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Abstract: In many statistical problems the hypotheses are naturally di-
vided into groups, and the investigators are interested to perform group-
level inference, possibly along with inference on individual hypotheses. We
consider the goal of discovering groups containing u or more signals with
group-level false discovery rate (FDR) control. This goal can be addressed
by multiple testing of partial conjunction hypotheses with a parameter u,
which reduce to global null hypotheses for u = 1. We consider the case
where the partial conjunction p-values are combinations of within-group
p-values, and obtain sufficient conditions on (1) the dependencies among
the p-values within and across the groups, (2) the combining method for
obtaining partial conjunction p-values, and (3) the multiple testing pro-
cedure, for obtaining FDR control on partial conjunction discoveries. We
consider separately the dependencies encountered in the meta-analysis set-
ting, where multiple features are tested in several independent studies, and
the p-values within each study may be dependent. Based on the results for
this setting, we generalize the procedure of Benjamini, Heller, and Yeku-
tieli (2009) for assessing replicability of signals across studies, and extend
their theoretical results regarding FDR control with respect to replicability
claims.
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1. Introduction

In modern research, the investigators often face complex statistical problems,
which involve testing a large number of hypotheses. In many applications the
hypotheses have a natural group structure, and identifying groups containing
signals, (i.e. false null hypotheses), is often of interest. For example, in func-
tional magnetic resonance imaging, several types of division into groups have
been considered. If the goal is to find locations (voxels) of activation while a
subject performs a certain cognitive task, each hypothesis corresponds to a sin-
gle location. The division of the brain into anatomical or functional regions may
define groups of hypotheses, and the researchers may be interested to find brain
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regions containing activated locations (see, for example, [45] and [2]). If several
cognitive tasks are studied, one may be interested to find brain locations that
are activated in at least two (or, more generally, at least a pre-specified number
u of) cognitive tasks. In this case the hypotheses regarding the activation in the
same location in different tasks define a group, and the goal is to find groups (i.e.
locations) with at least u signals. Motivated by this application, Benjamini and
Heller [3] introduced the partial conjunction hypothesis testing problem, which
is defined for group g as

H
u/n
0 (g) : kg < u versus H

u/n
1 (g) : kg ≥ u,

where kg is the number of false null hypotheses in group g. In the case where
u = 1, the partial conjunction null reduces to the global null, or the intersection
hypothesis, which holds if all the null hypotheses in the group are true. Ben-
jamini and Heller [3] developed a general method for combining the p-values
for the elementary hypotheses in group g, so that the combined p-value is valid
for testing H

u/n
0 (g). For the fMRI application above, [3] suggested identifying

the brain locations which are activated in at least u out of n cognitive tasks by
multiple testing of the family {Hu/n

0 (g), g = 1, . . . G}, where G is the number
of brain locations considered. In this setting, the false discovery corresponds to
rejecting H

u/n
0 (g) for some group g which contains less than u signals, which, in

this application, translates to erroneously stating that the brain location g, with
kg < u, is activated in at least u cognitive tasks. The false discovery rate (FDR,
[5]) and the familywise error rate (FWER) for the family of partial conjunction
hypotheses are defined with respect to these erroneous group discoveries. Other
examples of inference at the group level in fMRI research were given in [23] and
[1], who developed different algorithms incorporating group-level inference. Be-
sides fMRI research, there are many other areas where multiple testing of partial
conjunction hypotheses has been considered, for example in genomic research,
where several hypotheses are tested for each genetic variant (see, e.g., [46], [31]).

An important statistical challenge where multiple testing of partial conjunc-
tion hypotheses may be very useful is that of meta-analysis. Consider the setting
where the same set of features is tested in several independent studies. The hy-
potheses tested in different studies regarding the same feature may be considered
as a group. The global null hypothesis corresponding to a single feature addresses
the question: “Is this feature non-null (i.e. is it corresponding to a false null hy-
pothesis) in at least one of the studies?” Identifying the features with a positive
answer to this question corresponds to the typical goal of meta-analysis. How-
ever, sometimes the evidence that the feature is non-null in at least one study is
not enough, and the researchers wish to identify features with consistent findings
across studies, which corresponds to the goal of replicability analysis (see [15]
and references therein). In this case the interest may be to find features which
are non-null in at least u ≥ 2 studies. Benjamini et al. [4] suggested addressing
this goal by testing the family {Hu/n

0 (g), g = 1, . . . , G}, where n is the number
of studies and G is the number of features considered. The larger is the value of
u, the stronger is our requirement for claiming replicability. Since it may be not
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clear what value of u should be chosen, [4] suggested to select the features with
potential replicability findings by applying the Benjamini-Hochberg procedure
(BH, [5]) on the family of global null p-values for all the features, and assess
the replicability strength for each selected feature g by a lower bound on the
true number of studies where the feature is non-null, k̂(g), obtained from test-
ing the partial conjunction hypotheses in order with u = 1, . . . , n. The authors
proved that their procedure controls the expected proportion of features with
erroneously reported lower bounds (i.e. features with k̂(g) > k(g)), out of all
features selected, under independence within each study. For real data examples
illustrating replicability analysis, see, e.g., [4], [30], [32], [58], [18].

In this paper, we consider multiple testing of partial conjunction hypotheses
with FDR or weighted FDR ([6]) control. The main goal of this paper is to
develop sufficient conditions on (1) the multiple testing procedure, (2) the de-
pendency structure among the p-values for the elementary hypotheses (referred
to as elementary p-values hereafter), and (3) the method for obtaining partial
conjunction p-values, for (weighted) FDR control on the family of partial con-
junction hypotheses. This goal is addressed by building upon the results of [12],
[13], [48], [3], and [4]. We consider separately testing the partial conjunction
hypotheses with (weighted) FDR control under the dependencies of the meta-
analysis setting. We generalize the theoretical results of [4] for their procedure
for assessing the strength of replicability for the selected features, showing that
this procedure provides the above error rate control regarding false replicability
claims not only under independence within each study, but also under a certain
form of positive dependence among the p-values within each study, which is
typically considered in multiple testing literature and is defined below. Recall
that a set D ⊂ R

m is called non-decreasing if for all x,y ∈ R
m such that x ≤ y

(i.e. xi ≤ yi for i = 1, . . . ,m), x ∈ D implies that y ∈ D.

Definition 1.1 (PRDS, [8]). The vector X = (X1, . . . , Xm) is positive regres-
sion dependent on a subset I0 ⊆ {1, . . . ,m} if for any non-decreasing set D, and
for each i ∈ I0, P [X ∈ D |Xi = x] is non-decreasing in x.

In addition, we extend the procedure of [4] for addressing (1) a wide class of
selection rules for selecting the promising features, (2) weights reflecting prior
knowledge on the replicability extent of the features, as well as weights reflect-
ing different penalties for erroneous replicability claims (similar to [24] and [6],
respectively), and obtain the same error control guarantee for the extended pro-
cedure. For arbitrary dependence within each study, a more conservative variant
of this procedure is suggested. The remaining contributions of this paper are de-
scribed in more detail below.

For common multiple testing procedures, the question “What are the depen-
dencies among the p-values, for which the procedure guarantees the control of
its target error rate?” was typically addressed. For example, according to the
results of [8], the BH procedure guarantees FDR control when applied on p-
values which satisfy the PRDS property on the subset of indices of true null
hypotheses (its FDR control under independence was initially proved by [5]).
However, when this type of dependence holds among the elementary p-values, it
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is not clear whether it holds among the partial conjunction p-values, which may
be complicated functions of the within-group elementary p-values. As a special
case, consider global null p-values based on the method of Simes [50] (see Sec-
tion 2.1 for the definition). Based on the results of [8], the BH procedure applied
on Simes’ p-values controls the FDR on the family of global null hypotheses if
Simes’ p-values satisfy the PRDS property, however it is not clear for what de-
pendency structures among the elementary p-values this condition holds. In fact,
in the invited lecture devoted to Prof. Yoav Benjamini’s 70th birthday, which
was held in Israel in 2018, Prof. Abba Krieger showed that when the elementary
p-values satisfy the PRDS property, the global null Simes’ p-values may not sat-
isfy this property. He presented a counterexample, which we give in Appendix
B. However, this does not yield that the BH procedure applied on Simes’ global
null p-values does not control the FDR in this case, because the PRDS property
is a sufficient, not a necessary condition, for FDR control of the BH procedure.
Interestingly, indeed, the results of [48] yield that the BH procedure applied on
Simes’ p-values guarantees FDR control on the family of global null hypotheses
if the set of elementary p-values satisfies the PRDS property. Benjamini and
Heller [3] showed a similar result for the BH procedure applied on partial con-
junction p-values based on Fisher’s or Stouffer’s methods, assuming a certain
dependency structure among the elementary p-values. In this work these results
are generalized with respect to several aspects, which are described below.

Sufficient conditions on the dependency among the elementary p-values for
FDR control on partial conjunction hypotheses are developed for a general class
of self-consistent procedures, defined by [12], which includes the BH procedure,
as well as its weighted variants (see [6], [24], and [12]). This class also includes
several more conservative procedures, which may be of interest due to structural
constraints on the rejection set, possibly induced by spatial structure or graph
structure of the hypotheses (see [17] and [39]).

Besides the PRDS dependence among the p-values for the initial set of ele-
mentary hypotheses, more complex forms of dependencies are considered. Specif-
ically, we consider a certain form of positive dependence across the groups and
independence within each group, as well as positive dependence across the
groups and arbitrary dependence within the groups. Independence and arbi-
trary dependence across the groups are also considered. Finally, we consider
the dependencies which may hold in meta-analysis, where each feature is tested
in several independent studies, addressing independence, positive dependence,
and arbitrary dependence within each study. The results of this paper show that
for most of the dependency structures above, the BH procedure, as well as its
weighted variants, guarantees FDR control when applied on certain valid partial
conjunction p-values. Therefore, despite the complex dependencies among the
partial conjunction p-values in these situations, which may not satisfy the PRDS
property, there is no need for conservative adjustments that were suggested for
arbitrary dependence, such as the adjustment of [8], or its generalization given
by [12].

The sufficient conditions that are obtained for FDR control depend on the
method for obtaining partial conjunction p-values. We consider partial conjunc-
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tion p-values which are connected to self-consistent multiple testing procedures,
such as those based on Simes’ and Bonferroni methods. In particular, we ad-
dress the global null p-values connected to the adaptive self-consistent proce-
dures, such as the adaptive BH procedure incorporating Storey’s estimator for
the proportion of nulls [52], and their extensions to general partial conjunction
p-values, based on the method of [3]. For the meta-analysis setting, we also
consider the popular Fisher’s ([22]) and Stouffer’s ([53]) methods for combining
p-values for testing the partial conjunction null.

For obtaining the results above, several lemmas in the spirit of the group-level
super-uniformity lemma of [48] are obtained. These lemmas are also used for
generalizing the results of [4] regarding their procedure for replicability analysis,
as described above. The lemmas may be useful for extending the theoretical re-
sults for other procedures, such as p-filter [48], DAGGER [47], and TreeBH [16].
Although the paper addresses FDR control on partial conjunction hypotheses,
its results may also be used for obtaining FWER control on these hypotheses,
under certain dependency structures among the elementary p-values.

This paper is organized as follows. Section 2 includes several global null tests
which are addressed in this work, as well as their extensions for testing partial
conjunction hypotheses. Sections 3 and 4 consider the setting where the hy-
potheses are divided into natural groups, and give several sufficient conditions
for (weighted) FDR control on a family of partial conjunction hypotheses defined
for these groups, for several dependency structures. In Section 5 we consider the
meta-analysis setting, and give some results for partial conjunction testing in
this setting, as well as a generalization of the procedure and the results of [4]
addressing replicability analysis. Sections 4 and 5 contain the main results of
this paper, addressing different dependency structures among the elementary p-
values. Several helpful results and key lemmas are given in Section 6. The paper
ends by a discussion in Section 7. Most of the proofs are given in Appendix A.

Remark 1.1. Throughout this paper, vectors and matrices are denoted by bold
letters, and p-values for composite hypotheses comprising combinations of ele-
mentary p-values are denoted by capital letters. In addition, we define 0/0 = 0,
and for two random variables X and Y such that if Y = 0, then X = 0 almost
surely, we define X/Y = 0.

2. Aggregate-level testing of a single hypothesis

2.1. Testing a global null hypothesis

Consider a family of m elementary null hypotheses, H1, . . . , Hm, with p-values
p1, . . . , pm. The global null hypothesis is defined as the intersection of these null
hypotheses, stating that all these null hypotheses are true, H0 = ∩m

i=1Hi. We
consider the cases where the p-value for the global null is obtained by combining
the p-values for the individual hypotheses, H1, . . . , Hm, via a certain combining
function f : [0, 1]m → [0, 1]. The combination of p-values f(p1, . . . , pm) is a valid
p-value for the global null if for any x ∈ (0, 1), P [f(p1, . . . , pm) ≤ x] ≤ x under
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the global null, i.e. when all the null hypotheses are true. Several methods for
combining the p-values p1, . . . , pm for global null testing have been developed
and studied, see, e.g., [40], [43], [57], [19], [59], and references therein. In this
work the focus is on the following methods.

• Fisher’s method [22]:

fFisher(p1, . . . , pm) = P

[
χ2

(2m) ≥ −2
m∑
i=1

log(pi)
]
, (2.1)

where χ2
(2m) is a chi-square variable with 2m degrees of freedom.

• Stouffer’s method [53]:

fStouffer(p1, . . . , pm) = 1 − Φ
(∑m

i=1 Φ−1(1 − pi)√
m

)
, (2.2)

with Φ(·) denoting the cumulative distribution function of a standard nor-
mal variable, and Φ−1(·) denoting its inverse function.

• Simes’ method [50]:

fSimes(p1, . . . , pm) = min
k=1,...,m

mp(k)

k
, (2.3)

where p(1) ≤ . . . ≤ p(m) is the ordered sequence of p-values.

All the methods above give valid global null p-values under independence of
individual p-values. Simes’ method is known to be also valid under certain forms
of positive dependence, see [49], [8], [21]. For general dependence, the following
more conservative methods are considered:

• Bonferroni’s method:

fBonferroni(p1, . . . , pm) = min{mp(1), 1} (2.4)

• Hommel’s method [36]:

fHommel(p1, . . . , pm) = min
{(

1 + 1
2 + . . . + 1

m

)
min

k=1,...,m

mp(k)

k
, 1
}
(2.5)

Some of the methods for global null testing are connected to certain multi-
ple testing procedures. For example, if one uses Bonferroni’s method (2.4) for
testing the global null, then the global null is rejected at level α if and only
if Bonferroni’s procedure, applied at level α on the p-values p1, . . . , pm, rejects
at least one hypothesis. There is a similar connection between Simes’ p-value
(2.3) and the BH procedure, as well as Hommel’s p-value (2.5) and the proce-
dure of [8] (BY), which is a conservative variant of the BH procedure with FDR
control guarantees under arbitrary dependence. In all these cases, the global
null p-value is the minimal adjusted p-value of a certain multiple testing pro-
cedure. Recall that for a given multiple testing procedure, an adjusted p-value
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for Hi, denoted by P adj
i , is the minimum level α of the procedure such that Hi

is rejected at level α ([60]). The set of rejected hypotheses by a given level-α
procedure is {i : P adj

i ≤ α}, therefore at least one rejection is made if and only
if the minimum adjusted p-value, P adj

(1) , is bounded above by α. Under the global
null, each rejected hypothesis corresponds to a false discovery, therefore in this
case P

[
P adj

(1) ≤ α
]

= P [(V > 0)], where V is the number of false discoveries of
the given level-α multiple testing procedure. In addition, under the global null,
P [(V > 0)] = FWER = FDR, which gives the following corollary.

Corollary 2.1. Assume we are given a multiple testing procedure which guar-
antees control of FWER (or FDR) when all the null hypotheses are true (i.e.
in the weak sense) under a certain dependency structure among the p-values.
Then, under the same dependency structure, the minimum adjusted p-value of
this procedure is a valid p-value for testing the global null.

Remark 2.1. A natural requirement for a function f(p1, . . . , pm) which gives a
global null p-value is that f is non-decreasing in each coordinate. In fact, Birn-
baum [10] showed that when the p-values are independent, for each combination
function f(p1, . . . , pm) satisfying this requirement one can find an alternative
hypothesis against which the combination function f(p1, . . . , pm) gives a best
test of the global null. This requirement is satisfied when f is based on a cer-
tain multiple testing procedure in the sense of Corollary 2.1, assuming that the
multiple testing procedure satisfies the monotonicity property defined below.

Definition 2.1. A multiple testing procedure is monotone if it satisfies the
following condition: given a set of rejected hypotheses R1, decreasing a certain
p-value will result in rejecting the set R2, where R1 ⊆ R2.

Based on Corollary 2.1, one can obtain validity of global null tests based on
the results for the multiple testing procedures which induce these tests. The
fact that Bonferroni’s and Hommel’s global null p-values are valid under any
dependence of elementary p-values may be obtained from the facts that Bonfer-
roni and BY control the FWER in the weak sense under arbitrary dependence.
Similarly, one can obtain the validity of Simes’ method and its weighted ver-
sions (see [6] and [35]) under PRDS dependence based on the result of [12],
showing that the doubly-weighted BH procedure guarantees FDR control under
this type of positive dependence. Similarly, the minimum adjusted p-value of an
adaptive variant of the BH procedure, incorporating an estimator for the pro-
portion of true null hypotheses, denoted by π0, is a valid global null p-value if
the dependency among the p-values is such that the procedure guarantees FDR
control. See [7] and [13] for several adaptive procedures and their performance
comparisons. Let us consider the minimum adjusted p-value of the adaptive BH
procedure incorporating a modification of Storey’s estimator ([51]) for the pro-
portion of nulls, suggested by [52]. The estimator is based on a tuning parameter
λ ∈ (0, 1), and is given by

π̂0(λ) = W (λ) + 1
(1 − λ)m , (2.6)
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with W (λ) =
∑m

i=1 1(pi > λ), where 1(·) is the indicator function. The minimum
adjusted p-value of this procedure is

fSimes−Storey(p1, . . . , pm) =

⎧⎨
⎩min

{
min

k:p(k)≤λ

{
mπ̂0(λ)p(k)/k

}
, 1
}

p(1) ≤ λ

1, p(1) > λ

(2.7)

It was proved by [52] that the adaptive BH procedure with Storey’s estimator
for π0 controls the FDR under independence, therefore the test based on its min-
imum adjusted p-value, fSimes−Storey(p1, . . . , pm), is valid under independence.
In fact, we address a more general class of global null tests, induced by a certain
class of multiple testing procedures, including certain adaptive FDR-controlling
procedures. According to Remark 2.1, the tests induced by monotone multiple
testing procedures satisfy the desirable monotonicity property.

2.2. Testing a partial conjunction hypothesis

Consider a family of m elementary null hypotheses H1, . . . , Hm, and let m1
be the number of false null hypotheses in this family. Benjamini and Heller
[3] considered testing the partial conjunction null hypothesis H

u/m
0 : m1 < u

versus the alternative H
u/m
1 : m1 ≥ u, for a fixed u ∈ {1, . . . ,m}, addressing

the question whether the family contains at least u false null hypotheses. For
u = 1, the partial conjunction null reduces to the global null, and the tests
developed in [3] reduce to familiar tests, while for u = n, their tests lead to
rejecting the null if the maximum p-value is below the given significance level
α. In general, the p-value for testing H

u/m
0 , denoted by Pu/m, is valid if under

this partial conjunction null, i.e. in the case where m1 < u, P
[
Pu/m ≤ x

]
≤ x

for all x ∈ [0, 1]. Benjamini and Heller [3] developed the following method for
constructing valid partial conjunction p-values Pu/m: given a certain combining
function f for the global null hypothesis, which is valid for the dependency
among the p-values in any subgroup A ⊆ {1, . . . ,m} of size m−u+1 and which
is non-decreasing in each of its components, obtain a pooled p-value Pu/m by
applying the function f on the m− u + 1 largest p-values. Since the combining
function f is non-decreasing in each of its components, this method is equivalent
to computing the global null combined p-value for each subgroup A ⊆ {1, . . . ,m}
of size m−u+1 and taking the maximum of all the combined p-values. Denoting
by pA the set of p-values for the hypotheses in group A, Pu/m can be written
as follows:

Pu/m = max{f(pA) : A ⊆ {1, . . . ,m}, |A| = m− u + 1}.

See [3] for partial conjunction p-values based on Fisher’s, Stouffer’s, Simes’,
and Bonferroni’s methods. Let us obtain the partial conjunction p-value for
testing H

u/m
0 , based on the combining function (2.7), which is non-decreasing
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in each coordinate. For obtaining Pu/m, we apply the combining function (2.7)
on the largest m− u + 1 p-values. Let

π̂
u/m
0 (λ) =

1 +
∑m

i=u 1(p(i) > λ)
(m− u + 1)(1 − λ) ,

and define S(λ) = {k ∈ {1, . . . ,m− u + 1} : p(u−1+k) ≤ λ}. Then

P
u/m
Simes−Storey =

⎧⎨
⎩min

{
min

k∈S(λ)

{
(m− u + 1)π̂u/m

0 (λ)p(u−1+k)/k
}
, 1
}

p(u)≤λ

1, p(u)>λ

(2.8)

Since the combining function (2.7) gives a valid global null p-value under inde-
pendence among p1, . . . , pm, the partial conjunction p-value given above is valid
for testing H

u/m
0 under independence.

3. Testing a family of partial conjunction hypotheses: preliminaries
and general results

3.1. The setting

Assume one has M elementary null hypotheses, H1, . . . , HM , with p-values
p1, . . . , pM , respectively. The set of hypotheses is divided into G disjoint groups.
Let Ag ⊆ {1, . . . ,M} be the set of indices of hypotheses belonging to group g,
and let ng = |Ag| be the number of hypotheses in group g. Denote by kg the
(unknown) number of false null hypotheses in group g.

The researcher is interested in testing the family of G partial conjunction
hypotheses for the given groups, {Hug/ng

0 , g = 1, . . . , G}, based on partial con-
junction p-values {Pug/ng

g , g = 1, . . . , G}, where for each g ∈ {1, . . . , G}, Pug/ng
g

is a combination of p-values for the hypotheses in group g. When ug = 1 for
g = 1, . . . , G, this is the family of global null hypotheses. When the group sizes
are equal, i.e. ng = n for g = 1, . . . , G, it seems natural to test partial con-
junction hypotheses with a common value ug = u for each group. However,
when the groups are of different sizes and the researcher wishes to identify
groups in which at least a proportion p ∈ (0, 1] of the null hypotheses are
false, the values of ug may differ across groups. Let G0 ⊆ {1, . . . , G} be the
set of indices for which the partial conjunction null hypotheses are true, i.e.
G0 = {g ∈ {1, . . . , G} : kg < ug}.

We consider the case where a certain multiple testing procedure receives as
input the partial conjunction p-values {Pug/ng

g , g = 1, . . . , G}, and outputs the
set indices of rejected partial conjunction hypotheses, R = R(p1, . . . , pM ) ⊆
{1, . . . , G}. The FWER for the family of partial conjunction hypotheses is

P [|R ∩ G0| > 0] ,
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while the weighted FDR, introduced in [6], for the family of partial conjunction
hypotheses is

FDRPC
v := E

[∑
g∈G0

vgI(g ∈ R)∑G
g=1 vgI(g ∈ R)

]
, (3.1)

where the penalty weights (v1, . . . , vG) reflect the penalties for false rejections
of partial conjunction hypotheses, and the rewards for true rejections. The
weighted FDR reduces to the regular FDR when all the penalty weights are
equal to unity. Benjamini and Hochberg [6] developed a variant of the BH pro-
cedure controlling the weighted FDR. The partial conjunction hypotheses may
also be associated with prior weights (w1, . . . , wG), reflecting prior beliefs re-
garding their truth status, which may be used for increasing the power of a
multiple testing procedure, as suggested by ([24]). Unlike the penalty weights,
prior weights do not play any role in the definition of the weighted FDR. Follow-
ing ([12]), we consider the general case where the partial conjunction hypotheses
are associated with both types of weights.

3.2. Preliminary definitions

Blanchard and Roquain [12] developed two sufficient conditions for FDR control
of a multiple testing procedure. In this section we review the definitions of
[12] and [13] which shall be used for obtaining sufficient conditions for FDR
control on partial conjunction hypotheses. Consider a family of m hypotheses
H1, . . . , Hm, with p-values p = (p1, . . . , pm), which are valid, in the sense that for
any true null hypothesis Hi, P [pi ≤ x] ≤ x for all x ∈ [0, 1]. Assume that these
hypotheses are associated with a vector of prior weights w = (w1, . . . , wm), and
a vector of penalty weights v = (v1, . . . , vm). Recall that given a rejection set
R and the set of indices of true null hypotheses M0 ⊆ {1, . . . ,m}, the weighted
FDR with penalty weights given by v is defined as

FDRv = E

[∑
i∈M0

viI(i ∈ R)∑m
i=1 viI(i ∈ R)

]
.

Define |A|v ≡
∑m

i=1 viI(i ∈ A) as the volume of the set A, for any A ⊆
{1, . . . ,m}. Then the weighted FDR can be written as

E

[
|M0 ∩R|v

|R|v

]
.

Note that for v = (1, . . . , 1), | · |v is simply the cardinality measure, and the
weighted FDR reduces to the regular FDR. A threshold collection of a multi-
ple testing procedure used for testing the family {H1, . . . , Hm} was defined by
Blanchard and Roquain [12] as follows.

Definition 3.1 (Blanchard and Roquain, [12]). A threshold collection Δ is a
function

Δ : (i, r) ∈ {1, . . . ,m} × R
+ �→ Δ(i, r) ∈ R

+,
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which is non-decreasing in its second variable.

Following [12] we consider the factorized threshold collection of the following
form: ∀(i, r) ∈ {1, . . . ,m} × R

+,

Δ(i, r) = αwiβ(r)/m, (3.2)

where wi is a prior weight for Hi, i = 1, . . . ,m, and β : R+ → R
+ is a non-

decreasing function called a shape function. Following [13], we also consider
an adaptive threshold collection of the following form: ∀(i, r) ∈ {1, . . . ,m} ×
{1, . . . ,m},

Δ(i, r) = Δ(r) = αrπ̂−1
0 /m, (3.3)

where π̂0 is the estimator for π0, the proportion of nulls. This threshold collection
does not incorporate prior or penalty weights. In all the definitions below, we
set v = (1, . . . , 1) for multiple testing procedures with thresholds of form (3.3).
Given a threshold collection Δ, define LΔ(r) as in [12], i.e.

LΔ(r) = {i ∈ {1, . . . ,m} : pi ≤ Δ(i, r)}.

We are now ready to review several properties of multiple testing procedures,
which shall be considered in the following sections.

Definition 3.2. Let R = R(p) ⊆ {1, . . . ,m} be the set of indices of rejected
hypotheses by a given multiple testing procedure. For each i ∈ {1, . . . ,m}, let
p−i be the vector of p-values excluding pi.

1. A multiple testing procedure is self-consistent with respect to threshold
collection Δ of form (3.2) or (3.3) if the following inclusion holds almost
surely:

R ⊆ LΔ(|R|v). (3.4)

2. The multiple testing procedure is non-increasing if |R(p)|v is
non-increasing in each p-value.

3. The multiple testing procedure is stable if for each i ∈ R, fixing p−i and
changing pi as long as i ∈ R will not change the set R. For such procedure,
we denote by R−i = R−i(p−i) the rejection set which is obtained when
the p-values for all the hypotheses except Hi are given by p−i, and pi has
any value such that Hi is rejected.

4. A stable multiple testing procedure is concordant if for each i ∈ {1, . . . ,m},
|R−i|v is non-increasing in each coordinate of p−i.

The definitions in items 1 and 2 were given in [12] and [13]. The property
in item 3 was defined in [14]. Properties similar to those in items 3 and 4
were defined in [1] and [9]. Blanchard and Roquain [12] showed that step-up
and step-down procedures, or more generally, step-up-down procedures ([54])
are self-consistent. The BH procedure and its weighted variants, suggested by
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[6] and [24], are special cases of the doubly-weighted BH procedure considered
by [12], which is self-consistent with respect to thresholds of form (3.2). More
conservative procedures satisfying self-consistency property with respect to the
same collection of thresholds were developed for addressing certain constraints,
such as structural constraints on the rejection set, which may be natural in
some applications. Examples are the procedure in [17] which was suggested for
controlling the FDR in genome-wide association studies, and its generalization,
Focused BH, suggested in [39] for FDR control on the filtered set of discoveries.
The monotonicity defined in item 2 is a very natural property, satisfied by
many commonly used multiple testing procedures. Stability and concordance
are satisfied for any step-up procedure with thresholds of form (3.2), including
the BH procedure and its weighted variants (see Appendix A.3 for a proof).

The adaptive BH procedure incorporating Storey’s estimator (2.6) for the
proportion of nulls is non-increasing and self-consistent with respect to thresh-
olds of form (3.3). For a general adaptive procedure with thresholds of form
(3.3), let us consider the following conditions on the estimator for the propor-
tion of nulls π̂0, following [13]:

Condition 3.1. (a) The estimator π̂0 : [0, 1]m → (0,∞) is a measurable,
coordinate-wise non-decreasing function. (b) If the p-values (p1, . . . , pm) are in-
dependent, then for any true null hypothesis Hi, E [1/π̂0(p0,i)] ≤ 1/π0, where
p0,i is the vector of p-values with pi replaced by 0.

The condition that the estimator π̂0 is non-decreasing in each p-value is very
natural, and it is satisfied by Storey’s estimator (2.6). Benjamini, Krieger, and
Yekutieli [7] proved that this estimator satisfies part (b) of Condition 3.1 as well.
See Corollary 13 of [13] for other estimators satisfying Condition 3.1. In the next
sections we rely on the definitions above for formulating sufficient conditions for
FDR control on partial conjunction hypotheses.

3.3. Results for general valid partial conjunction p-values

We assume hereafter that for each g = 1, . . . , G, the partial conjunction p-
value P

ug/ng
g is a combination of the p-values for the hypotheses belonging to

Ag. Then the dependence among the partial conjunction p-values is induced
by the combining method and the dependence among the elementary p-values.
The following proposition shows several sufficient conditions for FDR control on
partial conjunction hypotheses for general valid partial conjunction p-values. It
addresses the following assumptions on the dependency structure:

A1 The p-values in each group are independent of the p-values in any other
group.

A2 The set of partial conjunction p-values {Pug/ng
g , g = 1, . . . , G} satisfies the

PRDS property on the subset G0 (i.e. the subset of indices of true partial
conjunction null hypotheses).
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Proposition 3.1. Let {Hug/ng

0 , g = 1, . . . , G} be a family of partial conjunction
hypotheses associated with penalty weights {vg, g = 1, . . . , G} and prior weights
{wg, g = 1, . . . , G} satisfying

∑
g∈G vgwg = G. Let {Pug/ng

g , g = 1, . . . , G} be
the set of corresponding partial conjunction p-values, and assume that the depen-
dency among the elementary p-values within each group is such that these partial
conjunction p-values are valid for testing the family {Hug/ng

0 , g = 1, . . . , G}.
Consider the following assumptions:

1. Assumption A1 is satisfied, and the multiple testing procedure satisfies
either of the following conditions:
1.1 The procedure is non-increasing and is self-consistent with respect to

thresholds of form (3.2) with identity shape function β(x) = x.
1.2 The procedure is non-increasing and is self-consistent with respect to

thresholds of form (3.3), where π̂0 satisfies Condition 3.1.
2. Assumption A2 is satisfied, and the multiple testing procedure is non-

increasing and is self-consistent with respect to thresholds of form (3.2)
with identity shape function β(x) = x.

3. The p-values across groups are arbitrarily dependent, and the multiple test-
ing procedure is self-consistent with respect to thresholds of form (3.2) with
the shape function of the form

βν(r) =
∫ r

0
xdν(x), (3.5)

where ν is an arbitrary probability distribution on (0,∞).

If the assumptions of either of the three items above are satisfied, then the mul-
tiple testing procedure guarantees FDRPC

v ≤ α.

Remark 3.1. For item 1 along with 1.1, as well as for items 2 and 3, one has
a tighter bound for FDRPC

v . Specifically, one has

FDRPC
v ≤ α

G

∑
g∈G0

vgwg ≤ α.

This proposition follows immediately from the results of [12] and [13]. Since
the partial conjunction p-values are combinations of within-group elementary
p-values, under the assumptions of item 1, the partial conjunction p-values are
independent. Therefore, the result of item 1 along with item 1.1 follows from
Propositions 2.7 and 3.3 of [12]. The result of item 1 along with item 1.2 follows
from Theorem 11 of [13]. In the case of item 2, satisfy the PRDS property,
while in the case of item 3, the partial conjunction p-values may be arbitrarily
dependent. Therefore, items 2 and 3 follow from Propositions 3.6 and 3.7 in [12]
respectively, in conjunction with Proposition 2.7 in that paper.

As mentioned in Section 3.2, many multiple testing procedures with thresh-
olds of form (3.2) are non-increasing and self-consistent, including the BH pro-
cedure and its generalizations incorporating weights, unified by the doubly-
weighted BH procedure in [12]. In addition, several adaptive variants of the BH
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procedure satisfy the conditions of item 1.2, including the adaptive BH proce-
dure with Storey’s estimator (2.6). Therefore, under independence across groups,
all these procedures guarantee FDR control on partial conjunction hypotheses,
if valid partial conjunction p-values are given as input to the procedure. How-
ever, as discussed in the introduction, when the p-values belonging to different
groups are dependent, it may be not clear whether the partial conjunction p-
values satisfy the PRDS property on the subset of true partial conjunction nulls,
as required in item 2. In these cases, one may revert to replacing the identity
shape function β(r) = r by the shape function of form (3.5), which gives FDR
control guarantees under arbitrary dependence among the partial conjunction
p-values, according to item 3. However, this replacement results in lower thresh-
olds leading to loss of power, because βν(r) ≤ r. For example, the adjustment
of the BH procedure for addressing arbitrary dependence, suggested by [8], re-
places the identity shape function by βν(r) = r/(

∑m
j=1 1/j). In Section 4 it is

shown that for several dependency structures among the elementary p-values,
this conservative adjustment is not needed if certain methods for constructing
partial conjunction p-values are used.

4. Results for partial conjunction p-values connected to multiple
testing procedures

This section addresses the setting described in Section 3.1. According to Corol-
lary 2.1 and Remark 2.1, the minimum adjusted p-value of a multiple testing
procedure is a valid global null p-value, which is non-decreasing in each ele-
mentary p-value, provided that the multiple testing procedure guarantees FDR
control in the weak sense and is monotone according to Definition 2.1. In Sec-
tion 2.2, we showed the method of [3] for obtaining a partial conjunction p-
value based on a certain coordinate-wise non-decreasing combining function for
testing the global null. Taking these two results together, we may obtain par-
tial conjunction p-values connected to multiple testing procedures. Examples
are partial conjunction p-values based Simes’, Hommel’s, Bonferroni methods,
which are connected (in the above sense) to BH, BY, and Bonferroni procedures,
respectively. Similarly, the partial conjunction p-value in (2.8) is connected to
the adaptive BH method with Storey’s estimator (2.6) for the proportion of
nulls.

We consider the case where for each g ∈ {1, . . . , G}, the partial conjunction
p-value P

ug/ng
g is connected to a certain multiple testing procedure Mg which

is monotone according to Definition 2.1. Formally,

Pug/ng
g = max{P 1/(ng−ug+1)[A] : A ⊆ Ag, |A| = ng − ug + 1}, (4.1)

where P 1/(ng−ug+1)[A] is the minimum adjusted p-value according to Mg ap-
plied on the p-values with indices in A. The multiple testing procedures Mg

may be different for different groups g, for example for certain groups one may
use the partial conjunction p-value based on Simes’ method, while for the other



116 M. Bogomolov

groups one may revert to Bonferroni’s method. The next theorem addresses such
partial conjunction p-values.

Let p−g be the vector of p-values for the hypotheses not belonging to group
g, and for each i ∈ Ag, let p−i

g be the vector of p-values for the hypotheses in
group g, excluding Hi. We consider the following dependency structures among
the elementary p-values:

D1 Independence within each group: for each g ∈ {1, . . . , G}, the p-values in
the set {pi, i ∈ Ag} are independent.

D2 Overall positive dependence: the set of all the p-values, p1, . . . , pM , is
PRDS on the subset of true null hypotheses.

D3 Conditional positive dependence across groups: for each g ∈ {1, . . . , G},
and each true null hypothesis Hi in group g, the vector p is PRDS with
respect to pi, conditionally on p−i

g , i.e. P
[
p ∈ D | pi = x,p−i

g = y
]

is non-
decreasing in x, for any non-decreasing set D ∈ [0, 1]M , and any vector
y ∈ [0, 1]ng−1.

D4 Positive dependence across groups: for each g ∈ {1, . . . , G}, and each true
null hypothesis Hi in group g, the vector (p−g, pi), consisting of pi along
with p-values for the hypotheses not belonging to group g, is PRDS with
respect to pi, i.e. P [(p−g, pi) ∈ D | pi = x] is non-decreasing in x, for any
non-decreasing set D ∈ [0, 1]M−ng+1.

In addition, we consider the following assumptions on multiple testing pro-
cedures:

T1 A multiple testing procedure is non-increasing.
T2 A multiple testing procedure is self-consistent with respect to thresholds

of form (3.2) with prior and penalty weights equal to unity and identity
shape function β(x) = x.

T3 A multiple testing procedure is stable and concordant.
T4 A multiple testing procedure is self-consistent with respect to thresholds

of form (3.3), where π̂0 satisfies Condition 3.1.

Theorem 4.1. Let M be a self-consistent multiple testing procedure with re-
spect to thresholds of form (3.2) with identity shape function β(x) = x. Consider
a family of partial conjunction hypotheses {Hug/ng

0 , g = 1, . . . , G}, associated
with prior weights {wg, g = 1, . . . , G} and penalty weights {vg, g = 1, . . . , G},
satisfying

∑G
g=1 wgvg = G. Let Mg, g = 1, . . . , G be multiple testing proce-

dures satisfying the monotonicity property given in Definition 2.1. Assume that
for each g ∈ {1, . . . , G}, the partial conjunction p-value P

ug/ng
g is connected to

Mg in the sense of (4.1). In each of the following three cases, requiring ad-
ditional assumptions on the procedure M, the procedures Mg, g = 1, . . . , G,
and the dependency among the elementary p-values, the procedure M applied
on {Pug/ng

g , g = 1, . . . , G} at level α guarantees

FDRPC
v ≤ α

G

∑
g∈G0

vgwg ≤ α.
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1. (a) The p-values (p1, . . . , pM ) satisfy the overall positive dependence prop-
erty, as defined in item D2.

(b) The multiple testing procedure M satisfies assumption T1.
(c) For each g ∈ {1, . . . , G}, the multiple testing procedure Mg satisfies

assumption T2.
2. (a) The p-values (p1, . . . , pM ) satisfy conditional positive dependence

across groups, and independence within each group, as defined in
items D3 and D1.

(b) The multiple testing procedure M satisfies assumption T3.
(c) For each g ∈ {1, . . . , G}, the multiple testing procedure Mg satisfies

assumption T4.
3. (a) The p-values (p1, . . . , pM ) satisfy positive dependence across groups,

as defined in item D4, and the dependence among the p-values within
each group is unspecified.

(b) The multiple testing procedure M satisfies assumption T3.
(c) The partial conjunction p-values are connected to the Bonferroni pro-

cedure, i.e. for each g ∈ {1, . . . , G}, P
ug/ng
g = (ng − ug + 1)pg(ug),

where pg(1) ≤ . . . ≤ pg(ng) is the sequence of ordered p-values for the
hypotheses in group g.

The results of Theorem 4.1 rely on the sufficient conditions for FDR con-
trol obtained by [12], as well as an additional pair of such sufficient conditions,
which we obtain using the techniques of [12] (see Section 6.1). Each pair of
conditions addresses the multiple testing procedure and the dependency struc-
ture. The condition addressing the dependency structure follows from Lemma
6.1, which generalizes the group-level super-uniformity lemma of [48]. The cases
of independence across groups and arbitrary dependence across groups are not
considered in this theorem, since they are covered by Proposition 3.1.

The doubly-weighted BH procedure considered by ([12]) is self-consistent with
respect to thresholds of form (3.2), is non-increasing, stable, and concordant.
Therefore, for this procedure we obtain the following corollary:

Corollary 4.1. The doubly-weighted BH procedure at level α applied on the
partial conjunction p-values {Pug/ng

g , g = 1, . . . , G} guarantees FDRPC
v ≤ α in

each of the following three cases:

1 The p-values are positively dependent in the sense of item D2, and the
partial conjunction p-values are based on Simes’ combining method (2.3).

2 The p-values are independent within each group and are conditionally pos-
itively dependent across the groups, in the sense of items D1 and D3, and
the partial conjunction p-values are computed using Simes-Storey function
given in (2.8), i.e. they are connected in the sense of (4.1) to the adaptive
BH procedure with Storey’s estimator for the proportion of nulls.

3 The p-values are positively dependent across the groups, in the sense of
item D4, are arbitrarily dependent within the groups, and the partial con-
junction p-values are based on Bonferroni’s method.
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The result of item 1 with respect to the global null hypotheses (i.e. for the
case where ug = 1 for g = 1, . . . , G) follows from the results of [48]. Item 1
generalizes this result, addressing in addition partial conjunction hypotheses
with ug > 1. It is easy to see that the dependency structure in item 2 satisfies
the overall positive dependence requirement of item 1, so under the condition
of item 2, the doubly-weighted BH procedure is valid when applied on Simes’
partial conjunction p-values. However, the more strict requirement of item 2
allows to replace these p-values by Simes-Storey partial conjunction p-values,
which are more liberal for the groups which are enriched with signal. The result
of item 2 is useful for the meta-analysis setting, see Section 5. Finally, item
3 shows that when relaxing the independence within groups requirement in
item 2, and requiring unconditional positive dependence across groups, the error
control is still guaranteed when the doubly-weighted BH procedure is applied on
the Bonferroni partial conjunction p-values. Theorem 4.1 shows that when the
doubly-weighted BH procedure is replaced by a more conservative self-consistent
procedure with respect to thresholds of form (3.2), possibly due to the structural
constraints on the set of rejected partial conjunction hypotheses (see Section
3.2 for examples), we have the same results as in Corollary 4.1 under lenient
assumptions on the procedure. Under the assumptions of item 2, one can also
replace Storey’s estimator by another estimator satisfying Condition 3.1, see
Section 3.2.

It may be of interest to consider the results of Theorem 4.1 for two extreme
cases: G = M and G = 1. In the first case, each group consists of one hypothesis,
so ng = ug = 1, and FDRPC

v reduces to the weighted FDR for the elementary
hypotheses. The partial conjunction p-value based on Simes’ method satisfies
the assumption of part (c) in item 1, and in this extreme case, for each group g
this partial conjunction p-value reduces to the elementary p-value of the single
hypothesis in group g. Both types of positive dependence across groups reduce
to overall positive dependence in this case, therefore the result of Theorem 4.1
under the assumptions of item 1 follows from combining Proposition 3.6 and
Proposition 2.7 of [12]. In the second case, where G = 1, the entire set of
p-values constitutes one group. Consider Theorem 4.1 with the BH procedure
taking the role of M. In this extreme case, the BH procedure reduces to rejecting
the single partial conjunction null when the given partial conjunction p-value is
upper bounded by α. Therefore, FDRPC

v is simply the significance level of the
partial conjunction test. Thus, Theorem 4.1 shows that in each of the cases 1,
2, and 3, a partial conjunction p-value satisfying assumption (c) is valid under
the dependence assumption (a) within the single group. Particularly, the partial
conjunction p-values based on Simes’, Simes-Storey, and Bonferroni methods,
are valid under PRDS dependence, independence, and arbitrary dependence,
respectively. These are also known results, see Section 2.

Finally, we would like to note that Corollary 4.1 may be used for obtaining
several results on Simes’ p-value, which is the minimum adjusted p-value of the
BH procedure. Obviously, each of the dependency structures considered in the
corollary holds when we restrict the problem to any subset of groups, i.e. when
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we consider testing {Hug/ng

0 , g ∈ Gs}, where Gs ⊆ {1, . . . , G}. Therefore, the
BH procedure controls the FDR in each of the cases considered not only for the
entire family of partial conjunction hypotheses, but also for any subset of those
hypotheses. Using this fact along with Corollary 2.1, we obtain the following
result.

Corollary 4.2. Let Gs ⊆ {1, . . . , G} be a subset of group indices, and consider
applying Simes’ combining function (2.3) on the partial conjunction p-values in
the set {Pug/ng

g , g ∈ Gs}. The combined p-value is valid for testing the inter-
section of partial conjunction hypotheses ∩g∈GsH

ug/ng

0 in each of the three cases
considered in Corollary 4.1.

Obviously, the same result holds for the weighted variant of Simes’ p-value,
which is the minimum adjusted p-value of the doubly-weighted BH procedure.
The fact that Simes’ p-value is valid when it receives as input Simes’ global
null p-values and all the elementary p-values are PRDS has been proven by [48]
(see item (d) of their group-level superuniformity lemma). Corollary 4.2 gen-
eralizes this result, addressing general Simes’ partial conjunction p-values, as
well as other dependency structures and combining methods. Consider a pro-
cedure based on the closed testing principle of [41], which considers the family
{Hug/ng

0 , g = 1, . . . , G} as the family of elementary hypotheses, and tests the
intersections of these hypotheses using Simes’ test applied on the corresponding
partial conjunction p-values. Based on Corollary 4.2, we obtain that in each of
the three cases of Corollary 4.1, all these Simes’ tests are valid, therefore this
procedure guarantees FWER control on the partial conjunction hypotheses, as
well as on the entire set of all their intersections. In fact, it reduces to Hom-
mel’s procedure ([37]) applied on partial conjunction p-values. We conclude that
Hommel’s procedure, as well as its shortcuts (see, e.g., [34], [42], [28], [27]) are
valid for FWER control on the partial conjunction hypotheses in cases 1–3 of
Corollary 4.1. Moreover, Goeman and Solari ([28]) showed that closed testing
with valid local tests can be used for controlling the false discovery proportions
(FDP) over all subsets, and suggested using this approach for more flexible mul-
tiple testing. In our setting, this approach gives the flexibility to select a subset
of groups post-hoc, and to estimate the number of false partial conjunction hy-
potheses for those selected groups. We discuss this goal and the implications of
Corollary 4.2 in more detail in Section 7.

5. The meta-analysis setting

5.1. Preliminaries

We consider the setting where the set of m features are tested in n ≥ 2 indepen-
dent studies. The corresponding hypotheses can be arranged in a matrix with
m rows and n columns, where the (i, j)th entry of the matrix is Hij , the null
hypothesis for feature i in study j. Consider the corresponding m×n matrix of
p-values for these hypotheses, p, where pij is the p-value for Hij , i = 1, . . . ,m;
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j = 1, . . . , n. The hypotheses belonging to the same row are those corresponding
to the same feature in different studies.

For feature i ∈ {1, . . . ,m}, let k(i) be the number of studies where feature
i has an effect, i.e. the number of false null hypotheses in the set {Hij , j =
1, . . . , n}. For u ∈ {1, . . . , n}, consider the family of partial conjunction nulls
{Hu/n

i , i = 1, . . . ,m}, where H
u/n
i states that feature i has an effect in less than

u studies, i.e. Hu/n
i : k(i) < u. For u = 1, identifying false null hypotheses in this

family corresponds to identifying features with an effect in at least one study,
which corresponds to the typical goal of meta-analysis. Testing this family for
u ≥ 2 corresponds to identifying features with an effect in at least u studies,
which is considered as the goal of replicability analysis (see, e.g., [4], [58], [33],
[18]).

Denote by p·j the vector of m p-values in column j, and by p·(−j) the m ×
(n − 1) matrix which is obtained from p by excluding column j. Similarly, pi·
and p(−i)· denote the vector of n p-values in row i, and the (m− 1)× n matrix
which is obtained from p by excluding row i, respectively. We denote by p,
p·(−j), and p(−i)· the vectors obtained by stacking the rows of p, p·(−j), and
p(−i)·, respectively.

5.2. Multiple testing of partial conjunction hypotheses in the
meta-analysis setting

We address testing the family {Hu/n
i , i = 1, . . . ,m} with (weighted) FDR con-

trol. A typical meta-analysis addresses independent studies, so we assume inde-
pendence across columns: for each j ∈ {1, . . . , n}, the vectors p·j and p·(−j) are
independent. Thus, for obtaining valid partial conjunction p-values, one may use
any combining method which is valid under independence, such as Stouffer’s,
Fisher’s, or Simes-Storey (2.8) methods. The dependency within the columns,
in combination with the chosen partial conjunction p-values, guides the choice
of the multiple testing procedure, which should guarantee the desired error
rate control for the induced dependencies among those combined p-values. For
the results below, the following dependencies are considered within each study
j ∈ {1, . . . , n}, in conjunction with the assumption of independence across stud-
ies:

M1 Positive dependence: the vector of p-values for the hypotheses in study j,
p·j , satisfies the PRDS property on the subset of true null hypotheses.

M2 Independence: the p-values within p·j are independent.
M3 Arbitrary dependence: the dependence among {pij , i = 1, . . . ,m} is un-

specified.

To obtain an analogy to the dependency structures in Section 4, it is useful
to note that in the current matrix setting, the hypotheses may be viewed as
divided into m groups, where the hypotheses within each row of the matrix form
a group. As in Sections 3 and 4, a partial conjunction hypothesis is considered
for each group (corresponding to a specific feature), and the goal is (weighted)
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FDR control for the tested family of m partial conjunction hypotheses. The
independence across the studies translates to independence of p-values within
each group. Assuming in addition independence within each study (as defined
in item M2), we obtain independence across the groups, as defined in item A1
in Section 3.3. Similarly, arbitrary dependence within each study translates to
arbitrary dependence across groups. Therefore, the theoretical results for the
dependencies in items M2 and M3 are covered by items 1 and 3 of Proposition
3.1, respectively. Let us consider the dependency structure in item M1, where the
p-values are positively dependent within each study, and are independent across
the studies. We show in Appendix A.4 that this dependency structure satisfies
conditional positive dependence across groups and independence within groups,
defined in items D3 and D1 in Section 4, respectively, as well as overall positive
dependence, defined in item D2 in Section 4. Therefore, the results of Theorem
4.1 addressing the dependencies above hold for the dependency structure in M1.
The following theorem states this result, and an additional result addressing
Fisher’s and Stouffer’s methods for obtaining partial conjunction p-values. The
theorem addresses assumptions T1–T4 given in Section 4.

Theorem 5.1. Consider the meta-analysis setting, where the interest lies in
testing the family {Hu/n

i , i = 1, . . . ,m} for a specific u ∈ {1, . . . , n}. Assume
that this family is associated with prior weights {wi, i = 1, . . . ,m}, and penalty
weights {vi, i = 1, . . . ,m}, satisfying

∑m
i=1 wivi = m. Let M be a self-consistent

multiple testing procedure with respect to thresholds of form (3.2) with identity
shape function β(x) = x. Assume independence of p-values across the studies,
meaning that for each j ∈ {1, . . . , n}, the vectors p·j and p·(−j) are independent.
In addition, assume positive dependence within each study, in the sense of item
M1. In each of the following cases, procedure M applied on {Pu/n

i , i = 1, . . . ,m}
at level α guarantees

FDRPC
v ≤ α

m

∑
i∈M0

viwi ≤ α,

where M0 = {i ∈ {1, . . . ,m} : Hu/n
i is true}, the index set of features for which

the partial conjunction null is true.

1. The partial conjunction p-values are connected to a monotone multiple
testing procedure Mg, in the sense of (4.1), and the multiple testing pro-
cedures M,Mg satisfy either (a) or (b):
(a) M satisfies assumption T1 and Mg satisfies assumption T2
(b) M satisfies assumption T3 and Mg satisfies assumption T4

2. The multiple testing procedure M satisfies assumption T1, the partial con-
junction p-values are based on Fisher’s or Stouffer’s methods, and the el-
ementary p-values for true null hypotheses are U(0, 1) random variables.

Remark 5.1. All our theoretical results are obtained under the assumption that
the elementary p-values are valid, i.e. for each true null elementary hypothesis,
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the p-value is either U(0, 1) random variable, or is stochastically larger than this
variable. For the result of item 2 of Theorem 5.1, we make a stronger assump-
tion, which holds when all the test statistics are continuous.

As a corollary, we obtain that under independence across studies and positive
dependence within each study, the doubly-weighted BH procedure guarantees
weighted FDR control on the family {Hu/n

i , i = 1, . . . ,m}, when the p-values
are based on Simes’, Simes-Storey (2.8), Fisher’s, or Stouffer’s methods, and
the test statistics are continuous. The result of item 2 is a generalization of
the result of [3], showing that in the matrix setting, where the p-values within
each column are positively dependent, and the p-values across the columns are
independent, the BH procedure guarantees FDR control when applied on partial
conjunction p-values based on Stouffer’s or Fisher’s methods. Item 2 shows that
this result remains true for the weighted variants of the BH procedure, as well as
other self-consistent procedures with respect to thresholds of form (3.2), possibly
incorporating structural constraints on the rejection set (see Section 3.2 for
examples). This result is based on Lemma 6.2, which may be of independent
interest.

5.3. Assessing the replicability extent for each feature

As discussed above, identifying features with replicated signals can be made by
testing {Hu/n

i , i = 1, . . . ,m} for u ≥ 2. However, as noted by [4], it may be not
clear what value of u should be chosen to establish replicability. For example, if
n > 2, the replicability strength for features with an effect in all studies, i.e. those
with k(i) = n, is stronger than for features with an effect in only two studies.
Thus, it may be of interest to assess the replicability extent for certain features.
For this purpose, Benjamini et al. [4] developed a procedure, which selects the
features with evidence for having an effect in at least one study by applying the
BH procedure on the global null p-values {P 1/n

i , i = 1, . . . ,m}, and estimates, for
each selected feature i, a lower bound k̂(i) for k(i), the number of studies where
feature i has an effect. This procedure is based on sequential testing of partial
conjunction hypotheses for the selected features. Benjamini et al. [4] proved that
it controls the expected proportion of features with false replicability claims,
i.e. k̂(i) > k(i), out of all the selected features, under independence within each
study.

In this section an extension of the procedure of [4] is proposed, allowing gen-
eral selection rules based on the entire matrix pm×n for selecting the features for
which assessment of replicability strength will be made, as well as incorporating
prior and/or penalty weights for the features. Allowing general selection rules
seems to be valuable in practice: for example, a researcher may wish to assess
the replicability of findings of a specific study, addressing the BH procedure on
one column of the p-value matrix as the selection rule. Alternatively, one may
be interested in establishing replicability for features with global null p-values
smaller than a pre-specified threshold, such as Bonferroni’s threshold. Prior
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weights may be used for incorporating prior knowledge regarding the features,
both in the selection step and in assessing replicability. Penalty weights may be
incorporated in the error rate of [4] for assigning different prices for erroneous
replicability claims. Based on the theoretical results we developed in previous
sections, we also extend the theoretical results of [4], addressing positive and
arbitrary dependencies within the studies, in addition to independence.

Assume we are given a vector of penalty weights (v1, . . . , vm) and a vector of
prior weights (w1, . . . , wm) satisfying

∑m
i=1 viwi = m, as well as a selection rule

S, which receives as input the matrix p and outputs the indices of selected fea-
tures S = S(p) ⊆ {1, . . . ,m}. The target error rate of the generalized procedure
is

E

[∑
i∈S vi1(k̂(i) > k(i))

|S|v,

]
. (5.1)

This error rate reduces to the target error rate of [4] when all the penalty
weights are equal to unity. Given a shape function β : R+ → R

+, the generalized
procedure targeting control of (5.1) at level q is given by the following two-step
algorithm:

1. Apply a selection rule S, which receives as input the matrix of p-values p
and outputs the indices of selected features, S ⊆ {1, . . . ,m}.

2. For each selected feature i ∈ S, test sequentially the partial conjunction
hypotheses with u = 1, . . . , n at level wiβ(|S|v)q/m, in order to find

k̂(i) = max
{
u : max{P 1/n

i , P
2/n
i , . . . , P

u/n
i } ≤ wiβ(|S|v)q/m

}
,

and claim that k(i) ≥ k̂(i), i.e. feature i has an effect in at least k̂(i)
studies. The maximum of an empty set is defined as 0.

When the selection rule is the BH procedure applied on the global null p-values,
the prior and penalty weights are equal to unity, and the shape function β is the
identity function β(x) = x, the above procedure reduces to the procedure of [4].
This procedure guarantees that each selected feature i has a non-trivial lower
bound, i.e. k̂(i) > 0, provided that the global null p-values which are used in
Step 1 are computed using the same method as the partial conjunction p-values
used in Step 2. The same property holds for the generalized procedure, when
the BH selection rule is replaced by any multiple testing procedure applied on
global null p-values, provided that the procedure is self-consistent with respect
to thresholds of form (3.2), with the same shape function and weights as those
used in Step 2.

For theoretical results, we consider the following assumptions on the selection
rule in Step 1:

C1 The selection rule S is non-increasing, in the sense that |S(p(1))|v ≥
|S(p(2))|v, if p(1) and p(2) are m × n matrices satisfying p

(1)
ij ≤ p

(2)
ij , for

each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.
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C2 The selection rule S is stable and concordant with respect to rows of pm×n,
according to the following definitions:

(a) A selection rule S is stable if for each i ∈ S(p), fixing all p-values
in p(−i)·, and changing the p-values in row i so that feature i is still
selected, will not change the set S. Let S(−i)· = S(−i)·(p(−i)·) be
the set of selected features when the p-values not corresponding to
feature i are defined by p(−i)·, and the n p-values for feature i change
as long as feature i is selected.

(b) A stable selection rule S is concordant if for any two (m−1)×n ma-
trices p(1)

(−i)· and p(2)
(−i)· satisfying p(1)

(−i)· ≤ p(2)
(−i)·, where the inequal-

ity is understood coordinate-wise, it holds that |S(−i)·(p(1)
(−i)·)|v ≥

|S(−i)·(p(2)
(−i)·)|v.

When n = 1 and the features are selected if the corresponding hypotheses are
rejected by a given multiple testing procedure, each of the above properties re-
duces to the corresponding property of the given multiple testing procedure, as
defined in Section 3.2. Moreover, for the general case where n > 1, assume that
the selection of features is made by computing a certain combination of p-values
within each row (e.g. the global null p-values for each feature), and applying a
multiple testing procedure on these m combined p-values. Assume that the com-
bining function is non-decreasing in each coordinate, as it happens for common
global null combining functions. Then the selection rule is non-increasing if the
corresponding multiple testing procedure is non-increasing, and the same is true
with respect to stability and concordance. Therefore, the selection rule of [4],
which selects the features by applying BH on global null p-values, satisfies as-
sumptions C1 and C2 provided that the global null p-values are non-decreasing
in each elementary p-value. Moreover, if BH is replaced by its weighted variant,
these conditions are still satisfied. Finally, let us consider selecting the features
by applying a multiple testing procedure on the p-values of a specific study
j. Since for each row i, the combining function f(pi1, . . . , pin) = pij is non-
decreasing in each p-value, any non-increasing, stable and concordant multiple
testing procedure, such as those given above, will yield a selection rule with the
same properties. The following theorem addresses assumptions C1 and C2, as
well as assumptions T1–T4 given in Section 4.

Theorem 5.2. Assume independence of p-values across the studies, meaning
that for each j ∈ {1, . . . , n}, the vectors p·j and p·(−j) are independent. The
generalized procedure consisting of two steps above guarantees

E

[∑
i∈S vi1(k̂(i) > k(i))

|S|v

]
≤ q,

i.e. it controls the expected weighted proportion of selected features for which
false replicability claims were made, in each of the following cases.
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1. The shape function β is the identity function β(x) = x, the p-values within
each study are positively dependent in the sense of item M1 in Section 5.2,
and either of the following conditions hold:
(a) The selection rule S is non-increasing in the sense of item C1, the

partial conjunction p-values are based on Fisher’s or Stouffer’s meth-
ods, and the elementary p-values for true null hypotheses are U(0, 1)
random variables.

(b) The selection rule S is non-increasing in the sense of item C1 and
the partial conjunction p-values are connected in the sense of (4.1)
to a monotone multiple testing procedure which satisfies assumption
T2, such as those based on Simes’ method.

(c) The selection rule satisfies assumption C2, and the partial conjunc-
tion p-values are connected in the sense of (4.1) to a monotone mul-
tiple testing procedure which satisfies assumption T4, such as those
based on Simes-Storey method (2.8).

2. The shape function β is the identity function β(x) = x, the p-values within
each study are independent, the selection rule S is stable, and the partial
conjunction p-values may be arbitrary, as long as they are valid under
independence.

3. The shape function β is of form (3.5), e.g. β(x) = x/(
∑m

i=1 1/i), and the
method for obtaining partial conjunction p-values is valid under indepen-
dence. The dependence within each study and the selection rule S may be
arbitrary.

As mentioned above, the procedure of [4] is a special case of the procedure
considered in Theorem 5.2, and since the selection rule considered in [4] is stable,
the theoretical result of [4] is covered by item 2. Theorem 5.2 generalizes the
result of [4], showing that it remains to hold under positive dependence within
each study for several choices of partial conjunction p-values, such as those based
on Fisher’s, Stouffer’s, Simes’ and Simes-Storey (2.8) methods. Moreover, the
BH procedure may be replaced by other selection rules, and one may incorporate
prior and penalty weights, provided that the above conditions hold. Finally,
according to item 3, one may address arbitrary selection rules and arbitrary
dependencies within the studies by replacing the threshold wi|S|vq/m in Step
2 by a more conservative threshold, e.g. wi|S|vq/(m

∑m
i=1 1/i).

6. Sufficient conditions for FDR control and key lemmas

6.1. Sufficient conditions for FDR control

Several results in this paper are proved by showing that the two sufficient con-
ditions for FDR control, given by [12], are satisfied in the context of multiple
testing of partial conjunction hypotheses. For completeness, these sufficient con-
ditions are given in item 1 of the proposition below. An additional pair of similar
conditions is given in item 2 of this proposition, and is also useful for obtaining
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some results in this paper. We address here the setting and the definitions of
Section 3.2.

For each pair of sufficient conditions, the first condition is on the multiple
testing procedure, requiring self-consistency with respect to thresholds of form
(3.2). The second condition addresses primarily the dependency structure among
the p-values, requiring that for each true null hypothesis, its p-value and |R(p)|v
(replaced by another quantity for stable procedures), satisfy the dependency
control condition, defined below.

Definition 6.1 (Dependency control condition, [12]). Let β : R+ → R
+ be a

non-decreasing function. A couple (U, V ) of non-negative real random variables
satisfy the dependency control condition with shape function β if the following
inequalities hold:

∀c > 0, E

[
1(U ≤ cβ(V ))

V

]
≤ c.

Proposition 6.1. Let β : R+ → R
+ be a non-decreasing shape function, and

α a positive number. Consider a multiple testing procedure M with thresholds
of form (3.2), with shape function β and target FDR level α, which receives as
input the p-values p and outputs the set of rejected hypotheses R(p). In each of
the following two cases, the multiple testing procedure M guarantees

FDRv = E

[∑
i∈M0

vi1(i ∈ R)∑m
i=1 vi1(i ∈ R)

]
≤ α

m

∑
i∈M0

wivi ≤ α.

1. The multiple testing procedure M is self-consistent with respect to its
thresholds, and for each i ∈ M0, the couple (pi, |R|v) satisfies the de-
pendency control condition with respect to the shape function β.

2. The multiple testing procedure M is stable and self-consistent with respect
to its thresholds, and for each i ∈ M0, the couple (pi, |R−i|v) satisfies the
dependency control condition with respect to the shape function β.

Item 1 was proved by [12], see their Proposition 2.7. The proof of item 2 is
similar.

Proof of item 2 of Proposition 6.1. Assume the multiple testing procedure is
stable and self-consistent with respect to thresholds of form (3.2) with a certain
shape function β, and the couple (pi, |R−i|v) satisfies the dependency control
condition with respect to the same shape function β. Then, for this multiple
testing procedure,

FDRv = E

[∑
i∈M0

vi1(i ∈ R)∑m
i=1 vi1(i ∈ R)

]
=
∑
i∈M0

viE

[
1(i ∈ R)
|R|v

]

=
∑
i∈M0

viE

[
1{i ∈ R, pi ≤ wiβ(|R|v)α/m}

|R|v

]
(6.1)

=
∑
i∈M0

viE

[
1{i ∈ R, pi ≤ wiβ(|R−i|v)α/m}

|R−i|v

]
(6.2)
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≤
∑
i∈M0

viE

[
1{pi ≤ wiβ(|R−i|v)α/m}

|R−i|v

]
, (6.3)

where the equality in (6.1) follows from the fact that the multiple testing proce-
dure is self-consistent with respect to thresholds of form (3.2), i.e. R ⊆ {i : pi ≤
wiβ(|R|v)α/m}. The equality in (6.2) follows from the fact that the procedure
is stable, yielding that if i ∈ R, then R = R−i. Now, using the fact that for
each i ∈ M0, the pair (pi, |R−i|v) satisfies the dependency control condition
with respect to shape function β, we obtain for each i ∈ M0,

E

[
1{pi ≤ wiβ(|R−i|v)α/m}

|R−i|v

]
≤ wiα

m
.

Combining this inequality with (6.3), we obtain

FDRv ≤ α

m

∑
i∈M0

viwi.

6.2. Key lemmas

The main results in this paper are based on the following lemmas, in conjunction
with Proposition 2.7 in [12], which gives two sufficient conditions for (weighted)
FDR control, and item 2 of Proposition 6.1 addressing stable procedures. The
lemmas below yield that the second sufficient condition for (weighted) FDR
control, addressing primarily the dependency structure among the p-values, is
satisfied under the conditions of Theorems 4.1 and 5.1. Lemma 6.2 is used for
proving Theorem 5.2. Given a function g : [0, 1]k → [0,∞), we say that g is
non-increasing if for any two vectors x1,x2 ∈ [0, 1]k satisfying x1 ≤ x2 where
the inequality is understood coordinate-wise, it holds that g(x1) ≥ g(x2). The
lemmas address dependency structures D1–D4 and assumptions T1–T4 given
in Section 4.

Lemma 6.1. Consider the setting of Section 3.1, where p is the vector of all
the elementary p-values, and p−g is the vector of all the p-values excluding those
belonging to group g, for g = 1, . . . , G. Let g ∈ G0, so the partial conjunction null
for group g, Hug/ng

0 , is true. Assume that P
ug/ng
g is connected to a monotone

multiple testing procedure Mg in the sense of (4.1). Let f : [0, 1]M → [0,∞)
and h : [0, 1]M−ng → [0,∞) be two non-increasing functions.

1. Assume that the elementary p-values satisfy the overall positive dependence
condition, as defined in item D2. Assume that Mg satisfies assumption
T2, which holds, for example, if Pug/ng

g is based on Simes’ method. Then
the pair (Pug/ng

g , f(p)) satisfies the dependency control condition with the
identity shape function β(x) = x.

2. Assume that the elementary p-values satisfy conditional positive depen-
dence across groups and independence within each group, in the sense of



128 M. Bogomolov

items D3 and D1. Assume that Mg satisfies assumption T4, which holds,
for example, if P

ug/ng
g is based on Simes-Storey method (2.8). Then the

pair (Pug/ng
g , h(p−g)) satisfies the dependency control condition with the

identity shape function β(x) = x.
3. Assume that the elementary p-values satisfy positive dependence across

groups in the sense of item D4. Assume that Mg is the Bonferroni proce-
dure, i.e. Pug/ng

g = (ng − ug + 1)pg(ug), where pg(1) ≤ . . . ≤ pg(ng) is the
sequence of ordered p-values for the hypotheses in group g. Then, under
any dependency within each group, the pair (Pug/ng

g , h(p−g)) satisfies the
dependency control condition with the identity shape function β(x) = x.

Let us fix a certain partial conjunction p-value P
ug/ng
g . The result that the

dependency control condition holds for (Pug/ng
g , f(p)) with the identity shape

function β(x) = x for any non-increasing function f : [0, 1]M → [0,∞) is equiv-
alent to the result that the inequality

E

[
1(Pug/ng

g ≤ f(p))
f(p)

]
≤ 1 (6.4)

is satisfied for any such function f . The equivalence is obtained as follows.
Assume that (6.4) is satisfied for any non-increasing function f : [0, 1]M →
[0,∞). Given such function f and a constant c > 0, using the inequality in (6.4)
for f̃ = cf , which is also a non-increasing function, we obtain

E

[
1(Pug/ng

g ≤ cf(p))
f(p)

]
≤ c, (6.5)

which implies that the pair (Pug/ng
g , f(p)) satisfies the dependency control con-

dition. On the other hand, if the inequality in (6.5) holds for any non-increasing
function f : [0, 1]M → [0,∞) and for any c > 0, then it holds in particular for
c = 1, implying (6.4) for any such function f . The inequality (6.4) is similar
in form to the inequalities in the group-level superuniformity lemma of [48].
Moreover, based on the equivalence we showed above, we obtain that item 1 of
Lemma 6.1 for the case where ug = 1 and P

1/ng
g is based on Simes’ method

reduces to item (b) of the group-level superuniformity lemma of [48]. Therefore,
Lemma 6.1 may be viewed as complementing the group-level superuniformity
lemma of [48], extending the results for Simes’ global null p-values to general
partial conjunction p-values, and addressing additional combining methods and
dependency structures. Since the latter lemma was useful for proving FDR con-
trol results for some methods addressing groups of hypotheses, such as p-filter
[48], DAGGER [47], TreeBH [16], and Focused BH [39], Lemma 6.1 may be
useful for extending those results.

The following lemma addresses the meta-analysis setting given in Section
5.1, and is useful for obtaining theoretical results addressing positive depen-
dence within each study. The results addressing independence and arbitrary
dependence follow directly from the results of [12].
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Lemma 6.2. Consider the meta-analysis setting given in Section 5.1. As-
sume independence of p-values across the studies, meaning that for each j ∈
{1, . . . , n}, the vectors p·j and p·(−j) are independent. In addition, assume pos-
itive dependence within each study, in the sense of item M1 in Section 5.2.
Let i be a feature for which the partial conjunction null H

u/n
i is true. Let

f : [0, 1]m×n → [0,∞) and h : [0, 1](m−1)×n → [0,∞) be two non-increasing
functions.

1. Assume that either of the following conditions holds: (i) P
u/n
i is based on

Fisher’s or Stouffer’s methods, and the elementary p-values for true null
hypotheses are U(0, 1) random variables, or (ii) P

u/n
i is connected in the

sense of (4.1) to a monotone multiple testing procedure, which satisfies as-
sumption T2, which holds, for example, if Pu/n

i is based on Simes’ method.
Then the pair (Pu/n

i , f(p)) satisfies the dependency control condition with
the identity shape function β(x) = x.

2. Assume that Pu/n
i is connected in the sense of (4.1) to a monotone multiple

testing procedure which satisfies assumption T4, for example P
u/n
i is based

on Simes-Storey method (2.8). Then the pair (Pu/n
i , h(p(−i)·) satisfies the

dependency control condition with the identity shape function β(x) = x.

The result regarding Fisher’s and Stouffer’s method is shown based on the
proof techniques of [3]. Similarly to [3], we rely on the theorem of Efron [20].
The remaining results follow from the fact that the hypotheses corresponding
to the same feature in different studies may be viewed as a group in the setting
of Section 3.1, and the dependency structure of Lemma 6.2 with respect to this
group structure satisfies the conditions of items 1 and 2 of Lemma 6.1. Similarly
to the results of Lemma 6.1, the results of Lemma 6.2 may be given in the form
of (6.4), and may also be viewed as generalizing the group-level superuniformity
lemma of [48].

7. Discussion

We obtained sufficient conditions for FDR control on partial conjunction hy-
potheses, addressing different dependency structures across and within the groups.
For a given division into groups, we addressed two goals: (1) testing a pre-
specified family of partial conjunction hypotheses {Hug/ng

0 , g = 1, . . . , G} with
FDR control, and (2) selecting a subset of interesting groups via a pre-specified
selection rule, and estimating the number of false null hypotheses in each se-
lected group, so that the expected fraction of groups with over-estimated num-
ber of false null hypotheses, among all the selected groups, is bounded by a
pre-specified level α. The latter goal was addressed in the meta-analysis setting,
however, as we show in Section 5.2, this setting can be considered as a group
setting of Section 3. Therefore, these two goals can be unified as follows. For a
single set of hypotheses R ⊆ {1, . . . , G}, defined by an a-priori fixed selection
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rule, it is required that

E

[∑
g∈R vg1(|Ag ∩M1| < rg)

|R|v

]
≤ α, (7.1)

where M1 ⊆ {1, . . . ,M} is the index set of all the false null hypotheses, rg = ug

for the procedures in Section 3, and rg is the estimator for the number of false
null hypotheses in Ag, which is an additional output of the procedure in Section
5.3. In the setting of Section 3, the selection rule is defined by the multiple
testing procedure which is applied on the partial conjunction p-values, while in
the setting of Section 5.3, the selection rule may be more general, however it
should be fixed in advance.

Goeman and Solari ([28]) suggested a flexible approach to multiple testing,
where a researcher may select any subset of hypotheses S ⊆ {1, . . . ,M}, based
on the data and possibly prior knowledge, and obtain a lower confidence bound
dM (S) for the number of false null hypotheses in this set. For valid post-hoc
inference, the lower bounds are required to satisfy the following simultaneity
property:

P
[
dM (S) ≤ |S ∩M1| for all S ⊆ {1, . . . ,M}

]
≥ 1 − α. (7.2)

These lower bounds can be used for obtaining simultaneous upper bounds for
the false discovery proportions (FDP) for all the groups, therefore procedures for
obtaining these bounds are often referred to as FDP-controlling procedures. In
our group setting, the approach of Goeman and Solari ([28]) may be translated to
having the flexibility to select any subset of groups K ⊆ {1, . . . , G}, and obtain
a lower bound on the number of false null hypotheses within each selected group
g ∈ K, rather than obtaining lower bounds only for one set R, outputted by a
fixed in advance selection rule. This flexibility can be obtained by replacing the
requirement in (7.1) by the following:

P [rg ≤ |Ag ∩M1| for all g ∈ {1, . . . , G}] ≥ 1 − α, (7.3)

where rg are random bounds, and rg ∈ {0, ug} in the setting of Section 3, while
rg ∈ {0, 1, . . . , ng} in the setting of Section 5.3. It is easy to see that (7.3) is
a more strict requirement than our requirement (7.1), i.e. (7.3) implies (7.1).
Indeed, (7.3) is equivalent to

E

[
1

{
G∑

g=1
1(|Ag ∩M1| < rg) > 0

}]
≤ α, (7.4)

which implies (7.1). Obviously, given simultaneous lower bounds for all the sub-
sets, i.e. dM (S) satisfying (7.2), we obtain lower bounds rg satisfying (7.3) for
the given set of groups with index set {1, . . . , G} in the setting of Section 5.3.
In the setting of Section 3, the lower bounds rg = ug1(dM (Ag) ≥ ug) satisfy
(7.3), and a procedure which rejects H

ug/ng

0 if rg = ug controls the FWER
on any subset of partial conjunction hypotheses. In addition, for any subset of
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groups with index set K ⊆ {1, . . . , G}, one may obtain a lower bound for the
number of false partial conjunction hypotheses in the set {Hug/ng

0 , g ∈ K},
by computing dG(K) =

∑
g∈K 1(dM (Ag) ≥ ug), and these are simultaneous

(1 − α)-confidence lower bounds for all subsets K ∈ {1, . . . , G} provided that
dM (S) satisfy (7.2). Therefore, flexible inference on a-priori given groups of hy-
potheses {Ag, g = 1, . . . , G} can be obtained by an FDP-controlling procedure,
outputting dM (S) satisfying (7.2). However, if only FWER or FDP control on
the family of {Hug/ng

0 , g = 1, . . . , G} is of interest, which can be obtained via
control of (7.3) with rg ∈ {0, ug}, then one may apply an FDP-controlling pro-
cedure on the set of partial conjunction p-values {Pug/ng

g , g = 1, . . . , G} rather
than on all the elementary p-values {p1, . . . , pM}, which may offer a power gain.
The results of this paper may be useful for obtaining validity of such methods
under different dependency structures within and across the groups. We discuss
this next.

Goeman and Solari ([28]) showed that closed testing can be used for ob-
taining FDP control (7.2). Several other procedures for controlling the FDP
have been developed (see, e.g., [25], [11], and [38]). However, Goeman et al.
[26] showed that these procedures, as well as other procedures targeting con-
trol of tail probabilities of the FDP, such as FWER-controlling procedures, are
either equivalent to a closed testing procedure, or can be uniformly improved
by one. The properties of the closed testing procedure rely on the properties
of the local tests used for testing the intersection hypotheses: the procedure is
valid for FDP control if all its local tests are valid, and the more powerful the
local tests are, the more powerful is the FDP-controlling procedure. As noted
in Section 4, if the family of hypotheses of interest is {Hug/ng

0 , g = 1, . . . , G},
then closed testing may receive as input the partial conjunction p-values for
these hypotheses, and test the intersections of these hypotheses. This approach
can be used for control of FWER or FDP on the partial conjunction hypothe-
ses, or for obtaining lower bounds rg ∈ {0, ug} satisfying (7.3), as long as the
local tests for testing intersections of partial conjunction hypotheses are valid.
While full closed testing applied on all the elementary hypotheses H1, . . . , HM

can also be used for these purposes (because rg ∈ {0, ug} satisfying (7.3) may
be obtained from dM (S) satisfying (7.2), as discussed above), the approach of
applying closed testing directly on the partial conjunction hypotheses may be
more powerful, because of restricting attention only to a certain subset of inter-
sections of the elementary hypotheses. Corollary 4.2 shows three cases in which
Simes’ test is valid for testing an intersection of partial conjunction hypotheses,
yielding validity of closed testing procedure on partial conjunction p-values with
Simes’ local tests. For example, under arbitrary dependence within each group
and positive dependence across the groups in the sense of item D4 in Section
4, closed testing procedure with Simes’ local tests applied on Bonferroni partial
conjunction p-values is valid for FDP control. Considering alternative valid ap-
proaches which account for arbitrary dependence, such as applying Bonferroni
local tests on partial conjunction p-values, or applying full closed testing with
Bonferroni local tests, would result in less powerful procedures. The results of
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Corollary 4.2 could be useful even if the goal is FDP control on all subsets of
elementary hypotheses, given by (7.2): one could gain power by replacing certain
local tests by more powerful valid tests, possibly applied on global null group
p-values rather than on elementary p-values.

Similarly to the power of the FDP-controlling procedures, the power of the
FDR-controlling procedures applied on partial conjunction p-values strongly
depends on the choice of partial conjunction tests. In this work we developed
sufficient conditions for FDR control on partial conjunction hypotheses for the
cases where their p-values are connected to self-consistent multiple testing pro-
cedures, or are constructed using Fisher’s or Stouffer’s methods, showing that
in several cases arbitrary dependence adjustments are not needed for FDR con-
trol. It may be of interest to address other partial conjunction tests, such as
those based on combining methods of Pearson ([44], [43]), Tippett ([55]), Vovk
and Wang ([57]), Wilson ([59]), the Higher Criticism method ([19]), or meth-
ods based on e-values (see [29], [56]). Obviously, when the partial conjunction
p-values are combinations of within-group p-values, and the p-values belonging
to different groups are independent or are arbitrarily dependent, the results of
[12] can be used for obtaining sufficient conditions for FDR control on partial
conjunction hypotheses, as long as the dependency structure within the groups
is such that the combined p-values are valid for partial conjunction testing. The
more interesting cases are when there are dependencies across the groups, or
dependencies within the studies in the meta-analysis setting, possibly implying
complex dependencies among the partial conjunction p-values. The arbitrary
dependence adjustments may lead to a substantial power loss, therefore search-
ing for realistic dependency structures which do not require these adjustments
for certain powerful partial conjunction tests may be an interesting direction for
future research. In particular, it may be of interest to extend the results of this
paper for certain dependencies across the studies in the meta-analysis setting,
e.g. dependencies between case-control studies with shared controls.

Some of our results address Simes-Storey p-value (2.8) for the partial conjunc-
tion hypothesis, which is based on the minimum adjusted p-value of the adaptive
BH procedure with Storey’s plug-in estimator. In particular, we showed that in
the meta-analysis setting, when there is positive dependence within each study
in the sense of item M1 in Section 5.2, the doubly-weighted BH procedure con-
trols the weighted FDR on the family of partial conjunction hypotheses when the
partial conjunction p-values are based on Simes-Storey combining function. In
addition, we showed that in this case the procedure for assessing replicability of
findings in Section 5.3 controls the expected fraction of false replicability claims
for the selected features. Similar results were shown for Stouffer’s and Fisher’s
partial conjunction p-values. It may be of interest to study the power of Simes-
Storey partial conjunction test in comparison to Stouffer’s and Fisher’s tests,
as well as possibly other tests which are valid under independence. While there
are several papers which compared the power of different methods for global
null testing under independence (see, e.g., [40], [43]), and in a recent work by
[33] several partial conjunction tests were compared under different scenarios, it
seems that Simes-Storey partial conjunction test has not been studied and com-
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pared to other tests. In addition, following the empirical results of [13], showing
that the adaptive BH procedure incorporating Storey’s plug-in estimator with
λ = α controls the FDR under positive dependence, one may expect that the
partial conjunction test, based on Simes-Storey p-value with this choice of λ, is
valid under positive dependence. Obtaining this result may give the possibility
to replace Simes’ method by Simes-Storey method for combining positively de-
pendent p-values. The latter method is expected to be more powerful than the
former for the groups which contain a large proportion of false null hypotheses,
so investigation of the validity of Simes-Storey partial conjunction test under
positive dependence is also an interesting direction for future research. It may
be also worth to investigate the performance of partial conjunction tests based
on adaptive FDR-controlling procedures incorporating other plug-in estimators
satisfying Condition 3.1, such as those considered in Corollary 13 of [13].

When the hypotheses have a group structure, testing the global null hypothe-
ses for the groups may be performed for selecting promising groups of hypothe-
ses, which may be only a first step, after which the elementary hypotheses within
the selected groups are tested. The global null hypotheses may be replaced by
partial conjunction hypotheses with u ≥ 2, if one is in search for groups with at
least u signals. This two-step approach, with global null testing in the first step,
was addressed by [1], and can be viewed as hierarchical testing of a tree, which
was introduced in the context of FDR control by [62], and was further devel-
oped by [61]. The latter papers considered a general tree of hypotheses, where
each hypothesis is associated with a single parent hypothesis, except for the
hypotheses at the first level of the tree. In our setting, each group of elementary
hypotheses may be associated with a parent, its partial conjunction hypothesis,
which gives us a two-level tree structure, with partial conjunction hypotheses
at the first level and elementary hypotheses at the second level. Yekutieli et al.
([62]) considered several types of FDR which may be relevant when addressing a
tree of hypotheses, including level-l FDR, which addresses only discoveries at a
specific level l, chosen in advance. For the above two-level structure, the results
of this work are useful for obtaining sufficient conditions for level-1 FDR con-
trol. While [61] considered independence of the p-values across the entire tree, we
consider trees with dependencies within and across the levels. The dependence
between the level-1 and level-2 p-values follows from the fact that the partial
conjunction p-values are combinations of within-group elementary p-values, and
the dependence between level-1 p-values is induced by the dependencies within
the level-2 p-values. Several recently developed methods ([47], [48], [16], [39])
can be used for controlling different variants of FDR on general trees, where
each parent hypothesis is the intersection of its child hypotheses, and their p-
values are computed either by combining the p-values of their child hypotheses,
or by combining the p-values of all their descendants residing at the finest level
of the tree (which are referred to as leaf hypotheses). The lemmas developed in
this paper generalize the results of the group-level super-uniformity lemma of
[48], and may be used for extending the theoretical guarantees of the methods
developed in the above papers. Finally, an interesting research direction is gen-
eralizing the results of this work for obtaining sufficient conditions for overall
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and level-restricted FDR control on a tree of hypotheses with an arbitrary num-
ber of levels, addressing various combining methods for obtaining p-values for
parent hypotheses, in conjunction with different dependency structures among
the elementary p-values.

Appendix A: Proofs

A.1. Proof of Proposition 3.1

Proof of item 1.1. It is assumed that for each group g = 1, . . . , G, the par-
tial conjunction p-value P

ug/ng
g is a combination of p-values within group g.

In addition, it is assumed that the p-values in each group are independent of
the p-values in any other group. Combining these two facts, we obtain that the
partial conjunction p-values P

ug/ng
g , g = 1, . . . , G are independent. Now, since

the multiple testing procedure is assumed to be non-increasing, Proposition 3.3
of [12] yields that for each group g with a true null hypothesis H

ug/ng

0 , the
pair (Pug/ng

g , |R|v) satisfies the dependency control with identity shape func-
tion β(x) = x. Now, since the multiple testing procedure is self-consistent with
respect to thresholds of form (3.2), we obtain that the two sufficient conditions
in Proposition 2.7 of [12] are satisfied, and the result follows.

Proof of item 1.2. As noted in the proof of item 1.1, since there is inde-
pendence across the groups, the partial conjunction p-values are independent.
Therefore, all the assumptions of Theorem 11 of [13] hold, and the result follows.

Proofs of items 2 and 3. The result of item 2 follows from Propositions
3.6 and 2.7 of [12]. The result of item 3 follows from Propositions 3.7 and 2.7 of
[12].

A.2. Proof of Theorem 4.1

Proof of item 1. Let |R(p)|v be the weighted number of rejected hypotheses
when the given multiple testing procedure M is applied on P

ug/ng
g , g = 1, . . . , G.

Since it is assumed that for each group g, the procedure Mg satisfies the mono-
tonicity property given in Definition 2.1, Pug/ng

g is non-decreasing in each coor-
dinate of p. In addition, it is assumed that the procedure M is non-increasing.
Using these facts we obtain that |R(p)|v is non-increasing in each coordinate
of p. Therefore, using item 1 of Lemma 6.1 we obtain that for each group g

such that H
ug/ng

0 is a true null hypothesis, the pair (Pug/ng
g , |R(p)|v) satisfies

the dependency control condition with the identity shape function β(x) = x.
Since it is assumed that M is self-consistent with respect to thresholds of form
(3.2) with β(x) = x, we obtain that the two sufficient conditions of Proposition
2.7 of [12], given in item 1 of Proposition 6.1, are satisfied, and the result follows.
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Proof of item 2. Consider the rejection set R ⊆ {1, . . . , G} of the multiple
testing procedure M when it receives as input the partial conjunction p-values
P

ug/ng
g , g = 1, . . . , G. Since M is stable, one may define for each g ∈ {1, . . . , G}

the set R−g as the rejection set which is obtained when all the partial con-
junction p-values except P

ug/ng
g are fixed, and P

ug/ng
g has any value such that

H
ug/ng

0 is rejected. Since each partial conjunction p-value P
ug/ng
g is a combina-

tion of p-values in group g, and R−g is a function of all the partial conjunction
p-values except P

ug/ng
g , we obtain that R−g is a function of all the elementary

p-values which do not belong to group g, i.e. R−g = R−g(p−g). Since M is
concordant, for each g ∈ {1, . . . , G}, |R−g|v is non-increasing in each partial
conjunction p-value in the set {Puk/nk

k , k �= g}. Each partial conjunction p-
value is non-decreasing in each coordinate of p, as shown in the proof of item
1 of Theorem 4.1. Therefore, for each g ∈ {1, . . . , G}, |R−g|v is non-increasing
in each coordinate of p−g. Hence, according to item 2 of Lemma 6.1, for each
group g ∈ G0, the pair (Pug/ng

g , |R−g|v) satisfies the dependency control condi-
tion with the identity shape function β(x) = x. In addition, the multiple testing
procedure M is self-consistent with respect to thresholds of form (3.2) with
β(x) = x. Therefore, the conditions of item 2 of Proposition 6.1 are satisfied,
and the result follows.

Proof of item 3. The proof is similar to the proof of item 2 above. As shown in
that proof, for each g ∈ {1, . . . , G}, |R−g|v is non-increasing in each coordinate
of p−g. Hence, according to item 3 of Lemma 6.1, for each group g ∈ G0, the
pair (Pug/ng

g , |R−g|v) satisfies the dependency control condition with the iden-
tity shape function β(x) = x. Now the result follows from item 2 of Proposition
6.1.

A.3. Proof of Corollary 4.1

The corollary follows from Theorem 4.1. It is enough to show that any step-up
procedure with thresholds of form (3.2), in particular the doubly-weighted BH
procedure, is self-consistent, non-increasing, stable, and concordant. Blanchard
and Roquain ([12]) showed that a step-up procedure with thresholds Δ(i, r)
of form (3.2) rejects the hypotheses in the set LΔ(r̂), where r̂ = max{r :
|LΔ(i, r)|v ≥ r}, and |LΔ(r̂)|v = r̂, therefore, it satisfies the self-consistency
condition (3.4) with equality. Obviously, for each r ≥ 0, |LΔ(i, r)|v is non-
increasing in each p-value, therefore r̂ = |LΔ(r̂)|v is non-increasing in each
p-value. It remains to show stability and concordance. Let us fix i ∈ {1, . . . ,m}.
For each r ≥ 0, let

L
(i)
Δ (r) = {j �= i : pj ≤ Δ(i, r)}.

Define
r̂(i) = max{r : |L(i)

Δ (r)|v ≥ r − vi}.
Note that r̂(i) is a function of p−i. Let us show that if i ∈ R, then r̂ = r̂(i).
Assume that i ∈ R. Then pi ≤ Δ(i, r̂), where r̂ = max{r : |LΔ(r)|v ≥ r}.
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For any r ≥ r̂, pi ≤ Δ(i, r), which yields that |LΔ(r)|v = vi + |L(i)
Δ (r)|v.

Therefore, according to the definition of r̂, |L(i)
Δ (r̂)|v ≥ r̂−vi, and for any r > r̂,

|L(i)
Δ (r)|v < r − vi. Thus we obtain that r̂ = r̂(i) = max{r : |L(i)

Δ (r)|v ≥ r− vi}.
Therefore, fixing p−i and changing pi as long as i ∈ R will not change the
set R, which will be equal to R−i(p−i) = {i} ∪ L

(i)
Δ (r̂(i)). Note that for each

r ≥ 0, |L(i)
Δ (r)|v is non-increasing in each coordinate of p−i, therefore r̂(i) is non-

increasing in each coordinate of p−i. Since |L(i)
Δ (r)|v is non-decreasing in r, we

obtain that |L(i)
Δ (r̂(i))|v is non-increasing in each coordinate of p−i. Therefore,

this is also true for |R−i(p−i)|v = vi + |L(i)
Δ (r̂(i))|v. Thus we have shown that

any step-up procedure with thresholds of form (3.2) is stable and concordant.
This completes the proof.

A.4. Proof of Theorem 5.1

The proof of item 1 is based on the following lemma.
Lemma A.1. Assume the meta-analysis setting of Section 5.1, where the hy-
potheses are arranged in a matrix with m rows and n columns. Assume that for
each j ∈ {1, . . . , n}, p·j is independent of p·(−j), and p·j satisfies the PRDS
property on the subset of true null hypotheses. Then the following results hold:

1. The vector of all the m× n p-values p satisfies the PRDS property on the
subset of indices of true null hypotheses.

2. When the rows of the matrix define groups of hypotheses, the elementary
p-values satisfy positive dependence across groups, as defined in item D4
in Section 4.

3. When the rows of the matrix define groups of hypotheses, the elementary
p-values satisfy conditional positive dependence across groups and inde-
pendence within each group, as defined in items D3 and D1 in Section 4,
respectively.

The proof of this lemma is given in the end of this section. The results of this
lemma show that under independence across the studies and positive dependence
within each study, as defined in item M1 in Section 5.2, the p-values satisfy
the dependency structure assumed in items 1, 2, and 3 of Theorem 4.1. The
other assumptions of items 1 and 2 of Theorem 4.1 are assumed to be satisfied,
therefore the result of item 1 of Theorem 5.1 follows from items 1 and 2 of
Theorem 4.1, when we address the hypotheses within each row of the matrix as
a group.

Let us now prove item 2 of Theorem 5.1. According to Lemma 6.2, for each
i ∈ {1, . . . ,m} such that Hu/n

i is true, the pair (Pu/n
i , f(p)) satisfies the depen-

dency control condition with respect to the identity shape function β(x) = x,
for any non-increasing function f : [0, 1]M → [0,∞). Since the multiple test-
ing procedure M is assumed to be non-increasing, and both Stouffer’s and
Fisher’s partial conjunction p-values are non-decreasing in each elementary p-
value, we obtain that for each i ∈ {1, . . . ,m} such that H

u/n
i is true, the pair
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(Pu/n
i , |R(p)|v) satisfies the dependency control condition with respect to the

identity shape function β(x) = x. Since M is assumed to be self-consistent with
respect to thresholds of form (3.2) with identity shape function β(x) = x, we
obtain that the two sufficient conditions for FDR control, given in Proposition
2.7 of [12] (and item 1 of Proposition 6.1), are satisfied, which completes the
proof.

Proof of Lemma A.1. Items 1 and 2 of Lemma A.1 are based on the following
auxiliary lemma.

Lemma A.2. Let p1 ∈ [0, 1]n1 and p2 ∈ [0, 1]n2 be two independent vectors,
and assume that p1 satisfies the PRDS property on the subset I0 ⊆ {1, . . . , n1}.
Then the vector obtained by stacking p1 and p2, denoted by (p1,p2), satisfies
the PRDS property on the subset I0.

Let us first show how item 1 of Lemma A.1 follows from Lemma A.2. Let Hij

be a true null hypothesis, and let p be the vector of all the m×n p-values. Note
that p can be partitioned into two vectors: p·j , the vector of p-values in study
j, and p·(−j), the vector of p-values for the hypotheses in all the studies except
study j. Since p·j is PRDS on the subset of true null hypotheses in study j,
and p·j is independent of p·(−j), (because of independence across studies), we
obtain based on Lemma A.2 that p satisfies the PRDS property on the subset of
indices corresponding to true null hypotheses in study j. Therefore, for any non-
decreasing set D in [0, 1]mn, P [p ∈ D | pij = x] is non-decreasing in x. Thus we
have proved item 1 of Lemma A.1. Item 2 of Lemma A.1 follows similarly. Since
the groups are defined by rows, independence within each group follows from
the independence across studies: for each i ∈ {1, . . . ,m}, the vector pi· contains
independent p-values. Let us now show positive dependence across groups. Let
i ∈ {1, . . . ,m} be a row (group) which contains at least one true null hypothesis,
and let Hij be a true null hypothesis within this row. Let D be a non-decreasing
set in [0, 1]mn−m+1. We have to show that P

{
(p(−i)·, pij) ∈ D | pij = x

}
is non-

decreasing in x. Note that (p(−i)·, pij) = (p(−i)(−j),p·j), where p(−i)(−j) is the
vector obtained by stacking the rows of matrix p after removing its row i and
column j. According to our assumptions, p(−i)(−j) is independent of p·j , while
p·j is PRDS on the subset of true null hypotheses in study j. Therefore, ac-
cording to Lemma A.2, (p(−i)(−j),p·j) = (p(−i)·, pij) is PRDS on the subset of
true null hypotheses in study j, which yields that P

{
(p(−i)·, pij) ∈ D | pij = x

}
is non-decreasing in x. This completes the proof of item 2 of Lemma A.1.

Let us now prove item 3 of Lemma A.1. Let y ∈ [0, 1]n−1, and let D ∈ [0, 1]mn

be a non-decreasing set. Let Hij be a true null hypothesis, and let pi(−j) be the
vector of p-values for the hypotheses in {Hik, k �= j}. Finally, let (p(−i)·, pij ,y)
be the vector p such that the sub-vector corresponding to the hypotheses not
belonging to row i is given by p(−i)·, the p-value for Hij is pij , and the sub-vector
of p-values for the remaining hypotheses, belonging to the set {Hik, k �= j}, is
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y. Note that

P
[
p ∈ D | pij = x,pi(−j) = y

]
=

P
[
(p(−i)·, pij) ∈ D̃ | pij = x

]
fpi(−j)|pij=x(y) , (A.1)

where
D̃ =

{
(pi(−j), pij) : (pi(−j), pij ,y) ∈ D

}
,

and fpi(−j)|pij=x is the conditional density of pi(−j) given pij = x. Since the
p-values for the hypotheses in row i are independent, this conditional density
is the density of pi(−j). Therefore, the denominator in (A.1) does not depend
on x. Since D is a non-decreasing set, D̃ is also a non-decreasing set. According
to item 2, the p-values satisfy positive dependence across groups, therefore the
nominator of (A.1) is non-decreasing in x. We obtain that the fraction in (A.1)
is non-decreasing in x. Thus we have proved conditional positive dependence
across groups. The independence within each group, i.e. row, follows from the
independence across studies.

Let us now prove Lemma A.2. Let D be a non-decreasing set in [0, 1]n1+n2 .
Let i ∈ I0. Since p2 is independent of p1i, the conditional distribution of p2
given p1i is identical to the distribution of p2. Therefore, for any x ∈ [0, 1],

E [1(p1,p2) ∈ D | p1i = x] = E [E [1(p1,p2) ∈ D | p1i = x,p2]] (A.2)

where the external expectation on the right hand-side of (A.2) is with respect
to the distribution of p2. Let y ∈ [0, 1]n2 . Since p1 and p2 are independent, for
any x ∈ [0, 1],

E [1(p1,p2) ∈ D | p1i = x,p2 = y] = E [1(p1,y) ∈ D | p1i = x] . (A.3)

The set {p1 : (p1,y) ∈ D} is non-decreasing, because the set D is non-
decreasing. Therefore, since p1 is PRDS with respect to p1i,

E [1(p1,y) ∈ D | p1i = x]

is a non-decreasing function of x. Based on (A.2) and (A.3), we obtain

E [1(p1,p2) ∈ D|p1i = x] =
∫
p∈[0,1]n2

E [1(p1,p) ∈ D|p1i = x] fp2(p)dp, (A.4)

where fp2 is the density function of p2. As shown above, for each p ∈ [0, 1]n2 ,
E [1(p1,p) ∈ D | p1i = x] is a non-decreasing function of x. Therefore, based on
(A.4) we obtain that E [1(p1,p2) ∈ D | p1i = x] is a non-decreasing function of
x, which completes the proof.

A.5. Proof of Theorem 5.2

The proof is based on the following lemma.
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Lemma A.3. The procedure in Section 5.3 with shape function β(·) guarantees

E

[∑
i∈S vi1(k̂(i) > k(i))

|S|v

]
≤ q (A.5)

if either of the following conditions is satisfied:

1. For each i ∈ {1, . . . , n} such that k(i) < n, the pair (P (k(i)+1)/n
i , |S|v)

satisfies the dependency control condition with shape function β.
2. The selection rule S is stable (as defined in item C2 in Section 5.3), and

for each i ∈ {1, . . . , n} such that k(i) < n, the pair (P (k(i)+1)/n
i , |S(−i)·|v)

satisfies the dependency control condition with shape function β.

The proof of this lemma is given in the end of this section. Let us first prove
items 1(a) and 1(b) of Theorem 5.2. For each i ∈ {1, . . . ,m} such that k(i) < n,
H

(k(i)+1)/n
i is a true null hypothesis, because the number of false null hypothe-

ses in row i, k(i), is smaller than k(i) + 1. According to item 1 of Lemma 6.2,
if the assumptions of item 1(a) or item 1(b) of Theorem 5.2 hold, then for each
i ∈ {1, . . . ,m} such that k(i) < n, the pair (P (k(i)+1)/n

i , |S|v) satisfies the depen-
dency control condition with the identity shape function β(x) = x. Therefore,
according to item 1 of Lemma A.3, the sequential procedure in Section 5 with
identity shape function guarantees (A.5). Thus we have proved items 1(a) and
1(b) of Theorem 5.2. Item 1(c) follows similarly, based on item 2 of Lemma 6.2
and item 2 of Lemma A.3.

Let us now prove item 2 of Theorem 5.2. Under the assumptions of this
item, the p-values within each row are independent, and the partial conjunction
p-values are valid. The p-values across the rows are also independent, so for
each i ∈ {1, . . . ,m}, P

(k(i)+1)/n
i is independent of p(−i)·, because P

(k(i)+1)/n
i

is a combination of p-values in row i. Let us show that in this case for each
i ∈ {1, . . . , n} such that k(i) < n, the pair (P (k(i)+1)/n

i , |S(−i)·|v) satisfies the
dependency control condition with the shape function β(x) = x, yielding that
item 2 of Lemma A.3 with β(x) = x holds. Let i ∈ {1, . . . , n} such that k(i) < n.
Then P

(k(i)+1)/n
i is a p-value of a true null hypothesis, and it is stochastically

lower bounded by a uniform variable on [0, 1]. Since P
(k(i)+1)/n
i is independent

of p(−i)·, the conditional distribution of P (k(i)+1)/n
i given p(−i)· is the same as

its marginal distribution, and therefore is stochastically lower bounded by a
uniform distribution. In addition, for a given p(−i)·, S(−i)· is fixed. Hence we
obtain for any c > 0:

E

[
1(P (k(i)+1)/n

i ≤ c|S(−i)·|v)
|S(−i)·|v

| p(−i)·

]
≤ c,

therefore

E

[
1(P (k(i)+1)/n

i ) ≤ c|S(−i)·|v
|S(−i)·|v

]
=
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E

[
E

[
1(P (k(i)+1)/n

i ) ≤ c|S(−i)·|v
|S(−i)·|v

| p(−i)·

]]
≤ c.

Thus we have shown that item 2 of Lemma A.3 with β(x) = x holds, therefore
the result of item 2 of Theorem 5.2 follows. Finally, item 3 of Theorem 5.2
follows from item (iii) of Lemma 3.2 of [12], showing that the condition of item
1 of Lemma A.3 holds with respect to the shape function β of form (3.5).

Proof of Lemma A.3. Let us first prove item 1 of Lemma A.3. Define I = {i ∈
{1, . . . ,m} : k(i) < n}. Note that the event {i ∈ S, k̂(i) > k(i)} is equivalent to
the event {i ∈ I ∩ S, k̂(i) > k(i)}, because k̂(i) ≤ n for each i ∈ S. Therefore,

E

[∑
i∈S vi1(k̂(i) > k(i))

|S|v

]
= E

[∑
i∈I vi1(i ∈ S, k̂(i) > k(i))

|S|v

]

=
∑
i∈I

viE

[
1(i ∈ S, k̂(i) > k(i))

|S|v

]
(A.6)

For the sequential procedure with identity shape function, given in Section
5.3, the event {i ∈ S, k̂(i) > k(i)} implies the event {i ∈ S, P (k(i)+1)/n

i ≤
wi|S|vq/m}. Indeed, by the definition of k̂(i), for each selected feature i and for
each u ≤ k̂(i), Pu/n

i ≤ wi|S|vq/m. If k̂(i) > k(i), then P (k(i)+1)/n ≤ wi|S|vq/m.
Therefore, continuing from (A.6), we obtain

∑
i∈I

viE

[
1(i ∈ S, k̂(i) > k(i))

|S|v

]
≤ (A.7)

∑
i∈I

viE

[
1(i ∈ S, P (k(i)+1)/n

i ≤ wiβ(|S|v)q/m
|S|v

]
≤

∑
i∈I

viE

[
1(P (k(i)+1)/n

i ≤ wiβ(|S|v)q/m
|S|v

]
≤ (A.8)

q

m

m∑
i=1

viwi = q

The inequality in (A.8) follows from the fact that for each i ∈ {1, . . . ,m} such
that k(i) < n, H(k(i)+1)/n

i is a true null hypothesis, and the pair

(P (k(i)+1)/n
i , |S|v)

satisfies the dependency control condition with shape function β. This completes
the proof of item 1 of Lemma A.3.

Let us prove item 2 of Lemma A.3. In this case S is stable, therefore S(−i)·

is defined, and

∑
i∈I

viE

[
1(i ∈ S, P (k(i)+1)/n

i ≤ wiβ(|S|v)q/m
|S|v

]
=
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∑
i∈I

viE

[
1(i ∈ S, P (k(i)+1)/n

i ≤ wiβ(|S(−i)·|v)q/m
|S(−i)·|v

]
.

Therefore, using (A.6) and (A.7), we obtain

E

[∑
i∈S vi1(k̂(i) > k(i))

|S|v

]
≤

∑
i∈I

viE

[
1(i ∈ S, P (k(i)+1)/n

i ≤ wiβ(|S|v)q/m
|S|v

]
=

∑
i∈I

viE

[
1(i ∈ S, P (k(i)+1)/n

i ≤ wiβ(|S(−i)·|v)q/m
|S(−i)·|v

]
≤

∑
i∈I

viE

[
1(P (k(i)+1)/n

i ≤ wiβ(|S(−i)·|v)q/m
|S(−i)·|v

]
≤ (A.9)

q

m

m∑
i=1

viwi = q,

where the inequality in (A.9) follows from the fact that for each i ∈ {1, . . . ,m}
such that k(i) < n, the pair (P (k(i)+1)/n

i , |S(−i)|v) satisfies the dependency con-
trol condition with shape function β.

A.6. Proof of Lemma 6.1

The proof is based on the following auxiliary lemma.

Lemma A.4. Consider the setting of Section 3.1. Let g ∈ G0, and assume that
P

ug/ng
g is of form (4.1):

Pug/ng
g = max{P 1/(ng−ug+1)[A] : A ⊆ Ag, |A| = ng − ug + 1},

where for each null group A ⊆ Ag such that |A| = ng − ug + 1, P 1/(ng−ug+1)[A]
is a valid global null p-value for group A. Let U be a non-negative random
variable, β : R+ → R

+ be a non-decreasing shape function satisfying β(0) = 0.
Assume that for each null group A ⊆ Ag such that |A| = ng − ug + 1, the pair
(P 1/(ng−ug+1)[A], U) satisfies the dependency control condition with respect to
the shape function β. Then the pair (Pug/ng

g , U) satisfies the dependency control
condition with respect to the shape function β.

The proof of this lemma is given in the end of this section. Note that the
condition β(0) = 0 holds for the shape functions considered in Lemmas 6.1
and 6.2, i.e. for the identity shape function and for the shape function of form
(3.5). The proof of Lemma 6.1 is based on the techniques of the proof of the
group-level super-uniformity lemma of [48].
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Proof of item 1. Let c be a positive constant, and g ∈ G0. According to the
assumptions of item 1,

Pug/ng
g = max{P 1/(ng−ug+1)[A] : A ⊆ Ag, |Ag| = ng − ug + 1},

where P 1/(ng−ug+1)[A] is the minimum adjusted p-value based on the multiple
testing procedure Mg applied on the p-values of hypotheses with indices in A,
and Mg is non-increasing and is self-consistent with respect to thresholds of
form Δ(r) = rα/m. Since it is assumed that the p-values satisfy the PRDS
property on the subset of true null hypotheses, we obtain from Propositions
2.7 and 3.6 in [12] that Mg controls the FDR when applied on any subset of
p-values. Therefore, according to Corollary 2.1, for any null group A ⊆ Ag such
that |Ag| = ng −ug +1, P 1/(ng−ug+1)[A] is a valid p-value for testing the global
null for group A, i.e. its distribution is uniform or is stochastically larger than
uniform.

Let f : [0, 1]M → [0,∞) be a non-increasing function. According to Lemma
A.4, it is enough to prove that for any null group A ⊆ Ag such that |Ag| =
ng − ug + 1, the pair

(P 1/(ng−ug+1)[A], f(p))

satisfies the dependency control condition with the shape function β(x) = x.
Let A ⊆ Ag be a null group such that |Ag| = ng − ug + 1. Note that such group
exists, because g ∈ G0, yielding that the number of true null hypotheses in group
g is not smaller than ng −ug +1. Let c be a positive constant. We need to prove
that

E

[
1(P 1/(ng−ug+1)[A] ≤ cf(p))

f(p)

]
≤ c.

Note that the event {P 1/(ng−ug+1)[A] ≤ cf(p)} is equivalent to the event in
which Mg makes at least one rejection when it is applied on the p-values be-
longing to group A at level cf(p). Let RA

g be the set of indices of hypotheses
rejected by Mg when it is applied on the p-values of group A at level cf(p),
and let |RA

g | be their number. Then

1({P 1/(ng−ug+1)[A] ≤ cf(P )}) = 1(|RA
g | > 0) =

|RA
g |

|RA
g |

. (A.10)

The last equality follows from the fact that we define 0/0 = 0, so the fraction
on the right hand side is equal to 1 if |RA

g | > 0, and is equal to 0 otherwise.
Since Mg is self-consistent with respect to thresholds of form (3.2) with unity
weights and identity shape function, we obtain that

RA
g ⊆ {j ∈ A : pj ≤ |RA

g |cf(p)/|A|},

yielding that

|RA
g | ≤

∑
j∈A

1(pj ≤ |RA
g |cf(p)/|A|). (A.11)
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Note that if |RA
g | = 0, then

∑
j∈A 1(pj ≤ |RA

g |cf(p)/|A|) = 0 almost surely,
because for each j ∈ A, pj is uniform or is stochastically larger than uniform,
so P [pj ≤ 0] = 0. Therefore, according to Remark 1.1, if |RA

g | = 0, the fraction
∑

j∈A 1(pj ≤ |RA
g |cf(p)/|A|)

|RA
g |

is defined as 0. It follows that we can divide both sides of (A.11) by |RA
g |, and

the inequality will be preserved. Therefore, combining (A.10) and (A.11), we
obtain

1(P 1/(ng−ug+1)[A] ≤ cf(p)) ≤
∑

j∈A 1(pj ≤ |RA
g |cf(p)/|A|)

|RA
g |

(A.12)

Using the fact that P 1/(ng−ug+1)[A] is uniform or is stochastically larger than
uniform, and using the same argument as above, it is legitimate to divide both
expressions in (A.12) by f(p), preserving the inequality. Taking expectations on
both sides, we obtain:

E

[
1(P 1/(ng−ug+1)[A] ≤ cf(p))

f(p)

]
≤ E

[∑
j∈A 1(pj ≤ |RA

g |cf(p)/|A|)
|RA

g |f(p)

]
(A.13)

Since Mg is non-increasing, |RA
g | is non-increasing in each p-value in A. In

addition, f(p) is non-increasing in each p-value, therefore the function g(p) ≡
c|RA

g |f(p)/|A| is non-increasing in each p-value. Since the p-values satisfy the
PRDS property on the subset of true null hypotheses, and A is a null group, we
obtain from the super-uniformity lemma of [48], item 1, for each j ∈ A,

E

[
1(pj ≤ g(p))

g(p)

]
≤ 1.

Combining this inequality with (A.13), we obtain

E

[
1(P 1/(ng−ug+1)[A] ≤ cf(p))

f(p)

]
≤ E

[∑
j∈A 1(pj ≤ |RA

g |cf(p)/|A|)
|RA

g |f(p)

]

=
∑
j∈A

E

[
1(pj ≤ |RA

g |cf(p)/|A|)
|RA

g |f(p)

]
(A.14)

≤
∑
j∈A

c

|A|E
[
1(pj ≤ g(p))

g(p)

]

≤ c

This completes the proof. For the last step of the proof, we could rely on the
results of [12] rather on the superuniformity lemma of [48]. Specifically, using
the arguments in the proof of Proposition 3.6 in [12], one can show that for
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each j ∈ A, the pair (pj , |RA
g |f(p)) satisfies the dependency control condition

with respect to the identity shape function β(x) = x, which yields that for each
j ∈ A,

E

[
1(pj ≤ |RA

g |cf(p)/|A|)
|RA

g |f(p)

]
≤ c

|A| .

Combining this inequality with (A.14), the result follows.

Proof of item 2. Let g ∈ G0 and let h : [0, 1]M−ng → [0,∞) be a non-
increasing function. We need to prove that the pair (Pug/ng

g , h(p−g)) satisfies
the dependency control condition with respect to the shape function β(x) = x.
Based on Lemma A.4, it is enough to prove that for any null group A ⊆ Ag

such that |A| = ng − ug + 1, the pair (P 1/(ng−ug+1)[A], h(p−g)) satisfies the
dependency control condition. Let A ⊆ Ag be a null group such that |A| =
ng − ug + 1. Such group exists since g ∈ G0, as explained in the proof of item
1 of Lemma 6.1. Let c be a positive constant. According to the assumptions,
P 1/(ng−ug+1)[A] is the minimum adjusted p-value of a multiple testing procedure
Mg applied on the p-values of A, and Mg is non-increasing and self-consistent
with respect to thresholds of form Δ(i, r) = rα/(π̂0(pA)|A|), where pA is the
vector of p-values for the hypotheses in group A, and π̂0(pA) is an estimator
for the proportion of true null hypotheses in group A, πA

0 . It is assumed that
the function π̂0 satisfies Condition 3.1. Since the p-values are assumed to be
independent, according to Theorem 11 of [13] we obtain that Mg controls the
FDR when applied on the p-values of A, therefore P 1/(ng−ug+1)[A] is a valid
global null p-value for group A. Let RA

g be the set of rejections made by the
multiple testing procedure Mg when it is applied on the p-values of group A at
level ch(p−g), and let |RA

g | be their number. Using similar arguments to those
leading to (A.13), we obtain

E

[
1(P 1/(ng−ug+1)[A] ≤ ch(p−g))

h(p−g)

]
≤

∑
i∈A

E

[
1(pi ≤ |RA

g |ch(p−g)π̂−1
0 (pA)/|A|)

h(p−g)|RA
g |

]
. (A.15)

Let i ∈ A be arbitrary fixed. Let pA
(0,i) be the vector of p-values with indices in

A, where pi is replaced by 0. Since the function π̂−1
0 is non-increasing in each

p-value, π̂−1
0 (pA) ≤ π̂−1(pA

(0,i)). Therefore,

E

[
1(pi ≤ |RA

g |ch(p−g)π̂−1
0 (pA)/|A|)

h(p−g)|RA
g |

]
≤

E

[
1(pi ≤ |RA

g |ch(p−g)π̂−1
0 (pA

(0,i))/|A|)
h(p−g)|RA

g |

]
. (A.16)
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Recall that p−i
g is the vector of the p-values in group g, excluding pi. For fixed

p−i
g , the p-values for the hypotheses in A \ {i} are fixed, so |RA

g | is a non-
increasing function of pi, and π̂−1

0 (pA
(0,i)) is fixed. In addition, h(p−g) is non-

increasing in each entry of the vector p−g. This yields that for fixed p−i
g , the

function c|RA
g |h(p−g)π̂−1

0 (pA
(0,i))/|A| is non-increasing in each coordinate of p.

Since there is independence within each group, pi is independent of p−i
g , there-

fore the conditional distribution of pi given p−i
g is uniform or is stochastically

larger than uniform. Due to conditional positive dependence across groups, as
defined in item D3 in Section 4, the vector p is PRDS with respect to pi, con-
ditionally on p−i

g . Therefore, using item (b) of super-uniformity lemma of [48],
we obtain

E

[
1(pi ≤ |RA

g |ch(p−g)π̂−1
0 (pA

(0,i))/|A|)
|RA

g |ch(p−g)π̂−1
0 (pA

(0,i))/|A|
| p−i

g

]
≤ 1,

which yields

E

[
1(pi ≤ |RA

g |ch(p−g)π̂−1
0 (pA

(0,i))/|A|)
h(p−g)|RA

g |
| p−i

g

]
=

cπ̂−1
0 (pA

(0,i))
|A| E

[
1(pi ≤ |RA

g |ch(p−g)π̂−1
0 (pA

(0,i))/|A|)
|RA

g |ch(p−g)π̂−1
0 (pA

(0,i))/|A|
| p−i

g

]
≤ (A.17)

cπ̂−1
0 (pA

(0,i))
|A| (A.18)

Using (A.18) we obtain

E

[
1(pi ≤ |RA

g |ch(p−g)π̂−1
0 (pA

(0,i))/|A|)
h(p−g)|RA

g |

]
= (A.19)

E

[
E

[
1(pi ≤ |RA

g |ch(p−g)π̂−1
0 (pA

(0,i))/|A|)
h(p−g)|RA

g |
| p−i

g

]]
≤

c

|A|E
[
π̂−1

0 (pA
(0,i))

]
(A.20)

Combining (A.20) with (A.15) and (A.16), we obtain

E

[
1(P 1/(ng−ug+1) ≤ ch(p−g))

h(p−g)

]
≤ c

|A|
∑
i∈A

E

[
π̂−1

0 (pA
(0,i))

]
.

Using the assumption that the estimator π̂0 satisfies Condition 3.1, we obtain
that for any i ∈ A, E

[
1/π̂0(pA

(0,i))
]
≤ 1/πA

0 . Since A is a group consisting only

of true null hypotheses, πA
0 = 1, therefore for any i ∈ A, E

[
π̂−1

0 (pA
(0,i))

]
≤ 1.
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Therefore, we obtain

E

[
1(P 1/(ng−ug+1)[A] ≤ ch(p−g))

h(p−g)

]
≤ c

|A|
∑
i∈A

E

[
π̂−1

0 (pA
(0,i))

]
≤ c.

This completes the proof.

Proof of item 3. Let g ∈ G0 and h : [0, 1]M−ng → [0,∞). Let A ⊆ Ag be a
null group such that |A| = ng − ug + 1 (which exists, because g ∈ G0). Based
on Lemma A.4, it is enough prove that that the pair (P 1/(ng−ug+1)[A], h(p−g))
satisfies the dependency control condition with respect to shape function β(x) =
x. Let c be a positive constant. Since P 1/(ng−ug+1)[A] is based on Bonferroni,
P 1/(ng−ug+1)[A] = |A|min{pi : i ∈ A}. Therefore,

E

[
1(P 1/(ng−ug+1) ≤ ch(p−g))

h(p−g)

]
≤ E

[
1(min{pi : i ∈ A} ≤ ch(p−g)/|A|)

h(p−g)

]

≤
∑
i∈A

E

[
1(pi ≤ ch(p−g)/|A|)

h(p−g)

]
(A.21)

=
∑
i∈A

c

|A|E
[
1(pi ≤ ch(p−g)/|A|)

ch(p−g)/|A|

]
(A.22)

Let i ∈ A be arbitrary fixed. Since A consists only of true null hypotheses,
pi corresponds to a true null hypothesis for each i ∈ A. Therefore, the vector
(pi,p−g) is PRDS with respect to pi, according to the assumption of positive
dependence across groups, as defined in item D4 in Section 4. Using the fact
that ch(p−g)/|A| is a coordinate-wise non-increasing function of p−g, we obtain
from item (b) of the super-uniformity lemma of [48] that

E

[
1(pi ≤ ch(p−g)/|A|)

ch(p−g)/|A|

]
≤ 1.

Combining this inequality with (A.22), we obtain

E

[
1(P 1/(ng−ug+1)[A] ≤ ch(p−g))

h(p−g)

]
≤
∑
i∈A

c

|A| = c, (A.23)

which completes the proof. As in item 1, we could use the results of [12] rather
than those of [48] for the last step of the proof. Specifically, using similar ar-
guments to those used in the proof of Proposition 3.6 of [12], we could show
that for each i ∈ A, (pi, h(p−g)) satisfies the dependency control condition with
respect to shape function β(x) = x, which yields that

E

[
1(pi ≤ ch(p−g)/|A|)

h(p−g)

]
≤ c

|A| .

Using this result, we obtain (A.23) from (A.21).
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Proof of Lemma A.4. Let c be a positive constant and let g ∈ G0. We need to
show that

E

[
1{Pug/ng

g ≤ cβ(U)}
U

]
≤ c.

By assumption,

Pug/ng
g = max

{
P 1/(ng−ug+1) : A ⊆ Ag, |A| = ng − ug + 1

}
. (A.24)

Let A0
g ⊆ Ag be the set of indices of true null hypotheses belonging to group

g. Since g ∈ G0, H
ug/ng

0 is a true null hypothesis, therefore |A0
g| ≥ ng − ug + 1,

and there exists a set A ⊆ A0
g such that |A| = ng − ug + 1. Fix an arbitrary set

A′ ⊆ A0
g satisfying |A′| = ng − ug + 1. Then we obtain

1
[
max

{
P 1/(ng−ug+1)[A] : A ⊆ Ag, |A| = ng − ug + 1

}
≤ cβ(U)

]
≤

1
[
P 1/(ng−ug+1)[A′] ≤ cβ(U)

]
(A.25)

According to our assumptions, for each null group A ⊆ Ag such that |A| = ng −
ug+1, P 1/(ng−ug+1)[A] is a valid global null p-value for group A. Therefore, both
P

ug/ng
g and P 1/(ng−ug+1)[A′] are either uniform or are stochastically larger than

uniform, which yields that P

[
P

ug/ng
g ≤ 0

]
= P

[
P 1/(ng−ug+1)[A′] ≤ 0

]
= 0. On

the other hand, it is assumed that β(0) = 0. Therefore, according to Remark 1.1,
we can divide both expressions in (A.25) by U while preserving the inequality.
Therefore, combining (A.24) and (A.25), we obtain

E

⎡
⎣1
{
P

ug/ng
g ≤ cβ(U)

}
U

⎤
⎦ ≤ E

[
1
{
P 1/(ng−ug+1)[A′] ≤ cβ(U)

}
U

]
(A.26)

Since it is assumed that for each null group A ⊆ Ag such that |A| = ng−ug +1,
the pair (P 1/(ng−ug+1)[A], U) satisfies the dependency control condition with
respect to the shape function β, we obtain

E

[
1
{
P 1/(ng−ug+1)[A′] ≤ cβ(U)

}
U

]
≤ c (A.27)

Combining (A.26) with (A.27), we obtain

E

[
1{Pug/ng

g ≤ cβ(U)}
U

]
≤ c,

which completes the proof.
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A.7. Proof of Lemma 6.2

Proof of item 1. Let us first assume that P
u/n
i is connected to a multiple

testing procedure in the sense of (4.1), which satisfies condition (c) of item 1
of Theorem 4.1. The meta-analysis setting can be viewed as a group setting
of Section 3.1, where the n hypotheses for each feature constitute a group.
According to Lemma A.1, the p-values satisfy the overall positive dependence
condition, as defined in item D2 in Section 4. Therefore, according to item 1
of Lemma 6.1, the pair (Pu/n

i , f(p)) satisfies the dependency control condition
with respect to the identity shape function β(x) = x.

Let us now assume that P
u/n
i is based on Fisher’s or on Stouffer’s methods.

In this case the proof is similar to the proof of Theorem 3 in [3]. If Pu/n
i is based

on Fisher’s method, then

P
u/n
i = max{P 1/(n−u+1)

i [A] : A ⊆ {1, . . . , n}, |A| = n− u + 1}, (A.28)

where

P
1/(n−u+1)
i [A] = P

⎡
⎣χ2

2(n−u+1) ≥ −2
∑
j∈A

log pij

⎤
⎦ . (A.29)

If Pu/n
i is based on Stouffer’s method, then P

u/n
i is given by (A.28), where

P
1/(n−u+1)
i [A] = Φ

{∑
j∈A Φ−1(pij)√
n− u + 1

}
. (A.30)

According to Lemma A.4, it is enough to show that for any subset of indices
A ⊆ {1, . . . , n} such that |A| = n − u + 1, and Hij is a true null hypothesis
for each j ∈ A, the pair (P 1/(n−u+1)

i [A], f(p)) satisfies the dependency control
condition with the identity shape function β(x) = x, when P

1/(n−u+1)
i [A] is

given by (A.29) or (A.30). Let A ⊆ {1, . . . , n} be such a subset (which exists,
because P

u/n
i is a true null hypothesis). We shall rely on item 2 of Lemma 3.2

of [12], which we give below for completeness.

Lemma A.5 ([12]). Let (U, V ) be a couple of non-negative random variables
such that U is stochastically lower bounded by a uniform random variable on
[0, 1], i.e. ∀t ∈ [0, 1], P [U ≤ t] ≤ t. Then the pair (U, V ) satisfies the dependency
control condition with the identity shape function β(x) = x if for any r ≥ 0, the
function u �→ P [V < r |U ≤ u] is non-decreasing.

The set A consists only of true null hypotheses, and according to our as-
sumptions, their p-values are independent and uniform on [0, 1]. Therefore,
P

1/(n−u+1)
i [A] based on Fisher’s or Stouffer’s methods (given in (A.29) and

(A.30), respectively) is a a uniform random variable on [0, 1]. According to
Lemma A.5 it is enough to show that for any r ≥ 0, the function

u �→ P

[
f(p) < r |P 1/(n−u+1)

i [A] ≤ u
]
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is non-decreasing, where P
1/(n−u+1)
i [A] is based on either Fisher’s or Stouffer’s

methods. As shown by [8] and [12], the above result follows if for any r ≥ 0, the
function u �→ P

[
f(p) < r |P 1/(n−u+1)

i [A] = u
]

is non-decreasing, so it is enough
to prove the latter. Let r ≥ 0 be arbitrary fixed. Define W : [0, 1]n−u+1 → [0, 1]
as follows:

W (x1, . . . , xn−u+1) = P [f(p) < r | ∀k ∈ A : pik = xk] .

Note that the set D = {p : f(p) < r} is a non-decreasing set, since f is a
non-increasing function. Therefore, using the result of item 3 of Lemma A.1
and the fact that the p-values within each row are independent, we obtain that
W (x1, . . . , xn−u+1) is non-decreasing in each of its arguments. Note that for any
u ∈ [0, 1],

P

[
f(p) < r |P 1/(n−u+1)

i [A] = u
]

= E

[
W (pA

i ) |P 1/(n−u+1)
i [A] = u

]
, (A.31)

where pA
i is the vector of p-values for the hypotheses in the set {Hij , j ∈ A}. We

shall now use the following theorem of [20], addressing random variables with
densities which are Polya frequency functions of order 2 (PF2):

Theorem A1 ([20]). Let X1, . . . , Xn be n independent random variables with
PF2 densities r1(x), . . . , rn(x) respectively, and let H(x1, . . . , xn) be a real mea-
surable function on Euclidean n-space which is non-decreasing in each of its
arguments. Then E [H(X1, . . . , Xn)|

∑n
i=1 Xi = y] is a non-decreasing function

of y.

Note that when P
1/(n−u+1)
i [A] is based on either Fisher’s or Stouffer’s meth-

ods, P 1/(n−u+1)
i [A] = G(

∑
j∈A g(pij)), where G(·) and g(·) are certain strictly

increasing functions. For Fisher’s method, G(x) = P

[
χ2

2(n−u+1) ≥ −2x
]

and
g(x) = log(x), while for Stouffer’s method, G(x) = Φ(x/

√
n− u + 1) and

g(x) = Φ−1(x). Recall that A consists only of true null hypotheses, therefore,
according to our assumptions, the p-values in the set {pij , j ∈ A} are inde-
pendent and uniform on [0, 1]. Let us consider the random variables in the set
{g(pij), j ∈ A}. These random variables are independent. For each j ∈ A, g(pij)
is distributed as log(U) for Fisher’s method, and g(pij) is distributed as Φ−1(U)
for Stouffer’s method, where U ∼ U [0, 1]. Note that − log(U) has an exponential
distribution, while Φ−1(U) has a standard normal distribution. Therefore, for
each j ∈ A, g(pij) has a PF2 density (see [20]). We shall consider the general
case, where

P
1/(n−u+1)
i [A] = G

⎡
⎣∑
j∈A

g(pij)

⎤
⎦ , (A.32)

where both G(·) and g(·) are strictly increasing functions, and the variables in
the set {g(pij), j ∈ A} are independent variables with PF2 densities. As shown
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above, this case covers both Fisher’s and Stouffer’s combining functions. In this
case the inverse functions G−1(·) and g−1(·) exist, and they are also strictly
increasing. We define H(x1, . . . , xn) = W (g−1(x1), . . . , g−1(xn)). Obviously,
H(g(x1), . . . , g(xn)) = W (x1, . . . , xn). Since W (x1, . . . , xn) is non-decreasing
in each of its arguments, and g−1 is strictly increasing, H(x1, . . . , xn) is also
non-decreasing in each of its arguments. Let g(pA

i ) be the vector obtained by
applying the function g on each of its entries. Based on (A.31) and (A.32), we
obtain

P

[
f(p) < r |P 1/(n−u+1)

i [A] = u
]

=

E

⎡
⎣W (pA

i ) |G

⎧⎨
⎩
∑
j∈A

g(pij)

⎫⎬
⎭ = u

⎤
⎦ =

E

⎡
⎣H(g(pA

i )) |
∑
j∈A

g(pij) = G−1(u)

⎤
⎦ . (A.33)

According to Theorem A1, the expression in (A.33) is non-decreasing in G−1(u),
and since G−1 is an increasing function, this expression is non-decreasing in u.
Thus we have proved that

P

[
f(p) < r |P 1/(n−u+1)

i [A] = u
]

is non-decreasing in u. As shown above, this completes the proof.

Proof of item 2. Assume that P
u/n
i is connected to a multiple testing pro-

cedure (in the sense of (4.1)), which satisfies condition (c) of item 2 of Theorem
4.1. The meta-analysis setting can be viewed as a group setting of Section 3.1,
where the n hypotheses for each feature constitute a group. According to Lemma
A.1, the p-values are conditionally positively dependent across groups, and are
independent within each group, in the sense of items D3 and D1 in Section 4.
Therefore, according to item 2 of Lemma 6.1, the pair (Pu/n

i , h(p(−i)·)) satisfies
the dependency control condition with the identity shape function β(x) = x.

Appendix B: Example addressing the PRDS property

The following example was presented by Prof. Abba Krieger in his invited talk
in a conference in December 2018 in honor of Prof. Yoav Benjamini’s 70th
birthday. Let X1, X2 be independent standard uniform random variables. Let
X3 be a random variable which depends on (X1, X2) in the following way. The
conditional distribution of X3 given that X1 = x1, X2 = x2 is defined as follows,
according to the colored areas in Figure B.1:⎧⎪⎨

⎪⎩
U(0, 1

2 ) if (x1, x2) belongs to the red area
U(1

2 , 1) if (x1, x2) belongs to the green area
U(0, 1) otherwise
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It is easy to see that the vector (X1, X2, X3) satisfies the PRDS property on the
subset {1, 2}. However, the vector (X3, fSimes(X1, X2)), which can be written as
(fSimes(X3), fSimes(X1, X2)), does not satisfy the PRDS property with respect
to fSimes(X1, X2), because

P [X3 ≥ 0.5 | fSimes(X1, X2) = 0.6] = 0.5,

while

P [X3 ≥ 0.5 | fSimes(X1, X2) = 0.8] = 1
3 .

Fig B.1. An auxiliary figure for the example in Appendix B. The top curve corresponds to
the values of (x1, x2) for which fSimes(x1, x2) = 0.8, while the bottom curve corresponds to
the values of (x1, x2) for which fSimes(x1, x2) = 0.6.
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