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Estimation of heterogeneous treatment effects (HTE) is of prime impor-
tance in many disciplines, from personalized medicine to economics among
many others. Random forests have been shown to be a flexible and powerful
approach to HTE estimation in both randomized trials and observational stud-
ies. In particular “causal forests” introduced by Athey, Tibshirani and Wa-
ger (Ann. Statist. 47 (2019) 1148–1178), along with the R implementation in
package grf were rapidly adopted. A related approach, called “model-based
forests” that is geared toward randomized trials and simultaneously captures
effects of both prognostic and predictive variables, was introduced by Sei-
bold, Zeileis and Hothorn (Stat. Methods Med. Res. 27 (2018) 3104–3125)
along with a modular implementation in the R package model4you.

Neither procedure is directly applicable to the estimation of individualized
predictions of excess postpartum blood loss caused by a cesarean section in
comparison to vaginal delivery. Clearly, randomization is hardly possible in
this setup, and thus model-based forests lack clinical trial data to address this
question. On the other hand, the skewed and interval-censored postpartum
blood loss observations violate assumptions made by causal forests. Here we
present a tailored model-based forest for skewed and interval-censored data to
infer possible predictive prepartum characteristics and their impact on excess
postpartum blood loss caused by a cesarean section.

As a methodological basis, we propose a unifying view on causal and
model-based forests that goes beyond the theoretical motivations and inves-
tigates which computational elements make causal forests so successful and
how these can be blended with the strengths of model-based forests. To do
so, we show that both methods can be understood in terms of the same pa-
rameters and model assumptions for an additive model under L2 loss. This
theoretical insight allows us to implement several flavors of “model-based
causal forests” and dissect their different elements in silico.

The original causal forests and model-based forests are compared with
the new blended versions in a benchmark study exploring both randomized
trials and observational settings. In the randomized setting, both approaches
performed akin. If confounding was present in the data-generating process,
we found local centering of the treatment indicator with the corresponding
propensities to be the main driver for good performance. Local centering of
the outcome was less important and might be replaced or enhanced by simul-
taneous split selection with respect to both prognostic and predictive effects.
This lays the foundation for future research combining random forests for
HTE estimation with other types of models.
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1. Introduction.

1.1. Challenges in treatment effect estimation for cesarean sections. Cesarean section
is the most frequent surgical procedure performed in young and healthy women, currently
with one out of three babies in the U.S.A. being born that way (Antoine and Young (2021)).
Short-term postpartum benefits and the perceived safety of the procedure explain the increase
in popularity over the last 50 years, including the rise of electively performed cesarean sec-
tions. At the same time, maternal mortality and morbidity increased globally (WHO (2012),
Say et al. (2014)). More recently, adverse long-term effects, including gynecological and ob-
stetrical complications in mothers as well as potential and controversially discussed immune
disorders in their children, have gained attention (Antoine and Young (2021)). Lack of clin-
ical trial data directly comparing outcomes of natural births with those following cesarean
sections render characterization and quantification of such effects challenging. Postpartum
hemorrhage (PPH), defined as blood loss ≥500 mL within 24 hours after delivery by the
WHO (2012), is a short-term complication associated with maternal morbidity and mortality
worldwide. The prevalence of PPH is increasing in industrialized countries (for the U.S.A.,
see MacDorman et al. (2016)).

Management of PPH requires identification of at risk parturients, and calls went out to
the statistics, machine learning, and artificial intelligence communities to develop and eval-
uate prognostic models (Ende (2022)). Typically, models for dichotomized PPH prognosis
were created aiming at either women giving birth by vaginal delivery (Erickson and Carl-
son (2020), Akazawa et al. (2021)) or at women scheduled for a cesarean section (Kawakita
et al. (2019)). Models trained on data from both modes of delivery are rare, for example, in
Venkatesh et al. (2020) the mode of delivery was not taken into account as risk factor. Because
of the often elective nature of the decision to undergo cesarean section, a quantification of the
additional amount of hemorrhaging caused by surgery is relevant for the decision process;
however, such information is hard to extract from stratified prognostic models. This is true
even more considering the possibility of unplanned cesarean deliveries following attempted
vaginal deliveries. From a statistical perspective, estimation of a heterogeneous cesarean sec-
tion effect is nontrivial for a number of reasons. First, potential risk factors for PPH, such as
age of the mother, estimated birth weight, gestational age, previous PPH, suspected placental
disorders, or multifetal pregnancy might have an impact on both the decision to undergo a ce-
sarean section (treatment) and postpartum blood loss (outcome). Randomization of mode of
delivery is impossible, and thus effects have to be estimated from observational data. Second,
it is hard to obtain exact measurements of postpartum blood loss in the often hectic environ-
ment of a delivery ward, and thus imprecise assessments via interval-censored observations
are only available. Third, one has to expect a high level of skewness and extreme values in
blood loss measurements, rendering strong distributional assumptions questionable. Lastly,
the association of prognostic factors and blood loss is expected to be complex, including
nonlinear and interaction terms.

1.2. Heterogeneous treatment effect estimation and random forests. In the statistical lit-
erature, methods for the estimation of such heterogeneous treatment effects (HTEs) from
randomized trials or observational studies has been receiving a lot of attention during the
past decade, triggered by an increasing demand from personalized medicine and the need
for refined methods in causal inference. In particular, different variations of random forests
(Breiman (2001)) have been suggested for HTE estimation and seem promising candidates
for addressing the statistical challenges we are facing here. Random forest variants for HTE
estimation can be roughly grouped in two classes.
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The first class of methods employs random forests to estimate the expected outcomes,
given covariates separately in the treatment groups. The conditional average treatment ef-
fect (CATE) then corresponds to the difference in estimated mean factual and counterfac-
tual outcomes. Notably, the virtual twins method (Foster, Taylor and Ruberg (2011)) has
adopted this approach using random forests. Improvements can be obtained by additionally
considering treatment-covariate-interactions or fitting separate (synthetic) forests for each
treatment group (Foster, Taylor and Ruberg (2011), Dasgupta et al. (2014), Ishwaran and
Malley (2014)). Moreover, Lu et al. (2018) proposed a bivariate imputation approach, which
uses a bivariate splitting rule (Ishwaran et al. (2008), Tang and Ishwaran (2017)) that simul-
taneously considers the expected outcome under both treatments. In a more general setup,
Kuenzel et al. (2019) introduced X-learners, a class of meta-algorithms which build upon any
supervised/regression algorithm, including random forests, Bayesian regression trees (BART,
Chipman, George and McCulloch (2010), Hill (2011), Starling et al. (2021)), or neural net-
works. Most forest methods were initially developed for randomized controlled trials and
have later been adapted to be more robust to confounding. For example, the pollinated trans-
formed outcome forests of Powers et al. (2018) build a single forest on propensity score
weighted outcomes instead of the original outcomes to account for confounding.

The subject of this paper is the second class of random forest-type algorithms aiming
at the direct estimation of HTEs in a model-driven way. Two such approaches, “causal
forests” (Athey, Tibshirani and Wager (2019)) and “model-based forests” (Seibold, Zeileis
and Hothorn (2018)), have recently been proposed. “Causal forests” by Athey, Tibshirani
and Wager (2019) implement a divide-and-conquer strategy, also referred to as “local center-
ing” or “orthogonalization” for the direct estimation of HTEs from observational data. They
first account for the dependence of both the marginal mean of the outcome and the treatment
propensity on the available covariates. Subsequently, they exclusively focus on the estimation
of the HTEs. In terms of distributional assumptions, causal forests have been developed for
continuous outcomes and corresponding conditional means, and the squared error loss plays
an important role in the motivation of this algorithm. Cui et al. (2023) also applied causal
forests to survival data, and Mayer et al. (2020) discussed strategies to handle missing val-
ues. We note that earlier causal tree and forest algorithms, described in Athey and Imbens
(2016) and Wager and Athey (2018), do not involve such a local centering step. In this paper
we use the term causal forests to describe the algorithm from Athey, Tibshirani and Wager
(2019); see also Athey and Wager (2019). Causal forests are implemented in the R package
grf (Tibshirani et al. (2021)).

“Model-based forests” by Seibold, Zeileis and Hothorn (2018) simultaneously estimate
prognostic effects and HTEs. They do so by leveraging model-based recursive partitioning
(“MOB”, Zeileis, Hothorn and Hornik (2008)), a technique for learning model trees in which
all relevant parameters are reestimated in each subset of a tree. MOB is not a specific model
but rather a general framework for model construction where the adaptation to different types
of models often still necessitates working out the details of parameter interpretation or model
assessment, etc. Seibold, Zeileis and Hothorn (2016) have adapted MOB to model-based trees
for HTE, working out the details for Gaussian regression models as well as censored survival
models (parametric Weibull model and semiparametric Cox model). Subsequently, Seibold,
Zeileis and Hothorn (2018) have extended this work to model-based forests for HTEs, again
working out the details of Gaussian regression and censored Weibull survival modeling. Other
authors have adapted the general MOB idea to outcome variables on other scales and/or sub-
ject to censoring and truncation, for example, as in survival data (Korepanova et al. (2020)),
ordinal data (Buri and Hothorn (2020)), generalized mixed models (Fokkema et al. (2018)),
or transformation models (Hothorn and Zeileis (2021a)). So far, model-based forests have
only been developed for HTE estimation based on randomized trial data.
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1.3. Model-based causal forests for postpartum blood loss. Neither of the random forest
approaches from Section 1.2 is directly applicable to the estimation of heterogeneous ce-
sarean section effects, described in Section 1.1. Our main contribution is, therefore, a novel
random forest model that combines the strengths of the existing methods to tackle the chal-
lenges in the cesarean section data. We approach this problem by first studying the similarities
and differences between causal forests and model-based forests theoretically and empirically.
In a second step, we identify the key drivers for good HTE estimation performance in obser-
vational data on the one hand and for asymmetric and potentially interval-censored outcomes
on the other hand. Lastly, we derive and apply the novel “blended” HTE random forest for
PPH by combining the elements identified as being instrumental.

Given that both causal forests and model-based forests encompass additive models under
L2 loss, we adopt this modeling framework to investigate the specific elements that explain
both the success of causal forests for observational studies and the flexibility of model-based
forests for randomized trials. Specifically, the question of how the disparate strategies for
handling the prognostic and confounding effects differ—or how they can be combined—is
of both theoretical and practical interest. For obtaining some answers to this question, we
employ the modular computational toolbox for tree induction and forest inference in the R
package model4you (Seibold, Zeileis and Hothorn (2019)), which allows to “mix & match”
the elements of both model-based and causal forests.

The results lay the foundation for future research that further expands potential synergies
in HTE estimation, using model-based causal forests, by blending model-based and causal
forests to leverage the strengths of both approaches. To demonstrate this in practice, we in-
vestigate the effect of cesarean section on postpartum blood loss in comparison to vaginal
deliveries based on a prospective observational study from Switzerland. In this application
there is a need for a model-based approach that can deal with the skewed outcome distri-
bution, which is also interval-censored due to the lack of precise measurement techniques.
Thus, we showcase a model-based transformation forest applicable to this observational set-
ting. Our contributions here are three-fold: First, we provide a unified understanding of causal
forests and model-based forests for HTE estimation in Section 2. Second, based on these the-
oretical insights, we introduce novel “blended” random forest models in Section 3. Third, we
evaluate why causal and model-based forests work in different scenarios and identify the key
drivers for good HTE estimation performance in the observational setting (Section 4). Based
on the insights gained theoretically and empirically, we pool the key components from causal
and model-based forests to derive a model specifically designed for blood loss prediction
(Section 5).

2. Models and forest algorithms. In this section we first outline similarities and dif-
ferences between causal forests and model-based forests theoretically, using the basic setup
of regression for real-valued outcomes. Subsequently, three novel blended approaches are
introduced that adapt HTE estimation with model-based forests to observational data.

2.1. The interaction model. We are interested in the conditional mean of a real-valued
outcome Y ∈ R, given covariates X ∈ X under a specific binary treatment or intervention
W ∈ {0,1}, corresponding to control vs. treatment. Under the assumptions that a binomial
model W | X = x ∼ B(1, π(x)) with propensities π(x) = P(W = 1 | X = x) = E(W | X =
x) describes treatment assignment, and residuals are given by an error term σZ with E(Z |
X,W) = 0 and standard deviation σ > 0; the model reads

(1) Y = μ(X) + τ(X)W + σZ

with conditional mean function

E(Y | X = x) = μ(x) + τ(x)π(x) =: m(x).
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Covariates x with impact on the prognostic effect μ(x) are called prognostic, while covariates
affecting the treatment effect τ(x) are called predictive. Treatment assignment is assumed to
be nondeterministic; that is, propensity scores have to be bounded away from zero and one

0 < π(x) = P(W = 1 | X = x) = E(W | X = x) < 1.

Personalized medicine and causal inference, in general, focus on the estimation of the het-
erogeneous treatment effect τ(x) and thus on the impact of predictive variables on treatment
success; accurate estimation of τ(x) is the main goal of all methods discussed in this paper.

As discussed in Nie and Wager (2021), the interaction model (1) is closely connected to a
treatment model with potential outcomes (Imbens and Rubin (2015)), where we posit poten-
tial outcomes Y(0) and Y(1), corresponding to the outcome a unit would have experienced
without or with treatment, respectively, and assume that we observe Y = Y(W). Then under
unconfoundedness (Rosenbaum and Rubin (1983))(

Y(0), Y (1)
) ⊥⊥ W | X = x,

we can define residuals σZ in (1) such that the interaction model is observationally equivalent
to the specification using potential outcomes, and

τ(x) = CATE(x) = E
(
Y(1) − Y(0) | X = x

)
can be interpreted as the conditional average treatment effect. We note that in a uniformly
randomized trial, we have W ⊥⊥ {X, Y (0), Y (1)}, so unconfoundedness is always satisfied,
and the propensity scores π(x) ≡ π are constant by design.

2.2. Causal forests. For developing causal forests, Athey, Tibshirani and Wager (2019)
rewrite equation (1) as

(2)
(Y | X = x) = m(x) − m(x) + μ(x) + τ(x)W + σZ

= m(x) + τ(x)
(
W − π(x)

) + σZ,

which motivates their algorithmic approach of eliminating the marginal mean m(x) = E(Y |
X = x) and propensities π(x) = E(W | X = x) first before estimating the heterogeneous
treatment effect τ(x). This orthogonalization (introduced by Robinson (1988)) is also called
“local centering” because both outcome Y − m̂(x) and treatment indicator W − π̂(x) are
centered before τ(x) is estimated. This approach leads to more robustness to confounding
effects in case of observational data because it regresses out the effect of covariates X on Y

and W (Nie and Wager (2021)). While, in principle, any nonparametric regression technique
could be applied to estimate m(x) and π(x), Athey, Tibshirani and Wager (2019) chose
regression forests.

In the second step of causal forests, treatment effects τ(x) in the model

(Y | X = x,W = w) = m̂(x) + τ(x)
(
w − π̂(x)

) + σZ

are then estimated by minimizing the L2 loss

�cf
(
τ(x)

) := 1/2
(
Y − m̂(x) − τ(x)

(
w − π̂(x)

))2

w.r.t. τ , the only unknown quantity in this loss function.
Specifically, when splitting a (parent) node, cut-point estimation for causal trees relies first

on estimating a constant treatment effect τ̂ in the parent node minimizing �cf(τ ) by solving
the score equation

(3) scf(τ ) = −∂�cf(τ )

∂τ
= (

Y − m̂(x) − τ
(
w − π̂(x)

))(
w − π̂(x)

) = 0
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and second on regressing the resulting score

scf(τ̂ ) = (
Y − m̂(x) − τ̂

(
w − π̂(x)

))((
w − π̂(x)

))
on x by means of a simple cut-point model. The classical simultaneous analysis-of-variance
(ANOVA) selection of split variable and cut-point is implemented. Causal forests are ro-
bust to confounding because the score equation (3) is Neyman-orthogonal, in the sense of
Chernozhukov et al. (2018), thus enabling it to accurately target τ(x), even when estima-
tors for the nuisance components π(x) or μ(x) may be somewhat imprecise (Nie and Wager
(2021)). Of course, causal forests can be also applied to randomized data in which case treat-
ment should be centered by the true randomization probability π .

2.3. Model-based forests. In contrast to the marginal model (1) motivating local cen-
tering in causal forests, model-based forests (Seibold, Zeileis and Hothorn (2018)) for real-
valued outcomes are based on a model which, in addition to x, also conditions on treatment
assignment W = w,

(4) (Y | X = x,W = w) = μ(x) + τ(x)w + σZ.

The main difference between causal forests and model-based forests is that the latter aims
to estimate both μ(x) and τ(x) simultaneously, whereas the former applies local centering
in a two-step approach, that is, treating the prognostic effect μ(x) as a nuisance parameter.
More specifically, by using model (4) instead of model (2), (μ(x), τ (x))� is simultaneously
estimated by minimizing the L2 loss

(5) �mob
(
μ(x), τ (x)

) = 1/2
(
Y − μ(x) − τ(x)w

)2

w.r.t. μ and τ , the two unknown quantities in this loss function.
Model-based forests separate split-variable and cut-point selection in a way inspired by

unbiased recursive partitioning procedures. Specifically, in each node constants (μ̂, τ̂ )� are
estimated by minimizing

�mob(μ, τ) := 1/2(Y − μ − τw)2

w.r.t. both μ and τ . A split variable is selected by a bivariate permutation test relying on a
quadratic test statistic for the null hypothesis that μ and τ are constant and independent of any
split variable X. For splitting, the variable is selected that has the lowest p-value. Afterward,
a cut-point is found by regressing the bivariate score

(6) smob(μ̂, τ̂ ) := (Y − μ̂ − τ̂w)(1,w)�

on covariates x by a simple bivariate cut-point model. A cut-point is selected as the point that
results in the largest discrepancy between the score functions in the two resulting subgroups
(details are given in Appendix 2, Seibold, Zeileis and Hothorn (2018)). The core idea of
this tree-induction method originates from unbiased recursive partitioning (Hothorn, Hornik
and Zeileis (2006)) and the introduction of multiple model-based scores (Zeileis, Hothorn
and Hornik (2008)) in this framework. Section 1 in the Supplementary Material A (Dandl
et al. (2024a)) provides a more detailed comparison of the cut-point selection of model-based
forests with causal forests.

As a side-effect, heterogeneous treatment contrasts τ2−1(x), τ3−1(x), . . . , τK−1(x) of
K > 2 treatment groups W | X = x ∼ M(K,π(x)) from a multinomial distribution can be
estimated by model-based forests. In each node the criterion

1

2

(
Y − μ(x) −

K∑
k=2

τk−1(x)wk−1

)2
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is then minimized w.r.t. μ and all treatment contrasts τk−1 for k = 2, . . . ,K simultaneously.
This allows the comparison of the effects of different treatments or one treatment with various
doses to a placebo (application examples could be found in Feng et al. (2012), Schnell et al.
(2017), Zanutto, Lu and Hornik (2005)).

2.4. Aggregation and honesty. Once multiple trees have been fitted to subsamples of
the data, causal forests and model-based forests apply the same local maximum likelihood
aggregation scheme based on nearest neighbor weights for the estimation of heterogeneous
treatment effects τ(x) (Hothorn et al. (2004), Meinshausen (2006), Lin and Jeon (2006),
Athey, Tibshirani and Wager (2019), Hothorn and Zeileis (2021a)). First, nearest neighbor
weights αi(x) are derived from the B trees in a forest fitted to observations (Yi,xi ,wi), i =
1, . . . ,N . These weights measure the relevance of a training observation i for estimating
τ(x). For a forest with B trees, αi(x) for an observation x is equal to the frequency with
which the ith training sample falls in the same leaf as x over all B trees. In a second step,
τ(x) is estimated, using the reweighted training data, by minimizing

τ̂ (x) = arg min
τ

n∑
i=1

αcf
i (x)�cf,i(τ )

in causal forests and

(
μ̂(x), τ̂ (x)

)� = arg min
μ,τ

n∑
i=1

αmob
i (x)�mob,i(μ, τ )

in model-based forests, where �cf,i and �mob,i denote the loss for the ith observation and αcf
i

and αmob
i are the weights obtained from a causal forest and a model-based forest, respectively.

Wager and Athey (2018) additionally recommend a subsample splitting technique called
honesty, “A tree is honest if, for each training example i, it only uses the response Yi to
estimate the within-leaf treatment effect τ [. . . ] or to decide where to place the splits, but
not both.” They empirically and theoretically proved that honesty is necessary to accomplish
valid statistical inference. This technique is independent of both tree-induction and forest
aggregation and can be applied in both causal forests and model-based forests. In the fol-
lowing we refer to the adaptive version of a tree fitting process, when no sample splitting is
conducted, and we refer to the honest version, when honesty is performed.

2.5. Model generalizations. When heterogeneous treatment effects shall be estimated
for an outcome variable Y that is not well described by model (1), adaptations to both causal
forests and model-based forests are necessary. Causal forests rely on reformulations of the
corresponding estimation problems such that the squared error loss can also be applied in
other contexts, for example, in survival analysis (Cui et al. (2023)). For model-based forests,
the loss function �mob (5) changes from squared error to the negative log-likelihood of some
appropriate model (see Seibold, Zeileis and Hothorn (2016), Seibold, Zeileis and Hothorn
(2018), Korepanova et al. (2020), Buri and Hothorn (2020), Fokkema et al. (2018), Hothorn
and Zeileis (2021a)).

As a simple example, consider count observations (Y | X = x,W = w) ∼ Po(exp(μ(x) +
τ(x)w)) from a conditional Poisson distribution. A “Poisson forest” for HTE estimation can
be implemented by replacing the squared error loss (5) with the corresponding Poisson neg-
ative log-likelihood

�mob
(
μ(x), τ (x)

) = exp
(
μ(x) + τ(x)w

) − (
μ(x) + τ(x)w

)
Y.
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When it is appropriate to assume Z ∼ N(0,1) with cumulative distribution function �, the
conditional distribution (Y | X = x,W = w) ∼ N(μ(x) + τ(x)w,σ 2) is also normal with
cumulative distribution function

P(Y ≤ y | X = x,W = w) = �

(
y − μ(x) − τ(x)w

σ

)
.

For an observed interval
¯
y < Y ≤ ȳ, model-based forests, equipped with the negative log-

likelihood

�mob
(
μ(x), τ (x), σ

) = − log
(
�

(
ȳ − μ(x) − τ(x)w

σ

)
− �

(
¯
y − μ(x) − τ(x)w

σ

))
,

allow us to implement a variant of model-based forests applicable to imprecise interval-
censored observations. In a Tobit model, this is the negative log-likelihood contributed by
an observation (−∞,0] left-censored at zero (Schlosser et al. (2019), equation (2.1)). A sim-
ilar likelihood, however, without the strict normal assumption will be introduced for interval-
censored blood loss in Section 5.1. In this sense model-based forests can be understood as a
conceptual and computational framework for method construction rather than a model with
a special domain of application.

3. Strategies and research questions for blended approaches. When applied to data
well described by the additive model (1) in the randomized setting, the principles underlying
causal forests and model-based forests are conceptually the same; the only difference is that
causal forests follow a sequential two-step approach and model-based forests implement a
simultaneous approach to parameter estimation. We are now interested in assessing the im-
pact of implementation details in causal forests and model-based forests on HTE estimation
performance by the two algorithms. The theoretical understanding from Section 2 motivates
straightforward adaptations to model-based forests such that the procedure can also be ap-
plied to observational studies. The flexibility of its implementation in model4you allows us to
define and evaluate blended estimation approaches transferring the concept of local centering
from causal forests to model-based forests. Along with these new algorithms, we propose a
set of five research questions, which we investigate empirically in Section 4. An overview
of the questions is given in Table 1. We begin with the standard implementations of causal
forests (cf) and model-based (mob) forests without centering:

RQ 1. How do cf and mob, as implemented in the two R add-on packages grf (for cf) and
model4you (for mob), compare to each other in randomized and observational settings?

After addressing RQ 1, the question remains if and to what extent local centering inherent
in cf leads to more robustness against confounding effects. To answer that, we will incor-
porate orthogonalization in mob, as explained in the following. Causal forests apply local
centering to both the outcome Y and treatment indicator w, and mob do not center locally at
all. To bring cf and mob closer, we define a method which applies mob to the model

E(Y | X = x,W = w) = m̂(x) + μ̃(x) + τ(x)
(
w − π̂(x)

)
,

that is, after centering the treatment indicator w and the outcome Y . By using μ̃(x) instead
of μ(x), we emphasize that μ̃(x) is now the prognostic effect for the centered Y .

The rationale is to estimate the marginal mean and propensities π(x), as in cf first, and
then apply mob to the centered treatment w − π̂(x) and centered outcome Y − m̂(x) to
obtain the prognostic and predictive effect. We call this approach mob(Ŵ, Ŷ ). The bivariate
score function for mob is changed from (6) to

smob(Ŵ,Ŷ )
( ˆ̃μ, τ̂ ) := (Y − m̂(x) − ˆ̃μ − τ̂

(
w − π̂(x)

)(
1,w − π̂(x)

)�
.
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TABLE 1
Overview of research questions

RQ Question Methods Linear predictors

1 Comparison of causal forests cf m̂(x) + τ (x)(w − π̂(x))

and model-based forests mob μ(x) + τ (x)w

2 Effect of splitting only in τ (x) vs. mobcf m̂(x) + τ (x)(w − π̂(x))

in τ (x) and μ̃(x) mob(Ŵ, Ŷ ) m̂(x) + μ̃(x) + τ (x)(w − π̂(x))

3 Comparison of causal forests cf m̂(x) + τ (x)(w − π̂(x))

implemented in grf vs. model4you mobcf m̂(x) + τ (x)(w − π̂(x))

4 Effect of locally centering W mob(Ŵ ) μ(x) + τ (x)(w − π̂(x))

in model-based forests mob μ(x) + τ (x)w

5 Effect of additionally centering Y mobcf m̂(x) + τ (x)(w − π̂(x))

in model-based forests centering W mob(Ŵ, Ŷ ) m̂(x) + μ̃(x) + τ (x)(w − π̂(x))

mob(Ŵ ) μ(x) + τ (x)(w − π̂(x))

In cases where local centering of Y effectively regresses out the effect of X on Y , μ̃(x) will
be close to 0. Since removing μ̃ leads to the conditional mean function underlying cf

E(Y | X = x,W = w) = m̂(x) + τ(x)
(
w − π̂(x)

)
,

we call this version “mobcf.” Both the outcome and the treatment indicator are centered and
only splitting with respect to scores corresponding to the treatment effect τ is performed,
while intercept scores are ignored in this process. The only difference between mobcf and
mob(Ŵ, Ŷ ) is that simultaneous splitting in both the intercept and treatment effect parameters
is performed by the latter, whereas the intercept is ignored in the former.

RQ 2. How does mob(Ŵ, Ŷ ) perform compared to mobcf?
The mobcf approach helps us to directly compare the different more technical aspects, such

as variable and split point selection or stopping criteria, of tree induction implemented in grf
and model4you, because it can be seen as a reimplementation of cf using the computational
infrastructure of the model4you package.

RQ 3. How does mobcf perform compared to cf implemented in grf ?
Centering the response is straightforward under L2 loss but more difficult under other

forms of the likelihood, as discussed in Section 2.5. The questions arise if and to what extent
solely centering of the treatment indicator w already improves the estimation accuracy in
observational settings. To answer that, we define a “hybrid approach” mob(Ŵ ) that applies
mob to models parameterized by μ(x) + τ(x)(w − π̂(x)), that is, after solely centering the
w but not the outcome Y . The score function for mob is changed from (6) to

smob(Ŵ )
(μ̂, τ̂ ) := (Y − μ̂ − τ̂

(
w − π̂(x)

)(
1,w − π̂(x)

)�
.

RQ 4. How does solely centering of the treatment indicator (mob(Ŵ )) influence the perfor-
mance of mob without centering in settings with confounding?

The final research question is whether additional outcome centering improves upon a for-
est with treatment centering and simultaneous splits in prognostic and predictive effects as
implemented by mob(Ŵ ).

RQ 5. How does mob(Ŵ ) perform compared to mob that center both treatment and outcome
(mobcf, and mob(Ŵ, Ŷ ))?
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4. Empirical evaluation. In this section we provide answers to the research questions
defined in Section 3 by evaluating the performance of cf and mob as well as the differ-
ent blended versions in a simulation study for normal outcomes, different predictive and
prognostic effects, and a varying number of observations and covariates. The reference im-
plementations in the grf and model4you R add-on packages were used for the original cf
and mob algorithms. Moreover, the blended approaches from Section 3 are implemented us-
ing model4you, that is, by fitting model-based forests after centering of treatment indicators
(mob(Ŵ )) and, additionally, of outcomes (mob(Ŵ, Ŷ ) and mobcf, with and without explicitly
accounting for μ, respectively).

4.1. Data-generating process. The comparison is based on the study settings of Nie and
Wager (2021). The authors proposed four study settings—referred to as Setups A, B, C, and
D. For Setup A explanatory variables were sampled by X ∼ U([0,1]P ), and for the other
three setups, they used X ∼ N(0,1P×P ) – with P = {10,20} (5 informative and P − 5 noise
variables). Treatment was sampled by W | X = x ∼ B(1, π(x)) with propensity function
π(x) that varied among the four considered setups,

π(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

πA(x1, x2) = max
{
0.1,min

{
sin(πx1x2),1 − 0.1

}}
,

πB ≡ 0.5,

πC(x2, x3) = 1/
(
1 + exp(x2 + x3)

)
,

πD(x1, x2) = 1/
(
1 + exp(−x1) + exp(−x2)

)
.

For Setup B probability π ≡ 0.5 referred to a randomized study. The conditional average
treatment effect function for each setup was given as

τ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τA(x1, x2) = (x1 + x2)/2,

τB(x1, x2) = x1 + log
(
1 + exp(x2)

)
,

τC ≡ 1,

τD(x1, x2, x3, x4, x5) = max{x1 + x2 + x3,0} − max{x4 + x5,0}.
For Setup C the treatment effect was constant. The prognostic effects were defined as

μ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μA(x1, x2, x3, x4, x5) = sin(πx1x2) + 2(x3 − 0.5)2 + x4 + 0.5x5,

μB(x1, x2, x3, x4, x5) = max{x1 + x2, x3,0} + max{x4 + x5,0},
μC(x1, x2, x3) = 2 log

(
1 + exp(x1 + x2 + x3)

)
,

μD(x1, x2, x3, x4, x5) = (
max{x1 + x2 + x3,0} + max{x4 + x5,0})/2.

Overall, Setup A has complicated confounding that needs to be overcome before a rel-
atively simple treatment effect function τ(x) can be estimated. In Setup B it is possible to
accurately estimate τ without explicitly controlling for confounding. Setup C has strong con-
founding, but the propensity score function is easier to estimate than the prognostic effect
while the treatment effect is constant. In Setup D the treatment and control arms are unre-
lated, in the sense that E[Y | X, W = 1] and E[Y | X, W = 0] are uncorrelated and there is
no benefit to jointly learn them.

As in Nie and Wager (2021), we studied a normal linear regression model

(Y | X = x,W = w) ∼ N
(
μ(x) + τ(x)(w − 0.5),1

)
,

where half of the predictive effect was added to the prognostic effect.
All procedures were applied to 100 learning samples of size N ∈ {800,1600} and number

of explanatory variables P ∈ {10,20}. In order to minimize the impact of different implemen-
tation details, cf, mob and the blended versions were grown with the same hyperparameter
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FIG. 1. Results for the experimental setups 4.1. Direct comparison of the adaptive versions of causal forests
(cf), model-based forests without centering (mob), mob imitating causal forests (mobcf), mob with centered W

(mob(Ŵ )), and additional of Y (mob(Ŵ, Ŷ )).

options; see Section 7. Propensities π(x) and means m(x) were estimated by grf regression
forests for local centering in all forest variants. For the causal forest, the outcome was always
centered by m̂(x). In case of randomized data (Setup B), the treatment indicator was centered
by π ≡ 0.5; in all other settings, estimated propensities π̂(x) were used.

Performance was assessed by the ability of the methods to estimate the predictive effect
τ(x). The mean squared error EX{(τ̂ (X)− τ(X))2}, evaluated on a test sample of size 1000,
was used to compare the predictive performance of all candidate models in the 16 different
scenarios. The results are shown in Figure 1.

The results were also analyzed statistically by means of a normal linear mixed model
with log-link, explaining the estimated mean squared error for τ̂ (x) by a four-way interac-
tion of data-generating process, sample size N , dimension P , and random forest variant. We
estimated the mean squared error ratios between cf and mob (RQ 1), between mobcf and
mob(Ŵ, Ŷ ) (RQ 2), between cf and the mobcf approach (RQ 3), between mob with centered
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W (mob(Ŵ )) and without (mob) (RQ 4), and between mob(Ŵ ) and mobcf or mob(Ŵ, Ŷ )

(RQ 5). For each simulation run, the model featured a corresponding random intercept re-
flecting the paired simulation design. Simultaneous 95% confidence intervals for the mean
squared error ratios are presented along with the estimates. For example, the ratio of the
mean squared errors of cf and mob in the first line of Table 2 was 0.663 with confidence
interval (0.596,0.738). This is in line with the performance error of cf being at least 59.6%
and at most 73.8% of the performance error of mob, with 66.3% denoting the estimate. Bold,
italic, and normal fonts are used to indicate superior, inferior, and equivalent prediction per-
formance.

4.2. Results. The results for adaptive forests are presented in Figure 1. In Section 2 of
the Supplementary Material A (Dandl et al. (2024a)), we report on the effect of honesty on
predictive error as well as the mean squared differences in performance to cf for the adaptive
and honest versions (Figures S.1 and S.2). The statistical analysis of the results is given in
Table 2 for the adaptive version of forests and in Table S.1 of the Supplementary Material A
for the honest version:

RQ 1. mob vs. cf. In all setups cf outperformed mob. Especially in Setup C, mob was unable
to overcome the strong confounding effect and, therefore, did not provide accurate estimates
for the (constant) treatment effect.

RQ 2. mob(Ŵ, Ŷ ) vs. mobcf. The mob(Ŵ, Ŷ ) approach performed better than the mobcf
approach in almost all scenarios, except for Setup D. (However, uncorrelated treatment and
control arms rarely occur in reality. All methods had a higher MSE than in the other setups.)
These performance differences suggest that splitting by treatment and prognostic effect is
beneficial.

RQ 3. mobcf vs. cf. Despite the fundamentally different internal splitting and stopping cri-
teria, the original implementation of cf from package grf had very similar performance to
our reimplementation mobcf from package model4you in Setup A and B. In Setup C with
strong confounding, the mobcf approach performed slightly better than cf, while in Setup D
cf performed slightly better.

RQ 4. mob(Ŵ ) vs. mob. In case of confounding (Setup A, C), local centering of W

(mob(Ŵ )) significantly improved the performance of mob. In Setup B without confounding,
both approaches performed equally since mob(Ŵ ) is equal to mob applied to w − 0.5.

RQ 5. Methods centering the outcome (mobcf, mobmob(Ŵ, Ŷ )) vs. mob(Ŵ ). By centering
the outcome Y in addition to the treatment W , mob(Ŵ, Ŷ ) and mobcf performed better than
mob(Ŵ ), except for Setup A—centering the outcome did not further improve the results.
The improvements by additionally centering Y were relatively small for mob, compared to
the improvements due to centering the treatment W (see RQ 4).

Overall, our results reveal treatment effect centering (mob(Ŵ )) as the most relevant ingre-
dient to random forests for HTE estimation in observational studies. If possible, additional
centering Y in combination with simultaneous estimation of predictive and prognostic effects
(mob(Ŵ, Ŷ )) is recommended.

5. Effect of cesarean section on postpartum blood loss. In this section we discuss
random forest-based HTEs expressing the additional amount of blood loss explained by
prepartum variables, comparing cesarean sections with vaginal deliveries. We analyze data
from 1309 women who participated in a prospective study conducted from October 2015
to November 2016 at the University Hospital Zurich (details and data are available from
Haslinger et al. (2020)). The outcome is defined as measured blood loss (MBL) in mL, and
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TABLE 2
Results for the experimental setups 4.1 for the adaptive versions of the methods. Comparison of mean squared errors for τ̂ (x) in the different scenarios. Estimates and simultaneous

95% confidence intervals were obtained from a normal linear mixed model with log-link. Cells printed in bold font correspond to a superior reference (mob in the first and fourth
columns, mob(Ŵ, Ŷ ) in the second column, mobcf in the third and fifth column, and mob(Ŵ ) in the last column), cells printed in italics indicate an inferior reference

Mean squared error ratio

(RQ 1) (RQ 2) (RQ 3) (RQ 4) (RQ 5) (RQ 5)

DGP N P cf vs. mob mobcf vs. mob(Ŵ, Ŷ ) cf vs. mobcf mob(Ŵ ) vs. mob mob(Ŵ ) vs. mobcf mob(Ŵ ) vs. mob(Ŵ, Ŷ )

Setup A 800 10 0.663 (0.596, 0.738) 1.446 (1.206, 1.734) 1.165 (1.017, 1.335) 0.392 (0.334, 0.461) 0.689 (0.574, 0.826) 0.996 (0.806, 1.230)
20 0.596 (0.537, 0.662) 1.465 (1.228, 1.747) 1.111 (0.972, 1.270) 0.385 (0.331, 0.446) 0.717 (0.604, 0.850) 1.050 (0.859, 1.284)

1600 10 0.575 (0.499, 0.663) 1.458 (1.123, 1.893) 1.201 (0.991, 1.455) 0.324 (0.258, 0.408) 0.677 (0.521, 0.881) 0.988 (0.727, 1.342)
20 0.517 (0.447, 0.598) 1.453 (1.117, 1.889) 1.150 (0.944, 1.401) 0.328 (0.265, 0.407) 0.730 (0.567, 0.940) 1.061 (0.788, 1.428)

Setup B 800 10 0.707 (0.662, 0.756) 1.099 (1.015, 1.190) 0.987 (0.914, 1.065) 1.000 (0.947, 1.056) 1.395 (1.306, 1.491) 1.533 (1.429, 1.646)
20 0.745 (0.701, 0.791) 1.093 (1.018, 1.174) 1.001 (0.935, 1.071) 1.000 (0.951, 1.052) 1.345 (1.266, 1.428) 1.470 (1.380, 1.567)

1600 10 0.695 (0.635, 0.762) 1.166 (1.036, 1.313) 1.034 (0.929, 1.152) 1.000 (0.929, 1.076) 1.487 (1.355, 1.633) 1.734 (1.563, 1.924)
20 0.683 (0.625, 0.746) 1.110 (0.992, 1.243) 1.037 (0.934, 1.152) 1.000 (0.932, 1.073) 1.518 (1.387, 1.662) 1.686 (1.529, 1.859)

Setup C 800 10 0.148 (0.141, 0.156) 1.693 (1.514, 1.893) 1.150 (1.067, 1.240) 0.197 (0.190, 0.205) 1.529 (1.429, 1.636) 2.589 (2.335, 2.870)
20 0.170 (0.162, 0.177) 1.673 (1.520, 1.841) 1.123 (1.051, 1.199) 0.236 (0.229, 0.244) 1.563 (1.474, 1.657) 2.615 (2.395, 2.856)

1600 10 0.124 (0.113, 0.136) 1.651 (1.348, 2.023) 1.184 (1.032, 1.359) 0.143 (0.132, 0.155) 1.368 (1.201, 1.558) 2.258 (1.868, 2.731)
20 0.131 (0.121, 0.142) 1.573 (1.320, 1.875) 1.166 (1.030, 1.320) 0.163 (0.153, 0.174) 1.452 (1.295, 1.628) 2.284 (1.943, 2.684)

Setup D 800 10 0.756 (0.737, 0.775) 0.970 (0.945, 0.996) 0.934 (0.909, 0.960) 0.917 (0.897, 0.938) 1.133 (1.105, 1.162) 1.099 (1.072, 1.127)
20 0.807 (0.788, 0.826) 0.983 (0.959, 1.008) 0.958 (0.933, 0.982) 0.926 (0.906, 0.947) 1.100 (1.074, 1.126) 1.081 (1.056, 1.107)

1600 10 0.720 (0.696, 0.744) 0.970 (0.936, 1.005) 0.939 (0.904, 0.974) 0.885 (0.859, 0.912) 1.155 (1.116, 1.194) 1.120 (1.083, 1.157)
20 0.763 (0.739, 0.787) 0.967 (0.935, 1.001) 0.982 (0.949, 1.018) 0.894 (0.869, 0.920) 1.151 (1.114, 1.189) 1.113 (1.078, 1.149)
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FIG. 2. Marginal distribution of measured blood loss (mL) for cesarean section and vaginal delivery. Rugs
indicate measured blood loss observations.

the authors ensured application of a standardized measurement procedure for all study par-
ticipants (Kahr et al. (2018)). For our study we removed one outlier observation with a blood
loss of 5700 mL and eight observations with missing values for BMI so that a sample of size
N = 1300 remains. MBL was recorded as an interval-censored variable, because it is im-
possible to exactly determine the amount of blood loss in the sometimes hectic environment
of a delivery ward (Kahr et al. (2018)). Potential inaccuracies in the measuring process are
represented by an interval width of 50 mL for blood losses ≤1 L and an interval width of
100 mL when the mother lost more than one liter of blood. Measured blood loss can a priori
be considered a positive real and right-skewed variable (Figure 2). Table 3 gives a summary
of the eight considered prepartum characteristics (P = 8).

As the outcome variable MBL is skewed and interval-censored not all assumptions for
causal forests are fulfilled as they estimate a conditional mean of some continuous outcome
optimizing L2 risk. The extensibility of model-based forests discussed in Section 2.5 allows
us to take into account the structural assumptions of MBL by substituting �mob in (5) with the
negative log-likelihood of a more appropiate model. We set up a model-based transformation
forest with treatment centering by combining the mob(Ŵ ) approach using local centering of
the treatment indicator within a transformation model.

5.1. Transformation base model. The reasoning in Section 2 is based on the normal lin-
ear model (4) and its corresponding likelihood (5) for absolutely continuous observations.
While the latter can easily be adapted to interval-censored observations, more effort is needed
for allowing skewness in the response distribution. Adopting a standard normal distribution
for the error term Z, like in Section 2.5, model (4) can be written as a conditional distribution

TABLE 3
Prepartum characteristics

Variable Description Range

GA Gestational age 177–297 (days)
AGE Maternal age 18–48 (years)
MULTIPAR Multiparity no/yes
BMI Body mass index 15.4–66
MULTIFET Multifetal pregnancy no/yes
NW Neonatal weight 360–4630 (g)
IOL Induction of labor no/yes
AIS Chorioamnionitis no/yes
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function

P(MBL ≤ y | X = x,W = w) = �

(
y − μ(x) − τ(x)w

σ

)
.

In this model symmetry is achieved by a linear transformation of the y argument on the
probit scale. Replacement of this linear transformation by a potentially nonlinear one gives
rise to transformation models. In combination with the probit link, this model is a Box–
Cox-type linear regression model that transforms the skewed outcome variable to normality.
Instead of using the traditional Box–Cox power transformation, we estimate a suitable trans-
formation of MBL by means of a flexible polynomial in Bernstein form (Hothorn, Möst and
Bühlmann (2018)). Ignoring covariates and the local centering of W for a moment, our trans-
formation model describes the conditional distribution of the positive skewed real variable
MBL using mode of delivery W as treatment indicator for vaginal delivery (W = 0) vs. ce-
sarean section (W = 1),

P(MBL ≤ y | W = w) = �
(
h(y) − μ − τw

)
.

Deviations from normality are captured by the nonlinear transformation function h in this
model. Because the transformation function h contains an intercept term, the parameter μ is
not identified. We thus estimate the transformation base model under the constraint μ ≡ 0.
The intercept function h varies with the chosen MBL cut-off y and is smooth and monoton-
ically increasing; a polynomial in Bernstein form of order six was used to parameterize this
function. The parameter τ = E(h(Y (1)) − h(Y (0))) is not identical to an average treatment
effect on the untransformed scale, which could be interpreted directly in terms of the original
units of the outcome (here blood loss in mL). Nevertheless, τ in our transformation model
has an intuitive interpretation corresponding to Cohen’s d: the units of the treatment effect
correspond to standard deviations under the normal model.

The parameters of the transformation base model were estimated by minimization of the
negative log-likelihood for an interval-censored observation (

¯
y, ȳ]

�Trafo(μ, τ,ϑ) = − log
(
P(

¯
y < Y ≤ ȳ | W = w)

)
= − log

(
�

(
h(ȳ | ϑ) − μ − τw

) − �
(
h(

¯
y | ϑ) − μ − τw

))
,

where all parameters, including ϑ for the transformation function, are estimated in each node.
A parameterisation of h in terms of a polynomial in Bernstein form h(· | ϑ) ensures uni-
form convergence to any continuous unknown transformation function h on some interval by
Weierstrass’ approximation theorem (Farouki (2012)).

5.2. Personalized transformation model. The results of Section 2–4 motivate the appli-
cation of model-based forests to a Box–Cox-type transformation model for the estimation
of HTEs of cesarean sections on PPH. The transformation base model provides skewness
and interval-censoring, whereas the locally centered treatment indicator controls for potential
confounding. In more detail we used a mob(Ŵ ) forest in combination with the transforma-
tion base model, that is, with local centered treatment indicator ŵ, to compute personalized
treatment effects τ(x) and prognostic effects μ(x) of the model

(7) P(MBL ≤ y | X = x,W = w) = �
(
h(y) − μ(x) − τ(x)

(
w − π̂(x)

))
.

As in the simulation study, a regression forest was applied to estimate propensities π(x). We
only used locally centered propensities because the empirical results of Section 4 showed
that centering W was the main driver for good performance in observational settings. Fur-
thermore, while centering W is straightforward for the transformation model at hand, imple-
menting centering on the outcome Y is less clear.
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FIG. 3. Estimates of propensity scores π(x) returned by the regression forest for orthogonalization of the treat-
ment indicator.

Figure 3 shows that the distribution functions of π̂(x) for each treatment group greatly
differ. This indicates that prepartum characteristics indeed influence the mode of delivery
and that the treated and control group are dissimilar with respect to these characteristics.

We first fitted the transformation base model without covariates but with propensity-
centered mode of delivery to estimate a constant effect adjusted for potential confound-
ing. The corresponding effect τ̂ , that is, the marginal Cohen’s d, was 0.823 (CI0.95 =
(0.686,0.959)), indicating that women giving birth by cesarean section have a higher post-
partum blood loss compared to women giving birth by vaginal delivery.

The model-based transformation forest was fitted with the same hyperparameter settings,
as in the simulation study (Section 7). We did not adjust the hyperparameters because random
forests have been shown to be insensitive to hyperparameter changes (Probst, Boulesteix and
Bischl (2019)). Figure S. 3 in the Supplementary Material A (Dandl et al. (2024a)) demon-
strates this for the mtry parameter—the number of chosen variables per split. We only anal-
ysed the mtry parameter since Probst, Wright and Boulesteix (2019) found that the “mtry
parameter is most influential [. . . ]” while “[s]ample size and node size have a minor influ-
ence on the performance [. . . ].”

Figure 4 depicts the distribution of the estimated out-of-bag (OOB) heterogeneous treat-
ment effects τ̂ (x) of cesarean section compared to vaginal delivery. The distribution is uni-
modal and slightly left-skewed. For almost all births, a cesarean section increases the risk
for higher blood losses, compared to vaginal delivery. For comparison the average treatment
effect of τ̂ = 0.823 of the transformation base model is included.

The interval-censored negative log-likelihood of the transformation base model was
3613.972. The model-based transformation forest improved upon this, yielding a likelihood
of 3413.989 (estimated in-bag to make it comparable to the transformation base model).

5.3. Dependence plots. The dependency of the treatment effect τ on the prepartum vari-
ables is visualized by dependence plots (Figure 5). Scatter plots are used for continuous co-

FIG. 4. Kernel density estimates of the personalized treatment estimates of the model-based transformation
forest. The dashed line presents the estimated effect of the transformation base model.
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FIG. 5. Dependency plots of the individual treatment effects calculated by the model-based transformation
forest. Values τ̂ > 0 mean that cesarean section increases the blood loss, compared to vaginal delivery. Lines
and diamond points depict (smooth conditional) mean effects.

variates and boxplots for categorical covariates. We also provide mean effects per group for
categorical covariates and the smooth conditional mean effect function for continuous covari-
ates. The latter was estimated by a generalized additive model (GAM) with a single smooth
term depending on the considered variable. Births with higher gestational age, higher neona-
tal weight, and singleton pregnancy have a higher risk for elevated blood loss due to cesarean
section compared to vaginal delivery. The effect differences were most pronounced between
multifetal and singleton births. For multifetal pregnancies treatment effects are closer to zero
than for singleton pregnancies. For a very premature multifetal birth (gestational age of 192
days) of a 25-year-old mother with an elevated BMI of 33.7, a cesarean section was deter-
mined to be most effective (τ̂ = −0.614). Because the distribution of the gestational age
(GA) is left-skewed, the curve of the smoothed conditional mean effects is somewhat erratic.
It might also indicate that GA was often used as a splitting variable. While interpreting these
results, it should be noted that violations of the unconfoundedness assumption do not seem
implausible.

5.4. Model interpretation and communication. Interpretation and risk communication in
terms of predicted τ̂ (x) is difficult because the effect is defined by Cohen’s d on a trans-
formed latent normal scale in model (7). However, the model allows conditional quantiles to
be computed, and thus information about the conditional MBL distribution for given prepar-
tum covariates and propensities π̂(x) can be expressed on the quantile scale for both modes
of delivery.

To assess the prognostic effects on MBL, we computed median measured blood losses
for W = 0 (vaginal delivery), given the covariates and propensities. Figure 6 indicates that
a gestational age of about 270 days, a birth weight around 3050 g, and singleton births are
associated with small median postpartum blood losses for vaginal deliveries.

The predictive effect of a cesarean section on MBL in such a low-risk group can be com-
municated by comparing the MBL distributions under vaginal delivery and cesarean section.
The median blood loss for a hypothetical woman in this low-risk group (aged 32.7 years with
a BMI of 24.7, the mean values in the study population) is predicted to increase from 329 mL
(vaginal delivery, 80% prediction interval 209–507 mL) to 470 mL (cesarean section, 80%
prediction interval 305–817 mL) by our model. The asymmetric prediction intervals reflect
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FIG. 6. Dependency plots of median measured blood losses calculated by the model-based transformation for-
est. Higher values mean higher blood loss. Lines and diamond points depict (smooth conditional) means.

skewness in the MBL distribution, and the wider interval for a cesarean section suggests vari-
ance heterogeneity is captured by the model. The risk of PPH (defined by the 500 mL cut-off)
is small for vaginal deliveries but substantial under a cesarean section.

6. Discussion and outlook.

6.1. Effects of cesarean sections of postpartum blood loss. The lives of many of us have
been, or will be, impacted by a cesarean section directly or indirectly. Empowering women
for making an informed decision, especially in an elective setting, crucially relies on evi-
dence about the short- and long-term consequences for them and their children (Antoine and
Young (2021)). Providing an estimate of the individual predicted excess blood loss caused
by a cesarean section, in comparison to a vaginal delivery, to pregnant women and their ob-
stetricians not only offers the possibility to decide based on a personalized risk assessment
but also has the potential to help the overarching goal of reducing the prevalence of cesarean
sections. The question to perform a cesarean section or not is less imminent in women with
obvious risk factors, which make a cesarean section inevitable (e.g., prematurity and multi-
ple fetus pregnancy), but is of utmost clinical interest in women with a prepartum low-risk
profile (singleton pregnancy at term with normal fetal weight estimation). To the best of our
knowledge, this is the first study to predict excess postpartum blood loss in low-risk women.
Our approach of modeling the continuous blood loss distribution for arbitrary cut-off values
is also unique in the sense that published prognostic models provide risk estimates for events
MBL > 500 mL, or other prespecified cut-off values, only.

Our results were estimated based on data originating from a prospective study employ-
ing a standardized and validated assessment of blood loss under both modes of delivery.
Such efforts can only be successfully implemented in a controlled setting and hardly apply
to retrospective collections of routine clinical data from multiple study centers. However, the
detection of smaller but still relevant patterns in HTEs might require more information than
available from the N = 1300 study participants. The random forest methodology would al-
low differentiation between planned and unplanned cesarean sections (Section 2.3) in a single
model; however, the sample sizes in the present study seem too limited for such an analysis. It
remains to be seen if refined analyses of large-scale routine clinical data will provide results
similar to those reported here.
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6.2. Forest-based HTE estimation. From a statistical perspective, estimating heteroge-
neous treatment effects (HTEs) is a difficult task, both when data from randomized trials
and observational studies are analyzed. Based on a common theoretical understanding of
two strands of random forest algorithms for HTE estimation, we hypothesized that centering
the treatment with corresponding propensities helps to address confounding. The empirical
results suggest that this simple modification of the data is instrumental for the analysis of
observational and thus potentially confounded data.

Centering the outcome is equally simple in models for conditional means but may be
much harder in other models. Empirically, we found that the combination of centered treat-
ment and simultaneous split selection (with respect to both prognostic and predictive effects)
performed at least as well as explicit outcome centering. This may seem surprising from a
theoretical point of view, because a nuisance parameter is dealt with in two completely dif-
ferent ways. Even more interesting is the overall strong performance of a variant employing
both principles at the same time: The mob(Ŵ, Ŷ ) forest is grown on centered outcomes and
treatments and, additionally, also splits nodes with respect to both prognostic and predictive
effects, leading to a performance at least as well as the best-performing competitor. Other
aspects of tree and forest induction, such as exhaustive search vs. association tests for vari-
able selection, internal stopping criteria based on sample-size constraints etc., did not explain
much variability in performance.

Based on our current theoretical and empirical understanding of the elements of both
model-based and causal random forests for HTE estimation, we can make the following rec-
ommendations for their application in practice, especially when the conditional mean of a
numeric outcome captures all relevant aspects: Data from randomized trials can be analyzed
by causal forests (with outcome centering and known treatment probability π for treatment
indicator centering) or model-based forests (with or without outcome centering) under the
intention-to-treat principle. Under potential confounding, it is important to accurately model
treatment propensities, as in causal forests (with outcome and treatment centering). When
combined with treatment centering, model-based forests will lead to approximately the same
results. Additionally, centering the outcome may even offer a small performance gain com-
pared to standard causal forests.

The empirical performances, reported in Section 4, coupled with established asymptotic
results for causal random forests with treatment centering (Athey, Tibshirani and Wager
(2019)) and the benign asymptotic behavior of other ingredients, such as transformation
models (Hothorn, Möst and Bühlmann (2018)) or uniform convergence of polynomials in
Bernstein form, suggest favorable asymptotic properties for special flavors of model-based
forests. We leave the presentation of formal results to future work.

6.3. Outlook. The blending of model-based and causal forests discussed here seems to
be a promising approach for HTE estimation beyond mean regression. Under potential con-
founding with binary, ordinal, count, or survival outcomes, it is easy to combine model-based
forests with treatment centering (mob(Ŵ )), following the path outlined in Section 2.5. For
example, for a binary outcome Y ∈ {0,1}, a logistic regression-based causal forest can esti-
mate models of the form

logit
(
P(Y = 1 | X = x,W = w)

) = μ(x) + τ(x)w.

The HTE τ(x) can then be interpreted as a covariate-dependent log-odds ratio. In practice,
this model can be estimated by package model4you, with appropriate treatment centering
being the only modification necessary (under the usual assumptions, of course). We leave an
in-depth analysis and evaluation of this principle to future research, which should also address
the question of how to achieve outcome centering in such models similar to mob(Ŷ, Ŵ ).
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Finally, going beyond these recommendations and insights, our results are interesting from
two further perspectives. First, the empirical application to postpartum blood loss in Section 5
has shown that blended model-based causal forests can be tailored to specific setups by adapt-
ing the underlying loss function. Second, we empirically demonstrated that two independent
implementations of random forests for HTE estimation performed akin in comparable set-
tings. This form of external software validation is important in its own right because the un-
derlying algorithms and implementations are rather complex, and external validity can only
be assessed with the help of an independent implementation. In case of grf and model4you,
past, current, and future users of these software packages can have higher confidence in HTEs
estimated using either package.

7. Computational details. All computations were performed using R version 4.1.1
(R Core Team (2021)) with the following add-on packages: grf (Tibshirani et al. (2021)),
model4you (Seibold, Zeileis and Hothorn (2021)), trtf (Hothorn (2021)), and partykit
(Hothorn and Zeileis (2015, 2021b)).

In all empirical experiments, both causal forests and all variants of model-based forests
were grown with M = 500 trees (model4you::pmforest default) with minimum node
size of node = 14, number of chosen variables per split mtry = P , and subsampling (the
latter two being causal_forest defaults for P = 10,20). We chose a minimum node size
of 14 because the default of partykit::ctree_control (which model4you is based
on) is 7, but we require this minimum node size for each of the two treatment groups. For
adaptive forests 50 % of data were used to build each tree, and for honest forests subsamples
were further cut in half (25 % to determine splits, 25 % for estimation, all grf defaults). To
implement local centering of W in case of randomized data for causal forests, we set W.hat
to 0.5 within grf::causal_forest.

We used the transformation forest implementation of the trtf package (Hothorn (2021),
Hothorn and Zeileis (2021a)) for fitting the transformation-based forest in Section 5.

Ratios and confidence intervals, presented in Table 2 and Table S.1 (Supplementary Ma-
terial A, Dandl et al. (2024a)), were computed by generalized linear mixed models fitted by
the glmmTMB package (Brooks et al. (2021)) and post hoc inference was performed by the
multcomp package (Hothorn, Bretz and Westfall (2021)).

We implemented all study settings in a dedicated R package called htesim. We also in-
cluded the code and performance results of the empirical study as well as the code and dataset
on postpartum blood loss. This should facilitate full reproducibility of all findings in this pa-
per. The package is available as a supplement to this paper (Supplementary Material B, Dandl
et al. (2024b)) and is also published on Github: https://github.com/dandls/htesim.
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SUPPLEMENTARY MATERIAL

A. Details and additional results (DOI: 10.1214/23-AOAS1799SUPPA; .pdf). The docu-
ment provides details about the cut-point selection of model-based forests and causal forests,
the comparative results of adaptive and honest forests for the simulations study of Section 4,

https://github.com/dandls/htesim
https://doi.org/10.1214/23-AOAS1799SUPPA
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and a sensitivity analysis on the number of chosen variables per split for the model-based
transformation forest of Section 5.

B. Code and data (DOI: 10.1214/23-AOAS1799SUPPB; .zip). The tar.gz file contains the
R package htesim to replicate the study settings. It also includes the code and performance
results of Section 4 as well as the code and dataset of Section 5.
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