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This paper is motivated by the joint analysis of genetic, imaging, and
clinical (GIC) data collected in the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) study. We propose a partially functional linear regression (PFLR)
framework to map high-dimensional GIC-related pathways for Alzheimer’s
disease (AD). We develop a joint model selection and estimation procedure
by embedding imaging data in the reproducing kernel Hilbert space and im-
posing the �0 penalty for the coefficients of genetic variables. We apply the
proposed method to the ADNI dataset to identify important features from tens
of thousands of genetic polymorphisms (reduced from millions using a pre-
processing step) and study the effects of a certain set of informative genetic
variants and the baseline hippocampus surface on 13 future cognitive scores.
We also explore the shared and distinct heritability patterns of these cognitive
scores. Analysis results suggest that both the hippocampal and genetic data
have heterogeneous effects on different scores, with the trend that the value
of both hippocampi are negatively associated with the severity of cognition
deficits. Polygenic effects are observed for all the thirteen cognitive scores.
The well-known APOE4 genotype only explains a small part of the cognitive
function. Shared genetic etiology exists; however, greater genetic heterogene-
ity exists within disease classifications after accounting for the baseline diag-
nosis status. These analyses are useful in further investigation of functional
mechanisms for AD progression.

1. Introduction. Alzheimer’s disease (AD) is a chronic neurodegenerative condition
that leads to the degeneration of brain cells and a decline in cognitive, behavioral, and so-
cial skills. It is characterized by cognitive impairment, with significant variability in clinical
presentation, as well as the burden and distribution of pathology among patients. This clinico-
pathologic heterogeneity presents both challenges and opportunities for conducting system-
atic and biomarker-based studies to enhance our understanding of AD biology, diagnosis, and
management (Duong et al. (2022), Veitch et al. (2021)). AD has intricate pathophysiological
mechanisms that are not yet fully understood. However, advances in biomarker identification,
including genetic and imaging data, may aid in the early detection of individuals at risk for
AD before the onset of symptoms.

The primary aim of this study is to use genetic, imaging, and clinical (GIC) variables
from the ADNI study (Mueller et al. (2005)) to map the biological pathways of AD-related
phenotypes of interest (e.g., cognition, intelligence, and progression status) (Jack et al. (2010,
2013), Duong et al. (2022), Veitch et al. (2021), Yu et al. (2022)). This may provide insights
into the biological processes of brain development, healthy aging, and disease progression.
For instance, integrating GIC variables is of great interest to elucidate the environmental,
social, and genetic etiologies of intelligence and to delineate the foundations of intelligence
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differences in brain structure and function (Deary, Cox and Hill (2022)). Moreover, many
brain-related disorders, including AD, are often caused by a combination of multiple genetic
and environmental factors while being endpoints of abnormal brain structure and function
(Knutson, Deng and Pan (2020), Shen and Thompson (2020)). A thorough understanding
of such neurobiological pathways may lead to the identification of possible hundreds of risk
genes, environmental risk factors, and brain structure and function abnormalities that underlie
brain disorders. Once these risk genes and factors as well as brain abnormalities have been
identified, it may be possible to detect them early enough to make a real difference in outcome
and to develop related treatments, ultimately preventing the onset of brain-related disorders
and reducing their severity.

To numerically map GIC-related pathways, we extract cognitive scores to quantify behav-
ioral deficits, genetic covariates, demographic covariates at baseline, and brain imaging data
from the ADNI study. As the hippocampus is particularly susceptible to AD pathology, it has
become a major focus in AD research (Braak and Braak (1998)). We characterize the expo-
sure of interest, hippocampal shape, using left/right hippocampal morphometry surface data
represented as a 100 × 150 matrix. A detailed data description can be found in Section 2. Our
focus lies in understanding how hippocampal shape and genetics can predict future cognitive
deficits in Alzheimer’s research. The unique data structure of these GIC variables presents
new challenges for mapping the GIC pathway. First, conventional statistical tools, designed
for scalar exposure, are not suitable for high-dimensional hippocampal imaging measures.
Second, the dimension of the genetic covariates greatly exceeds the sample size. There is an
urgent need for an effective statistical method capable of utilizing the hippocampal surface
data and the ultrahigh-dimensional genetic data to map the GIC pathway.

To statistically map GIC-related pathways, we propose a high-dimensional partially func-
tional linear regression (PFLR) model,

Yi = α + XT
i β +

∫
T

Zi(t)ξ(t) dt + εi for i = 1, . . . , n.(1)

Here Yi represents a continuous phenotype of interest, Xi ∈ X is a p × 1 vector of genetic
and environmental variables, and Zi(t) ∈ L2(T ) is an imaging (or functional) predictor over
a compact set T . The intercept term is denoted by α, β is a p × 1 vector of coefficients, and
ξ(t) is an unknown slope function in a reproducing kernel Hilbert space (RKHS) H, while
εi denotes measurement errors. We consider the scenario where the dimension of β is either
comparable to or much larger than the sample size n and ξ(t) is an infinite-dimensional
function. Our goal is to make statistical inferences on β and {ξ(t) : t ∈ T }. As shown in
Figure 1, there are genetic and clinical confounders that affect both hippocampal shape and
behavioral deficits (Selkoe and Hardy (2016)). The classical high-dimensional linear model
only considers genetic data. However, by including imaging exposure ξ(t) in model (1), we
can achieve two important implications for the ADNI dataset. First, the model can quantify

FIG. 1. Directed acyclic graph showing potential relationships between the genetic data, the imaging data, and
the future outcome. The four solid arrows denote the associations of interest.
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the direct effects of the confounders by controlling for the imaging exposure. Second, it can
investigate the influence of the imaging exposure while controlling for the confounders and
preserving the structure of the imaging data.

There is limited literature on partially functional linear regression (PFLR) with high-
dimensional scalar covariates, with only a few notable exceptions. Kong et al. (2016) in-
vestigated PFLR in high dimensions, allowing the dimension of scalar covariates to diverge
with the sample size, n. Yao, Sue-Chee and Wang (2017) developed a regularized partially
functional quantile regression model, while also permitting the number of scalar predictors
to increase with the sample size. Ma et al. (2019) focused on the partial functional quantile
regression model in ultrahigh dimensions, with a diverging number of scalar predictors. All
three of the aforementioned methods involve three steps: first, representing the functional pre-
dictors using their leading functional principal components (FPCs), second, reducing PFLR
to a standard high-dimensional linear regression model, and third, selecting important fea-
tures through the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li (2001)).
As a result, existing approaches are heavily dependent on the success of the functional prin-
cipal component analysis (FPCA) approach (Wang, Chiou and Müller (2016)). They may not
be appropriate if the functional parameter cannot be effectively represented by the leading
principals of the functional covariates (Yuan and Cai (2010)). Moreover, the truncation pa-
rameter in the FPCA changes discretely, which may result in imprecise control over model
complexity, as noted in Ramsay and Silverman (2005).

Our PFLR is closely related to the growing literature on imaging genetics analysis, which
has significantly expanded over the past decade and can be broadly divided into two major
categories of statistical methods. The first category encompasses various statistical methods
(Ge et al. (2015), Huang et al. (2017), Lin et al. (2014), Nathoo, Kong and Zhu (2019), Shen
and Thompson (2020)) used in imaging genome-wide association studies (IGWAS) on imag-
ing phenotypes. Thousands of brain-related genetic loci have been identified for regional grey
matter volumes, white matter (WM) microstructure, and functional connectivity, with notable
genetic overlaps observed with AD and other brain-related disorders (Elliott et al. (2018),
Smith et al. (2021), Thompson et al. (2020), Zhao et al. (2022), Zhao et al. (2021), Zhao
et al. (2019)). Two open resource knowledge portals for imaging genetics include the Oxford
BIG40 (https://open.win.ox.ac.uk/ukbiobank/big40/) and BIG-KP (https://bigkp.org/). The
second category involves various statistical methods for mapping biological pathways that
link genetics and imaging data to brain-related disorders and examining their joint effects.
This area remains challenging and has not been systematically studied (Zhu, Li and Zhao
(2023)). Most existing methods initially extract features from the imaging data and focus on
the effects of the obtained features and genetic data (Cruciani et al. (2022), Dukart, Sambataro
and Bertolino (2016), Knutson, Deng and Pan (2020), Ossenkoppele et al. (2021)). However,
this approach neglects the rich smoothness information present in the imaging data.

In this paper we focus on the high-dimensional PFLR (1), develop an estimation method
for model selection and estimation, investigate the theoretical properties of both functional
and scalar estimators, and apply the proposed method to analyze the ADNI dataset. We em-
ploy the RKHS framework (Yuan and Cai (2010), Cai and Yuan (2012), Li and Zhu (2020))
and impose the roughness penalty on the functional coefficient. Furthermore, we impose the
�0 penalty on the scalar predictors because the �0 penalty function is often preferred among
penalty functions, as it directly penalizes the cardinality of a model and seeks the most par-
simonious model explaining the data. However, it is nonconvex, and solving an exact �0-
penalized nonconvex optimization problem involves exhaustive combinatorial best subset
search, which is NP-hard and computationally challenging. We modify the computational
algorithm in Huang et al. (2018) to address this difficulty and accommodate the functional
predictor. Meanwhile, we adapt the test statistic in Li and Zhu (2020) to assess the signifi-
cance of the functional variable. The implementation R code, along with its documentation, is

https://open.win.ox.ac.uk/ukbiobank/big40/
https://bigkp.org/
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available as an online supplement (https://github.com/BIG-S2/PFLR_RKHS_code). Numeri-
cally, the proposed method is rigorously tested on simulated data. We also provide theoretical
properties of the estimators, including error bounds, asymptotic normality of the estimates of
the nonzero scalar coefficients, and the null limit distribution of the test statistic designed to
test the nullity of the functional variable.

We apply PFLR to the ADNI dataset and conduct a thorough association analysis be-
tween genetics, hippocampus, and cognitive deficit. Unlike existing analyses targeting one or
several cognitive measures, the proposed method examines the joint effects of genetics and
hippocampus on 13 cognitive variables observed 12 months after baseline measurements.
These variables measure different aspects of cognitive function and explore the shared and
distinct heritability patterns of the 13 cognitive scores. We also investigate the effect of base-
line diagnosis information on future cognitive outcomes, denoted by the rightmost arrow in
Figure 1. Analysis results suggest that both hippocampal and genetic data have heterogeneous
effects on different scores. Generally, the value of both hippocampi are negatively associated
with the severity of cognitive impairments. Polygenic effects are observed for all 13 cogni-
tive scores, and shared genetic etiology exists. The strong genetic influence is only partially
attributed to the well-known APOE4 genotype, and the baseline diagnosis status explains a
larger part of cognitive function. There also exists a strong shared genetic effect beyond the
effect of the APOE4 gene. However, greater genetic heterogeneity exists within disease clas-
sifications after accounting for the baseline diagnosis status. These analyses are useful for
further investigation of functional mechanisms for AD progression.

The rest of this paper is organized as follows. Section 2 includes a detailed data and prob-
lem description. Section 3 describes our estimation procedure. Section 4 presents Monte
Carlo simulation studies to assess the finite sample performance of the proposed method.
Section 5 provides a detailed data analysis on the ADNI study. Theoretical properties of our
estimators and their proofs, additional simulation and real data analysis results can be found
in the Supplementary Material.

2. Data and problem description for ADNI. The ADNI is a large-scale, multisite neu-
roimaging study that has collected clinical, imaging, genetic, and cognitive data at multiple
time points from cognitively normal (CN) subjects, subjects with mild cognitive impairment
(MCI), and AD patients (Mueller et al. (2005)). It supports the investigation and develop-
ment of treatments that may slow or stop the progression of AD. The primary goal of ADNI
is to test whether genetic, structural and functional neuroimaging, and clinical data can be
integrated to assess the progression of MCI and early AD.

We constructed a dataset from the ADNI database (adni.loni.usc.edu), which consists of
606 subjects, including 113 AD patients, 316 patients with mild cognitive impairment (MCI),
and 177 normal controls (NC). The dataset also includes demographic variables such as Age,
Gender (0 = Male; 1 = Female), Handedness (0 = Right; 1 = Left), Retirement (0 = No;
1 = Yes), and Years of Education. The average age is 75.6 years with a standard deviation of
6.6 years, and the average years of education is 15.7 years with a standard deviation of 2.9
years. Among all the subjects, 361 are male, and 245 are female; 562 are right-handed, and
44 are left-handed; 497 are retired, and 109 are not.

We extracted GIC variables as follows. First, we extracted 13 cognitive variables at
12 months after the onset of ADNI for measuring the severity of cognitive impairment
(Battista, Salvatore and Castiglioni (2017), Grassi et al. (2019)); see Table S1 in the Sup-
plementary Material (Li et al. (2024)) for a summary of the abbreviations of these vari-
ables. Figure 2 presents the correlations between these scores. Among them, DIGITSCORE,
RAVLT.learning, RAVLT.immediate, LDELTOTAL, and MMSE are positively correlated,
with lower values indicating more severe cognitive impairment. In contrast, CDRSB, FAQ,

https://github.com/BIG-S2/PFLR_RKHS_code
http://adni.loni.usc.edu
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FIG. 2. ADNI data analysis: correlations between the 13 cognitive variables.

RAVLT.forgetting, RAVLT.perc.forgetting, TRABSCOR, ADAS11, ADAS13, and ADASQ4
are negatively correlated, with higher values indicating more severe cognitive impairment.
Second, we used the image processing pipeline in (Li et al. (2007)) to calculate the hip-
pocampal morphometry surface measure as a 100 × 150 matrix, with each element being a
continuous variable representing the radial distance from the corresponding coordinate on
the hippocampal surface to the medial core of the hippocampus. Such hippocampus surface
measures may provide more subtle indexes, compared with volume differences in discrimi-
nating between patients with Alzheimer’s and healthy control subjects. Third, we extracted
ultrahigh dimensional genetic markers and other demographic covariates at baseline. We used
the same preprocessing pipeline used in (Zhao et al. (2019, 2021, 2022)) to obtain 6,087,205
genotyped and imputed single-nucleotide polymorphisms (SNPs) on all of the 22 chromo-
somes.

The clinical spectrum of AD can be quite heterogeneous. Specifically, there are two main
clinical syndromes: Amnestic AD, which is characterized by significant impairment of learn-
ing and recall, and nonamnestic AD, which involves impairment of language, visuospatial,
or executive function (McKhann et al. (2011)). These scores measure different functions
and may lack sensitivity at different stages of AD. For example, the detection of changes in
ADAS11 and ADAS13 is limited by a substantial floor effect (Hobart et al. (2013)), whereas
CDRSB lacks sensitivity to detect changes in the very early stages of AD (de Aquino (2021)).

Little is known about the genetic architecture of these cognitive scores and the genetic-
imaging-clinical (GIC) pathway for AD. We are particularly interested in the following sci-
entific questions:

• (Q1) How can we quantify the joint effect of genetic and imaging markers on the 13 cog-
nitive scores?

• (Q2) How can we measure the shared and different heritability patterns of the 13 differ-
ent cognitive scores with/without accounting for APOE4, which is considered to be the
strongest risk factor gene for AD?

• (Q3) How do the estimates and heritability patterns of the 13 different cognitive scores
differ with/without accounting for baseline diagnosis information?

We use model (1) to address (Q1)–(Q3) below.
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3. Estimation and inference procedures for PFLR.

3.1. Estimation algorithm. In this subsection we develop an estimation method for
model (1). First, we need to introduce some notation. Denote Y = (Y1, . . . , Yn)

T , X =
(XT

1 , . . . ,XT
n )T , Z = (Z1, . . . ,Zn)

T , and ε = (ε1, . . . , εn)
T . Denote the true value of ξ and

β as ξ∗ and β∗, respectively. Let S = {1,2, . . . , p}. For any A and B ⊆ S with length |A|
and |B|, denote βA = (βi, i ∈ A) ∈ R

|A|. Denote β|A ∈ R
p be a vector with its ith el-

ement (β|A)i = βi1(i ∈ A), where 1(·) is the indicator function. Let ‖β‖k,∞ be the kth
largest elements in absolute value. Denote ‖ · ‖0 as the �0 norm that calculates the num-
ber of nonzero elements of a vector. Let ‖ · ‖2 be the �2-norm such that ‖β‖2

2 = ∑p
i=1 β2

i and
‖·‖L2 be the L2-norm such that ‖ξ‖2

L2
= ∫

T ξ2(t) dt . Thus, we assume throughout E(X) = 0,
E{Z(t)} = 0 and E(Y ) = 0, and, therefore, the intercept term can be ignored. In practice, we
assume that the response Yi and the predictors Xi and Zi(·) are all mean centered such that
n−1 ∑n

i=1 Yi = 0, n−1 ∑n
i=1 Xi = 0, and n−1 ∑n

i=1 Zi(·) = 0.
We use the least-squares loss to estimate the functional and scalar coefficients. Due to the

infinite-dimensional functional coefficient and high-dimensional scalar coefficients, regular-
izations are needed for estimating both ξ(t) and β . Similar to Yuan and Cai (2010) and Cai
and Yuan (2011), the functional coefficient ξ∗ is assumed to reside in a RKHS H(K) with a
reproducing kernel K . The RKHS roughness penalty is imposed on the functional parameter,
while the �0 penalty is imposed on the scalar parameters, following a similar spirit of Huang
et al. (2018). Therefore, we solve the following minimization problem:

min
β∈Rp,ξ∈H(2n)−1

n∑
i=1

[
Yi −

(
XT

i β +
∫
T

Zi(t)ξ(t)dt

)]2
subject to ‖β‖0 ≤ J, ‖ξ‖2

H ≤ J̃ ,

where J > 0 controls the sparsity level of β and J̃ > 0 controls the smoothness level of ξ .
Consider the Lagrangian form of the above minimization problem

min
β∈Rp,ξ∈H

{
(2n)−1

n∑
i=1

[
Yi −

(
XT

i β +
∫
T

Zi(t)ξ(t)dt

)]2
+ τ‖β‖0 + 0.5λ‖ξ‖2

H

}
,(2)

where τ and λ are the Lagrange multipliers. To solve the minimization problem (2), the
following Representer theorem is very useful.

THEOREM 1. For any β ∈ R
p , there exists a parameter vector c(β) such that

ξ̂ (β) =
n∑

i=1

ci(β)(KZi),(3)

where ci(β) is the ith component of c(β) and Kf := ∫
S K(·, t)f (t)dt for f ∈ L2(T ).

Define �ii′ = ∫∫
S×S Zi(s)K(s, t)Zi′(t)dsdt as the (i, i ′)-th entry of �. The objective func-

tion in (2) can be written in matrix form as

(2n)−1‖Y − Xβ − �c‖2
2 + τ‖β‖0 + 0.5λcT �c.(4)

Taking the first-order derivative of (4) with respect to c and setting it to zero give

c = (� + nλI)−1(Y − Xβ).(5)

Substituting (5) into (4), we obtain the following minimization problem:

min
β∈Rp

{
(2n)−1(Y − Xβ)T Pλ(Y − Xβ) + τ‖β‖0

}
,(6)
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where Pλ := nλ(� + nλI)−1. Once we find an approximate solution to (6), we can plug it
back into (5), leading to an estimate of ξ .

We derive the optimality conditions for (6). If βo is a minimizer of (6), then we have

do = XT Pλ

(
Y − Xβo)/n and βo = Hτ

(
βo + do),(7)

where Hτ(·) is the elementwise hard thresholding operator with its ith entry, defined by
Hτ(β)i = 0, if |βi | <

√
2τ and βi , if |βi | ≥ √

2τ . Conversely, if βo and do satisfy (7), then
βo is a local minimizer of (6).

Let Ao = {i : βi �= 0} and I o = {i : βi = 0}. Denote βo
Ao = (βi : i ∈ Ao) ∈ R

|Ao| and, simi-
larly, βo

Io , do
Ao , and do

Io . Denote XAo = (Xi : i ∈ Ao) ∈ R
n×|Ao| and, similarly, XIo . By (7) we

have Ao = {i : |βo
i + do

i | ≥ √
2τ }, I o = {i : |βo

i + do
i | < √

2τ }, and the system of equations

βo
Io = 0, do

Ao = 0, βo
Ao = (

XT
AoPλXAo

)−1XT
AoPλY, do

Io = XT
IoPλ

(
Y − XAoβo

Ao

)
/n.

If we want βo to have exactly J nonzero elements, then we can set
√

2τ equal to the J th
largest element of the sequence {|βo

i + do
i | : i = 1, . . . , p}.

To solve the above system of equations and obtain both the functional and scalar esti-
mates, for a given sparsity level J , we modify the support detection and root finding algo-
rithm (Huang et al. (2018)) to accommodate the functional variable. We use the generalized
cross-validation (GCV) to select the tuning parameter λ by following the same reasoning in
Yuan and Cai (2010). To select an appropriate sparsity level J , we use the high-dimensional
Bayesian information criterion (HBIC) (Wang, Kim and Li (2013)) as follows:

HBICJ = log
(
n−1

∥∥∥∥Y − Xβ̂ −
∫
T

Z(t )̂ξ (t) dt

∥∥∥∥2)
+ J log log(n) log(p)/n.

The sparsity level J is set to minimize HBICJ .
We summarize the above algorithm in Algorithm 1. The proposed estimation algorithm

can be easily extended to allow for certain sets of covariates not to be penalized by including
these covariates in the active set at each iteration.

Algorithm 1 Functional support detection and root finding (FSDAR)

Input: An initial β0 and the sparsity level J ; set k = 0.
1: for a given λ, calculate d0 = XT Pλ(Y − Xβ0)/n and Pλ = nλ(� + nλI)−1;
2: for k = 0,1,2, . . . do
3: Ak = {i : |βk

i + dk
i | ≥ ‖βk + dk‖J,∞}, I k = (Ak)c;

4: βk+1
Ak = (XT

Ak PλXAk)−1XT
Ak PλY, βk+1

I k = 0;

5: dk+1
Ak = 0, dk+1

I k = XT
Ik Pλk (Y − XAkβ

k+1
Ak )/n;

6: if Ak+1 = Ak then
7: Stop and denote β̂ = (β̂T

Ak , β̂
T
Ik )

T .
8: else
9: k = k + 1;

10: end if
11: end for
12: for a list of candidate λs, repeat steps 1-11 and select λ that gives the best GCV =

n‖Pλ(Y − XAkβk
Ak )‖2

2/[tr(Pλ)]2

Output: β̂, ĉ = (� + nλI)−1(Y − Xβ̂), and ξ̂ = ∑n
i=1 ĉi (KZi).
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3.2. Computational complexity. We analyze the computational complexity of Algorithm
1 as follows. Let m denote the number of points of the functional variable. The calculation
of the matrix � has a complexity of O(nm2 + n2m) and can be precomputed and stored.
The computational complexity of calculating the matrix Pλ is O(nm2 + n2m + n3), while
the complexity of calculating d0 is O(n2p). Therefore, the complexity of step 1 is O(n2p),
assuming that p is much larger than the sample size. Step 3 requires O(p) flops, step 4
and step 5 both have a complexity of O(n2J ), and checking the stopping condition in step
6 takes O(p). Consequently, for a given λ and sparsity level J , the overall cost per iter-
ation of Algorithm 1 is O(n2p). According to Corollary 2 in the Supplementary Material
(Li et al. (2024)), no more than O(log(R)) iterations are needed to obtain a good solution,
where R = max{|β∗

i |, i ∈ A∗}/min{|β∗
i |, i ∈ A∗}. Therefore, the overall cost of Algorithm

1 is O(n2p log(R)). If we select the tuning parameters λ,J using a grid search method,
the computational complexity increases by a factor corresponding to the number of tuning
parameter sets.

3.3. Inference procedure. In order to provide theoretical guarantees for all estimators and
test statistics, we establish their theoretical properties in the Supplementary Material (Li et al.
(2024)). These properties encompass the nonasymptotic error bounds of β̂k at each iteration,
the general nonasymptotic error bound of ξ̂ (t), the asymptotic normality of the estimates for
the nonzero scalar coefficients, and the null limit distribution of Tξ .

As an example, we consider testing the nullity of the functional covariate ξ(t). In our
real data analysis, we aim to examine whether the left and right hippocampi have significant
effects on cognitive decline. To do so, we propose the following test:

H0 : ξ0(t) = 0 for any t, vs. H1 : ξ0(t) �= 0, for some t.(8)

After variable selection we adapt the test statistic in Li and Zhu (2020) to test (8). Specifically,
we define

Tξ = 2n
[
�nλ

(
β̂H0, ξ0(t)

) − �nλ

(
β̂, ξ̂ (t)

)]
,

where �nλ is the loss function and β̂H0 is the estimator under the null hypothesis. Following
Li and Zhu (2020), we can demonstrate that Tξ converges to a normal distribution, while
being approximated a chi-square distribution, as shown in Corollary 4 of the Supplementary
Material (Li et al. (2024)).

4. Simulation studies. We investigate the finite sample performance of the proposed
estimation method in two cases: one-dimensional ξ(s), which is discussed in this section, and
two-dimensional ξ(s), which is presented in the Supplementary Material (Li et al. (2024)).
We employ Algorithm 1 to estimate the unknown coefficients. The initial value is set to
zero, and we choose J ∈ 1,2, . . . ,50 and λ from 50 evenly spaced points on the interval
[1e − 5,0.1].

EXAMPLE 4.1. The following is designed to evaluate the estimation and prediction per-
formances for one-dimensional ξ(t) in the interval T = [0,1]. The functional predictor Z(t)

is given by: Z(t) = ∑50
k=1 Ukφk(t) for t ∈ [0,1], where φ2l−1(t) = √

2 cos((2l − 1)πt) and
φ2l(t) = √

2 sin((2l − 1)πt), ł = 1, . . . ,25, and {Uk} are independently sampled from the
normal distribution N(0,16|k − C0| + 1) with C0 ∈ {1,3}. For the coefficient function, we
set ξ(t) = ∑50

k=1 4(−1)k+1k−2φk(t). When C0 = 1, the functional coefficient can be effi-
ciently represented in terms of the leading functional principal components. When C0 = 3,
the representative basis functions for Z(t) and ξ(t) are disordered such that the leading eigen-
functions φk(t) of the covariance kernel of Z(t) are around k = 3.
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Following Kong et al. (2016), we allow a moderate correlation between Z(t) and
the scalar covariates X = (X1, . . . ,Xp)T by introducing a correlation structure between

{U1,U2,U3,U4} and X = (X1, . . . ,Xp)T as corr(Uk,Xl) = ρ
|k−l|+1
1 for k = 1, . . . ,4 and

l = 1, . . . , p with ρ1 ∈ {0.2,0.4}. The scalar covariates X = (X1, . . . ,Xp)T are jointly nor-
mal with zero mean, unit variance, and AR(ρ2) with ρ2 ∈ {0.3,0.5,0.7}.

For each subject i, we observe Zi(tij ) at 100 equally spaced points. The errors εis are
generated from the standard normal distribution. The sample size is chosen to be n = 200.
We consider β with two different values of dimensionality: p = 150, which is smaller than
the training sample size, and p = 1500, which is larger than the training sample size. Specif-
ically, the underlying true β is set to be β = (3,1.5,1,2.5,2,0, . . . ,0︸ ︷︷ ︸

p−5

)T . In addition to the

proposed method, the method based on FPCA proposed by Kong et al. (2016) is also con-
sidered for comparison. The number of the functional components and the penalty tuning
parameter are selected by minimizing the value of HBIC. The initial β0 is set to be 0.
We have tested several different choices, including β0 = (1, . . . ,1)�, β0 = (10, . . . ,10)�,
β0 = (100, . . . ,100)�, and the marginal correlation between the covariates and the response.
The results are the same, which are not sensitive to the selection of the initial β0.

All simulation results are based on 200 replications by using R (version 3.6.0) on a Linux
server (equipped with Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz, 125 GB RAM).
We evaluate the estimation accuracy of β̂ using the mean squared error MSEβ = ‖β̂ − β‖2

2
and that of ξ by using the mean integrated squared error MSEξ = ‖ξ̂ − ξ‖2

L2
as well as the

relative MSE of ξ̂ such that RMSEξ = ‖ξ̂ − ξ‖2
L2

/‖ξ‖2
L2

. We also calculate the number of
false zero scalar predictors (FZ), the number of false nonzero scalar predictors (FN), and the
prediction mean squared error (PMSE) based on 200 new test samples. We further calculate
the compatation time (in seconds).

Table 1 presents the variable selection accuracy, estimation accuracy, and prediction results
for the moderate number of scalar variables with n = 200 and p = 150. Our method outper-
forms the FPCA-based method in Kong et al. (2016) in almost all scenarios. Specifically, the
selection of scalar predictors for our method is more accurate and stable than the competing
method, with fewer false nonzero scalars and zero false zero scalars. For our method, the
number of false zero scalars and false nonzero scalars do not differ too much across different
correlations among the scalar variables. However, FZ and FN of the competing method (Kong
et al. (2016)) increase as the correlation among the scalar variables becomes larger. This in-
dicates that more zero scalar variables would be selected in PFLR, whereas more nonzero
scalar variables would be excluded from PFLR. When the representative basis functions for
Z(t) and ξ(t) are not exactly matched, our method still yields more stable estimates than the
competing method (Kong et al. (2016)). Furthermore, MSEs and PMSEs for our method are
smaller than those for the competing method (Kong et al. (2016)) in all scenarios.

Table 2 reports additional simulation results corresponding to n = 200 and p = 1500. The
proposed method outperforms the competing method (Kong et al. (2016)) in terms of FNs,
FZs, MSEs, and PMSEs. For instance, it is noteworthy that the number of false zero scalars
for the competing method (Kong et al. (2016)) increases as ρ2 increases.

Figure 3 shows the solution path of β̂ for different ρ2 values corresponding to (p,C0, ρ1) =
(150,1,0.2). The solution path displays how β̂ evolves either as the sparsity level of the pro-
posed method increases or as the penalty tuning parameter decreases. Specifically, the upper
five lines show how β̂1, . . . , β̂5 change with the sparsity level and the penalty tuning param-
eter. For our method, when ρ2 is small (e.g., ρ2 = 0.3), the five variables gradually enter
the model and the more significant a variable is, the earlier it is selected. However, when
ρ2 increases to a larger value, a less important variable may enter the model earlier than a
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TABLE 1
Simulation results of Monte Carlo averages and empirical standard errors in parentheses for n = 200, p = 150

Center ρ1 ρ2 FZ FN MSEβ MSEξ RMSEξ PMSE Time(s)

1 0.2 0.3 Proposed 0.000(0.000) 0.670(0.737) 0.067(0.046) 0.035(0.023) 0.002(0.001) 1.085(0.121) 2.219(2.458)
FPCA 0.005(0.071) 1.115(2.875) 0.152(0.307) 0.103(0.051) 0.006(0.003) 1.269(0.273) 0.590(0.098)

0.5 Proposed 0.000(0.000) 0.685(0.767) 0.082(0.056) 0.036(0.026) 0.002(0.001) 1.087(0.122) 2.714(2.987)
FPCA 0.015(0.122) 1.390(2.890) 0.224(0.346) 0.103(0.051) 0.006(0.003) 1.271(0.228) 0.694(0.122)

0.7 Proposed 0.000(0.000) 0.530(0.679) 0.107(0.072) 0.036(0.024) 0.002(0.001) 1.076(0.123) 2.737(2.744)
FPCA 0.255(0.437) 1.350(3.015) 0.779(1.874) 0.110(0.055) 0.006(0.003) 1.377(1.083) 0.685(0.125)

0.4 0.3 Proposed 0.000(0.000) 0.695(0.731) 0.072(0.046) 0.039(0.029) 0.002(0.002) 1.081(0.114) 2.572(2.537)
FPCA 0.015(0.122) 1.150(2.594) 0.183(0.367) 0.115(0.065) 0.007(0.004) 1.284(0.349) 0.701(0.123)

0.5 Proposed 0.000(0.000) 0.635(0.703) 0.079(0.056) 0.038(0.032) 0.002(0.002) 1.083(0.115) 2.981(2.930)
FPCA 0.035(0.184) 1.155(2.448) 0.304(0.523) 0.113(0.062) 0.006(0.004) 1.302(0.306) 0.678(0.120)

0.7 Proposed 0.000(0.000) 0.510(0.680) 0.111(0.079) 0.038(0.024) 0.002(0.001) 1.078(0.118) 2.423(2.518)
FPCA 0.300(0.470) 1.020(2.143) 0.658(1.016) 0.122(0.066) 0.007(0.004) 1.310(0.315) 0.704(0.125)

3 0.2 0.3 Proposed 0.000(0.000) 0.655(0.706) 0.067(0.046) 0.026(0.016) 0.001(0.001) 1.088(0.118) 2.527(2.441)
FPCA 0.000(0.000) 0.125(0.448) 0.052(0.076) 0.193(0.103) 0.011(0.006) 1.369(0.185) 0.712(0.134)

0.5 Proposed 0.000(0.000) 0.665(0.752) 0.081(0.055) 0.026(0.017) 0.001(0.001) 1.086(0.123) 2.338(2.231)
FPCA 0.000(0.000) 0.250(0.714) 0.065(0.067) 0.191(0.102) 0.011(0.006) 1.365(0.178) 0.702(0.140)

0.7 Proposed 0.000(0.000) 0.520(0.687) 0.105(0.073) 0.025(0.015) 0.001(0.001) 1.080(0.124) 2.765(2.791)
FPCA 0.050(0.218) 0.340(0.805) 0.196(0.377) 0.187(0.095) 0.011(0.005) 1.369(0.190) 0.683(0.122)

0.4 0.3 Proposed 0.000(0.000) 0.650(0.728) 0.068(0.045) 0.028(0.019) 0.002(0.001) 1.081(0.118) 2.396(2.307)
FPCA 0.000(0.000) 0.090(0.335) 0.053(0.049) 0.190(0.106) 0.011(0.006) 1.361(0.174) 0.667(0.118)

0.5 Proposed 0.000(0.000) 0.555(0.692) 0.072(0.055) 0.027(0.017) 0.002(0.001) 1.080(0.113) 2.637(2.744)
FPCA 0.000(0.000) 0.195(0.573) 0.073(0.079) 0.197(0.099) 0.011(0.006) 1.368(0.163) 0.668(0.124)

0.7 Proposed 0.000(0.000) 0.530(0.715) 0.107(0.082) 0.027(0.015) 0.002(0.001) 1.081(0.118) 2.795(2.912)
FPCA 0.110(0.314) 0.225(0.553) 0.245(0.456) 0.201(0.125) 0.011(0.007) 1.389(0.209) 0.664(0.120)
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TABLE 2
Simulation results of Monte Carlo averages and empirical standard errors in parentheses for n = 200, p = 1500

Center ρ1 ρ2 FZ FN MSEβ MSEξ RMSEξ PMSE Time(s)

1 0.2 0.3 Proposed 0.000(0.000) 0.820(0.813) 0.098(0.068) 0.094(0.011) 0.005(0.001) 1.191(0.135) 35.566(33.777)
FPCA 0.005(0.071) 4.655(9.863) 0.224(0.763) 0.107(0.078) 0.006(0.004) 1.344(0.812) 1.079(0.233)

0.5 Proposed 0.000(0.000) 0.855(0.811) 0.121(0.075) 0.094(0.012) 0.005(0.001) 1.207(0.143) 38.249(34.465)
FPCA 0.035(0.184) 5.190(9.596) 0.429(1.111) 0.111(0.057) 0.006(0.003) 1.418(0.964) 1.090(0.250)

0.7 Proposed 0.000(0.000) 0.665(0.778) 0.150(0.098) 0.092(0.010) 0.005(0.001) 1.178(0.137) 38.350(34.027)
FPCA 0.410(0.493) 5.480(9.252) 1.031(1.295) 0.115(0.059) 0.007(0.003) 1.465(0.760) 1.094(0.219)

0.4 0.3 Proposed 0.000(0.000) 0.715(0.766) 0.108(0.065) 0.100(0.013) 0.006(0.001) 1.183(0.138) 39.534(34.614)
FPCA 0.010(0.100) 4.560(9.637) 0.233(0.616) 0.118(0.067) 0.007(0.004) 1.346(0.620) 1.047(0.247)

0.5 Proposed 0.000(0.000) 0.675(0.736) 0.121(0.075) 0.097(0.012) 0.005(0.001) 1.174(0.133) 37.203(32.144)
FPCA 0.065(0.247) 5.205(8.870) 0.501(1.111) 0.125(0.063) 0.007(0.004) 1.425(0.783) 1.096(0.236)

0.7 Proposed 0.000(0.000) 0.685(0.767) 0.179(0.113) 0.095(0.011) 0.005(0.001) 1.173(0.143) 35.889(31.236)
FPCA 0.455(0.509) 4.795(8.094) 1.089(1.434) 0.139(0.086) 0.008(0.005) 1.440(0.562) 1.090(0.223)

3 0.2 0.3 Proposed 0.000(0.000) 0.205(0.473) 0.081(0.068) 0.073(0.017) 0.004(0.001) 1.467(0.185) 36.373(33.003)
FPCA 0.000(0.000) 0.395(0.961) 0.057(0.059) 0.217(0.135) 0.012(0.008) 1.391(0.178) 1.045(0.235)

0.5 Proposed 0.000(0.000) 0.240(0.494) 0.108(0.076) 0.072(0.016) 0.004(0.001) 1.471(0.188) 39.177(32.842)
FPCA 0.005(0.071) 0.940(1.565) 0.103(0.201) 0.224(0.134) 0.013(0.008) 1.413(0.196) 1.078(0.270)

0.7 Proposed 0.000(0.000) 0.170(0.427) 0.169(0.132) 0.071(0.018) 0.004(0.001) 1.459(0.181) 37.563(33.131)
FPCA 0.130(0.337) 1.910(2.755) 0.274(0.484) 0.219(0.127) 0.012(0.007) 1.416(0.216) 1.079(0.203)

0.4 0.3 Proposed 0.000(0.000) 0.255(0.549) 0.146(0.081) 0.088(0.021) 0.005(0.001) 1.458(0.183) 34.386(31.798)
FPCA 0.000(0.000) 0.485(1.080) 0.072(0.072) 0.222(0.139) 0.013(0.008) 1.402(0.185) 1.078(0.240)

0.5 Proposed 0.000(0.000) 0.235(0.540) 0.164(0.100) 0.082(0.018) 0.005(0.001) 1.452(0.182) 38.020(32.011)
FPCA 0.010(0.100) 0.905(1.568) 0.133(0.229) 0.227(0.137) 0.013(0.008) 1.420(0.204) 1.061(0.228)

0.7 Proposed 0.000(0.000) 0.205(0.463) 0.277(0.166) 0.078(0.018) 0.004(0.001) 1.448(0.182) 39.756(33.367)
FPCA 0.195(0.397) 1.685(2.270) 0.388(0.600) 0.236(0.137) 0.013(0.008) 1.434(0.221) 1.083(0.223)
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FIG. 3. Solution paths of β̂ for different settings of for different ρ2 corresponding to
(p,C0, ρ1) = (150,1,0.2). The upper five lines correspond to the solution paths of the nonzero el-
ements of β , whereas the others correspond to zero elements.

more important one. The evolution of significant β̂s does not change very much when the
sparsity level is greater than the true sparsity level of 5. For the competing method (Kong
et al. (2016)), we observed similar entering orders of the variables. The values of significant
β̂s also do not differ very much when the tuning parameter is smaller than some value when
ρ2 is small. However, when the correlation among the scalar variables increases, the evo-
lution of significant β̂s shows different patterns, such that nonzero scalar variables may be
excluded from PFLR as the tuning parameter of the SCAD penalty decreases. These results
may indicate that our method is more stable and accurate than the competing method.

EXAMPLE 4.2. In this example we evaluate the Type I and II error rates of the pro-
posed test statistic. Data settings are the same as in Example 4.1, except that ξ(t) =∑50

k=1 B(−1)k+1k−2φk(t) with B ∈ {0,0.01,0.03,0.05,0.07,0.1}, which controls the signal
strength. When B = 0, we obtain the sizes. Because the testing results have similar patterns
for different values of (ρ1, ρ2), we report the sizes and powers when (ρ1, ρ2) = (0.2,0.5)

for the sake of a concise presentation. We choose n ∈ {200,400}, p ∈ {150,1500}, and the
significance level to be 5%.

For the null hypothesis, H0 : ξ(t) = 0; Table 3 summarizes the sizes and powers of the
proposed test based on 1000 simulation runs. It reveals that the empirical sizes are reasonably
controlled around the nominal level, and the empirical power increases with the sample size
n as well as the signal strength.

5. ADNI data analysis. To address research questions (Q1)–(Q3), we developed three
PFLR models named Models 1–3 to analyze the ADNI dataset as follows:

• Model 1, described in Section 5.1, considers each of the 13 cognitive scores at Month12
in Table S1 for Yi , utilizes the hippocampus morphometry surface Zi(·, ·) and includes
the allele codes of screened SNPs, the set of demographic covariates at baseline detailed
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TABLE 3
Testing results of Monte Carlo averages with ρ1 = 0.2, ρ2 = 0.5

n p B = 0 B = 0.01 B = 0.03 B = 0.05 B = 0.07 B = 0.1

200 150 0.057 0.111 0.112 0.817 0.969 1

1500 0.053 0.117 0.117 0.784 0.955 0.999

400 150 0.055 0.137 0.137 0.982 0.999 1

1500 0.057 0.115 0.115 0.978 0.999 1

in Section 2, and the top five principal components (PCs) of the whole genome data for
correcting population stratification (Price et al. (2006)) as predictors Xi .

• Model 2, described in Section 5.2, is almost the same as Model 1 but excludes the SNPs
in the 19q13.32 region from the candidate SNPs and includes the number of APOE4 gene
copies as one of the controlling covariates.

• Model 3, described in Section 5.3, is almost the same as Model 2 but further includes the
baseline diagnosis status as one of the controlling covariates.

These models help in analyzing ADNI to address the research questions effectively.

5.1. GIC pathways. We fit Model 1 to ADNI for addressing (Q1) as follows. Since the
number of SNPs is significantly larger than the sample size, we first apply the sure inde-
pendence screening approach (Fan and Lv (2008)) to reduce the number of candidate SNPs,
controlling demographic variables and the top five PCs. We sort SNPs in decreasing order of
their absolute correlations with each cognitive score and keep the top 1000 for each score.
Combining the top 1000 SNPs of each score across all 13 scores results in 10,546 different
SNPs in Xi . For easy comparison we standardize all SNPs, cognitive scores, and demo-
graphic variables, including Age and Years of education. As both left and right hippocampi
have 2D radial distance measures and are asymmetric (Pedraza, Bowers and Gilmore (2004)),
we apply our method to the left and right hippocampi separately. In the estimation procedure,
controlling variables are not penalized and are always in the active set. The initial value is
set to zero. We choose the sparsity level J and the smoothness parameter J by a grid search
method with J ∈ 1,2, . . . ,100 and λ from 50 evenly spaced points on [1e − 5,0.1].

Figures 4 and 5 present the estimates of the left and right hippocampal surfaces for all
13 cognitive scores in Model 1. Figure 4 shows the estimates ξ̂ , with values ranging from
0.071 to 0.63, corresponding to DIGITSCOR, LDELTOTAL, MMSE, RAVLT.immediate,
and RAVLT.learning. Figure 5 displays the estimates ξ̂ , with values ranging from −0.62 to
−0.018, corresponding to ADAS11, ADAS13, ADASQ4, CDRSB, FAQ, RAVLT.forgetting,
RAVLT.perc.forgetting, and TRABSCOR. Examining Figures 4 and 5 reveals the heteroge-
neous effects of the hippocampus on all 13 cognitive scores. A bilateral and asymmetric
hippocampal effect on cognitive function is observed. Among the six hippocampal subfields
in Figure 4, CA1, presubiculum, and subiculum show high sensitivity (Frisoni et al. (2008),
de Flores, Joie and Chételat (2015)). AD-related atrophy initially appears focal in CA1 before
spreading to other subfields.

Hereafter we focus on the results obtained from the left hippocampal surface data. Ta-
ble 4 presents the estimates of selected covariates and their corresponding p-values for the
13 cognitive scores in Model 1. The p-values are calculated using the limit distribution in
Theorem 3 of the Supplementary Material (Li et al. (2024)), assuming that the true value
of the coefficient is zero. Under this assumption each estimated coefficient converges to a
normal distribution, and we use this distribution to determine the p-value. Consistent with
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FIG. 4. ADNI data analysis results: Estimates of the left and right hippocampus surfaces for DIGITSCOR,
LDELTOTAL, MMSE, RAVLT.immediate, and RAVLT.learning for Model 1 and the hippocampal subfields (from
left to right, and from top to bottom).

previous research (Vina and Lloret (2010), Guerreiro and Bras (2015)), we find that age and
education have a significant impact on most of the cognitive scores. Age generally has a neg-
ative effect on cognitive function, while education has positive effects depending on cognitive
function. Retirement is significant for six scores, suggesting that retired individuals are at an
increased risk of cognitive impairment. Gender is significant for five scores, and handedness
is significant for three scores.

Figures 6(a) and 6(b) display the ideogram and Manhattan plots for significant SNPs re-
lated to all 13 cognitive scores in Model 1, respectively. Upon examining Figure 6(a), hetero-
geneous genetic effects are observed across all scores. However, several well-known SNPs

FIG. 5. ADNI data analysis results: Estimates of the the left and right hippocampus surfaces for ADAS11,
ADAS13, ADASQ4, CDRSB, FAQ, RAVLT.forgetting, RAVLT.perc.forgetting, and TRABSCOR for Model 1 (from
left to right, and from top to bottom).
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TABLE 4
ADNI data analysis results: estimates with their corresponding raw p-values in parentheses of some selected covariates for the 13 cognitive scores

Score Model Gender Handedness Education Retirement Age APOE4 MCI AD

ADAS11 Model 1 0.098(0.033) 0.110(0.204) −0.078(0.001) 0.137(0.021) 0.051(0.028) – – –
Model 2 0.129(0.000) 0.145(0.012) −0.091(0.000) 0.070(0.088) 0.074(0.000) 0.252(0.000) – –
Model 3 0.136(0.000) 0.051(0.314) −0.017(0.226) −0.019(0.585) 0.062(0.000) 0.066(0.000) 0.823(0.000) 1.855(0.000)

ADAS13 Model 1 −0.034(0.333) 0.123(0.057) −0.124(0.000) 0.007(0.872) 0.050(0.005) – – –
Model 2 0.099(0.005) 0.084(0.207) −0.176(0.000) 0.158(0.000) 0.040(0.023) 0.291(0.000) – –
Model 3 0.164(0.000) 0.004(0.929) 0.028(0.021) 0.010(0.752) 0.043(0.001) 0.077(0.000) 0.994(0.000) 1.967(0.000)

ADASQ4 Model 1 −0.058(0.100) 0.161(0.016) −0.138(0.000) 0.042(0.348) −0.035(0.051) – – –
Model 2 −0.026(0.452) 0.135(0.037) −0.169(0.000) 0.100(0.026) 0.007(0.698) 0.308(0.000) – –
Model 3 0.007(0.757) 0.141(0.002) −0.091(0.000) −0.001(0.969) 0.006(0.612) 0.173(0.000) 1.118(0.000) 1.746(0.000)

CDRSB Model 1 0.019(0.660) 0.097(0.220) −0.091(0.000) 0.132(0.017) 0.047(0.027) – – –
Model 2 0.085(0.011) −0.0.089(0.172) −0.081(0.000) 0.265(0.004) 0.053(0.002) 0.215(0.000) – –
Model 3 0.107(0.000) −0.029(0.494) 0.016(0.154) 0.107(0.000) 0.046(0.000) 0.071(0.000) 0.819(0.000) 2.017(0.000)

FAQ Model 1 0.050(0.232) 0.052(0.519) −0.079(0.000) 0.278(0.000) 0.045(0.035) – – –
Model 2 0.145(0.004) 0.020(0.830) −0.067(0.007) 0.273(0.000) 0.002(0.925) 0.238(0.000) – –
Model 3 0.125(0.000) 0.038(0.429) 0.019(0.135) 0.128(0.000) 0.012(0.382) 0.118(0.000) 0.666(0.000) 1.952(0.000)

RAVLT.forgetting Model 1 −0.026(0.580) 0.002(0.979) −0.043(0.056) −0.297(0.000) −0.158(0.000) – – –
Model 2 −0.072(0.055) −0.231(0.001) −0.033(0.075) −0.256(0.000) −0.161(0.000) 0.148(0.000) – –
Model 3 0.062(0.219) −0.120(0.202) 0.002(0.953) −0.173(0.008) −0.047(0.064) 0.024(0.353) 0.637(0.000) 0.539(0.000)

RAVLT.perc.forgetting Model 1 −0.106(0.005) 0.120(0.081) −0.149(0.000) −0.019(0.685) −0.045(0.018) – – –
Model 2 −0.107(0.001) 0.295(0.000) −0.125(0.000) −0.009(0.830) −0.047(0.003) 0.188(0.000) – –
Model 3 −0.054(0.052) 0.022(0.659) −0.054(0.000) −0.170(0.000) 0.003(0.855) 0.093(0.000) 0.989(0.000) 1.481(0.000)
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TABLE 4
(Continued)

Score Model Gender Handedness Education Retirement Age APOE4 MCI AD

TRABSCOR Model 1 −0.036(0.436) −0.088(0.293) −0.230(0.000) −0.021(0.712) 0.003(0.876) – – –
Model 2 0.004(0.926) −0.131(0.076) −0.182(0.000) 0.023(0.065) 0.042(0.037) 0.180(0.000) – –
Model 3 0.010(0.803) −0.012(0.867) −0.143(0.000) 0.000(1.000) 0.061(0.002) 0.052(0.011) 0.642(0.000) 1.484(0.000)

DIGITSCOR Model 1 0.189(0.000) 0.038(0.584) 0.227(0.000) 0.151(0.002) −0.076(0.000) – – –
Model 2 0.253(0.000) −0.118(0.057) 0.192(0.000) −0.051(0.230) −0.088(0.000) −0.176(0.000) – –
Model 3 0.238(0.000) −0.170(0.010) 0.130(0.000) 0.021(0.639) −0.052(0.004) −0.036(0.058) −0.512(0.000) −1.389(0.000)

LDELTOTAL Model 1 0.077(0.067) −0.209(0.009) 0.187(0.000) −0.024(0.659) −0.004(0.846) – – –
Model 2 0.293(0.000) −0.159(0.006) 0.199(0.000) 0.100(0.010) −0.035(0.025) −0.349(0.000) – –
Model 3 0.021(0.396) −0.059(0.189) 0.105(0.000) −0.052(0.090) −0.034(0.007) −0.135(0.000) −1.329(0.000) −1.868(0.000)

MMSE Model 1 −0.043(0.215) 0.302(0.00) 0.071(0.000) −0.121(0.008) −0.049(0.006) – – –
Model 2 −0.006(0.847) 0.240(0.000) 0.141(0.000) −0.161(0.000) −0.008(0.609) −0.230(0.000) – –
Model 3 −0.159(0.000) 0.146(0.002) 0.019(0.130) −0.080(0.011) −0.038(0.003) −0.103(0.000) −0.670(0.000) −1.752(0.000)

RAVLT.learning Model 1 0.283(0.000) −0.102(0.222) 0.123(0.000) 0.048(0.401) −0.031(0.158) – – –
Model 2 0.268(0.000) 0.092(0.018) 0.124(0.000) −0.002(0.972) −0.047(0.010) −0.227(0.000) – –
Model 3 0.139(0.000) 0.122(0.047) 0.079(0.000) −0.059(0.160) 0.018(0.296) −0.045(0.009) −0.910(0.000) −1.240(0.000)

RAVLT.immediate Model 1 0.425(0.000) 0.169(0.050) 0.228(0.000) 0.022(0.708) −0.049(0.033) – – –
Model 2 0.457(0.000) 0.094(0.173) 0.227(0.000) 0.001(0.980) −0.039(0.034) −0.268(0.000) – –
Model 3 0.287(0.000) −0.008(0.855) 0.147(0.000) −0.134(0.000) −0.008(0.531) −0.106(0.000) −0.973(0.000) −1.602(0.000)

Model 1 corrects for all covariates, except APOE4 and the baseline disease status; Model 2 corrects for all covariates, except the baseline disease status, and Model 3 corrects for all
covariates
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FIG. 6. Panel (a) presents positions of the important SNPs for the 13 scores for Model 1. The colors represent
the 13 scores, and each signal dot indicates the SNP is selected for the corresponding score. Panel (b) gives
p-values of the selected SNPs for Model 1. The dashed line indicates the threshold p-value= 0.05/10,154.

on chromosome 19 are found to be important for all 13 cognitive scores. Table 5 presents
the SNPs on chromosome 19 that are identified as important for at least three cognitive
scores. The rs429358 SNP on chromosome 19, which is one of the two variants for the well-
known APOE alleles, is significant for ADAS11, ADAS13, FAQ, MMSE, RAVLT.immediate,
and RAVLT.perc.forgetting. Other notable SNPs include rs283812 in the PVRL2 region,
rs769449 in the APOE region, and rs66626994 in the APOC1 region. The APOE, PVRL2,
and APOC1 regions within the cytogenetic region 19q13.32 are considered high AD-risk
regions, as supported by previous research (Carrasquillo et al. (2009), Vermunt et al. (2019)).

In addition to chromosome 19, two SNPs are identified as important for at least three cog-
nitive scores from other chromosomes. These include rs28414114 from chromosome 14, with
the smallest p-value of 7e−14, and rs12108758 from chromosome 5, with the smallest p-
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TABLE 5
Detailed information of the common SNPs from the 19th chromosome for at least three scores for Model 1

SNP Chr Base Pair Scores

rs283812 19 45388568 CDRSB, LDELTOTAL, MMSE
rs769449 19 45410002 LDELTOTAL, MMSE, RAVLT.immediate
rs429358 19 45411941 ADAS11, ADAS13, FAQ, MMSE, RAVLT.immediate, RAVLT.perc.forgetting
rs66626994 19 45428234 ADAS13, LDELTOTAL, RAVLT.immediate

value of 2e−9. Moreover, the p-values of the selected SNPs can be found in Figure 6(b). The
p-values for several key SNPs are smaller than 0.05/10,145, which represents the thresh-
old for significance after adjusting for multiple testing (with 10,145 SNPs remaining after
screening).

5.2. Conditional GIC (CGIC) pathways given APOE4. To address question (Q2), we fit
Model 2 by explicitly accounting for APOE4 and exclude the SNPs in the 19q13.32 region
from the candidate SNPs. We apply the same screening step and Algorithm 1 to Model 2
for each cognitive score. In our dataset 230 subjects had one APOE4 allele, and 67 subjects
had two APOE4 alleles. The cytogenetic region 19q13.32 comprises 6376 SNPs, including
the well-known APOE (Bertram and Tanzi (2012)). This information enables us to better
understand the conditional effects of other SNPs on cognitive scores, given the presence of
APOE4 alleles.

Table 4 presents the estimation results corresponding to Model 2. Estimates of the demo-
graphic covariates in Model 2 are similar to their corresponding estimates in Model 1. The
number of APOE4 alleles is significant for all cognitive scores, showing negative effects on
cognitive ability. Estimates of the hippocampal surface for the 13 cognitive scores in Model
2 are also similar to those in Model 1; therefore, we provide them in the Supplementary
Material (Li et al. (2024)).

Figure S5(a) in the Supplementary Material (Li et al. (2024)) displays the ideogram of the
selected important SNPs for Model 2. For each cognitive score, the selected significant SNPs
in Model 2 share some similarities with those in Model 1. For example, rs28414114 from
chromosome 14 is identified as important for both ADAS11 and ADAS13 in both models.
Additionally, the regions of the selected SNPs for some cognitive scores are similar between
the two models. For instance, the positions of the important SNPs for TABSCOR in chromo-
some 6 in Model 1 range from 81858848 to 91078328 with the smallest p-value of 9.06e−11,
and from 120546293 to 120765041 with the smallest p-value of 8e−9. In Model 2 the im-
portant positions range from 80949537 to 94053838 with the smallest p-value of 1.16e−9,
and from 120533534 to 120771669 with the smallest p-value of 6e−15.

5.3. CGIC pathways given APOE4 and disease status. To address (Q3), we fit Model 3
by explicitly accounting for both APOE4 and baseline diagnosis information. The baseline
diagnosis status is represented by two dummy variables: MCI and AD. Since clinical notes
offer supplementary information and are considered on a case-by-case basis, the effects of
SNPs on changes in cognitive performance might be confounded with the effects of differ-
ences in baseline diagnosis. We are interested in determining whether the relationships would
change when adjusting for baseline diagnosis status. We apply the same screening step and
Algorithm 1 to Model 3 for each cognitive score.

Table 4 also presents the related estimation results corresponding to Model 3. After
accounting for the baseline diagnosis status, almost all estimates of demographic covari-
ates and APOE4 in Model 3 are smaller than their corresponding estimates in Models
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1 and 2. The baseline MCI status has significant positive effects on ADAS11, ADAS13,
CDRSB, FAQ, RAVLT.forgetting, RAVLT.perc.forgetting, and TRABSCOR, while exhibit-
ing significant negative effects on DIGITSCOR, LDELTOTAL, MMSE, RAVLT.learning,
and RAVLT.immediate. The baseline AD status generally has stronger effects on the 13 cog-
nitive scores at Month 12 than the baseline MCI status. Similar patterns of hippocampal
estimates are also observed for the 13 cognitive scores, as seen in Section 5.1, and the corre-
sponding results are included in the Supplementary Material (Li et al. (2024)).

Figure S5(b) in the Supplementary Material (Li et al. (2024)) displays the ideogram of the
selected important SNPs for Model 3. The selected important SNPs appear quite different
from the SNPs in Figure 6(a). This is reasonable, as we consider the baseline diagnosis status
in the screening step and consistently include it in the model. The selected important SNPs
for at least three cognitive scores are rs13101604 from chromosome 4 with the smallest p-
value of 4.18e−9, rs2442696 from chromosome 4 with the smallest p-value of 6.96e−11,
and rs4761161 from chromosome 12 with the smallest p-value of 2.11e−09.

5.4. Comparisons of the three models. In this subsection we further address (Q2) and
(Q3) by comparing the three models in terms of shared and different heritability patterns for
the 13 cognitive scores and the proportions of variations explained in cognitive deficits by the
three types of data: genetic data, controlling covariates, and hippocampal surface data. The
average computation times of the proposed method are 2.25 hours with a standard error of
0.41 hours for Model 1, 2.31 hours with a standard error of 0.44 hours for Model 2, and 2.19
hours with a standard error of 0.45 hours for Model 3.

Although most human traits have a polygenic architecture (Wray et al. (2018)), heritability
can be used to measure how much of the variation in each score is due to variation in genetic
data (Yang et al. (2010)). By definition, we estimate the heritability for the three models by
calculating the phenotypic variance due to the genetic variables. We estimate the phenotypic
variance by the empirical variance of X�

iGβ̂G, where XiG is the genetic variables of the ith
subject and β̂G is the corresponding coefficient estimates. For Model 2 and Model 3, esti-
mates of the heritability are based on the considered SNPs, which excludes the SNPs in the
cytogenetic region 19q13.32.

Figure 7(a) presents the heritability estimates of the genetic effects for the cognitive
scores. Heritability of the cognitive scores is estimated to be 62.69% ∼ 78.01% for Model 1,
55.56% ∼ 85.62% for Model 2, and 33.02% ∼ 69.66% for Model 3. The remaining heritabil-
ity of the scores, especially RAVLT.forgetting, is still relatively high even after accounting
for APOE4. This is consistent with previous research and suggests that memory functioning
in AD is under strong genetic influence that is only partly attributable to the APOE genotype
(Wilson et al. (2011)). However, there are 1.1% ∼ 35.3% decreases in the heritability esti-
mates of the 13 cognitive scores for Model 3. This reveals that the baseline diagnosis status
explains a part of the cognitive function associated with the polygenic effect.

We also examine the effect size of the controlling covariates by calculating the propor-
tion of variance explained by these covariates in Figure 7(b). The proportions of variance
explained by the controlling variables increase with the inclusion of the number of APOE4
alleles and the baseline disease status.

Figure 7(c) illustrates the effect size of imaging covariates. The hippocampal surface data
account for approximately 1% to 4.6% of the total variations in 13 cognitive scores for Model
1, 0.1% to 4.1% for Model 2, and 0.005% to 0.63% for Model 3. These findings indicate
that the baseline diagnosis status explains a more substantial portion of cognitive function
associated with hippocampal data than the number of APOE4 gene alleles.

We also compare the effects of genetic data with those of imaging data. The results suggest
that cognitive function may have a polygenic inheritance, meaning it is not controlled by a
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FIG. 7. Heritability estimates of the genetic data (a), the proportions of variance explained by the controlling
variables (b), and the imaging data (c). Genetic correlations between the 13 cognitive scores for Model 1 (d),
Model 2 (e), and Model 3 (f). The line with points represents Model 1, the line with triangles represents Model 2,
and the line with squares represents Model 3.

single gene but multiple genes that each contribute a small portion to the overall outcome.
On average, 75 genes are selected as important for the cognitive scores in the three models.
The variance, explained by a single gene, ranges from 0.84% to 1.05% in Model 1, 0.74% to
1.14% in Model 2, and 0.44% to 0.93% in Model 3, which is comparable to that of imaging
data.

In addition, we calculate the estimated p-values of left and right hippocampal surface data
for the 13 cognitive scores in the three models, as shown in Table 6. The left hippocampus
is significant at a 5% significance level for nine scores in Model 1, 11 scores in Model 2,
and five scores in Model 3. The right hippocampus is significant for seven scores in Model 1,
11 scores in Model 2, and three scores in Model 3. Both the left and right hippocampi are
significant for ADAS13 and MMSE, which is consistent with findings from Morrison et al.
(2022) and Peng et al. (2015). It is also noteworthy that most p-values in Model 3 are larger
than the corresponding p-values in Models 1 and 2.

Genetic correlation has been proposed to describe the shared genetic associations within
pairs of quantitative traits, and it can be calculated as the correlation of the genetic effects of
numerous SNPs on the traits (Zhao and Zhu (2022)). Providing crucial information about fun-
damental biological pathways and describing the shared genetic etiology of the 13 scores, we
calculate the genetic correlations between the 13 scores for the three models we considered
in Figures 7(d)–7(f).

There are strong genetic correlations between the 13 scores for Model 1, suggesting an
overall similarity of the genetic architecture on brain functions in Month 12 characterized by
these scores. The genetic correlations adjusted for the number of APOE4 alleles are similar
to those for Model 1, albeit with slightly smaller values, indicating shared genetic effects for
the 13 scores besides the well-known APOE4 gene effect. However, the genetic correlations
significantly decrease when additionally controlling for the baseline diagnosis status, which
is assumed to explain a large part of the shared genetic effect on the cognitive scores.
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TABLE 6
Estimated p-values of hippocampal surface data for the 13 cognitive scores

Model 1 Model 2 Model 3

Score Left Right Left Right Left Right

ADAS11 3.66E−05 1.35E−08 6.72E−05 1.04E−05 0.054 0.046

ADAS13 1.58E−08 1.49E−09 6.36E−08 2.11E−05 0.016 0.023

ADASQ4 2.55E−07 2.82E−05 3.41E−07 2.88E−06 0.052 0.096

CDRSB 4.56E−07 4.27E−06 2.25E−05 0.008 0.105 0.142

FAQ 3.72E−05 0.753 0.998 0.003 0.039 0.102

RAVLT.forgetting 0.707 0.999 0.160 0.257 0.999 0.120

RAVLT.perc.forgetting 0.001 0.824 9.89E−05 2E−04 0.132 0.071

TRABSCOR 0.916 0.999 0.007 0.001 0.011 0.090

DIGITSCOR 0.036 0.999 0.001 0.381 0.117 0.582

LDELTOTAL 2.19E−07 1.82E−09 0.001 7.22E−06 0.032 0.160

MMSE 2.66E−10 5.35E−11 0.002 1.06E−05 0.022 0.039

RAVLT.learning 0.998 7.80E−05 2E−04 5.70E−05 0.999 0.080

RAVLT.immediate 0.999 0.999 7.83E−05 4E−04 0.161 0.329

Model 1 corrects for all covariates, except APOE4 and the baseline disease status; Model 2 corrects for all covari-
ates, except the baseline disease status, and Model 3 corrects for all covariates.

Moreover, this reveals greater genetic heterogeneity after accounting for the baseline di-
agnosis status. One potential reason is that the AD population is genetically heterogeneous
(Lo et al. (2019)). Adjusting for disease status suggests that, within a given diagnostic group,
substantial variation in cognitive scores is explained by genetic markers, indicating hetero-
geneity within disease classifications partially explained by genetics. This may imply that
different therapies are needed for different symptoms after AD onset.

6. Discussion. This paper aims to map the biological pathways of phenotypes of interest
from the ADNI study by integrating GIC data. The high-dimensional genetic data and the fea-
tures of the hippocampal surface data motivate us to consider a high-dimensional PFLR to es-
tablish the associations between the genetic and imaging data with the phenotype of interest.
We propose a new estimation method for high-dimensional PFLR, under the RKHS frame-
work and the �0 penalty, and investigate the theoretical results of the estimators. Through the
analyses of the ADNI study, we demonstrate that the proposed method is a valuable statistical
tool for quantifying the complex relationships between phenotypes of interest and the GIC
data.

Although the proposed method considers one functional covariate, it can be extended to ac-
commodate multiple functional covariates. We can consider the following high-dimensional
PFLR with multiple functional predictors:

Yi = α + X�
i β +

K∑
k=1

∫
T

Zik(t)ξk(t) dt + εi.
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Each ξk(t) is assumed to be in a reproducing kernel Hilbert space. Similar to the minimiza-
tion problem in (2) that imposes �0 penalty to β and RKHS roughness penalty on ξ(t), we
can estimate {ξk(t)}s by imposing RKHS roughness penalty on each ξk(t). The representer
theorem and the theoretical results can be obtained similarly. Such extensions are worthy of
further investigation.
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