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1. Introduction

These notes aim to overview the first results on the large deviations of Schramm-
Loewner evolutions (SLE). SLE is a one-parameter family, indexed by κ ≥
0, of random non-self-crossing and conformally invariant curves in the plane.
They are introduced by Schramm [79] in 1999 by combining stochastic analysis
with Loewner’s century-old theory [56] for the evolution of planar slit domains.
When κ > 0, these curves are fractal, and the parameter κ reflects the curve’s
roughness. SLEs play a central role in 2D random conformal geometry. For
instance, they describe interfaces in conformally invariant systems arising from
scaling limits of discrete statistical physics models, which was also Schramm’s
original motivation, see, e.g., [52, 80, 81, 88]. More recently, SLEs are shown
to be coupled with random surfaces and provide powerful tools in the study of
probabilistic Liouville quantum gravity, see, e.g., [26, 27, 59, 84]. SLEs are also
closely related to conformal field theory whose central charge is a function of κ,
see, e.g., [4, 15, 25, 32, 33, 68].

Large deviation principle describes the probability of rare events of a given
family of probability measures on an exponential scale. The formalization of
the general framework of large deviation was introduced by Varadhan [92] with
many contributions by Donsker and Varadhan around the eighties. Large de-
viations estimates have proved to be the crucial tool required to handle many
questions in statistics, engineering, statistical mechanics, and applied probabil-
ity.

In these notes, we only give a minimalist account of basic definitions and
ideas from both SLE and large deviation theory, only sufficient for considering
the large deviations of SLE. We by no means attempt to give a thorough ref-
erence to the background of these two theories and apologize for the omission.
Our approach focuses on showing how large deviation consideration propels to
the discovery (or rediscovery) of interesting deterministic objects from complex
analysis, including Loewner energy, Loewner-Kufarev energy, Weil-Petersson
quasicircles, real rational functions, foliations, etc., and leads to novel results
on their interrelation. Unlike objects considered in random conformal geometry
that are often of a fractal or discrete nature, these deterministic objects, arising
from the κ → 0+ or ∞ large deviations of SLE (on which the rate function is
finite), live in the continuum and are more regular. Nevertheless, we will see that
the interplay between these deterministic objects are analogous to many cou-
pling results from random conformal geometry whereas proofs are rather simple
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and based in analysis. Impatient readers may skip to the last section where we
summarize and compare the quantities and theorems from both random con-
formal geometry and the large deviation world to appreciate the similarity. The
main theorems presented here are collected from [3, 69, 76, 93–96]. Compared
to the original papers, in most of the time we choose to outline the intuition
and omit proofs or only present the proof in a simple case to illustrate the idea.
But we also take the opportunity to clarify some subtle points in the original
papers.

Acknowledgments
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comments on the manuscript. These notes are written based on the lecture series
that I gave at the joint webinar of Tsinghua-Peking-Beijing Normal Universities
and at Random Geometry and Statistical Physics online seminars in 2020 during
the Covid-19 pandemic. I thank the organizers for the invitation and the online
lecturing experience under pandemic’s unusual situation.

1.1. Large deviation principle

We first consider a simple example to illustrate the concept of large deviations.
Let X ∼ N (0, σ2) be a real, centered Gaussian random variable of variance σ2.
The density function of X is given by

pX(x) =
1√
2πσ2

exp
(
− x2

2σ2

)
.

Let ε > 0,
√
εX ∼ N (0, σ2ε). As ε → 0+,

√
εX converges almost surely to 0,

so the probability measure p√εX on R converges to the Dirac measure δ0. Let
M > 0, the rare event {√εX ≥ M} has probability

P(
√
εX ≥ M) =

1√
2πσ2ε

∫ ∞

M

exp
(
− x2

2σ2ε

)
dx.

To quantify how rare this event happens when ε → 0+, we have

ε logP(
√
εX ≥ M) = ε log

(
1√

2πσ2ε

∫ ∞

M

exp
(
− x2

2σ2ε

)
dx

)
=− 1

2
ε log(2πσ2ε) + ε log

∫ ∞

M

exp
(
− x2

2σ2ε

)
dx

ε→0+−−−−→− M2

2σ2
=: −IX(M) = − inf

x∈[M,∞)
IX(x)

(1.1)

where IX(x) = x2/2σ2 is called the large deviation rate function of the family
{√εX}ε>0.

Now let us state the large deviation principle more precisely. Let X be a
Polish space, B its completed Borel σ-algebra, {με}ε>0 a family of probability
measures on (X ,B).
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Definition 1.1. A rate function is a lower semicontinuous mapping I : X →
[0,∞], namely, for all α ≥ 0, the sub-level set {x : I(x) ≤ α} is a closed subset
of X . A good rate function is a rate function for which all the sub-level sets are
compact subsets of X .

Definition 1.2. We say that a family of probability measures {με}ε>0 on (X ,B)
satisfies the large deviation principle of rate function I if for all open set O ∈ B
and closed set F ∈ B,

lim inf
ε→0+

ε log με(O) ≥ − inf
x∈O

I(x); lim sup
ε→0+

ε log με(F ) ≤ − inf
x∈F

I(x).

It is elementary to show that if a large deviation rate function exists then it is
unique, see, e.g., [20, Lem. 1.1].

Remark 1.3. If A ∈ B satisfies infx∈Ao I(x) = infx∈A I(x) (we call such Borel
set A a continuity set of I), then the large deviation principle gives

lim
ε→0+

ε log με(A) = − inf
x∈A

I(x).

Remark 1.4. Using (1.1), it is easy to show that the distribution of {√εX}ε>0

from the example above satisfies the large deviation principle with good rate
function IX .

The reader should mind carefully that large deviation results depend on the
topology involved which can be a subtle point. On the other hand, it follows
from the definition that the large deviation principle transfers nicely through
continuous functions:

Theorem 1.5 (Contraction principle [18, Thm. 4.2.1]). If X ,Y are two Polish
spaces, f : X → Y a continuous function, and a family of probability measures
{με}ε>0 on X satisfying the large deviation principle with good rate function
I : X → [0,∞]. Let I ′ : Y → [0,∞] be defined as

I ′(y) := inf
x∈f−1{y}

I(x).

Then the family of pushforward probability measures {f∗με}ε>0 on Y satisfies
the large deviation principle with good rate function I ′.

One classical result, of critical importance to our discussion, is the large
deviation principle of the scaled Brownian path. Let T ∈ (0,∞), we write

C0[0, T ] := {W : [0, T ] → R | t 
→ Wt is continuous and W0 = 0}

and define similarly C0[0,∞). The Dirichlet energy of W ∈ C0[0, T ] (resp.
W ∈ C0[0,∞)) is given by

IT (W ) :=
1

2

∫ T

0

∣∣∣∣dWt

dt

∣∣∣∣2 dt

(
resp. I∞(W ) :=

1

2

∫ ∞

0

∣∣∣∣dWt

dt

∣∣∣∣2 dt
)

(1.2)
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if W is absolutely continuous, and set to equal ∞ otherwise. Equivalently, we
can write

IT (W ) = sup

k−1∑
i=0

(Wti+1 −Wti)
2

2(ti+1 − ti)
, T ∈ (0,∞], (1.3)

where the supremum is taken over all k ∈ N and all partitions {0 = t0 < t1 <
· · · < tk ≤ T}. In fact, note that the sum on the right-hand side of (1.3) is the
Dirichlet energy of the linear interpolation of W from its values at (t0, · · · , tk)
which is set to be constant on [tk, T ]. The identity (1.3) then follows from the
density of piecewise constant functions in L2(R+) applied to the approximation
of the function f(t) := dWt/dt. Notice that on any interval [s, r], the constant
a minimizing

∫ r

s
|f(t) − a|2 dt is the average of f on [s, r]. Therefore, the best

approximating piecewise linear functions of W with respect to the partition
{0 = t0 < t1 < · · · < tk ≤ T} for the Dirichlet inner product is the linear
interpolation of W .

Theorem 1.6. (Schilder; see, e.g., [18, Ch. 5.2]) Fix T ∈ (0,∞). The family
{(√εBt)t∈[0,T ]}ε>0, viewed as a family of random functions in (C0[0, T ], ‖·‖∞),
satisfies the large deviation principle with good rate function IT .

Remark 1.7. We note that Brownian path has almost surely infinite Dirichlet
energy, i.e., IT (B) = ∞. In fact, W has finite Dirichlet energy implies that
W is 1/2-Hölder, whereas Brownian motion is only a.s. (1/2 − δ)-Hölder for
δ > 0. However, Schilder’s theorem shows that Brownian motion singles out
the Dirichlet energy which quantifies, as ε → 0+, the density of Brownian
path around a deterministic function W . In fact, let Oδ(W ) denote the open
ball of radius δ centered at W in C0[0, T ]. We have for δ′ > δ, Oδ(W ) ⊂
Oδ(W ) ⊂ Oδ′(W ). From the monotonicity of δ 
→ infW̃∈Oδ(W ) IT (W̃ ), Oδ(W )

is a continuity set for IT with exceptions for at most countably many δ (which
induce a discontinuity of infW̃∈Oδ(W ) IT (W̃ ) in δ). Hence, by possibly avoiding
the exceptional values of δ, we have

− ε logP(
√
εB ∈ Oδ(W ))

ε→0+−−−−→ inf
W̃∈Oδ(W )

IT (W̃ )
δ→0+−−−−→ IT (W ). (1.4)

The second limit follows from the lower semicontinuity of IT . More intuitively,
we write with some abuse

“P(
√
εB stays close to W ) ∼ε→0+ exp(−IT (W )/ε)”. (1.5)

We now give some heuristics to show that the Dirichlet energy appears nat-
urally as the large deviation rate function of the scaled Brownian motion. Fix
0 = t0 < t1 < . . . < tk ≤ T . The finite dimensional marginals of Brown-
ian motion (Bt0 , . . . , Btk) gives a family of independent Gaussian random vari-
ables (Bti+1 − Bti)0≤i≤k−1 with variances (ti+1 − ti) respectively. Multiplying
the Gaussian vector by

√
ε, we obtain the large deviation principle of the fi-

nite dimensional marginal with rate function W 
→
∑k−1

i=0

(Wti+1
−Wti

)2

2(ti+1−ti)
from

Remark 1.4, Theorem 1.5, and the independence of the family of increments.
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Approximating Brownian motion on the finite interval [0, T ] by its linear inter-
polations, it suggests that the scaled Brownian paths satisfy the large deviation
principle of rate function the supremum of the rate function of all of its finite
dimensional marginals which then turns out to be the Dirichlet energy by (1.3).

A rigorous proof of Schilder’s theorem uses the Cameron-Martin theorem
which allows generalization to any abstract Wiener space. Namely, the asso-
ciated family of Gaussian measures scaled by

√
ε satisfies the large deviation

principle with the rate function being 1/2 times its Cameron-Martin norm. See,
e.g., [19, Thm. 3.4.12]. This result applies to the Gaussian free field (GFF),
which is the generalization of Brownian motion where the time parameter be-
longs to a higher dimension space, and the rate function is again the Dirichlet
energy (on the higher dimension space).

Schilder’s theorem also holds when T = ∞ using the following projective
limit argument.

Definition 1.8. A projective system (Yj , πij) consists of Polish spaces1 {Yj}j∈N

and continuous maps πij : Yj → Yi such that πjj is the identity map on Yj and
πik = πij ◦ πjk whenever i ≤ j ≤ k. The projective limit of this system is the
subset

X := lim←−Yj := {(yj)j∈N | yi = πij(yj), ∀i ≤ j} ⊂
∏
j∈N

Yj ,

endowed with the induced topology by the infinite product space
∏

j∈N
Yj . In

particular, the canonical projection πj : X → Yj defined as the j-th coordinate
map is continuous.

Example 1.9. The projective limit of (C0[0, j], πij), where πij is the restriction
map from C0[0, j] → C0[0, i] for i ≤ j, is homeomorphic to C0[0,∞) endowed
with the topology of uniform convergence on compact sets.

Theorem 1.10 (Dawson-Gärtner [18, Thm. 4.6.1]). Assume that X is the pro-
jective limit of (Yj , πij). Let {με}ε>0 be a family of probability measures on X ,
such that for any j ∈ N, the probability measures {με ◦ π−1

j }ε>0 on Yj satis-
fies the large deviation principle with the good rate function Ij. Then {με}ε>0

satisfies the large deviation principle with the good rate function

I((yj)j∈N) = sup
j∈N

Ij(yj), (yj)j∈N ∈ X .

Example 1.9, Theorems 1.5 and 1.10 imply the following Schilder’s theorem
on the infinite time interval.

Corollary 1.11. The family of processes {(√εBt)t≥0}ε>0 satisfies the large de-
viation principle in C0[0,∞) endowed with the topology of uniform convergence
on compact sets with good rate function I∞.

1In fact, one may require Yj to be just Hausdorff topological spaces and j ∈ J belong to
a partially ordered, right-filtering set (J,≤) which may be uncountable, see [18, Sec. 4.6].
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1.2. Chordal Loewner chain

The description of SLE is based on the Loewner transform, a deterministic
procedure that encodes a non-self-crossing curve on a 2-D domain into a driv-
ing function. In this survey, we use two types of Loewner chain: the chordal
Loewner chain in (D; a, b), where D is a simply connected domain with two
distinct boundary points a (starting point) and b (target point); and later in
Section 5, the radial Loewner chain in D targeting at an interior point. The def-
inition is invariant under conformal maps (namely, biholomorphic functions).
Hence, by Riemann mapping theorem, it suffices to describe in the chordal case
when (D; a, b) = (H; 0,∞), and in the radial case when D = D, targeting at
0. Throughout the article, H = {z ∈ C : Im(z) > 0} is the upper halfplane,
H∗ = {z ∈ C : Im(z) < 0} is the lower halfplane, D = {z ∈ C : |z| < 1} is the
unit disk, and D

∗ = {z ∈ C : |z| > 1} ∪ {∞}.
We say that γ is a simple curve in (D; a, b), ifD is a simply connected domain,

a, b are two distinct prime ends of D, and γ has a continuous and injective
parametrization (0, T ) → D such that γ(t) → a as t → 0 and γ(t) → c ∈ D∪{b}
as t → T . If c = b then we say γ is a chord in (D; a, b).

Let us start with this chordal Loewner description of a simple curve γ in
(H; 0,∞). We parameterize the curve by the halfplane capacity. More precisely,
γ is continuously parametrized by [0, T ), where T ∈ (0,∞] with γ0 = 0, γt →
H∪ {∞} as t → T , in the way such that for all t ∈ [0, T ), the unique conformal
map gt from H � γ[0,t] onto H with the expansion at infinity gt(z) = z + o(1)
satisfies

gt(z) = z +
2t

z
+ o

(
1

z

)
. (1.6)

The coefficient 2t is the halfplane capacity of γ[0,t]. It is easy to show that gt can
be extended by continuity to the boundary point γt and that the real-valued
function Wt := gt(γt) is continuous with W0 = 0 (i.e., W ∈ C0[0, T )). This
function W is called the driving function of γ and 2T the total capacity of γ.

Remark 1.12. There are chords with finite total capacity. Namely, T < ∞ and
γt → ∞ as t → T . It happens only when γ goes to infinity while staying close
to the real line [48, Thm. 1].

Conversely, the chordal Loewner chain in (H; 0,∞) driven by a continuous
real-valued function W ∈ C0[0, T ) is the family of conformal maps (gt)t∈[0,T ),

obtained by solving the Loewner equation for each z ∈ H,

∂tgt(z) =
2

gt(z)−Wt
with initial condition g0(z) = z. (1.7)

In fact, the solution t 
→ gt(z) to (1.7) is defined up to the swallowing time of z

τ(z) := sup{t ≥ 0 | inf
s∈[0,t]

|gs(z)−Ws| > 0},

which is set to 0 when z = 0. We obtain an increasing family of H-hulls (Kt :=
{z ∈ H | τ(z) ≤ t})t∈[0,T ) (a compact subset K ⊂ H is called a H-hull if K ∩H =
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K and H�K is simply connected). Moreover, the solution gt of (1.7) restricted
to H �Kt is the unique conformal map from H �Kt onto H that satisfies the
expansion (1.6). See, e.g., [50, Sec. 4] or [97, Sec. 2.2]. Clearly Kt and gt uniquely
determine each other. We list a few properties of the Loewner chain.

• If W is the driving function of a simple chord γ in (H; 0,∞), we have
Kt = γ[0,t], and the solution gt of (1.7) is exactly the conformal map
constructed from γ as in (1.6).

• The imaginary axis iR+ is driven by W ≡ 0 defined on R+.

• (Additivity) Let (Kt)t∈[0,T ) be the family of hulls generated by the driving

function W . Fix s > 0, the driving function generating (gs(Kt+s �Ks)−
Ws)t∈[0,T−s) is t 
→ Ws+t −Ws.

• (Scaling) Fix λ > 0, the driving function generating the scaled and
capacity-reparameterized family of hulls (λKλ−2t)t∈[0,λ2T ) is t 
→ λWλ−2t.
This property implies that the driving function of the ray {z ∈ H | arg z =
α} is Wt = C

√
t, where C only depends on α ∈ (0, π).

• Not every continuous driving function arises from a simple chord. It is
unknown how to characterize analytically the class of functions which
generate simple curves. Sufficient conditions exist, such as when W is 1/2-
Hölder with Hölder norm strictly less than 4 [55, 57].

1.3. Chordal SLE

We now very briefly review the definition and relevant properties of chordal
SLE. For further SLE background, we refer the readers to, e.g., [50, 97]. The
chordal Schramm-Loewner evolution of parameter κ in (H; 0,∞), denoted by
SLEκ, is the process of hulls (Kt)t≥0 generated by

√
κB via the Loewner trans-

form, where B is the standard Brownian motion and κ ≥ 0. Rohde and Schramm
showed that SLEκ is almost surely traced out by a continuous non-self-crossing
curve γκ, called the trace of SLEκ, such that H � Kt is the unbounded con-
nected component of H�γκ

[0,t] for all t ≥ 0. Moreover, SLE traces exhibit phase
transitions depending on the value of κ:

Theorem 1.13 ([52, 75]). The following statements hold almost surely: For κ ∈
[0, 4], γκ is a chord. For κ ∈ (4, 8), γκ is a self-touching curve. For κ ∈ [8,∞),
γκ is a space-filling curve. Moreover, for all κ ≥ 0, γκ goes to ∞ as t → ∞.

The SLEs have attracted a great deal of attention during the last 20 years,
as they are the first construction of random self-avoiding paths and describe the
interfaces in the scaling limit of various statistical mechanics models, e.g.,

• SLE2 ↔ Loop-erased random walk [52];
• SLE8/3 ↔ Self-avoiding walk (conjecture);
• SLE3 ↔ Critical Ising model interface [89];
• SLE4 ↔ Level line of the Gaussian free field [81];
• SLE6 ↔ Critical independent percolation interface [88];
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• SLE8 ↔ Contour line of uniform spanning tree [52].

The reason that SLE curves describe those interfaces arising from conformally
invariant systems is that they are the unique random Loewner chain that are
scaling-invariant and satisfy the domain Markov property. More precisely, for
λ > 0, the law of SLE is invariant under the scaling transformation

(Kt)t≥0 
→ (Kλ
t := λKλ−2t)t≥0

and for all s ∈ [0,∞), if one defines K
(s)
t = gs(Ks+t �Ks)−Ws, where W drives

(Kt), then (K
(s)
t )t≥0 has the same distribution as (Kt)t≥0 and is independent of

σ(Wr : r ≤ s). In fact, these two properties on (Kt) translate into the properties
of the driving function W : having independent stationary increments (i.e., being
a Lévy process) and being invariant under the transformation Wt � λWλ−2t.
Multiples of Brownian motions are the only continuous processes satisfying these
two properties.

The scaling-invariance of SLE in (H; 0,∞) makes it possible to define SLE in
other simply connected domains (D; a, b) as the preimage of SLE in (H; 0,∞)
by a conformal map ϕ : D → H sending respectively the prime ends a, b to
0,∞, since another choice of ϕ̃ equals λϕ for some λ > 0. The chordal SLE is
therefore conformally invariant from the definition.

Remark 1.14. The SLE0 in (H; 0,∞) is simply the Loewner chain driven by
W ≡ 0, namely the imaginary axis iR+. It implies that the SLE0 in (D; a, b)
equals ϕ−1(iR+) (i.e., the hyperbolic geodesic in D connecting a and b).

2. Large deviations of chordal SLE0+

2.1. Chordal Loewner energy and large deviations

To describe the large deviations of chordal SLE0+ (see Theorem 2.5), let us first
specify the topology on the space of simple chords that we consider.

Definition 2.1. The Hausdorff distance dh of two compact subsets F1, F2 ⊂ D

is defined as

dh(F1, F2) := inf
{
ε ≥ 0

∣∣∣ F1 ⊂
⋃

x∈F2

Bε(x) and F2 ⊂
⋃

x∈F1

Bε(x)
}
,

where Bε(x) denotes the Euclidean ball of radius ε centered at x ∈ D. We then
define the Hausdorff metric on the set of closed subsets of a Jordan domain2

D via the pullback by a uniformizing conformal map D → D. Although the
metric depends on the choice of the conformal map, the topology induced by
dh is canonical, as conformal automorphisms of D are fractional linear functions
(i.e., Möbius transformations) which are uniformly continuous on D.

2When D is bounded by a Jordan curve, Carathéodory theorem implies that a uniformizing
conformal map D → D extends to a homeomorphism between the closures D → D.
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Definition 2.2. The Loewner energy of a simple curve γ is defined as the
Dirichlet energy (1.2) of its driving function,

ID;a,b(γ) := IH;0,∞(ϕ(γ)) := IT (W ), (2.1)

where ϕ is any conformal map from D to H such that ϕ(a) = 0 and ϕ(b) = ∞,
W is the driving function of ϕ(γ), 2T is the total capacity of ϕ(γ), and IT (W )
is the Dirichlet energy as defined in (1.2) and (1.3).

Note that the definition of ID;a,b(γ) does not depend on the choice of ϕ either.
In fact, two choices differ only by post-composing by a scaling factor. From the
scaling property of the Loewner driving function, W changes to t 
→ λWλ−2t for
some λ > 0, which has the same Dirichlet energy as W .

Remark 2.3. The Loewner energy ID;a,b(γ) is non-negative and minimized
by the hyperbolic geodesic η since the driving function of ϕ(η) is the constant
function W ≡ 0 and ID;a,b(η) = 0.

Theorem 2.4. If γ is a chord and ID;a,b(γ) < ∞, then T = ∞ (namely, γ has
infinite total capacity). If a driving function W defined on R+ satisfies I∞(W ) <
∞, then W generates a chord γ in (H; 0,∞). Moreover, γ is a quasichord, i.e.,
the image of iR+ by a quasiconformal homeomorphism H → H fixing 0 and ∞.

A quasiconformal map is a weakly differentiable homeomorphism that maps
infinitesimal circles to infinitesimal ellipses with uniformly bounded eccentricity.
For a brief introduction to the theory of quasiconformal maps, readers might
refer to [54, Ch. 1].

Proof. From [95, Prop. 3.1], if a chord in (H; 0,∞) has finite energy, then there is
θ ∈ (0, π/2), such that γ is contained in the cone {z ∈ H | θ ≤ arg z ≤ π−θ}. This
implies that the total capacity of γ is infinite by Remark 1.12. The second claim
is proved in [95, Prop. 2.1], which is essentially a consequence of the fact that
1/2-Hölder driving function with small Hölder norm generates quasichords.

Theorem 2.4 motivates us to consider the space X (D; a; b) of unparametrized
simple chords with infinite total capacity in (D; a; b). We endow this space with
the relative topology induced by the Hausdorff metric. Theorem 1.6 suggests
that the Loewner energy is the large deviation rate function of {SLEκ}κ>0,
with ε = κ. Indeed, the following result is proved in [69] which strengthens a
similar result in [95]. As we are interested in the 0+ limit, we only consider
κ ≤ 4 where the trace γκ of SLEκ is almost surely in X (D; a, b).

Theorem 2.5 ([69, Thm. 1.5]). The family of distributions {Pκ}κ>0 on X (D; a,
b) of the chordal SLEκ curves satisfies the large deviation principle with good
rate function ID;a,b. That is, for any open set O and closed set F of X (D; a, b),
we have

lim inf
κ→0+

κ logPκ[γκ ∈ O] ≥ − inf
γ∈O

ID;a,b(γ),

lim sup
κ→0+

κ logPκ[γκ ∈ F ] ≤ − inf
γ∈F

ID;a,b(γ),
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and the sub-level set {γ ∈ X (D; a, b) | ID;a,b(γ) ≤ c} is compact for any c ≥ 0.

We note that the Loewner transform which maps a continuous driving func-
tion to the union of the hulls it generates is not continuous with respect to
the Hausdorff metric. Therefore, we cannot deduce trivially the result using
Schilder’s theorem and the contraction principle (Theorem 1.5). This result
thus requires some work and is rather technical, see [69, Sec. 5] for details.

Remark 2.6. As Remark 1.7, we emphasize that finite energy chords are more
regular than SLEκ curves for any κ > 0. In fact, we will see in Theorem 2.15 that
finite energy chord is part of a Weil-Petersson quasicircle which is rectifiable, see
Theorem 2.18. Moreover, finite energy curves do not have corners. If the curve
as an angle at time t, then the driving function after time t is approximated by
Wt+s ≈ C

√
s+Wt by additivity and scaling property, see Section 1.2, which has

infinite Dirichlet energy. On the other hand, Beffara [7] shows that for 0 < κ ≤ 8,
SLEκ has Hausdorff dimension 1+κ/8 > 1 and thus is not rectifiable when κ > 0.

2.2. Reversibility of Loewner energy

Given that for specific values of κ, SLEκ curves are the scaling limits of inter-
faces in statistical mechanics lattice models, it was natural to conjecture that
they are reversible since interfaces are a priori unoriented. This conjecture was
first proved by Zhan [101] for all κ ∈ [0, 4], i.e., in the case of simple curves,
via couplings of both ends of the SLE path. See also Dubédat’s commutation
relations [22], and Miller and Sheffield’s approach based on the Gaussian Free
Field [59–61] which also provides a proof in the non-simple curve case when
κ ∈ (4, 8].

Theorem 2.7 (SLE reversibility [101]). For κ ∈ [0, 4], the distribution of the
trace γκ of SLEκ in (H; 0,∞) coincides with that of its image under ι : z → −1/z
upon forgetting the time parametrization.

We deduce from Theorem 2.5 and Theorem 2.7 the following result.

Theorem 2.8 (Energy reversibility [95]). We have ID;a,b(γ) = ID;b,a(γ) for
any chord γ ∈ X (D; a, b).

Proof. Without loss of generality, we assume that (D; a, b) = (H; 0,∞) and show
that IH;0,∞(γ) = IH;0,∞(ι(γ)).

We use a conformal map ϑ : H → D that maps i to 0 to define the pullback
Hausdorff metric ϑ∗dh on the set of closed subsets of H as in Definition 2.1. Our
choice of ϑ satisfies ϑ ◦ ι ◦ ϑ−1 = − IdD. In particular, ι induces an isometry
on closed subsets of H. Let δn be a sequence of numbers converging to 0 from
above, such that

Oδn(γ) := {γ̃ ∈ X (H; 0,∞) : ϑ∗dh(γ, γ̃) < δn}

is a continuity set for IH;0,∞. The sequence exists since there are at most a
countable number of δ such that Oδ(γ) is not a continuity set as we argued in
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Remark 1.7. From Remark 1.3,

lim
κ→0+

κ logPκ(γκ ∈ Oδn(γ)) = − inf
γ̃∈Oδn (γ)

IH;0,∞(γ̃), (2.2)

which tends to −IH;0,∞(γ) as n → ∞ from the lower-semicontinuity of IH;0,∞.
Theorem 2.7 then shows that

P
κ(γκ ∈ Oδn(γ)) = P

κ(ι(γκ) ∈ ι(Oδn(γ))) = P
κ(γκ ∈ Oδn(ι(γ))).

The last equality used the fact that ι induces an isometry. We obtain the claimed
energy reversibility by applying (2.2) to ι(γ).

Remark 2.9. This proof is different from [95] but the idea is very close. We
use here Theorem 2.5 from the recent work [69], whereas the original proof in
[95] uses the more complicated left-right passing events without the strong large
deviation result at hand.

Remark 2.10. The energy reversibility is a result about deterministic chords
although the proof presented above relies on the probabilistic theory of SLE.

We note that from the definition alone, the reversibility is not obvious as the
setup of Loewner evolution is directional. To illustrate this, consider a driving
function W with finite Dirichlet energy that is constant (and contributes 0
Dirichlet energy) after time 1. From the additivity property of driving function,
γ[1,∞) is the hyperbolic geodesic in H � γ[0,1] with end points γ1 and ∞. The
reversed curve ι(γ) is a chord starting with an analytic curve which is different
from the imaginary axis. Therefore unlike γ, the energy of ι(γ) typically spreads
over the whole time interval R+.

2.3. Loop energy and Weil-Petersson quasicircles

We now generalize the Loewner energy to Jordan curves (simple loops) on the

Riemann sphere Ĉ = C ∪ {∞}. This generalization reveals more symmetries
of the Loewner energy (Theorem 2.11). Moreover, an equivalent description
(Theorem 2.15) of the loop energy will provide an analytic proof of those sym-
metries including the reversibility and a rather surprising link to the class of
Weil-Petersson quasicircles.

Let γ : [0, 1] → Ĉ be a continuously parametrized Jordan curve with the
marked point γ(0) = γ(1). For every ε > 0, γ[ε, 1] is a chord connecting γ(ε)

to γ(1) in the simply connected domain Ĉ � γ[0, ε]. The rooted loop Loewner
energy of γ rooted at γ(0) is defined as

IL(γ, γ(0)) := lim
ε→0

I
Ĉ�γ[0,ε];γ(ε),γ(0)(γ[ε, 1]).

The loop energy generalizes the chordal energy. In fact, let η be a simple
chord in (C � R+; 0,∞) and we parametrize γ = η ∪ R+ in a way such that
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Fig 1. From chord in (H; 0,∞) to a Jordan curve.

γ[0, 1/2] = R+ ∪ {∞} and γ[1/2, 1] = η. Then from the additivity of chordal
energy (which follows from the additivity of the Loewner driving function),

IL(γ,∞) =IC�R+;0,∞(η) + lim
ε→0

I
Ĉ�γ[0,ε];γ(ε),γ(1)(γ[ε, 1/2]) = IC�R+;0,∞(η),

since γ[ε, 1/2] is contained in the hyperbolic geodesic3 between γ(ε) and γ(0) in

Ĉ � γ[0, ε] for all 0 < ε < 1/2, see Figure 1. Rohde and the author proved the
following result.

Theorem 2.11 ([76]). The loop energy does not depend on the root chosen.

We do not present the original proof of this theorem since it will follow
immediately from Theorem 2.15, see Remark 2.17.

Remark 2.12. From the definition, the loop energy IL is invariant under
Möbius transformations of Ĉ, and IL(γ) = 0 if and only if γ is a circle (or
a line).

Remark 2.13. The loop energy is presumably the large deviation rate function
of SLE0+ loop measure on Ĉ constructed in [104] (see also [9, 99] for the earlier
construction of SLE loop measure when κ = 8/3 and 2). However, the conformal
invariance of the SLE loop measures implies that they have infinite total mass
and has to be renormalized properly for considering large deviations. We do
not claim it here and think it is an interesting question. However, these ideas
will serve as heuristics to speculate results for finite energy Jordan curves in
Section 3.

In [76] we also showed that if a Jordan curve has finite energy, then it is a
quasicircle, namely the image of a circle or a line under a quasiconformal map of
C. However, not all quasicircles have finite energy since they may have Hausdorff
dimension larger than 1. The natural question is then to identify the family of
finite energy quasicircles. The answer is surprisingly a family of so-called Weil-
Petersson quasicircles, which has been studied extensively by both physicists
and mathematicians since the eighties, see, e.g., [12, 14, 16, 31, 34, 41, 65, 67, 78,
83, 85, 91, 100], and is a very active research area. See the introduction of [12]

3Here, γ[ε, 1/2] is part of a chord but does not make all the way to the target point γ(1),
its energy is defined as IT (W ) where W is the driving function of γ[ε, 1/2] which is defined
on an interval [0, T ].
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for a summary and a list of currently more than twenty equivalent definitions
of very different nature.

The class of Weil-Petersson quasicircles is preserved under Möbius transfor-
mation, so without loss of generality, we will use the following definition of a
bounded Weil-Petersson quasicircle which is the simplest to state. Let γ be a
bounded Jordan curve. We write Ω for the bounded connected component of
Ĉ� γ and Ω∗ for the connected component containing ∞. Let f be a conformal
map D → Ω and h : D∗ → Ω∗ fixing ∞.

Definition 2.14. The bounded Jordan curve γ is a Weil-Petersson quasicircle
if and only if the following equivalent conditions hold:

1. DD(log |f ′|) = 1
π

∫
D
|∇ log |f ′||2 dA = 1

π

∫
D
|f ′′/f ′|2 dA < ∞;

2. DD∗(log |h′|) < ∞,

where dA denotes the Euclidean area measure and DΩ(ϕ) := 1
π

∫
Ω
|∇ϕ|2dA

denotes the Dirichlet energy of ϕ in Ω.

Theorem 2.15 ([96, Thm. 1.4]). A bounded Jordan curve γ has finite Loewner
energy if and only if γ is a Weil-Petersson quasicircle. Moreover, we have the
identity

IL(γ) = DD(log |f ′|) +DD∗(log |h′|) + 4 log |f ′(0)| − 4 log |h′(∞)| , (2.3)

where h′(∞) := limz→∞ h′(z).

Remark 2.16. If γ is a Jordan curve passing through ∞, then

IL(γ) = DH(log |f ′|) +DH∗(log |h′|) (2.4)

where f and h map conformally H and H
∗ onto, respectively, H and H∗, the

two components of C� γ, while fixing ∞. See [96, Thm. 1.1].
In fact, the identity (2.4) was proved first: We approximate γ by curves

generated by piecewise linear driving function, in which case (2.4) is checked
by explicit computations. We then establish from (2.4) an expression of IL(γ)
in terms of zeta-regularized determinants of Laplacians [96, Thm. 7.3] via the
Polyakov-Alvarez formula. The expression using determinants has the advantage
of being invariant under conformal change of metric and allows us to move the
point ∞ away from γ and obtain (2.3).

Remark 2.17. Note that the proof of Theorem 2.15 outlined above is purely
deterministic and does not rely on previous results on the reversibility and root-
invariance of the Loewner energy. The right-hand side of (2.3) clearly does not
depend on any parametrization of γ, thus this theorem provides another proof
of Theorem 2.8 and Theorem 2.11.

Now let us comment on the regularity of Weil-Petersson quasicircles.

Theorem 2.18. Weil-Petersson quasicircles are asymptotically smooth, namely,
chord-arc with local constant 1: for all x, y on the curve, the shorter arc γx,y
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between x and y satisfies

lim
|x−y|→0

length (γx,y)/|x− y| = 1.

(We say γ is chord-arc if length(γx,y)/|x− y| is uniformly bounded.)

For this, we recall the definition of a few classical functional spaces. For
S = S1 or R or a locally rectifiable Jordan curve γ, the space VMO(S) consists
of functions u ∈ L1

loc(S) with vanishing mean oscillation such that

lim
|I|→0

1

|I|

∫
I

|u(x)− uI | dx = 0,

where I denotes an arc on S, dx denotes the arclength measure, and

uI :=
1

|I|

∫
I

u dθ.

The homogeneous Sobolev space H1/2(S) consists of function u defined a.e. on
S for which the H1/2 semi-norm

‖u‖2H1/2(S) :=
1

2π2

∫∫
S×S

∣∣∣∣u(s)− u(t)

s− t

∣∣∣∣2 dt ds < ∞.

Remark 2.19. When S = S1, Douglas formula says that ‖u‖2
H1/2(S1)

= DD(ũ)

where ũ is the harmonic extension of u to D, see, [1, Thm. 2-5]. Applying the

Cayley transform ϑ : z 
→ z − i

z + i
from H to D, it is straightforward to check that

‖u ◦ ϑ‖2H1/2(R) = ‖u‖2H1/2(S1) = DD(ũ) = DH(ũ ◦ ϑ) (2.5)

where the last equality follows from the conformal invariance of Dirichlet energy.
This gives the Douglas formula for S = R. (We note that there are different
conventions in the definition of ‖·‖H1/2(R) in the literature depending on if one

adds the L2 norm to it to define a norm. We opt for the semi-norm here as
it coincides with the Dirichlet energy of the harmonic extension and that the
space H1/2(R) coincides with the pull-back of H1/2(S1) by the Cayley map.)

We have H1/2(S) ⊂ VMO(S). In fact, let I ⊂ S be any bounded arc,

1

|I|

∫
I

|u− uI |dx ≤ 1

|I|2
∫∫

I×I

|u(x)− u(y)| dxdy

≤
(∫∫

I×I

|u(x)− u(y)|2
|x− y|2 dxdy

)1/2

(2.6)

by Cauchy-Schwarz inequality.
A holomorphic function g defined on D is in VMOA, if g is the harmonic

extension of a function in VMO(S1). See, e.g., [37, Thm3.6, Sec. 5] for this
definition. (There are equivalent definitions which use Hardy spaces, see, e.g.,
[73]. Interested readers may consult the survey [37] which gives a comprehensive
introduction to the theory of analytic functions of bounded mean oscillation in
the unit disc including the equivalence between different definitions.)
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Proof of Theorem 2.18. For a conformal map f from D to Ω bounded by a
Weil-Petersson quasicircle γ, we have by definition DD(log |f ′|) < ∞. Setting
g := log f ′, this implies that

∫
D
|g′(z)|2dA(z) < ∞. The boundary values (taken

as radial limits) of Dirichlet functions are in H1/2(S1). See (3.6) for more de-
tailed discussion about this fact. Therefore, log f ′ ∈ VMOA. A theorem of
Pommerenke [73, Thm. 2] then shows that this implies that γ is asymptotically
smooth.

Remark 2.20. We have already discussed in Remark 2.6 that Weil-Petersson
quasicircles cannot have corners. Theorem 2.18 gives another justification of
this fact as around the corner, the chord-arc ratio is bounded away from 1.
However, to talk about corners, the curve has to have left and right derivatives.
Therefore, a Weil-Petersson quasicircle need not be C1. In fact, it is not hard
to check using Theorem 2.15 that the spiral defined by t 
→ t exp(i log log |1/t|)
in a neighborhood of 0 can be completed into a Weil-Petersson quasicircle. See,
e.g., [58, Prop. 6.5].

The connection between Loewner energy and Weil-Petersson quasicircles goes
further: Not only Weil-Petersson quasicircles are exactly those Jordan curves
with finite Loewner energy, the Loewner energy is also closely related to the
Kähler structure on the Weil-Petersson Teichmüller space T0(1), identified to
the class of Weil-Petersson quasicircles via a conformal welding procedure. In
fact, the right-hand side of (2.3) coincides with the universal Liouville action
introduced by Takhtajan and Teo [91] and shown by them to be a Kähler po-
tential of the Weil-Petersson metric, which is the unique homogeneous Kähler
metric on T0(1) up to a scaling factor. Summarizing, we obtain the following
result.

Corollary 2.21. The Loewner energy is a Kähler potential of the Weil-Petersson
metric on T0(1).

We do not enter into further details as it goes beyond the scope of large
deviations that we choose to focus on here and refer the interested readers to
[91, 96]. This result gives an unexpected link between the probabilistic theory of
SLE and Teichmüller theory, although the deep reason behind the link remains
rather obscure.

3. Cutting, welding, and flow-lines

Pioneering works [23, 59, 84] on couplings between SLEs and Gaussian free field
(GFF) have led to many remarkable applications in 2D random conformal ge-
ometry. These coupling results are often speculated from the link with discrete
models. In [93], Viklund and the author provided another viewpoint on these
couplings through the lens of large deviations by showing the interplay between
Loewner energy of curves and Dirichlet energy of functions defined in the com-
plex plane (which is the large deviation rate function of scaled GFF). These
results are analogous to the SLE/GFF couplings, but the proofs are remarkably
short and use only analytic tools without any of the probabilistic models.
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3.1. Cutting-welding identity

To state the result, we write E(Ω) for the space of real functions on a domain
Ω ⊂ C with weak first derivatives in L2(Ω) and recall the Dirichlet energy of
ϕ ∈ E(Ω) is

DΩ(ϕ) :=
1

π

∫
Ω

|∇ϕ|2dA(z).

Theorem 3.1 (Cutting [93, Thm. 1.1]). Suppose γ is a Jordan curve through
∞ and ϕ ∈ E(C). Then we have the identity:

DC(ϕ) + IL(γ) = DH(u) +DH∗(v), (3.1)

where
u = ϕ ◦ f + log |f ′| , v = ϕ ◦ h+ log |h′| , (3.2)

and f and h map conformally H and H
∗ onto, respectively, H and H∗, the two

components of C� γ, while fixing ∞.

A function ϕ ∈ E(C) has vanishing mean oscillation. In fact, the following
version of Poincaré inequality (which can be obtained using a scaling argument)
shows if D ⊂ C is a disk or square and ϕ ∈ W 1,2(D), then∫

D

|ϕ− ϕD|2 dA ≤ 4 (diamD)2
∫
D

|∇ϕ|2 dA.

Here we use the notation

ϕD =
1

|D|

∫
D

ϕdA

for the average of ϕ ∈ L1(D) over D and we write |D| for the Lebesgue measure
of D. Therefore, using Cauchy-Schwarz inequality, we have

1

|D|

∫
D

|ϕ− ϕD| dA ≤
√

1

|D|

∫
D

|ϕ− ϕD|2 dA ≤ 2√
π

√∫
D

|∇ϕ|2 dA

which converges to 0 as diam(D) → 0.
The John-Nirenberg inequality (see, [43, Lem. 1] or [35, Thm.VI.2.1]) shows

that e2ϕ is locally integrable. In other words, e2ϕdA defines a σ-finite measure
supported on C, absolutely continuous with respect to Lebesgue measure dA.
The transformation law (3.2) is chosen such that e2udA and e2vdA are the
pullback measures by f and h of e2ϕdA, respectively.

Let us first explain why we consider this theorem as a finite energy analog
of an SLE/GFF coupling. Note that we do not make rigorous statement here
and only argue heuristically. The first coupling result we refer to is the quantum
zipper theorem, which couples SLEκ curves with quantum surfaces via a cut-
ting operation and as welding curves [26, 84]. A quantum surface is a domain
equipped with a Liouville quantum gravity (

√
κ-LQG) measure, defined using a

regularization of e
√
κΦdA(z), where

√
κ ∈ (0, 2), and Φ is a Gaussian field with
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the covariance of a free boundary GFF4. The analogy is outlined in the table
below. In the left column we list concepts from random conformal geometry and
in the right column the corresponding finite energy objects.

SLE/GFF with κ → 0+ Finite energy

SLEκ loop Jordan curve γ with IL(γ) < ∞
i.e., a Weil-Petersson quasicircle γ

Free boundary GFF
√
κΦ on H (on C) 2u ∈ E(H) (2ϕ ∈ E(C))√

κ-LQG on quantum plane ≈ e
√
κΦdA e2ϕ dA, ϕ ∈ E(C)√

κ-LQG on quantum half-plane on H e2u dA, u ∈ E(H)√
κ-LQG boundary measure ≈ e

√
κΦ/2dx eu dx, u ∈ H1/2(R)

SLEκ cuts an independent quantum A Weil-Petersson quasicircle γ cuts

plane e
√
κΦdA(z) into independent ϕ ∈ E(C) into u ∈ E(H), v ∈ E(H∗),

quantum half-planes e
√

κΦ1 , e
√
κΦ2 IL(γ) +DC(ϕ) = DH(u) +DH∗(v)

To justify the analogy of the last line, we argue heuristically as follows. From
the left-hand side, one expects that under an appropriate choice of topology and
for small κ,

“P(SLEκ loop stays close to γ,
√
κΦ stays close to 2ϕ)

= P(
√
κΦ1 stays close to 2u,

√
κΦ2 stays close to 2v)”.

(3.3)

From the large deviation principle and the independence between SLE and
Φ, we obtain similarly as (1.5)

“ lim
κ→0

−κ logP(SLEκ stays close to γ,
√
κΦ stays close to 2ϕ)

= lim
κ→0

−κ logP(SLEκ stays close to γ) + lim
κ→0

−κ logP(
√
κΦ stays close to 2ϕ)

= IL(γ) +DC(ϕ)”.

On the other hand the independence between Φ1 and Φ2 gives

“ lim
κ→0

−κ logP(
√
κΦ1 stays close to 2u,

√
κΦ2 stays close to 2v)

= DH(u) +DH∗(v)”.

We obtain the identity (3.1) using (3.3) heuristically.
We now present our short proof of Theorem 3.1 in the case where γ is smooth

and ϕ ∈ C∞
c (C) to illustrate the idea. The general case follows from an approx-

imation argument, see [93] for the complete proof.

Proof of Theorem 3.1 in the smooth case. From Remark 2.16, if ∞ ∈ γ, then

IL(γ) =
1

π

∫
H

|∇σf |2 dA(z) +
1

π

∫
H∗

|∇σh|2 dA(z),

4In fact, Φ is a free boundary GFF plus a logarithmic singularity −√
κ log | · |. Note that

the factor of the logarithmic singularity converges to 0 as κ → 0.
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where σf and σh are the shorthand notation for log |f ′| and log |h′|. The con-
formal invariance of Dirichlet energy gives

DH(ϕ ◦ f) +DH∗(ϕ ◦ h) = DH(ϕ) +DH∗(ϕ) = DC(ϕ).

To show (3.1), after expanding the Dirichlet energy terms, it suffices to verify
the cross terms vanish:∫

H

〈∇σf (z),∇(ϕ ◦ f)(z)〉 dA(z) +
∫
H∗

〈∇σh(z),∇(ϕ ◦ h)(z)〉 dA(z) = 0. (3.4)

Indeed, by Stokes’ formula, the first term on the left-hand side equals∫
R

∂nσf (x)ϕ(f(x))dx =

∫
R

k(f(x)) |f ′(x)|ϕ(f(x))dx =

∫
∂H

k(z)ϕ(z) |dz|

where k(z) is the geodesic curvature of γ = ∂H at z using the identity ∂nσf (x) =
|f ′(x)|k(f(x)) (this follows from an elementary differential geometry computa-
tion, see, e.g., [96, Appx.A]). The geodesic curvature at the same point z ∈ γ,
considered as a point of ∂H∗, equals −k(z). Therefore the sum in (3.4) cancels
out and completes the proof in the smooth case.

The following result is on the converse operation of the cutting, which shows
that we can also recover γ and ϕ from u and v by conformal welding. More
precisely, an increasing homeomorphism w : R → R is said to be a (conformal)
welding homeomorphism of a Jordan curve γ through ∞, if there are conformal
maps f, h of the upper and lower half-planes onto the two components of C�γ,
respectively, such that w = h−1 ◦f |R. In general, for a given homeomorphism w,
there might not exist a triple (γ, f, h) which solves the welding problem. Even
when the solution exists, it might not be unique.

However, we now construct a welding homeomorphism starting from u ∈
E(H) and v ∈ E(H∗) and show that there exists a unique normalized solution
to the welding problem, and the curve obtained is Weil-Petersson. For this, we
recall that the trace of a generalized function in a Sobolev space of a domain
D is the boundary value of the function on ∂D. It is defined through a trace
operator extending the restriction map for smooth functions. More precisely, for
u ∈ E(H) ∩ C∞(H), we define R[u] := u|R. We have

‖R[u]‖2H1/2(R) = DH(P [u]) ≤ DH(u),

where P [u] is the Poisson integral of u, the equality follows from Douglas for-
mula (2.5), and the inequality follows from the Dirichlet principle. Therefore,
R extends to a bounded operator E(H) → H1/2(R) using the density of smooth
functions in E(H).

There is a more concrete way to describe the trace of u ∈ E(H) following
Jonsson and Wallin [44] using averages over balls as follows. We remark that
this definition even generalizes to rougher domains bounded by chord-arc curves.
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Suppose ũ ∈ E(C) and γ is a chord-arc curve in Ĉ. The Jonsson-Wallin trace
of u on γ is defined for arclength a.e. z ∈ γ by the following limit of averages

Rγ [ũ](z) := lim
r→0+

ũB(z,r), (3.5)

where B(z, r) = {w : |w − z| < r}. Let Ω be a domain bounded by a chord-arc
curve γ and u ∈ E(Ω), the trace of u on a γ = ∂Ω is

RΩ→γ [u](z) := Rγ [ũ](z), for arclength a.e. z ∈ γ,

where ũ ∈ E(C) is any function such that ũ|Ω = u. In particular, the definition
RΩ→γ [u] does not depend on the choice of the extension ũ ∈ E(C). Moreover,

RΩ→γ [u] ∈ H1/2(γ). (3.6)

We refer to [93, Appx.A] for more details.
With a slight abuse of notation, we write u ∈ H1/2(R) also for the trace of

u ∈ E(H) on R. As H1/2(R) ⊂ VMO(R) (see Equation (2.6)), John-Nirenberg
inequality implies that dμ := eudx is a σ-finite measure supported on R.

Lemma 3.2 ([93, Lem. 2.4]). Suppose u ∈ H1/2(R) and dμ = eudx. Then
μ(I) = ∞ for any unbounded interval I.

Let v ∈ E(H∗), we set similarly dν = evdx. We define an increasing homeo-
morphism w by w(0) = 0 and then

w(x) =

{
inf {y ≥ 0 : μ[0, x] = ν[0, y]} if x > 0;

− inf {y ≥ 0 : μ[x, 0] = ν[−y, 0]} if x < 0.
(3.7)

From Lemma 3.2, w is well-defined and μ([a, b]) = ν(w([a, b])) for any choice
of a ≤ b. We say w is the isometric welding homeomorphism associated with μ
and ν.

Theorem 3.3 (Isometric conformal welding [93, Thm. 1.2]). Let u ∈ E(H) and
v ∈ E(H∗). The isometric welding problem for the measures eudx and evdx on R

has a solution (γ, f, h) and the welding curve γ is a Weil-Petersson quasicircle.
Moreover, there exists a unique ϕ ∈ E(C) such that (3.2) is satisfied.

Proof sketch. We first prove that the increasing isometry w : R → R obtained
from the measures eudx and evdx satisfies logw′ ∈ H1/2, which is equivalent
to w being the welding homeomorphism of a Weil-Petersson quasicircle [86, 87]
and shows the existence of solution (γ, f, h). We then check that the function ϕ
defined a priori in C� γ from u, v and the transformation law (3.2), extends to
a function in E(C). See [93, Sec. 3.1] for the details.

Remark 3.4. The solution (γ, f, h) in Theorem 3.3 is unique if appropri-
ately normalized since quasicircles are conformally removable. Theorem 3.1 then
shows an upper bound of the welded curve’s Loewner energy:

IL(γ) = DH(u) +DH∗(v)−DC(ϕ) ≤ DH(u) +DH∗(v). (3.8)
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3.2. Flow-line identity

Now let us turn to the second identity between Loewner energy and Dirichlet
energy. The idea is very simple: since the Dirichlet energy of a harmonic function
equals that of its harmonic conjugate, (2.4) can be written as

IL(γ) =
1

π

∫
H

|∇ arg f ′|2 dA(z) +
1

π

∫
H∗

|∇ arg h′|2 dA(z). (3.9)

We will interpret this identity as a flow-line identity.
More precisely, let γ be a Weil-Petersson quasicircle passing through∞. Since

γ is asymptotically smooth (Theorem 2.18), we can parametrize it by arclength
s 
→ γ(s). By Theorem II.4.2 of [36]5, for almost every ζ = γ(s) such that

γ′(s) exists, arg f(z)−ζ
z−f−1(ζ) has a non-restricted limit as z approaches f−1(ζ) in

H (which also coincides with the non-tangential limit of arg f ′) and we denote
this limit by τ(ζ). Moreover,

γ′(s) = lim
t→s

γ(t)− ζ

t− s
= ± lim

t→s±

γ(t)− ζ

|γ(t)− ζ| = eiτ(ζ). (3.10)

The second equality uses the fact that γ is asymptotically smooth. Identity
(3.10) shows that τ can be interpreted as the “winding” of γ. We note that the
harmonic measure and the arclength measure are mutually absolutely continu-
ous on γ (see, e.g., [36, Thm.VII.4.3]), arg f ′ has limits almost everywhere on
R and coincides with the Jonsson-Wallin trace RH→R[arg f

′]. Therefore without
ambiguity, we write simply the trace as arg f ′|R.

Since arg f ′ is harmonic in H, the following lemma is not surprising.

Lemma 3.5 ([93, Lem. 3.9]). Suppose γ is a Weil-Petersson curve through ∞.
Then,

arg f ′(z) = P [τ ] ◦ f(z), ∀z ∈ H,

where P [τ ] is the Poisson extension of τ to C� γ.

Identity (3.9) implies that arg f ′ ∈ E(H), we have τ ◦ f = arg f ′|R ∈ H1/2(R)
from (3.6).

Lemma 3.6. With the same assumptions and notations as above, there exist a
continuous branch of arg(·) such that arg h′ = P [τ ] ◦ h in H

∗.

Proof. The welding homeomorphism w := h−1 ◦ f |R is a quasisymmetric home-
omorphism (and so is also w−1) since γ is a quasicircle. Using τ ◦h = τ ◦f ◦w−1

and the fact that the composition of an H1/2(R) function with a quasisymmetric
homeomorphism is still in H1/2(R) (see [66, Section 3] for a proof in the setting
of the unit circle and the proof for the line is exactly the same), we obtain that
τ ◦ h ∈ H1/2(R).

5 In [36] the result is stated for conformal maps f defined on D. However, as the existence
of γ′ and the limit of arg f ′ are local property, the result also applies to H.
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Since arg h′ defined using a continuous branch of arg(·) is also harmonic and
has finite Dirichlet energy, the difference v := arg h′|R − τ ◦ h is in H1/2(R). On
the other hand, v takes value in 2πZ. We conclude with the following lemma
which shows that VMO functions behave like continuous functions.

Lemma 3.7. If a function v ∈ VMO(R) takes only integer values, then v is
constant.

This lemma follows immediately from a more general result [13, Thm. 1].
However, we provide an elementary proof in this much simpler case.

Proof. We write ‖v‖∗,I for the BMO norm of v on an interval I, defined by

‖v‖∗,I := sup
J⊂I

1

|J |

∫
J

|u(x)− uJ | dx.

We have v ∈ VMO(R) if and only if supI⊂R, |I|<ε‖v‖∗,I
ε→0−−−→ 0. Since v only

takes values in Z, for any interval I such that ‖v‖∗,I < 1/6, there exists a unique
nI ∈ Z such that

|vI − nI | ≤ ‖v‖∗,I and |{x ∈ I | v(x) �= nI}|/|I| < 2‖v‖∗,I < 1/3. (3.11)

For any small number 0 < δ < 1/6, take ε > 0 such that supI⊂R, |I|<ε‖v‖∗,I < δ.
The map x 
→ n[x,x+ε] is constant by (3.11). We call this value nε. By subdividing
further, we see that nε′ does not depend on ε′ when ε′ < ε. We write nε = n. Let
δ′ < δ and subdividing [x0, x0 + ε] into smaller disjoint intervals J1

⊔
· · ·

⊔
Jk

such that ‖v‖∗,Ji < δ′ for all i, (3.11) implies

|{x ∈ Ji | v(x) �= n}|/|Ji| < 2δ′.

Let δ′ → 0, we obtain that |{x ∈ [x0, x0 + ε] | v(x) �= n}| = 0. It implies that v
equals to n almost everywhere on [x0, x0 + ε], hence on R.

Theorem 3.8 (Flow-line identity [93, Thm. 3.10]). If γ is a Weil-Petersson
curve through ∞, we have the identity

IL(γ) = DC(P [τ ]). (3.12)

Conversely, if ϕ ∈ E(C) is continuous and limz→∞ ϕ(z) exists and is finite, then
for all z0 ∈ C, any solution to the differential equation

γ̇(t) = exp (iϕ(γ(t))) , t ∈ (−∞,∞) and γ(0) = z0 (3.13)

is a C1 Weil-Petersson curve through ∞. Moreover,

DC(ϕ) = IL(γ) +DC(ϕ0), (3.14)

where ϕ0 = ϕ− P [ϕ|γ ] has zero trace on γ.
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The identity (3.12) is simply a rewriting of (3.9). A solution to (3.13) is called
a flow-line of the winding field ϕ passing through z0. Here, we put a stronger
condition by assuming ϕ is continuous and admits a limit in R as z → ∞ (in

other words, ϕ ∈ E(C)∩C0(Ĉ)). This condition allows us to use Cauchy-Peano
theorem to show the existence of the flow-line. However, we cautiously note that
the solution to (3.13) may not be unique. The orthogonal decomposition of ϕ for
the Dirichlet inner product gives DC(ϕ) = DC(P [ϕ|γ ]) + DC(ϕ0). Using (3.12)
and the observation that for all z ∈ γ, ϕ(z) = τ(z), we obtain (3.14).

Remark 3.9. The additional assumption of ϕ ∈ C0(Ĉ) is for technical reason to
consider the flow-line of eiϕ in the classical differential equation sense. One may
drop this assumption by defining a flow-line to be a chord-arc curve γ passing
through∞ on which ϕ = τ arclength almost everywhere. We will further explore
these ideas in a setting adapted to bounded curves (see Theorem 6.14).

This identity is analogous to the flow-line coupling between SLE and GFF,
of critical importance, e.g., in the imaginary geometry framework of Miller-
Sheffield [59]: very loosely speaking, an SLEκ curve is coupled with a GFF Φ and
may be thought of as a flow-line of the vector field eiΦ/χ, where χ = 2/γ − γ/2.
As γ → 0, we have eiΦ/χ ∼ eiγΦ/2.

Let us finally remark that by combining the cutting-welding (3.1) and flow-
line (3.14) identities, we obtain the following complex identity. See also Theo-
rem 6.14 the complex identity for a bounded Jordan curve.

Corollary 3.10 (Complex identity [93, Cor. 1.6]). Let ψ be a complex-valued
function on C with finite Dirichlet energy and whose imaginary part is contin-
uous in Ĉ. Let γ be a flow-line of the vector field eψ. Then we have

DC(ψ) = DH(ζ) +DH∗(ξ),

where ζ = ψ ◦ f +(log f ′)∗, ξ = ψ ◦h+(log h′)∗ and z∗ is the complex conjugate
of z.

Remark 3.11. A flow-line γ of the vector field eψ is understood as a flow-line
of ei Imψ, as the real part of ψ only contributes to a reparametrization of γ.

Proof. From the identity arg f ′ = P [Imψ] ◦ f , we have

ζ = (Reψ ◦ f + log |f ′|) + i (Imψ ◦ f − arg f ′) = u+ i Imψ0 ◦ f ;
ξ = v + i Imψ0 ◦ h,

where u := Reψ ◦ f + log |f ′| ∈ E(H), v := Reψ ◦ h + log |h′| ∈ E(H∗) and
ψ0 = ψ − P [ψ|γ ]. From the cutting-welding identity (3.1), we have

DC(Reψ) + IL(γ) = DH(u) +DH∗(v).

On the other hand, the flow-line identity gives DC(Imψ) = IL(γ) +DC(Imψ0).
Hence,

DC(ψ) = DC(Reψ) +DC(Imψ) = DC(Reψ) + IL(γ) +DC(Imψ0)
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= DH(u) +DH∗(v) +DC(Imψ0)

= DH(ζ) +DH∗(ξ)

as claimed.

Remark 3.12. From Corollary 3.10 we recover the flow-line identity (Theo-
rem 3.8) by taking Imψ = ϕ and Reψ = 0. Similarly, the cutting-welding iden-
tity (3.1) follows from taking Reψ = ϕ and Imψ = P [τ ] where τ is the winding
function along the curve γ. Therefore, the complex identity is equivalent to the
union of cutting-welding and flow-line identities.

3.3. Applications

We now show that these identities between Loewner and Dirichlet energies have
interesting consequences in geometric function theory.

The cutting-welding identity has the following application. Suppose γ1, γ2 are
locally rectifiable Jordan curves in Ĉ of the same length (possibly infinite if both
curves pass through ∞) bounding two domains Ω1 and Ω2 and we mark a point
on each curve. Let w be an arclength isometry γ1 → γ2 matching the marked
points. We obtain a topological sphere from Ω1∪Ω2 by identifying the matched
points. Following Bishop [11], the arclength isometric welding problem is to find

a Jordan curve γ ⊂ Ĉ, and conformal mappings f1, f2 from Ω1 and Ω2 to the two
connected components of Ĉ�γ, such that f−1

2 ◦f1|γ1 = w. The arclength welding
problem is in general a hard question and have many pathological examples. For
instance, the mere rectifiability of γ1 and γ2 does not guarantee the existence nor
the uniqueness of γ, but the chord-arc property does. However, chord-arc curves
are not closed under isometric conformal welding: the welded curve can have
Hausdorff dimension arbitrarily close to 2, see [11, 17, 82]. Rather surprisingly,
Theorem 3.1 and Theorem 3.3 imply that Weil-Petersson quasicircles are closed
under arclength isometric welding. Moreover, IL(γ) ≤ IL(γ1) + IL(γ2).

We describe this result more precisely in the case when both γ1 and γ2 are
Weil-Petersson quasicircles through ∞ (see [93, Sec. 3.2] for the bounded curve
case). Let Hi, H

∗
i be the connected components of C� γi.

Corollary 3.13 ( [93, Cor. 3.4]). Let γ (resp. γ̃) be the arclength isometric
welding curve of the domains H1 and H∗

2 (resp. H2 and H∗
1 ). Then γ and γ̃ are

also Weil-Petersson quasicircles. Moreover,

IL(γ) + IL(γ̃) ≤ IL(γ1) + IL(γ2).

Proof. For i = 1, 2, let fi be a conformal equivalence H → Hi, and hi : H
∗ → H∗

i

both fixing ∞. By (2.4),

IL(γi) = DH (log |f ′
i |) +DH∗ (log |h′

i|) .

Set ui := log |f ′
i |, vi := log |h′

i|. Then γ is the welding curve obtained from
Theorem 3.3 with u = u1, v = v2 and γ̃ is the welding curve for u = u2, v = v1.
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Then (3.8) implies

IL(γ) + IL(γ̃) ≤ DH (u1) +DH∗ (v2) +DH (u2) +DH∗ (v1) = IL(γ1) + IL(γ2)

as claimed.

The flow-line identity has the following consequence that we omit the proof.
When γ is a boundedWeil-Petersson quasicircle (resp. Weil-Petersson quasicircle
passing through ∞), we let f be a conformal map from D (resp. H) to one
connected component of C� γ.

Corollary 3.14 ([93, Cor. 1.5]). Consider the family of analytic curves γr :=
f(rT), where 0 < r < 1 (resp. γr := f(R + ir), where r > 0). For all 0 < s <
r < 1 (resp. 0 < r < s), we have

IL(γs) ≤ IL(γr) ≤ IL(γ), (resp. IL(γs) ≤ IL(γr) ≤ IL(γ), )

and equalities hold if only if γ is a circle (resp. γ is a line). Moreover, IL(γr)
(resp. IL(γr)) is continuous in r and

IL(γr)
r→1−−−−−→ IL(γ); IL(γr)

r→0+−−−−→ 0

(resp. IL(γr)
r→0+−−−−→ IL(γ); IL(γr)

r→∞−−−→ 0).

Remark 3.15. Both limits and the monotonicity are consistent with the fact
that the Loewner energy measures the “roundness” of a Jordan curve. In partic-
ular, the vanishing of the energy of γr as r → 0 expresses the fact that conformal
maps take infinitesimal circles to infinitesimal circles.

4. Large deviations of multichordal SLE0+

4.1. Multichordal SLE

We now consider the multichordal SLEκ, that are families of random curves
(multichords) connecting pairwise distinct boundary points of a simply con-
nected planar domain D. Constructions for multichordal SLEs have been ob-
tained by many groups [5, 8, 15, 22, 46, 51, 59, 60, 70, 98], and models the inter-
faces in two-dimensional statistical mechanics models with alternating boundary
condition.

As in the single-chord case, we include the marked boundary points to the
domain data (D;x1, . . . , x2n), assuming that they appear in counterclockwise
order along the boundary ∂D. The objects considered in this section are defined
in a conformally invariant or covariant way. So without loss of generality, we
assume that ∂D is smooth in a neighborhood of the marked points. Due to the
planarity, there exist Cn different possible pairwise non-crossing connections for
the curves, where

Cn =
1

n+ 1

(
2n

n

)
(4.1)
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Fig 2. Illustration of a multichord and the domain D̂j containing γj .

is the n:th Catalan number. We enumerate them in terms of n-link patterns

α = {{a1, b1}, {a2, b2}, . . . , {an, bn}}, (4.2)

that is, partitions of {1, 2, . . . , 2n} giving a non-crossing pairing of the marked
points. Now, for each n ≥ 1 and n-link pattern α, we let Xα(D;x1, . . . , x2n) ⊂∏

j X (D;xaj , xbj ) denote the set of multichords γ = (γ1, . . . , γn) consisting of
pairwise disjoint chords where γj ∈ X (D;xaj , xbj ) for each j ∈ {1, . . . , n}. We
endow Xα(D;x1, . . . , x2n) with the relative product topology and recall that
X (D;xaj , xbj ) is endowed with the topology induced from a Hausdorff metric
defined in Section 2. Multichordal SLEκ is a random multichord γ = (γ1, . . . , γn)
in Xα(D;x1, . . . , x2n), characterized in two equivalent ways, when κ > 0.

By re-sampling property: From the statistical mechanics model view-
point, the natural definition of multichordal SLE is such that for each j, the
chord γj has the same law as the trace of a chordal SLEκ in (D̂j ;xaj , xbj ),

conditioned on the other curves {γi | i �= j}. Here, D̂j is the component of
D �

⋃
i �=j γi containing γj , highlighted in grey in Figure 2. In [8], the authors

proved that when κ ∈ (0, 4], the multichordal SLEκ is the unique stationary mea-
sure of a Markov chain on Xα(D;x1, . . . , x2n) defined by re-sampling the curves
from their conditional laws. This idea was already introduced and used earlier
in [59, 60], where Miller & Sheffield studied interacting SLE curves coupled
with the Gaussian free field (GFF) in the framework of the so-called imaginary
geometry.

By Radon-Nikodym derivative: We assume6 that 0 < κ < 8/3. Multi-
chordal SLEκ in Xα(D;x1, . . . , x2n) can be obtained by reweighting n indepen-
dent SLEκ (of the same domain data and link pattern) by

1

Z exp

(
c(κ)

2
mD(γ1, . . . , γn)

)
, where c(κ) :=

(3κ− 8)(6− κ)

2κ
< 0 (4.3)

is the central charge associated to SLEκ. The quantity mD(γ) is defined using

the Brownian loop measure μloop
D introduced by Lawler, Schramm, and Werner

6The same result holds for 8/3 ≤ κ ≤ 4, when c(κ) ≥ 0, if one includes into the exponent
in (4.3) the indicator function of the event that all γj are pairwise disjoint.
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[49, 53]:

mD(γ) :=

n∑
p=2

μloop
D

({
�
∣∣ � ∩ γi �= ∅ for at least p chords γi

})
=

∫
max

(
#{chords hit by �} − 1, 0

)
dμloop

D (�)

(4.4)

which is positive and finite whenever the family (γi)i=1...n is disjoint. In fact,
the Brownian loop measure is an infinite measure on Brownian loops, which
is conformally invariant, and for D′ ⊂ D, μloop

D′ is simply μloop
D restricted to

loops contained in D′. When D has non-polar boundary, the divergence of total
mass of μloop

D comes only from the contribution of small loops. In particular,
the summand {�

∣∣ � ∩ γi �= ∅ for at least p chords γi} is finite if p ≥ 2 and the
chords are disjoint. For n independent chordal SLEs connecting (x1, . . . , x2n),
chords may intersect each other. However, in this case mD is infinite and the
Radon-Nikodym derivative (4.3) vanishes since c < 0. We note that mD(γ) = 0
if n = 1 (which is expected since no reweighting is needed for the single SLE).

Remark 4.1. The central charge c(κ) and Brownian loop measure appear in
the conformal restriction formula for a single SLE [49], which compares the law
of SLE trace under the change of the ambient domain. See also [46, Prop. 3.1]. It
is therefore not surprising to see such terms in the Radon-Nikodym derivatives
(4.3) of multichordal SLE from the re-sampling property. Indeed, the expression
(4.4) already appears in [46] for multichords with “rainbow” link pattern. We
refer the readers to [70, Thm. 1.3] for the case of multichords with general link
patterns. Note that our expression looks different from [70] but is simply a
combinatorial rearrangement. The precise definition of Brownian loop measure
is not important for the presentation here, so we choose to omit it from our
discussion.

Remark 4.2. Notice that when κ = 0, c = −∞, the second characterization
does not apply. We first show the existence and uniqueness of multichordal SLE0

using the first characterization by making links to rational functions.

4.2. Real rational functions and Shapiro’s conjecture

From the re-sampling property, the multichordal SLE0 in Xα(D;x1, . . . , x2n) as
a deterministic multichord γ = (γ1, . . . , γn) with the property that each γj is

the SLE0 curve in its own component (D̂j ;xaj , xbj ). In other words, each γj is

the hyperbolic geodesic in (D̂j ;xaj , xbj ), see Remark 1.14. We call a multichord
with this property a geodesic multichord. Without loss of generality, we assume
that D = H.

The existence of geodesic multichord for each α follows by characterizing
them as minimizers of a lower semicontinuous Loewner energy which is the large
deviation rate function of multichordal SLE0+, to be discussed in Section 4.3.



378 Y. Wang

Assuming the existence, the uniqueness is a consequence of the following alge-
braic result.

We first recall some terminology. A rational function is an analytic branched
cover of Ĉ over Ĉ, or equivalently, the ratio of two polynomials P,Q ∈ C[X].

A point x0 ∈ Ĉ is a critical point (equivalently, a branched point) of a rational
function h with index k ≥ 2 if

h(x) = h(x0) + C(x− x0)
k +O((x− x0)

k+1)

for some constant C �= 0 in a local chart of Ĉ around x0. A point y ∈ Ĉ is a
regular value of h if y is not image of any critical point. The degree of h is the
number of preimages of any regular value. We call h−1(R ∪ {∞}) the real locus
of h, and h is a real rational function if P and Q can be chosen from R[X], or
equivalently, h(R ∪ {∞}) ⊂ R ∪ {∞}.

Theorem 4.3 ([69, Thm. 1.2, Prop. 4.1]). Let η̄ ∈ Xα(H;x1, . . . , x2n) be a
geodesic multichord. The union of η̄, its complex conjugate η∗, and R ∪ {∞}
is the real locus of a real rational function hη of degree n + 1 with critical
points {x1, . . . , x2n}. The rational function is unique up to post-composition by
PSL(2,R)7 and by the map H → H

∗ : z 
→ −z.

Remark 4.4. By the Riemann-Hurwitz formula on Euler characteristics, a
rational function of degree n + 1 has 2n distinct critical points if and only if
they all have index two:

(n+ 1)χ(Ĉ)− 2n(2− 1) = 2n+ 2− 2n = 2 = χ(Ĉ).

We prove Theorem 4.3 by constructing the rational function associated to a
geodesic multichord η.

Proof. The complement H�η has n+1 components that we call faces. We pick
an arbitrary face F and consider a uniformizing conformal map hη from F onto
H. Without loss of generality, we assume that F is adjacent to η1. We call F ′ the
other face adjacent to η1. Since η1 is a hyperbolic geodesic in D̂1, the map hη

extends by reflection to a conformal map on D̂1. In particular, this extension of
hη maps F ′ conformally onto H

∗. By iterating the analytic continuation across

all the chords ηk, we obtain a meromorphic function hη : H → Ĉ. Furthermore,
hη also extends toH, and its restriction hη|R∪{∞} takes values in R∪{∞}. Hence,
Schwarz reflection allows us to extend hη to Ĉ by setting hη(z) := hη(z

∗)∗ for
all z ∈ H∗.

Now, it follows from the construction that hη is a real rational function of
degree n + 1, as exactly n + 1 faces are mapped to H and n + 1 faces to H

∗.

7The group

PSL(2,R) =
{
A =

(
a b
c d

)
: a, b, c, d ∈ R, ad− bc = 1

}
/A∼−A

acts on H by A : z �→ az+b
cz+d

, a Möbius transformation of H.
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Moreover, h−1
η (R ∪ {∞}) is precisely the union of η, its complex conjugate η∗,

and R ∪ {∞}. Finally, another choice of the face F we started with yields the
same function up to post-composition by PSL(2,R) and z 
→ −z. This concludes
the proof.

To find out all the geodesic multichords connecting {x1, . . . , x2n}, it thus
suffices to classify all the rational functions with this set of critical points. The
following result is due to Goldberg.

Theorem 4.5 ([38]). Let z1, . . . , z2n be 2n distinct complex numbers. There are
at most Cn rational functions (up to post-composition by PSL(2,C)8) of degree
n+ 1 with critical points z1, . . . , z2n.

Assuming the existence of geodesic multichord in Xα(H;x1, . . . , x2n) and ob-
serving that two rational functions constructed in Theorem 4.3 are PSL(2,C)
equivalent if and only if they are equivalent under the action of the group gen-
erated by 〈PSL(2,R), z 
→ −z〉, we obtain:

Corollary 4.6. There exists a unique geodesic multichord in Xα(D;x1, . . . , x2n)
for each α.

The multichordal SLE0 is therefore well-defined. We also obtain a by-product
of this result:

Corollary 4.7 ([69, Cor. 1.3]). If all critical points of a rational function are
real, then it is a real rational function up to post-composition by a Möbius trans-
formation of Ĉ.

This corollary is a special case of the Shapiro conjecture concerning real
solutions to enumerative geometric problems on Grassmannians, see [90]. Ere-
menko and Gabrielov [29] first proved this conjecture for the Grassmannian of
2-planes, when the conjecture is equivalent to Corollary 4.7. See also [30] for
another elementary proof.

4.3. Large deviations of multichordal SLE0+

We now introduce the Loewner potential and energy and discuss the large de-
viations of multichordal SLE0+.

Definition 4.8. Let γ := (γ1, . . . , γn). The Loewner potential of γ is given by

HD(γ) :=
1

12

n∑
j=1

ID(γj) +mD(γ)− 1

4

n∑
j=1

logPD;xaj
,xbj

, (4.5)

where ID(γj) = ID;xaj
,xbj

(γj) is the chordal Loewner energy of γj (Defini-

tion 2.2), mD(γ) is defined in (4.4), and PD;a,b is the Poisson excursion kernel :

PD;a,b := |ϕ′(a)||ϕ′(b)|PH;ϕ(a),ϕ(b), and PH;a,b := |b− a|−2.

8Namely, by Möbius transformations of Ĉ.
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Here ϕ : D → H is a conformal map such that ϕ(x), ϕ(y) ∈ R, and ϕ′(x) and
ϕ′(y) are well-defined since we assumed that ∂D is smooth in a neighborhood
of x and y.

We denote the minimal potential by

Mα
D(x1, . . . , x2n) := inf

γ
HD(γ) ∈ (−∞,∞), (4.6)

with infimum taken over all multichords γ ∈ Xα(D;x1, . . . , x2n).

Remark 4.9. When n = 1,

HD(γ) =
1

12
ID(γ)− 1

4
logPD;x,y, ∀γ ∈ X (D;x, y).

The infimum of HD in X (D;x, y) is realized for the minimizer of ID;x,y, which
is the hyperbolic geodesic in (D;x, y).

One important property of the Loewner potential is that it satisfies the fol-
lowing cascade relation which follows from a conformal restriction formula for
Loewner energy and the definition of mD(γ).

Lemma 4.10 ([69, Lem. 3.8, Cor. 3.9]). For each j ∈ {1, . . . , n}, we have

HD(γ) = HD̂j
(γj) +HD(γ1, . . . , γj−1, γj+1 . . . , γn). (4.7)

In particular, any minimizer of HD in Xα(D;x1, . . . , x2n) is a geodesic multi-
chord, and HD(γ) < ∞ if and only if {γj} are disjoint chords with ID(γj) < ∞.

Using techniques from quasiconformal mappings and the fact that multi-
chords with finite potential consist of quasichords by Theorem 2.4, the Loewner
potential is shown to have the following properties.

Proposition 4.11 ([69, Prop. 3.13]). The sub-level set

{γ ∈ Xα(D;x1, . . . , x2n) | HD(γ) ≤ c}

is compact for any c ≥ Mα
D. In particular, there exists a multichord in Xα(D;x1,

. . . , x2n) minimizing HD.

At this point, we know from Lemma 4.10 that the infimum in (4.6) is at-
tained by a geodesic multichord in Xα(D;x1, . . . , x2n). This shows the existence
of geodesic multichord and completes the proof of the uniqueness as in Corol-
lary 4.6.

Definition 4.12. We define the multichordal Loewner energy of γ as

IαD(γ) := 12(HD(γ)−Mα
D(x1, . . . , x2n))

=

⎛⎝ n∑
j=1

ID(γj) + 12mD(γ)

⎞⎠− inf
γ′

⎛⎝ n∑
j=1

ID(γ′
j) + 12mD(γ′)

⎞⎠ .
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Theorem 4.13 ([69, Thm. 1.5]). The family of laws (Pκ
α)κ>0 of multichordal

SLEκ satisfies the large deviation principle in Xα(D;x1, . . . , x2n) with good rate
function IαD.

Remark 4.14. When n = 1, Theorem 4.13 is equivalent to Theorem 2.5.

Remark 4.15. The expression of the rate function can be guessed from the
Radon-Nikodym derivative (4.3). In fact, we write heuristically the density of a
single SLE as exp(−ID(γ)/κ) for small κ from Theorem 2.5. Taking the expec-
tation E

ind
κ of (4.3) with respect to the distribution of n independent SLEκ in∏

j X (D;xaj , xbj ),

E
ind
κ exp

(
c(κ)

2
mD

)
∼κ→0+ exp

⎛⎝− 1

κ
inf
γ′

⎛⎝ n∑
j=1

ID(γ′
j) + 12mD(γ′)

⎞⎠⎞⎠
since c(κ)/2 ∼ −12/κ. The density of multichordal SLEκ is thus given by

exp
(

c(κ)
2 mD(γ)

)∏
j exp

(
− ID(γj)

κ

)
Eind
κ exp

(
c(κ)
2 mD

) ∼κ→0+ exp

(
−IαD(γ)

κ

)
.

Theorem 4.13 and the uniqueness of the energy minimizer imply immediately:

Corollary 4.16. As κ → 0+, multichordal SLEκ in Xα(D;x1, . . . , x2n) con-
verges in probability to the unique geodesic multichord η in Xα(D;x1, . . . , x2n).

Proof. Let Bh
ε (η̄) ⊂ Xα(D) := Xα(D;x1, . . . , x2n) be the Hausdorff-open ball of

radius ε around the unique geodesic multichord η̄. Then, we have

lim sup
κ→0+

κ logPκ[γκ ∈ Xα(D)� Bh
ε (η̄)] ≤ − inf

γ∈Xα(D)�Bh
ε (η̄)

IαD(γ) < 0.

This proves the corollary.

4.4. Minimal potential

To define the energy IαD, one could have added to the potential HD an arbitrary
constant that depends only on the boundary data (x1, . . . , x2n;α), e.g., one may
drop the Poisson kernel terms in HD which then alters the value of the minimal
potential. The advantage of using the Loewner potential (4.5) is that it allows
comparing the potential of geodesic multichords of different boundary data. This
becomes interesting when n ≥ 2 as the moduli space of the boundary data is
non-trivial. We now discuss equations satisfied by the minimal potential based
on [69] and the more recent work [2].

We first use Loewner’s equation to describe each individual chord in the
geodesic multichord, whose Loewner driving function can be expressed in terms
of the minimal potential. We state the result when D = H and let Uα = 12Mα

H
.
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Theorem 4.17 ([69, Prop. 1.7]). Let η be the unique geodesic multichord in
Xα(H;x1, . . . , x2n). For each j ∈ {1, . . . , n}, the Loewner driving function W of
the chord ηj and the evolution V i

t = gt(xi) of the other marked points satisfy
the differential equations⎧⎪⎪⎨⎪⎪⎩

dWt

dt
= −∂ajUα(V

1
t , . . . , V

aj−1
t ,Wt, V

aj+1
t , . . . , V 2n

t ), W0 = xaj ,

dV i
t

dt
=

2

V i
t −Wt

, V i
0 = xi, for i �= aj ,

(4.8)

for 0 ≤ t < T , where T is the lifetime of the solution and (gt)t∈[0,T ] is the
Loewner flow generated by ηj. Similar equations hold with aj replaced by bj.

Here again, SLE large deviations enable us to speculate the form of Loewner
differential equations (4.8). In fact, for each n-link pattern α, one associates to
the multichordal SLEκ a (pure) partition function Zα defined as

Zα(H;x1, . . . , x2n) :=
( n∏

j=1

PH;xaj
,xbj

)(6−κ)/2κ

× E
ind
κ exp

(
c(κ)

2
mD(γ)

)
.

As −κ log
[
PH;xaj

,xbj

(6−κ)/2κ
]
∼ −3 logPH;xaj

,xbj
, from Remark 4.15 and (4.6)

we obtain

−κ logZα(H;x1, . . . , x2n)
κ→0+−→ Uα(x1, . . . , x2n). (4.9)

The marginal law of the chord γκ
j in the multichordal SLEκ in Xα(H;x1, . . . , x2n)

is given by the stochastic Loewner equation derived from Zα:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dWt =

√
κ dBt + κ ∂aj logZα

(
V 1
t , . . . , V

aj−1
t ,Wt, V

aj+1
t , . . . , V 2n

t

)
dt,

W0 = xaj ,

dV i
t =

2dt

V i
t −Wt

, V i
0 = xi, for i �= aj .

See [70, Eq. (4.10)]). Replacing naively κ logZα by −Uα, we obtain (4.8).
To prove Theorem 4.17 rigorously, we analyse the geodesic multichords and

the minimal potential directly and do not need to go through the SLE theory,
which might be more tedious to control the errors when interchanging derivatives
and limits. Let us check (4.8) when n = 1. For n ≥ 2, we conformally map
(D̂j ;xaj , xbj ) to (H; 0,∞) and use the conformal restriction formula which gives
the change of the driving function under conformal maps. See [69, Sec. 4.2].

When n = 1, the minimal potential has an explicit formula:

MH(x1, x2) =
1

2
log |x2 − x1| =⇒ ∂1MH(x1, x2) =

1

2(x1 − x2)
. (4.10)

The hyperbolic geodesic in (H;x1, x2) is the semi-circle η with endpoints x1 and
x2. We compute directly that d

dtWt|t=0 = 6(x2 − x1)
−1. See, e.g., [69, Eq. (4.3)]
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or [45, Sec. 5]. Since hyperbolic geodesic is preserved under its own Loewner
flow, i.e., gt(η[t,T ]) is the semi-circle with end points Wt and Vt = gt(x2), we
obtain ⎧⎪⎪⎨⎪⎪⎩

dWt

dt
=

6

Vt −Wt
, W0 = x1,

dVt

dt
=

2

Vt −Wt
, V0 = x2.

By (4.10), this is exactly Equation (4.8) when n = 1.
Similarly, the level two null-state Belavin-Polyakov-Zamolodchikov equations

satisfied by the SLE partition function⎛⎝κ

2
∂2
xj

+
∑
i �=j

(
2

xi − xj
∂xi −

(6− κ)/κ

(xi − xj)2

)⎞⎠Zα = 0, j = 1, . . . , 2n, (4.11)

prompts us to find the following equations (see also [2, 5]).

Theorem 4.18 ([69, Prop. 1.8]). For j ∈ {1, . . . , 2n}, we have

(∂jUα(x1, . . . , x2n))
2

2
−

∑
i �=j

2∂iUα(x1, . . . , x2n)

xi − xj
=

∑
i �=j

6

(xi − xj)2
. (4.12)

The recent work [2] gives further an explicit expression of Uα(x1, · · · , x2n)
in terms of the rational function hη associated to the geodesic multichord
in Xα(H;x1, . . . , x2n) as considered in Section 4.2. More precisely, following
[2], we normalize the rational function such that hη(∞) = ∞ by possibly
post-composing hη by an element of PSL(2,R) and denote the other n poles
(ζα,1, · · · , ζα,n) of hη.

Theorem 4.19 ([2, Thm. 2.8]). For the boundary data (x1, . . . , x2n;α), we have

exp(−Uα) = C
∏

1≤j<k≤2n

(xj − xk)
2

∏
1≤l<m≤n

(ζα,l − ζα,m)8
2n∏
k=1

n∏
l=1

(xk − ζα,l)
−4,

(4.13)

where C is a constant which only depends on n.

Remark 4.20. Finally let us remark that another reason to include the Poisson
kernel to the Loewner potential is that it relates to the more general framework
of defining Loewner energy in terms of the zeta-regularized determinants of
Laplacians. We do not enter into further details here and refer the interested
readers to [69, Thm. 1.9].

5. Large deviations of radial SLE∞

We now turn to the large deviations of SLE∞, namely, when ε := 1/κ using the
notation in Definition 1.2. From (1.7), one can easily show that in the chordal
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setup, for any fixed t, the conformal map ft = g−1
t : H → H � Kt converges

uniformly on compact sets to the identity map as κ → ∞ almost surely. In other
words, the complement of the SLEκ hull converges for the Carathéodory topology
towards H, which is not interesting for the large deviations. The main hurdle is
that the driving function can be arbitrarily close to the target boundary point
(i.e., ∞) where we normalize the conformal maps in the Loewner evolution. For
this reason, we switch to the radial version of SLE.

5.1. Radial SLE

We now describe the radial SLE on the unit disk D targeting at 0. The radial
Loewner differential equation driven by a continuous function R+ → S1 : t 
→ ζt
is defined as follows: For all z ∈ D, consider the equation

∂tgt(z) = gt(z)
ζt + gt(z)

ζt − gt(z)
, g0(z) = z. (5.1)

As in the chordal case, the solution t 
→ gt(z) to (5.1) is defined up to the
swallowing time

τ(z) := sup{t ≥ 0 | inf
s∈[0,t]

|gs(z)− ζs| > 0},

and the growing hulls are given by Kt = {z ∈ D | τ(z) ≤ t}. The solution gt is
the conformal map fromDt := D�Kt onto D satisfying gt(0) = 0 and g′t(0) = et.

Radial SLEκ is the curve γκ tracing out the growing family of hulls (Kt)t≥0

driven by a Brownian motion on the unit circle S1 = {ζ ∈ C : |ζ| = 1} of
variance κ, i.e.,

ζt := βκ
t = eiBκt , (5.2)

where Bt is a standard one dimensional Brownian motion. Radial SLEs exhibit
the same phase transitions as in the chordal case as κ varies. In particular, when
κ ≥ 8, γκ is almost surely space-filling and Kt = γκ

[0,t].
We now argue heuristically to intuit the κ → ∞ limit and the large deviation

result of radial SLE proved in [3]. During a short time interval [t, t+Δt] where
the Loewner flow is well-defined for a given point z ∈ D, we have gs(z) ≈ gt(z)
for s ∈ [t, t+Δt]. Hence, writing the time-dependent vector field (z(ζt + z)(ζt −
z)−1)t≥0 generating the Loewner chain as (

∫
S1 z(ζ + z)(ζ − z)−1δβκ

t
(dζ))t≥0,

where δβκ
t
is the Dirac measure at βκ

t , we obtain that Δgt(z) is approximately∫ t+Δt

t

∫
S1

gt(z)
ζ + gt(z)

ζ − gt(z)
δβκ

s
(dζ)ds =

∫
S1

gt(z)
ζ + gt(z)

ζ − gt(z)
d(�κt+Δt(ζ)− �κt (ζ)),

(5.3)

where �κt is the occupation measure (or local time) on S1 of βκ up to time t. As
κ → ∞, the occupation measure of βκ during [t, t+Δt] converges to the uniform
measure on S1 of total mass Δt. Hence the radial Loewner chain converges to
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a measure-driven Loewner chain (also called Loewner-Kufarev chain) with the
uniform probability measure on S1 as driving measure, i.e.,

∂tgt(z) =
1

2π

∫
S1

gt(z)
ζ + gt(z)

ζ − gt(z)
|dζ| = gt(z).

This implies gt(z) = etz. Similarly, (5.3) suggests that the large deviations of
SLE∞ can also be obtained from the large deviations of the process of occupation
measures (�κt )t≥0.

5.2. Loewner-Kufarev equations in D

We now give a more detailed account of the Loewner-Kufarev chain. The Loewner
chains described in Section 1.2 and 5.1 are driven by a function taking values
in R or S1. It is well-adapted to the study the conformal map from the unit
disk or the upper half-plane to a slit domain by progressively growing the slit
and we obtain an evolution family of slit domains. This method was extended
by Kufarev [47] and further developed by Pommerenke [71] to cover general
evolution families beyond slit domains. In this case, a family of measures drive
the dynamics and is described by the Loewner-Kufarev equation.

Let M(Ω) (resp. M1(Ω)) be the space of Borel measures (resp. probability
measures) on Ω. We define

N+ = {ρ ∈ M(S1 × R+) : ρ(S
1 × I) = |I| for all intervals I ⊂ R+}.

From the disintegration theorem (see e.g. [10, Theorem 33.3]), for each measure
ρ ∈ N+ there exists a Borel measurable map t 
→ ρt from R+ to M1(S

1) such
that dρ = ρt(dζ) dt. We say (ρt)t≥0 is a disintegration of ρ; it is unique in the
sense that any two disintegrations (ρt)t≥0, (ρ̃t)t≥0 of ρ must satisfy ρt = ρ̃t for
a.e. t ≥ 0. We denote by (ρt)t≥0 one such disintegration of ρ ∈ N+.

For z ∈ D, consider the Loewner-Kufarev ODE

∂tgt(z) = gt(z)

∫
S1

ζ + gt(z)

ζ − gt(z)
ρt(dζ), g0(z) = z. (5.4)

Let τ(z) be the supremum of all t such that the solution is well-defined up to
time t with gt(z) ∈ D, and Dt := {z ∈ D : τ(z) > t} is a simply connected
open set containing 0. The function gt is the unique conformal map of Dt onto
D such that gt(0) = 0 and g′t(0) > 0. Moreover, it is straightforward to check
that ∂t log g

′
t(0) = |ρt| = 1. Hence, g′t(0) = et, namely, Dt has conformal radius

e−t seen from 0. We call (gt)t≥0 the Loewner-Kufarev chain (or simply Loewner
chain) driven by ρ ∈ N+.

It is also convenient to use its inverse (ft := g−1
t )t≥0, which satisfies the

Loewner PDE :

∂tft(z) = −zf ′
t(z)

∫
S1

ζ + z

ζ − z
ρt(dζ), f0(z) = z. (5.5)
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We write L+ for the set of Loewner-Kufarev chains defined for time R+.
An element of L+ can be equivalently represented by (ft)t≥0 or (gt)t≥0 or the
evolution family of domains (Dt)t≥0 or the evolution family of hulls (Kt =
D�Dt)t≥0.

Remark 5.1. In terms of the domain evolution, according to a theorem of
Pommerenke [71, Satz 4] (see also [72, Thm. 6.2] and [77]), L+ consists exactly
of those (Dt)t≥0 such thatDt ⊂ D has conformal radius e−t and for all 0 ≤ s ≤ t,
Dt ⊂ Ds.

We now restrict the Loewner-Kufarev chains to the time interval [0, 1] for
the topology discussion and simplicity of notation. The results can be easily
generalized to other finite intervals [0, T ] or to R+ as the projective limit of
chains on all finite intervals. Define

N[0,1] = {ρ ∈ M1(S
1 × [0, 1]) : ρ(S1 × I) = |I| for all intervals I ⊂ [0, 1]},

endowed with the Prokhorov topology (the topology of weak convergence) and
the corresponding set of restricted Loewner chains L[0,1]. Identifying an element
(ft)t∈[0,1] of L[0,1] with the function f defined by f(z, t) = ft(z) and endow L[0,1]

with the topology of uniform convergence of f on compact sets of D× [0, 1]. (Or
equivalently, viewing L[0,1] as the set of domain evolutions (Dt)t∈[0,1], this is the
topology of uniform Carathéodory convergence.) The following result allows us
to study the limit and large deviations with respect to the topology of uniform
Carathéodory convergence.

Theorem 5.2 ([62, Prop. 6.1],[42]). The Loewner transform N[0,1] → L[0,1] : ρ 
→
f is a homeomorphism.

By showing that the random measure δβκ
t
(dζ) dt ∈ N[0,1] converges almost

surely to the uniform measure (2π)−1|dζ| dt on S1× [0, 1] as κ → ∞, we obtain:

Theorem 5.3 ( [3, Prop. 1.1]). As κ → ∞, the domain evolution (Dt)t∈[0,1]

of the radial SLEκ converges almost surely to (e−t
D)t∈[0,1] for the uniform

Carathéodory topology.

5.3. Loewner-Kufarev energy and large deviations

From the contraction principle Theorem 1.5 and Theorem 5.2, the large de-
viation principle of radial SLEκ as κ → ∞ boils down to the large deviation
principle of δβκ

t
(dζ) dt ∈ N[0,1] with respect to the Prokhorov topology. For this,

we approximate δβκ
t
(dζ) dt by

ρκn :=

2n−1∑
i=0

μκ
n,i(dζ)1t∈[i/2n,(i+1)/2n) dt,

where μκ
n,i ∈ M1(S

1) is the time average of the measure δβκ
t
on the interval

[i/2n, (i+ 1)/2n). In terms of the occupation measures,

μκ
n,i = 2n(�κ(i+1)/2n − �κi/2n).
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We start with the large deviation principle for μκ
n,i as κ → ∞. Let �

κ

t :=

t−1�κt be the average occupation measure of βκ up to time t. From the Markov
property of Brownian motion, we have μκ

n,i = �
κ

2−n in distribution up to a
rotation (by βκ

i/2n). The following result is a special case of a theorem of Donsker
and Varadhan.

Define the functional IDV : M(S1) → [0,∞] by

IDV (μ) =
1

2

∫
S1

|v′(ζ)|2 |dζ|, (5.6)

if μ = v2(ζ)|dζ| for some function v ∈ W 1,2(S1) and ∞ otherwise.

Remark 5.4. Note that IDV is rotation-invariant and IDV (cμi) = cIDV (μi)
for c > 0.

Theorem 5.5 ([21, Thm. 3, Thm. 5]). Fix t > 0. The average occupation mea-
sure {�κt }κ>0 admits a large deviation principle as κ → ∞ with good rate func-
tion tIDV . Moreover, IDV is convex.

Remark 5.6. The expression IDV in [21, Thm. 3] is in a different form but is
shown in [21, Thm. 5] to equal to (5.6) for general Markov processes. See also [3,
Thm. 3.5] for an alternative elementary proof of the identity which is adapted
to the specific case of Brownian occupation measure on S1.

The κ → ∞ large deviation principle is understood in the sense of Defini-
tion 1.2 with ε = 1/κ, i.e., for any open set O and closed set F ⊂ M1(S

1),

lim inf
κ→∞

1

κ
logP[�

κ

t ∈ O] ≥ − inf
μ∈O

tIDV (μ);

lim sup
κ→∞

1

κ
logP[�

κ

t ∈ F ] ≤ − inf
μ∈F

tIDV (μ).

Theorem 5.5 and the Markov property of Brownian motion imply that the 2n-
tuple (μκ

n,0, . . . .μ
κ
n,2n−1) satisfies the large deviation principle with rate function

as κ → ∞

IDV
n (μ0, . . . , μ2n−1) := 2−n

2n−1∑
i=0

IDV (μi).

Taking the n → ∞ limit, it leads to the following definition.

Definition 5.7. We define the Loewner-Kufarev energy on L[0,1] (or equiva-
lently on N[0,1])

S[0,1]((Dt)t∈[0,1]) := S[0,1](ρ) :=

∫ 1

0

IDV (ρt) dt

where ρ is the driving measure generating (Dt)t∈[0,1].

Theorem 5.8 ([3, Thm. 1.2]). The measure δβκ
t
(dζ) dt ∈ N[0,1] satisfies the large

deviation principle with good rate function S[0,1] as κ → ∞.
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Proof sketch. We show that N[0,1] is homeomorphic to the projective limit (Def-

inition 1.8) of the projective system consisting of {Yn := M1(S
1)2

n}n≥1 and

πn,n+1(μ0, . . . , μ2n+1−1) =

(
μ0 + μ1

2
, . . . ,

μ2n+1−2 + μ2n+1−1

2

)
(other projections πij are obtained by composing consecutive projections). The
canonical projection πn is given by N[0,1] → Yn : ρ 
→ (μn,i)i=0,··· ,2n−1, where

μn,i = 2n
∫ (i+1)2−n

i2−n

ρt dt ∈ M1(S
1), i = 0, · · · , 2n − 1.

(Note that πn(δβκ
t
(dζ) dt) = (μκ

n,i)i=0,··· ,2n−1.) See [3, Lem. 3.1]. We then show
that

lim
n→∞

IDV
n (πn(ρ)) = sup

n≥1
IDV
n (πn(ρ)) = S[0,1](ρ),

see [3, Lem. 3.8], and conclude with Dawson-Gärtner’s Theorem 1.10.

Remark 5.9. We note that if ρ ∈ N[0,1] has finite Loewner-Kufarev energy,
then ρt is absolutely continuous with respect to the Lebesgue measure for a.e.
t with density being the square of a function in W 1,2(S1). In particular, ρt is
much more regular than a Dirac measure. We see once more the regularizing
phenomenon from the large deviation consideration.

From the contraction principle Theorem 1.5 and Theorem 5.2, we obtain
immediately:

Corollary 5.10 ([3, Cor. 1.3]). The family of SLEκ on the time interval [0, 1]
satisfies the κ → ∞ large deviation principle with the good rate function S[0,1].

6. Foliations by Weil-Petersson quasicircles

SLE processes enjoy a remarkable duality [24, 59, 102] coupling SLEκ to the
outer boundary of SLE16/κ for κ < 4. It suggests that the rate functions of
SLE0+ (Loewner energy) and SLE∞ (Loewner-Kufarev energy) are also dual to
each other. Let us first remark that when S[0,1](ρ) = 0, the generated family
(Dt)t∈[0,1] consists of concentric disks centered at 0. In particular (∂Dt)t∈[0,1]

are circles and thus have zero Loewner energy. This trivial example supports
the guess that some form of energy duality holds.

Viklund and the author investigated in [94] the duality between these two en-
ergies, and more generally, the interplay with the Dirichlet energy of a so-called
winding function. We now describe briefly those results. While our approach
is originally inspired by SLE theory, they are of independent interest from the
analysis perspective and the proofs do not involve probability theory.
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6.1. Whole-plane Loewner evolution

To describe our results in the most generality, we consider the Loewner-Kufarev
energy for Loewner evolutions defined for t ∈ R, namely the whole-plane Loewner
chain. We define in this case the space of driving measures to be

N := {ρ ∈ M(S1 × R) : ρ(S1 × I) = |I| for all intervals I}.

The whole-plane Loewner chain driven by ρ ∈ N , or equivalently by its mea-
surable family of disintegration measures R → M1(S

1) : t 
→ ρt, is the unique
family of conformal maps (ft : D → Dt)t∈R such that

(i) For all s < t, 0 ∈ Dt ⊂ Ds.
(ii) For all t ∈ R, ft(0) = 0 and f ′

t(0) = e−t (namely, the conformal radius of
Dt is e

−t).

(iii) For all s ∈ R, (f
(s)
t := f−1

s ◦ft : D → D
(s)
t )t≥s is the Loewner chain driven

by (ρt)t≥s, which satisfies (5.5) with the initial condition f
(s)
s (z) = z.

See, e.g., [94, Sec. 7.1] for a proof of the existence and uniqueness of such family.

Remark 6.1. If ρt is the uniform probability measure for all t ≤ 0, then
ft(z) = e−tz for t ≤ 0 and (ft)t≥0 is the Loewner chain driven by (ρt)t≥0 ∈ N+.
Indeed, we check directly that (ft)t∈R satisfy the three conditions above. A
Loewner chain in D considered in Section 5.2 can therefore be seen as a special
case of whole-plane Loewner chain.

Note that the condition (iii) is equivalent to for all t ∈ R and z ∈ D,

∂tft(z) = −zf ′
t(z)

∫
S1

ζ + z

ζ − z
ρt(dζ). (6.1)

As in (5.4), the family uniformizing maps (gt := f−1
t )t∈R satisfies the Loewner-

Kufarev ODE: For z ∈ Dt0 and t ∈ (−∞, t0), we have

∂tgt(z) = gt(z)

∫
S1

ζ + gt(z)

ζ − gt(z)
ρt(dζ). (6.2)

We remark that for ρ ∈ N , then ∪t∈RDt = C. Indeed, Dt has conformal
radius e−t, therefore contains the centered ball of radius e−t/4 by Koebe’s 1/4
theorem. Since {t ∈ R : z ∈ Dt} �= ∅, we define for all z ∈ C,

τ(z) := sup{t ∈ R : z ∈ Dt} ∈ (−∞,∞].

We say that ρ ∈ N generates a foliation (γt := ∂Dt)t∈R of C� {0} if

1. For all t ∈ R, γt is a chord-arc Jordan curve.
2. It is possible to parametrize each curve γt by S1 so that the mapping

t 
→ γt is continuous in the supremum norm.
3. For all z ∈ C� {0}, τ(z) < ∞.

Each γt of a foliation is called a leaf.
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Definition 6.2. We define similarly the Loewner-Kufarev energy on N by

S(ρ) :=

∫ ∞

−∞
IDV (ρt) dt,

where IDV is given by (5.6).

6.2. Energy duality

The following result gives a qualitative relation between finite Loewner-Kufarev
energy measures and finite Loewner energy curves (i.e., Weil-Petersson quasi-
circles by Theorem 2.15).

Proposition 6.3 (Weil-Petersson foliation [94, Thm. 1.1]). Suppose ρ ∈ N has
finite Loewner-Kufarev energy. Then ρ generates a foliation (γt = ∂Dt)t∈R of
C� {0} in which all leaves are Weil-Petersson quasicircles.

Every ρ with S(ρ) < ∞ thus generates a family of Weil-Petersson quasicircles
that continuously sweep out the Riemann sphere, starting from ∞ and moving
towards 0, as t goes from −∞ to∞. Therefore, we can view S(ρ) as the energy of
the generated foliation. Conversely, Theorem 6.11 shows that anyWeil-Petersson
quasicircles can be generated by a measure with finite Loewner-Kufarev energy
(if they separate 0 from ∞).

Remark 6.4. This class of measures is a rare case for which a complete de-
scription of the geometry of the generated non-smooth interfaces is possible.
Becker gave a sufficient condition on the Loewner chain to generate quasicircles
[6], but not all quasicircles can be generated this way [39, Thm. 3].

We also show a quantitative relation among energies by introducing a real-
valued winding function ϕ associated to a foliation (γt)t∈R as follows. Let gt =
f−1
t : Dt → D. Since γt is by assumption chord-arc, thus rectifiable, γt has a
tangent arclength-a.e. Given z at which γt has a tangent, we define

ϕ(z) = lim
w→z

arg
g′t(w)w

gt(w)
(6.3)

where the limit is taken insideDt and approaching z non-tangentially. We choose
the continuous branch of arg which vanishes at 0. Monotonicity of (Dt)t∈R

implies that there is no ambiguity in the definition of ϕ(z) if z ∈ γt ∩ γs. See
[94, Sec. 2.3] for more details.

Remark 6.5. Geometrically, ϕ(z) equals the difference of the argument of the
tangent to the circle centered at 0 passing through z and that of γt modulo 2π,
see Figure 3. Note also that in the trivial example when ρ has zero energy, the
generated foliation consists of concentric circles centered at 0 whose winding
function is identically 0.

The following is our main theorem.
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Fig 3. Illustration of the winding function ϕ.

Theorem 6.6 (Energy duality [94, Thm. 1.2]). Assume that ρ ∈ N generates
a foliation and let ϕ be the associated winding function on C. Then DC(ϕ) < ∞
if and only if S(ρ) < ∞ and DC(ϕ) = 16S(ρ).

Although this result is about deterministic growth processes, it has the heuris-
tic interpretation of being the large deviation counterpart of a potential radial
mating of trees coupling between the whole-plane SLEκ with large κ (whose
large deviation rate function is S(ρ)) with a whole-plane Gaussian free field
with vanishing multiplicative factor (whose rate function is DC(ϕ)) that we
also speculated in [94, Sec. 10]. Here, the SLE is the flow-line of a unit random
vector field which makes the angle a multiple of GFF with the vector field iz.
It is closely related to [63] and analogous to the mating of trees theorem of
Duplantier, Miller, and Sheffield [26] (see also [40] for a recent survey) in the
chordal SLE setup. In fact, our intuition for Theorem 6.6 comes from the belief
that such a radial mating of trees result should hold although its exact form
was not clear to us before we proved this deterministic result.

We also note that if one stops the whole-plane SLEκ at any time t, the
boundary of the domain Dt is locally a SLE16/κ curve. This is consistent with
the fact that a measure with finite Loewner-Kufarev energy drives an evolution
of domains bounded by Jordan curves with finite Loewner energy as stated
in Proposition 6.3. It will become more apparent in Theorem 6.11, which is
a quantitative version of Proposition 6.3, that the factor 16 is consistent with
the SLE duality which relates SLEκ to SLE16/κ. See also [94, Sec. 10] for more
discussion.

Remark 6.7. A subtle point in defining the winding function is that in the gen-
eral case of a chord-arc foliation, a function defined arclength-a.e. on each leaf
need not be defined Lebesgue-a.e., see, e.g., [64]. Thus to consider the Dirich-
let energy of ϕ, we use the following extension to W 1,2

loc . A function ϕ defined
arclength-a.e. on all leaves of a foliation (γt = ∂Dt) is said to have an extension
φ in W 1,2

loc if for all t ∈ R, the Jonsson-Wallin trace (see Equation (3.5)) of φ on
γt, that we simply write as φ|γt , coincides with ϕ arclength-a.e on γt. We also
show that if such extension exists then it is unique. The Dirichlet energy of ϕ
in the statement of Theorem 6.6 is understood as the Dirichlet energy of this
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extension.

Theorem 6.6 has several applications which show that the foliation of Weil-
Petersson quasicircles generated by ρ with finite Loewner-Kufarev energy ex-
hibits several remarkable features and symmetries.

The first is the reversibility of the Loewner-Kufarev energy. Consider ρ ∈ N
and the corresponding family of domains (Dt)t∈R. Applying ι : z 
→ 1/z to

D∗
t := Ĉ �Dt, we obtain an evolution family of domains (D̃t = ι(D∗

t ))t∈R upon
time-reversal and reparametrization, which may be described by the Loewner
equation with an associated driving measure ρ̃. While there is no known sim-
ple description of ρ̃ in terms of ρ, energy duality implies remarkably that the
Loewner-Kufarev energy is invariant under this transformation.

Theorem 6.8 (Energy reversibility [94, Thm. 1.3]). We have S(ρ) = S(ρ̃).

To see this, we prove first the following result.

Lemma 6.9. Let γ be a rectifiable Jordan curve separating 0 from ∞, D and
D∗ be respectively the bounded and unbounded domain of Ĉ � γ. Let g be a
conformal map from D → D fixing 0 and k be a conformal map D∗ → D

∗ fixing
∞ such that g′(0) > 0 and k′(∞) > 0. For a differentiable point z ∈ γ, we have

ϕ(z) = lim
w→z, w∈D

arg
g′(w)w

g(w)
= lim

w→z, w∈D∗
arg

k′(w)w

k(w)
=: ψ(z)

where the limits are taken non-tangentially and we choose the continuous

branches of arg(·) such that ϕ(w) := arg g′(w)w
g(w) → 0 as w → 0 and ψ(w) :=

arg k′(w)w
k(w) → 0 as w → ∞.

In particular, this lemma implies that the winding function at ι(z) of the
curve ι(γ) is

lim
w→ι(z), w∈ι(D∗)

arg
g̃′(w)w

g̃(w)
= lim

ι(w)→z, ι(w)∈D∗
arg

k′(ι(w))ι(w)

k(ι(w))
= ψ(z) = ϕ(z),

since g̃(w) = ι ◦ k ◦ ι(w). With this observation, the proof of Theorem 6.8 is
immediate.

Proof of Theorem 6.8. Let ϕ̃ be the winding function associated to the foliation
(∂D̃t = ι(∂Dt))t∈R. Since ϕ̃ ◦ ι = ϕ and the Dirichlet energy is invariant under
conformal mappings, we obtain DC(ϕ̃) = DC(ϕ) which implies S(ρ) = S(ρ̃) by
Theorem 6.6.

Proof of Lemma 6.9. If γ is smooth and ψ takes values in (−2π, 2π), then by the
assumption that ϕ(w) → 0 as w → 0, the harmonicity of ϕ and the maximum
principle, we have ϕ|γ = ψ|γ .

For the general case, we consider the foliation in D∗ formed by the family of
equipotentials (γr := h(rS1))r≥1 where h = k−1. LetDr andD∗

r be the bounded

and unbounded connected components of Ĉ � γr respectively. Let gr : Dr → D
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and kr : D∗
r → D

∗ be the uniformizing conformal maps associated to γr. We
define ϕr and ψr along γr in a similar manner as in the statement of Lemma 6.9.
From the construction, we have

ψr = ψ|γr , ∀r ≥ 1.

We extend ϕ to D∗ by setting ϕ|γr = ϕr|γr for all r > 1. Since fr = g−1
r extends

to a smooth function on D, one can show that the function associated to the
equipotentials

(1,∞) → C∞(S1,C) : r 
→ fr|S1

is continuous for the C∞ norm, we obtain that ϕ is continuous in D∗. As
|h′(z)z/h(z) − 1| < 1/2 in a neighborhood of ∞, we see that ψ takes values
in (−π/2, π/2) on that neighborhood. From the previous case, we obtain that
ϕ = ψ on a neighborhood of ∞. Since ϕ−ψ takes values in 2πZ, is continuous,
and equals 0 in a neighborhood of ∞, we obtain that ϕ = ψ in D∗. Recall that
we also defined ϕ in D as arg[g′(w)w/g(w)]. We only need to show that the
limit of ϕ taken from D∗ coincides with the limit taken from D.

For this, notice that γ is a rectifiable curve, so is ι(γ). From [74, Thm. 6.8],
(ι ◦ h ◦ ι)′ is in the Hardy space H1(D). In particular, we have that the length
|ι(γr)| converges to |ι(γ)|, and |γr| converges to |γ| as r → 1+. We have also
fr → f := g−1 locally uniformly as r → 1+ from the Carathéodory kernel
convergence. A theorem of Warschawski [74, Thm. 6.12] shows that∫

S1

|f ′
r(z)− f ′(z)| |dz| → 0 as r → 1+. (6.4)

Define the function

Fr(e
iθ) := sup

0≤λ<1
|f ′

r(λe
iθ)− f ′(λeiθ)|.

A theorem of Hardy-Littlewood [28, Thm. 1.9] implies that Fr converges to 0
in L1(S1) as r → 1+ since f ′

r − f ′ converges to 0 in H1(D) by (6.4). This limit
and (6.4) imply that along a subsequence rn → 1+, f ′

rn(z) converges to f ′(z)
and Frn(z) converges to 0 on a full measure set E ⊂ S1, which shows that f ′

rn
converges to f ′ uniformly on the radial segment [0, z] for all z ∈ E.

The limit (6.4) also implies that fr → f uniformly on D, see, [74, Ex. 6.3.4].
Therefore,

f ′
rn(w)w

frn(w)

n→∞−−−−−−−−→
unif. on [0,z]

f ′(w)w

f(w)
, ∀z ∈ E.

Since f ′(w)w
f(w) does not vanish on [0, z], the uniform convergence implies that

the argument also converges uniformly (without the ambiguity in the choice of
multiples of 2π). In particular,

ϕ(frn(z)) = ϕrn(frn(z)) = − arg
f ′
rn(z)z

frn(z)

n→∞−−−−→ − arg
f ′(z)z

f(z)
= ϕ(f(z)).

We obtain that for z ∈ E, the limit of ϕ at f(z) taken from D∗ coincides with
the limit taken from D which concludes the proof.
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Remark 6.10. It is not known whether whole-plane SLEκ for κ > 8 is re-
versible. (For κ ≤ 8, reversibility was established in [63, 103].) Therefore The-
orem 6.8 cannot be predicted from the SLE point of view by considering the
κ → ∞ large deviations as we did for the reversibility of chordal Loewner en-
ergy in Theorem 2.8. This result on the other hand suggests that reversibility
for whole-plane radial SLE might hold for large κ as well.

From Proposition 6.3, being a Weil-Petersson quasicircle (separating 0 from
∞) is a necessary condition to be a leaf in the foliation generated by a measure
with finite Loewner-Kufarev energy. The next result shows that this is also a
sufficient condition and we can relate the Loewner energy of a leaf with the
Loewner-Kufarev energy of the generating measure. In particular, we obtain a
new and quantitative characterization of Weil-Petersson quasicircles.

Let γ be a Jordan curve separating 0 from ∞, f (resp. h) a conformal map
from D (resp. D∗) to the bounded (resp. unbounded) component of C� γ fixing
0 (resp. fixing ∞).

Theorem 6.11 (Characterization [94, Thm. 1.4]). The curve γ is a Weil-
Petersson quasicircle if and only if γ can be realized as a leaf in the foliation
generated by a measure ρ with S(ρ) < ∞. Moreover, we have

IL(γ) = 16 inf
ρ
S(ρ) + 2 log |f ′(0)/h′(∞)|,

where the infimum, which is attained, is taken over all ρ ∈ N such that γ is a
leaf of the generated foliation.

Remark 6.12. The infimum is only realized for the measure ργ generating the
family of equipotentials on both sides of γ, i.e., the image of the circles centered
at 0 under f and h. In this case, the winding function ϕγ is harmonic in C� γ
and tends to 0 as z tends to 0 or ∞. More precisely, we have

ϕγ ◦ f(z) = − arg
f ′(z)z

f(z)
, ϕγ ◦ h(z) = − arg

h′(z)z

h(z)
. (6.5)

Theorem 6.11 and Theorem 6.6 then give the identity

IL(γ) = DC(ϕ
γ) + 2 log |f ′(0)/h′(∞)|. (6.6)

Note also that this minimum is zero if and only if γ is a circle centered at 0,
whereas IL(γ) is zero for all circles. This explains the presence of the derivative
terms.

Corollary 6.13 (Energy bound [94, Cor. 8.7]). Any leaf γ of the foliation gen-
erated by ρ satisfies IL(γ) ≤ 16S(ρ).

Proof. A consequence of generalized Grunsky inequality, see, e.g., [91, p. 70-
71], shows that log |f ′(0)/h′(∞)| ≤ 0. Theorem 6.11 then implies IL(γ) ≤
16S(ργ) ≤ 16S(ρ).
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Another consequence of Theorem 6.11 is the following complex identity for
bounded curve analogous to Corollary 3.10, which simultaneously expresses the
interplay between Dirichlet energies under “welding” and “flow-line” operations,
see Theorem 3.1 and 3.8.

More precisely, we say that a Weil-Petersson quasicircle γ is compatible with
ϕ ∈ W 1,2

loc , if the winding function along γ, as defined in (6.3), coincides with
the trace ϕ|γ arclength-a.e.

Theorem 6.14 (Complex identity [94, Prop. 1.5]). Let ψ be a complex valued
function on C with DC(ψ) = DC(Reψ)+DC(Imψ) < ∞ and γ a Weil-Petersson
quasicircle separating 0 from ∞ compatible with Imψ. Let

ζ(z) := ψ ◦ f(z) + log
f ′(z)z

f(z)
and ξ(z) := ψ ◦ h(z) + log

h′(z)z

h(z)
. (6.7)

Then we have DC(ψ) = DD(ζ) +DD∗(ξ).

Remark 6.15. We do not use the complex conjugate in defining the transfor-
mation law (6.7) as opposed to Corollary 3.10. The reason is that the convention
for compatibility and for being a flow-line in both theorems differ by a sign.

Similar to Remark 3.12, Theorem 6.14 can be viewed as the combination of
the following two corollaries. Taking Reψ = 0 and ϕ = Imψ, we obtain the
following result.

Corollary 6.16 (Flow-line identity for bounded curve). Let ϕ be a real-valued
function with finite Dirichlet energy. If there exists a chord-arc curve γ which
is compatible with ϕ, then

IL(γ) = DC(ϕ)−DC(ϕ0) + 2 log |f ′(0)/h′(∞)|,

where ϕ0 is the zero-trace part of ϕ in the complement of γ. In particular, γ is
a Weil-Petersson quasicircle.

Remark 6.17. As opposed to Theorem 3.8, not every ϕ admits a compatible
Jordan curve. For instance, when ϕ ≡ π/4, the flow-line of the vector field
ei(arg z+π/2−ϕ(z)) starting from any point in C is a spiral which converges to ∞.
See Figure 3 and Remark 6.5. In particular, not every real-valued function ϕ
with finite Dirichlet energy is the welding function of a foliation. It would be
interesting to characterize the class of winding functions analytically.

Proof. Using the notation in Theorem 6.14 and applying it to ψ := iϕ, we obtain

ζ(z) = iϕ0 ◦ f + log

∣∣∣∣f ′(z)z

f(z)

∣∣∣∣
since for z ∈ S1, ϕ ◦ f(z) = − arg(f ′(z)z/f(z)) by the assumption of ϕ being
compatible with γ and (6.3). Similarly,

ξ(z) = iϕ0 ◦ h+ log

∣∣∣∣h′(z)z

h(z)

∣∣∣∣ .
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Theorem 6.14 gives

DC(ϕ) = DC(ϕ0) +DD

(
log

∣∣∣∣f ′(z)z

f(z)

∣∣∣∣)+DD∗

(
log

∣∣∣∣h′(z)z

h(z)

∣∣∣∣)
= DC(ϕ0) +DD

(
arg

f ′(z)z

f(z)

)
+DD∗

(
arg

h′(z)z

h(z)

)
= DC(ϕ0) +DC(ϕ

γ)

= DC(ϕ0) + IL(γ)− 2 log |f ′(0)/h′(∞)|,

where the last two equalities follow from Remark 6.12. This completes the proof.

Corollary 6.18 (Cutting identity for bounded curve). Let φ be a real-valued
function with finite Dirichlet energy and γ be a Weil-Petersson curve separating
0 from ∞. Then we have the identity:

DC(φ) + IL(γ)− 2 log |f ′(0)/h′(∞)| = DD(u) +DD∗(v), (6.8)

where

u(z) = φ ◦ f(z) + log

∣∣∣∣f ′(z)z

f(z)

∣∣∣∣ , v(z) = φ ◦ h(z) + log

∣∣∣∣h′(z)z

h(z)

∣∣∣∣ . (6.9)

We may view (6.9) as the transformation law such that e2udAcyl and e2vdAcyl

are the pullback measures by f and h of e2φdAcyl, where dAcyl(z) = |z|−2|dz|2.
Proof. Let ϕγ ∈ E(C) be the winding function that is harmonic in the com-
plement of γ as in (6.5). Applying Theorem 6.14 to ψ := φ + iϕγ , we obtain
ζ = u, ξ = v which implies DC(φ) +DC(ϕ

γ) = DD(u) +DD∗(v). We conclude
with (6.6).

7. Summary

Let us end with a table summarizing the results presented in this survey, high-
lighting the close analogy between concepts and theorems from random con-
formal geometry and the finite energy/large deviation world. Although some
results involving the finite energy objects are interesting on their own from the
analysis perspective, we choose to omit from the table those without an obvious
stochastic counterpart such as results in Section 3.3.

We hope that the readers are by now convinced that the ideas around large
deviations of SLE are great sources for generating exciting results in the deter-
ministic world. And vice versa, as finite energy objects are more regular and
easier to handle, exploring their properties also provides a way to generate new
conjectures in random conformal geometry. Rather than an end, we hope it to
be the starting point of new development along those lines and this survey can
serve as a first guide.
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SLE/GFF with κ � 1 Finite energy

Sections 1–2

Chordal SLEκ in (D; a, b) A chord γ with ID;a,b(γ) < ∞
(Definition 2.2, Theorem 2.5)

Chordal SLE0 in (D; a, b) Hyperbolic geodesic in (D; a, b)
(Remark 1.14)

Chordal SLEκ is reversible Chordal Loewner energy is reversible
(Theorem 2.8)

Jordan curve γ with IL(γ) < ∞
SLEκ loop i.e., a Weil-Petersson quasicircle γ

(Theorem 2.15)

Section 3

Free boundary GFF
√
κΦ on H (on C) 2u ∈ E(H), i.e., DH(u) < ∞ (2ϕ ∈ E(C))√

κ-LQG on quantum plane ≈ e
√
κΦdA e2ϕ dA, ϕ ∈ E(C)√

κ-LQG on quantum half-plane on H e2u dA, u ∈ E(H)√
κ-LQG boundary measure on R eu dx, u ∈ H1/2(R)

≈ e
√
κΦ/2dx

SLEκ cuts an independent quantum A Weil-Petersson quasicircle γ cuts

plane e
√
κΦdA into independent ϕ ∈ E(C) into u ∈ E(H), v ∈ E(H∗) and

quantum half-planes e
√
κΦ1 , e

√
κΦ2 IL(γ) +DC(ϕ) = DH(u) +DH∗(v)

(Theorem 3.1)

Isometric welding of independent Isometric welding of eu dx and ev dx,√
κ-LQG boundary measures on R u, v ∈ H1/2(R) produces a Weil-

produces SLEκ Petersson quasicircle (Theorem 3.3)

Bi-infinite flow-line of eiΦ/χ ≈ ei
√
κΦ/2 Bi-infinite flow-line of eiϕ is a Weil-

is an SLEκ loop Petersson quasicircle (Theorem 3.8)

Section 4

Multichordal SLEκ in D of link Multichord γ with IαD(γ) < ∞
pattern α (Definition 4.12, Theorem 4.13)

Multichordal SLE0 in H Real locus of a real rational function,
i.e., geodesic multichord (Theorem 4.3)

Multichordal SLEκ pure partition Minimal potential Mα
D

function Zα of link pattern α (Definition 4.8, Equation (4.9))

Loewner evolution of a chord in Loewner evolution of a chord in a
multichordal SLEκ geodesic multichord (Theorem 4.17)

Level two null-state BPZ equation Semiclassical null-state equation
satisfied by Zα satisfied by Mα

H (Theorem 4.18)

Sections 5–6

Loewner chain driven by ρ ∈ N with
Whole-plane radial SLE16/κ Loewner-Kufarev energy S(ρ) < ∞;

Foliation by Weil-Petersson quasicircles
(Corollary 5.10, Definition 6.2)

Radial mating of trees (unknown) Energy duality DC(ϕ) = 16S(ρ)
(Theorem 6.6)
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∂Dt is a Weil-Petersson quasicircle
The outer boundary of SLE16/κ for all t ∈ R and
is locally a SLEκ curve IL(γ) = 16 infρ S(ρ) + 2 log |f ′(0)/h′(∞)|

(Theorem 6.11)

Reversibility of whole-plane radial Loewner-Kufarev energy is reversible
SLE16/κ (unknown) (Theorem 6.8)
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[24] Dubédat, J. (2009). Duality of Schramm-Loewner evolutions. Ann. Sci.
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Pommerenke, C. and Rättyä, J. (2013). Locally univalent functions,

https://www.ams.org/mathscinet-getitem?mr=2004294
https://www.ams.org/mathscinet-getitem?mr=1766456
https://www.ams.org/mathscinet-getitem?mr=688027
https://www.ams.org/mathscinet-getitem?mr=2571413
https://www.ams.org/mathscinet-getitem?mr=997938
https://www.ams.org/mathscinet-getitem?mr=1207224
https://www.ams.org/mathscinet-getitem?mr=386024
https://www.ams.org/mathscinet-getitem?mr=2358649
https://www.ams.org/mathscinet-getitem?mr=2525778
https://www.ams.org/mathscinet-getitem?mr=2571956
https://www.ams.org/mathscinet-getitem?mr=3322385
https://arxiv.org/abs/1409.7055
https://www.ams.org/mathscinet-getitem?mr=0268655
https://www.ams.org/mathscinet-getitem?mr=1888795
https://www.ams.org/mathscinet-getitem?mr=3051166
https://www.ams.org/mathscinet-getitem?mr=2593282
https://www.ams.org/mathscinet-getitem?mr=2059141
https://www.ams.org/mathscinet-getitem?mr=2020222


400 Y. Wang

VMOA and the Dirichlet space. Proc. Lond. Math. Soc. (3) 106 565–588.
MR3048550

[35] Garnett, J. B. (2007). Bounded analytic functions, first ed. Graduate
Texts in Mathematics 236. Springer, New York. MR2261424

[36] Garnett, J. B. and Marshall, D. E. (2005). Harmonic measure.
New Mathematical Monographs 2. Cambridge University Press, Cambridge.
MR2150803

[37] Girela, D. (2001). Analytic functions of bounded mean oscillation. In
Complex function spaces (Mekrijärvi, 1999). Univ. Joensuu Dept. Math.
Rep. Ser. 4 61–170. Univ. Joensuu, Joensuu. MR1820090

[38] Goldberg, L. R. (1991). Catalan numbers and branched coverings by the
Riemann sphere. Adv. Math. 85 129–144. MR1093002

[39] Gumenyuk, P. and Prause, I. (2018). Quasiconformal extensions,
Loewner chains, and the λ-lemma. Anal. Math. Phys. 8 621–635.
MR3881017

[40] Gwynne, E., Holden, N. and Sun, X. (2019). Mating of trees for ran-
dom planar maps and Liouville quantum gravity: a survey. arXiv preprint:
1910.04713.

[41] Johansson, K. (2021). Strong Szegö theorem on a Jordan curve. arXiv
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