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Abstract: One classical canon of statistics is that large models are prone
to overfitting, and model selection procedures are necessary for high di-
mensional data. However, many overparameterized models, such as neural
networks, perform very well in practice, although they are often trained
with simple online methods and regularization. The empirical success of
overparameterized models, which is often known as benign overfitting, mo-
tivates us to have a new look at the statistical generalization theory for
online optimization. In particular, we present a general theory on the ex-
cess risk of stochastic gradient descent (SGD) solutions for both convex
and locally non-convex loss functions. We further discuss data and model
conditions that lead to a “low effective dimension”. Under these conditions,
we show that the excess risk either does not depend on the ambient dimen-
sion p or depends on p via a poly-logarithmic factor. We also demonstrate
that in several widely used statistical models, the “low effective dimen-
sion” arises naturally in overparameterized settings. The studied statistical
applications include both convex models such as linear regression and lo-
gistic regression and non-convex models such as M -estimator and two-layer
neural networks.
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1. Introduction

The study of overfitting phenomenon has been an important topic in statistics
and machine learning. From classical statistical learning theory, we understand
that when the number of model parameters is large compared to the amount of
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data, the test error can be excessively large even if the training error is small.
This phenomenon is usually known as overfitting. For this reason, dimension
reduction or feature selection mechanisms such as principal component analysis
(PCA) and shrinkage methods are often required in the training phase to reduce
model dimension and avoid overfitting.

In recent years, deep neural networks have achieved great successes in practi-
cal applications. Researchers have found out that overparameterized neural net-
works usually achieve superior performance [27, 39, 49, 2, 3]. Moreover, these
models are often trained with simple regularization and do not need dimen-
sion reduction procedures. This phenomenon is sometimes referred to as benign
overfitting [7]. To understand it, we need a new statistical framework to study
generalization ability.

Although there is much practical evidence on the benefit of overparameteri-
zation, the existing theoretical study mainly focuses on linear models (see, e.g.,
[7, 47, 1]) or neural networks with certain special data structures (see, e.g.,
[39]). The main purpose of our paper is to systematically investigate the excess
risk for a risk minimization problem when the number of parameters p is much
larger than the sample size N . In particular, we establish an excess risk bound
for stochastic gradient descent (SGD) solutions for both convex (e.g., linear re-
gression and logistic regression) and non-convex problems (some M -estimators
and neural networks). We focus our study on the SGD algorithm because it
has been widely used in large-scale data learning due to its computational and
memory efficiency.

Let us briefly introduce our setup of the overfitting problem and the SGD al-
gorithm. We consider the following population risk minimization problem under
a loss function F , which can be either convex or non-convex:

w∗ = argmin
w

F (w), F (w) := Eζf(w, ζ). (1.1)

In (1.1), w ∈ R
p is a p-dimensional parameter vector, ζ denotes a random sample

from a certain probability distribution, and f( · , ζ) is the loss function on each
individual data ζ. The global minimizer w∗ is often the true model parameter
in statistical estimation problems. In practice, the distribution of ζ is usually
unknown, and one only has the access to N i.i.d. samples ζ1, . . . , ζN from the
population. Instead of minimizing the population risk F (w) in (1.1), it is more
practical to minimize the empirical loss function

F̂ (w) = 1
N

N∑
i=1

f(w, ζi). (1.2)

Often, instead of directly minimizing the empirical loss, an extra regularization
term is sometimes added to the empirical loss to avoid overfitting. On one hand,
such a regularization is helpful to obtain a tighter convergence rate for convex
optimization problem. On the other hand, we will see later that such a reg-
ularization is necessary for deriving dimension independent excess risk bound
when the population risk F is non-convex. In this paper, we consider the most
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commonly used ridge or Tikhonov regularization. The corresponding regularized
empirical loss function takes the following form,

F̂λ(w) := F̂ (w) + λ

2 ‖w‖
2 = 1

N

N∑
i=1

fλ(w, ζi), fλ(w, ζ) := f(w, ζ) + λ

2 ‖w‖
2.

(1.3)
The weight of regularization is controlled by λ > 0, which is a tuning parameter.
When λ = 0, this corresponds to the ridgeless regression or “implicit regulariza-
tion”, we will also discuss this setup in this paper. One popular way to optimize
F̂λ in machine learning is via SGD. In particular, for a generic initialization
parameter w0, SGD is an iterative algorithm, where the (n+1)-th iterate wn+1
is updated according to the following equation,

wn+1 := wn − η∇fλ(wn, ζn) = wn − η (∇f(wn, ζn) + λwn) . (1.4)

By running through N samples, SGD outputs the N -th iterate wN as the final
estimator of w∗. Notably, SGD iterates are affected by the stochasticity of the
data samples ζ. To reduce such noise and improve accuracy, the averaged SGD
(ASGD) method uses the average iterate

w̄N = 1
N

N∑
i=1

wi

as the final estimator of w∗. In SGD iterations (1.4), the hyper-parameter η
is known as the stepsize. In our paper, we consider using a constant stepsize,
which is a popular choice in practice [5]. The value of η will be discussed later
in our theoretical results. Moreover, in (1.4), the gradient is taken with respect
to the parameter vector w. For notational simplicity, we will use “∇” as a short
notation for “∇w” throughout the paper.

When the sample size N is much larger than the dimensionality p, it is
expected that wN would be close to w∗ under certain conditions. However,
in an overparameterized setting where N is less than p, the solution wN can
be far away from w∗. In this case, estimating the underlying parameter accur-
rately usually requires strong assumptions. However, for many machine learning
tasks, it is of more interest in achieving small excess risk, which is defined as
follows,

G(wN ) = F (wN ) − F (w∗). (1.5)
The main purpose of the paper is to provide an upper bound of the excess risk
in (1.5) in overparameterized settings. We will characterize the scenarios where
such an excess risk bound is independent of p or only involves in poly-logarithmic
factors of p.

1.1. Main results and paper organization

The main message of this paper is as follows. For a large class of statistical
learning problems where the effective dimension is low (see the rigorous defini-
tion in Section 3), the stochastic gradient descent (SGD) algorithm with proper
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ridge regularization will not overfit even if the ambient model dimension is
much larger than the sample size. In particular, we will show that the excess
risk has at most poly-logarithmic dependence on the ambient model dimen-
sion p.

In Section 2, we present a framework for excess risk analysis. We will sepa-
rately discuss two scenarios. In the first scenario, the true parameter is sparse
or weakly dense with a dimension independent l2 norm. In this case, we show
ridgeless SGD has been sufficient to obtain dimension independent excess risk
(Theorem 2.3). In the second scenario, the true parameter is dimension inde-
pendent only under some problem-specific norms. In this more challenging case,
we show SGD can achieve dimension independent excess risk by proper amount
of ridge penalty (Theorem 2.4). The upper bound of the excess risk is provided.
Using linear regression as an illustrative example, we show that each term in the
excess risk has a strong statistical interpretation (see Section 2.5). The upper
bounds also lead to practical guidelines on the rates of problem-related param-
eters, which are given by Corollary 2.5 and Corollary 2.6.

While Theorem 2.4 provides an upper bound on the excess risk, for this
bound to be almost dimension-independent, we require the effective dimension
to be small. Section 3 first formally defines the general notion of low effective
dimension, which can essentially be described by 1) the loss function has a
fast decaying Hessian spectrum, and 2) the true parameter is either weak with
bounded l2 norm or uniformly bounded along Hessian’s eigen-directions. Fig-
ure 1 shows the relationships between the main theoretical results derived in
this paper.

In Section 4, we carefully investigate the excess risk in various linear models.
We consider the cases of finite projections of infinite-dimensional models and
linear regression with redundant features. In these scenarios, we quantify when
the overparameterization does not hurt the generalization performance.

Our generalization result can also be applied to a wide range of nonlinear
models. In Section 5, we study both convex nonlinear models such as logistic re-
gression and non-convex models such as M -estimator with the Tukey’s biweight
loss function [61] and two-layer neural networks. We show that the low effective
dimension naturally occurs in these applications.

1.2. Related works

In recent years, understanding the phenomenons including benign overfitting via
the excess risk bounds for different models in overparameterized settings have
been carefully investigated in the literature, especially for liner models as in
[7, 47, 31, 60, 18, 10, 42, 46, 43] and references therein. Our result is different
from these existing results in the following perspectives:

1) Nonlinearity: Our results can be applied to general nonlinear models while
most of these works focus on linear models. For example, [7] established
non-asymptotic excess risk bound of the minimum-norm interpolator for
overparameterized linear regression and [60] further generalized the results
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Fig 1. The roadmap of the main theoretical results.

to the case with ridge regularization. They defined some notions of effec-
tive ranks based on the feature covariance matrix and established their
sufficient and necessary conditions for guaranteeing the excess risk to be
small. The main insight is that, the feature family needs to satisfy a del-
icate balance between having a few important directions that favor the
true signal (unknown function) and a large number of unimportant direc-
tions that absorb the noise in a harmless manner. Such a trade-off was also
found for linear regression with different feature families under different
settings ([10, 42, 46, 43]). Our result does not require such a trade-off, and
a small excess risk can be achieved by thresholding the eigenvalues of the
covariance matrix by the regularization parameter. Moreover, our defined
effective dimension is simpler in formulation and can be easily checked, a
more detailed comparison between our low effective dimension conditions
and the low effective ranks in [7, 60] will be provided in Section 3.3. In
addition, [31] developed the excess risk bound for the composition of an
activation function and a linear model.

2) Anisotropic spectrum and regularization: [47] and [31] focused their studies
on cases with isotropic or well-conditioned regressor covariance matrices.
Our study focuses on cases with anisotropic regressor covariance, of which
the minimum eigenvalue decays to zero. Moreover, since online learning
has the implicit regularization effect and the ridge penalty is applied in
certain scenarios, we do not have the “double descent” phenomenon as
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in other literature [9, 8]. A recent paper by [48] also showed that for
certain linear regression models with isotropic data distribution, the ridge
penalty regularized regression (in the offline setting) can avoid the “double
descent” phenomenon.

3) Online optimization: The aforementioned works mainly focus on offline
optimization. For example, [7], [47], and [31] showed that the excess risk
of the offline linear regression solution is closely related to the spectrum
of the design matrix. In particular, when the minimum eigenvalue is close
to zero, the offline learning results become unstable because of singular
matrix-inversions. Since the design matrix relies on data realization, such
instability can only be studied through random matrix theories (RMT).
While these studies of offline linear regression are interesting and tech-
nically deep, their dependence on RMT makes the extensions to nonlin-
ear models difficult. In comparison, online learning methods process one
data point at a time and do not involve the inversion of design matri-
ces, which facilitates the study of general nonlinear models. Moreover, in
terms of practical applications, online optimization methods such as SGD
are appealing due to their low per-iteration complexity compared to offline
optimization. Therefore, this paper focuses on the excess risk for online
learning in overparameterized settings.

For online optimization, the stochastic gradient descent (SGD), which dates
back to [57], is perhaps the most widely used method in practice. The con-
vergence rates of the SGD for different models have been well studied in the
literature, especially on finite dimension (see, e.g., [19, 34, 32, 51, 50, 6]). For
example, for the averaged SGD with constant stepsize, [6] provided an excess
risk bound with the optimal convergence rate of O(1/N). However, their bound
has an explicit linear dependence on p, which is not applicable to the overpa-
rameterized setting. To this end, under similar setting, [20, 11] extended the
optimal convergence rate to infinite-dimensional case under the framework of
reproducing kernel Hilbert space (RKHS), [67] did their analysis from the op-
erator view of averaged SGD and provided a sharp excess risk bound incor-
porating the full eigenspectrum of the data covariance matrix. It was shown
in [22] that the convergence rate of SGD can even be accelerated by employ-
ing regularization. [40] obtained the optimal convergence rate for SGD when
multiple passes over the data and mini-batches are allowed, and a further av-
eraging procedure is considered by [45] for faster convergence rate. Although
tight excess risk bounds are established in these mentioned works, they only
considered the loss function of the least square loss or slightly more general. To
go beyond this setting, [41] studied learning methods based on the regularized
convex empirical risks for generalized linear model. As they noted, it would be
interesting to extend the research to algorithms used to minimize the empirical
risk such as SGD, which is exactly the scope of this paper. [36] extended the
learning rate analysis of averaged SGD with multiple passes to general convex
loss functions. But they considered the case of decaying stepsize, which is less
challenging and practical compared with the constant one. [21] did an analy-
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sis of the convergence for constant-step-size SGD in the strongly convex case
and the properties of the limit distribution. The core technical contribution
of this paper is providing dimension independent excess risk bounds of SGD
with constant stepsize for general loss function (even non-convex) with regu-
larization. Based on them, one can better understand how the generalization
ability of SGD depends on the convexity, regularization, stepsize and sample
size. We do not consider the mini-batch, multiple passes and tail averaging in
this paper and leave them for our future consideration. Furthermore, most of
the results in the aforementioned works are established on the so called capac-
ity condition (CC) that quantifies the rate at which the covariance operator’s
eigenvalues decay and source condition (SC) that quantifies the rate at which
the coefficients of the optimal predictor decay in an eigenbasis of eigenvectors
of the covariance operator. The definitions of these conditions are highly cor-
related with the effective dimension given in this paper, as compared in Sec-
tion 3.3.

Overparameterized neural network (NN) is a very active research direction.
There are several existing works explaining why overfitting does not happen
in large NN [27, 39, 49, 2, 3, 24, 25]. Interestingly, the conditions they impose
are largely similar to the ones we will use. Namely, they require the high di-
mensional input data and the Frobenius norm of true weight matrices to be
bounded by constants. For this to be true, only a small portion of the data or
model components can be significantly active, which satisfies the concept of low
effective dimension.

On the other hand, our study of two-layer NN in Section 5.3 is different
from existing results in the following perspectives. One popular way to an-
alyze generalization performance is by the Rademacher complexity in an of-
fline optimization setting [27, 49, 24] or the sequential Rademacher complexity
for online learning [54, 12, 53, 55], which can be used to establish an upper
bound of generalization error, namely the difference between the empirical risk
and the population risk (see, e.g., Theorem 3.3 of [44]). However, it is well
known that the computation of the empirical Rademacher complexity is NP-
hard for some hypothesis sets. Our paper focuses on the specific online algo-
rithm SGD and derives the bound by exploiting the data covariance structure,
which can be easily computed. [39] and [2] both studied NN generalization
property with SGD iterations. But they mainly focused on classification sce-
narios where the loss function is bounded. Moreover, [39] required the loss
function to be of a logistic form, and [2] studied the running average gener-
alization error. Our results can be applied to regression NN with unbounded
loss functions. [3] and [25] studied NN population risk bound with gradient de-
scent (GD) and the neural tangent kernel (NTK) regime. Moreover, their studies
assume a certain data angle or Gram matrix to have a strictly positive mini-
mal eigenvalue. Please see Section 5.3 for more detailed comparisons with these
works.
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2. Excess risk bound

In this section, we present a general result on the excess risk bound for the SGD
solution from (1.4).

2.1. Preliminaries: high dimensional norms and non-convex energy
landscape

The main issue this paper tries to understand is the high dimensional excess
risk when using SGD as the training method. In some simple scenarios, the
true model parameters are “sparse” or dense but many of them are small, so
that ‖w∗‖ does not grow with the dimension. This allows us to measure the
distance between SGD iterate wn and w∗ directly. In other scenarios, w∗ can be
very dense, and ‖w∗‖ may grow linearly or even faster with the dimension. To
resolve this issue, we define the following norms:

Definition 2.1. Given a matrix A ∈ R
p×p and λ, we decompose R

p = Sλ⊕S⊥,
where Sλ consists of eigenvectors of A with eigenvalues above λ ≥ 0 and S⊥ is
the orthogonal complement of Sλ. Given any vector v, denote its decomposition
as v = vλ + v⊥, where vλ ∈ Sλ and v⊥ ∈ S⊥. Then define

‖v‖2
A = vTAv, ‖v‖2

A,λ := λ‖vλ‖2 + vT⊥Av⊥. (2.1)

We introduce the norm ‖v‖2
A, whose value can be independent of the ambient

dimension p. The second norm ‖v‖2
A,λ is a truncated version of the first norm,

it essentially truncates all eigenvalues of A above λ to λ. It is easy to see that
‖v‖2

A,λ ≤ ‖v‖2
A. We introduce the second norm because ‖v‖2

A,λ converges to zero
when the regularization parameter λ does, while ‖v‖2

A is independent of λ.
It is well known that SGD works well for convex problems. This is also true for

our theoretical analysis, which works best in convex settings. On the other hand,
many practical problems are non-convex, which makes the statistical learning
problem technically more challenging. First, the function F can have multiple
local minima, and each local minimum has an attraction basin, which is a “val-
ley” in the graph of F . Within each valley, we assume that F is locally convex.
Machine learning and theoretical deep learning literature often study the scenar-
ios that local minima lie in large and shallow valleys, which lead to more stable
generalization performance. Suppose D is the attraction basin of the optimal
solution w∗ in (1.1), initializing SGD in D will generate iterates converging to
w∗ with high probability. So a natural question is the gap between the estimator
learned from SGD and w∗. On the other hand, if the SGD iterates take place
outside D, the output can be irrelevant to the properties of w∗. Therefore, we
need to introduce a stopping time τ , which describes the first time SGD exits D:

τ = min{n : wn /∈ D},

where wn is the n-th SGD iterate defined in (1.4). Our generalization analysis
will assume the initialization w0 ∈ D and the SGD iterates always stay within
D. We will also provide bounds of probability that SGD leaves D.
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While it is reasonable to assume that w∗ as a local minimum is in the valley
D, verifying this assumption can be difficult. For example, because we do not
have access to the population loss function F or the Hessian directly, to check
the convexity of F , we need to investigate F̂ instead. There will be a certain
inaccuracy due to the randomness in F̂ . As another example, while we know the
Hessian of F is positive semidefinite at w∗ because w∗ is a local minimum, F
does not have to be convex in the neighborhood of w∗. For both these examples,
it is more accurate to say F is “approximately convex” in D. Our analysis can
also extend to such very challenging cases by introducing proper regularizations.
On the other hand, if F is very non-convex in D, then one should not expect
that SGD will produce good learning results. Therefore, to achieve a reasonable
excess risk, we need F to be very close to convex. In many applications, this
can be done by choosing either a very large sample size N or a very small
neighborhood around w∗.

Based on our discussion, we have the following assumption on the population
risk function.

Assumption 2.2. The optimal solution w∗ of the population risk F has a
neighborhood D, such that for some positive semidefinite (PSD) matrix A and
δ ∈ [0, 1/2),

−δA 	 ∇2F (w) 	 A, ∀ w ∈ D. (2.2)

In Assumption 2.2 and in the sequel, for two symmetric matrices C,D, C 	 D
indicates that D − C is positive semidefinite (PSD). The upper bound on the
Hessian matrix ∇2F (w) 	 A is widely assumed in the statistical literature. The
parameter δ above describes the level of non-convexity. In particular, δ = 0
indicates that F is convex within D. However, our condition in (2.2) is more
general since δ can be strictly positive, which allows F to be non-convex. On
the other hand, although our excess risk bound holds for δ ∈ [0, 1/2), for this
upper bound to be smaller than a certain threshold, δ needs to be small. Please
see Corollary 2.5 and Corollary 2.6 for the exact dependence of δ in the upper
bound.

2.2. Excess risk bound with weak true parameter

We will discuss two possible scenarios with high dimensional machine learning.
In the first case, the true parameter w∗ is sparse or weak so that its l2 norm
does not depend on the dimension. We will refer such setting as a “weak” true
parameter setting, which can be found in the literature under more involved
setups [28, 62]. In this case, we have the following results:

Theorem 2.3. Under Assumption 2.2, suppose w0 ∈ D and there are constants
r and cr such that

E‖∇f(w, ζ) −∇F (w)‖2 ≤ r2 + cr|(w − w∗)T∇F (w)|, ∀w ∈ D. (2.3)
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Then if the SGD stepsize η and the regularization parameter λ satisfy

η ≤ min
{ 1

4(1 + cr)(‖A‖ + λ) , 1
}
, 2δ‖A‖ ≤ λ ≤ 1,

we have the excess risk for the averaged SGD,

E [1τ≥N−1G(w̄N )] ≤ 2E‖w0 − w∗‖2

Nη
+ 2ηr2 + 8λ‖w∗‖2, (2.4)

where the excess risk G is defined in (1.5) and w̄N = 1
N

∑N−1
i=0 wi is the averaged

SGD iterate.

The excess risk bound in (2.4) contains three terms. The first term decays
with the sample size N . The second term is controlled by the stepsize η and the
variance r2 of the gradient on each individual data ζ. The last term 8λ‖w∗‖2 is
a bias caused by the regularization. Since Fλ is different from F , the minimizer
of Fλ is also different from w∗. As introduced in [14], the excess risk can be
decomposed into three errors: The approximation error measures how closely
the attraction basin D can approximate the optimal solution w∗ (our paper does
not have this error since we assume w∗ ∈ D); the estimation error measures the
effect of minimizing the empirical risk instead of the population risk; the opti-
mization error measures the distance between the minima of the empirical risk
and the output generated by some optimization algorithms such as SGD. In-
stead of separately considering these errors as in [14] and analyzing their effects
on the generalization performance, our result provides a unified upper bound for
the estimation error and optimization error, and the regularization also brings
in extra error, as we can see from the last term. For convex case, [30] obtained
an excess risk bound by decomposing the risk estimates into an optimization
error term and a stability term, and according to their Theorem 5.2,

E [G(w̄N )] ≤ E‖w0 − w∗‖2

2Nη
+ 1

2ηL
2,

with ‖∇f(w, ζ)‖ ≤ L. Similar bounding result with different constant coeffi-
cients is also established for general stochastic mirror descent methods in [35]
(Theorem 4.1). Our result (2.4) does not require the boundedness of the stochas-
tic gradient, and such a condition is usually not satisfied in many standard con-
texts, such as the simple least squares regression when the model parameter
belongs to an unbounded domain. Although [37] removed the bounded gradi-
ent condition, Theorem 4 therein implies that their excess risk bound increases
linearly with the value of F (w∗), which may not be dimension independent.
The excess risk bounds in [14, 6] are even looser than the one in [30] since they
involve a term p/N increasing linearly with the dimension p thus can not be
used in the overparameterized setting. Moreover, as discussed in [13], classical
results are established on the smoothness of the objective function while we do
not have this requirement.

One special case is when F is locally convex in D (i.e., δ = 0 in (2.2)), then
it is actually better to do rigdeless regression (i.e. λ = 0) since then the last
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term in (2.4) can be removed. Note that in this case, the excess risk bound
in (2.4) is dimension independent when ‖w∗‖2 is dimension independent with
the initialization w0 = 0. We see that the overfitting can be avoided even without
explicit regularization, this is because SGD has a similar regularizing effect so
that the minimizer of the empirical risk can achieve good generalization with
dimension independent error bound. Such effect is often referred to as implicit
regularization (see the discussions in [19, 22] and Section 10 of [4]). Moreover,
without the regularization, our bound in (2.4) leads to a convergence rate of
O(1/N). Such a rate is known to be optimal for least-squares regression, as
discussed in [6]. When Assumption 2.2 holds with δ > 0, namely the population
loss function F is non-convex within D, then the regularization is necessary since
we require 0 < 2δ‖A‖ ≤ λ ≤ 1, and it will increase the excess risk accordingly.

Another problem is the guarantee regarding the initialization w0 ∈ D since
we have no prior information of w∗ and its attraction basin D. One possible way
would be separating the data into two parts. On the first part of data, we imple-
ment Langevin dynamics (LD) or some other sampling-based algorithms to ap-
proximate the global minimal point w∗ and find its neighbourhood D. Sampling-
based algorithms escape the local minima and explore the state space by adding
stochasticity on the searching direction (see, e.g., [17, 63, 52, 23] and references
therein). Specifically, the algorithms work by simulating an ergodic stochastic
process for which the invariant measure is proportional to exp(− 1

γF (x)), where
γ is referred to as the “temperature” controlling the strength of stochasticity. It
is easy to see that the sampling points concentrate around the global minimal
w∗, especially for a smaller value of γ. Then for the second part of data, we take
the output of the first stage as an initial point and run SGD on it. Such proce-
dure can be further leveraged to outsource the computational cost during the
first stage, while keeping the second part of data private from the outsourced
agents. See [65] for more details. Based on the estimated attraction basin D,
we can also guarantee that the SGD iterates always stay within this region by
abandoning those ones escaping D. We do not discuss the detailed realization
of this idea since this is not the scope of this paper. Interested readers can also
refer to [23] for a collaboration scheme between LD and SGD to find the global
minima.

2.3. Excess risk bound with strong true parameter

In some scenarios, ‖w∗‖ may grow with the dimension. While the results in
Theorem 2.3 still hold, the estimate (2.4) is no longer dimension independent.
Since the derivation of the excess risk bound for the averaged SGD w̄N in (2.4)
is based on the bound of ‖wN − w∗‖, which is not realizable when ‖w∗‖ is not
dimension independent, this makes us to consider the excess risk bound for the
final iterate wN instead. In this case, the learning cannot rely only on implicit
regularization. We will need to introduce regularization and high dimensional
norms as in Definition 2.1 for these problems.
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Theorem 2.4. Under Assumption 2.2, suppose w0 ∈ D and there are constants
r and cr such that

E‖∇f(w, ζ) −∇F (w)‖2 ≤ r2 + crr
2 min{G(w), ‖w‖2}, ∀w ∈ D. (2.5)

Then if the SGD hyper-parameters, the stepsize η and the regularization param-
eter λ, satisfy

η ≤ min
{

1, λ

12‖A‖2 + 6λ2 + 6crr2 ,
1

12‖A‖ ,
λ

6cr‖A‖r2

}
, 4δ‖A‖ ≤ λ ≤ 1,

we have

E[G(wN )1τ≥N ] ≤ 4‖w∗‖2
A,λ + C1

λ
(1 − (1 − 1

4ηλ)n)(η + δ) (2.6)

+ exp(−1
4λNη)E[G(w0) + 4N‖A‖‖w0‖2],

with C1 = 60‖A‖
(
r2 + ‖w∗‖2

A

)
+ 10‖w∗‖2

A.

In the upper bound (2.6), each term carries a strong statistical interpretation,
which will be illustrated via linear models in Section 2.5. In particular, the term
‖w‖2

A,λ in (2.6) can be interpreted as the bias caused by minimizing Fλ instead of
F , it decays with the regularization parameter λ shrinking to zero. The term C1η

λ
is the variance induced by the SGD algorithm, which increases as λ decreases.
This reveals that under our current problem setting, λ controls a bias-variance
tradeoff. Ideally, we can choose small λ and stepsize η to make both the bias
and variance small. However, this comes with a price. As the convergence rate
scales with λη, so using small λ and η need to be compensated with a large
sample size N (i.e., the number of iterations in SGD).

While it is not completely new that SGD on convex ridge regression has
dimension independent generalization error [58, 66, 16], in general, these results
need the norm of gradient ∇F to be dimension independent (See Section 14.5.3
in [58]). Theorem 2.4 does not have this restriction. In fact, the population
gradient ∇F can be unbounded in many applications (e.g., linear regression). In
contrast, our assumption for the stochastic gradient is imposed on its variance,
see (2.5). This is a much relaxed assumption because the variance can be reduced
by various techniques (e.g., [33]) or simply by increasing the mini-batch size for
stochastic gradient computation.

2.4. SGD configuration with given excess risk target

In Section 3, we will explicitly define the low effective dimension so that C1
and the upper bound in (2.6) are independent of dimension p, or depend on p
only via a polynomial logarithmic factor. This differentiates our result from the
estimates in existing literature on SGD, e.g., [5].

We then quantify the tradeoffs in (2.4) and (2.6) by considering a practical
scenario where the excess risk is pre-fixed to be ε, then our results provide
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guidelines on how to tune the parameters of the regularization λ, the stepsize
λ, the non-convexity δ and the sample size N . We will see that, with proper
parameterization, if the SGD manages to fit the training data in a reasonable
number of iterations, the overfitting can be avoided without any restriction on
the dimensionality p.

Corollary 2.5 (Corollary of Theorem 2.3). Suppose there is an universal con-
stant C0 such that

‖w∗‖2, ‖w0 − w∗‖2 ≤ C0.

Given any ε > 0, if the regularization parameter λ(ε), the stepsize η(ε), the
non-convexity parameter δ(ε), and the sample size N(ε) satisfy

λ(ε) ≤ min
{

ε

8C0
, 1
}
, δ(ε) ≤ min

{ ε

16C0‖A‖
,

1
2‖A‖

}
, (2.7)

η(ε) < min
{

1
2(1 + cr)(‖A‖ + λ(ε)) ,

ε

2r2 , 1
}
, N(ε) > 2C0

εη(ε) ,

and the conditions of Theorem 2.3 hold, then E[G(w̄N )1τ≥N ] ≤ 3ε.

Corollary 2.6 (Corollary of Theorem 2.4). Given any ε > 0, if the regular-
ization parameter λ(ε), the stepsize η(ε), the non-convexity parameter δ(ε), and
the sample size N(ε) satisfy

4‖w∗‖2
A,λ(ε) < ε, δ(ε) ≤ λ(ε)ε

C1
, η(ε) < λ(ε)ε

C1
, (2.8)

N(ε) > max
{
−4 log{ε/2E[G(w0)]}

λ(ε)η(ε) ,
−8 log{ελ(ε)η(ε)/(64‖A‖E[‖w0‖2])}

λ(ε)η(ε)

}
,

and the conditions of Theorem 2.4 hold, then E[G(wN )1τ≥N ] ≤ 4ε.

It is noteworthy that (2.6) only discusses the scenario where SGD iterates
stay in the domain D. This is necessary since all our conditions are imposed
only within D. Once an SGD iterate leaves D, there is no particular reason it
can get back to D. Another possible improvement is to find an upper bound
for the conditional excess risk E[G(wN )|τ ≥ N ]. But this is not feasible when
D is a general region. For example, if D is the intersection between any set
and {w : G(w) ≥ G(w0) − 1}, the conditional expectation will be larger than
G(w0) − 1, while {τ ≥ N} may have a nonzero occurrence probability.

In practice, SGD is often implemented with mini-batch data to reduce the
noise within stochastic gradient. With regularization, the mini-batch SGD with
batch-size J can be formally written as

wn+1 := wn − 1
J
η

J(n+1)∑
k=Jn+1

(∇f(wn, ζk) + λwn),

where i.i.d. data {ζJn+1, . . . , ζJ(n+1)} forms the n-th batch of data. Our results
can be extended to mini-batch SGD as well. To see this, we simply let zn =
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{ζJn+1, . . . , ζJ(n+1)} and

f̃(w, zn) = 1
J

J(n+1)∑
k=Jn+1

f(wn, ζk).

Note that Ef̃(w, zn) = Ef(w, ζi) = F (w). It is also straightforward to see that
applying our SGD formulation (1.4) on f̃ with zn leads to the mini-batch SGD.
Applying our results, e.g. Corollaries 2.5 and 2.6, to mini-batch SGD requires
simple modifications for only two parameters. First, the variance of stochastic
gradient ∇f̃(w, z) is only 1

J of the variance of ∇f(w, ζ), so the parameter r2 in
mini-batch SGD should be 1

J of r2 in the standard SGD. Second, because each
iteration of the mini-batch SGD requires J data samples, so the overall sample
size should be NJ . The simple analysis demonstrates that the consideration
of mini-batch does not sacrifice the convergence rate, the same conclusion is
also made in [40] with multiple pass. Rigorously analyzing how the excess error
bound depends on the stepsize, the mini-batch size, the number of passes and
the regularization parameter may be our future work.

2.5. Statistical interpretation in linear models and bias-variance
tradeoff

To facilitate better understanding our results, we will use linear models to illus-
trate the statistical interpretation of each term in the excess risk upper bound
in (2.6). In linear regression, each i.i.d. observation contains a pair of depen-
dent and response variables, ζi = (xi, yi) ∈ R

p×R, where yi is generated by the
following model

yi = xT
i w

∗ + ξi. (2.9)

In (2.9), w∗ is the true regression coefficient, and the noise term ξi is independent
of xi with zero mean and a finite variance σ2. For the ease of illustration, we
assume xi ∼ N (0,Σ). The excess risk of this linear model takes the following
form,

G(w) = E

[1
2(yi − wTxi)2 −

1
2(yi − (w∗)Txi)2

]
= 1

2(w − w∗)TΣ(w − w∗).
(2.10)

From (2.10), we can see that G(w) has a strong dependence on the structure of
Σ. Let us denote the eigenvalues of Σ by λ1 ≥ λ2 ≥ · · · ≥ λp, and the eigenvector
corresponding to λi by vi. Then the parameter error, vTi (w − w∗), contributes
to G(w) via the factor λi.

It is well known that SGD can be interpreted as a stochastic approximation
of the gradient descent [57], namely we can rewrite (1.4) as

wn+1 = wn − η∇Fλ(wn) + ηξn, (2.11)
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where ξn = −∇f(wn, ζn) + ∇F (wn) is the noise in stochastic gradient. For the
quadratic loss with the ridge penalty Fλ, the SGD iterates in (2.11) take the
following form,

wn+1 = wn−ηΣ(wn−w∗)−ηλwn +ηξn = (I− (Σ+λI)η)(wn−w∗
λ)+w∗

λ +ηξn,
(2.12)

where w∗
λ := (Σ+λI)−1Σw∗ is the minimizer of Fλ(w) = E

1
2 (y−wTx)2+ λ

2 ‖w‖2.
It is easy to see that wn then follows a vector autoregressive (VAR) model

(see, e.g., Chapter 8 of [59]). For the ease of discussion, we simply treat ξn as
N (0, r2

p I), so E‖ξn‖2 = r2 as we assumed in Theorem 2.4. Then the stationary
distribution of wn in (2.12) is a Gaussian N (μ, V ). After taking expectation and
covariance on both sides of (2.12), we obtain μ and V with the following form
(see Chapter 8.2.2 of [59]),

μ = (I − (Σ + λI)η)(μ− w∗
λ) + w∗

λ ⇒ μ = w∗
λ,

V = (I − (Σ + λI)η)V (I − (Σ + λI)η) + η2r2

p
I.

When the stepsize η ≤ ‖Σ + λI‖−1, (Σ + λI)2η 	 Σ + λI, we get

V = r2η

p
(2(Σ + λI) − (Σ + λI)2η)−1 	 r2η

p
(Σ + λI)−1.

These results give us the limiting average excess risk

lim
n→∞

EG(wn) = 1
2(w∗

λ − w∗)TΣ(w∗
λ − w∗) + 1

2 tr(V Σ)

≤ G(w∗
λ) + r2η

2p tr((Σ + λI)−1Σ). (2.13)

The first term G(w∗
λ) is the bias caused by using regularization. Indeed, the

optimizer of Fλ is w∗
λ rather than w∗. Recall that (λi, vi) are the eigenvalues and

eigenvectors of Σ. We define ai = 〈vi, w∗〉 and further express G(w∗
λ) in (2.13)

as follows,

G(w∗
λ) = 1

2((Σ + λI)−1Σw∗ − w∗)TΣ((Σ + λI)−1Σw∗ − w∗)

= 1
2λ

2(w∗)T (Σ + λI)−1Σ(Σ + λI)−1w∗ = 1
2

p∑
i=1

λ2λia
2
i

(λ + λi)2
.

Note that when λi ≥ 0, λ2λi

(λi+λ)2 ≤ λ2λi

λ2 = λi, and by Young’s inequality
λ2λi

(λi+λ)2 ≤ λ2λi

4λiλ
≤ λ. Therefore, we have the following upper bound of G(w∗

λ)

G(w∗
λ) ≤ 1

2

p∑
i=1

(λ ∧ λi)a2
i = 1

2‖w
∗‖Σ,λ. (2.14)
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The upper bound in (2.14) is essentially the first term in (2.6) by noticing that
Σ = A = ∇2F (w) in linear regression, which gives an upper bound for the bias.

For the second variance term in (2.13),

var(λ) := r2η

2p tr((Σ + λI)−1Σ) = r2η

2p

p∑
i=1

λi

λi + λ
≤ r2η

2p

p∑
i=1

λi

λ
= ηr2λ1

2λ .

(2.15)
This upper bound is essentially the second term in the excess risk upper bound
in (2.6), as it depends linearly on η, λ−1, λ1r

2.
The first two terms in (2.6) are based on the limiting average excess risk. With

finite SGD iterations, the iterate wn may not reach the limiting distribution. On
the other hand, for VAR models, it is well known that the speed of convergence
for wn is exponential, and the convergence rate is closely related to the minimum
eigenvalue λmin((Σ+λI)η) = λη (see, e.g., [59] Chapter 8.2.2). The finite iterate
error leads to the third term of exp(−1

4ληN) in excess risk bound in (2.6).
In the special case that λ = 0, (2.13) reduces to

lim
n→∞

EG(wn) ≤ G(w∗) + r2η

2p tr(I) = r2η.

Finally, we consider the scenario where Σ is indefinite with δ = −λmin(Σ) > 0.
While the population loss F is non-convex, by adopting λ > 2δ, we have that
Σ + λI is positive definite and Fλ is convex. Then the excess risk upper bounds
need to be updated by replacing λ with λ− δ, which leads to a perturbation on
the order of δ. In particular, note that by Young’s inequality, the derivative of
the bias term with respect to λ is bounded by

|∂λG(w∗
λ)| =

p∑
i=1

λλ2
i a

2
i

(λ + λi)3
≤

p∑
i=1

λia
2
i

4(λ + λi)
≤ 1

4λ

p∑
i=1

λia
2
i = ‖w∗‖2

Σ
4λ ,

the derivative of the variance term with respect to λ in (2.15) is bounded by

|∂λvar(λ)| = r2η

2p

p∑
i=1

λi

(λi + λ)2 ≤ r2η

2p

p∑
i=1

λ1

λ2 ≤ r2ηλ1

2λ2 .

Therefore, replacing λ with λ − δ to handle non-convexity, we need to add the
following term in the excess risk bound,

δ|∂λF (w∗
λ)| + δ|∂λvar(λ)| ≤ δ

(
‖w∗‖2

Σ
4λ + r2λ1η

2λ2

)
.

This term can be further upper bounded by the second term of (2.6).

3. Low effective dimension

Given the excess risk bounds in Theorem 2.3 and Theorem 2.4, we introduce
the concept of “low effective dimension” and show that the excess risk bounds
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in (2.4) and (2.6) can be independent (or dependent poly-logarithmically) of the
ambient dimension p in an overparameterized regime. We will use the O and
Ω notations to hide constants independent of p and use the Õ and Ω̃ notations
to hide constants depend poly-logarithmically on p. In particular, we introduce
the following standard asymptotic notations: Aε = O(f(ε)), Bε = Õ(f(ε)), Cε =
Ω(f(ε)), Dε = Ω̃(f(ε)). These notations mean that there exist some universal
constants c and C > 0 such that,

Aε ≤ Cf(ε), Bε ≤ C(log p)cf(ε), Cε ≥ Cf(ε), Dε ≥ C(log p)cf(ε).

3.1. Initialization and stochastic gradient variance

We investigate the terms that appear in the excess risk bound (2.6): whether
they can be independent of p; and how they affect the necessary sample size
N(ε) in (2.8).

First, we notice that the terms related to initialization w0, i.e., E‖w0‖2 and
EG(w0), appear in the sample size N(ε) in (2.8). If the region D = R

p, we can
often choose appropriate w0 so that E‖w0‖2 and EG(w0) are independent of p.
For example, for linear regression loss function in (2.10), we can pick w0 = 0,
then EG(w0) = 1

2‖w∗‖2
A with A = Σ, which will be bounded by an O(1) constant

as shown below. For a restrictive region D, although E‖w0‖2 and EG(w0) may
scale as a polynomial function of p, N(ε) only depends logarithmically on these
two terms. Therefore, the dimension dependence of N(ε) is only logarithmic.

Second, we consider the stochastic gradient variance r2, which contributes
to the term C1 in (2.6). In a typical setting, it scales roughly as the squared
population gradient, i.e.,

E‖∇f(w, ζ) −∇F (w)‖2 ≈ O(E‖∇F (w)‖2)
= O(E‖∇F (w) −∇(F (w∗))‖2)
= O(E‖∇2F (w)(w − w∗)‖2)
Assume that w ∼ N (0, Ip) and ∇2F 	 A

= O
(
‖A‖(‖w∗‖2

A + tr(A))
)
.

We will see such an approximation holds for many applications of interest. More-
over, we have ‖A‖ ≤ tr(A), which can often be p-independent as discussed below.
The scale of ‖w∗‖A will also be discussed next.

From the discussion above, we only need to focus on two terms in (2.6), ‖w∗‖A
and ‖w∗‖A,λ. For the excess risk to be small and independent of p, we need to
show ‖w∗‖A is dimension independent and ‖w∗‖A,λ decreases as λ decreases.

3.2. Low effective dimension settings

In this section, we formally define two settings of low effective dimension as As-
sumptions 3.1 and 3.3. In Sections 4 and 5, we will show that these assumptions
easily hold for a wide range of convex and non-convex statistical models.
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3.2.1. Weak true parameter

The first setting is characterized in the following assumption.

Assumption 3.1. The followings are true

1) ‖A‖ with A defined in Assumption 2.2 is bounded by an O(1) constant.
2) ‖w∗‖ is bounded by an O(1) constant.
3) r2, cr defined in Theorem 2.3 are bounded by O(1) constants.
4) The initial values E‖w0‖2 and EG(w0) grow polynomially with p.

Assumption 3.1 can be interpreted as a weak sparsity condition for w∗, since
there can be only a few significant components in w∗. Sparsity assumption is
a very common condition in the statistical literature. However, our assumption
only assumes that the �2-norm of w∗, instead of the �0-norm, is bounded. As
compared to the �0-norm, the �2-norm is rotation-free. In addition, we do not
need to apply any projection or shrinkage procedures on the SGD iterates.

Under Assumption 3.1, Corollary 2.5 can be simplified as the following excess
risk bound, which shows that the necessary sample size depends on p in a poly-
logarithmic factor.

Proposition 3.2. Under the conditions in Corollary 2.5 and Assumption 3.1,
given any ε > 0, when

λ(ε) = O(ε), δ(ε) = O(ε), η(ε) = O(ε), N(ε) = Ω
( 1
ε2

)
, (3.1)

we have E[G(w̄N )1τ≥N−1] ≤ 3ε. Moreover, for any p0 ≥ 0, there are a =
O(1/p0), if D = {w : ‖w − w∗‖2 ≤ a}, we have

P(τ ≤ N) ≤ p0.

Alternatively, if δ = 0, for any α > 0, we take

λ(ε) = 0, η(ε) = O(ε1+α), N(ε) = Ω
( 1
ε2+α

)
,

we have E[G(w̄N )1τ≥N−1] ≤ 3ε. Meanwhile, for any a > E‖w0 − w∗‖2, if D =
{w : ‖w − w∗‖2 ≤ a}, we have

P(τ ≤ N) ≤ E‖w0 − w∗‖2 + O(εα)
a

.

Proposition 3.2 consists of two parts. The first part shows that the excess
risk is of order O(1/

√
N) if the non-convexity is of the same order. The second

part demonstrates how to bound the probability of SGD escaping the convex
region D if it is a ball centered at w∗. For all p0 ≥ 0, a needs to be of order 1/p0
so that the chance of escaping is less than p0. If the problem is convex in D, D
just need to include w0 to ensure the chance of no-escaping is nonzero. In both
cases, the escape is harder when the radius

√
a is larger. This also explains why

machine learning literature is in favor of local-minima in large valleys.
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3.2.2. Strong true parameter

The second setting is technically more interesting, which assumes the data has
a low effective dimension in the following sense. When we say a component or
a linear combination of components of w is effective, it means that the loss
function F has a significant dependence on it. This can be analyzed through the
eigen-decomposition of ∇2F (w) or its upper bound A in (2.2). Let (λi, vi) be the
eigenvalue-eigenvectors of A, where λi are arranged in decreasing order. Then a
small λi indicates that F has a weak dependence along the direction of vi. For
the model to have a low effective dimension, there will be only constantly many
λi being significant, while the remaining eigenvalues in sum have a negligible
contribution to the overall loss function. We formally formulate this setting into
the following assumption.

Assumption 3.3. The followings are true

1) tr(A) with A defined in Assumption 2.2 is bounded by an Õ(1) constant.
2) In each of A’s eigen-direction, the true parameter w∗ is bounded by an

Õ(1) constant, in the sense that for the following spectrum-based quantity
‖w∗‖A,S,

‖w∗‖A,S := max
i

{|〈vi, w∗〉|, i = 1, . . . , p} = Õ(1). (3.2)

3) r2, cr defined in Theorem 2.4 are bounded by Õ(1) constants.
4) The initial values E‖w0‖2 and EG(w0) grow polynomially with p.

By Cauchy Schwartz inequality, we have ‖w∗‖A,S ≤ ‖w∗‖. So Assumption 3.3
condition 2) is weaker than Assumption 3.1 condition 2). In particular, it can
include important cases where we only have upper and lower bounds on each of
w∗’s components, and A is known to be a diagonal matrix. These cases are not
covered by Assumption 3.1. On the other hand, the spectrum profile of A will
be required to choose the regularization parameter as shown in the following
proposition.

Proposition 3.4. By the following inequalities,

‖w∗‖2
A ≤ tr(A)‖w∗‖2

A,S , ‖w∗‖2
A,λ ≤ ‖w∗‖2

A,S

p∑
i=1

λ ∧ λi.

Assumption 3.3 implies that ‖w∗‖A = Õ(1) and ‖w∗‖2
A,λ = Õ (

∑p
i=1 λ ∧ λi).

Moreover, under the conditions in Corollary 2.6 and Assumption 3.3, given any
ε > 0, if the eigenvalues of A follows,

1) Exponential decay: λi = e−ci for some constant c > 0, and setting

λ = Õ

(
ε

| log ε|

)
, δ(ε) = Õ

(
ε3

| log ε|2
)
,

η(ε) = Õ

(
ε2

| log ε|

)
, N(ε) = Ω̃

(
| log ε|3

ε3

)
,
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we have E[G(wN )1τ≥N ] ≤ 4ε.
2) Polynomial decay: λi = i−c for some constant c > 0, and setting

λ(ε) = Õ
(
ε

c+1
c

)
, δ(ε) = Õ

(
ε

3c+2
c

)
,

η(ε) = Õ
(
ε

2c+1
c

)
, N(ε) = Ω̃

( | log(ε)|
ε

3c+2
c

)
,

we have E[G(wN )1τ≥N ] ≤ 4ε.

In both cases, we have

E[G(wN∧τ )] ≤ E[G(w0)] + Õ(ε| log ε|).

So if D = {w : G(w) ≤ (1 + a)E[G(w0)]}, then

P(τ < N) ≤ 1
1 + a

+ Õ(ε| log ε|).

We remark that the parameter of the spectrum decay (e.g., the constant c in
polynomial decay spectrum) is often assumed to be known for many functional
data analysis problems [29, 15]. From Proposition 3.4, for both exponential
decay and polynomial decay of the Hessian spectrum, the sample size N only
depends on p in a poly-logarithmic factor.

Similar to Proposition 3.2, the second part of this result demonstrates how to
bound the probability of SGD escaping the convex region D if it is the sub-level
set with w∗ inside. The parameter a controls the size of D. A larger a produces
a larger D and hence a smaller escape probability.

3.3. Comparisons with related works

The excess risk bounds of SGD have been well studied under different scenarios
for least square regression and other convex setting, the main purpose of this
paper is extending the analysis to general setting (convex or non-convex) for
overparameterized model. We show that, with the defined low effective dimen-
sion, our excess risk can be independent of the dimension. It is also interesting to
compare our low effective dimension settings with the conditions used in other
literature.

Some existing works established the excess risk bounds via a quantity called
effective rank k∗, which is the minimum integer k such that the cumulative
summation of the first k eigenvalues of the data covariance exceeds some value.
For the main result, Theorem 1 in [7], to yield dimension-independent excess risk
bound, three conditions (formulated in our notation) need to hold: 1) ‖w∗‖2 is
bounded by a constant; 2) tr(A) is bounded by a constant; 3) the spectrum of A
decays not so fast so that the effective rank k∗ := min{k ≥ 0 :

∑
i≥k λi ≥ bNλk}

for some constant b > 0 is not so large, meanwhile, the spectrum of A should
decay fast enough so that λ∗ :=

∑
i>k∗ λ2

i /(
∑

i>k∗ λi)2 is small. In comparison,
our Assumption 3.1 only requires conditions 1) and 2), but not the technical
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condition 3). Moreover, our result can also work under Assumption 3.3 where
only ‖w∗‖2

A,S , instead of ‖w∗‖2, needs to be bounded. Similar condition as 3)
is also needed in [60] when regularization is considered, with k∗ := min{k ≥ 0 :
(
∑

i≥k λi+λ) ≥ bNλk} and λ∗ :=
∑

i>k∗ λ2
i /(λ+

∑
i>k∗ λi)2. And Theorem 2.1

in [67] requires the spectrum decays fast enough so that both k∗/N and λ∗ :=∑
i>k∗ λ2

i , with k∗ := max{k ≥ 0 : λk ≥ 1/(ηN)}, are small. On one hand, it is
not clear how fast should the spectrum decays. On the other hand, finding the
unknown quantities k∗ and λ∗ to guarantee the excess risk to be small is not
easy. Our conclusion (2.6) works for any decaying spectrum with finite ‖A‖ and
a small excess risk can be achieved by choosing a small enough λ so that ‖w∗‖A,λ

is small and tuning other parameters, under our defined effective dimension.
Tighter excess risk bounds can be achieved under the so-called capacity con-

dition (CC) and source condition (SC) for problems with linear structure (see
e.g. [20]). CC quantifies the rate at which the covariance operator’s eigenval-
ues decay, and SC quantifies the rate at which the coefficients of the optimal
predictor decay in eigen-directions of the covariance operator. Moreover, these
capacity and source conditions can be further exploited to gain improved vari-
ance and bias terms, thus obtaining faster convergence rate. Mathematically,
CC is defined as λk ∝ 1/kα for some α ≥ 1 or tr(Σβ) < ∞ for some β ≤ 1,
and SC is defined as ‖Σγ/2w∗‖ < ∞ for some γ ≤ 1. Here Σ is data covari-
ance matrix, and it plays a similar role as A in our framework. Different excess
risk bounds or convergence rates are established for different values of α, β, γ in
[20, 11, 22, 67, 40, 45, 41] and references therein. These conditions are close to
our Assumption 3.1 of bounded ‖Σ‖ and ‖w∗‖. But our Assumption 3.3 is more
general since λk ∝ 1/kα for some α ≥ 1 implies tr(Σ) < ∞, but not vice versa.
Meanwhile, our condition (3.2) imposes bounds on w∗, which is similar to SC.

4. Overparameterization in linear regression

In general, overparameterization may lead to overfitting, but this sometimes can
be avoided. Our main result, Theorem 2.4, provides a general tool to understand
why overfitting sometimes happens and sometimes does not. In this section,
we will demonstrate how to apply our results on linear regression models in
various high dimensional settings. This section is technically straightforward
and is mainly used for pedagogical purpose. The discussions on more technically
challenging cases for nonlinear and non-convex models are provided in the next
section.

4.1. Linear regression

First of all, we will find out the problem related parameters in Theorem 2.4
when applying to linear regression models. As in Section 2.5, we consider i.i.d.
data points form ζi = (xi, yi) ∈ R

p × R, where the response is generated by

yi = xT
i w

∗ + ξi. (4.1)
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In (4.1), w∗ ∈ R
p is the true model-parameter to be estimated. ξi ∈ R are

observation noise terms in the observation process, and we assume they are
i.i.d. with zero mean and variance σ2. For simplicity, we assume that the data
xi are i.i.d. Gaussian distributed, i.e., xi ∼ N (0,Σ). As a remark, our proof also
allows the non-Gaussian distribution with finite fourth moments.

The regression loss of parameter w on data ζi is

f(w, ζi) = 1
2(xT

i w − yi)2. (4.2)

Plugging (4.1) into (4.2) and taking expectation, and we find the population
loss function

F (w) = 1
2(w − w∗)TΣ(w − w∗) + 1

2σ
2. (4.3)

Now we show the problem related parameters in Theorem 2.4 can be set as
below:

Proposition 4.1. For linear regression, Assumption 2.2 holds with A = Σ,
δ = 0, D = R

p. When w0 = 0,EG(w0) = 1
2‖w∗‖2

Σ, the stochastic gradient
variance bounds in (2.3) and (2.5) hold with

r2 = 2σ2 tr(Σ) + 12 tr(Σ)‖w∗‖2
Σ, cr = 6

σ2 max{‖Σ‖, 1}.

As a consequence, Assumption 3.1 holds if ‖w∗‖2 and tr(Σ) are O(1) con-
stants, and by Proposition 3.2, the necessary sample size N(ε) is independent
of p. Similarly, Assumption 3.3 holds if ‖w∗‖2

A,S and tr(Σ) are Õ(1) constants,
and by Proposition 3.4, the sample size N(ε) depends on p only via a polynomial
logarithmic factor.

4.2. High dimensional data with principal components

The low effective dimension settings in Section 3 naturally rise in many high
dimensional problems. For example, in image processing or functional data anal-
ysis (see e.g. [56, 29, 15, 26, 64]), the data are in general assumed to take place
in a Hilbert space (H, 〈 · , · 〉) with potentially infinitely many orthonormal basis
functions {ej , j = 1, 2, . . .}. Each data can be written as

xi =
∞∑
j=1

ajie
j . (4.4)

Suppose aji are independent Gaussian random variables with mean zero and
variance σ2

j . Note that E〈xi, xi〉 =
∑∞

j=1 σ
2
j . Therefore, for each data xi ∈ H,

we assume that
∑∞

j=1 σ
2
j < ∞ so that the norm of the data is bounded, which

implicitly requires σj decaying to zero ([29]). Given the form of xi in (4.4), the
linear regression model takes the following form,

yi = 〈xi, w
∗〉 + ξi, (4.5)
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where w∗ =
∑∞

j=1 w
∗,jej . If we assume w∗ ∈ H, then 〈w∗, w∗〉 =

∑∞
j=1(w∗,j)2 <

∞.
When training this “infinite dimensional” linear regression model in (4.5),

we would need a finite projection Pp : H �→ R
p. When the basis functions are

available, one natural choice of the projection is

Ppxi = Pp

⎛⎝ ∞∑
j=1

ajie
j

⎞⎠ := [a1
i , . . . a

p
i ]

T .

Then the p-dimensional linear regression model is formulated as

yi = (Ppxi)Tw∗
p + ξpi . (4.6)

It is worthwhile noticing that the true infinite dimensional model in (4.5) is
compatible with the finite dimensional model in (4.6), in the sense that

w∗
p = Ppw

∗ = [w∗,1, . . . , w∗,p]T , ξpi = ξi +
∞∑

j=p+1
w∗,jaji .

Since aji are independent Gaussian random variables, we have ξpi ∼ N (0, σ2
ξ,p)

with

σ2
ξ,p := σ2 +

∞∑
j=p+1

σ2
j (w∗,j)2 ≤ σ2 + ‖w∗‖2

Σ, ‖w∗‖2
Σ :=

∞∑
j=1

σ2
j (w∗,j)2.

In the finite dimensional model (4.6), the data Ppxi has the population covari-
ance matrix Σp = diag(σ2

1 , . . . , σ
2
p), whose trace is bounded by

tr(Σp) =
p∑

j=1
σ2
j ≤

∞∑
j=1

σ2
j .

Therefore, by Proposition 4.1, the problem related parameters in Theorem 2.4
are

Ap = Σp, with tr(Ap) ≤
∞∑
j=1

σ2
j , ‖Ap‖ = σ2

1 ,

r2
p = 2σ2

ξ,p tr(Σp) + 12 tr(Σp)‖w∗
p‖2

Σp
≤ 2(σ2 + 7‖w∗‖2

Σ)
∞∑
j=1

σ2
j , (4.7)

c2r,p = 6
σ2
ξ,p

max{1, σ2
1} ≤ 6

σ2 max{1, σ2
1}.

Moreover, if we use w0 = 0, then E‖w0‖2 = 0 and

EG(w0) = 1
2‖w

∗
p‖2

Σp
≤ ‖w∗‖2

Σ.
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Note that

‖w∗‖2
Σ =

∞∑
j=1

σ2
j (w∗,j)2 ≤ ‖w∗‖2

∞

∞∑
j=1

σ2
j , ‖w∗‖∞ := max

1≤j
|w∗,j |.

So as long as ‖w∗‖∞ is finite, the upper bounds above are independent of di-
mension p.

When the true loading parameter w∗ is an element of H, ‖w∗
p‖2 ≤ 〈w∗, w∗〉 <

∞. Then we can check that all items of Assumption 3.1 hold. So by Proposi-
tion 3.2, we know that the excess risk is dimension-independent. Moreover, this
does not require any information of the spectrum decay profile.

More generally, we only need that each component of the true loading pa-
rameter w∗ is bounded, and w∗ does not need to be an element of H itself. In
particular, we note that

‖w∗
p‖Σp,S = max

1≤j≤p
|w∗,j | ≤ ‖w∗‖∞.

Therefore, if ‖w∗‖∞ is finite, Assumption 3.3 holds (but in general Assump-
tion 3.1 does not). Then by Proposition 3.4, the excess risk can be dimension
independent when we know the spectrum decay profile.

As a simple demonstration, we run some simulations of SGD on linear re-
gression model (4.6) and present them in Figure 2. We run SGD on (4.6) with
the sample size N = 500, the initial value w0 = 0, the stepsize η = 0.02, the
variance of the noise σ2 = 1 and the regularization parameter λ = 0.01. The
covariance spectrum of predictors is set to be σ2

j = j−2 so that tr(Ap) in (4.7)
is a constant, and the true parameter is set to be w∗,j = j−1 for 1 ≤ j ≤ p
so that ‖w∗‖Σ is bounded. The problem dimension ranges from p = 250 to
p = 2500, which can be larger than the sample size. We use the final SGD out-
put w500 as the estimator and compute the excess risk as in (2.10). We repeat
this experiment 1000 times and compute the mean and standard deviation. We
plot the error bar plot in the upper left panel of Figure 2. As one can see, the
excess risk does not increase as the dimension increases, even when p � N .
As a comparison experiment, we run simulations with the same settings except
for σ2

j ≡ 1. We plot the excess risk in the upper right panel of Figure 2, which
clearly shows the overfitting phenomenon, even when the dimension is in a lower
range.

The similar story repeats when the true parameter w∗,j ≡ 1 (i.e., the case
when ‖w∗‖∞ is bounded), where the plots are given by the lower panels in
Figure 2. As one can see, the excess risk with the decaying spectrum still re-
mains stable against the increase of dimension, and it does not change much
from the previous setting where the components of w∗ are decaying. Meanwhile,
overfitting with constant spectrum (i.e., σ2

j ≡ 1) becomes stronger. This simple
illustrative example justifies that the low effective dimension helps to address
the overfitting issue, even when the dimension p is much larger than the sample
size N .
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Fig 2. Excess risk bar plot with high dimensional linear regression for different settings of w∗
p

and Σp. The x-axis is the dimension and y-axis is the excess risk.

4.3. Overfitting with redundant features

Another interesting setting of overparameterization is to consider adding re-
dundant predictors to an existing model. In this scenario, the true model is low
dimensional with the true parameter w∗ ∈ R

d. Suppose we do not know the true
model and collect additional features z ∈ R

p−d, so that the overparameterized
linear model is written as

yi = xT
i w

∗ + zTi u
∗ + ξi, (4.8)

where w∗ ∈ R
d, u∗ = 0, and [xi; zi] is jointly Gaussian with mean zero and

covariance
Σp =

[
Σx B
BT Σz

]
.

We assume that ‖Σz‖ ≤ ‖Σx‖ for the ease of discussion. Then, Σp being PSD
implies that ‖B‖ ≤ ‖Σx‖. Since we do not impose any restriction on B other
than Σp being PSD, our setting allows the possibility that some components of
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zi to be highly correlated or even identical with the ones of xi. This, in general,
leads to highly singular design matrices and unstable offline learning results.

We apply Proposition 4.1 and find Ap = Σp. By triangular inequality, for any
vectors x and z,

‖Σp[x; z]‖ = ‖[Σxx + Bz;BTx + Σzz]‖ ≤ 2‖Σx‖‖[x; z]‖ ⇒ ‖Σp‖ ≤ 2‖Σx‖.

For simplicity, we initialize with [w0;u0] = 0, so

EG(w0, u0) = 1
2‖w0 − w∗‖2

Σx
+ 1

2‖u0‖2
Σz

= 1
2‖w

∗‖2
Σx

.

Moreover, we have

cr,p = 6
σ2 max{‖Σp‖, 1} ≤ 6

σ2 max{2‖Σx‖, 1},

and
‖[w∗, u∗]‖Σp,S = ‖w∗‖∞, ‖[w∗, u∗]‖2 = ‖w∗‖2.

These upper bounds are all independent of p, or the choice of Σz and B.
Meanwhile,

r2
p = 2(σ2 + 6‖w∗‖2

Σx
)(tr(Σx) + tr(Σz)), tr(Ap) = tr(Σx) + tr(Σz). (4.9)

Given these simple calculation, we find that the only problem related parameters
that depend on z are r2

p and tr(Ap) in (4.9) through tr(Σz). Therefore, our
theory indicates that there is a simple dichotomy on whether the model (4.8)
will overfit.

If tr(Σz) is bounded by a constant independent of p, Proposition 3.2 applies,
which indicates that the excess risk is also independent of the ambient dimen-
sion p. This can happen if we select data features in z as PCA components. For
example, suppose that the redundant data is in the form of

∑∞
j=1 a

j
ie

j as in the
setting of (4.4), and we collect the p − d dimensional principal components as
zi = [a1

i , . . . , a
p−d
i ]T . Then tr(Σz) =

∑p−d
j=1 σ

2
j <

∑∞
j=1 σ

2
j , which is independent

of p.
If tr(Σz) grows with p, model (4.8) may overfit. For simplicity, we consider a

special case where Σz = Ip−d, B = 0. In other words, the redundant features are
independent with each other and the features of x. Then our derivation shows
that r2

p = O(p). This indicates that the learning results may overfit.
To demonstrate this dichotomy, we simulate the SGD learning results and

present their excess risk in Figure 3. In particular, we set d = 5 with true
parameter w∗ = [1, 1, 1, 1, 1],Σx = I5, σ

2 = 1. We let B = 0 and choose first
that Σz to be diagonal with decaying entries 1

j2 . We run SGD with 500 iterations
and compute the excess risk of the final iterate. We repeat this 1000 times and
plot the error bar plot in the left panel of Figure 3. As we can see, the excess
risk is stable against the increase of the dimension p. In comparison, if we use
Σz = Ip−d, the learning results overfit, as we can see from the right panel of
Figure 3.



4574 X. Chen et al.

Fig 3. Excess risk bar plot with high dimensional redundant features for two different cases
of Σz. The x-axis is the dimension p and y-axis is the excess risk.

5. Overparameterization for nonlinear and non-convex models

In this section, we apply our main theorems and corollaries in Section 3 to
several important nonlinear and non-convex statistical problems, such as logis-
tic regression, M-estimator with Tukey’s biweight loss function, and two-layer
neural networks.

5.1. Logistic regression

We consider the logistic regression for binary classification with N i.i.d. data
ζi = (xi, yi). The binary response yi takes values within {−1, 1} with probability

P(yi = y|xi) = 1
1 + exp(−yxT

i w
∗)
, y = ±1,

where w∗ ∈ R
p is the true parameter to be estimated. We assume the predictors

xi are i.i.d. with Exix
T
i = Σ. For each data, we adopt the negative log-likelihood

as the loss function

f(w, ζi) := log(1 + exp(−yix
T
i w)),

and the corresponding population loss is given by

F (w) = Ef(w, ζ) = E log(1 + exp(−yxTw)).

The problem related parameters in Theorem 2.4 can be set by the following
proposition.

Proposition 5.1. For logistic regression, Assumption 2.2 holds with A = Σ, δ =
0,D = R

p. When w0 = 0,EG(w0) = log 2 = O(1), the stochastic gradient
variance bounds in (2.3) and (2.5) hold with

r2 = tr(Σ), cr = 0.
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As a consequence, Assumption 3.1 holds if ‖w∗‖2 and tr(Σ) are O(1) con-
stants, and by Proposition 3.2, the sample size N(ε) is independent of p. Sim-
ilarly, Assumption 3.3 holds if ‖w∗‖2

Σ,S and tr(Σ) are Õ(1) constants, and by
Proposition 3.4, the sample size N(ε) depends on p only via a poly-logarithmic
factor.

5.2. M-estimator with Tukey’s biweight loss function

In this non-convex example, we assume that the data ζi = (xi, yi) are generated
from a linear model

yi = xT
i w

∗ + ξi. (5.1)

We assume xi ∼ N (0,Σ), and ξi are i.i.d. mean-zero noises with finite fourth
moment. We adopt the non-convex Tukey’s biweight loss function as follows for
the purpose of robust estimation

ρ(u) =
{

c2

6 [1 − (1 − (u/c)2)3] if |u| ≤ c;
c2

6 if |u| > c.

Then the individual data loss function and the population loss are given by,

f(w, ζ) = ρ(xTw − y) = ρ(xT (w − w∗) − ξ), F (w) = Eρ(xT (w − w∗) − ξ).

Proposition 5.2. For the M -estimator with Tukey’s biweight loss in (5.1), the
model true parameter w∗ is a local minimum if and only if

c0 = E[(1 − (ξ/c)2)(1 − 5(ξ/c)2)1|ξ|≤c] > 0.

In that case, Assumption 2.2 holds with any δ ≥ 0, A = Σ and

D = {w : ‖w − w∗‖Σ ≤ c0+δ
16 }.

Moreover, the stochastic gradient variance bounds in (2.3) and (2.5) hold with

r2 = tr(Σ), cr = 0.

Since G(w0) ≤ maxu ρ(u) = c2

6 , Assumption 3.1 holds if ‖w∗‖2, ‖w0‖2 and
tr(Σ) are O(1) constants, and by Proposition 3.2, the sample size N(ε) is
independent of p. We also see that for satisfying E[G(w̄n)] ≤ 3ε, the order
of the radius of D only need to be c0+ε

16 . Similarly, Assumption 3.3 holds if
‖w0‖∞, ‖w∗‖2

Σ,S and tr(Σ) are Õ(1) constants, and by Proposition 3.4, the sam-
ple size N(ε) depends on p only via a polynomial logarithmic factor.

5.3. Two-layer neural network

In this example, we consider applying our result to two-layer neural networks
(NN). We assume that every data point ζ = (x, y) consists of a p-dimensional
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predictor x ∼ N (0,Σ) and a univariate response y ∈ R. We assume that the
response is generated by

y = g(w, x) + ξ, Eξ = 0, Eξ2 = σ2
0 .

The function g takes the form of a two-layer NN:

g(w, x) = cTψ(bx + a) =
k∑

i=1
ciψ(bTi x + ai). (5.2)

In (5.2), a and c are k-dimensional vectors with ai and ci being their components.
The notation b is a p by k matrix, and bi denotes the i-th column of b with
i = 1, . . . , k. We impose no restriction on k and it can depend on p in general.
We denote all the parameters by w = [a; b1, . . . , bk; c] ∈ R

(p+2)k. In (5.2), ψ
denotes the activation function. Popular choices of ψ include the rectified linear
unit (ReLu), sigmoid function, and the hyperbolic tangent. Here, we do not
require ψ to take a specific form but only satisfy certain regularity assumptions
for some constant C > 0,

ψ(0) = 0, |ψ̇(x)| ≤ C, |ψ̈(x)| ≤ C. (5.3)

It is easy to verify that hyperbolic tangent satisfies these requirements, and the
sigmoid also satisfies these if we shift its center to zero. The condition ψ(0) = 0
is mainly for the ease of technical derivations. Although ReLu does not have
continuous derivatives, one can find a smooth approximation to meet these
requirements.

Since we consider the regression problem, the squared loss function is given
by

f(w, ζ) = (y − g(w, x))2 = (g(w∗, x) + ξ − g(w, x))2.
We also introduce the following (p + 2)k by (p + 2)k block-diagonal matrix

Σ� = diag{Ik,Σ,Σ . . . ,Σ, Ik}.

This matrix introduces a high dimensional norm

‖w‖2
Σ� = wTΣ�w = ‖a‖2 +

k∑
i=1

‖bi‖2
Σ + ‖c‖2.

Recall that bi is of dimension p, its contribution to ‖w‖2
Σ� is ‖bi‖2

Σ. By Propo-
sition 3.4, ‖bi‖2

Σ ≤ tr(Σ)‖bi‖2
Σ,S , which can be independent of p under suitable

conditions.
We are ready to show that the two-layer NN will not overfit in some overpa-

rameterized settings.

Proposition 5.3. Assume the activation function satisfies the condition in
(5.3). With the two-layer NN defined in (5.2), Assumption 2.2 holds for any
δ ∈ (0, 1/4] with

A = C0(w∗)Σ�, D = {w : ‖w − w∗‖Σ� ≤ δC1(w∗)‖w∗‖Σ�}.
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For any w0 ∈ D, G(w0) ≤ C2(w∗)‖w∗‖4
Σ� , the stochastic gradient variance

bounds in (2.3) and (2.5) hold with

r2 = C3(w∗), cr = 0.

The exact values of the problem related parameters are given by

C0(w∗) = 7C2‖w∗‖2
Σ� , C1(w∗) = 2

9
√

2(2‖w∗‖Σ� + 1)
, C2(w∗) = C2‖w∗‖4

Σ� ,

C3(w∗) = 8
√

3(1 + tr(Σ))C2‖w∗‖2
Σ�

(
C2‖w∗‖4

Σ� + σ2
0
)
.

Applying Corollary 2.5 and 2.6 yields that for satisfying E[G(w̄N )1τ≥N ] ≤ 3ε
and E[G(wN )1τ≥N ] ≤ 4ε, the radius of the attraction basin D should be O(ε).
Although this is too small, theoretically this is reasonable for NN with general
structure. Figure 1 in [38] shows that for some network architectures, the loss
landscapes can be very rough, thus it is unlikely that we can prove rigorously
that NN all have minimizers reside in the valley with large radius. On the other
hand, the empirical studies in [38] and references therein have shown that with
some NNs will yield “flat valleys” in their landscape, which often are related to
good generalization. Under our setup, such NNs have D with large radius, so
our generalization theory can apply with much better excess risk.

As a consequence of Proposition 5.3, Assumption 3.1 holds if

max
{
‖a∗‖2 +

k∑
i=1

‖b∗i ‖2 + ‖c∗‖2, tr(Σ), ‖w0‖∞

}
= O(1), (5.4)

and by Proposition 3.2, the sample size N(ε) is independent of p. Similarly,
Assumption 3.3 holds if

max
{
k, tr(Σ), ‖w0‖∞, |ai|, |ci|, |vTj bi|, i = 1, . . . , k, j = 1, . . . , p

}
= Õ(1), (5.5)

where vj are the eigenvectors of Σ. Then by Proposition 3.4, the sample size
N(ε) depends on p only via a polynomial logarithmic factor.

It is worthwhile mentioning that a similar version of Condition (5.4) can also
be found in [49]. In particular, [49] assumed ‖c∗‖2,

∑k
i=1 ‖b∗i ‖2 to be O(1) while

the parameter a is set to be 0. There is no variance assumption of xi in [49], but
it is assumed that E‖xi‖2 is O(1), which is equivalent to requesting tr(Σ) = O(1)
in our setting.

When the width of the hidden layer k is a fixed constant, the second condi-
tion (5.5) is in general less restrictive than the first one (5.4), since it allows ‖b∗i ‖
to grow with p. When k grows with p, only the first condition is applicable, and
it requires that ‖a∗‖2 +

∑k
i=1 ‖b∗i ‖2 +‖c∗‖2 is bounded by O(1). In other words,

we need either k = O(1) or the true parameters to be bounded by O(1) to pre-
vent overfitting. This can also be understood intuitively. Note that the output
of the two-layer NN in (5.2) is a sum of k objects. Therefore, if k grows with
p, the output of (5.2) will diverge, which contradicts the common assumption
that g is bounded (see, e.g., [39, 49, 2]). Our result is consistent with the results
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in [2], in the sense that [2] also showed that the sample size needs to grow with
k. It is also possible to rescale g by multiplying (5.2) with a factor 1

k or 1√
k
, as

done by [3], so that the excess risk is independent of the parameter k.

6. Conclusions and future works

One classical canon of statistics is that high dimensional models are prone to
overfitting when the data sample size is not sufficiently large. However, many
existing models, such as neural networks (NN), exhibit stable generalization
performance despite being overparameterized. This paper developed an analy-
sis framework of the excess risk bound for high dimensional regularized online
learning. The error bound can be interpreted as a bias-variance tradeoff through
a simplified stochastic approximation. This result indicates that overparameter-
ization does not lead to overfitting if the model has a low effective dimension.
We demonstrated how to apply this framework on various models such as lin-
ear regression, logistic regression, M -estimator with Tukey’s biweight loss, and
two-layer NN.

There are a few future directions. First, our excess risk bounds only apply
when the starting point and the SGD iterates stay in a local region D near the
true parameter w∗, it would be an interesting future work on how to realize
our idea introduced in Section 2.2. Second, our framework indicates that the
ambient model dimension itself may not be a good indicator of model complexity,
especially in overparameterized settings. The quantity that characterizes the
data variability may lead to new information criterion for model selection in the
overparameterized setting. Such results may extend the classical criteria such as
the AIC and BIC. Last but not least, regularization and overparameterization
are good tools to handle misspecified models. [31] has discussed this issue for
linear regression problems. How to extend our results to nonlinear misspecified
models will be very interesting.

Appendix A: Proof of the main results in Section 2

A.1. Preliminaries

Lemma A.1. For any vector v ∈ R
p and PSD matrix A ∈ R

p×p, the following
results hold

1) For any −δA 	 B 	 A, let B = V ΛV T be the eigenvalue decomposition of
B, and denote |Λ| as taking absolute value on each element of the diagonal
matrix Λ. Denote |B| = V |Λ|V T . Then for any vectors v and w, a > 0

2〈v,Bw〉 ≤ a〈v, |B|v〉 + 1
a
〈w, |B|w〉 ≤ a(1 + δ)‖v‖2

A + 1 + δ

a
‖w‖2

A.

2) For any −δA 	 B 	 A, and any vectors u and v, a > 0

2|〈u,Bv〉| ≤ a〈u,Bu〉 + 2aδ‖u‖2
A + 1 + 2δ

a
‖v‖2

A.
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Proof. Claim 1). Let (li, ui) be the eigenvalue-eigenvectors of B. Assume also
that

v =
p∑

i=1
aiui, w =

p∑
i=1

biui.

Then by Young’s inequality

2〈v,Bw〉 = 2
p∑

i=1
liaibi ≤ a

p∑
i=1

|li||ai|2 + 1
a

p∑
i=1

|li||bi|2 = a〈v, |B|v〉 + 〈w, |B|w〉
a

.

Next, we denote the positive part of Λ as Λ+ and the negative part as Λ−, so
that

Λ = Λ+ + Λ−, |Λ| = Λ+ − Λ−, Λ− 	 0 	 Λ+.

Then by checking eigen-space with nonnegative eigenvalues, B 	 A indicates
that V Λ+V

T 	 A. Likewise, we have −δA 	 V Λ−V
T . In combination, we have

|B| = V Λ+V
T − V Λ−V

T 	 (1 + δ)A.

Therefore

a〈v, |B|v〉 + 1
a
〈w, |B|w〉 ≤ (1 + δ)a‖v‖2

A + 1 + δ

a
‖w‖2

A.

For claim 2), denote Bδ = B + δA � 0. Then

2|〈u,Bv〉| ≤ 2|〈u,Bδv〉| + 2δ|〈u,Av〉|

≤ a‖u‖2
Bδ

+ 1
a
‖v‖2

Bδ
+ aδ‖u‖2

A + δ

a
‖v‖2

A

= a〈u,Bu〉 + aδ‖u‖2
A + 1

a
〈v,Bv〉 + δ

a
‖v‖2

A + aδ‖u‖2
A + δ

a
‖v‖2

A

≤ a〈u,Bu〉 + 2aδ‖u‖2
A + 1 + 2δ

a
‖v‖2

A.

A.2. Proof of the main results

Proof of Theorem 2.3. We rewrite SGD update as

wn+1 = wn − η∇fλ(wn, ζn) = wn − η∇Fλ(wn) + ηξn, (A.1)

where
ξn = ∇Fλ(wn) −∇fλ(wn, ζn) = ∇F (wn) −∇f(wn, ζn).

Let Fn be the σ-algebra generated by {wi+1, ζi, i = 1, . . . , n− 1}. We use En(·)
to denote the conditional expectation E(·|Fn). Then ξn is a martingale sequence
since Enξn ≡ 0.

From (A.1), we find

‖wn+1−w∗‖2 = ‖wn−w∗‖2−2η〈wn−w∗,∇Fλ(wn)−ξn〉+η2‖∇Fλ(wn)−ξn‖2.
(A.2)
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We first try to find a bound of 〈−(wn − w∗),∇Fλ(wn)〉. We define

Bn :=
∫ 1

0
∇2Fλ(swn + (1 − s)w∗)ds = λI +

∫ 1

0
∇2F (swn + (1 − s)w∗)ds,

and apply fundamental theorem of calculus on ∇Fλ. Note that ∇F (w∗) = 0,
we obtain

∇Fλ(wn) = ∇Fλ(w∗) +
∫ 1

0
∇2Fλ(swn + (1 − s)w∗)(wn − w∗)ds (A.3)

= λw∗ + Bn(wn − w∗).

Note that 1
2λI 	 −δA + λI 	 Bn 	 A + λI and Bn is symmetric, we have

〈−(wn − w∗),∇Fλ(wn)〉 = −‖wn − w∗‖2
Bn

− λ〈w∗, wn − w∗〉

≤ −1
2‖wn − w∗‖2

Bn
− λ

4 ‖wn − w∗‖2 − λ〈w∗, wn − w∗〉

≤ −1
2‖wn − w∗‖2

Bn
+ λ‖w∗‖2. (A.4)

Furthermore, note that by Bn 	 A + λI, we have

‖∇Fλ(wn)‖2 =‖λw∗ + Bn(wn − w∗)‖2 ≤ 2λ2‖w∗‖2 + 2(‖A‖ + λ)‖wn − w∗‖2
Bn

.
(A.5)

Similarly, we find

∇F (wn) =
∫ 1

0
∇2F (swn + (1 − s)w∗)ds(wn − w∗) = (Bn − λI)(wn − w∗),

thus

‖∇F (wn)‖2 ≤ ‖A‖‖wn − w∗‖2
Bn

. (A.6)

Recall that wn is Fn-measurable and Enξn = 0. Also

E‖ξn‖2 ≤ r2 + cr|(wn − w∗)T∇F (wn)| ≤ r2 + cr‖wn − w∗‖2
Bn

.

So plugging (A.4) and (A.5) into (A.2), using (2.3) with (A.6), and by Cauchy
Schwarz inequality, we then have

En‖wn+1 − w∗‖2

= ‖wn − w∗‖2 − 2ηEn〈wn − w∗,∇Fλ(wn) − ξn〉 + η2
En‖∇Fλ(wn) − ξn‖2

= En[‖wn − w∗‖2 − 2η〈wn − w∗,∇Fλ(wn)〉 + η2(‖∇Fλ(wn)‖2 + ‖ξn‖2)]
≤ ‖wn − w∗‖2 − η‖wn − w∗‖2

Bn
+ 2λη(1 + λη)‖w∗‖2

+ η22(1 + cr)(‖A‖ + λ)‖wn − w∗‖2
Bn

+ η2r2.
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Under the condition

η ≤ min
{ 1

4(1 + cr)(‖A‖ + λ) , 1
}
, λ ≤ 1,

and since 0 ≤ 1τ≥n+1 ≤ 1τ≥n, we have

E[1τ≥n+1‖wn+1 − w∗‖2]
≤ E[1τ≥n‖wn+1 − w∗‖2] = E[1τ≥nEn‖wn+1 − w∗‖2]
≤ E[1τ≥n(‖wn − w∗‖2 − 1

2η‖wn − w∗‖2
Bn

)] + 4λη‖w∗‖2 + η2r2.

Summing this inequality over all n = 0, . . . , (N ∧ τ) − 1, we find that

E[‖wτ∧N − w∗‖2] ≤ E‖w0 − w∗‖2 + N(4λη‖w∗‖2 + η2r2). (A.7)

Summing the same inequality over all n = 0, . . . , N − 1, we find that

E

[
1τ≥N−1

(
1
2η

N−1∑
n=0

‖wn − w∗‖2
Bn

)]
≤ E‖w0 − w∗‖2 + N(4λη‖w∗‖2 + η2r2).

(A.8)
To continue, recall G(wn) = F (wn) − F (w∗). Apply fundamental theorem of
calculus to F (w), we obtain

G(wn) = F (wn) − F (w∗)

=
[ ∫ 1

0
∇F (swn + (1 − s)w∗)ds

]T
(wn − w∗)

=
[ ∫ 1

0

(
∇F (w∗) +

∫ s

0
∇2F (twn + (1 − t)w∗)(wn − w∗)dt

)
ds
]T

(wn − w∗)

= (wn − w∗)T
[ ∫ 1

0
(1 − s)∇2F (swn + (1 − s)w∗)ds

]
(wn − w∗)

= (wn − w∗)TAn(wn − w∗),
(A.9)

with

An =
∫ 1

0
(1 − s)∇2F (swn + (1 − s)w∗)ds.

Under Assumption 3.1, we observe that

An + 1
2λI =

∫ 1

0
(1 − s)∇2Fλ(swn + (1 − s)w∗)ds

	
∫ 1

0
∇2Fλ(swn + (1 − s)w∗)ds = Bn.
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Namely, we have H(wn) = G(wn) + λ
2 ‖wn − w∗‖2 ≤ ‖wn − w∗‖2

Bn
. Together

with (A.8), we obtain

E

[
1τ≥N−1

(
1
2η

N−1∑
n=0

H(wn)
)]

≤ E‖w0 − w∗‖2 + N(4λη‖w∗‖2 + η2r2).

Then because H is convex within D, we have H(w̄N ) ≤ 1
N

∑N−1
n=0 H(wn) and

E [1τ≥N−1 (ηNH(w̄N ))] ≤ 2E‖w0 − w∗‖2 + 2N(4λη‖w∗‖2 + η2r2).

This leads to our claim

E [1τ≥N−1G(w̄N )] ≤ E [1τ≥N−1H(w̄N )] ≤ 2E‖w0 − w∗‖2

Nη
+ 8λ‖w∗‖2 + 2ηr2.

Proof of Theorem 2.4. Step 1: we build a bound for ‖wn‖2. We rewrite SGD
update as

wn+1 = wn − η∇fλ(wn, ζn) = wn − η∇Fλ(wn) + ηξn, (A.10)

where
ξn = ∇Fλ(wn) −∇fλ(wn, ζn) = ∇F (wn) −∇f(wn, ζn).

Let Fn be the σ-algebra generated by {wi+1, ζi, i = 1, . . . , n− 1}. We use En(·)
to denote the conditional expectation E(·|Fn). Then ξn is a martingale sequence
since Enξn ≡ 0.

From (A.10), we find

‖wn+1‖2 = ‖wn‖2 − 2η〈wn,∇Fλ(wn) − ξn〉 + η2‖∇Fλ(wn) − ξn‖2. (A.11)

To continue, we try to find a bound of −2η〈wn,∇Fλ(wn)〉. We define

Bn :=
∫ 1

0
∇2F (swn + (1 − s)w∗)ds,

and apply fundamental theorem of calculus on ∇F . Note that ∇F (w∗) = 0, we
obtain

∇F (wn) = ∇F (w∗) +
∫ 1

0
∇2F (swn + (1 − s)w∗)(wn − w∗)ds = Bn(wn − w∗).

(A.12)

Note that −δA 	 Bn 	 A. We have

〈−wn,∇F (wn)〉 = −〈wn, Bn(wn − w∗)〉
= −〈wn, (Bn + δA)wn〉 + 〈wn, (Bn + δA)w∗〉 + δ(‖wn‖2

A − 〈wn, Aw
∗〉)
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≤ 1
4‖w

∗‖2
Bn+δA + δ(2‖wn‖2

A + 1
4‖w

∗‖2
A)

≤ 2δ‖A‖‖wn‖2 + 1
2‖w

∗‖2
A since δ ≤ 1

2 and ‖wn‖2
A ≤ ‖A‖‖wn‖2.

Recall that δ‖A‖ ≤ λ
4 , we find

−2η〈wn,∇Fλ(wn)〉 = −2η〈wn,∇F (wn) + λwn〉
= −2λη‖wn‖2 + 2η〈−wn,∇F (wn)〉
≤ −λη‖wn‖2 + η‖w∗‖2

A.

(A.13)

If Bn = QΛQT is the eigendecomposition of Bn, let |Bn| = Q|Λ|QT , where |Λ|
takes absolute value on each element of the diagonal matrix Λ. From the proof
of Lemma A.1 claim 1), we know |Bn| 	 (1 + δ)A 	 (1 + δ)‖A‖I. Thus by
Bn 	 A, we have

‖∇F (wn)‖2 = ‖Bn(w∗ − wn)‖2 ≤ 2‖Bnw
∗‖2 + 2‖Bnwn‖2

≤ 2(w∗)TB1/2
n |Bn|B1/2

n w∗ + 2‖A‖2‖wn‖2

≤ 2(1 + δ)‖A‖‖B1/2
n w∗‖2 + 2‖A‖2‖wn‖2

≤ 4‖A‖‖w∗‖2
A + 2‖A‖2‖wn‖2. (A.14)

Recall that wn is Fn-measurable and Enξn = 0, we have En〈wn, ξn〉 = 0. So
plugging (A.13) and (A.14) into (A.11), and by Cauchy Schwarz inequality, we
then have

En‖wn+1‖2

= En[‖wn‖2 − 2η〈wn,∇Fλ(wn)〉 + η2‖∇F (wn) + λwn − ξn‖2]
≤ En[‖wn‖2 − 2η〈wn,∇Fλ(wn)〉 + 3η2(‖∇F (wn)‖2 + ‖ξn‖2 + λ2‖wn‖2)]
≤ ‖wn‖2 − λη‖wn‖2 + 6η2‖A‖2‖wn‖2 + 3η2λ2‖wn‖2

+
(
η + 12‖A‖η2) ‖w∗‖2

A + 3η2r2(1 + cr‖wn‖2).

Under the condition
η ≤ λ

12‖A‖2 + 6λ2 + 6crr2 ,

we have that if τ ≥ n

En‖wn+1‖2 ≤ (1 − 1
2λη)‖wn‖2 + ηMw,

which can also leads to

En‖wn+1‖21τ≥n+1 ≤ En‖wn+1‖21τ≥n ≤ (1 − 1
2λη)‖wn‖21τ≥n + ηMw,

En‖wn+1‖21τ≥n+1 − ‖wn‖21τ≥n ≤ ηMw,

where

Mw := (1 + 12‖A‖η) ‖w∗‖2
A + 3ηr2 = ‖w∗‖2

A + η
(
12‖A‖‖w∗‖2

A + 3r2) .



4584 X. Chen et al.

Then iterating the inequalities above gives us

E[‖wn‖21τ≥n] ≤
(

1 − λη

2

)n

E‖w0‖2 + 2
λ

(1 − (1 − 1
2λη)

n)Mw, (A.15)

E[‖wn∧τ‖2] ≤ E‖w0‖2 + ηnMw. (A.16)

Step 2: we derive how does the excess risk evolve. According to Taylor’s ex-
pansion and (A.10), we know that there exists a vn, such that

F (wn+1) = F (wn) − η‖∇F (wn)‖2 − ηλ∇F (wn)Twn + ηξTn∇F (wn)

+ η2

2 (∇F (wn) + λwn − ξn)T∇2F (vn)(∇F (wn) + λwn − ξn)

≤ F (wn) − η‖∇F (wn)‖2 − ηλ∇F (wn)Twn + ηξTn∇F (wn)

+ η2

2 (∇F (wn) + λwn − ξn)TA(∇F (wn) + λwn − ξn)

≤ F (wn) − η‖∇F (wn)‖2 − ηλ∇F (wn)T (wn − w∗) + ηλ|∇F (wn)Tw∗|

+ ηξTn∇F (wn) + 3η2

2 ‖A‖(‖∇F (wn)‖2 + λ2‖wn‖2 + ‖ξn‖2).
(A.17)

Step 3: we bound each term in (A.17) through interpolation. We observe that

|λ∇F (wn)Tw∗| ≤ |λ∇F (wn)Tw∗
⊥| + |λ∇F (wn)Tw∗

λ|, (A.18)

where w∗ = w∗
⊥ + w∗

λ is the decomposition introduced in Definition 2.1. Next

|λ∇F (wn)Tw∗
λ| ≤

1
2‖∇F (wn)‖2 + 1

2λ
2‖w∗

λ‖2. (A.19)

Recall ∇F (wn) = Bn(wn − w∗) in (A.12), and by Lemma A.1 claim 2), we
further have

|λ∇F (wn)Tw∗
⊥| ≤

1
2λ(wn − w∗)TBn(wn − w∗)

+ δλ‖wn − w∗‖2
A + 1 + 2δ

2 λw∗T
⊥ Aw∗

⊥.

(A.20)

Plugging (A.19), (A.20) into (A.18), applying the result to (A.17) gives us

F (wn+1)

≤ F (wn) − 1
2η‖∇F (wn)‖2 − 1

2λη∇F (wn)T (wn − w∗) + 1 + 2δ
2 λη‖w∗‖2

A,λ

+ δλη‖wn − w∗‖2
A + ηξTn∇F (wn) + 3η2‖A‖

2 (‖∇F (wn)‖2 + λ2‖wn‖2 + ‖ξn‖2)

(Recall that η ≤ 1, δ <
1
2 and η/2 − 3η2‖A‖/2 ≥ 0)

≤ F (wn) − 1
2λη∇F (wn)T (wn − w∗) + λη‖w∗‖2

A,λ (A.21)
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+ δλη‖wn − w∗‖2
A + ηξTn∇F (wn) + 3η2

2 ‖A‖(λ2‖wn‖2 + ‖ξn‖2).

To continue, recall G(wn) = F (wn) − F (w∗). Apply fundamental theorem of
calculus to F (w), we obtain

G(wn) = F (wn) − F (w∗)

=
[ ∫ 1

0
∇F (swn + (1 − s)w∗)ds

]T
(wn − w∗)

=
[ ∫ 1

0

(
∇F (w∗) +

∫ s

0
∇2F (twn + (1 − t)w∗)(wn − w∗)dt

)
ds
]T

(wn − w∗)

= (wn − w∗)T
[ ∫ 1

0
(1 − s)∇2F (swn + (1 − s)w∗)ds

]
(wn − w∗)

= (wn − w∗)TAn(wn − w∗), (A.22)

with

An =
∫ 1

0
(1 − s)∇2F (swn + (1 − s)w∗)ds.

Under Assumption 3.1, namely 0 	 ∇2F (wn) + δA 	 A + δA, we observe that

1
2δA + An = 1

2δA +
∫ 1

0
(1 − s)∇2F (swn + (1 − s)w∗)ds

=
∫ 1

0
(1 − s)(∇2F (swn + (1 − s)w∗) + δA)ds

	
∫ 1

0
(∇2F (swn + (1 − s)w∗) + δA)ds

= Bn + δA 	 (1 + δ)A.

Namely, we have
An 	 Bn + 1

2δA 	 (1 + δ
2 )A.

Thus

G(wn) − 1
2δ‖wn − w∗‖2

A ≤ (wn − w∗)TBn(wn − w∗) = ∇F (wn)T (wn − w∗).

Plug this into (A.21), together with ‖wn − w∗‖2
A ≤ 2‖wn‖2

A + 2‖w∗‖2
A ≤

2‖A‖‖wn‖2 + 2‖w∗‖2
A, we have

G(wn+1) ≤ G(wn) − 1
2ηλG(wn) + ηξTn∇F (wn)

+ 5
4δλη‖wn − w∗‖2

A + λη‖w∗‖2
A,λ + 3η2

2 ‖A‖(λ2‖wn‖2 + ‖ξn‖2).

≤ G(wn) − 1
2ηλG(wn) + ηξTn∇F (wn) + 3η2

2 ‖A‖‖ξn‖2
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+ λη(‖w∗‖2
A,λ + 5

2δ‖w
∗‖2

A) +
(

3η2λ2

2 + 5
2ληδ

)
‖A‖‖wn‖2.

Step 4: summarizing arguments. We will first establish a rough estimate, which
is useful to the escape probability. Since Enξ

T
n∇F (wn) ≡ 0, we have

En∧τ [G(wn∧τ+1)] ≤ (1 − 1
2ηλ)G(wn∧τ ) +

(
3η2λ2

2 + 5
2ληδ

)
‖A‖‖wn∧τ‖2

+ λη

(
‖w∗‖2

A,λ + 5
2δ‖w

∗‖2
A

)
+ 3η2‖A‖

2 r2(1 + crG(wn∧τ )])

Because η ≤ λ

6cr‖A‖r2

≤ G(wn∧τ ) +
(

3η2λ2

2 + 5
2ληδ

)
‖A‖‖wn∧τ‖2

+ λη

(
‖w∗‖2

A,λ + 5
2δ‖w

∗‖2
A

)
+ 3η2‖A‖

2 r2.

Recall that E[‖wn∧τ‖2] ≤ E‖w0‖2 + ηnMw with

Mw = ‖w∗‖2
A + η

(
12‖A‖‖w∗‖2

A + 3r2) .
Iterating above result gives us

E[G(wn∧τ )] ≤E[G(w0)] +
(

3η2λ2

2 + 5
2ληδ

)
‖A‖(nE‖w0‖2 + n2ηMw) (A.23)

+ λnη

(
‖w∗‖2

A,λ + 5
2δ‖w

∗‖2
A

)
+ 3nη2‖A‖

2 r2.

We can further improve this bound by using 0 ≤ 1τ≥n+1 ≤ 1τ≥n ≤ 1 and taking
conditional expectation for both sides. Since Enξ

T
n∇F (wn) ≡ 0, we have

E[G(wn+1)1τ≥n+1]
≤ E[G(wn+1)1τ≥n] = E[1τ≥nEn[G(wn+1)]]

≤ (1 − 1
2ηλ)E[G(wn)1τ≥n] +

(
3η2λ2

2 + 5
2ληδ

)
‖A‖E[‖wn‖21τ≥n]

+ λη

(
‖w∗‖2

A,λ + 5
2δ‖w

∗‖2
A

)
+ 3η2‖A‖

2 r2(1 + crE[G(wn)1τ≥n])

Because η ≤ λ

6cr‖A‖r2

≤ (1 − 1
4ηλ)E[G(wn)1τ≥n] +

(
3η2λ2

2 + 5
2ληδ

)
‖A‖E[‖wn‖21τ≥n]

+ λη

(
‖w∗‖2

A,λ + 5
2δ‖w

∗‖2
A

)
+ 3η2‖A‖

2 r2. (A.24)
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Since ηλ ≤ 1, we have 0 ≤ 1 − 1
4λη ≤ exp(−1

4λη), then iterating above result
gives us

E[G(wn)1τ≥n]

≤ exp(−1
4λnη)E[G(w0)] + 4‖w∗‖2

A,λ + 10δ‖w∗‖2
A + 6η‖A‖

λ
(1 − (1 − 1

4ηλ)n)r2

+
(

3η2λ2

2 + 5
2ληδ

)
‖A‖

n∑
i=0

(1 − 1
4ηλ)n−i

E[‖wi‖21τ≥i].

Applying (A.15), together with λ ≤ 1, η ≤ 1, δ ≤ 1
2 , 12η‖A‖ ≤ 1 and 1− 1

4λη ≤
exp(−1

4λη), we obtain

E[G(wn)1τ≥n]

≤ exp(−1
4λnη)E[G(w0)] + 4‖w∗‖2

A,λ + 10δ‖w∗‖2
A + 6η‖A‖

λ
(1 − (1 − 1

4ηλ)n)r2

+
(

3η2λ2

2 + 5
2ληδ

)
‖A‖

n∑
i=0

(
(1 − 1

4λη)
n
E[‖w0‖2]

+ (1 − 1
4λη)

n−i 2
λ

(1 − (1 − 1
4ηλ)i)Mw

)
≤ exp(−1

4λnη)E[G(w0) + 4n‖A‖‖w0‖2]

+ 6η‖A‖
λ

(1 − (1 − 1
4ηλ)n)r2 + 4‖w∗‖2

A,λ + 10δ‖w∗‖2
A

+ (12λη + 20δ)‖A‖
λ

(1 − (1 − 1
4ηλ)n)

(
‖w∗‖2

A + η
(
12‖A‖‖w∗‖2

A + 3r2))
≤ exp(−1

4λnη)E[G(w0) + 4n‖A‖‖w0‖2]

+ 6η‖A‖
λ

(1 − (1 − 1
4ηλ)n)r2 + 4‖w∗‖2

A,λ + 10δ‖w∗‖2
A

+ (12λη + 20δ)‖A‖
λ

(1 − (1 − 1
4ηλ)n)

(
2‖w∗‖2

A + 3r2η
)

≤ 4‖w∗‖2
A,λ + C1

λ
(1 − (1 − 1

4ηλ)n)(η + δ)

+ exp(−1
4λnη)E[G(w0) + 4n‖A‖‖w0‖2],

with C1 = 60‖A‖
(
r2 + ‖w∗‖2

A

)
+ 10‖w∗‖2

A.

Proof of Corollary 2.5. By Theorem 2.3, E[G(w̄N )1τ≥N ] ≤ 3ε holds if we choose
λ, η,N, δ such that the following results hold

2E‖w0 − w∗‖2

Nη
≤ ε, 8λ‖w∗‖2 ≤ ε, 2ηr2 ≤ ε,

and the following conditions are satisfied

η ≤
{ 1

2(1 + cr)(‖A‖ + λ) , 1
}
, 2δ‖A‖ ≤ λ ≤ 1.
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Solving 8λ‖w∗‖2 ≤ 8λC0 ≤ ε gives us λ(ε) ≤ ε
8C0

. The condition on δ(ε) is
obtained from λ ≥ 2δ‖A‖. The condition of η(ε) ensures that 2ηr2 ≤ ε and
η ≤ 1

2(1+cr)(‖A‖+λ) . With chosen η(ε), the scale of N(ε) is obtained by solving
2E‖w0−w∗‖2

Nη ≤ 2C0
Nη ≤ ε.

Proof of Corollary 2.6. By Theorem 2.4, E[G(wN )1τ≥N ] ≤ 4ε holds if we choose
λ, η,N, δ such that the following results hold

4‖w∗‖2
A,λ ≤ ε,

C1η

λ
≤ ε,

C1δ

λ
≤ ε, exp(−1

4λNη)E[G(w0) + 4N‖A‖‖w0‖2] ≤ ε.

We first choose λ(ε) such that 4‖w∗‖2
A,λ(ε) < ε. The conditions on η(ε), δ(ε) en-

sure that C1η
λ ≤ ε and C1δ

λ ≤ ε. With chosen λ(ε), η(ε), the scale of N(ε) is ob-
tained by solving exp(−1

4λNη)E[G(w0)] ≤ ε
2 and exp(−1

4λNη)4N‖A‖E[‖w0‖2]
≤ ε

2 by using

exp(−1
4λNη)N = 4

λη
exp(−1

4λNη)1
4Nλη ≤ 8

λη
exp(−1

8λNη),

which is derived from exp(−x)x ≤ 2 exp(−1
2x), since by Taylor expansion x ≤

2 exp(x2 ).

Appendix B: Proof for results in low effective dimension in
Section 3.2

Proof of Proposition 3.2. Under Assumption 3.1, applying Corollary 2.5 results
in

λ(ε) = O(ε), δ(ε) = O(ε), η(ε) = O(ε), N(ε) = Ω
( 1
ε2

)
,

for guaranteeing E[G(w̄N )1τ≥N ] ≤ 3ε. In this case, by (A.7), according to
Chebyshev’s inequality and recall that

E‖wN∧τ − w∗‖2 ≤ E‖w0 − w∗‖2 + N(4λη‖w∗‖2 + η2r2) = O(1),

we have

P(τ ≤ N) = P({wN∧τ /∈ D}) = P({‖wN∧τ − w∗‖2 > a})

≤ E‖wN∧τ − w∗‖2

a
≤ δ.

If δ = 0, according to Theorem 2.3,

E [1τ≥N−1G(w̄N )] ≤ 2E‖w0 − w∗‖2

Nη
+ 8λ‖w∗‖2 + 2ηr2,

taking

λ(ε) = 0, η(ε) = O(ε1+α), N(ε) = Ω
( 1
ε2+α

)
,
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we obtain E[G(w̄N )1τ≥N ] ≤ 3ε. In this case, according to Chebyshev’s inequality
and recall that

E‖wN∧τ −w∗‖2 ≤ E‖w0 −w∗‖2 +N(4λη‖w∗‖2 +η2r2) = E‖w0 −w∗‖2 +O(εα),

we have

P(τ ≤ N) = P({wN∧τ /∈ D}) = P({‖wN∧τ − w∗‖2 > a})

≤ E‖w0 − w∗‖2 + O(εα)
a

< 1,

if a > E‖w0 − w∗‖2.

Proof of Proposition 3.4. Recall that (λi, vi), for i = 1, . . . , p, are the eigenvalue-
eigenvectors of A with λi decreasingly sorted. Therefore, we have

‖w∗‖2
A = w∗TAw∗ =

p∑
i=1

λi〈w∗, vi〉2 ≤ ‖w∗‖2
A,S tr(A),

‖w∗‖2
A,λ =

p∑
i=1

λi ∧ λ〈w∗, vi〉2 ≤ ‖w∗‖2
A,S

p∑
i=1

λi ∧ λ.

For an exponential spectrum, given any k and p,
p∑

i=k+1

λi =
p∑

i=k+1

e−ci = e−(k+1)c(1 − e(k−p)c)
1 − e−c

≤ 1
ekc(ec − 1) .

Thus, to make
∑p

i=k+1 λi ≤ ε
8‖w∗‖2

A,S , it is sufficient for us to take k ≥
1
c log

{ 8‖w∗‖2
A,S

ε(ec−1)
}
. And to make kλ = ε

8‖w∗‖2
A,S

, we take λ = ε
8k‖w∗‖2

A,S

=

Õ( ε
| log ε| ). By these choices, we have

‖w∗‖2
A,λ ≤

p∑
i=1

λ ∧ λi‖w∗‖2
A,S ≤ ε

4 .

Next, we find that ‖A‖ ≤ tr(A) = Õ(1), so C1 = Õ(1), C2 = Õ(1). We imple-
ment Corollary 2.6 and find

δ(ε) = Õ

(
ε3

| log ε|2
)
, η(ε) = Õ

(
ε2

| log ε|

)
, N(ε) = Ω̃

(
| log ε|3

ε3

)
.

Recall that

E[G(wn∧τ )] ≤E[G(w0)] +
(

3η2λ2

2 + 5
2ληδ

)
n2ηC1

+ λnη

(
‖w∗‖2

A,λ + 5
2δ‖w

∗‖2
A

)
+ 3nη2‖A‖

2 r2,
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together with(
3η2λ2

2 + 5
2ληδ

)
N2η = Õ(ε2| log ε|), Nη2 3‖A‖r2

2 = Õ(ε| log ε|),

λNη

(
‖w∗‖2

A,λ + 5
2δ‖w

∗‖2
A

)
= Õ(ε| log ε|),

we have
E[G(wN∧τ )] ≤ E[G(w0)] + Õ(ε| log ε|).

For a polynomial spectrum, the derivation is similar. Given any k and p
p∑

i=k+1

λi =
p∑

i=k+1

i−(1+c)

≤
p∑

i=k+1

∫ i

i−1

1
x1+c

dx =
p∑

i=k+1

−1
c
x−c

∣∣∣i
i−1

= 1
c
(k−c − p−c) ≤ 1

ckc
.

Thus to make ‖w∗‖2
A,S

∑p
i=k+1 λi ≤ 1

8ε, we take k ≥ (8‖w∗‖2
A,S

cε )1/c. Next, we
take λ(ε) = ε

8‖w∗‖2
A,S

k
= Õ

(
ε

c+1
c

)
. This leads to ‖w∗‖2

A,λ ≤ ε/4. Again we find

that C1 = Õ(1), C2 = Õ(1). The order of δ(ε), η(ε) and N(ε) can be derived by
Corollary 2.6, that is,

δ(ε) = Õ
(
ε

3c+2
c

)
, η(ε) = Õ

(
ε

2c+1
c

)
, N(ε) = Ω̃

( | log(ε)|
ε

3c+2
c

)
.

Recall that

E[G(wn∧τ )] ≤E[G(w0)] +
(

3η2λ2

2 + 5
2ληδ

)
n2ηC1

+ λnη

(
‖w∗‖2

A,λ + 5
2δ‖w

∗‖2
A

)
+ 3nη2‖A‖

2 r2,

together with(
3η2λ2

2 + 5
2ληδ

)
N2η = Õ(ε

2c+1
c (log ε)2), λNη = Õ(| log ε|),

‖w∗‖2
A,λ + 5

2δ‖w
∗‖2

A = O(ε), Nη2 3‖A‖r2

2 = Õ(ε| log ε|),

we have

E[G(wN∧τ )] ≤ E[G(w0)] + Õ(ε| log ε|).

Given E[G(wN∧τ )] ≤ E[G(w0)]+ Õ(ε| log ε|) for both cases, according to Cheby-
shev’s inequality, we have

P(τ ≤ N) = P({wN∧τ /∈ D}) = P({G(wN∧τ ) > (1 + a)E[G(w0)]})

≤ E[G(wN∧τ )]
(1 + a)E[G(w0)]

≤ E[G(w0)] + Õ(ε| log ε|)
(1 + a)E[G(w0)]

≤ 1
1 + a

+ Õ(ε| log ε|).



Dimension independent excess risk 4591

Appendix C: Proofs of results for overparameterization in
statistical models

C.1. Linear regression

Proof of Proposition 4.1. It is straightforward to find the gradient and Hessian
of F as:

∇F (w) = Σ(w − w∗), ∇2F (w) = Σ. (C.1)

This leads to A = Σ, δ = 0,D = R
p.

Next, note that

∇f(w, ζ) = (xTw − y)x = (xT (w − w∗) − ξ)x.

By Cauchy Schwarz inequality, we have

E‖∇f(w, ζ) −∇F (w)‖2 ≤ E[‖∇f(w, ζ)‖2]
≤ 2E[‖xxT (w − w∗)‖2] + 2E[‖xξ‖2]
= 2(w − w∗)TE[xxTxxT ](w − w∗) + 2σ2 tr(Σ). (C.2)

Next we compute E[xxTxxT ]. Since x ∼ N (0,Σ), it can be decomposed as
x = Σ1/2z with z ∼ N (0, Ip). Let the eigen-decomposition of Σ be V TΛV and
denote Σ1/2 = V TΛ1/2V . We notice that z′ = V z ∼ N (0, Ip), then the (i, j)-
th element of V zzTV TΛV zzTV T is

∑p
k=1 λkz

′
iz

′
j(z′k)2, and taking expectation

results in

E[V zzTV TΛV zzTV T ] = diag
[
2λ1+

p∑
j=1

λj , . . . , 2λj+
p∑

j=1
λj , . . . , 2λp +

p∑
j=1

λj

]
.

Thus we have

E[xxTxxT ] = V TΛ1/2
E[V zzTV TΛV zzTV T ]Λ1/2V

= V TΛ1/2 diag
[
2λ1 +

p∑
j=1

λj , . . . , 2λj +
p∑

j=1
λj , . . . , 2λp +

p∑
j=1

λj

]
Λ1/2V

	 3 tr(Σ)Σ.

Plugging this upper bound in (C.2) gives us

E‖∇f(w, ζ) −∇F (w)‖2 ≤ 6 tr(Σ)‖w − w∗‖2
Σ + 2σ2 tr(Σ).

Finally, we note that ‖w − w∗‖2
Σ = 2G(w), and by Young’s inequality

‖w − w∗‖2
Σ ≤ 2‖w‖2

Σ + 2‖w∗‖2
Σ ≤ 2‖Σ‖‖w‖2 + 2‖w∗‖2

Σ,

‖w − w∗‖2
Σ = (w − w∗)TΣ(w − w∗) = 1

2(w − w∗)T∇F (w).

Therefore, we conclude that

E‖∇f(w, ζ) −∇F (w)‖2

≤ 2σ2 tr(Σ) + 12 tr(Σ)‖w∗‖2
Σ + 12 tr(Σ)min{G(w), ‖Σ‖‖w‖2}.
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Remark C.1. In the proof above, we used the Gaussian distribution assumption
only to obtain the first, second and fourth moments of x. This proof can be
extended to scenarios where x has a non-Gaussian distribution, as long as an
upper bound of E[xxTxxT ] is available. Similar extensions can be made for other
proofs below as well.

C.2. Logistic regression

Proof for Proposition 5.1. By Fubini’s theorem,

∇F (w) = E∇f(w, ζ) = E
−yx

1 + exp(yxTw) ,

and

∇2F (w) = E∇ −yx

1 + exp(yxTw) = E
y2 exp(yxTw)xxT

(1 + exp(yxTw))2 .

Because 0 < y2 exp(yxTw)
(1+exp(yxTw))2 < 1 and 0 	 xxT , we find 0 	 ∇2F (w) 	 Σ.

Next, we observe

∇f(w, ζ) = −yx

1 + exp(yxTw) .

Then, because y = ±1, we obtain

E[‖∇f(w, ζ)‖2] = E

[(
−y

1 + exp(yxTw)

)2

‖x‖2

]
≤ E[‖x‖2] = tr(Σ).

C.3. M-estimator with Tukey’s biweight loss

Proof for Proposition 5.2. First of all, let v = w − w∗, u = xT v − ξ. We find
that

∇f(w, ζ) = (1 − (u/c)2)2ux1|u|≤c.

Then, by Fubini theorem, we have

∇F (w) = ∇vF (w) = E∇[ρ(xT v − ξ)] = E[(1 − (u/c)2)2ux1{|u|≤c}],
∇2F (w) = E[xxT (1 − (u/c)2)(1 − 5(u/c)2)1|u|≤c].

For the first two claims, note that

E‖∇f(w, ζ)‖2 = E[(1 − (u/c)2)4(u/c)21|u|≤c‖x‖2] ≤ E‖x‖2 = tr(Σ),
∇2F (w) = E[xxT (1 − (u/c)2)(1 − 5(u/c)2)1|u|≤c] 	 ExxT = Σ.

At w = w∗,

∇2F (w∗) = E[xxT (1 − (ξ/c)2)(1 − 5(ξ/c)2)1|ξ|≤c] = c0Σ.
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We consider the directional derivative along the v direction

〈v,∇3F (w)〉 := lim
ε→0

1
ε
(∇2F (w + εv) −∇2F (w))

= lim
ε→0

1
ε
(E[xxT (1 − (u/c + εxT v)2)(1 − 5(u/c + εxT v)2)1|u|≤c]

− E[xxT (1 − (u/c)2)(1 − 5(u/c)2)1|u|≤c])
= E[4xxTxT v(3u/c− 5(u/c)3)1|u|≤c].

We find

±〈v,∇3F (w)〉 = ±E[4xxTxT v(3u/c− 5(u/c)3)1|u|≤c]
	 E[4xxT |xT v||5(u/c)3 − 3u/c|1|u|≤c] 	 E[8xxT |xT v|].

For any test vector ψ,

|ψT 〈v,∇3F (w)〉ψ| ≤ 8E[(xTψ)2|xT v|] ≤ 8
√
E[(xTψ)4]E[|xT v|2]

= 8
√

3(ψTΣψ)2(vTΣv) ≤ 16‖v‖Σψ
TΣψ.

Therefore,
−16‖v‖ΣΣ 	 〈v,∇3F (w)〉 	 16‖v‖ΣΣ.

Furthermore, since w = w∗ + v, from

∇2F (v + w∗) = ∇2F (w∗) +
∫ 1

0
〈v,∇3F (w∗ + sv)〉ds,

we find
∇2F (w) � −δΣ,

if 16‖v‖Σ ≤ c0 + δ.

C.4. Two-layer neural network

First of all, we provide a simple upper bound when computing the fourth order
moments of Gaussian random variables.

Lemma C.2. If x ∈ R
p is Gaussian with mean being zero, for any PSD A ∈

R
p×p and a > 0

E(xTAx + a)2 ≤ 3(E(xTAx + a))2.

Proof. Let Σ be the covariance matrix of x. Since replacing x with Σ−1/2x,
the statement of the Lemma remains the same, therefore we can assume x ∼
N (0, Ip). Let A = V TΛV be the eigenvalue decomposition of A, and the eigen-
values of A be λ1, . . . , λp. Let z = V x ∼ N (0, Ip). Note that

E(xTAx + a)2 = E(‖z‖4
Λ + 2a‖z‖2

Λ + a2),
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and further,

E‖z‖4
Λ =

∑
i,j

λiλjE(z2
i z

2
j ) ≤ 3

∑
i,j

λiλjEz
2
i Ez

2
j = 3(E‖z‖2

Λ)2.

As a consequence, we obtain

E(xTAx + a)2 ≤ 3(E‖z‖2
Λ + a)2 = 3(E(xTAx + a))2.

Lemma C.3. Assume that ψ(0) = 0 and |ψ̇|, |ψ̈| ≤ C. Denote

Σ� = diag{Ik,Σ, · · · ,Σ, Ik} ∈ R
(p+2)k×(p+2)k,

and Δw = w − w∗. Then the followings hold

1) E‖∇f(w)‖2≤8
√

3(1+tr(Σ))(6C2‖Δw‖2
Σ�(‖w∗‖2

Σ�+‖w‖2
Σ�)+σ2

0)C2‖w‖2
Σ� .

2) E∇g(w, x)∇g(w, x)T 	 6C2‖w‖2
Σ�Σ�.

3) −Mw 	 E(g(w, x) − g(w∗, x) − ξ)∇2g 	 Mw, where

Mw := 6
√

2C2(‖c‖∞ + 1)‖Δw‖Σ�(‖w∗‖Σ� + ‖w‖Σ�)Σ�,

with ‖c‖∞ := max
i

{|ci|}.
4) G(w) ≤ 6C2‖Δw‖2

Σ�(‖w∗‖2
Σ� + ‖w‖2

Σ�).

Proof. For simplicity of discussion, we denote zi = bTi x + ai and z = bx + a.

Proof for Claim 1): We note that ∇f(w) = 2(g(w, x)−g(w∗, x)−ξ)∇g(w, x),
thus

E‖∇f(w)‖2 = 4E[(g(w, x) − g(w∗, x))2‖∇g(w, x)‖2] + 4σ2
0E‖∇g(w, x)‖2

≤ 4
√
E(g(w, x) − g(w∗, x))4

√
E‖∇g(w, x)‖4 + 4σ2

0
√

E‖∇g(w, x)‖4. (C.3)

Note that

∇g =
[
c ◦ ψ̇(z); c1ψ̇(z1)x; · · · ; ckψ̇(zk)x;ψ(z)

]T ∈ R
2k+kp,

as a consequence, we have

E‖∇g(w, x)‖4 = E

(
‖c ◦ ψ̇(z)‖2 +

k∑
i=1

‖ciψ̇(zi)x‖2 +
k∑

i=1
‖ψ(zi)‖2

)2

≤ E

(
C2‖c‖2 +

k∑
i=1

(ci)2C2‖x‖2 + 2C2
k∑

i=1
(bTi x)2 + 2C2‖a‖2

)2

Since x is mean zero Gaussian, by Lemma C.2

≤ 3
(
C2‖c‖2 +

k∑
i=1

(ci)2C2
E‖x‖2 + 2C2

E

k∑
i=1

(bTi x)2 + 2C2‖a‖2

)2
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≤ 3C4

(
‖c‖2 + ‖c‖2 tr(Σ) + 2

k∑
i=1

‖bi‖2
Σ + 2‖a‖2

)2

≤ 12C4(1 + tr(Σ))2‖w‖4
Σ� . (C.4)

Next, we let ws = sw+ (1− s)w∗ and C2
w = ‖w‖2

Σ� + ‖w∗‖2
Σ� . By the convexity

of ‖ · ‖2
Σ� , we get

‖ws‖4
Σ� ≤ max{‖w‖4

Σ� , ‖w∗‖4
Σ�} ≤ ‖w‖4

Σ� + ‖w∗‖4
Σ� ≤ C4

w.

Then, we have

|g(w, x) − g(w∗, x)|2 =
(∫ 1

0
ΔwT∇g(ws, x)ds

)2

≤
∫ 1

0

(
ΔaT cs ◦ ψ̇(zs) +

k∑
i=1

csi ψ̇(zsi )ΔbTi x + ΔcTψ(zs)
)2

ds

≤
∫ 1

0

(
C‖Δa‖‖cs‖ + C

k∑
i=1

|csi ||ΔbTi x| + ‖Δc‖‖ψ(zs)‖
)2

ds

≤
∫ 1

0

(
C2

w‖Δa‖2 + C2
w

k∑
i=1

|ΔbTi x|2 + ‖Δc‖2‖ψ(zs)‖2/C2

)
ds

·
∫ 1

0

(
C2‖cs‖2

C2
w

+ C2

C2
w

k∑
i=1

|csi |2 + C2

)
ds

≤
∫ 1

0

(
C2

w‖Δa‖2 + C2
w

k∑
i=1

|ΔbTi x|2 + ‖Δc‖2‖ψ(zs)‖2/C2

)
ds

·
∫ 1

0

(
2C2‖cs‖2/C2

w + C2) ds
≤ 3C2

∫ 1

0

(
C2

w‖Δa‖2 + C2
w

k∑
i=1

|ΔbTi x|2 + ‖Δc‖2‖ψ(zs)‖2/C2

)
ds. (C.5)

By Lemma C.2 and E|ΔbTi x|2 = ΔbTi ΣΔbi, we have

E

(
C2

w‖Δa‖2 + C2
w

k∑
i=1

|ΔbTi x|2 + ‖Δc‖2‖ψ(zs)‖2/C2

)2

≤ E

(
C2

w‖Δa‖2 + C2
w

k∑
i=1

|ΔbTi x|2 + 2‖Δc‖2(‖as‖2 +
k∑

i=1
|(bsi )Tx|2)

)2

Note that ‖as‖2 +
k∑

i=1
|(bsi )Tx|2 ≤ max{‖w‖2

Σ� , ‖w∗‖2
Σ�} ≤ C2

w
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≤
(
C2

w‖Δa‖2 + C2
w

k∑
i=1

‖Δbi‖2
Σ + 2C2

w‖Δc‖2

)2

≤ 4(‖w‖2
Σ� + ‖w∗‖2

Σ�)2‖Δw‖4
Σ� .

Replace these bounds into the square of (C.5), we find

E|g(w, x) − g(w∗, x)|4 ≤ 36C4‖Δw‖4
Σ�(‖w∗‖2

Σ� + ‖w‖2
Σ�)2. (C.6)

Furthermore, we combine this with (C.4) into (C.3), we find that

E‖∇f(w)‖2 ≤ 8
√

3(1 + tr(Σ))(6C2‖Δw‖2
Σ�(‖w∗‖2

Σ� + ‖w‖2
Σ�) + σ2

0)C2‖w‖2
Σ� .

Proof for Claim 2): Recall that

∇g =
[
c ◦ ψ̇(z); c1ψ̇(z1)x; · · · ; ckψ̇(zk)x;ψ(z)

]
∈ R

2k+kp.

With u ∈ R
k, v1 ∈ R

p, . . . , vk ∈ R
p, w ∈ R

k, we define

W =
[
u; v1; · · · ; vk;w

]
∈ R

2k+kp,

and show that WT
E∇g∇gTW 	 6C2‖w‖2

Σ�WTΣ�W . Note that

WT
E∇g∇gTW (C.7)

= EuT [c ◦ ψ̇(z)(c ◦ ψ̇(z))T ]u + vTi E[c2i ψ̇(zi)ψ̇(zi)xxT ]vi + wT
E[ψ(z)(ψ(z))T ]w

+ 2uT
Ec ◦ ψ̇(z)(ψ(z))Tw + 2

k∑
i=1

uT
Ec ◦ ψ̇(z)ciψ̇(zi)xT vi

+ 2
∑
i<j

vTi Eciψ̇(zi)cjψ̇(zj)xxT vj + 2
k∑

i=1
vTi Eciψ̇(zi)x(ψ(z))Tw.

For the diagonal terms, note that

E[c ◦ ψ̇(z)(c ◦ ψ̇(z))T ] 	 E[‖c ◦ ψ̇(z)‖2Ik] 	 C2‖c‖2Ik,

E[c2i ψ̇(zi)ψ̇(zi)xxT ] 	 C2c2iE[xxT ] = C2c2iΣ,

E[ψ(z)(ψ(z))T ] 	 E[‖ψ(z)‖2Ik] 	 2C2
(
‖a‖2 +

k∑
i=1

‖bi‖2
Σ

)
Ik.

For the cross terms, note that by Cauchy Schwarz inequality

uT c ◦ ψ̇(z)ciψ̇(zi)xT vi

≤ |uT c ◦ ψ̇(z)||ciψ̇(zi)xT vi|
= (uT c ◦ ψ̇(z)(c ◦ ψ̇(z))Tu)1/2(vTi (ciψ̇(zi))2xxT vi)1/2

≤ c2i
2‖c‖2 (uT c ◦ ψ̇(z)(c ◦ ψ̇(z))Tu) + ‖c‖2

2 (vTi (ψ̇(zi))2xxT vi),
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and similarily,

uT c ◦ ψ̇(z)(ψ(z))Tw ≤ 1
2u

T c ◦ ψ̇(z)(c ◦ ψ̇(z))Tu + 1
2w

Tψ(z)(ψ(z))Tw,

vTi ciψ̇(zi)cjψ̇(zj)xxT vj ≤
c2j
2 vTi (ψ̇(zi))2xxT vi + c2i

2 vTj (ψ̇(zj))2xxT vj ,

vTi ciψ̇(zi)x(ψ(z))Tw ≤ ‖c‖2

2 vTi (ψ̇(zi))2xxT vi + c2i
2‖c‖2w

T (ψ(z))(ψ(z))Tw.

Plugging the results above into (C.7) gives us

E∇g(w, x)∇g(w, x)T

	 C2

⎡⎢⎢⎢⎢⎢⎢⎣

2‖c‖2Ik 0k×p 0k×p 0k×p 0k×k

0p×k 3‖c‖2Σ 0p×p 0p×p 0p×k

0p×k 0p×p
. . . 0p×p 0p×k

0p×k 0p×p 0p×p 3‖c‖2Σ 0p×k

0k×k 0k×p 0k×p 0k×p 6
(
‖a‖2 +

∑k
i=1 ‖bi‖2

Σ

)
Ik

⎤⎥⎥⎥⎥⎥⎥⎦
	 6C2‖w‖2

Σ�Σ�.

Proof for Claim 3): First of all, we find that

∇2g =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dc◦ψ̈(z) c1ψ̈(z1)e1x
T c2ψ̈(z2)e2x

T · · · ckψ̇(zk)xeTk Dψ̇(z)
c1ψ̈(z1)xeT1 c1ψ̈(z1)xxT 0p×p · · · 0p×p ψ̇(z1)xeT1
c2ψ̈(z2)xeT2 0p×p c2ψ̈(z2)xxT · · · 0p×p ψ̇(z2)xeT2

...
...

...
...

ckψ̈(zk)xeTk 0p×p · · · 0p×p ckψ̈(zk)xxT ψ̇(zk)xeTk
Dψ̇(z) ψ̇(z1)e1x

T ψ̇(z2)e2x
T · · · ψ̇(zk)ekxT 0k×k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In above, we use Dv to denote the diagonal matrix with diagonal entries being
components of v. We will first show that ∇2g 	 Qx 	 (2‖c‖∞ + 2)CΣ�

x, where

Qx := C diag{(2‖c‖∞ + 1)Ik, (2‖c‖∞ + 1)xxT , . . . , (2‖c‖∞ + 1)xxT , 2Ik},
Σ�

x := diag{Ik, xxT , . . . , xxT , Ik}.

Recall W = [u; v1; · · · ; vk;w] ∈ R
2k+kp. Note that

WT∇2gW =uTDc◦ψ̈(z)u +
k∑

i=1
ciψ̈(zi)(vTi x)2 + 2wTDψ̇(z)u

+ 2
k∑

i=1
ciψ̈(zi)(vTi x)(uT ei) + 2

k∑
i=1

ψ̇(zi)(vTi x)(wT ei). (C.8)
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And further

uTDc◦ψ̈(z)u ≤ ‖Dc◦ψ̈(z)‖‖u‖2 ≤ C‖c‖∞‖u‖2,

ciψ̈(zi)(vTi x)2 ≤ C‖c‖∞(vTi x)2,
2wTDψ̇(z)u ≤ C‖w‖2 + C‖u‖2,

2ciψ̈(zi)(vTi x)(uT ei) ≤ ‖c‖∞C((vTi x)2 + (uT ei)2),
2ψ̇(zi)(vTi x)(wT ei) ≤ C((vTi x)2 + (wT ei)2).

Replace these upper bounds to terms in (C.8), we find

WT∇2gW ≤ WTQxW,

because
∑

i(uT ei)2 = ‖u‖2. Since this holds for all W , we have ∇2g 	 Qx.
Finally, we note that

|WT
E(g(w, x) − g(w∗, x) − ξ)∇2gW |

= |WT
E[(g(w, x) − g(w∗, x))∇2g]W |

≤
√

E(g(w, x) − g(w∗, x))2
√

E(WT∇2gW )2.

Recall (C.6), we have√
E(g(w, x) − g(w∗, x))2 ≤ (E(g(w, x) − g(w∗, x))4)1/4

≤
√

6C‖Δw‖Σ�(‖w∗‖Σ� + ‖w‖Σ�).

Then, by Lemma C.2, we have

E(WT∇2gW )2 ≤ 4(‖c‖∞+1)2C2
E(WTΣ�

xW )2 ≤ 12C2(‖c‖∞+1)2(WTΣ�W )2.

In combination, we find

|WT
E(g(w, x) − g(w∗, x) − ξ)∇2gW |

≤ 6
√

2C2(‖c‖∞ + 1)‖Δw‖Σ�(‖w∗‖Σ� + ‖w‖Σ�)WTΣ�W.

This verifies our claim 3).

Proof for Claim 4): Simply note that by (C.6), we get

G(w) = E|g(w, x) − g(w∗, x)|2 ≤ 6C2‖Δw‖2
Σ�(‖w∗‖2

Σ� + ‖w‖2
Σ�).

Proof for Proposition 5.3. First, we find that, when w ∈ D,

‖c‖2
∞ ≤ ‖w‖2

Σ� ≤ (1 + 1
4 )2‖w∗‖2

Σ� ≤ 2‖w∗‖2
Σ� . (C.9)

Note that

∇2F = E∇g(w, x)∇g(w, x)T + E(g(w, x) − g(w∗, x) − ξ)∇2g(w, x)
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= E∇g(w, x)∇g(w, x)T + E(g(w, x) − g(w∗, x))∇2g(w, x).

By Lemma C.3 claim 2) and claim 3) and (C.9), we have

E∇g(w, x)∇g(w, x)T 	 6C2‖w∗‖2
Σ�Σ�,

and

E(g(w, x) − g(w∗, x))∇2g(w, x)
	 6

√
2C2(‖c‖∞ + 1)δC1(w∗)‖w∗‖Σ�(‖w∗‖Σ� + ‖w‖Σ�)Σ�

	 18
√

2C2(2‖w∗‖Σ� + 1)δC1(w∗)‖w∗‖2
Σ�Σ�

	 4δC2‖w∗‖2
Σ�Σ�.

So ∇2F 	 C0(w∗)Σ�. Also note that E∇g(w, x)∇g(w, x)T � 0, we have

∇2F � E(g(w, x) − g(w∗, x))∇2g(w, x) � −4δC2‖w∗‖2
Σ�Σ� � −δA.

Then, by Lemma C.3 claim 1) and (C.9), we find that

E‖∇f(w) −∇F (w)‖2

≤ E‖∇f(w)‖2

≤ 8
√

3(1 + tr(Σ))(6C2‖Δw‖2
Σ�(‖w∗‖2

Σ� + ‖w‖2
Σ�) + σ2

0)C2‖w‖2
Σ�

≤ 8
√

3(1 + tr(Σ))(18C2‖Δw‖2
Σ�‖w∗‖2

Σ� + σ2
0)C2‖w∗‖2

Σ�

≤ 8
√

3(1 + tr(Σ))(18δ2(C1(w∗))2C2‖w∗‖2
Σ�‖w∗‖2

Σ� + σ2
0)C2‖w∗‖2

Σ�

≤ 8
√

3(1 + tr(Σ))(C2‖w∗‖4
Σ� + σ2

0)C2‖w∗‖2
Σ� .

Finally, by claim 4) of Lemma C.3, when w0 ∈ D, we have

G(w0) ≤ 18C2(C1(w∗))2δ2‖w∗‖4
Σ� ≤ C2‖w∗‖4

Σ� .
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