
same parameters as their parent, leaves the distribution of the chain unchanged. The
natural main goal in model selection is to identify the “minimal” model, i.e., the smallest
model that can fully describe the distribution of the chain. A model T ∈ T (D) is called
minimal if every m-tuple of leaves {sj ; j = 0, 1, . . . ,m− 1} in T contains at least two
with non-identical parameters, i.e., there are j �= j′ such that θsj �= θsj′ . It is easy to
see that every Dth order Markov chain {Xn} has a unique minimal model T ∗ ∈ T (D).

A variable-memory chain {Xn} with model T ∈ T (D) and associated parameters
θ = {θs; s ∈ T} is ergodic, if the corresponding first-order chain {Zn := Xn

n−D+1;n ≥ 1}
taking values in AD is irreducible and aperiodic. In order to avoid uninteresting techni-
calities, in most of our results we will assume that the data are generated by a positive-
ergodic chain {Xn}, namely that all its parameters θs(j) are nonzero, so that its unique
stationary distribution π gives strictly positive probability to all finite contexts s.

4.1 Posterior consistency and concentration

Our first theorem is a strong consistency result, which states that, if the data x = xn
−D+1

are generated by an ergodic chain with minimal model T ∗ ∈ T (D), then the model
posterior asymptotically almost surely (a.s.) concentrates on T ∗. Theorem 4.1 both
strengthens and generalises a weaker result on the asymptotic behaviour of the MAP
model established in Willems et al. (1993, Theorem 8).

Theorem 4.1. Let Xn
−D+1 = (X−D+1, . . . , X0, X1, . . . , Xn) be a time series generated

by a positive-ergodic, variable-memory chain {Xn} with minimal model T ∗ ∈ T (D). For
any value of the prior hyperparameter β ∈ (0, 1), the posterior distribution over models
concentrates on T ∗, i.e.,

π(T ∗|Xn
−D+1) → 1, a.s., as n → ∞.
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Proof. Recalling the posterior representation in (3.2), it suffices to show that, as n → ∞,
Pb,s → 0 a.s. for all internal nodes of T ∗, and Pb,s → 1 a.s. for all leaves of T ∗. These
two claims are established in Lemmas 4.2 and 4.3 below.

We first recall the following simple bounds on the estimated probabilities Pe,s; see
Krichevsky and Trofimov (1981); Xie and Barron (2000) and Catoni (2004, Ch. 1).

Lemma 4.1. For every node s with count vector as = (as(0), as(1), . . . , as(m−1)) and
Ms = as(0) + · · · + as(m− 1), the estimated probabilities Pe,s of (2.4) satisfy:

logPe,s ≥
m−1∑
j=0

as(j) log as(j)
Ms

− m− 1
2 logMs − logm; (4.1)

logPe,s ≤
m−1∑
j=0

as(j) log as(j)
Ms

− m− 1
2 log Ms

2π − log πm/2

Γ(m/2) . (4.2)

[Throughout the paper, log ≡ loge denotes the natural logarithm.] Lemma 4.2 is a
generalisation of Jiao et al. (2013, Lemma 12).

Lemma 4.2. Under the assumptions of Theorem 4.1, for every internal node s of T ∗,
the branching probability Pb,s → 0, a.s., as n → ∞.

Proof. As the complete proof is quite involved, only the main and more interesting part
of the argument is given here, with the remaining details given in Section B.1 of the
Supplementary Material.

We begin by observing that,

Pb,s = βPe,s

Pw,s
= βPe,s

βPe,s + (1 − β)
∏

j Pw,sj
= 1

1 + (1 − β)/β
∏

j Pw,sj/Pe,s
(4.3)

≤ 1
1 + c0

∏
j Pe,sj/Pe,s

, (4.4)

for some constant c0, where in the last step we used that either Pw,sj ≥ βPe,sj or
Pw,sj = Pe,sj . Therefore, it suffices to show that Pe,s

/∏
j Pe,sj → 0, a.s., as n → ∞.

Let s be a fixed finite context, and let X and J denote the random variables corre-
sponding to the symbols that follow and precede s, respectively, under the stationary
distribution of {Xn}. Using Lemma 4.1 and the ergodic theorem for Markov chains, it
is shown in Section B.1 of the Supplementary Material that,

logPe,s −
∑
j

logPe,sj = −nI(X;J |s)π(s) + o(n), a.s., (4.5)

where I(X;J |s) is the conditional mutual information between X and J given s (Cover
and Thomas, 2012, Ch. 2). This mutual information is always nonnegative, and it is
zero if and only if X and J are conditionally independent given s.
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For any internal node s that is a parent of leaves of T ∗, the minimality of T ∗ implies
that X and J are not conditionally independent given s, as there exist j �= j′ such
that θsj �= θsj′ , so that θsj depends on j. Therefore, I(X;J |s) > 0 and π(s) > 0 by
assumption, so (4.5) implies that logPe,s −

∑
j logPe,sj → −∞, a.s., as required.

For the general case of internal nodes that may not be parents of leaves, a simple
iterative argument is given in Section B.1 of Supplementary Material establishing the
same result in that case as well, and completing the proof of the lemma.

Lemma 4.3. Under the assumptions of Theorem 4.1, for every leaf s of T ∗, the branch-
ing probability Pb,s → 1, a.s., as n → ∞.

Proof. As with the previous lemma, we only give an outline of the main interesting steps
in the proof here; complete details are provided in Section B.2 of the Supplementary
Material.

By definition, for any leaf s of T ∗ (and also for any ‘external’ node s, that is, any
context s not in T ∗), we have I(X;J |s) = 0 because of conditional independence. There-
fore, we need to consider the higher-order terms in the asymptotic expansion of (4.5).
Using Lemma 4.1, the ergodic theorem, and the law of the iterated logarithm (LIL) for
Markov chains, it is shown in Section B.2 of the Supplementary Material that here,∑

j

logPe,sj − logPe,s ≤ − (m− 1)2

2 logn + O(log logn), a.s. (4.6)

This implies that
∑

j logPe,sj − logPe,s → −∞, so that
∏

j Pe,sj/Pe,s → 0, a.s.

The last step of the proof, namely that for any leaf s of T ∗,
∏

j Pe,sj/Pe,s → 0
also implies that

∏
j Pw,sj/Pe,s → 0, a.s., so that, by (4.3), Pb,s → 1, a.s., is given in

Section B.2 of the Supplementary Material.

Our next result is a refinement of Theorem 4.1, which characterises the rate at which
the posterior probability of T ∗ converges to 1.

Theorem 4.2. Let Xn
−D+1 be a time series generated by a positive-ergodic variable-

memory chain {Xn} with minimal model T ∗ ∈ T (D). For any value of the prior hyper-
parameter β ∈ (0, 1) and any ε > 0, we have, as n → ∞:

π(T ∗|Xn
−D+1) = 1 −O

(
n− (m−1)2

2 +ε

)
, a.s.

The proof of Theorem 4.2 is given in Section B.3 of the Supplementary Material.
In fact, as discussed at the end of Section B.3, the proof also reveals that a stronger
statement can be made about the rate in the case of full Dth order Markov chains:

Corollary 4.1. If {Xn} is a genuinely Dth order chain in that its minimal model T ∗ is
the complete tree of depth D, then its posterior probability π(T ∗|Xn

−D+1) almost surely
converges to 1 at an exponential rate.
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4.2 Out-of-class modelling
In this section we consider the behaviour of the posterior distribution π(T |x) on mod-
els T ∈ T (D) when the time series x is not generated by a chain from the model class
T (D), but from a general stationary and ergodic process {Xn} with possibly infinite
memory. We first give an explicit description of the “limiting” model T∞ ∈ T (D) on
which the posterior π(T |x) concentrates when the observations are generated by a gen-
eral process outside T (D), and then we give conditions under which T∞ is structurally
“as close as possible” to the true underlying model.

Description of T∞ Recall that, for any context s, we write X and J for the random
variables corresponding to the symbols that follow and precede s, respectively. The
limiting tree T∞ ∈ T (D) corresponding to a general stationary process {Xn} with
values in A can be constructed via the following procedure:

• Take T∞ to be the empty tree.

• Starting with the nodes at depth d = D − 1, for each such s, if I(X;J |s) > 0,
then add s to T∞ along with all its children and all its ancestors; that is, add the
complete path from the root λ to the children of s.

• After all nodes s at depth d = D − 1 have been examined, examine all possible
nodes s at depth d = D − 2 that are not already included in T∞, and repeat the
same process.

• Continue recursively towards the root, until all nodes at all depths 0 ≤ d ≤ D− 1
have been examined.

• For any node already in T∞ at depth d ≤ D − 1, such that only some but not all
m of its children are included in T∞, add the missing children to T∞ so that it
becomes proper.

• Output T∞.

In order to state our results we need to impose two additional conditions on the
underlying data-generating process. Suppose {Xn} is stationary. Without loss of gener-
ality (by Kolmogorov’s extension theorem) we may consider the two-sided version of the
process, {Xn; n ∈ Z}. Its α-mixing coefficients (Ibragimov, 1962; Philipp and Stout,
1975) are defined as,

αn = sup
A∈A, B∈B

|P(A ∩B) − P(A)P(B)|, (4.7)

where A and B denote the σ-algebras, σ(. . . , X−1, X0) and σ(Xn, Xn+1, . . .), respec-
tively. We will need a mixing condition and a positivity condition for our results:

∞∑
n=1

αδ/(2+δ)
n < ∞ for some δ > 0, and P(XD

0 = xD
0 ) > 0 for all xD

0 ∈ AD+1. (4.8)
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Theorem 4.3. Let Xn
−D+1 be a time series generated by a stationary ergodic pro-

cess {Xn} satisfying the assumptions (4.8), and let T∞ ∈ T (D) be given by the above
construction. Then, for any value of the prior hyperparameter β ∈ (0, 1) we have:

π(T∞|Xn
−D+1) → 1, a.s., as n → ∞.

The proof of Theorem 4.3 follows along exactly the same lines as the earlier proof of
Theorem 4.1. Instead of the ergodic theorem for Markov chains (Chung, 1967, p. 92) we
now use Birkhoff’s ergodic theorem (Breiman, 1992, Ch. 6), and instead of the LIL for
Markov chains we apply the general LIL for functions of blocks of an ergodic process,
which follows, as usual, from the almost-sure invariance principle (Philipp and Stout,
1975; Rio, 1995; Zhao and Woodroofe, 2008). The mixing condition in (4.8) was chosen
as one of the simplest ones that guarantee this general version of the LIL.

Regarding the overall structure of the proof, all the earlier asymptotic expansions
of the branching probabilities still remain valid, including (4.5) and (4.6). The only
possible difference might be at the boundary conditions that are required as a starting
point for the iterative argument in the proof of Lemma 4.2, since the actual “leaves”
of the true underlying model of {Xn} are not necessarily at depth d ≤ D here. But, as
before, all branching probabilities Pb,s tend either to 0 or to 1, depending on whether
the mutual information condition that appears in the description of T∞ holds or not.
Specifically, starting from nodes s at depth d = D − 1, if I(X;J |s) = 0 then we are in
the same situation as in Lemma 4.3, so that Pb,s → 1, and all children of s are pruned.
On the other hand, if I(X;J |s) > 0, then Pb,s → 0, and by the same iterative argument,
Pb,u → 0 for all ancestors u of node s as well.

Analogous comments apply to the proof of Theorem 4.4, which is again a refinement
characterising the rate at which the posterior probability of T∞ converges to 1.

Theorem 4.4. Let Xn
−D+1 be a time series generated by a stationary ergodic pro-

cess {Xn} satisfying the assumptions (4.8), and let T∞ be its limiting model in T (D).
Then, for any β ∈ (0, 1) and any ε > 0, as n → ∞ we have:

π(T∞|Xn
−D+1) = 1 −O

(
n− (m−1)2

2 +ε

)
, a.s.

In general, it is natural to expect that T∞ should be “as close as possible” in some
sense to the true underlying model T ∗, and this is indeed what is most often observed
in applications: T∞ being the same as T ∗ truncated to depth D. But it is not always the
case. For example, recall the 3rd order chain {Xn} considered in Example 5.2 of Kon-
toyiannis et al. (2022), also described as having a “bimodal posterior” in Section 5.2.
There, T ∗ is the complete m-ary tree of depth 3 (with m = 6), but Xn depends on
(Xn−1, Xn−2, Xn−3) only via Xn−3. For that reason, the limiting model T∞ in T (D)
with D = 1 or D = 2 is not T ∗ truncated at depth D, but rather the empty tree {λ}
consisting of only the root node λ.

Fortunately, we can read a simple necessary and sufficient condition for the “ex-
pected” behaviour to occur from the definition of T∞ itself. Let {Xn} be a stationary
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and ergodic process on the finite alphabet A. From the description of Csiszár and Talata
(2006), it is easy to see that there is a unique minimal context tree model T ∗ for {Xn}
of possibly infinite depth. Let T ∗

|D be T ∗ truncated at depth D, and write ND−1(T ∗)
for the set of all internal nodes of T ∗ at depth d = D− 1 whose children exist in T ∗ (at
depth D) but are not leaves of T ∗. With this notation:

Corollary 4.2. The limiting model T∞ = T ∗
|D if and only if I(X;J |s) > 0 for all

nodes s ∈ ND−1(T ∗).

Proof. The result follows directly from the definition of T∞ combined with the observa-
tion that the condition I(X;J |s) > 0 is already satisfied for all nodes s of T ∗ at depth
d = D − 1 whose children are leaves of T ∗.

4.3 The posterior predictive distribution

The branching process representation of the posterior can also be used to facilitate
practically useful computations. In Proposition 4.1, an exact expression is given for the
posterior predictive distribution P

(
xn+1|xn

−D+1
)

in terms of the branching probabili-
ties Pb,s.

Proposition 4.1. The posterior predictive distribution is given by,

P
(
xn+1|xn

−D+1
)

=
D∑
i=0

(
as(i) (xn+1) + 1/2

Ms(i) + m/2

)
γi, (4.9)

where, for 0 ≤ i ≤ D, the string s(i) is the context of length i preceding xn+1, and γi is
the posterior probability that node s(i) is a leaf, given by,

γi =

⎧⎨⎩
Pb,λ, i = 0,∏i−1

k=0
(
1 − Pb,s(k)

)
Pb,s(i) , 1 ≤ i ≤ D − 1,∏D−1

k=0
(
1 − Pb,s(k)

)
, i = D.

(4.10)

Proof. Writing x = xn
−D+1, the posterior predictive distribution can be expressed as,

P (xn+1|x) =
∑

T∈T (D)

P (xn+1|T, x)π(T |x). (4.11)

For any tree T ∈ T (D), exactly one of the contexts s(i), 0 ≤ i ≤ D, is a leaf of the
tree. For every 0 ≤ i ≤ D, define the subset Ti(D) ⊂ T (D) to be the collection of
trees T ∈ T (D) such that the context of xn+1 that is a leaf of T is s(i); these Ti(D) are
disjoint and their union is T (D). The key observation here is that P (xn+1|T, x) is the
same for all trees T ∈ Ti(D), since,

P (xn+1|T, x) =
∫
θ

P (xn+1|T, θ, x)π(θ|T, x) dθ
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=
∫
θ
s(i)

P (xn+1|T, θs(i) , x)π(θs(i) |T, x) dθs(i)

=
∫
θ
s(i)

θs(i) (xn+1)π(θs(i) |T, x) dθs(i) = as(i) (xn+1) + 1/2
Ms(i) + m/2 , (4.12)

where we used the full conditional density of the parameters in (3.3). So, from (4.11),

P (xn+1|x) =
D∑
i=0

∑
T∈Ti(D)

P (xn+1|T, x)π(T |x) =
D∑
i=0

as(i) (xn+1) + 1/2
Ms(i) + m/2

∑
T∈Ti(D)

π(T |x),

which completes the proof upon noticing that the last sum
∑

T∈Ti(D) π(T |x) is exactly
the posterior probability that node s(i) is a leaf, namely, γi as in (4.10).

5 Experimental results
Being able to obtain exact i.i.d. samples from the posterior is generally more desirable
and typically leads to more efficient estimation than using approximate MCMC sam-
ples. In Section 5.1 we offer empirical evidence justifying this statement in the present
setting through a simple simulation example. Then in Section 5.2 we present the re-
sults of a careful empirical study of the natural entropy estimator induced by the BCT
framework, compared against a number of the most common alternative estimators, on
three simulated and three real-world data sets.

5.1 Comparison with MCMC
Consider n = 1000 observations generated from a 5th order, ternary chain, with model
given by the context tree of Figure 1 in Section 2 (the values of the parameters θ =
{θs; s ∈ T} are given in Section C of the Supplementary Material). A simple and effective
convergence diagnostic here (which can also be viewed as an example of an estimation
problem) is the examination of the frequency with which the MAP model, T ∗

1 , appears
in the i.i.d. or the MCMC sample trajectory. The model T ∗

1 can be identified by the BCT
algorithm and its posterior probability π(T ∗

1 |x) can be computed, as in Kontoyiannis
et al. (2022).

As shown in Figure 2, the estimates based on the random-walk MCMC sampler
of Kontoyiannis et al. (2022) and on the i.i.d. sampler of Section 3.3 both appear to
converge quite quickly, with the corresponding MCMC estimates converging significantly
more slowly. In 50 independent repetitions of the same experiment (with N = 1000
simulated samples in each run), the estimated variance of the MCMC estimates (0.0084)
was found to be larger than that for the i.i.d. estimates (1.4 × 10−4), by a factor of
around 60.

Figure 3 shows the trace plots (Roy, 2020) obtained from N = 10000 simulated
samples from the MCMC and i.i.d. samplers, which can be used to monitor the log-
posterior in each case. It is immediately evident that the i.i.d. sampler is more efficient
in exploring the effective support of the posterior.
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Figure 2: Frequency of T ∗
1 . Blue: MCMC estimates. Red: i.i.d. estimates. In each case,

the five graphs correspond to five independent repetitions of the experiment with
N = 1000 simulated samples. The horizontal line is the limiting frequency, π(T ∗

1 |x).

Figure 3: Trace plots showing the log-posterior, log π(T (i)|x), at each iteration.
Top: MCMC samples. Bottom: i.i.d. samples.

As expected, the i.i.d. sampler has superior performance compared to the MCMC
sampler, both in terms of estimation and in terms of mixing. Also, although the two
types of samplers have comparable complexity in terms of computation time and mem-
ory requirements, the structure of the i.i.d. sampler is much simpler, giving a much
easier implementation. In view of these observations, in the following section we only
employ the i.i.d. sampler for the purposes of entropy estimation.

5.2 Entropy estimation

Estimating the entropy rate from empirical data – in this case, a discrete time series –
is an important and timely problem that has received a lot of attention in the recent
literature, in connection with questions in many areas including neuroscience (Timme
and Lapish, 2018), natural language modelling (Willems et al., 2016), animal commu-
nication (Kershenbaum, 2014), and cryptography (Simion, 2020), among others; see,
e.g., the recent literature reviews by Verdú (2019) and Feutrill and Roughan (2021).
The well-known difficulties of entropy estimation stemming from the nonlinear nature
of the entropy rate functional and its dependence on the entire process distribution are
discussed in the references listed above.
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For a general process {Xn} on a finite alphabet, the entropy rate H̄ is defined as
H̄ = limn→∞(1/n)H(Xn

1 ), whenever the limit exists, where H(Xn
1 ) denotes the usual

Shannon entropy (in nats rather than bits, as we take logarithms to the base e) of the
discrete random vector Xn

1 . For an ergodic, first-order Markov chain {Xn}, H̄ can be
expressed as,

H̄ = −
∑
i,j∈S

π(i)Pij logPij , (5.1)

where S is the state space of {Xn}, and (Pij) and (π(i)) denote its transition matrix and
its stationary distribution, respectively. An analogous formula can be written for the
entropy rate of any ergodic variable-memory chain with model T ∈ T (D), by viewing
it as a full Dth order chain and considering blocks of length (D+1), as usual; cf. Cover
and Thomas (2012, Ch. 4). This means that H̄ can be expressed as an explicit function
H̄ = H(T, θ) of the model and the parameters.

Therefore, given a time series x, using the MC sampler of Section 3.3 to produce i.i.d.
samples (T (i), θ(i)) from π(T, θ|x), we can obtain i.i.d. samples H(i) = H(T (i), θ(i)) from
the posterior π(H̄|x) of the entropy rate. The calculation of each H(i) = H(T (i), θ(i)) is
straightforward and only requires the computation of the stationary distribution π of
the induced first-order chain that corresponds to taking blocks of size [depth(T (i)) + 1].
The only potential difficulty is if either the depth of T (i) or the alphabet size m are so
large that the computation of π becomes computationally expensive. In such cases, H(i)

can be computed approximately by including an additional Monte Carlo step: Generate
a sufficiently long random sample Y M

−D+1 from the chain (T (i), θ(i)), and calculate:

H(i) ≈ − 1
M

logP (Y M
1 |Y 0

−D+1, T
(i), θ(i)). (5.2)

The ergodic theorem and the central limit theorem for Markov chains (Chung, 1967;
Meyn and Tweedie, 2012) then guarantee the accuracy of (5.2).

In the remainder of this section, the BCT estimator (with maximum model depth
D = 10) is compared with the state-of-the-art approaches, as identified by Gao et al.
(2008) and Verdú (2019) and summarised below. The BCT estimator is found to gen-
erally give the most reliable estimates on a variety of different types of simulated and
real-world data. Moreover, compared to most existing approaches that give simple point
estimates (sometimes accompanied by confidence intervals), the BCT estimator has the
additional advantage that it provides the entire posterior distribution π(H̄|x).

Plug-in estimator Motivated by the definition of the entropy rate, the simplest and
one of the most commonly used estimators of the entropy rate is the per-sample entropy
of the empirical distribution of k-blocks. Letting p̂k(yk1 ), yk1 ∈ Ak, denote the empirical
distribution of k-blocks induced by the data on Ak, the plug-in or maximum-likelihood
estimator is simply, Ĥk = (1/k)H(p̂k). The main advantage of this estimator is its
simplicity. Well-known drawbacks include its high variance due to undersampling, and
the difficulty in choosing appropriate block-lengths k effectively.
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Lempel-Ziv estimator Among the numerous match-length-based entropy estimators
that have been derived from the Lempel-Ziv family of data compression algorithms,
we consider the increasing-window estimator of Gao et al. (2008), identified there as
the most effective one. For every position i in the observed data, let �i denote the
length of the longest segment xi+�i−1

i starting at i which also appears somewhere in the
window xi−1

0 preceding i. Writing Li = 1 + �i for each i, the relevant estimator is,

ĤLZ = 1
n

n∑
i=2

log i
Li

.

CTW estimator This uses the prior predictive likelihood P (x) computed by the CTW
algorithm, to define ĤCTW = −(1/n) logP (xn

1 ). This estimator was found by Gao et al.
(2008) and Verdú (2019) to achieve the best performance in practice. Its consistency and
asymptotic normality follow easily from standard results, and its (always positive) bias
is of O((log n)/n), which can be shown to be in a minimax sense as small as possible.
In all experiments we take the maximum depth of CTW to be D = 10.

PPM estimator Using a different adaptive probability assignment, Q(x), this method
forms an estimate of the same type as the CTW estimator, ĤPPM = −(1/n) logQ(xn

1 ),
where prediction by partial matching (PPM) (Cleary and Witten, 1984) is used to fit
the model that leads to Q(xn

1 ). We use the interpolated smoothing variant of PPM
introduced by Bunton (1996), which is implemented in the R package available at:
https://rdrr.io/github/pmcharrison/ppm/.

A ternary chain We consider the same n = 1000 observations generated from the 5th
order, ternary chain examined in Section 5.1. The entropy rate of this chain is H̄ =
1.02. In Figure 4 we show MC estimates of the prior distribution π(H̄), and of the
posterior π(H̄|x) based on n = 100 and on n = 1000 observations from the chain. After
n = 1000 observations, the posterior is close to a Gaussian with mean μ = 1.005 and
standard deviation σ = 0.017. For each histogram N = 105 i.i.d. samples were used,

Figure 4: Prior π(H̄) and posterior π(H̄|x) of the entropy rate H̄ with n = 100 and
n = 1000 observations x.

https://rdrr.io/github/pmcharrison/ppm/
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and in each case (and in all subsequent examples), the vertical axis of the histograms
shows the frequency of the bins in the Monte Carlo sample.

Figure 5 shows the performance of the BCT estimator compared with the other four
estimators described above, as a function of the length n of the available observations x.
For BCT we plot the posterior mean. For the plug-in we plot estimates with block-
lengths k = 5, 6, 7. It is easily observed that the BCT estimator outperforms all the
alternatives, and converges faster and closer to the true value of H̄.

Figure 5: Entropy rate estimates for the 5th order ternary chain, as the number of
observations increases.

A third order binary chain Here, we consider n = 1000 observations generated from
an example of a third order binary chain from Berchtold and Raftery (2002). The
underlying model is the complete binary tree of depth 3 pruned at node s = 11; the
tree model T and the parameter values θ = {θs; s ∈ T} are given in Section C of
the Supplementary Material. The entropy rate of this chain is H̄ = 0.4815. Figure 6
shows the performance of all five estimators, where the BCT estimator (which uses the
posterior mean again) is found to have the best performance. The histogram of the
BCT posterior after n = 1000 observations, shown in Section C of the Supplementary
Material, is close to a Gaussian with mean μ = 0.4806 and standard deviation σ =
0.0405.

A bimodal posterior We re-examine a simulated time series x from Kontoyiannis et al.
(2022), which consists of n = 1450 observations generated from a 3rd order chain {Xn}
with alphabet size m = 6 and with the property that each Xn depends on past obser-
vations only via Xn−3. The complete specification of the chain is given in Section C
of the Supplementary Material. Its entropy rate is H̄ = 1.355. An interesting aspect of
this data set is that the model posterior is bimodal, with one mode corresponding to
the empty tree (describing i.i.d. observations) and the other consisting of tree models
of depth 3.
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Figure 6: Entropy rate estimates for the third order binary chain, as the number of
observations increases.

As shown in Figure 7a, the posterior of the entropy rate is also bimodal here, with
two separated approximately-Gaussian modes corresponding to each of the modes of the
model posterior. The dominant mode is the one corresponding to models of depth 3; it
has mean μ1 = 1.406, standard deviation σ1 = 0.031, and relative weight w1 = 0.91.
The second mode corresponding to the empty tree has mean μ2 = 1.632, standard
deviation σ2 = 0.020, and a much smaller weight w2 = 1 − w1 = 0.09. In this case, the
mode of π(H̄|x) gives a more reasonable choice for a point estimate than the posterior
mean. Like in the previous two examples, the BCT estimator performs better than most
benchmarks, as illustrated in Section C of the Supplementary Material.

Figure 7: Histograms of the posterior distribution π(H̄|x) of the entropy rate, con-
structed from N = 105 i.i.d. samples in each case.
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Neural spike trains We consider n = 1000 binary observations from a spike train
recorded from a single neuron in region V4 of a monkey’s brain. The BCT posterior
is shown in Figure 7b: Its mean is μ = 0.0234, its standard deviation is σ = 0.0108,
and is skewed to the right. This dataset is the first part of a long spike train of length
n = 3,919,361 from Gregoriou et al. (2009, 2012). Although there is no “true” value
of the entropy rate here, for the purposes of comparison we use the estimate obtained
by the CTW estimator (identified as the most effective method by Gao et al. (2008)
and Verdú (2019)) when all n = 3,919,361 samples are used, giving H̄ = 0.0241. The
resulting estimates for all five methods (with the posterior mean given for BCT) are
summarised in Table 1, verifying again that BCT outperforms all the other methods.

“True” BCT CTW PPM LZ k = 2 k = 5 k = 10 k = 15
Ĥ 0.0241 0.0234 0.0249 0.0360 0.0559 0.0204 0.0204 0.0198 0.0187

Table 1: Entropy rate estimates for the neural spike train.

Financial data Here, we consider n = 2000 observations from the financial dataset F.2
of Kontoyiannis et al. (2022). This consists of tick-by-tick price changes of the Facebook
stock price, quantised to three values: xi = 0 if the price goes down, xi = 1 if it stays the
same, and xi = 2 if it goes up. The BCT entropy-rate posterior is shown in Figure 8a:
It has mean μ = 0.921, and standard deviation σ = 0.028.

Once again, as the “true” value of the entropy rate we take the estimate produced by
the CTW estimator on a longer sequence with n = 104 observations, giving H̄ = 0.916.
The results of all five estimators are summarised in Table 2, where for the BCT estimator
we once again give the posterior mean.

“True” BCT CTW PPM LZ k = 5 k = 6 k = 7 k = 10
Ĥ 0.916 0.921 0.939 1.049 0.846 0.930 0.907 0.870 0.713

Table 2: Entropy rate estimates for the financial data set.

Pewee birdsong The last data set examined is a time series x describing the twilight
song of the wood pewee bird (Craig, 1943; Sarkar and Dunson, 2016). It consists of
n = 1327 observations from an alphabet of size m = 3. The BCT posterior is shown in
Figure 8b: It is approximately Gaussian with mean μ = 0.258 and standard deviation
σ = 0.024. The fact that the standard deviation is small is important as it suggests
“confidence” in the resulting estimates, which is important because here (as in most
real applications) there is no knowledge of a “true” underlying value. Table 3 shows all
the resulting estimates; the posterior mean is shown for the BCT estimator.

BCT CTW PPM LZ k = 2 k = 5 k = 10 k = 15
Ĥ 0.258 0.278 0.318 0.275 0.776 0.467 0.336 0.272

Table 3: Entropy rate estimates for the pewee song data.
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Figure 8: Histograms of the posterior distribution π(H̄|x) of the entropy rate, con-
structed from N = 105 i.i.d. samples in each case.

Summary The main conclusion from the results on the six data sets examined in this
section is that the BCT estimator gives the most accurate and reliable results among the
five estimators considered. In addition to the fact that the BCT point estimates typically
outperform those produced by other methods, the BCT estimator is accompanied by the
entire posterior distribution π(H̄|x) of the entropy rate, induced by the observations x.
As usual, this distribution can be used to quantify the uncertainty in estimating H̄,
and it contains significantly more information than simple point estimates and their
associated confidence intervals.

6 Concluding remarks
In this work, we revisited the Bayesian Context Trees (BCT) modelling framework,
which was recently found to be very effective for a range of statistical tasks in the anal-
ysis of discrete time series. We showed that the prior and posterior distributions on
model space admit simple and easily interpretable representations in terms of branch-
ing processes, and we demonstrated their utility both in theory and in practice. The
branching process representation was first employed to develop an efficient Monte Carlo
sampler that provides i.i.d. samples from the joint posterior on models and parameters,
thus facilitating effective Bayesian inference with empirical time series data. Then, it
was used to establish strong theoretical results on the asymptotic consistency of the
BCT posterior on model space, which provide important theoretical justifications for
the use of the BCT framework in practice. Finally, the performance of the proposed
Monte Carlo sampler was examined extensively in the context of entropy estimation.
The resulting fully-Bayesian entropy estimator was found to outperform several of the
state-of-the-art approaches, on both simulated and real-world data.

Although the BCT framework was originally developed for modelling and inference
of discrete-valued time series, it was recently used to develop general mixture models
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for real-valued time series, along with a collection of associated algorithmic tools for
inference (Papageorgiou and Kontoyiannis, 2022). Extending the results presented in
this work to that setting presents an interesting direction of further research, motivated
by important and timely practical applications.

Supplementary Material
The Supplementary Material include complete proofs of all theoretical results, and also
additional experimental results, details and discussion (DOI: 10.1214/23-BA1362SUPP;
.pdf).
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