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Abstract: Optimal design of experiments for correlated processes is an
increasingly relevant and active research topic. Present methods have re-
stricted possibilities to judge their quality. To fill this gap, we complement
the virtual noise approach by a convex formulation leading to an equiv-
alence theorem comparable to the uncorrelated case and to an algorithm
giving an upper performance bound against which alternative design meth-
ods can be judged. Moreover, a method for generating exact designs follows
naturally. We exclusively consider estimation problems on a finite design
space with a fixed number of elements. A comparison on some classical
examples from the literature as well as a real application is provided.
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1. Introduction

1.1. An elementary description

In this paper we propose a particular approach for evaluating the performance
of any n-point exact design for linear regression with correlated observations.
This means that we consider any n-tuple of observation points x1, . . . , xn within
a model

y (x) = fT (x) θ + ε (x) ; x ∈ X , (1)
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where X = {x1, . . . , xN} is a finite discrete space containing N points and θ is
the unknown vector of parameters with dim(θ) = p. What is further conven-
tionally assumed is that the random error of the observation collected at x has
zero expectation, i.e. E {ε (x)} = 0, and is correlated with observations at other
locations, defined through the N ×N matrix C with elements

Cij = cov {ε (xi) , ε (xj)} ; i, j = 1, . . . , N,

which is supposed to be known.
The number n of required observations is considered fixed, and the points

x1, . . . , xn are to be taken from a design space coinciding with X . Our ultimate
aim is to look for the n-point exact design which allows for the most precise
estimation of the parameters of the model (1).

As is well known, following [13], excellent results in this sense have been
obtained when the observations are uncorrelated and consequently can be repli-
cated independently. Then one can augment the set of possible exact designs
with some “design measures” reflecting possible replications of the observations.
This approach allowed the use of very powerful tools of convex optimization for
computing the optimum “design measure of replications.”

The situation is quite different when the observations are correlated and
hence independent replications are not possible. The approach we take in our
paper is to enlarge the set of possible n-point exact designs (fixed n) to a larger
set of “design measures” in a way to make use of convexity considerations. This
is achieved by adding some purely theoretical random variable, called virtual
noise, to the real errors of observations. Therefore, we pass from model (1) to an
auxiliary model and from the set of all exact n-point designs to a convex set of all
design measures meaningful in this auxiliary model. Nevertheless, we still keep
in mind our ultimate aim, namely the consideration of n-point exact designs in
the original model (1). These n-point exact designs arise as special cases in our
auxiliary model when the design measure is uniformly concentrated just in n
points. Then our model fully coincides with model (1) considered with nonrepli-
cated observations performed just in those n support points. This is because
in this particular case the virtual noise in the auxiliary model automatically
disappears, or put more precisely, it has zero variance and zero mean.

A nice property of our auxiliary model is that it does not coincide with model
(1) if the design measure is uniformly concentrated in k points, k �= n. Another
nice property is that in the particular case of uncorrelated observations with
constant variances, our concept of design measure coincides with the design
measure commonly used for uncorrelated observations with great success. The
virtual noise is used here to turn the problem of optimum design in the auxiliary
model into a convex problem. Consequently, we present a method for numeri-
cally computing an optimum design measure and use it heuristically to obtain
nearly optimum exact n-point designs for model (1). Moreover, using our con-
vex approach we can provide an upper bound for the performance of any given
n-point design for model (1). This allows us to quantify the relative quality of
various designs by comparing them to the closeness to this bound, which was
not possible before.



Convex optimum design with correlated observations 5661

To have an idea of possible applications consider the problem of an optimal
localization of weather stations for daily rainfall observations (see our Example
3). The average rainfall over the whole territory is modeled by a regression with
unknown parameters and the problem to be solved is to find n best localizations
of weather stations to get the best estimates of these parameters.

1.2. Motivation

Due to its importance in spatio-temporal monitoring (cf. [14]) and particularly
computer simulation (cf. [23]), experimental design for regression models with
correlated errors has gained increasing interest. The theory is well developed
for classical (non-)linear regression with uncorrelated errors (cf. [15]), where
the corresponding optimum design approach has been initiated from Kiefer’s
concept of design measures (cf. [13]) and has emerged into textbook status (cf.
[1, 10], etc.). However, for the correlated setting the literature is only scattered.

The meanwhile classic approach by [25] relied heavily on asymptotic consid-
erations, making it valid and useful for only limited situations. In contrast, the
algorithm devised by [3] is purely heuristic but applicable to and surprisingly
efficient for a great variety of problems. The proposal of [8] to transform the
problem into a random coefficient model allows for embedding it into standard
convex design theory but requires elaborate tuning to achieve a given design
size. More recently, in a remarkable series of papers started with [29], Dette, Pe-
pelyshev and Zhigljavsky built upon and extended much of the discussions and
material exposed in the pioneering monograph by [18], essentially concentrat-
ing on the ordinary least squares estimator. Latest, more promising approaches
derived from the best linear unbiased estimator of the continuous-time model
were proposed in [6] and [5].

An entirely different suggestion redefining the role of design measures was
given in [20] and fully developed in [16]. Therein a virtual noise was introduced
to influence the behavior of the designs and the corresponding measure was re-
flecting the amount of signal suppression. The resulting procedures were quite
effective, but their broader application was hampered by the downside that the
method was nonconvex and thus no Kiefer-Wolfowitz-type equivalence theo-
rem was available. In the present paper we fill this gap by asserting convexity
through a new and different variant of virtual noise and consequently provide a
corresponding equivalence theorem. We will show the effectiveness of this novel
modification on classical examples from the literature and compare to the above
mentioned alternative techniques.

2. Theory

2.1. The introductory setup

In the presentation we will constrict ourselves on linear regression models with
the obvious generalizations to the asymptotic approach to the nonlinear case as
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outlined in [21], so we assume our observations to be generated from the model
(1). The Gaussian process literature additionally assumes normality, which leads
to the well-known kriging equations for prediction (cf. [23]).

Let us now first consider an exact unreplicated n-point design T ⊂ X , where
n is the required number of observations. The information matrix of θ in the
model (1) and for the design T is inversely related to the (asymptotic) variance-
covariance matrix of the best linear unbiased estimator θ̂. As is well known,
this information matrix is MT = F (T )TC−1(T )F (T ), where C(T ) is the n× n
submatrix of C corresponding to points of the set T and F (T ) is an n × p
matrix, Fi,j(T ) = fj (xi), with xi ∈ T and j = 1, . . . , p.

The situation is quite different when the observations are uncorrelated, so
that for any x ∈ X observations y(x) can be replicated. Traditionally, following
[13], we then define a design as a probability measure ξ on X , ξ(x) being in-
terpreted as to be proportional to the number of replicated observations at the
design point x.

Typically criteria functions used for uncorrelated observations, i.e. the case
of a diagonal C, can be expressed as concave increasing functions of the infor-
mation matrix. For example, for D-optimality we have Φ (Mξ) = {det (Mξ)}1/p

or Φ (Mξ) = log det (Mξ), with Mξ =
∑

x∈X f(x)fT(x) ξ(x).
It is the usual purpose of optimum design to find the design

ξ∗ = arg max
ξ

Φ (Mξ) .

The maximum of Φ (Mξ) over the set of all designs Ξ can be obtained by convex
methods. In case of strict concavity of Φ (Mξ), there is only one maximum value
of M .

It is fully justified to use in the correlated setup of model (1) the same opti-
mality criteria functions Φ(M) as for the uncorrelated case, but now MT should
be used instead of Mξ ([19]). In the method presented in this paper, we take
great advantage of the fact that all statistically meaningful criteria functions
Φ(M) are concave functions on the set of all symmetric positive semidefinite
matrices M , cf. [22]. Thus, we will be able to employ efficient convex optimiza-
tion methods for the evaluation of approximate designs.

Note that this is usually not the case in the correlated setup, i.e. for a general
C, where typically sophisticated non-convex optimization techniques, such as
simulated annealing or particle swarms, have to be applied.

2.2. Some techniques from the literature

Such non-convex methods are for instance required for the mathematically elab-
orate design approaches developed by Dette, Zhigljavsky and collaborators, most
recently in [6] and [5]. There they generate their results by moving from the dis-
cretely indexed model (1) to its continuously indexed counterpart and back,
thus ending up with the eventual need for discretization and approximation of
the best linear unbiased estimator. In [6], they make use of the fact that the
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optimally-weighted signed least squares estimator has the same variance as the
best linear unbiased estimator. They derive the weight function of the signed
least squares estimator for the continuous model and regard this as the de-
sign measure. In [5], they propose an approximate criterion based on a discrete
approximation of the best linear unbiased estimator for the continuous model.
The approximate criterion needs to be optimized numerically in the same way as
the original criterion, so there is no major conceptual difference when it comes
to optimization with the exception of the former being computationally more
efficient if p � n. Therefore, in the following we shall not consider these approxi-
mate criteria, as [5] have already investigated how good/bad this approximation
works. Limitations of the methods of [6] and [5] are that they are constrained
to a limited form of covariance kernels and that it may be quite difficult to
generalize to higher-dimensional design spaces.

The most straightforward and pragmatic approach, however, is the greedy
algorithm for exact design generation first proposed by [3], in the modification
and interpretation given in [8]. There the so-called sensitivity function of the
classical one-point correction algorithms for D-optimality in the uncorrelated
setup is used with expressions simply replaced by their analogues from the
correlated case. That is, at each step r we augment the point

xr = arg max
X

fT(x)M−1
Tr−1

f(x)/σ2
ε(x)

to the current design Tr−1 ⊂ T , with f , M , and the error variance σ2
ε replaced

accordingly, see the appendix for details. Furthermore, the appendix contains an
adaption for A-optimality, which will be utilized in some of the examples. Note
that despite its compellingly simple form, this algorithm has little theoretical
basis other than that the independent case can be seen as a particular limit
instance of the general setup.

A good overview of all these approaches with an application in spatio-temporal
sensor placement, albeit mainly from the perspective of using the ordinary least
squares estimator, can most recently be found in [27].

2.3. Virtual noise

In this paper, we will use a technique that has first been proposed in [20], which
is very different from the above. Despite a certain similarity to the standard
kriging setup, in that we consider two error components, one correlated and the
other uncorrelated, our additional uncorrelated error component however is not
considered as an observational error but as a regulatory device without physical
meaning, termed virtual noise. To make this operational, the variance of this
virtual noise needs to be assumed being of a specific form. Unfortunately the
specifications given in [20] as well as in [16] both yielded a nonconvex solution.
In this paper, we intend to fill this gap by providing convexity and consequently
an equivalence theorem that allows for quick checks of the quality of n-points
designs in model (1) as well as an algorithm to find the optimum.
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First, similarly as in [16], define a convex set of restricted probability mea-
sures, also termed design measures or simply designs,

Ξ =
{
ξ :
∑
x∈X

ξ (x) = 1, ∀x∈X 0 ≤ ξ (x) ≤ 1/n
}
,

on the design space X , which is supposed to be finite. The integer number n
represents the desired number of points of support of an optimum exact design
ξ∗. Now instead of (1), consider the auxiliary perturbed model

y (x) = fT (x) θ + ε (x) + wξ (x) ; x ∈ X , (2)

where the variance of the supplementary ‘virtual noise’ wξ, independent of ε, is
fixed as

var {wξ (x)} = σ2
ξ (x) = κ

1/n− ξ (x)
ξ (x) ,

whereas cov {wξ (x) , wξ (x′)} = 0 when x �= x′. The positive number κ is a
tuning parameter which must be chosen within the bounds given by Theorem 2.1
and should be taken as large as possible to emphasize the influence of the virtual
noise. The experience obtained in the examples below is that a smaller choice
of κ diminishes mainly the speed of the linear programming algorithm from
Section 2.4.

That means, similarly as in [16] in this auxiliary model (2), if ξ (x) = 0, i.e.
σ2
ξ = ∞, there is no observation at the point x, and if ξ (x) = 1/n, i.e. σ2

ξ = 0,
the observation at the point x is not disturbed at all by the virtual noise.

An important notion in model (2) is the concept of a realizable k-point design,
by which we denote a design ξ ∈ Ξ for which the signal is not disturbed by the
virtual noise in the k points x1, . . . , xk ∈ X , i.e. ξ(xi) = 1/n, and the signal is
totally suppressed in all other points, i.e. ξ(x) = 0 ∀ x ∈ X\{x1, . . . , xk}. It
follows trivially from the definition of Ξ that all realizable n-point designs are in
Ξ, but Ξ contains no realizable k-point designs with k �= n. The set Ξ has also
another property: it is the smallest closed convex set of probability measures
on X which contains all realizable n-point designs. In the proofs we shall also
require the set

Ξ+ =
{
ξ :
∑
x∈X

ξ(x) = 1, ∀x∈X 0 < ξ(x) ≤ 1/n
}

= {ξ ∈ Ξ : supp(ξ) = X} .

Its advantage is that var {wξ (x)} < ∞ for every x ∈ X , ξ ∈ Ξ+. One can easily
see that Ξ is the closure of Ξ+.

Denote by W (ξ) the N ×N diagonal matrix

Wi,j (ξ) = κ
1/n− ξ (xi)

ξ (xi)
; if i = j

= 0; if i �= j.
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When ξ ∈ Ξ+, i.e. supp(ξ) = X , the information matrix of θ in model (2) is
given by

M(ξ) = FT {C + W (ξ)}−1
F, (3)

where C is the N ×N covariance matrix defined after (1), and F is the N × p
matrix Fi,j = fj(xi), xi ∈ X , i = 1, . . . , N, j = 1, . . . , p. Evidently, M(ξ) is
nonsingular if F has full rank p.

On the other hand, when ξ ∈ Ξ\Ξ+, we define

M(ξ) = F ′T {C ′ + W ′ (ξ)}−1
F ′, (4)

where C ′, W ′(ξ) are submatrices of C, W (ξ) restricted to the support supp(ξ),
and similarly are the rows of F ′. An important property is the continuity of M(ξ)
on the whole set Ξ, i.e. ξn(x) → ξ(x) for every x ∈ X implies M(ξn) → M(ξ),
see Lemma F.1 in the appendix.

Another interesting property of M(ξ) is that in case of uncorrelated obser-
vations with constant variances, C = σ2I, with κ = σ2 we obtain M(ξ) pro-
portional to Mξ, the information matrix from Kiefer’s design theory. However,
for general C the design measure can no more be interpreted as reflecting the
replications of observations. In any case we can still use it to obtain heuristically
exact n-point designs approaching the quality of an optimum exact design as
will be demonstrated in the examples section.

We now have the following

Theorem 2.1. If κ ≤ λmin (C), the minimal eigenvalue of the matrix C, and
if Φ (M) is any optimality criterion expressed as a concave, increasing, and
continuous function of the matrix M , then the mapping

ξ ∈ Ξ → Φ {M(ξ)}

is concave as well, with M(ξ) defined in (3) and (4).

The proof of the theorem is given in the appendix. Its consequences are that
the maximum of Φ(M) over the set Ξ can be obtained by convex methods, and
in case of a strict concavity of Φ(M), there is only one optimal M .

Unfortunately however, the gradient method so popular in uncorrelated ob-
servations cannot be used here because one-point design measures do not enter
into the set Ξ. Neither can we use the usual equivalence theorem, which requires
the use of one-point designs as well. However, the methods of modified linear
programming can be employed, see the next subsection, and also a certain form
of the equivalence theorem can be provided, which is given in Section 2.5.

2.4. A design algorithm

The method used in this subsection originated as the cutting-plane method of
[12], was then adapted to experimental design in Chapter 9 of [21] and applied
algorithmically to classical experimental design in [4].
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For computational reasons we shall restrict our attention in this section to
the set

Ξε = {ξ ∈ Ξ : ∀x∈X ξ(x) ≥ ε}
for some small ε > 0. Evidently,

Ξ+ =
⋃
ε>0

Ξε.

Since the closure of Ξ+ is the set Ξ and since according to Lemma F.1 in
the appendix the criterion function Φ {M(ξ)} is continuous on the whole of Ξ,
we can approach the value of maxξ∈Ξ Φ {M(ξ)} arbitrarily close by computing
Φ {M(ξ∗ε )}, where ξ∗ε ∈ arg maxξ∈Ξε Φ {M(ξ)}.

If Φ(M) is any (concave) criterion, like D− or A-optimality, having a gradient
∇MΦ(M), then for any ξ in Ξ+ = {ξ ∈ Ξ : supp(ξ) = X} we have the derivative

∂Φ {M(ξ)}
∂ξ(x̄) = tr

[
∇MΦ {M(ξ)} ∂M(ξ)

∂ξ(x̄)

]
,

where ∇MΦ {M(ξ)} denotes ∇MΦ(M) at M = M(ξ). The linear Taylor formula
for ξ → Φ {M(ξ)} at the point μ gives

Φ {M(μ)} +
∑
x̄∈X

tr
[
∇MΦ {M(μ)} ∂M(μ)

∂μ(x̄)

]
{ξ(x̄) − μ(x̄)} , (5)

which is linear in ξ. Due to the concavity of Φ[M(ξ)] its graph is always below
any point of its tangent plane. The expression (5) corresponds to this tangent
plane at the point μ. Consequently, we have for any ξ ∈ Ξε

Φ {M (ξ)} = min
μ∈Ξε

(
Φ {M(μ)} +

∑
x̄∈X

tr
[
∇MΦ {M(μ)} ∂M(μ)

∂μ(x̄)

]
{ξ(x̄) − μ(x̄)}

)

(6)
and arg maxξ Φ{M(ξ)} is the optimal design on Ξε.

We can now reformulate the design problem into a linear program. Any con-
cave and positive criterion

ξ ∈ Ξε → Φ {M(ξ)}

can be written in a form

Φ {M(ξ)} = min
μ∈Ξε

{
a(μ) +

N∑
i=1

bi(μ) ξ(xi)
}
.

Here, a(μ) and bi(μ) can be obtained either from the linear Taylor formula (6),
or, in case that there is no gradient, from subgradients, or using some algebraic
tricks as in [4].

At the first step of the linear program, we set a finite set Ξ1 ⊂ Ξε, which will
be increased in the later steps. Hence, at the kth step we start with a set Ξk.
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Consider the following finite set of constraints, which are linear in the variables
t ∈ R and ξ(x); x ∈ X ,

t ≥ 0, t ≤ a(μ) +
N∑
i=1

bi(μ) ξ(xi), μ ∈ Ξk;

ξ(xi) ≥ ε; ξ(xi) ≤
1
n

; i = 1, . . . , N,
N∑
i=1

ξ(xi) = 1,

and consider a standard linear program which maximizes t under these con-
straints. Denote t(k) and ξ(k) those values of t and of ξ where the maximum of
t is attained. Define Ξk+1 = Ξk ∪

{
ξ(k)} and repeat the linear program with

Ξk+1 instead of Ξk.
To make this operational, we also require a stopping rule. We have that

t(k) = max
ξ∈Ξε

min
μ∈Ξk

{
a(μ) +

N∑
i=1

bi(μ) ξ(xi)
}

≥ max
ξ∈Ξε

min
μ∈Ξε

{
a(μ) +

N∑
i=1

bi(μ) ξ(xi)
}

= max
ξ∈Ξε

Φ {M(ξ)} ≥ max
ξ∈Ξk

Φ {M(ξ)} .

Hence, if we have a small number δ > 0, such that t(k)−maxξ∈Ξk
Φ {M(ξ)} <

δ, then
max
ξ∈Ξk

Φ {M(ξ)} > max
ξ∈Ξε

Φ {M(ξ)} − δ

and arg maxξ∈Ξk
Φ {M(ξ)} is the nearly optimum design. Evidently,

maxξ∈Ξk
Φ {M(ξ)} can be simply computed iteratively,

max
ξ∈Ξk

Φ {M(ξ)} = max
[

max
ξ∈Ξk−1

Φ {M(ξ)} , Φ
{
M
(
ξ(k)
)}]

.

2.5. Equivalence theorem

In this section, we shall consider only global optimality criteria having a gradient
∇MΦ(M) such as the D- and A-criterion. We shall use an abbreviated notation
writing

h (x, ξ) = {T (ξ)}x,. G (ξ) {TT (ξ)}.,x ,

where

G(ξ) = F [∇MΦ {M(ξ)}]FT,

T (ξ) =
[
(C − κI) diag {ξ(·)} + κ

n
I
]−1

.



5668 A. Pázman et al.

Theorem 2.2. Let Φ be a global, concave and nonnegative optimality criterion,
zero on singular matrices, and having a gradient. A design measure ξ̄ ∈ Ξ with
a nonsingular M

(
ξ̄
)

is Φ-optimal in model (2) if and only if for every n-tuple
z1, . . . , zn of points from X we have

1
n

n∑
i=1

h(zi, ξ̄) ≤
∑
x∈X

ξ̄(x)h(x, ξ̄). (7)

Moreover, if ξ̄ satisfies the inequality

1
n

n∑
i=1

h(zi, ξ̄) ≤
∑
x∈X

ξ̄(x)h(x, ξ̄) + δ (8)

for some δ > 0 and any z1, . . . , zn ∈ X , we have that

Φ{M(ξ̄)} ≥ max
ξ∈Ξ

Φ{M(ξ)} − κδ

n
. (9)

The full proof is given in the appendix.

Remark 2.1. The numerical exploitation of this theorem is straightforward:
For a fixed design ξ̄ ∈ Ξ and for any x ∈ X compute the number h

(
x, ξ̄
)

and
compute the sum d

(
ξ̄
)

= n
∑

x∈X ξ̄(x)h
(
x, ξ̄
)
. Order the points of the set X so

that h
(
x1, ξ̄

)
≥ · · · ≥ h

(
xN , ξ̄

)
. Then (7) is equivalent to the inequality

n∑
i=1

h
(
xi, ξ̄

)
≤ d
(
ξ̄
)
,

and (8) is equivalent to the inequality

n∑
i=1

h
(
xi, ξ̄

)
≤ d
(
ξ̄
)

+ nδ.

Note that the possibility to formulate an equivalence theorem due to concav-
ity means that we can provide a rather close upper bound for the performance of
all exact n-point designs. Thus we can calibrate the performance of all existing
methods by this bound, as will be done in the next section.

3. Examples

3.1. General considerations

To check our ideas, we have computed designs for numerous examples from the
literature, particularly those already presented and compared in [9]. In most of
these examples, all compared methods did reasonably well, so for illustration
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we have just selected four, which we consider representative and for which we
give details below.

The ultimate goal in all our examples is to find an exact design in model
(1) and to judge its quality. As for all measure-based design approaches, we
therefore require a method to convert the calculated measure in model (2) to a
discrete set of points from the design space X . The endpoints plus quantiles of
their measure are typically used in [6] in their one-dimensional examples. We will
thus for comparison purposes use the same method for our approach, but there
is no simple way to extend this to higher dimensions. Instead, in the spirit of
the random design strategies defined in [28], one can perform random sampling
according to the measure multiple times and select the sampled design with the
best criterion value. We will denote this approach by R-VN (random sampling
virtual noise). In our experience, this strategy has led to even more efficient
designs in all cases, and we apply this approach using 100 samples whenever the
design dimension is greater than one. We furthermore provide the results for
the one-dimensional cases in the appendix, which also contains some additional
examples.

In the following examples, we will compare our method based on the optimal
measure for the virtual noise representation to the method from [6] as well as
to the variant of the algorithm of [3] put forward by [8] based on approximate
sensitivity functions, henceforth denoted by BKSF. An algorithmic description
of the latter can be found in the appendix. We refrain from reporting results from
the original algorithm which is tantamount to an exchange method based on
direct comparisons of criterion values, as most of the time they gave very similar
results. For comparison purposes, we also provide the median performance out
of 100 randomly chosen exact designs of the respective size and denote this
approach by R-UNIF. A variant of this approach always includes the endpoints
and is denoted by R-UNIF+EP.

For all methods except the one from [6], the design space to search over
was discretized to an N = 101-point design grid. For small n we performed
an exhaustive search of all n-point combinations over the design grid to obtain
the true optimum exact design. We report those points in the tables as well,
where we abbreviate this approach by EXS (exhaustive search). We consider two
different quantile-based ways how to obtain the exact n-point designs for our
method. The first is to select the quantiles 1/(n+1), . . . , n/(n+1) of the design
grid with respect to the design measure. The second way is to always include the
endpoints of the design grid and select the quantiles 1/(n−1), . . . , (n−2)/(n−1)
of the remaining mass over the design grid. We denote these two methods by
Q-VN and Q-VN+EP (quantile virtual noise plus endpoints), respectively. The
second approach is similar to the approach of [6], which we will denote by Q-
DPZ+EP. The design measures [6] consider usually have discrete masses at the
endpoints but are continuous elsewhere, so [6] always include the endpoints
and select the quantiles for the design points in between with respect to the
continuous measure.

From Theorem 2.2 it follows that Φ (MT ) for any realizable n-point design
T is bounded from above by Φ

{
M
(
ξ̄
)}

for the Φ-optimal design measure ξ̄,



5670 A. Pázman et al.

where M(ξ) is given by (3). Therefore, we report the efficiencies with respect to
Φ
{
M
(
ξ̄
)}

, where ξ̄ is found by applying the linear programming algorithm. Let
Ξk be the finite set of design measures determining the set of linear constraints
in step k of the linear programming algorithm and let

t(k) = max
ξ∈Ξε

min
μ∈Ξk

{
a(μ) +

N∑
i=1

bi(μ) ξ(xi)
}
,

see Section 2.4. Denote Φ(k) = maxξ∈Ξk
Φ {M(ξ)}. In our programs, we stop

the linear programming algorithm if t(k)−Φ(k)

Φ(k) ≤ 10−4. We set ε = 10−6 in
all our examples to avoid numerical problems. To solve the linear programming
problems, we use the package lpSolve ([2]) from the software R ([26]). In all our
examples we also choose κ to be rounded down from λmin(C) to two significant
digits.

In all the figures we present, the left panel displays the discrete measure
obtained by running the linear programming algorithm for the virtual noise
representation for a particular n. The right panel shows the D-efficiencies of
exact designs obtained by various methods up to n = 20. The methods depicted
are: Q-VN (solid red line with squares), Q-VN+EP (dashed green line with large
dots), Q-DPZ+EP (long-dashed blue line with triangles), BKSF (dotted black
line with diamonds), and reporting the median efficiency for R-UNIF without
(dot-dashed purple line with large dots) and with fixed endpoints (long-short-
dashed gray line with small dots).

3.2. Example 1: a classic one-parameter model

This example has originally been considered by [25]. It is used by [6] to illustrate
the efficiency of their method. It is a one-parameter model given by

f(x) = 1 + 0.5 sin(2πx), x ∈ [1, 2],

cov {ε(x), ε(x′)} =
{
x2x′ x ≤ x′

x(x′)2 x > x′,
λmin(C) = 0.00276.

For the D-criterion and n = 4, the selected design points and D-efficiencies
for the various methods are given in Table 1. While the algorithm using the
approximate sensitivity function from [8] comes close to the result of the ex-
haustive search and to 90% of the upper bound, the measure-based methods
are considerably worse. However, when we increase the sample size (see Fig. 1),
their performance improves and slowly approaches the bound.

Note that in contrast to the method by [6] our method does not require
the existence of the continuous best linear unbiased estimator. To illustrate
this, we modify the example by using the kernel cov {ε(x), ε(x′)} = min(x, x′)2
{3 max(x, x′) − min(x, x′)}/6 instead, which is the once continuously differen-
tiable kernel for the integrated Brownian motion error process. According to
[7], the continuous best linear unbiased estimator therefore has to incorporate
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Table 1

Optimal designs and D-efficiencies for Example 1

x1 x2 x3 x4 D-eff
Q-VN 1.11 1.22 1.37 1.74 0.8517
Q-VN+EP 1.00 1.20 1.55 2.00 0.7450
Q-DPZ+EP 1.00 1.28 1.69 2.00 0.8456
R-UNIF 0.7440
R-UNIF+EP 0.5591
BKSF 1.19 1.67 1.79 2.00 0.9076
EXS 1.22 1.66 1.79 2.00 0.9158

Fig 1. Our measure (left panel) and efficiencies (based on our bound) versus sample size
(right panel) for Example 1.

Table 2

Optimal designs and D-efficiencies for the modified Example 1

x1 x2 x3 x4 D-eff
Q-VN 1.00 1.01 1.39 1.53 0.4933
Q-VN+EP 1.00 1.22 1.53 2.00 0.7329
R-UNIF 0.4724
R-UNIF+EP 0.6608
BKSF 1.00 1.39 1.80 2.00 0.8042
EXS 1.00 1.23 1.75 2.00 0.9715

information from the first derivatives of the error process to be estimable. Since
this kernel is now much smoother, the minimum eigenvalue for our design grid
is rather small, namely λmin(C) = 2.0854 · 10−8. However, we did not observe
any numerical issues due to that fact.

Our algorithm puts a high amount of mass at the two lowest points in the
design grid, see Fig. 2. This can be interpreted as the algorithm trying to obtain
information about the first derivative at the lower bound.
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Fig 2. Our measure (left panel) and efficiencies versus sample size (right panel) for the
modified Example 1.

3.3. Example 2: a multiparameter case

The next example is taken from Section 3.6 of [6]. The specifications of this
four-parameter model are

fT(x) =
(
1, x, x2, x3) , x ∈ [1, 2],

cov {ε(x), ε(x′)} = min (x, x′) , λmin(C) = 0.0025.

We again consider the D-criterion, so for n = 5, Table 3 contains the selected
design points and D-efficiencies. This is one of the rare cases in which our method
does even slightly better than the algorithm using the approximate sensitivity
function from [8]. All methods provide considerable improvements over uniform
random designs, even when the endpoints in the uniform random designs are
always included.

Table 3

Optimal designs and D-efficiencies for Example 2

x1 x2 x3 x4 x5 D-eff
Q-VN 1.00 1.15 1.51 1.84 2.00 0.9229
Q-VN+EP 1.00 1.18 1.51 1.82 2.00 0.9297
Q-DPZ+EP 1.00 1.14 1.33 1.60 2.00 0.8554
R-UNIF 0.2910
R-UNIF+EP 0.7813
BKSF 1.00 1.16 1.46 1.83 2.00 0.9270
EXS 1.00 1.21 1.61 1.84 2.00 0.9308

3.4. Example 3: a real application

We consider a real-world application inspired by the example used throughout
[14]. There a dataset with temperature and rainfall measurements gathered
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Fig 3. Our measure (left panel) and efficiencies versus sample size (right panel) for Example
2.

from 37 weather stations in the Austrian state of Upper Austria during the
years 1994 – 2009 was considered. Given this information, the goal was to find
optimal designs for adding or reorganizing stations to optimize various aspects
of future data collection.

As for Fig. 1.4 of [14] we employ the rainfall data from July 1994 and obtain
the kriging estimates for an exponential kernel. The response function is assumed
to be a plane, that is, it is linear in the coordinates. For our example, we assume
that the parameters of the kernel function are known and set them to the kriging
estimates. The model we consider is therefore

fT(x) = (1, x1, x2) , x = (x1, x2)T,

cov {ε(x), ε(x′)} = 1756.65 · exp
(
‖x− x′‖2

/
40792.35

)
.

The design set is composed of the centroids of the N = 445 Upper Austrian
municipalities, for which λmin(C) = 42.15. We set n = 36 because this was
the number of active weather stations in July 1994. Our hypothetical objective
is therefore to reorganize the whole weather station network in order to most
efficiently estimate the response function parameters given the assumed kernel
function. We use the D-criterion as in the previous examples.

The left panel of Fig. 4 displays the optimal measure obtained for the virtual
noise representation when n = 36. The majority of the mass is concentrated on
the borders. The right panel shows the optimal 36-point design we obtain by
selecting the design with the highest criterion value out of 100 random designs
sampled according to the measure depicted in the left panel.

The D-efficiencies for different methods used to construct the optimal 36-
point exact design are given in Table 4. In addition to the previously mentioned
approaches, we also consider a coffee-house design ([17]), which is a simple incre-
mental design strategy aimed at obtaining designs close to space-filling maximin
designs. We also compute the efficiency of the actual weather station network.
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Fig 4. Our measure (left panel) and exact 36-point design found by taking the optimal design
from 100 random draws from the virtual noise measure (right panel) for Example 3.

As in the other examples, all the efficiencies are reported with respect to our
bound. The appendix contains the efficiencies for additional values of n from
n = 4 to n = 40 as well as maps depicting the coffee-house design for n = 36
and the actual weather station network.

Table 4

D-efficiencies for Example 3

D-eff
R-VN (highest efficiency) 0.9915
R-VN (median efficiency) 0.9702
R-UNIF (highest efficiency) 0.8405
R-UNIF (median efficiency) 0.6689
BKSF 0.9965
Coffee-house 0.9463
Actual stations 0.7754

4. Discussion

The present paper complements and in a certain sense completes the research
in [16]. The virtual noise approach now exhibits the convexity property it pre-
viously lacked. The formulated equivalence theorem allows for calculating a
general upper bound for designs in Gaussian process regression, a key method-
ology in many application fields. This upper bound for the first time offers the
possibility to calibrate and scale other design methods proposed in the literature.

Furthermore, our “importance measures” can be used to directly produce
exact designs, be it by taking quantiles or by randomly sampling from them.
However, typically for all the examples considered, also those not reported here,
the adaptation of [3] using the approximate sensitivity function from [8] per-
formed slightly better than taking the quantiles from the measure given by the
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virtual noise representation, which in turn was better than the method sug-
gested by [6]. Therefore, for practical purposes a combined approach using the
approximate sensitivity function for finding designs and the upper bound de-
rived from the virtual noise representation for evaluating them seems to be the
most suitable avenue. Even when one prefers not to use an optimal design, but
a classical one such as fractional factorial, orthogonal array, latin hypercube,
etc. our bound can be used to judge how much efficiency would be sacrificed.

Appendix A: Proof of Theorem 2.1 on concavity

A.1. Preliminaries

For any u ∈ R
N define the function

ξ ∈ Ξ → γu(ξ) =
{

uT {C + W (ξ)}−1
u if supp(ξ) = X

u′T {C ′ + W ′(ξ)}−1
u′ if supp(ξ) �= X ,

where C ′, W ′(ξ), u′ are submatrices of C, W (ξ), u, respectively with rows and/or
columns corresponding to the points of supp(ξ).

We prove the following lemma.

Lemma A.1. The function ξ ∈ Ξ → γu(ξ) is concave.

Proof. We start by proving the concavity on Ξ+ = {ξ ∈ Ξ : supp(ξ) = X}.
Consider an auxiliary function

ψu(α) : α ∈ (0, 1) → γu(ξα),

with ξα(x) = (1−α)ξ(x)+αμ(x); ξ, μ ∈ Ξ+, α ∈ (0, 1). The concavity of γu(ξ)
on Ξ+ will be proven if we show that

d2ψu(α)
dα2 ≤ 0

for any ξ, μ ∈ Ξ+ and any α ∈ (0, 1).
We can write

ψu(α) = uT {H(ξα)}−1
u,

with
H(ξα) =

[
(C − κI) + κ

n
diag

{
1

ξα(·)

}]
.

Notice that the matrix (C − κI) is positive definite, hence also H(ξα) is positive
definite.

From the rule for the derivative of an inverse matrix we obtain

dψu(α)
dα

= −κ

n
uTH−1(ξα)

{
d

dα
diag

(
1

ξα(·)

)}
H−1(ξα)u

= κ

n
uTH−1(ξα) diag

{
1

ξ2
α(·)

}
diag {μ(·) − ξ(·)} H−1(ξα)u
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= κ

n
uTTT(ξα) diag {μ(·) − ξ(·)} T (ξα)u,

where
T (ξα) =

[
(C − κI) diag {ξα(·)} + κ

n
I
]−1

.

Hence

d2ψu(α)
dα2

= −κ

n
uTTT(ξα) diag{μ(·) − ξ(·)} (C − κI)TT(ξα)

×diag{μ(·) − ξ(·)}T (ξα)u

−κ

n
uTTT(ξα) diag{μ(·) − ξ(·)}

×T (ξα) (C − κI) diag{μ(·) − ξ(·)}T (ξα)u,

which is nonpositive since the matrix

(C − κI)TT(ξα) = (C − κI)
[
diag {ξα(·)} (C − κI) + κ

n
I
]−1

=
[
diag {ξα(·)} + κ

n
(C − κI)−1

]−1

is symmetric positive definite.
To finish the proof take arbitrary ξ, μ ∈ Ξ and sequences {ξk}, {μk} of ele-

ments of Ξ+ converging to ξ and μ. From the inequality

γu{(1 − α)ξk + αμk} ≥ (1 − α)γu(ξk) + αγu(μk),

valid for each k, we obtain by the continuity of ξ ∈ Ξ → γu(ξ), see Lemma F.1,
that the same inequality also holds for ξ and μ.

A.2. Proof of Theorem 2.1

Since for any t ∈ R
p. we have

tTM(ξ)t = γFt(ξ),

From Lemma A.1 it follows that for any ξ, μ ∈ Ξ, α ∈ (0, 1), κ < λmin(C)

tTM{(1 − α)ξ + αμ}t ≥ (1 − α)tTM(ξ)t + αtTM(μ)t. (10)

It is easy to see that the analytical expressions defining M(ξ) in (3) and (4)
are formally meaningful for any κ ∈ (0,∞). They are even continuous in κ on
this interval. Indeed, by standard matrix manipulations we can even obtain the
derivative of M(ξ) with respect to κ, hence also the required continuity.

Consider now a sequence {κn}∞n=1 such that κn ∈ (0, λmin(C)) and
limn→∞ κn = λmin(C). From (10) valid for any κn and from the above con-
tinuity it follows that (10) holds also for κ = λmin(C).
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Summarizing, for any κ ≤ λmin(C), any ξ, μ ∈ Ξ and any α ∈ (0, 1) we have
the inequality

M{(1 − α)ξ + αμ} ≥ (1 − α)M(ξ) + αM(μ)

in the Löwner ordering. From the monotonicity of Φ we have

Φ [M{(1 − α)ξ + αμ}] ≥ Φ {(1 − α)M(ξ) + αM(μ)}

and from the concavity of Φ we have

Φ {(1 − α)M(ξ) + αM(μ)} ≥ (1 − α)Φ{M(ξ)} + αΦ{M(μ)}.

Appendix B: Proof of the equivalence theorem (Theorem 2.2)

Since the function
ξ ∈ Ξ → Φ{M(ξ)}

is concave, the design ξ̄ is Φ-optimal if and only if for every μ ∈ Ξ we have, see
Lemma F.2,

π
(
ξ̄, μ
)

= lim
α→0+

Φ {M (ξμα)} − Φ
{
M
(
ξ̄
)}

α
≤ 0,

where we used the notation

ξμα(x) = (1 − α)ξ̄(x) + αμ(x).

We have

lim
α→0+

Φ {M (ξμα)} − Φ
{
M
(
ξ̄
)}

α
=

p∑
i,j=1

lim
α→0+

Φ {M (ξμα)} − Φ
{
M
(
ξ̄
)}

Mij (ξμα) −Mij

(
ξ̄
) ×

× lim
α→0+

Mij (ξμα) −Mij

(
ξ̄
)

α

=
p∑

i,j=1
lim
ξ→ξ̄

Φ {M (ξ)} − Φ
{
M
(
ξ̄
)}

Mij (ξ) −Mij

(
ξ̄
) ×

× lim
α→0+

Mij (ξμα) −Mij

(
ξ̄
)

α
,

since lim
α→0+

ξμα = ξ̄. Therefore, we obtain

lim
α→0+

Φ {M (ξμα)} − Φ
{
M
(
ξ̄
)}

α

= tr
[
∇Φ (M)

∣∣
M=M

(
ξ̄
) lim

α→0+

M (ξμα) −M
(
ξ̄
)

α

]
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= tr
[
∇Φ (M)

∣∣
M=M

(
ξ̄
) κ

n
FTTT

(
ξ̄
)
diag

(
μ− ξ̄

)
T
(
ξ̄
)
F

]

= κ

n

∑
x∈X

{
μ(x) − ξ̄(x)

}
h(x, ξ̄),

as follows from (19) and (20) in Lemma F.3 and from the definition of h(x, ξ̄) at
the beginning of Section 2.5, just before Theorem 2.2. Hence we finally obtain

π
(
ξ̄, μ
)

= κ

n

∑
x∈X

{
μ(x) − ξ̄(x)

}
h(x, ξ̄). (11)

Therefore, ξ̄ ∈ Ξ is Φ-optimal if and only if for every μ ∈ Ξ we have∑
x∈X

μ(x)h(x, ξ̄) ≤
∑
x∈X

ξ̄(x)h(x, ξ̄). (12)

Since this expression is linear in μ and since the convex hull of the set of all
realizable n-point designs is the convex set Ξ, we do not need to consider all
designs μ from Ξ, but just the realizable n-point designs. Hence the validity of
the inequality (7) in Theorem 2.2 for all such n-point measures is equivalent to
the validity of (12) for all μ ∈ Ξ.

From (11) it follows that the inequalities (8) in Theorem 2.2 imply that for
every μ ∈ Ξ we have

π
(
ξ̄, μ
)
≤ κδ

n
.

According to Lemma F.2 it follows that the inequality (9) holds as well.

Appendix C: Adaptation of the algorithm from [8] for A-optimality

C.1. Sensitivity function for the D-criterion

Consider the linear regression model with i.i.d. errors,

y(x) = f(x)Tθ + ε(x),

where E{ε(x)} = 0, var {ε(x)} = σ2
ε , and E{ε(x)ε(x′)} = 0 ∀x, x′ ∈ X .

The information matrix for a design ξ ∈ Ξ is

Mξ = 1
σ2
ε

∑
x∈X

ξ(x)f(x)f(x)T.

We also consider a one-point design at x̄ ∈ X denoted by ξx̄. Its information
matrix is

Mξx̄ = 1
σ2
ε

f(x̄)f(x̄)T.

Let the information matrix of the convex combination ξαx̄ = (1 − α)ξ + αξx̄
of those two designs be denoted by

Mα = (1 − α)Mξ + αMξx̄ .
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For some concave criterion function Φ(M), the directional derivative of Φ(·)
at the design ξ in the direction of ξx̄, the so-called sensitivity function, is

φ(x̄; ξ) = lim
α→0+

Φ(Mα) − Φ(Mξ)
α

= lim
α→0+

tr
{
∇MΦ(Mα) ∂Mα

∂α

}
= lim

α→0+
tr {∇MΦ(Mα) (Mξx̄ −Mξ)}

= tr {∇MΦ(Mξ) (Mξx̄ −Mξ)}

= 1
σ2
ε

f(x̄)T∇MΦ(Mξ)f(x̄) − tr {∇MΦ(Mξ)Mξ} . (13)

In the case of D-optimality, we prefer here the criterion function ΦD(M) =
log det(M), so ∇MΦD(M) = M−1. Plugging this into (13) yields

φD(x̄; ξ) = 1
σ2
ε

f(x̄)TM−1
ξ f(x̄) − tr

(
M−1

ξ Mξ

)

= 1
σ2
ε

f(x̄)TM−1
ξ f(x̄) − dim(θ). (14)

Up to a constant, expression (14) is equal to

E
[
{y(x̄) − ŷ(x̄)}2

]
σ2
ε

=
σ2
ε + f(x̄)TM−1

ξ f(x̄)
σ2
ε

= 1 +
f(x̄)TM−1

ξ f(x̄)
σ2
ε

. (15)

In the correlated case with no replications, [8] suggests to replace the nu-
merator in (15) by the unconditional and the denominator in (15) by the
conditional variance. Let T = {x1, . . . , xn} ⊂ X denote an exact n-point de-
sign, let C(T ) be the n × n submatrix of the covariance matrix C for the
set of points in T , and let F (T ) be the n × p design matrix with elements
Fi,j(T ) = fj(xi). Let k(x, x′) = cov {ε(x), ε(x′)} and for a point x̄ ∈ X\T , let
k(x̄, T ) = (k(x̄, x1), . . . , k(x̄, xn))T. In the correlated case, [8] therefore replaces
expression (15) with

E
[
{y(x̄) − ŷ(x̄)}2

]
σ̃2(x̄) = σ̃2(x̄) + f̃(x̄)TM−1

T f̃(x̄)
σ̃2(x̄) ,

where
σ̃2(x̄) = k(x̄, x̄) − k(x̄, T )TC−1(T )k(x̄, T ),

is the conditional variance, f̃(x̄) is
f̃(x̄) = f(x̄) − F (T )TC−1(T )k(x̄, T ),

and the information matrix is
MT = F (T )TC−1(T )F (T ).

It can be shown that for D-optimality this approximate sensitivity function
is equal to the factor by which the determinant of the information matrix is
increased by adding design point x̄.
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C.2. Sensitivity function for the A-criterion

In the case of A-optimality, we use the criterion ΦA(M) = −tr
(
M−1). We

therefore have ∇MΦA(M) = −
(
−M−2)T = M−2 and the directional derivative

is

φA(x̄; ξ) = 1
σ2
ε

f(x̄)TM−2
ξ f(x̄) − tr

(
M−1

ξ

)
.

In accordance with the case of D-optimality outlined above, we obtain the
approximate sensitivity function by analogous replacements. Therefore, the sen-
sitivity function we eventually use in some of our examples is

φ̃A(x̄; T ) = 1
σ̃2(x̄) f̃(x̄)TM−2

T f̃(x̄) − tr
(
M−1

T
)
.

Appendix D: Properties of the LP-algorithm for D-optimality

To see the details of the algorithm given in Section 2.4, let us take a look at the
particular specification for D-optimality. Take Φ(M) = {det(M)}1/p. Then for
any nonsingular M

∇MΦ(M) = M−1 · p−1 {det(M)}1/p
.

According to (3), supposing that F has full rank we have that M−1(μ) exists
for any μ ∈ Ξ+, and we also have

∂M(μ)
∂μ(x̄) = κ

n
FTH−1(μ)Γ

{
μ−2(x̄)

}
H−1(μ)F,

with

H(μ) =
[
(C − κI) + κ

n
diag

{
μ−1(·)

}]
,

where diag
{
μ−1(·)

}
is an N × N diagonal matrix with μ−1(x) as diagonal

elements, and Γ
{
μ−2(x̄)

}
is an N ×N matrix having zero elements everywhere

up to the x̄th diagonal position, where we have μ−2(x̄). Thus, the expression (5)
becomes

[
det
{
FTH−1(μ)F

}]1/p ×
×
[
1+ κ

np

∑
x̄∈X

{
H−1(μ)

}
x̄,.

F
{
FTH−1(μ)F

}−1
FT
{
H−1(μ)

}
.,x̄

ξ(x̄)−μ(x̄)
μ2(x̄)

]
.
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Appendix E: Outline of algorithm from [8]

Algorithm 2 contains the description of our implementation for a finite design
grid of the BKSF-algorithm proposed in [8], which is used in our examples.

Algorithm 2: BKSF-algorithm for a finite design grid
Input: Design grid X of possible design points; design size n; initial

design T0; (approximate) sensitivity function φ̃(x; T ).
Output: Exact design T found by algorithm.

1 abort = false;
2 T = T0;
3 while not abort do
4 for i = 1 to n do
5 Let xi be the ith design point in T ;
6 T−i = T \{xi};
7 s[i] = φ̃(xi; T−i);
8 end for
9 sens_drop = min(s);

10 Let k be the index where s[k] = sens_drop;
11 Let C = X\T−k;
12 m = card(C);
13 for i = 1 to m do
14 Let x̄i be the ith design point in the candidate set C;
15 t[i] = φ̃(x̄i; T−k);
16 end for
17 sens_add = max(t);
18 Let l be the index where t[l] = sens_add;
19 T = T−k ∪ x̄l;
20 if sens_add− sens_drop ≤ 0 then
21 abort = true;
22 end if
23 end while

Appendix F: Miscellanea

F.1. The continuity lemma

Lemma F.1. The function γu(ξ) defined in Lemma A.1 is continuous on Ξ
and M(ξ) is continuous on Ξ as well.

Proof. Take ξk ∈ Ξ such that limk→∞ ξk = ξ. The equality limk→∞ γu(ξk) =
γu(ξ) is evident if supp(ξ) = X , or more generally if

⋃∞
k0=1

⋂
k≥k0

supp(ξk) =
supp(ξ). To clarify how to do the proof in the opposite case we suppose that
supp(ξ) = X , but

⋃∞
k0=1

⋂
k≥k0

supp(ξk) has one point less than the set supp(ξ),
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say the point x1. By a basic property of inverse matrices we have

[
{C + W (ξk)}−1

]
ij

= (−1)i+j det {C + W (ξk)}i,j

det {C + W (ξk)}
, (16)

where {C + W (ξk)}i,j is the submatrix of {C + W (ξk)} after omitting the i-th
row and j-th column. For k → ∞ (16) tends to zero for i = 1 or j = 1, but
to a nonzero number when i �= 1 and j �= 1. This can be seen when using the
definition of a determinant as a sum of products of the elements of the matrix.
When k → ∞, some terms of these sums in the numerator and the denominator
converge to ∞ much slower than the others, so we can neglect them. We proceed
similarly when

⋃∞
k0=1

⋂
k≥k0

supp(ξk) ∪ {x1, x2} = supp(ξ), etc..

F.2. Optimality lemma

For the reader’s convenience we prove a statement from convex theory, see e.g.
[24].

Lemma F.2. If a function φ : ξ ∈ Ξ → φ(ξ) ∈ R is concave, then for any
ξ̄, μ ∈ Ξ the function

α ∈ (0, 1) →
φ
{
(1 − α)ξ̄ + αμ

}
− φ
(
ξ̄
)

α

is nonincreasing. Hence for any ξ̄ ∈ Ξ and any μ ∈ Ξ there exists the limit

lim
α→0+

φ
{
(1 − α)ξ̄ + αμ

}
− φ
(
ξ̄
)

α
≡ π

(
ξ̄, μ
)
,

and we have
ξ̄ ∈ arg max

ξ∈Ξ
φ(ξ)

if and only if
∀ μ ∈ Ξ π

(
ξ̄, μ
)
≤ 0. (17)

If for some δ > 0 and for every μ ∈ Ξ we have

π
(
ξ̄, μ
)
≤ δ,

then φ
(
ξ̄
)
≥ max

ξ∈Ξ
φ(ξ) − δ.

Proof. Take 0 < α1 < α2 < 1. From the concavity of φ(ξ) we obtain

φ
{
(1 − α1)ξ̄ + α1μ

}
− φ
(
ξ̄
)

= φ

[
α1

α2

{
(1 − α2)ξ̄ + α2μ

}
+
(

1 − α1

α2

)
ξ̄

]
− φ
(
ξ̄
)

≥ α1

α2
φ
{
(1 − α2)ξ̄ + α2μ

}
+
(

1 − α1

α2

)
φ
(
ξ̄
)
− φ
(
ξ̄
)
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= α1

α2

[
φ
{
(1 − α2)ξ̄ + α2μ

}
− φ
(
ξ̄
)]

.

We multiply this inequality by 1/α1 to prove the first statement of the lemma.
If ξ̄ ∈ arg max

ξ∈Ξ
φ(ξ), then for any μ and α we evidently have

φ
{
(1 − α)ξ̄ + αμ

}
− φ
(
ξ̄
)

α
≤ 0

and this inequality does also hold for α → 0+.
On the other hand, suppose that there is μ ∈ Ξ such that φ(μ) > φ

(
ξ̄
)
. Then

for every α ∈ (0, 1) we have

φ
{
(1 − α)ξ̄ + αμ

}
− φ
(
ξ̄
)

α

≥
(1 − α)φ

(
ξ̄
)

+ αφ(μ) − φ
(
ξ̄
)

α

= φ(μ) − φ
(
ξ̄
)
> 0,

and by taking the limit for α → 0 we see that (17) does not hold.
If

∀μ∈X π
(
ξ̄, μ
)
≤ δ,

then from the concavity of φ(ξ) we obtain for every μ ∈ Ξ

φ(μ) − φ(ξ̄) = (1 − α)φ(ξ̄) + αφ(μ) − φ(ξ̄)
α

≤ φ{(1 − α)ξ̄ + αμ} − φ(ξ̄)
α

≤ π
(
ξ̄, μ
)
≤ δ.

Hence φ
(
ξ̄
)
≥ max

μ∈Ξ
φ(μ) − δ.

F.3. Information matrix derivative lemma

Lemma F.3. The matrix

L (ξ) ≡ FT
[
diag {ξ (·)} (C − κI) + κ

n
I
]−1

diag {ξ (·)}F (18)

is well defined and continuous on Ξ.
For every ξ ∈ Ξ we have L (ξ) = M (ξ) with M (ξ) defined in (3) and (4).
For every ξ̄ ∈ Ξ and μ ∈ Ξ the right-hand limit

lim
α→0+

L
{
(1 − α) ξ̄ + αμ

}
− L

(
ξ̄
)

α

is well defined and it is a continuous function of ξ̄ on the whole set Ξ. On the
set Ξ+ it is equal to the derivative ∂L(ξμα)

∂α

∣∣
α=0=

∂M(ξμα)
∂α

∣∣
α=0.
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Proof. We denote Z (ξ) =
[
diag {ξ (·)} (C − κI) + κ

nI
]
. To see the correctness

of the definition and the continuity of L (ξ), we must prove the existence of the
matrix Z (ξ)−1 used in (18). Without loss of generality we can suppose that
ξ (xi) > 0 for i = 1, . . . , k and ξ (xi) = 0 for i = k+1, ..., N , where k ≤ N . Let us

write Z (ξ) =
(

V R
P T

)
, where V is a k×k matrix and T is a (N − k)×(N − k)

matrix. Evidently P = 0. According to [11], Lemma 8.5.4, if the inverse matrices
V −1 and T−1 exist, then the inverse of the partitioned matrix exists as well,
and (

V R
0 T

)−1

=
(

V −1 −V −1RT−1

0 T−1

)
.

We can write
diag {ξ (·)} =

(
diag′ {ξ (·)} 0

0 0

)
,

where the k × k matrix diag′ {ξ (·)} has the k positive elements of ξ on its
diagonal. Consequently

V = diag′ {ξ (·)} (C ′ − κI ′) + κ

n
I ′

= diag′ {ξ (·)}
[
(C ′ − κI ′) + κ

n
diag′

{
ξ−1 (·)

}]
,

where the prime denotes the k× k submatrix of the corresponding matrix. The
symmetric matrix [

(C ′ − κI ′) + κ

n
diag′

{
ξ−1 (·)

}]
is positive definite, hence its inverse exists and V −1 exists as well. Finally T =
κ
nI

∗, where the star denotes the (N − k) × (N − k) submatrix, so T−1 = n
κI

∗.
The continuity of L (ξ) on Ξ is now evident from (18).
To prove L (ξ) = M (ξ), let us denote the upper k× p and lower (N − k)× p

submatrices of F by F ′ and F ∗, respectively. We have

L (ξ) =
(

F ′

F ∗

)T(
V −1 −V −1RT−1

0 T−1

)(
diag′ {ξ (·)}F ′

0

)
= (F ′)T

V −1diag′ {ξ (·)}F ′

= (F ′)T
[
(C ′ − κI ′) + κ

n
diag′

{
ξ−1 (·)

}]−1
F ′ = M (ξ) ,

as follows from Eq. (4).
Let us suppose first that ξ̄ ∈ Ξ+. Using the standard rules for the derivatives

of matrices, we obtain from (18)

∂L (ξμα)
∂α

∣∣∣∣
α=0

= −FTZ−1 (ξ̄) diag
(
μ− ξ̄

)
(C − κI)Z−1 (ξ̄) diag

(
ξ̄
)
F

+FTZ−1 (ξ̄) diag
(
μ− ξ̄

)
F

= FTZ−1 (ξ̄) diag
(
μ− ξ̄

) [
I − (C − κI)Z−1 (ξ̄) diag

(
ξ̄
)]

F
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= FTZ−1 (ξ̄) diag
(
μ− ξ̄

) κ
n

{
ZT
(
ξ̄
)}−1

F

= κ

n
FTTT

(
ξ̄
)
diag

(
μ− ξ̄

)
T
(
ξ̄
)
F, (19)

which is well defined and continuous on Ξ+. The equality

κ

n

{
ZT
(
ξ̄
)}−1 = I − (C − κI)Z−1 (ξ̄) diag

(
ξ̄
)

for ZT
(
ξ̄
)

= (C − κI) diag
(
ξ̄
)
+ κ

nI is obtained by applying the identity (UV +
Y )−1 = Y −1 − Y −1U

(
V Y −1U + I

)−1
V Y −1 with matrices U = C − κI, V =

diag
(
ξ̄
)
, and Y = κ

nI. From the definition of T (ξ) in Section 2.5 it immediately
follows that

{
ZT
(
ξ̄
)}−1 = T

(
ξ̄
)

and Z−1 (ξ̄) = TT
(
ξ̄
)
.

Suppose now that ξ̄ ∈ Ξ\Ξ+. To obtain (19) from (18), we used two standard
rules for the derivatives of matrix functions A(α) and B(α), namely
∂
∂α [A(α)B(α)] = ∂A(α)

∂α B(α)+A(α)∂B(α)
∂α and ∂A−1(α)

∂α = −A−1(α)∂A(α)
∂α A−1(α).

The same rules hold if instead of the symbol of the derivative ∂
∂α we use the

symbol of the limit lim
α→0+

, abbreviated below by the symbol Λ. Indeed,

Λ [A (α)B (α)] = lim
α→0+

[
A (α) −A (0)

α
B (α) + A (0) B (α) −B (0)

α

]
= Λ [A (α)]B (0) + A (0)Λ [B (α)] ,

and from 0 = Λ
[
A(α)A−1(α)

]
= A(0)Λ

[
A−1(α)

]
+ Λ [A(α)]A−1(0) we also

have
Λ
[
A−1 (α)

]
= −A−1 (0)Λ [A (α)]A−1 (0) .

Evidently Λ
[
diag

{
(1 − α)ξ̄ + αμ

}]
= diag

(
μ− ξ̄

)
. Hence we finally obtain that

lim
α→0+

M
{
(1 − α) ξ̄ + αμ

}
−M

(
ξ̄
)

α
= lim

α→0+

L
{
(1 − α) ξ̄ + αμ

}
− L

(
ξ̄
)

α
(20)

is expressed again by the right-hand side of (19), which is evidently a continuous
function of ξ̄ on the whole set Ξ.

Appendix G: More examples and additional results

G.1. Random sampling results for Examples 1 and 2

Tables 5, 6, and 7 contain further results for Example 1, the modified Example
1, and Example 2 when using the random sampling approaches to obtain exact
designs. In addition to the approaches introduced in Section 3, we will also
consider exact designs found by random sampling from the measure provided
by [6] and denote this approach by R-DPZ+EP.
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Table 5

Further optimal designs and D-efficiencies for Example 1

x1 x2 x3 x4 D-eff
R-UNIF (median efficiency) 0.7440
R-UNIF (highest efficiency) 1.26 1.65 1.76 1.99 0.8907
R-UNIF+EP (median efficiency) 0.5591
R-UNIF+EP (highest efficiency) 1.00 1.20 1.76 2.00 0.8725
R-VN (median efficiency) 0.7957
R-VN (highest efficiency) 1.20 1.64 1.74 2.00 0.9062
R-DPZ+EP (median efficiency) 0.5554
R-DPZ+EP (highest efficiency) 1.00 1.22 1.72 2.00 0.8838

Table 6

Further optimal designs and D-efficiencies for the modified Example 1

x1 x2 x3 x4 D-eff
R-UNIF (median efficiency) 0.4724
R-UNIF (highest efficiency) 1.05 1.24 1.70 1.99 0.9207
R-UNIF+EP (median efficiency) 0.6608
R-UNIF+EP (highest efficiency) 1.00 1.19 1.73 2.00 0.9582
R-VN (median efficiency) 0.4933
R-VN (highest efficiency) 1.01 1.39 1.75 2.00 0.8341

G.2. Example 4: absolute exponential kernel

Similar conclusions as for the other examples hold for the next example taken
from Section 4.2 of [5]. This four-parameter model is characterized by

fT(x) = (sin x, cosx, sin 2x, cos 2x) ,
cov {ε(x), ε(x′)} = exp (− |x− x′|)

x ∈ [1, 2],
λmin(C) = 0.005.

As [5], we consider the A-criterion for this example. Since the linear program-
ming algorithm requires the criterion to be positive, we select the criterion to
be

Φ(M) =
{
tr
(
M−1)}−1

,

for which the derivative is

∇MΦ(M) = M−2 ·
{
tr
(
M−1)}−2

,

both of which we can plug into the linear Taylor formula to obtain the set of
linear constraints.

The selected design points and A-efficiencies for all methods are given in
Table 8.
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Table 7

Further optimal designs and D-efficiencies for Example 2

x1 x2 x3 x4 x5 D-eff
R-UNIF (median efficiency) 0.2910
R-UNIF (highest efficiency) 1.05 1.26 1.32 1.71 1.99 0.7684
R-UNIF+EP (median efficiency) 0.7813
R-UNIF+EP (highest efficiency) 1.00 1.17 1.37 1.76 2.00 0.9282
R-VN (median efficiency) 0.6712
R-VN (highest efficiency) 1.00 1.14 1.34 1.82 2.00 0.9258
R-DPZ+EP (median efficiency) 0.7809
R-DPZ+EP (highest efficiency) 1.00 1.25 1.57 1.85 2.00 0.9237

Table 8

Optimal designs and A-efficiencies for Example 4

x1 x2 x3 x4 x5 A-eff
Q-VN 1.00 1.14 1.57 1.84 2.00 0.7757
Q-VN+EP 1.00 1.16 1.57 1.82 2.00 0.7971
Q-DPZ+EP 1.00 1.25 1.50 1.75 2.00 0.7478
R-UNIF (median efficiency) 0.0448
R-UNIF (highest efficiency) 1.05 1.26 1.32 1.71 1.99 0.5314
R-UNIF+EP (median efficiency) 0.4515
R-UNIF+EP (highest efficiency) 1.00 1.20 1.76 1.87 2.00 0.8581
R-VN (median efficiency) 0.3681
R-VN (highest efficiency) 1.00 1.16 1.24 1.80 2.00 0.8470
R-DPZ+EP (median efficiency) 0.4916
R-DPZ+EP (highest efficiency) 1.00 1.06 1.24 1.80 2.00 0.8431
BKSF 1.00 1.16 1.27 1.83 2.00 0.8381
EXS 1.00 1.20 1.76 1.89 2.00 0.9072

Fig 5. Our measure (left panel) and efficiencies versus sample size (right panel) for the
modified Example 4.

Example 5: a bivariate case

The final example is a multivariate extension of Example 4 to demonstrate once
more that our methodology can principally be extended to design dimensions
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Fig 6. Graphs for Example 5. Left: discrete measure obtained by running linear programming
algorithm for virtual noise representation for n = 10. Right: A-efficiencies of exact designs
with respect to optimal measure of virtual noise representation obtained by various methods
for n = 10 to n = 20. The methods depicted are: R-VN (optimum: solid red line with squares,
median: dashed green line with large dots), R-UNIF (optimum: long-dashed blue line with
triangles, median: long-short-dashed gray line with small dots), BKSF (dotted black line with
diamonds).

Fig 7. D-efficiencies for Example 3 for n = 4 to n = 40. The methods depicted are: R-VN
(optimum: solid red line with squares, median: dashed green line with large dots), R-UNIF
(optimum: long-dashed blue line with triangles, median: long-short-dashed gray line with small
dots), BKSF (dotted black line with diamonds), coffee-house design (dot-dashed purple line
with large dots).

greater than one.

x = (x1, x2)T,
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Fig 8. Actual weather station network (left panel) and coffee-house design (right panel) for
Example 3.

fT(x) = (sin x1, cosx1, sin 2x1, cos 2x1, sin x2, cosx2, sin 2x2, cos 2x2) ,
k(x, x′) = exp (− |x− x′|) , where |x− x′| = |x1 − x′

1| + |x2 − x′
2|

x ∈ [1, 2] × [1, 2],
discretized: x ∈ {1, 1.1, . . . , 1.9, 2} × {1, 1.1, . . . , 1.9, 2},

λmin(C) = 0.002599.

To obtain exact designs from our design measure on a two-dimensional grid,
we used the random sampling approach. That is, we sampled 100 n-point designs
according to our measure. In Fig. 6, the best as well as the median A-efficiencies
among the sampled designs are plotted. We also sampled 100 designs uniformly
on the grid and computed the best and median efficiencies among those designs.
Using the best among the sampled designs leads to reasonably efficient designs
compared to the algorithm using the approximate sensitivity function proposed
by [8].

Additional results for Example 3

Fig. 7 displays the D-efficiencies with respect to Φ
{
M
(
ξ̄
)}

for Example 3 for
n = 4 to n = 40. The actual weather station network used to estimate the model
parameters as well as the coffee-house design are displayed in Fig. 8.
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