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Real-Time Estimation of COVID-19 Infections:
Deconvolution and Sensor Fusion
Maria Jahja, Andrew Chin and Ryan J. Tibshirani

Abstract. We propose, implement, and evaluate a method to estimate the
daily number of new symptomatic COVID-19 infections, at the level of indi-
vidual U.S. counties, by deconvolving daily reported COVID-19 case counts
using an estimated symptom-onset-to-case-report delay distribution. Impor-
tantly, we focus on estimating infections in real-time (rather than retrospec-
tively), which poses numerous challenges. To address these, we develop new
methodology for both the distribution estimation and deconvolution steps,
and we employ a sensor fusion layer (which fuses together predictions from
models that are trained to track infections based on auxiliary surveillance
streams) in order to improve accuracy and stability.

Key words and phrases: COVID-19, nowcasting, deconvolution, sensor fu-
sion.

1. INTRODUCTION

Accurate, real-time estimates of incident infections
play a critical role in informing the public health response
to the spread of a disease through a population. How-
ever, official metrics on disease activity published by tra-
ditional public health surveillance systems in the United
States do not in fact reflect activity in real-time, as they
suffer from some degree of latency due to the way their
reporting pipelines are set up and implemented.

With addressing the latency in traditional public health
reporting a part of the motivation, the last decade has seen
a rise in the development of digital surveillance streams
in public health. Search and social media trends have con-
stituted much of the focus (e.g., Brownstein, Freifeld and
Madoff, 2009, Ginsberg et al., 2009, Salathé et al., 2012,
Kass-Hout and Alhinnawi, 2013, Paul and Dredze, 2017).
More broadly, auxiliary surveillance streams that oper-
ate outside of traditional public health surveillance, like
online surveys, medical device logs, or electronic medi-
cal records, have also received significant attention (e.g.,
Kass-Hout and Zhang, 2011, Carlson et al., 2013, Viboud,
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2014, Smolinski et al., 2015, Santillana et al., 2016,
Charu, 2017, Yang et al., 2019, Ackley et al., 2020,
Leuba, 2020, Radin et al., 2020).

Auxiliary surveillance can improve not only on the
timeliness but also on the accuracy and robustness of tra-
ditional public health reporting. Auxiliary data streams
have therefore become an integral part of modern systems
for disease nowcasting (e.g., McIver and Brownstein,
2014, Santillana et al., 2015, Yang, Santillana and Kou,
2015, Farrow, 2016, Jahja et al., 2019, Brooks, 2020),
which, put broadly, are used to estimate the contempo-
raneous value of a signal that will only be fully observed
at a later date, using partial or noisy data.

1.1 Surveillance During the Pandemic

During the COVID-19 pandemic, public health surveil-
lance has produced, on one hand, some of the most de-
tailed public health data that the U.S. has ever seen,
such as daily, county-level data on reported COVID-19
cases and deaths. It has also, on the other hand, painted
an imperfect picture of situational awareness, which cre-
ated a number of downstream challenges for the public
health response. See, for example, Rosenfeld and Tibshi-
rani (2021) and references therein for an overview of the
issues. In this paper, we identify a few issues surrounding
COVID-19 case reporting in particular, propose method-
ology to address them, and implement and evaluate this
proposal over eight months of pandemic data.

To give some background, in the early days of the
pandemic, a handful of nongonvermental groups such as
JHU CSSE (Dong, Du and Gardner, 2020) (and also the
COVID Tracking Project, the New York Times, and US-
AFacts) became known as the most trustworthy sources
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for aggregate public health reporting data on COVID-19
in the U.S. They were founded around the idea of scrap-
ing COVID-19 data published daily on dashboards that
are run by local public health authorities (such as state
and county departments of public health), which, at the
time, provided more accurate and timely data than federal
health authorities (probably due to unrecoverable failures
at one or more points along the reporting pipeline). In fact,
not only in the early days of the pandemic, but throughout,
the data published by these groups has been invaluable for
decision-makers, modelers, journalists, and the general
public; for example, data from JHU CSSE remains the
gold standard for COVID-19 case and death forecast eval-
uation in the COVID-19 Forecast Hub (Reich Lab, 2020),
a community-driven repository of forecasts that serves as
the official source for forecasting communications by the
U.S. CDC.

Turning our focus now to case reporting, JHU scrapes
cumulative case numbers that are published daily on local
health authority dashboards, and subsequently derives a
notion of case incidence based on day-to-day differences
in cumulative counts. Note that, by construction, this defi-
nition of incidence reflects the number of new COVID-19
cases that are reported (to the public) on any given day. Of
course, this is not the same as the number of new cases by
date tested, specimen collection date, or symptom onset
date. Any of the latter options would be more informative
(increasingly so) as a definition of incidence; revamping
our surveillance systems so that they can directly provide
these and other aggregates of interest to the public health
response is a critical task for future public health crises.

The reality of the current pandemic: alignment by re-
port date is the only option available, given the data
published broadly on local health authority dashboards,
hence collected and aggregated by data scrapers. JHU
publishes the number of new COVID-19 case reports per
U.S. county, daily, at a 1-day lag. However, since report
dates can lag behind symptom onset dates by many days
(a typical lag is around 5-10, but lags can be up to 30
days or more; see Figure 3), this is actually giving us a
glimpse into COVID activity in the recent past, rather than
the present.

Importantly, the CDC publishes a de-identified patient-
level data set (“line list”) on COVID-19 infections
(Centers for Disease Control, 2020a), which provides a
symptom onset date column. In principle, this should al-
low us to construct a notion of case incidence that is
aligned by symptom onset date, but this is not possible
in practice, due to two barriers. First, the CDC only pub-
lishes updates to the line list monthly (due to the complex-
ity of managing this data set). Second, and more problem-
atically, this line list is fraught with missingness, extend-
ing well beyond missingness in the symptom onset col-
umn: the total number of COVID-19 cases according to

this line list (whether the symptom onset date is observed
or not) is far less than the total number of cases from JHU
(e.g., in early September 2021, the CDC line list reports
about 30 million total versus about 40 million from JHU),
and some states (such as Texas) appear to missing nearly
all of their cases in the line list altogether (see Figure 2).

1.2 Nowcasting by Deconvolution

In what follows in this paper, we use the CDC line
list to estimate a delay distribution between symptom on-
set and report dates, and then use this delay distribution
to deconvolve daily numbers of new case reports pub-
lished by JHU CSSE to estimate daily numbers of new
symptomatic infections. Moreover, we train models that
track historical trends between past infection estimates
and auxiliary signals of COVID-19 activity from Delphi’s
COVIDcast project (Reinhart et al., 2021), and we fuse to-
gether predictions from these models in order to improve
the accuracy and robustness of our estimates of new infec-
tions for the most recent 10 days (where deconvolution is
particularly challenging). An illustration is given in Fig-
ure 1.

We focus on estimating new infections in real-time, lay-
ing out a framework for an operational nowcasting system
that is forced to cope with all of the challenges of disease
tracking using provisional data. At any given nowcast date
t , to estimate the number of symptomatic infections at
day t − k (for small values of k, such as k = 1,2, . . .),
we make sure to use data that would have actually been
available at t . This not only affects the way we carry out
all of our experiments (model training and evaluation), it
also leads us to develop some new interesting methodol-
ogy to deal with the issue of right truncation (highlighted
in Figure 1 by the blue region). For example, in order to
estimate the delay distribution in real-time, we develop a
Kaplan-Meier-like procedure to deal with a kind of right
censoring that occurs in the line list. We also develop spe-
cialized regularization techniques to control the volatility
of estimates around the nowcast date in an optimization
problem that we solve for real-time deconvolution.

An outline for this paper is as follows. In Section 2,
we cover various preliminary details about the problem
setup. Retrospective construction of the delay distribution
and deconvolution are described in Section 3, whereas
real-time estimation is the focus in Section 4. Sensor fu-
sion is covered in Section 5, and extensive evaluations—
comparing nowcasts made in real-time to those made ret-
rospectively (using “finalized” data that would have only
been available much later), are performed in Section 6. In
Section 7, we conclude with a discussion and describe a
few directions for future work.

R and Python code for reproducing all figures and re-
sults in this paper can be found at https://github.com/
cmu-delphi/stat-sci-nowcast or in the supplementary ma-
terial (Jahja, Chin and Tibshirani, 2022).

https://github.com/cmu-delphi/stat-sci-nowcast
https://github.com/cmu-delphi/stat-sci-nowcast
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FIG. 1. Illustration of estimating latent infections from reported cases. The dashed red line displays infection rates estimated “naively” in real–
time, by directly deconvolving case data up through early February 2021, while the solid black line display infection rates estimated using finalized
data from roughly four months afterwards. The blue region on the right-hand side highlights a period in which the real-time estimate deviates
substantially from the finalized one, due to the fact that we are lacking sufficient (future) case observations needed to perform a “full” deconvolu-
tion. The green triangles represent real-time nowcasts made by sensor fusion, which reduces the volatility of the real-time estimate and tracks the
finalized estimate nicely. Lastly, the (scaled) reporting delay distribution estimated at the midpoint of November 2020 is drawn in purple, with the
median reporting delay (8 days) marked as a dotted gray line.

1.3 Related Work

In the computational epidemiology literature, the term
“nowcasting” has been applied to a variety of related
but distinct estimation problems. Broadly speaking, what
these problems have in common is that they are about
real-time estimation of some quantity, based on partial
or noisy data. They differ in what is being estimated,
and whether this quantity will eventually be fully ob-
served (after enough time has passed) or whether it is
latent. Examples in the former nonlatent setting, which
span applications in influenza, dengue, and COVID-19,
include Yang, Santillana and Kou (2015), Farrow (2016),
Jahja et al. (2019), Brooks (2020), McGough et al. (2020),
Hawryluk et al. (2021).

The latent setting exhibits another degree of diversity
within itself. In our work, we target symptomatic COVID-
19 infections, which, to be perfectly clear, is a latent time
series. Another example along similar lines is Goldstein
et al. (2009a), who estimate influenza infection incidence
via Bayesian deconvolution of mortality data. Meanwhile,
other authors might view inferring latent infections as just
a stepping stone toward ultimately estimating the instan-
taneous reproductive number Rt , a key epidemic param-
eter. Important contributions to the methodology on real-
time estimation of Rt include: Bettencourt and Ribeiro
(2008), who use a local approximation to the SIR model,
and Cori et al. (2013), Thompson et al. (2019), who use a
discretization of the renewal equation within a Bayesian

framework. For a thorough review and comparison of
these methods, see Gostic (2020). The latter paper also
discusses in some detail the importance of properly mod-
eling the delay between infection onset and case report,
and the issue of right truncation, which, as we will see,
are central issues in our paper as well.

The aforementioned methods have been applied and ex-
tended to build systems for real-time Rt nowcasting dur-
ing the COVID-19 pandemic by Abbott et al. (2020),
Systrom, Vladek and Krieger (2020), Chitwood et al.
(2021). A key difference between these approaches and
ours is that they infer infections through forward-filling:
loosely speaking, they convolve forward a candidate es-
timate of infections, obtain feedback by comparing the
result to measured cases, and iterate to refine estimates.
This can be effective given accurate prior knowledge, but
of course it can be hard to judge the accuracy of prior
knowledge in practice. We take a more flexible approach
and estimate infections via direct deconvolution. Our ap-
proach is nonparametric, but is still fairly simple and com-
putationally efficient. We also focus on fusing in auxiliary
sources of information in order to improve real-time ac-
curacy and robustness. We remark that, if estimates of Rt

were desired, then these could certainly be inferred as a
by-product of our infection nowcasts.

Finally, deconvolution has been extensively studied for
many years in many fields, notably signal and image pro-
cessing, where deconvolution is sometimes called deblur-
ring. As an inverse problem, deconvolution is ill-posed in
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settings in which the convolution operator is not known
exactly or observations are made with noise (Oppenheim
and Verghese, 2017). Approaches to overcome this tradi-
tionally involve regularization, as in the classical Wiener
deconvolution (Wiener, 1964), which stabilizes the in-
version using an estimated signal-to-noise ratio. Alterna-
tive approaches employ familiar regularization techniques
such as �1 and �2 penalities (Taylor, Banks and McCoy,
1979, Debeye and Van Riel, 1990). Most related to our pa-
per is deconvolution using total variation regularization,
first proposed by Rudin and Osher (1994), and now a cen-
tral tool in signal and image processing.

2. PRELIMINARIES

In the remainder of this paper, we develop a framework
for estimating the daily symptomatic COVID-19 infection
rate (where by “rate” we mean a count per 100,000 peo-
ple, the standard units in epidemiology), concentrating on
infections that will eventually result in a reported COVID-
19 case. To be clear on nomenclature: for convenience, we
will often abbreviate “symptomatic infection” by “infec-
tion” (and so, terms like “infection onset” and “infection
rate” should be implicitly interpreted as symptomatic).
To estimate infection rates, we deconvolve reported case
rates with an estimated symptom-onset-to-case-report de-
lay distribution. To reiterate, we use case data from JHU
CSSE (Dong, Du and Gardner, 2020), and to infer the de-
lay distribution, we use a de-identified line list on patient-
level infections from the CDC (Centers for Disease Con-
trol, 2020a).

Auxiliary indicators. After deconvolution, we improve
our infection rate estimates by incorporating a number of
contemporaneous signals that track COVID activity—we
will also refer to these as indicators—which are publicly
available through Delphi’s COVIDcast API (Reinhart
et al., 2021). The five indicators that we consider, de-
scribed below, provide auxiliary information on COVID-
19 outside of traditional public heath reporting. Here and
throughout, we abbreviate COVID-like illness by CLI.

1. Change Healthcare COVID (CHNG-COVID):
The percentage of outpatient visits that have confirmed
COVID-19 diagnostic codes, based on de-identified
Change Healthcare medical claims data.

2. Change Healthcare CLI (CHNG-CLI): The per-
centage of outpatient visits that have COVID-like diag-
nostic codes, based on the same data.

3. Doctor Visits CLI (DV-CLI): The same defini-
tion as CHNG-CLI, but applied to de-identified medical
claims data from other health systems partners.

4. COVID Trends and Impact Survey CLI in the com-
munity (CTIS-CLIIC): The estimated percentage of peo-
ple reporting illness in their household or local commu-
nity, based on Delphi’s COVID Trends and Impact Survey
(CTIS), in partnership with Facebook.

5. Google searches for anosmia and ageusia (Google-
AA): A measure of volume for Google queries related to
anosmia or ageusia (loss of smell or taste), from Google’s
COVID-19 Search Trends data set.

Roughly speaking, we study these particular indicators
(ordered roughly from “late” to “early”) because concep-
tually they reflect data measurements that would be made
at some period of time in between infection onset and case
report to a public health authority, and therefore would be
relevant in inferring latent infection rates. More informa-
tion on these indicators and their underlying data sources
is given in Reinhart et al. (2021). For more information
on CTIS in particular, see Salomon et al. (2021); and for
a study of how these and similar indicators can improve
COVID-19 forecasting, see McDonald et al. (2021).

Sensor fusion. For each of the auxiliary indicators de-
scribed above, we train a model to estimate latent infec-
tion rates from indicator values, using historical data (de-
scribed in Section 5.1). At each nowcast date, we then
use such a model to estimate the latent infection rate from
the current indicator value, which gives a total of five es-
timates (one from each of the five models), along with
a sixth estimate coming from an autoregressive model
trained on historical estimated infection rates. We will re-
fer these six contemporaneous estimates as sensors.

In this paper, we consider (as described in Section 5.3)
various methods for combining these estimates into a sin-
gle estimate of the infection rate, which we will call sen-
sor fusion methods. Broadly speaking, sensor fusion is
a form of ensembling, which is ubiquitous in predictive
modeling in statistics and machine learning, as it can often
help improve both accuracy and robustness. In our partic-
ular application, the sensors themselves are constructed
from data streams operating outside of traditional public
health reporting, which itself contributes an additional im-
portant angle in terms of robustness.

2.1 Problem Setup

Estimation period. For every day t in between October
1, 2020 and June 1, 2021 inclusive (243 days in total), we
estimate the symptomatic infection rate at day t −k, using
only data that would have been as of time t , which in this
context we call the nowcast date. Estimation of the latent
infection rate at time t − k (for positive k) is technically a
backcast, though we will not be careful to distinguish this
notationally from nowcasting, and will generally refer to
this as nowcasting at lag k. We produce estimates for each
k = 1, . . . ,10, a total of 10 targets per nowcast date t .

When we say above that nowcasts are made using data
that would have been available as of a given nowcast
date t , we mean that we adhere not to only the real-time
availability (latency) of signals at t , but also the version
of the data published at t—simply put, imagine that we
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“rewind” the clock to time t and query the API to re-
ceive the data that would have been returned then. This
is possible because the COVIDcast API records and pro-
vides access to all historical versions of data, as described
in Reinhart et al. (2021). As epidemic data is often sub-
ject to revision, if we train and evaluate models on “final-
ized” data (that would have been available only at a much
later time point) then this can lead to inaccurate conclu-
sions about real-time model performance; see, for exam-
ple, McDonald et al. (2021).

Further, it is worth noting that reported case data from
JHU is available at a 1-day lag, and we assume that there
is at least another 1-day lag between symptom onset and
case report (explained in Section 3.2). Hence through
real-time deconvolution alone, we would be able to make
nowcasts at a 2-day lag at the earliest. Making nowcasts at
a 1-day lag is possible with sensor fusion, using auxiliary
signals with 1-day latency (explained in Section 5). In this
sense, sensor fusion is able to improve not only accuracy,
but also latency, and buys us 1 extra day.

Geographic scope. We produce nowcasts at the county
resolution, but for computational purposes, we restrict our
attention to the 200 U.S. counties with the highest popu-
lation. We additionally produce estimates for each of the
50 U.S. states. (Some of the methodology that we use
for sensor fusion requires a geographical hierarchy, thus
using the remaining ≈ 3000 U.S. counties we aggregate
these within each state to create “rest-of-state” jurisdic-
tions, and make estimates for these as well, for the pur-
poses or maintaining such a hierachy.)

Evaluation. We evaluate all nowcasts made in between
October 1, 2020 and June 1, 2021 inclusive (243 days in
total) and at each of the 250 locations in consideration (50
states and the 200 largest counties) against latent infection
rate estimates obtained by deconvolving the case rate data
available as of August 30, 2021. We will refer to the latter
as finalized infection rate estimates (as opposed to real-
time ones); details are given in Section 3.3.

2.2 Confounding

Estimates of COVID infections obtained by deconvolv-
ing reported cases will generally underestimate the true
number of infections, because many infections are unde-
tected or untested, and as such, do not appear later on in
case reports. If we wanted to estimate the true number of
symptomatic infections from case reports, then we would
need to have some sense of the fraction of symptomatic
infections that go untested. Of course, this only gets more
complicated if we extend our consideration to both symp-
tomatic and asymptomatic infections.

Other authors, for example, Chitwood et al. (2021),
have taken the ambitious step of proposing and imple-
menting frameworks with parameters that account for
such confounding. However, adjustments for case ascer-
tainment and asymptomatic infections generally rely, at

least to some nontrivial extent, on model assumptions
(typically, mechanistic ones) that are difficult to substan-
tiate.

We take a different perspective and pose the problem as
one of real-time deconvolution only. We seek to answer
the question:

Can we estimate—in real-time—the number
of new symptomatic COVID-19 infections that
will eventually appear in case reports?

Hence, by construction, confounding is not a problem that
we even attempt to reconcile (because the target we track,
infections that eventually show up in case reports, simply
inherits any confounding that would be present in the case
reporting stream in the first place).

Our approach can be seen as one that runs in paral-
lel (rather than in contradiction) to an approach that ex-
plicitly models and removes the effects of confounding in
case reporting. We focus on addressing the deconvolution
problem as carefully as possible, with a concern for real-
time estimation, and an eye toward using auxiliary signals
to improve accuracy and robustness. Estimates of param-
eters that account for confounding (that comes from other
work focused on these aspects) could certainly be applied
to our deconvolution estimates post hoc in order to adjust
them appropriately; we revisit this idea in the discussion.

Lastly, under an assumption that the confounding acts
as a multiplicative bias that changes slowly over time, our
real-time infection rate estimates—themselves subject to
confounding, as explained above—can be post-processed
to derive real-time approximately unconfounded esti-
mates of Rt . This is also described in the discussion.

3. RETROSPECTIVE DECONVOLUTION

In this section, we study and fit a convolutional model
between infections and reported cases. We adopt a ret-
rospective angle here and do not concern ourselves with
data availability or versioning issues; this is covered in the
next section.

3.1 Convolutional Model

For simplicity, we introduce the convolutional model in
just a single location. We denote by yt the number of new
cases that are reported at time t , and by xt the number of
new infections that have onset at time t . Our jumping-off
point is the following model:

(1) E[yt |xs, s ≤ t] =
t∑

s=1

πt(s) xs,

where for each s ≤ t ,

(2) πt(s) = P(case report at t | infection onset at s).

We refer to the probabilities above as delay probabilities
at time t , and the entire sequence (πt (s) : s ≤ t), as the
delay distribution at time t .
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The justification for (1), (2) is elementary: to count yt ,
we enumerate all infections that ever occurred in the past:

yt =
t∑

s=1

xs∑
i=1

1{the ith infection at s gets reported at t}.

Taking a conditional expectation on both sides above, and
using linearity, delivers (1), (2).

In the next subsections, we will describe how to esti-
mate the probabilities πt(s) in (2), and how to use this
alongside the observed case reports yt in order to estimate
the latent infections in (1).

3.2 Estimating the Delay Distribution

At the outset, we place the following assumptions on
the delay distribution in order to make its estimation (us-
ing the CDC line list data, to be described shortly) more
tractable.

ASSUMPTION 1. Infections are always reported
within d = 45 days; that is, πt(s) = 0 whenever s < t −d .

ASSUMPTION 2. The probability of zero delay is
zero; that is, πt(t) = 0.

ASSUMPTION 3. The delay distribution is geograph-
ically invariant (it is the same for any location).

Assumption 1 is innocuous. The vast majority of pairs
of recorded infection dates and report dates in the CDC
line list data fall within d = 45 days of one another. As-
sumption 2 is perhaps less innocuous but still fairly mi-
nor, and it is a consequence of the fact that a delay of zero
(infection date equal to report date) has been used incon-
sistently in the CDC line list: this could mean a true delay
of zero, or it could be a code for missingness.

Assumption 3 is the most noteworthy and troublesome.
We do not believe it to be true that different locations ac-
tually have identical patterns of delay between infections
and case reports; conversely, we expect there to be a con-
siderable amount of variability between locations in this
regard. While we do allow the delay distribution to change
over time (see Figure 3 for evidence for the importance of
this), we consider Assumption 3 to be a weakness of our
work. However, the data is simply not there in the CDC
line list to warrant location-specific estimation of the de-
lay distribution (see Figure 2), thus we resort to estimating
a nationwide delay distribution.

FIG. 2. Top: cumulative case count per state on June 1, 2021, as reported by JHU CSSE, compared to the complete case count (where both onset
date and report date are observed) per state up through the same date, in the CDC restricted line list. Most states have less than 50% of the cases
appear in complete form in the line list, and some (e.g., Texas) have almost none at all. Bottom: proportion of complete cases with zero delay per
state in the same line list data. There is very wide variation between these proportions.
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FIG. 3. Top: quantiles of the estimated delay distribution returned by
Algorithm 1 at the levels 50%, 75%, and 95%, as t varies from June 1,
2020 to June 1, 2021. Bottom: estimated delay distributions overlaid
for three nowcast dates within the same time interval.

Meanwhile, it is worth pointing out that better (location-
specific) estimates of the delay distribution could be sim-
ply plugged into our deconvolution methodology (de-
tailed in Section 3.3) to yield better estimates of latent
infections. This would carry over to all of the real-time
methodology for deconvolution and sensor fusion (in Sec-
tion 4) as well. In other words, a strength of our method-
ology is that it can treat the delay distribution as an in-
put, and a user (say, a local health official) can replace
the default nationwide delay distribution with a more-
informed local one in order to get more-informed local
estimates.

In light of Assumptions 1 and 2, we change our notation
henceforth, and rewrite (1), (2) as

(3) E[yt |xs, s ≤ t] =
d∑

k=1

pt(k) xt−k,

where for k = 1, . . . , d ,

(4) pt(k) = P(case report at t |onset at t − k).

CDC line list. The CDC provides de-identified patient-
level surveillance data on COVID-19 in both public and
restricted forms (Centers for Disease Control, 2020a,
Centers for Disease Control, 2020b). The restricted one
is made available under a data use agreement. The public
line list contains the same patient-level records as the re-
stricted one, but it has geographic details withheld. (There
is another publicly available that contains geographic de-
tails, but withholds temporal details). We use the public
data set1 in this paper for estimating the delay distribu-
tion, since missingness compels us to make nationwide
(rather than location-specific) estimates.

It is worth noting that the line list is itself provisional
and subject to revision. Furthermore, the CDC only pub-
lishes updates to the line list monthly. In this paper, for
simplicity, we use a single version of the CDC line list—
released on September 9, 2021—to construct all delay dis-
tributions. Nonetheless, in our real-time nowcasting ex-
periments, we restrict our access to data in this line list
that would have been available at each nowcast date t

(rows whose report date to the CDC is at most t) to con-
struct delay distribution estimates at t . This is highly non-
trivial, due to bias induced by truncation of data after t

(see Section 4.2).
Missing values. The CDC line list (both public and re-

stricted data sets) is subject to a high degree of miss-
ingness. Such missingness manifests itself in a variety of
ways. For the public line list published on September 9,
2021:

• it has 29,851,450 rows, compared to 39,365,080 cumu-
lative cases reported by JHU CSSE on September 9,
2021;

• 8.64% of rows are missing the case report date (the
cdc_report_dt column);

• 53.6% of rows are missing the symptom onset date (the
onset_dt column);

• of all rows in which symptom onset date is present, the
case report date is also present, but when a report date is
missing in practice it sometimes gets filled in with the
onset date, clouding the interpretation of a zero delay.2

1The CDC does not take responsibility for the scientific validity or
accuracy of methodology, results, statistical analyses, or conclusions
presented.

2Confirmed by personal communication with the CDC.
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Due to the last point, we exclude zero in the construction
of all delay distribution estimates, in what follows.

The restricted line list is no better with respect to such
missingness, exhibiting nearly exactly the same patterns
as those described above. It does additionally provide ge-
ographic details, which allows us to examine how miss-
ingness is dispersed across different locations. Figure 2
displays results to this end, using the restricted line list
released on October 12, 2021. The top panel shows that
there is a high degree of missingness in complete case
counts (those with both onset date and report date ob-
served) in most states, often well over 50%, and moreover,
missingness is far from uniform at random: for example,
Texas has barely any of its cases present in the line list.
The latter observation is why we resort to estimating na-
tionwide delay distributions, in what follows.

The bottom panel in the figure shows that there is also
a high degree of heterogeneity in the fraction of complete
cases with zero delay (between onset date and report date)
across states. Some states (e.g., California) have zero de-
lays for nearly all of their complete cases, while others
(e.g., Delaware) have zero delays for none of their com-
plete cases, suggesting that the practice of setting a miss-
ing report date equal to the associated onset date is highly
inconsistent between states. This only further corrobo-
rates the decision to exclude zero delays from the data
set when estimating the delay distribution.

Delay distribution estimation. From the public line list,
we estimate the delay distribution at each time t , namely
the probabilities in (4) for k = 1, . . . , d , using the empiri-
cal distribution of all lags, excluding zero, between com-
plete onset and report dates, for all onset dates falling in
[t −2d +1, t]. Then, we fit a gamma density to the empir-
ical distribution by the method of moments, and discretize
the resulting density over the support {1, . . . , d}. For con-
creteness, this procedure is described in Algorithm 1.

We use only “recent” pairs of onset and report dates at
time t (whose onset date lies in [t − 2d + 1, t]) in order to
adapt to the nonstationarity in reporting delays over time.
The top panel in Figure 3 plots quantiles of the estimated
delay distribution from Algorithm 1, as t ranges from June
1, 2020 to June 1, 2021. We see sharp drops in all quan-
tiles during the first half of this period, and then a more
gradual decline over time. The bottom panel in the fig-
ure gives a qualitative sense of how the delay distribution
estimates change in shape over time.

3.3 Defining Ground Truth

Given the estimated delay distributions over time from
the previous subsection, we now describe how to estimate
latent infections in the model (3). In short, we will solve
one large optimization problem to perform deconvolution.
To define the best possible retrospective estimates of la-
tent infections over the period October 1, 2020 to June

Algorithm 1: Delay distribution estimation, retro-
spective
Input: Time t , support size d , window size w = 2d ,

line list D with onset dates ai and report dates
bi .

Output: Estimated delay probabilities
p̂t (1), . . . , p̂t (d).

1 Find all pairs in D with onset dates within a recent
time window: It = {i : ai ∈ (t − w, t]}.

2 Compute the empirical distribution of lags 1, . . . , d

among these pairs:

p̄t (k) = |{i ∈ It : bi − ai = k}|∑d
�=1 |{i ∈ It : bi − ai = �}| , k = 1, . . . , d.

3 Fit a gamma density to p̄t (1), . . . , p̄t (d) using the
method of moments (matching the mean and
variance).

4 Discretize this gamma density to the support set
{1, . . . , d}, call the result p̂t (1), . . . , p̂t (d), and return
these probabilities.

1, 2021, which we will treat as ground truth in what fol-
lows (in the sense that they will be the point of compar-
ison for all of our real-time estimates), we will perform
deconvolution over a wider time period than the previ-
ously specified one in order to avoid any bias issues at the
boundaries (where there is insufficient data for accurate
deconvolution; more details are provided in the next sec-
tion): our retrospective deconvolution runs from May 1,
2020 to August 28, 2021, a period we denote by T , and
uses case data published on August 30, 2021.

For location �, denote by y�,t and x�,t the number of
new cases reported and number of new infections that on-
set at time t , respectively, per 100,000 people. Note that
y�,t , x�,t obey (3), (4), because we have just rescaled the
underlying counts here by a constant (in order to put them
on the scale of rates), and recall, we assume that all loca-
tions have the same delay distribution (Assumption 3).

Given the delay distribution estimates from Algo-
rithm 1, p̂t = (p̂t (1), . . . , p̂t (d)) for t ∈ T , we estimate
the full vector x� = (x�,t )t∈T of latent infection rates
across time, separately for each location �, by solving the
problem

minimize
x�

∑
t∈T

(
y�,t −

d∑
k=1

p̂t (k) x�,t−k

)2

(5)
+ λ

∥∥D(4)x�

∥∥
1,

where D(4) is a matrix such that D(4)v gives all 4th-order
differences of a vector v, and ‖ · ‖1 is the �1 norm. Prob-
lem (5) could be called a trend-filtering-regularized least
squares deconvolution problem. We solve it (as well as all
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FIG. 4. Illustration of right truncation with a delay distribution of
length 3 (which is taken to be stationary for simplicity). At the nowcast
time t , some “part” of the latent signal xt will appear in yt+1, yt+2;
likewise, some “part” of xt−1 will appear in yt+1.

related optimization problems in this paper) numerically
with an adaption of the ADMM algorithm of Ramdas and
Tibshirani (2016), detailed in Appendix A.

The solution x̂� in problem (5) takes the form of a cu-
bic piecewise polynomial (discrete spline) with adaptively
chosen knots (Tibshirani, 2014, 2020). The tuning param-
eter λ ≥ 0 controls its complexity, and we choose it us-
ing 3-fold cross-validation: we hold out every third value
from training, and impute it by the average of the neigh-
boring trained estimates; to compute the validation error,
we reconvolve the full vector of imputed infections and
measure against observed cases.

4. REAL-TIME DECONVOLUTION

Real-time deconvolution refers to the the task of decon-
volving case reports observed up until time t to estimate
latent infections up until t , repeatedly, as t marches over
the period of interest. We are particularly focused on es-
timating recent latent infections—nowcasting at a k-day
lag, which means estimating at t the latent infection rate
at time t − k.

Compared to retrospective deconvolution, real-time de-
convolution differs in two important ways. The first is that
we are forced to work with provisional case data, subject
to revision at times in the future, as discussed earlier in
Section 2.1. All of our experiments in what follows use
properly-versioned data that would have been available as
of the nowcast date. We use the notation y

(t)
�,s to reflect the

reported case rate in location � at time s as of time t . Re-
ported case data from JHU is available at a 1-day lag and
therefore, as of time t , we only observe y

(t)
�,s up through

s = t − 1 (we use analogous superscript notation for all
auxiliary signals and estimates). This means we can only
produce deconvolution estimates x̂

(t)
�,s up through s = t −2

(recall we exclude zero delays, in Assumption 2).
The second issue of note, in real-time deconvolution, is

right truncation: in nowcasting at lag k, where k is small
(compared to d), we are only able to carry out a “partial”
deconvolution, as much of the needed information would
come from case reports occurring in the future, past the

nowcast date t . Figure 4 gives an illustration. Thus, if we
simply performed real-time deconvolution by solving the
problem analogous to (5), using data that would have been
available at time t ,

minimize
x

(t)
�

∑
s<t

(
y

(t)
�,s −

d∑
k=1

p̂(t)
s (k) x

(t)
�,s−k

)2

(6)
+ λ

∥∥D(4)x
(t)
�

∥∥
1,

then we would find that the solution x̂
(t)
� = (x̂

(t)
�,s : s < t)

has highly volatile components for s close to t .
The problem does not stop there; the truncation of data

after the nowcast time t also affects estimation of the de-
lay distribution itself. Most rows in the line list with an
onset date of s = t − k, for small k, will only have a re-
port date (and thus not appear in the line list) until af-
ter time t . This means that the estimate p̂

(t)
s of ps given

by the empirical distribution of all available line list data,
with report date less than t , will be biased toward smaller
lag values (i.e., it will place too little weight on larger lag
values).

In the next two subsections, we work through each of
these truncation issues in turn, by incorporating extra reg-
ularization around the right boundary into the criterion in
(6), and estimating the delay distribution from truncated
data using a Kaplan-Meier-like approach.

4.1 Incorporating Extra Regularization

We consider two forms of extra regularization to
dampen the variability of trend filtering estimates toward
the right boundary.

Natural trend filtering. A natural cubic spline places
additional regularity on top of the cubic spline, by main-
taining that the function be linear beyond the left and right
boundary points of the underlying domain. Natural trend
filtering proceeds in a similar vein, but operating in the
space of discrete splines; see Tibshirani (2020). Trans-
porting this idea over to our real-time deconvolution prob-
lem (6), and applying it to the right boundary only, gives

minimize
x

(t)
�

∑
s<t

(
y

(t)
�,s −

d∑
k=1

p̂(t)
s (k) x

(t)
�,s−k

)2

+ λ
∥∥D(4)x

(t)
�

∥∥
1(7)

subject to x
(�)
t − 2x

(�)
t−1 + x

(�)
t−2 = 0.

The left and middle panels of Figure 5 demonstrate
the improvement that the additional constraints in (7) can
have on the boundary estimates, particularly during peri-
ods of dynamic change in the underlying case trajectories.

Tapered smoothing. The right truncation phenomenon
is not a binary one and there is increasingly less and less
information available for deconvolution as we move the
time index s up toward the nowcast date t . Therefore, we
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FIG. 5. Comparison of boundary behavior for real-time deconvolution in New York, displayed for a sample of different nowcast dates (where each
colored curve traces out the deconvolution estimates for a different nowcast date). The black dashed line indicates finalized infections, estimated
roughly three months after June 1, 2021.

design a second penalty to add to the criterion in (7) to
gradually increase the amount of regularization accord-
ingly:

minimize
x

(t)
�

∑
s<t

(
y

(t)
�,s −

d∑
k=1

p̂(t)
s (k) x

(t)
�,s−k

)2

+ λ
∥∥D(4)x

(t)
�

∥∥
1 + γ

∥∥W(t)D(1)x
(t)
�

∥∥2
2(8)

subject to x
(�)
t − 2x

(�)
t−1 + x

(�)
t−2 = 0,

where D(1)v gives the first-order differences of a vector v,
and W(t) is a diagonal matrix that is supported on the last
d diagonal entries, these being (in reverse order, starting
with the last entry)

1√
F̂

(t)
t−1(k)

, k = 1, . . . , d,

where F̂
(t)
t−1 is the cumulative distribution function (CDF)

corresponding to the estimated delay distribution p̂
(t)
t−1 at

the most recent time t − 1. The parameter γ ≥ 0 controls
the strength of the additional “tapered” penalty in (8), and
we tune λ, γ with a two-stage cross-validation procedure:

1. fix γ = 0, and tune λ using 3-fold cross-validation, as
before;

2. fix λ at the value in Step 1, and tune γ using 7-fold
forward-validation: for s = t − 2, . . . , t − 8, we solve
the deconvolution problem with a working nowcast
date of s, linearly extrapolate to impute an estimate
at s + 1, and then we reconvolve the solution vec-
tor along with this imputed point and measure error
against observed cases at time s + 1; the validation er-
ror is obtained by averaging these errors over the iter-
ations s = t − 2, . . . , t − 8.

Figure 6 displays the effect of varying γ on the so-
lution in (8), for a particular deconvolution example, to

give a qualitative sense of the role of the tapered penalty.
Furthermore, the right panel in Figure 5 demonstrates the
benefit this penalty can provide in nowcasting.

Lastly, and importantly, Figure 7 quantifies the im-
provement offered by the additional regularization mech-
anisms, in terms of mean absolute error (MAE) measured
against finalized infections in nowcasting at a k-day lag,
for each k = 2, . . . ,10. This is averaged over all locations
and every 10th nowcast date in the evaluation set. We see a
considerable improvement in both the natural trend filter-
ing and tapered smoothing modifications, with the biggest
improvement occurring when the two are combined as in
(8), and hence we stick with this framework in what fol-
lows.

4.2 Adjusting the Delay Distribution for Truncation

Now we propose an iterative adjustment to the empiri-
cal distribution of truncated line list data in order to over-
come the truncation bias. To develop intuition, we first de-
scribe the problem using a simple abstraction, formulate
a general solution, and then we translate this back over to
our particular setting.

KM-adjustment under truncation. Suppose p is a dis-
tribution that is supported on {1, . . . , d}, and we observe
independent random draws that we can partition into two
sets: D1 and D2, where D2 contains draws from p and D1
contains draws from p conditional on the random vari-
able lying in [1, z1], for a fixed z1 ∈ {1, . . . , d}. Denote
by p̂D the empirical distribution based on a data set D.
Clearly p̂D2 is unbiased for p, but p̂D1 is generally biased
(it always places zero mass above z1), and thus the pooled
estimate p̂D1∪D2 would be biased as well.

To build a more informed estimate based on the pooled
sample, the intuition is as follows. First, observe that the
only way we can estimate p(k) for k > z1 is by using D2.
Then, this gives an estimate of S(z1) = ∑

k>z1
p(k), the
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FIG. 6. Effect of the tapered smoothing penalty, as we vary the corresponding tuning parameter γ , for a single real-time deconvolution example
with on nowcast date February 1, 2021. The gray region highlights the components on which the tapered smoothing penalty acts.

survival function of p at z1, and we can estimate p(k) for
k ≤ z1, denoting Z ∼ p, by observing that

p(k) = P(Z = k|Z ≤ z1)
(
1 − S(z1)

)
.

where we estimate P(Z = k|Z ≤ z1) using the empirical
distribution over the set D1 ∪D2 ∩ [1, z1]. In other words,
we construct our distribution estimate p̄ using two steps:

1. define p̄(k) = p̂D2(k) for k > z1, and also S̄(z1) =∑
k>z1

p̄(k);
2. define p̄(k) = p̂D0(k)(1 − S̄(z1)) for k ≤ z1, where

we let D0 =D1 ∪D2 ∩ [1, z1].

FIG. 7. Comparing regularization approaches by MAE for nowcast-
ing (the shaded bands here and henceforth, in all MAE figures, cor-
respond to 95% bootstrap confidence intervals.) Both approaches for
additional regularization give a huge improvement on trend filtering.
The biggest improvement comes from combining the two approaches.

We can readily generalize the above to a setting in
which we observe N data sets, with varying levels of trun-
cation:

(9) Di contains draws Z ∼ p|Z ≤ zi, i = 1, . . . ,N,

where 1 ≤ z1 < · · · < zN = d , and we set z0 = 0 for nota-
tional simplicity. To construct an estimate of p based on
all the samples, we proceed iteratively as before: first we
estimate p(k) for k > zN−1 based on the data in DN , then
we estimate p(k) for k ∈ (zN−2, zN−1] based on data in
DN−1 ∪D2 ∩[1, zN−1], and so on. Algorithm 2 spells out
the procedure in full.

The algorithm just derived may be seen as Kaplan-
Meier-like, in the sense that it is motivated by the decom-
position

p(k) = P(Z = k |Z ≤ zi)
(
1 − S(zi)

)
, k ∈ (zi−1, zi].

We use an unbiased plug-in estimate for each term in the
product above based on the appropriate data. The Kaplan-
Meier estimator has a similar plug-in foundation (Kaplan
and Meier, 1958), so we refer to our approach as the KM-
adjusted estimator of the distribution under truncation.

Application to CDC line list. Porting the last idea over
to the CDC line list, we can use it to estimate the delay
distribution at time s using the line list as of time t . Note
that if s < t −d then we can still use Algorithm 1, as there
is no truncation issue whatsoever. However, if s ≥ t − d ,
then we would need to apply the KM-adjusted estimator,
because we would be using the rows in the line list whose
onset date is at or shortly before s, but are only able to see
those whose report date is at most t − 1 (thus would have
been available at time t). After making this adjustment to
the empirical distribution, we apply gamma smoothing as
before. This is detailed in Algorithm 3.
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Algorithm 2: Distribution estimation under sequential
truncation
Input: Data sets and truncation limits Di and zi , for

1, . . . ,N , as in (9).
Output: Estimated probabilities p̄(1), . . . , p̄(d).

1 Initialize S̄(d) = 0.
2 for i = N, . . . ,1 do
3 Set D0 = ⋃N

j=i Dj ∩ [1, zi].
4 Compute p̄(k), for k ∈ (zi−1, zi] based on the

empirical distribution of data in D0 and an
estimate of the survival function at zi :

p̄(k) = p̂D0(k)
(
1 − S̄(zi)

)
, k ∈ (zi−1, zi].

5 Compute an estimate of the survival function at
zi−1:

S̄(zi−1) = S̄(zi) + ∑
k∈(zi−1,zi ]

p̄(k).

6 end
7 Return p̄(1), . . . , p̄(d).

Figure 8 compares the KM-adjusted and naive esti-
mates of the delay distribution (corresponding to Algo-
rithm 3 versus Algorithm 1) applied directly to D(t), the
line list available at each nowcast date t . In terms of �1
distance, measured to the finalized delay distribution esti-
mate computed retrospectively (based on the full untrun-
cated line list), and averaged over all nowcast dates in the
evaluation period, we see that the KM-adjustment greatly
improves the accuracy at all lags k = 2, . . . ,10 (where
k = t − s, the difference between the nowcast and work-
ing onset dates).

4.3 Shortening the Deconvolution Window

Lastly, we investigate shortening the window used in
the regularized deconvolution problem (8) so that we use
only a window length of w days before t :

minimize
x

(t)
�

∑
s∈[t−w,t)

(
y

(t)
�,s −

d∑
k=1

p̂(t)
s (k) x

(t)
�,s−k

)2

+ λ
∥∥D(4)x

(t)
�

∥∥
1 + γ

∥∥W(t)D(1)x
(t)
�

∥∥2
2(10)

subject to x
(�)
t − 2x

(�)
t−1 + x

(�)
t−2 = 0,

As we are mainly interested in the components of the
solution x̂

(t)
s for s close to t , shortening the training

window is computationally advantageous and should not
change the behavior of the solution very much for s close
to t .

Figure 9 compares (10) with w = 2d , w = 4d , and “all-
past”, which is the original problem (8), in terms of mean
absolute error (MAE) measured against finalized infec-
tions in nowcasting at a k-day lag, for each k = 2, . . . ,10.

Algorithm 3: Delay distribution estimation in real-
time
Input: Nowcast time t , working onset time s, support

size d , window size w = 2d , truncated line list
D(t) with onset dates ai and report dates bi

such that bi < t .
Output: Estimated delay probabilities

p̂
(t)
s (1), . . . , p̂

(t)
s (d).

1 if s < t − d then
2 Return probability estimates from Algorithm 1

(setting t = s and D = D(t) in the notation of that
algorithm).

3 end
4 Set N = d − (t − s) + 2.
5 for i = 1, . . . ,N − 1 do
6 Define

Di = {bi − ai : ai = s − i + 1}
zi = t − s + i − 2.

7 end
8 Define DN = {bi − ai : ai ∈ (s − w, t − d)} and

zN = d .
9 Use Algorithm 2 (applied to Di , zi , i = 1, . . . ,N ) to

compute probability estimates p̄t (1), . . . , p̄t (d).
10 Fit a gamma density to p̄t (1), . . . , p̄t (d) using the

method of moments (matching the mean and
variance).

11 Discretize this gamma density to the support set
{1, . . . , d}, call the result p̂t (1), . . . , p̂t (d), and return
these probabilities.

This is averaged over all locations and every 10th now-
casting date in the evaluation set. The performance is basi-
cally identical for window lengths 2d and 4d , and though
all-past may appear to have the slightest advantage, this
does not warrant the extra computation, hence in what fol-
lows we stick to (10) with a window length w = 2d as our
real-time deconvolution estimator.

5. LEVERAGING AUXILIARY SIGNALS

The indicators enumerated in Section 2 have dis-
played impressive correlations to reported COVID-19
cases (Reinhart et al., 2021), and moreover, demonstrated
an ability to improve the accuracy of case forecasting and
hotspot prediction models (McDonald et al., 2021). In this
section, we describe how to use each indicator to build
a real-time sensor that estimates the latent infection rate,
and how to fuse such estimates together into a single now-
cast.



REAL-TIME ESTIMATION OF COVID-19 INFECTIONS 219

FIG. 8. Top: estimated delay distributions overlaid for all nowcast
dates in the month of November 2020, when s = t − 1 (working onset
date one day before the nowcast date). Bottom: mean �1 distance to
finalized estimate of the delay distribution, as a function of the lag
k = t − s.

5.1 Sensor Models

At each prediction time t , for each location �, and for
each of the five indicators (abbreviated CHNG-COVID,
CHNG-CLI, DV-CLI, CTIS-CLIIC, and Google-AA), we
will train a model to predict in real-time latent infections
from indicator values. Let x̂

(t)
�,s denote the solution at time

s in problem (10), which represents our best estimate of
the latent infection rate at time s as of time t from decon-
volution of case rates alone.

We use z
i,(t)
�,s to denote the value of indicator i at time s

and location �, as of time t . We fit a simple linear model to
predict latent infections from indicator values by solving

(11) minimize
β0,β1

t−k̃i∑
s=t−d

w(t)
s

(
x̂

(t)
�,s − β0 − β1z

i,(t)
�,s

)2
,

FIG. 9. Comparing window lengths used in regularized deconvolu-
tion by MAE for nowcasting. The performance is very similar through-
out.

which is a weighted linear regression over the time period
[t − d, t − k̃i], where k̃i = max{ki,2} and ki denotes the
lag at which indicator i is available. This is:

• ki = 1 for CTIS-CLIIC and Google-AA;3 and
• ki = 4 for the claims-based indicators, due to heavy re-

vision or “backfill” over the first several days in the
underlying claims data after an outpatient visit date
(Reinhart et al., 2021).

Notice that, as defined, k̃i is the lag at which both the de-
convolution estimate of infection rate and auxiliary signal
i are available, which is the data we need to fit the linear
sensor model (response and covariate data, respectively).

The observation weights in (11) are given by

w
(t)
t−k = Ŝ

(t)
t−1(k − 1), k = 1, . . . , d.

Here Ŝ
(t)
t−1 is the survival function of p̂

(t)
t−1, the estimated

delay distribution from the most recent time point t − 1.
We define Ŝ

(t)
t−1(1) = 1, corresponding to the exclusion of

0-day delays. This scheme upweights the more recent es-
timates (responses in the regression) of latent infections as
they contain more timely information for nowcasting (as-
suming that the right-truncation bias has been effectively
mitigated in the deconvolution step).

Given the solution β̂
i,(t)
�,0 , β̂

i,(t)
�,1 in (11), we then define

a sensor—which is just a prediction from the fitted linear

3Our treatment of Google-AA is different from the rest. Google’s
team did not start publishing this signal until September 2020, and the
historical latency of this signal was sporadic, but was often longer than
1 week. However, unlike (say) the claims-based signals, revisions are
never made after initial publication, and the latency of the signal is not
an unavoidable property of the data type, and therefore we use finalized
signal values, with a 1-day lag, in our analysis.
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model—based on indicator i, for time s and location �, as
of time t , as

(12) x̄
i,(t)
�,s = β̂

i,(t)
�,0 + β̂

i,(t)
�,1 z

i,(t)
�,s .

This sensor is available up until s = t − ki . For the CTIS-
CLIIC and Google-AA sensors, the lag is ki = 1, smaller
than the inherent lag of 2 in the deconvolution estimate.

In brief, each sensor model takes a certain indicator and
transforms it—using a location-specific and time-varying
mapping—to the scale of local infection rates. While this
mapping is simple (based on linear regression), it is also
highly nontrivial, as it inherently accounts for geographic
biases and nonstationarity.

Finally, in addition to defining sensors based on (11),
(12) for each of the five auxiliary sensors, we also define
a sixth sensor based on a 3rd order autoregressive model
trained on x̂

(t)
� = (x̂

(t)
�,s : s < t). It is constructed exactly as

in (11), (12) (same weights and same training window).
Henceforth we abbreviate it AR(3).

5.2 Sensor Missingness

To be clear (11), (12) are to be implicitly understood as
performed over observed (nonmissing) indicator values. If
an indicator value is missing at a particular location and
time, then we drop it from the training set in (11), and do
not produce a corresponding sensor value in (12). For a
summary of missingness in the sensors, see Figure 10.

In general, an indicator will be missing when there is in-
sufficient underlying data (from surveys, medical claims,
etc.) to form a reliable signal value at a given loca-
tion and time. However, the situation is different for the
Google-AA indicator: here missingness occurs because
the COVID-19 search trends data set is released after us-
ing a differential privacy layer (Bavadekar et al., 2020),

and a missing value means that the level of noise added for
privacy protection is high compared to the search count.
Therefore we impute missing Google-AA signal values
by zeros in our analysis; we do this unless the Google-
AA signal was missing for a particular location and all
times in the evaluation period, in which case we leave it
as missing for this location entirely.

5.3 Sensor Fusion

Sensor fusion (SF), broadly speaking, refers to the pro-
cess of assimilating data sources, each of which ideally
contains complementary information, in order to produce
more accurate estimates or predictions. SF falls into the
general class of ensemble methods, and the sensors con-
structed in the previous section can be thought of as base
learners, to be subsequently combined.

We consider the following five ensemble methods. In
each case, we describe how to form the estimate at time s

and location � as of time t . Though not explicitly stated,
it is to be implicitly understood that all sensor values are
as of time t as well.

1. Simple average: the average of available sensors at
time s and location �.

2. Simple regression: the prediction from a linear re-
gression model at time s and location �, fit to available
sensors over the training period at location �.

3. Ridge: the prediction from a ridge regression model
at time s and location �, fit to available sensors over the
training period and over locations j such that j , � lie in
the same U.S. state (including the state sensor itself).

4. Lasso: same as in the last item, but using the lasso
instead of ridge regression.

FIG. 10. Proportion of observed (nonmissing) values over the evaluation period from October 1, 2020 to June 1, 2021, and over all locations,
as a function of lag k = 1, . . . ,10. (NTF refers to the real-time deconvolution estimator, and simple average refers to the sensor fusion method
that averages all available sensors.) The bottom two rows reflect the intersection of location-time pairs for which all data—deconvolution estimates
and sensors—are available for that given lag, with and without including the Google-AA sensor, since this sensor has a large amount of individual
missingness. Each intersection at each given lag k is restricted to data whose latency is not greater than k. For example, the bottom leftmost cell
computes the porportions of locations and dates at which AR(3), CTIS-CLIIC, and the simple average are concurrently available.
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5. KF-SF: the Kalman-Filter-inspired method for sen-
sor fusion from Farrow (2016), Jahja et al. (2019), with
covariance shrinkage, and operating on the geographical
hierarchy within each U.S. state.

Methods 2–5 are trained on the most recent 2d time
points, and 3–5 are tuned using 7-fold forward validation,
where we allow them to choose a lag-specific tuning pa-
rameter. Methods 1–2 are “simple” in the sense that for
nowcasting at a location � they use sensors from � only.
Methods 3–5 are more sophisticated in that they pool in-
formation across locations within the same state.

The KF-SF method requires a proper geographical hi-
erarchy and thus we create “rest-of-state” jurisdictions by
aggregating the remaining counties (outside of the top 200
counties nationally) within each state, and to run KF-SF,
we create an AR(3) sensor at these rest-of-state locations
(since one sensor at each location is sufficient). It is worth
noting that, as shown in Jahja et al. (2019), KF-SF bears
a close connection to ridge in Model 4: it is in fact equiv-
alent to a modified ridge optimization problem that im-
poses additional linear constraints.

6. EVALUATION

We now evaluate nowcasting performance over all loca-
tions and all but every 10th nowcasting date in our evalua-
tion period from October 1, 2020 to June 1, 2021. (We do
this because it gives us a “pure” test set, since every 10th
nowcasting date was already used to choose the real-time
deconvolution methodology in Section 4.) As before, we
compare to finalized estimates of infection rates computed
via retrospective deconvolution, as in Section 3.

For the purposes of making fair comparisons, in ev-
ery analysis (figure) that we present, we only aggre-
gate over the intersection of nowcasts dates and locations
at which the particular estimates under consideration—
coming from real-time deconvolution, individual sensor
models, or sensor fusion—are all available. Abiding by
this rule leads us to examine several different ways of
stratifying results, as the full intersection is fairly sparse
(see the second-to-last row in Figure 10). In particular,
we consider the following two dimensions used to define
strata:4

• inclusion of Google-AA or not;
• inclusion of all claims-based sensors (CHNG-CLI,

CHNG-COVID, and DV-CLI) or not.

In what follows, we first examine the performance of indi-
vidual sensor models and a certain sensor fusion method

4To be explicit, when we say we do not “include” certain sensors, it
means both that we ignore results from their individual sensor models
(in computing the common intersection of available nowcast dates and
locations), and also that we exclude them in running the sensor fusion
methods.

(the simple average) compared to real-time deconvolu-
tion, and then examine the relative performance of the
different sensor fusion methods.

6.1 Performance of Sensors and Sensor Fusion

We begin by comparing the MAE of nowcasts from nat-
ural trend filtering (NTF) using tapered smoothing, as in
(10) (the real-time deconvolution estimator chosen based
on the analysis in Section 4) to those from individual sen-
sor models and the simple average sensor fusion method.
Despite its simplicity, the simple average appears to be the
best-performing sensor fusion method overall (details in
the next subsection), and so we stick with it as the de facto
sensor fusion method in this subsection. The results here
do not include Google-AA; results including Google-AA
are shown in Appendix B.

Figure 11 displays the MAE from various methods as
a function of lag k. The top and bottom panels do not
and do include the claims-based sensors, respectively. In
either case, we see that up until lag 6, all sensors outper-
form the real-time deconvolution estimate from NTF. The
simple average of all sensors improves accuracy even fur-
ther, and achieves the best MAE for all lags up through lag
6. We recall that NTF (with tapered smoothing) itself al-
ready provides a huge increase in accuracy over the more
naive method for real-time deconvolution given by apply-
ing trend filtering without extra boundary regularization
(Figure 7). At lag 7, the NTF estimate catches up to about
equal accuracy, and then surpasses sensor fusion and all
sensors in accuracy at lag 8 and onward. An interpretation
for this: right truncation ceases to be a significant problem
past lag 7, and thus we are better off performing deconvo-
lution directly in order to estimate infections more than a
week into the past.

Figure 12 displays the empirical distributions of ranks
of nowcast errors coming from each method, computed
with respect to each other, over common nowcast tasks
(defined by a location-date-lag triplet). For example, in
a particular nowcast task, we assign a rank of 1 to the
method with the smallest absolute error for that nowcast
task. The top panel again excludes claims-based signals,
and the bottom panel includes them. The striking fea-
ture in either panel, particularly the bottom panel, is that
the simple average has a highly distinctive distribution of
ranks—it is rarely the best method, but never the worst.
While this is not particularly surprising (averaging ran-
dom variables tends to be variance-reducing, as long as
the variables are not too correlated), it also points to a key
property of sensor fusion—a certain kind of robustness,
beyond accuracy.

6.2 Relative Performance of Sensor Fusion Methods

We now compare the various sensor fusion methods to
each other. The results here do not include claims-based
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FIG. 11. Comparing NTF to individual sensor models and the simple
average sensor fusion method by MAE for nowcasting. The top panel
excludes the claims-based sensors, whereas the bottom includes them.
For lags smaller than 7, all methods improve upon NTF (with tapered
smoothing), with simple average being the best among them.

signals; results including claims-based signals are shown
in Appendix B. Figure 13 displays the MAE of the various
sensor fusion estimates, but divided up into three panels,
defined by averaging over small, medium, and large states
(the figure caption provides more details). Recall that for
the lasso, ridge, and KF-SF approaches, a model in a par-
ticular county is fit using the sensors from other coun-
ties in the same state. Larger states have more pooling of
information across locations and present a greater poten-
tial for gains in accuracy. We see that the simple average
method is typically the best sensor fusion method at each
lag, but for medium and large states, KF-SF catches up
with it and is just about as accurate.

Figure 14 displays the relative ranking of sensor fusion
methods. The simple average and KF-SF methods appear

FIG. 12. Comparing NTF to individual sensor models and the simple
average sensor fusion method by relative ranks over common nowcast
tasks. The top panel excludes all claims-based sensors and considers
lags 1–5, whereas the bottom panel includes them and considers lags
4–9 (the first 5 lags at which all methods are available, in either case).
The simple average exhibits striking consistency: it is rarely the best,
but also never the worst.

the most favorable (often the best, and less so the worst),
followed by lasso, then ridge, and lastly simple regression
(most often the worst).

7. DISCUSSION

In this work, we proposed, implemented, and evaluated
a framework for real-time estimation of new symptomatic
COVID-19 infections from case reports. At time t , in or-
der to nowcast the infection rate at time t − k (for small
values of k, such as k = 1,2, . . .), the main steps are to:

1. estimate a symptom-onset-to-case-report delay distri-
bution using the most recent data available in a line
list provided by the CDC;

2. perform regularized deconvolution on the most recent
case data available from JHU CSSE;

3. update models to track recent infection rates from var-
ious auxiliary signals (based on COVID-related data



REAL-TIME ESTIMATION OF COVID-19 INFECTIONS 223

FIG. 13. Comparing sensor fusion methods by boxenplots of nowcasting errors (each box conveys the level 25%, 50%, and 75% quantiles of the
absolute error distribution.) The three panels average over small (containing less than 5 locations), medium (between 5 and 14 locations), and large
(more than 15 locations) states. Simple average performs generally the best throughout, but KF-SF catches up for medium and large states.

from medical insurance claims, online surveys, and
Google searches), and fuse together the predictions
from these models in order to stabilize recent estimates
of infection rates.

In each step, we proposed methodological advances that
improved the accuracy of our nowcasts, when measured
against finalized infection rate estimates obtained by ret-
rospective deconvolution (using data that would have only
been available months later). While using auxiliary sig-
nals (step 3) did help in terms of accuracy and robustness,
the additional regularization devices that we incorporated
into real-time deconvolution (step 2) ended up providing
the biggest benefit to accuracy.

To reiterate, we purposely defined our target of esti-
mation to be symptomatic infections that would even-
tually show up in public health reports, allowing us to

FIG. 14. Comparing sensor fusion methods by relative ranks over
common nowcast tasks, and considering only lags 1–5. The simple av-
erage and KF-SF methods consistently perform in the top half, while
simple regression is most often the worst.

focus on developing and testing tools for real-time de-
convolution and sensor fusion, with minimal assumptions
(e.g., without a mechanistic model for disease spread).
Estimating the number of true symptomatic infections
at any point in time—whether or not they will appear
in case reports—is of course a much harder problem.
However, our methodology may be seen as a contri-
bution toward solving this larger problem in real-time;
moreover, some simple post hoc corrections could be ap-
plied to our real-time estimates in order to adjust for con-
founding. For example, if a�,t is the fraction of untested
symptomatic infections in location � at at time t , which
(say) is estimated from external data sources, then we
could just multiply each element p̂

(t)
�,s of the delay dis-

tribution used in (10) by b�,t = 1/(1 − a�,t ) in order
to estimate all symptomatic infections from case re-
ports. Due to the way we have set up the deconvolution
problem (cross-validating over optimal choices of tun-
ing parameters), this would be essentially equivalent to
post-mulitplying the nowcast x̂

(t)
�,s we already produce by

b�,t .
We finish by describing a few directions for future

work.
Post hoc smoothing. As we saw in Section 6, sensor fu-

sion provides a real-time improvement on pure deconvo-
lution up until about a 10-day lag, and past that point, the
deconvolution estimates appear stable enough that sensor
fusion becomes unnecessary. While the quantative ben-
efit of sensor fusion for small lags is clear, sensor fu-
sion is also lacking in the following qualitative aspect:
its estimates do not always appear visually smooth across
time (this is because the sensors themselves need not be
smooth over time, and furthermore, sensor fusion may end
up using a different subset of sensors at each lag, cre-
ating additional jaggedness). Post smoothing techniques
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would be worth investigating here, to aid visual consump-
tion.

Rt estimation. The instantaneous reproductive number
Rt , the average number of secondary infections at time t

generated from a primary infection in the past, is a useful
and interpretable parameter that reflects the dynamics of
epidemic growth in a population. In the SIR model, the
instantaneous reproductive number Rt and growth rate rt
at time t obey the following relationship:

Rt ≈ 1 + rt

γ
,

where γ denotes the recovery rate in the SIR model.
While this is well known in the literature on mathemat-
ical modeling of epidemics (and is exact under local ex-
ponential growth; see, for example, Wallinga and Lipsitch
(2007)), its use in the presence of confounding seems to
be underexplored and potentially undervalued. If It de-
notes the number of new infections at t , then using a sim-
ple discrete difference approximation to rt leads to:

Rt ≈ 1 + 1

γ

(
It+1

It

− 1
)
.

A similar though not identical approximation is given in
Bettencourt and Ribeiro (2008), where It+1/It − 1 is re-
placed by log(It+1/It ). Critically, incident infections only
enter right-hand side above as a ratio of values adjacent in
time, and thus if we are only able to estimate this up to an
unknown multiplicative factor (due to confounding), then
this factor approximately cancels in the ratio as long as it
is slowly varying in time. In slightly more detail (and for
simplicity, considering just a single location), suppose as
before that a fraction at of infections go untested at time
t . Then It = btxt where xt is the number of new infec-
tions at time t that show up in case reports (i.e., the focus
of this paper) and bt = 1/(1 − at ). From the previous dis-
play,

Rt ≈ 1 + 1

γ

(
bt+1xt+1

btxt

− 1
)

≈ 1 + 1

γ

(
xt+1

xt

− 1
)
,

where the last approximation is motivated by an addi-
tional assumption the untested fraction varies slowly over
time (so bt+1/bt ≈ 1). This shows that estimates of xt

can produce approximately unconfounded estimates of
Rt , even though xt is itself confounded due to a lack
of universal testing. This is true both in the retrospec-
tive and real-time sense, and will be the topic of future
study.

Evaluation via reconvolution. An important avenue for
evaluating our methodology (beyond evaluating against
finalized infection rate estimates, as we do in this paper),
would be to reconvolve our real-time nowcasts of infec-
tion rates forward in time in order to predict future case

rates, and evaluate these predictions against finalized case
reporting data. Making and evaluating point predictions
would be relatively straightforward, however, distribu-
tional forecasts are currently the standard in epidemiolog-
ical forecasting (and also in COVID-19 forecasting), and
adding a distributional layer to our nowcasts (and prop-
agating this through the convolution operator) requires
substantial new developments, and we leave it to future
work.

APPENDIX A: ADMM FOR SOLVING
DECONVOLUTION PROBLEMS

Here we give details on the ADMM approach used to
solve the regularized least squares deconvolution prob-
lems in Sections 3 and 4. We first focus on problem (5),
and then we discuss the modifications needed when incor-
porating extra regularization for real-time deconvolution
as in (10). To simplify notation, we will henceforth drop
the subscript dependence of all quantities on the location
�, as well as the superscript dependence on the nowcast
date t for the real-time problems.

We also use P̂ to denote the (Toeplitz) convolution ma-
trix with rows determined by p̂s , s < t , that is, such that
for any vector x (of appropriate dimension)

(P̂ x)s =
d∑

k=1

p̂kxs−k.

(We leave the dimensions of P̂ and x here purposely am-
biguous, which should always be clear from the context
anyway; this allows us to borrow similar notation across
problems with different underlying dimensions.) Thus,
we can rewrite (5) as

minimize
x

‖y − P̂ x‖2
2 + λ‖D(4)x‖1.

To apply ADMM, we must introduce auxiliary variables,
and as in Ramdas and Tibshirani (2016), we use the fol-
lowing “specialized” decomposition (which improves the
convergence speed):

minimize
x

‖y − P̂ x‖2
2 + λ

∥∥D(1)α
∥∥

1

subject to α = D(3)x,

where we used the recursive nature of the difference op-
erators, writing the 4th-order operator as a product of the
1st- and 3rd-order operators: D(4) = D(1)D(3). The above
problem gives rise to the augmented Lagrangian:

L(x,α,u) = ‖y − P̂ x‖2
2 + λ

∥∥D(1)α
∥∥

1

+ ρ
∥∥α − D(3)x + u

∥∥2
2 − ρ‖u‖2

2,

which corresponds to following ADMM updates, writing
D = D(3) for brevity:

x ← (
P̂ T P̂ + ρDT D

)−1(
P̂ T y + ρDT (α + u)

)
,
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α ← argmin
z

‖Dx − u − z‖2
2 + λ

ρ

∥∥D(1)α
∥∥

1,

u ← u + α − Dx.

The α-update here requires solving a 1-dimensional fused
lasso problem, which can be done in linear-time with the
dynamic programming approach of Johnson (2013). The
x-update is more expensive than in pure trend filtering
(with no convolution operator) but owing to the banded-
ness of P̂ (and D, though the bandwidth d of P̂ domi-
nates), it can still be solved in O(nd) operations. Further,
in this and all applications of ADMM, we follow the rec-
ommendation of Ramdas and Tibshirani (2016) and set
the Lagrangian parameter equal to the tuning parameter,
ρ = λ.

As for the two extensions presented in (10), the natural
trend filtering constraints can be be enforced by introduc-
ing a linear interpolant matrix as described in Section 11.2

FIG. 15. As in Figure 11, but including Google-AA.

of Tibshirani (2020). This effectively replaces the convo-
lution matrix P̂ and the 3rd difference operator D, in the
ADMM steps above, by P̃ and D̃, respectively, which are
given by right multiplying P and D by the interpolant
matrix.

Moreover, the additional tapered smoothing term can
be pushed into the augmented Lagrangian, and only alters
the x-update, now becoming

x ← (
P̃ T P̃ + γMT M + ρD̃

)−1

· (
P̃ T y + ρD̃T (α + u)

)
,

where M is the matrix W(t)D(1) in the tapered penalty in
(10) times the linear interpolant matrix.

APPENDIX B: ADDITIONAL EVALUATION RESULTS

Figures 15 and 16 are analogous to Figures 11 and 12,
but with the inclusion of the Google-AA sensor. Similarly,
Figures 17 and 18 are the counterparts to Figures 13 and
14, but with the inclusion of claims-based sensors.

FIG. 16. As in Figure 12, but including Google-AA.
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FIG. 17. As in Figure 13, but including claims-based signals.

FIG. 18. As in Figure 14, but including claims-based signals.
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