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1. Introduction

We consider on a complete probability space ((AZ, F , 13) a d-dimensional process
X% = (X?)i>0 solution to the following inhomogeneous stochastic differential
equation (SDE)

dX? =b(0,t, X2)dt + o(t, X?)dBy, (1.1)

where Xg =0 € R? B = (Bi)i>0 is a d-dimensional Brownian motion. The
unknown parameter 6 = (01,...,0,,) belongs to ©, an open subset of R™ for
some integer m > 1. Let {ﬁt}tzo denote the natural filtration generated by B.
We always suppose that the coefficients b = (by,...,bq) : © x Ry x R — R?
and o : Ry x R? = R? ® R? are measurable functions satisfying the Lipschitz
continuity and linear growth condition (A1) below under which equation (1.1)
has a unique {ﬁt}tzo—adapted solution X? possessing the strong Markov prop-
erty. Let P? denote the probability measure induced by X? on the canonical
space (C(Ry,RY), B(C(R4,R?))) endowed with {F;}i>0, where C(Ry,RY) is
the set of R%valued continuous functions defined on Ry, and B(C(R,,R%)) is
its Borel o-algebra. Let E? denote the expectation with respect to (w.r.t.) pe.

P L(P% 4 LP ~
LetAP—>, (—>L Pl-as., L, and (—>) denote the convergence in P?-probability,

in P?-law, in P?-almost surely, in P-probability, and in P-law, respectively. For
x € R?, |z| denotes the Euclidean norm. |A| denotes the Frobenius norm of the
square matrix A, tr(A) denotes the trace, and * denotes the transpose.

For n > 1, we consider a discrete observation X™? = (X7 X7 ... X/ ) at
deterministic and equidistant times ¢, = kA,, k € {0,...,n} of the process
XY solution to (1.1) under the high-frequency and infinite horizon conditions.
That is, A,, — 0 and nA,, — 0o as n — co. Let P denote the probability law
of the random vector X™?. We say that the local asymptotic mixed normality
(LAMN) property holds at ° € © with rate of convergence ¢,a, (6°) and
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asymptotic random Fisher information matrix I'(°) if for any v € R™,

W) N0, T) — 5 T(E)u,

as n — oo, where N(0,1,,) is a centered R™-valued Gaussian random vector
independent of T'(0%) with identity covariance matrix I,,,. Here, I'(8°) is a sym-
metric positive definite random matrix in R™*™  and ¢,a, (6°) is a diagonal
matrix in R™*™ whose diagonal entries tend to zero as n goes to infinity. If
I'(0°) is non-random, we say that the local asymptotic normality (LAN) prop-
erty holds at 6°. The LAMN property plays a fundamental role in the asymp-
totic theory of statistics. This property developed by Jeganathan [19] extends
the LAN property which was introduced by Le Cam [23] and Hajek [13] in
the situations where the asymptotic Fisher information matrix is deterministic.
These properties allow giving the notion of asymptotically efficient estimators in
the sense of Hajek-Le Cam convolution theorem as well as the lower bounds for
the variance of estimators (see Jeganathan [19]). More precisely, a sequence of
estimators (é\n)nzl of the parameter 6° is called regular at 6° if for any v € R™,
as n — 0o,

N 0 0 L@ enan @y g
a0 (B0 = (0" + pua, (0))) 77 57 V), ()
for some R™-valued random variable V (6"), independent of u. When the LAMN
property holds at point 8°, the law of V(6°) conditionally on I'(°) is a convo-
lution between the Gaussian law N (0,I'(6°)~!) and some other law Grgo) on
R™ i.e.,

L(V(")T(6°) =N (0,T(6°) ") % Grgo).

Hence, V(6°) can be written as a sum of two independent random variables

V(6°) "2 (0% Y2N(0, I,,) + R,

where R is a random variable with distribution Gpgoy, independent of N(0, I,,,)

o~

(see [19, Corollary 1]). Consequently, a sequence of regular estimators (6,,),>1 of
the parameter 6° is called asymptotically efficient at 6° in the sense of Hajek-Le
Cam convolution theorem if as n — oo,

~1 (g9Y(3. — @O ﬁ(ﬁ"o)rgo ~1/277(0. I
P, (07)(0n — 0) " T(67) (0, Inm),

where I'(#°) and N(0, I,,,) are independent (i.e., take v = 0 in (1.2) and R = 0).
We refer the reader to Section 7.1 of Hopfuer [14] or Le Cam and Lo Yang [24]
for further details.

On the basis of continuous observations with increasing observation window,
the LAMN property was established by Luschgy [26] for semimartingale, Ku-
toyants [21] for ergodic diffusions (see Proposition 2.2), null-recurrent process
(see [21, Remark 3.42]) and for Ornstein-Uhlenbeck process (see [21, Remark
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3.47]), Bishwal [7] for inhomogeneous diffusions (see [7, Chapter 4]), Overbeck
[30] for Cox-Ingersoll-Ross process, and Benke et al. [6] for Heston model. The
asymptotic likelihood theory for multidimensional inhomogeneous diffusion pro-
cesses (1.1) whose drift coefficient depends linearly on the parameter can be
found in Section 5 of [2, Chapter 9]. Besides, the asymptotic properties of the
maximum likelihood estimator and Bayes estimator for the nonlinear drift pa-
rameter of one-dimensional inhomogeneous and homogeneous diffusions were

studied in [7, Chapter 4], [28] and [38].

On the basis of discrete observations at high frequency, Gobet [11] proved
the LAMN property for inhomogeneous diffusion on a fixed time interval. In
the case of increasing observation window nA,,, Gobet [12] obtained the LAN
property for homogeneous ergodic diffusions using Malliavin calculus. Later
on, Shimizu [33] showed the LAMN property for the non-recurrent Ornstein-
Uhlenbeck process using the explicit expression of the transition density. More
recently, Ben Alaya et al. [5] have proved the LAN, LAMN, and LAQ (local
asymptotic quadraticity) properties for the Cox-Ingersoll-Ross process. Recall
also that results on parameter estimation for discretely observed non-ergodic
diffusions can be found in Jacod [16] where the rate is (v/nA,,, v/n) for the drift
and diffusion parameters, and in Shimizu [34] where the rate varies depend-
ing on the observed Fisher information. Indeed, in [16], the author constructed
estimators from a moment type contrast function for the drift and diffusion pa-
rameters of multidimensional homogeneous and non-ergodic diffusions and es-
tablished the consistency of the estimators in the sense of tightness under some
suitable smoothness and identifiability conditions. These estimators converge at
rate /nA,, for the drift parameter and at rate \/n for the diffusion parameter.
In [34], the author constructed M-estimators from a quadratic-type contrast
function for the drift and diffusion parameters of one-dimensional homogeneous
diffusions without ergodicity assumption and established the consistency of the
M-estimators in the sense of tightness. These M-estimators converge with a va-
riety of rates of convergence for the drift and diffusion parameters. Besides, the
parameter estimation for discretely observed multidimensional ergodic diffusions
can be found in Yoshida [39].

On the basis of discrete observations at low frequency, Ait-Sahalia [1] studied
the LAN, LAMN, LAQ properties, and the asymptotic properties of maximum
likelihood estimator (MLE) for one-dimensional homogeneous diffusions. For
this, the author constructs a closed-form sequence of approximations to the
transition density via the Hermite polynomials.

To summarize, the following table contains the aforementioned known results
on the LAMN and LAN properties for homogeneous and inhomogeneous diffu-
sions on the basis of continuous or discrete observations on the time interval



LAMN property for multivariate inhomogeneous diffusions 4279

[0,T] with T — oo.

Diffusions Continuous observations| Discrete observations
Homogeneous |Ergodic o Kutoyants [21]: o Gobet [12]:
(LAN) diffusions (Pro. 2.2) diffusions
e Overbeck [30]: e Ben Alaya et al. [5]:
Cox-Ingersoll-Ross Cox-Ingersoll-Ross

e Benke et al. [6]:
Heston model

Non-ergodic|e Kutoyants [21]: o Shimizu [33]:

(LAMN) null-recurrent process |Ornstein-Uhlenbeck
(Rem. 3.42) e Ben Alaya et al. [5]:
Ornstein-Uhlenbeck Cox-Ingersoll-Ross
(Rem. 3.47)

o Overbeck [30]:
Cox-Ingersoll-Ross

e Benke et al. [6]:
Heston model
Inhomogeneous|Ergodic e Luschgy [26]:

(LAN) semimartingale
Non-ergodic|e Luschgy [26]:
(LAMN) semimartingale

o Bishwal [7]:

1-d diffusions (Cha. 4)

The validity of the LAN or LAMN property based on discrete observations
at a high frequency of solution to a general inhomogeneous and ergodic or non-
ergodic SDE when the length of the observation window tends to infinity has
not been investigated yet. In addition, one of the motivations for the current
work is to understand the problem in [1] for the case of high frequency.

In this paper, we prove the LAMN property for a general class of inhomo-
geneous diffusions observed at discrete times without assuming ergodicity. The
validity of the LAQ property will be considered in future work. Unlike the
Ornstein-Uhlenbeck process, the transition density of the solution to the gen-
eral equation (1.1) is not explicit. Our strategy is to use the Malliavin calculus
approach initiated by Gobet [11] in order to derive an explicit expression for the
logarithm derivative of the transition density with respect to the parameter (see
Lemma 3.3). With the help of this explicit expression, we derive an appropriate
expansion of the log-likelihood ratio (see (3.11), (3.12) of Section 3). To treat
the main contributions, we need to use the asymptotic behavior of the observed
Fisher information process based on the continuous observation (see condition
(A4)) and the multivariate central limit theorem for continuous local martin-
gales. Thanks to conditions (A5)-(AT), the negligible contribution is shown by
using four technical Lemmas 4.1-4.5. This technique is not the same as the one
of Gobet [12]. Indeed, Gobet [12] used a change of transition densities and the
upper and lower bounds of the Gaussian type of the densities. In our situation,
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it is not clear if one could use that technique. Instead, we need to use a change
of measures. Two approaches will lead to the squared exponential moment. To
deal with this moment, Gobet [12] used the ergodic property whereas we need
here condition (A7) that can be verified in several models, which may not pos-
sess the ergodicity, by using the explicit expression of the density or moment
estimates. It should be noted that our new strategy allows us to get, for the
first time, the LAN and LAMN properties from high-frequency observations for
diffusions whose both drift and diffusion coefficients are time-dependent (see
Section 5.2.2).

The paper is organized as follows. In Section 2, we formulate assumptions
on equation (1.1) and state our main result in Theorem 2.1. In Section 3, an
explicit expression for the score function is first presented, which allows trans-
forming the log-likelihood ratio. The proof of the main result is then given
by following the aforementioned strategy. The convergence of the remainder
terms is given in Section 4. Several illustrated examples will be given in Sec-
tion 5 which discusses homogeneous ergodic diffusion processes, homogeneous
Ornstein-Uhlenbeck process, two-dimensional Gaussian diffusion process, null-
recurrent diffusion process, and a generalized exponential growth process, inho-
mogeneous Ornstein-Uhlenbeck process and a special inhomogeneous diffusion
process. Finally, the proofs of some technical results are given in Section 6.

2. Assumptions and main result

We first recall a few concepts on the statistical inference for the experiment based
on continuous observations. For details, we refer the reader to Barndorff-Nielsen
and Sgrensen [4]. For any T > 0 and 6 € O, we let 13% denote the probability
measure generated by the process X0 := (Xf)te[o,T] solving (1.1) on the mea-
surable space (C([0, 7], R?), B(C(]0, T], R%))). Here C([0, T],R%) denotes the set
of Ré-valued continuous functions defined on [0,7], and B(C([0,T],R%)) is its
Borel g-algebra. Therefore, 13‘9T is the restriction of P? to ]?T. We define the log-
likelihood function of the family of probability measures (ﬁ%)geg as {r(0) =
log di—eT, where Pr is a probability measure on (C([0,T],R%), B(C([0,T],R%)))
dPr

which is supposed to satisfy that f’?p is absolutely continuous w.r.t. IST, for all
T > 0 and 6 € O. In fact, by [18, Chapter III] and [25, Chapter 7], for all
0,0' € ©, the probability measures ﬁg« and f’gj are absolutely continuous w.r.t.
each other and its Radon-Nikodym derivative is given by

dpP? : T 1 Lo .
o (X7 >te[o,ﬂ>—exp{ / (00,6, X7 ) = b(8", £, X)) o~ (¢, X[ )dB,
T 0

T 1 1\ % 1|2
_%/0 (0., X0 — b6, £, X)) o 8, X0 dt}.
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Therefore, the log-likelihood function is given by

Py,
{7 (0) = log dlST((Xt )te[o,T])
T

T
= / (b(0,t, X0") = b(0",t, X! ) o~ (¢, X! )dB,
0

T 2
—%/0 (00,6, X0") = (6" 6, X0)) o 8, X,

where lSGT1 is considered as the dominating probability measure P of the family

of probability measures (ﬁ%)ge@. The score vector which is defined as the vector
of the first derivatives of the log-likelihood function is given under the measure
P by the gradient

T
Volr(0) = /0 (Vob(0,t, X))o~ (t, X )dB,, (2.1)

which is a martingale w.r.t. the filtration {ﬁt}te[O,T}- The quadratic variation
of the score vector martingale which is also the bracket process is given by

[Vol(0)]p = (Vol(0))p = /O T<veb<9,t, X))o 2 (t, X])Veb(6,t, X7 )dt, (2:2)

which can be interpreted as the observed Fisher information process at 6 based

on (th)tE[O,T] .
We next impose the following assumptions on equation (1.1).

(A1) For any 6 € ©, there exists a constant L > 0 such that for all z,y € R?
and t > 0,

[b(0,t,2) = b(0,t,y)| +|o(t, ) — ot y)| < Lz =y,
[6(0,t,2)| + [o(t, )] < L(1+ |z]).

Moreover, the Lipschitz constant L is uniformly bounded on ©.

(A2) The diffusion matrix o is symmetric, positive and satisfies a uniform
ellipticity condition. That is, there exists a constant ¢ > 1 such that for
all 2,6 € R% and t > 0,

1
Sl€P” < ot o) < el

(A3) The functions b and o are of class C! w.r.t. 6, t and z. Each partial
derivative 0,,b and 9,0 is of class Ct w.r.t. x, 9p,b is of class C! w.r.t.
t, 0p,b is of class C2? w.r.t. x. Moreover, for any (6,0',0% z) € ©3 x R
and t > 0, there exist positive constants C' and v € (0, 1], independent of
(6,6%,6% x,t), such that
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(a) Ig( )I for 9( ) = 3 ib(9 t x) 0x,0(t ), 0o (L, x),
(b) Ih(w ,fc)l < (1 + val)

for h(-,z) = 89ib(9,t,m),3tb(9,t,x),agitb(ﬁ,t,x);
(c) |09, b(01,t,2) — Dp,b(02,t,2)| < C|OF — 627 (1 + |x]).

(A4) For 6 € O, there exist a m x m non-random diagonal matrix

pr(0) = diag(r(0),. .., 7 (0))

whose diagonal entries ph(0),..., o () are strictly positive and tend
to zero as T — oo, and an m X m symmetric positive definite random
matrix I'(0) such that (V¢£(6)), converges to I'(f) at rate @7 (0)pr(f) in
f’e—probabﬂity as T'— oo. That is, as T — o0,

~

or(8) (Vol(8)) 7 01 (0) ~ T(0).

(A5) For any 6 € ©, p > 1, there exists a function () which is strictly
positive and 1/),5_1(9) > 1 for any ¢ > 0 such that

sup B “wt(@)Xfﬂ < 0.
>0

(A6) Forany 0 € ©,4,5,pe {1,...,m} withi < j, i <p, and py > 1 close to
1, as n — oo,

n—1
Anphn, O)ha, ()0 (0)7 D (1+1,2(0)) = 0,
k=0
AE()O:.LAH <pnA Z (1 + ¢_6p° )) — 0.

k=0

(A7) For all 0 € ©, 7 € {1,...,m}, k € {0,....,n — 1} and constant C' > 0,
there exists a constant ¢ > 0 such that for n large enough,

Bo [6 (#ha, (0% DX, F] <e

In order to apply the Malliavin calculus, the uniform ellipticity condition (A2)
and regularity condition (A3) on the coefficients are required. Conditions (A4),
(A5), (A6) and (A7) are needed in this setting where the diffusions can be
ergodic or non-ergodic. On the one hand, condition (A4) ensures the asymptotic
behavior for the main terms in the expansion of the log-likelihood ratio which
are determined by the score vector and its quadratic variation. Let us recall that
condition (A4) is analogous to the general condition (3.3) of Barndorff-Nielsen
and Sgrensen [4] which is given for general asymptotic likelihood theory for
stochastic processes. This condition (A4) is also similar to the condition (2.12)
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of Luschgy [26] which is established for semimartingales. On the other hand,
conditions (A5), (A6) and (A7) guarantee the convergence of the negligible
terms in the expansion of the log-likelihood ratio.

Now, for fixed #° € ©, recall that a discrete observation of the process X 6°
is given by X0 = (XfOO,XfIO, .. ,Xf:). The main result of this paper is the

following LAMN property.

Theorem 2.1. Assume conditions (A1)-(A7). Then, the LAMN property holds
for the likelihood at 6° with rate of convergence

Pna, (0°) = diag(opa, (), ..., oma, (8°)),

and asymptotic random Fisher information matriz T'(0Y). That is, for all u €
R™, asn — oo,

deLOJ'"PnAn (OO)U

log TR

g0 1
(x™0y S T (00 2N(0, ) — Su T,
where N'(0, I,,) is a centered R™-valued Gaussian random variable independent
of T'(6°) with identity covariance matrix I,,.

Remark 2.2. The exact maximum likelihood estimation is essentially based
on the transition densities which are available in some very special cases. Thus,
the MLE cannot be written explicitly for general diffusions. Instead, the pa-
rameter estimation for diffusion processes observed discretely at high frequency
has been investigated mainly in the ergodic and homogeneous cases by using
different approximate schemes. More precisely, in the one-dimensional setting,
the approximate discrete-time scheme known as Euler-Maruyama’s is used in
[9] for diffusion processes with constant diffusion coefficient. Later on, in [20]
the author studies diffusion processes with nonlinear coefficients and constructs
a minimum contrast estimator via a contrast function by approximating the
transition density by the density of a Gaussian law. In the multidimensional
setting, in [39] the author proposes an adaptive maximum likelihood type es-
timator for diffusion processes with multiplicative diffusion coefficient by using
a discretization of the continuous-time likelihood function. Later on, the au-
thors propose respectively in [35, 36] two kinds of adaptive maximum likelihood
type estimators and three kinds of adaptive Bayes type estimators based on
the quasi log-likelihood functions for diffusion processes with nonlinear coeffi-
cients. For the case of the Ornstein-Uhlenbeck process, the asymptotic behavior
of MLE-type approximation in the ergodic case is established in Theorem 1 of
[32] whereas the asymptotic behavior of a trajectory-fitting estimator (TFE) in
the non-ergodic case is obtained in Theorem 2 of [33].

As a consequence of Theorem 2.1, all of the aforementioned estimators for
the drift parameters are asymptotically efficient. There are very few results on
the estimation for non-ergodic homogeneous diffusions, and for ergodic and non-
ergodic inhomogeneous diffusions (see Chapter 7 of [7]). However, Theorem 2.1
could serve as a benchmark to verify the asymptotic efficiency of any estimators
in these cases.
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As usual, constants are denoted by C' and may change value from one line to
the next.

3. Proof of the main result
3.1. Representation of the score function using Malliavin calculus

To simplify the exposition, for ¢ € {1,...,m} we use the notations

00 = (69,...,0°),u = (ui,us,s. .., Un),
0°F = 6° + pnn, (0°)u = (61 + wpa, (0%)ur, .., O, + o, (6°)um),
0% = (01, 001,07 + opa, (00)ui 00y + oy x (6%)uira,
ey Oy o, (6°)um),
07 (0) i= (07, 00_1,07 + Lop, (00)ui, 001 + @1 (0 uiy,
00+ NS (0°)u).

Under (A1), (A2) and (A3)(a), for any ¢ > s the law of X{ conditioned on
X% = z possesses a positive transition density p’(s, ¢, z, y) which is differentiable
w.r.t. 6. The density of X™? = (X{ ,X{,...,X{ ) is denoted by py(-;6). To
transform the log-likelihood ratio, we first use the Markov property to rewrite
the global likelihood function in terms of a product of transition densities and
then apply the mean value theorem to get the following decomposition

0 0
deL +ena, (07)u Dn (Xn,eo; 00+)

1o Xm0y = log P27
g szO ( ) g pn(Xn’go; 90)
— 179(1]+ 0° +-0°
= log pT(tkatlHla Xoor Xtpy)
k=0
n—1 p0$+ peg+ p99+ pe,‘“ N p00+ o o
P— DRI ‘ DY " " 9 0
N glog <;D"3+ T pih pfut p? ) (o tits Xy i)
n—1 p9?+ 50 50 n—1 pgg+ oo o
= Z IOg 90+ (tka tk+1; th 7th+1) + Z log 90+ (tka tk+1; th ath+1) +oe
k=0 p2 k=0 pe
nol p00m+ 0 0
+ ) log pT(tkatk+1a X0, X0)
k=0
n—1 1 09t (2)
89 p1 0 0
=3 oha, () ur | Ttk by, X7, X, )l
k ! o phi® o
=0
n—1 1 09+ (0)
0y, p"m 0° 5-6°
+-+ Z P, (0°) e, ; W(tkatk+l7th s X{ ., )de. (3.1)

k=0
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We next apply the Malliavin calculus to get an explicit expression for the loga-
rithm derivative of the transition density appearing in (3.1). For this, to avoid
confusion with the observed process X? generated by the Brownian motion
B, we introduce a new independent d-dimensional standard Brownian motion
W = (W)= by which an independent copy Yyl = (Y )t>0 of X% is gener-
ated. The Malliavin calculus on the Wiener space induced by W will be ap-
plied. Let (Q F, {}}}t>0, P) and (Q,F, {}}}tzo, ) be two canonical filtered
probability spaces associated respectively to each of two Brownian motions B
and W. The product filtered probability space of these two canonical spaces is
(Q]:{]:t}t>07 , that is, Q = Q x Q, F = f®fP PP, Fi =F Q@ F:.
Let E, E E denote the expectation w.r.t. P, P and P respectively.

On the probability space (Q F, P), we con51der the flow process Y% (s, z) =
(Y (s,x),t > s), € R? on the time interval [s,00) and with initial condition
Y0 (s,z) = z satisfying

Y (s,z) =z + /t b(0,u, Y (s, x))du + /t o(u, Y2 (s, 2))dW,,. (3.2)

The independent copy Y? = (Y});>0 of X? is defined by Y} = Y,/ (0,z¢) which
thus satisfies

t t
Yf:xO+/ b(e,u,yj)du+/ o(u, Y))dW,,. (3.3)
0 0

The Malliavin derivative and the Skorohod integral w.r.t. W are respectively
denoted by D and . The space of random variables which are differentiable in
the sense of Malliavin and the domain of § are respectively denoted by D2 and
Dom §. The Malliavin derivative of a differentiable random variable F' € D2
is DF = (D'F,...,D?F) where D denotes the Malliavin derivative in the ith
direction W* of the Brownian motion W = (Wt ... W4) for i € {1,...,d}.
The Skorohod integral of a R-valued process U = (U*,...,U%) € Dom § is
defined as 6(U) = Ele §4(U*) where 6° is the Skorohod integral w.r.t. W*. For
a more detailed presentation on the Malliavin calculus, we refer to the book [29]
by Nualart.

For any k € {0,...,n — 1}, under (A1), (A2) and (A3)(a)-(b), the process
(Y2 (ty,x),t € [ty,tpy1]) is differentiable w.r.t. z and 6 (see Kunita [22]). More-
over, the corresponding Jacobian matrix and the derivative w.r.t. 6; are respec-
tively denoted by (V.Y (tr,x),t € [tr,trkr1]) and (0p, Y (tr, ), t € [tr,trsi1])
which are solutions to the equations

t
VoY (tr,x) =Tg4+ | Vaub(8,s, Y (ty,2) VY2 (ty, x)ds

tk

+Z v 203(8, YY (b, 2)) VoY (b, 2) AW (34)

t
aggfﬁ(tk,x):/ (96,56, 5, Y (14, 2)) + V.ob(8, 5, Y (b, 2))0p, Y2 (b1, 7)) ds

ty
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d t
+ 30 [ VoY 0 )00 ¥ () (35)
j=1"t
fori € {1,...,m}, where oy, ...,04 : Ry xR — R are the columns of the matrix

o. Furthermore, the random variables Y (tx, ), V.Y (tx, ), (VoY (tg, 7))~
and 0y, Y? (t, ) belong to D2 for any t € [ty,trs1] (see Nualart [29, Section
2.2]). The Malliavin derivative of Y}/ (t;, r) satisfies the following equation

DY (ty,x) = o (s, Y2 (t, / Vaob(0,u, Y (ty, 2)) DY (tr, x)du

+Z/ Vo0 (u, Y2 (ty, ) DY (ty, 2)dW
j=17¢

for s <t a.e., and DY (t,x) = 0 for s > t a.e. By (2.59) of Nualart [29], we
have

DYE (ti, x) = Vo Y (ti, 2) (Vo Y (tr, 2)) 1o (s, Y (te, )15, 0 (s).  (3.6)

For all k € {0,...,n— 1}, x € R%, the probability law of Y? starting at « at time
t1, is denoted by tk o 1o Pfk L(A) = E[1A|Y9 = z] for all A € F, and the

ie., EY

expectation w.r.t. P is denoted by E trzlV]= [V|Y;i = z] for all

, T tk x)
F-measurable random variables V.

Following the approach developed by Gobet in [11, Proposition 4.1], the score
function is represented in terms of a conditional expectation involving the Sko-
rohod integral.
Lemma 3.1. Under (A1), (A2) and (A3)(a)-(b), for all i € {1,...,m},
ke{0,...n—1},0€0, andm,yeRd,

(tk:atk:-‘rlax y) A Efk T |:6 (Ue(tkn )89 tk+1 tk) ) |Y;5k+1 y:| 3

where U (ty, x) = (U (tg,x),t € [t txr1]) with U (ty,x) = (DthZ+1(tk’ r))~ L

39]9

Next, the Skorohod integral appearing in Lemma 3.1 can be decomposed as
follows.

Lemma 3.2. Under (A1), (A2) and (A3)(a)-(b), for all i € {1,...,m},
ke{0,..,n—1}, 0 €O, and z € R?,

6 (U” (b 2)00, Y0, (1))
= A (00,000, th, 2)) 0 (b, ) (Y, = Vi = b0, 1, YA, )
0, 0,k 0, 0,k 0,k
— R{" + RY* + RYY — R — RY™,

where

tet1 tet1
0,k -1 0 *
R / / tr( (V¥ (b))~ b0, Y (15, 2)))°)
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o (5, YY (b, ) Vo Y (t, x)) duds,
0k tk+1 "
Ry = / Y (11, )) ™ 9,60, 5. Y (11, ) ds

/ (Tt )0 (s, YO, )
—<vati<tk, 2)) o bk, Y (b, 2))) AW,

R?k - [ - (((vzyf(tkax))_laeib(gvSvyse(tkvx)))*
—((Va Y (tr, )~ 00,000, tr, Y (i, 2)))") ds

tht1
/ (VoY (. 2)) 0 (b, VY (t1, 2)) AW,
tr

tht1
RY* = A (09,500, 1, Y1) 02 (1, Y, / (60, 5,Y7) = b(0, 11, Y7)) ds,
tr
te+1

REF = N (9,000, t5,Y,)) 02 (4, YY) / (0(s,YY) = o(t, V7)) dW.

tr

The following explicit expression of the score function is due to Lemmas 3.1
and 3.2.

Lemma 3.3. Under (A1), (A2) and (A3)(a)-(b), for all i € {1,...,m},
ke{0,...,n—1},0 €O, and x,y € RY,

aaipe
0 (tk? tk‘-‘rlv x, y)

= (09,b(0,t, ) 0 %(ty, ) (y — x — b(0, tr, 2)A,,)

1
+ —FY [R"’%R"’%R‘“&RZ’LR‘”W = y}.

A tr,x

Using (A1), (A2), (A3)(a)-(b) and Gronwall’s inequality, it is straightfor-
ward that for any k € {0,...,n — 1}, § € ©, x € R? and p > 2, there exists a
constant C' > 0 such that

By, o IV (b 2) ]+ BE, o [[(92Y2 ()]

+  sup tszDY (tx, )”

Se[tk,tjﬂ,l]
+ swp B, UD (VoY (th, 2))] } <0, (3.7)
SE[tR,tkt1]
BY, . (|00, Y0t 0] < C 0+ o), (3.8)

for ¢ € [tg,tg+1], where C is uniform in 6. Consequently, we have the following
estimates.
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Lemma 3.4. Under conditions (A1), (A2), and (A3)(a)-(b), for any k €
{0,....,n—1}, 0 € ©, x € R? and p > 2, there exists a constant C > 0 such that

Bf . [-RY+ R+ R <o, (3.9)

0
Etk,x |:

p
—RY* 4 R+ R[] < ca a4 o). (3.10)

The equality (3.9) follows from the proof of Lemma 3.2, I:jl(zk,z[Wtk+1 —We, ] =
0, and Efk7$[5(U9(tk,x)89iY9 (tk,x))] = 0. The estimate (3.10) can be ob-

[E5
tained by using It6’s formula, Burkholder-Davis-Gundy’s inequality, conditions

(A1), (A2), (A3)(a)-(b) and (3.7).

3.2. Proof of Theorem 2.1

Proof. First, using the decomposition (3.1), Lemma 3.3 and equation (1.1), we
obtain

deLO+§9nAﬂ, (0°)u
ap7

- 1
=35t s | ((aeibwg”(e» b XE)) 0 (10, XO)
— X0 = b6 (0.t XA

1 =09 0) [ 00+ (o), 9% (0),k 00+ (0),k 09 (£) 00

(xm)

n—1 m n—1 m i 0 . 1
_ " na, (07)ui Zht 4 g5t
= E Eiken E E A ik ikn
k=0 i= =0 i= " 0
=0 i=1 k=0 i=1

~0%t (¢ 0+ 0%t (0),k 09t (0),k
+ Et;: )EezJ {Rei Ok Ry Ok Ry “
Xy

th+1 T g4

Yo _ x° ]}dﬁ, (3.11)

057 (0),k

0+
where ROk = —RY b0k

+ Ry

09

+ 3’ ).k and

1
€ = o @) [ (G010 (0,0, X0 0 (0w, X))
0
(ot X0 By, = Br,) + (0t X5, ) = 007 (0), 1, X0.)) A ) dl,
Z = D09, b(00F (0), b, X)) 02 (1, X1 )

i,k,n
tht1 0 0
. / (b(ﬂo, S,ng ) - b(eovtkaXtok )) dS,

tr

20 = N (09,600 (0), b, XO)) 02 (1, XU

i,k,n
et 0 0
. / (o5, X2") = otr, X1) ) dB.

ty
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-1 .
Next, we decompose Yo > 7" & k.n. For this, observe that & . = &1, k0 +
&2,i,k,n, Where

Erisen = P, (0°)u; / (000, 1, X)) o0, XE)
(0t XE) By — Bu) + (b(0° ta, X0 ) = (077 (0), 1, X0)) A, ) .
Eitom = Phoa, () / 1 (00,0002 (0), 11, X0 ) = 00,b(6°, 1, X51))
o2t X0) (ot X0 (Buy., — Bu)
(06t X, ) = (O (0), i, X)) A ).
Then, we write {1, x,.n = §1,1,4,k,n + §1,2,i,k,n, Where
€0 tikm = P, (00 (0o, b(0° tr, X0)) 0~ (ti, X0 ) (Bue, — Bry),
&1,2:km = P, (0°)u; /Ol(aeib(aovtkvXte:))*UQ(tk,XtekO)
- (B(8°, b, XE) = B0 (0), b0, XEL) ) A,

Notice that

i
L

m

n—1
§1 1k = U ona, (0°)Volna, (0°) — Z Hi ks
k=0

~
Il

0i=1
where Volr(0) is given by (2.1) and

trt1
Hl,k,n = U*SDWLA,I, (00) / (0—71 (ta Xteo)VGb(goa t7 Xfo)

tk

— 0 0
— o7 (b, X0, )Vab(6, , X, ) ) dB.
Now, we treat &1 2 k,n. For this, using the mean value theorem, we write

b(0°, b, X0 ) — b(00F(6), 1, XE))
0 0 0
= - (b(0?+ (6)7 tka Xtek ) - b(e?i_h tk7 Xtak ) + b(e?:h tk7 Xtek )
— (00, b XOO) - (0%, X0 ) — (00, XO)

m—1>

(0% by XE,) = B0 1, X))
1
= _(&p;m (0°)us / ,b(02" (a), 1y, X' )dar
0

1
i 0
+ SOTLJFAln (90)ui+1 /0 a9i+1b(9?i1 (), tg, ka )da
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1
4+ 4+ @?An (Ho)um / 89mb(99n+(a), tk, thk )dOé)
0
(B0t (00, (6°, 1, X,

@ (00) i 10p,,,0(00 b, X2) + -+ 0 (0°) 1t D, b(6°, i, X, ))
— (£6a, @) /O (90,50 (), th, XL) — D, b(6° 1, XI')) da
_|_<pz+1 (Go)u’t-‘rl/o (891+1 ( z+1( ) tkvXtek) 8«9;+1 (oovthxf:))da

1
+o o (0%)un, / (90,0005 (@)t X,) = Do, (0", ty, X7 ))der ).
0

where, to simplify the exposition, we have set for j € {i +1,...,m},
07 (al) 1 = (6,...,00_1,07 + algin (0°)ui, 071 + %01“ (0% uis1,
O+ o, (00)um),
00 (o) = (69,091,600 + agd o (0°)uy, 09,1 + @A (0°)u;pa,
e 00 ol (0 )um).
Thus,

n—1 m n—1

1 1
E g 51,271 kn — — U ©nA, (90) <V9€(90)>nAn PnA,, (QO)U, + 5 E : H27k7"
k=0 i=1 k=0

n—1

M-

l\D’_‘

(Ki,k,n + KiJrl,k,n +-+ Km,k,n);

b
Il

01
where (Vgl(0)) is given by (2.

), and for j € {i +1,...,m},

Ki,k,nZSDZAnwO)Ui/O /0 (Do,b(6°, i, X7, ) 02 (th X)), (0°)us
. (&)ib(G?*(aE), tr, X2) — 09,b(6°, 14, Xf:)) Andadl,

1
- (0] * _ 0] :
Kjkn = %An(eo)ui/ (Do,b(0°, t, XP)) 02 (th, X0, )0l A (0%)u

0
-(aejb(H;H( )s ey X ) Op; (90,tk,Xf:)) Apda,
th+1 0 0 0
Hon = w"ona, ) [ (Vb0 6.X7)) 0720 X0 ) 0ab(6”, 1. X0")
tr

— (Vb0 tu X0,))" 0™ (b, X0 Vab(6°, b, XE,) )t 0ua, (6.

Therefore, we have shown that

Z Z fz,k,n :’U/*QOnAn (90)V6’€nAn (00)
k=0 i=1
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n—1

1

= 3 na, (0°) (Vol(6°)),, 5, Pna, (6°)u =~ Hipon
k=0

1n71 n—1 m
+ 2 Z Hojn — Z (Kign+Kivign+- -+ Kmin)
k=0 k=0 i=1
n—1 m
+O ) ik (3.12)
k=0 i=1

Next, using condition (A4) and the multivariate central limit theorem for con-
tinuous local martingales (see [37, Theorem 4.1]), we obtain that as n — oo,

(#n2n (6°)V0Lnr, (6), 90, (6°) (V0l(6°)), o Pnr, (6%))

L) (D(6°) /2N (0, I,,,), T(6)), (3.13)

where N(0, I,,,) is independent of T'(°). Thus, from (3.11), (3.12), (3.13) and
Lemmas 4.8-4.11 below, we complete the proof of the desired result. O

4. Negligible contributions
This section aims to prove the convergence of the remainder terms in the ex-
pansion. For this, we first need some preliminary results.

Lemma 4.1. Letn € N and ((k,n)k>1 be a sequence of random variables defined
on (Q, F,{Fi}i>0,P) such that Gy is Fy, ., -measurable for all k.

a) [10, Lemma 9] Assume that as n — oo,

n—1 n—1
D) Y B[l Fo) =20, and (i) Y E[G[F,] — 0.
k=0 k=0

Then as n — 00, ZZ;& Ckn L 0.
b) [17, Lemma 3.4] Assume that S p—o B [|Chn
ZZ;& Chom L0 asn— oo

| F2, ] 50 as n — co. Then

Using (1.1) and Burkholder-Davis-Gundy’s inequality, we get the following
estimates.

Lemma 4.2. Assume conditions (A1)-(A2).
(i) Foranyp>2,k€{0,..,n—1},0 € © and v € R?, there exists a constant
C > 0 such that for all t € [ty, txy1],

B [|X7 - X0 P | < Clt—nl® (14 IX0 7).
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(ii) For anyk € {0,...,n—1} and function g defined on © x R? with polynomial
growth in x uniformly in 0 € O, that is, |g(0,x)] < c(1 4 |z|") for some
constants ¢,p > 0, there exists a constant C > 0 such that for all t €
[tk tht1],

E? [lg(0, x0)[| 7| < € (14 1XE 7).

Thanks to condition (A5), the following estimate will be useful in the sequel.

Lemma 4.3. Assume (A1), (A5). For any p > 1, there exists a constant
C > 0 such that

ZE"“ 12| }<CZ% (6°).
k=0

Now the change of measures on I}, = [tg, tk_H] is apphed The probablhty law

of XY starting at z at time t; is denoted by P ie. Ptk L(A) = [1A|X =

tk x)

x] for all A € F, and the expectatlon w.r.t. Pt o« 1s denoted by E tk o
Efk V] = E[V|X f = z] for all F-measurable random variables V. From [18,
Chapter II1] and [25 Chapter 7], under (A1) and (A2), for all 0 9l € 0,z € R?
and k € {0,...,n — 1}, the probability measures Pfk , and P - are absolutely

continuous W.r.t. each other and its Radon-Nikodym der1vat1ve is given by

ie.,

dP?k» o' e o' 1 01 \yx - —1 o'
dPel ((Xt )tEIk) = €xp \ (b(gv t, Xt ) - b(9 )4 Xt )) o (ta Xt )dBt
tr,T k

1 1 1 2
(b(6,, X7") = b(6" 1, X{)) 0 1, X0 dt}. (4.1)

1 /tk+1
2 Ji,

To treat the conditional expectations in the remainder terms, two following
lemmas will be used. For this, we fix some k € {0,...,n — 1}, and let V% be
a ftk+l—measurable random variable which will be R%*  (R%*)2, Rg’k, (Rg’k)Q.
Moreover, let V9 be a ]?tk .,-measurable random variable which will be defined
in the proof of Lemma 4.11.

Lemma 4.4. Assume (A1) and (A2). Then, for any k € {0,....n—1}, 0 € ©,
xr € RY,

76° oy 0°
Etk T |: tr,T [V ‘ thp1r th+1H

dpY’
=B (V) 4 B BV (SRR (e - 1)| a2
tr,x
Similarly, we have
U P e
Ef . [V"] =Ef .V + Ef, . [W (™ ((XDer) - 1)] L3
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The following lemma is used to estimate two second terms appearing in (4.2)
and (4.3) when 6 = 69" (¢). For this, for j € {1,...,m} we set

0;(0+) == (69, .. .,9;) 1,05, OOH +<pnAn 0 ujt1,. .., 0% +<,0?An(6‘0)um).

Lemma 4.5. Assume (A1), (A2), (A3)(b) and q¢ > 1. Then, there exist
constants C,C;, ..., Cp, > 0 such that for anyi € {1,...,m}, k € {0,...,n— 1},
x € R? and n large enough,

=~ n0

B0 [0 0 [ )y o2 0 AP o 0% (o)

B B [ om ) (S Oen) 1)
AP’

tk,w

~0%F (¢ 0+ 7
< C(ELIvE Om) VAL + fal)
. . (i 0yy2 z|2
% (szn(GO) (1+ /An(p;An(90)|x|>ecz(¢nAn(9 ) An|x|

@ (09 (14 VA (pha, (0°) + &3 (69) 2]

% Cit1((Pha, (09)*+ (e (0°)%) An | +...

+ 0lia, (69 (14 VA (pha, (60°) + -+ giia (60%)) 2]

« ecm«mn<e°))2+~-~+<q»:;gn(90))2)Anx|2>. (4.4)

Similarly, let ¢ > 1. Then, there exists a constant C > 0 such that for any
i€{l,...,m}, k€ {0,...n—1} and z € R,

90*(5) 09T (0) dPtka: 07+ (0)
B0 (dem«X o)~ 1)

tr,T

1
<oV (+la) | / (ERSP[peenp])”
00+€¢ nAn (09)u;

1
+ ‘ / 1 (Et‘g;fa‘% (0+) UV911+1(0+) |q}) a d9i+1‘
91+1+¢1+ (0°)uita

nlAnp

1
et / (Bt [[pomo)]) qdemD. (4.5)
Gﬂn—ﬁ-gﬂ::”An (69)um,

Remark 4.6. The expression (4.2) in Lemma 4.4 is analogous to the last equal-
ity on page 911 of [11]. From (4.2), the estimate (4.4) in Lemma 4.5 is analogous
to (4.19) of [11, Proposition 4.2]. In [11], the author used the change of transi-
tion densities and the Gaussian lower and upper bounds for the densities. There
is no exponential term in (4.19) of [11, Proposition 4.2] since the coefficients are
bounded. The arguments we use here are the change of measures and the esti-
mate of the squared exponential moment. The exponential terms appear in (4.4)
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due to the fact that the drift coefficient and its derivative w.r.t the parameter
are unbounded.

Remark 4.7. As will be seen in the proof of (4.4), when [0p,b(0,t,)| is
bounded, the exponential term eC7(#nan #)*Anlzl® qoes not appear in the esti-
mate (4.4). As a consequence, condition (A7) is not required for i.

In all what follows, without further mention, conditions (A1), (A2), (A3)
and Lemma 4.2 (ii) will be applied repeatedly.

Lemma 4.8. Under conditions (A1)-(A3) and (A5)-(A6), as n — oo,

n—1 1 n—1 n—1 m
- Z Hygn+ 5 Z Hyppn — Z Z ik + Kit1on + -+ Kmkn)
k=0 k=0 k=0 i=1
n—1 m

+ZZ£21kn—>O

k=0 1=1

Lemma 4.9. Under conditions (A1)-(A8) and (A5)-(A7), as n — oo,

n—1 m

. . .,
©; A Uz‘ =097 (0) 0+ 0] p?
E o Ineas Lo /O E, ¢oo {Rﬂ @Ky © ka+l}d£—>0.
=0 i=1 tk

Proof. We apply Lemma 4.1 a) with

@imn (0%)u; [ ~6%t (0) 0+ 00+ (¢ 0
G = Gikyn 1= —— i E" [Rez “)”“}Ytk;l( )= x?

00 t
An tk’th. k1

} e,

for i € {1,. m} Applying (4.2) of Lemma 4.4 to VOO = ROk using
the fact that E Y [RQH(@ *] = 0 by (3.9), (4.4) of Lemma 4.5 with ¢ = 2,
e, X f

and (3.10) with p = 2

‘ ”z_:l EY” [Ci,k,nu?tk}
k=0
n—1

Cra, (00)ui 1 =40 2O [ 6%+ (0),k 10570 _ 00
Z A, 0 Etk,Xfo [Etmxeo [R o0 |Yt"'+1 Xf’“““dg

0
TS L(141X] )

1 . .
/ tk,;‘;l IR OREN (ghy (01 + v/, (00)1XE)

x eCHEnan ODAINET 4 G (00 (14 /B, (0°) + i (0°)XE)

i O))24 (it (g0 69 |2
w oCrr1(Bha, (D (21 (OON)AIXE P
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. 0
+ona, (0 (1 + VA (g, (0°) + -+ ona (001X, 1)
« ecmw;An<9°>>2+-~~+<@:zn(e°>>2>An|xf,f\2)dg

n—1

< O, (09208 37 (14 X0 2+ V/Bugha, (00)1X0, )

k=0

i 2 0o . 3
x P OV BN gt (601 (%) A
i 0
x2(1+|xfk|2+¢ (ha, (0°) + ¢ (0)IXE )

x O (Cha, N+ EVISIXET Ly ogi (60 m, (60)AS

0
x Z (14 1X0 2+ VBulpha, (0°) + - + o (7)1 XE )
‘e mwmnwo)) oot (P, (0D ARl X 1P
Thus, using Young’s inequality for products w1th + - =1 and py close to 1,
we get

< Ol p, (0°)2A2

| f B [Giknl 7

0 0 1
xz{ A+ X2+ VBrgia (O X P+ Le

) 0
Q0 Ci(9ha, (0))? A0 X! 2}

q0
. 3 n-l 1 0 .
T Cgia, ()05 (008 S {p—ou FIXETP + v/ En(gha, (6°)
k=0

L (09) [ X PP 4 ea0Cin (Shua, 0D (I, 0 A X '2}
d0

n—1

) 3 1
o Coha (07)pia, (0°)AZ Z {po (1+ X7, 2+ VA n(Pha, (0°)
k=0

b (@)X PP 4 L etoCm(ha, (OO0 4ol (00)) A XY, |2}

NAn k :
do

Then, taking expectation in both sides and using Lemma 4.3 and (A7), we

obtain

n—1

5 e

k=0

n—1

< OA(gha, (0°) (n+ Z U 0°) + (VBagpha (00D D w7 (6%))

k=0
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+ CAR G, (00)6E (6°) (n+ Z o (0°) + (VB (), (6°)

n—1
Rl @) ST U (0) + o+ CARGA (00, (6°)

n—1 n—1
x (n+ D 4O+ (B, (00) 44 s, (O 2 U (0°)
k=0

~ ~ _po°
which, by condition (A6), tends to zero. Thus, 37—, EY ¢ kn|Fr,] o
Next, applying Jensen’s inequality, (4.2) of Lemma 4.4 to the random variable
Voo = (RQEH(@)"'“)Q7 (4.4) of Lemma 4.5, and (3.10) with p € {2, 4}, we obtain

k=0
n—1 i 01)2,,2 1
(‘PnAn (0°))%u; 560 (0) 097 (0),k (€) 6°
< 3 Frte e [B  [B [(FORE = X
k=0 n
n—1 0\)\2 1
(¥ha, (0°))u =007 (0) [/ poot
n—z 3 i (e)ak 2
R g {Etkvxf‘? [(R 7]

+ OV/AL (1 + X (B Z)[I 9%

. . 0 (i 0y12 60 |2
% (@;A (90)(1 + /AnSOizAn(‘gO)‘Xte |)€Cz(<PHAn(9 N AR|XY |
7 i 7 0
+ e (00 (1+ VAn(pna, (0°) + il (09)IXE, )

o Cit1((Pha, 0+ (0°))AnIX, 2 4

m 7 m 0
+ o (00 (1 4+ VAn(pha, (0°) + -+ @ia (6) X7 ])
i (O (Paa, (OO (P, (0002 A | XY )}dg

i
L

< CAL(Pna, (0°))* Y (1+ X5 ) + Clona, (09)° A
0

=~
Il

n—1

0 i 014 Ci(gha, (002 An X072
x> (1+|ka >+ VA, (00)X7, |4>e (Pnan (0 AnlXey |
k=0
n—1

i i 5 0 i
+ O, ()% ()AL (14 X0 + VAL(ela, (6°)
k=0
Lol (90))|st|4>eciﬂ((mn(o“))%(w:;ﬁn<0°>>2>A XEP L

n—1

+ C(ha, () en, (0)AL D" (14 1XE P+ VAu(eha, (6°)

k=0
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. 0
0y)[ 0% [4) oCom ((@ha, (0°))7++(07a,, (000 An| X7 |2
4+ -4 SO?A" (9 ))|th | )6 An An el

Thus, using Young’s inequality with pio + qio =1 and pg close to 1, Lemma 4.3
and (A7),

E“’“[ZW [l Fi]| < CA2(e0a, (67) (n+2¢tk (")

n—1
+ CAR(pha, (0°) (n+ D 0 (0°) + (VAugha, (0°) Z Ol
k=0

n—1
+ CAL (g a, (00))2054 (6°) (n + 30 (09) + (VAL (6°)
k=0
n—1 5 '
R (00 3w (00)) + -+ CAR(wha, (0°) 26, (6°)
k=0

< (et 0O + (B, (0°) - i, ()P S 0™ (0°)),
k=0

~p0
which, by condition (A6), tends to zero. Thus, >, _ ! Eeo[ 2 |‘Ftk] 20 for

i,k,n

any i € {1,...,m}. Thus, by Lemma 4.1 a), the result follows. ]

To prove the two following lemmas, we will proceed as in the proof of Lemma
4.9.

Lemma 4.10. Under conditions (A1)-(A3) and (A5)-(A7), as n — oo,

n—1 i

~ - P, (0w o0t () [ o2t 0k 0 Be0
ZZT/ {szn_E X90|: ’ tk+1 th+1:|}d€—>0_
k=0 i=1 n 0
Lemma 4.11. Under conditions (A1)-(A3) and (A5)-(A7), as n — oo,

n—1 i

m 1 =40
<pnAn 4.0 =097 (0) 90*(2) k 0 p?
Z /0 {Zi,k,n - E Xe" |: | tk+1 th+1} }df — 0.

k=0 i=1

5. Examples
5.1. Homogeneous diffusions
5.1.1. Homogeneous ergodic diffusion processes

Let X% = (X?);>0 be the unique strong solution of the following d-dimensional
SDE

dX? = b0, X)dt + o(X])dB;, (5.1)
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where X§ = z¢ € R%. This is a particular case of the model discussed in [12].
To guarantee the ergodicity of X?, we impose the following assumption on the
drift coefficient.

(A4’) There exist constants cy, K > 0 such that for all (§,z) € © x R,
b, z)x < —colz|* + K.

Under (A1)-(A3) and (A4’), the process X? admits an unique invariant prob-
ability measure my(dx) and the ergodic theorem holds. That is, for any my-
integrable function g, as T — oo,

S N
7 | 9Xe)dt — | g(z)me(dz).
0 Rd

Moreover, sup,~ E0[|Xf|p] < oo for all @ € © and p > 1. Therefore, (A4) is
satisfied with m x m diagonal matrix o7 (0) = diag(ﬁ, e ﬁ) with o1.(0) =
ce= () = ﬁ and
I'(6) :/ (Vob(0,2))" 072 (2)Vob(0, z)me(dx).
Rd

Moreover, (A5) is valid with ¢ (0) = 1 for t > 0, and (A6) holds since ¥ (6) = 1
and @i\ (0) = - = o'y (0) = \/ann. By [12, Proposition 1.1], (A7) is
valid. As a consequence of Theorem 2.1, under (A1)-(A3) and (A4’), the LAN
property holds at 6% with ¢, (") = diag(\/n%, o \/%) and asymptotic

Fisher information matrix I'(6°).

Remark 5.1. Theorem 2.1 can be seen as an extension of [12, Theorem 4.1]
when the unknown parameter appears only in the drift coefficient and when
equation (1.1) is inhomogeneous and can be ergodic or non-ergodic.

5.1.2. Homogeneous Ornstein-Uhlenbeck process

Let X0 = (Xta’b)tzo be the unique strong solution of the one-dimensional SDE
dX®? = (b — aX")dt 4+ 0dB;, (5.2)

with given initial condition X b= 79, 0 = (a,b) € R? are unknown parameters
and o > 0. By Ito’s formula, the solution process is given by

Xf’b — Xg7be—at +

SHIESY

t
(1—e )+ o—/o e~t=%)4RB,. (5.3)

For t > 0, the transition density p®®(t, zo,%) of Xta’b is given by

(= — (2 — b)e—at)?
Pa’b(two,y): . —2at) exp{ ¢ . (o a) ) } (5.4)

mo?(l—e %2(1 — e—2at)
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Based on (X} ’b)te[o,Tp the observed Fisher information process at (a,b) is given
by

1 (A — [ X _
o \ — [T Xbdt T

Case 1: a > 0. The solution X%? is ergodic with invariant Gaussian distribution
2
N(L, 2 (see [21, Example 1.26]). That is,

a’ 2a
B B a (ax —b)?
7T'tz,b(dx) = f(a'v b, 1‘)d.13 = \/;eXp{ N ao? }dx

By [21, Example 1.35], as T" — oo,

1 [T Pab b2 o2
— X“’bZdt—>/2a dr) = = + —
T/O(t) Rxﬂ,b(w) 2 T om

1T Pt b
f/ Xta’bdtp—>/:mra’b(dx) =—.
0 R

a
1

Thus, (A4) is satisfied with pr(a,b) = diag( and

75 77
VT VT

2
1 2, 40
T(a,) = a?o? nr b2 Zb
—Qa a

Moreover, sup;g E“*[| X{*P] < oo for all (a,b) and p > 1. Thus, condition
(A5) is valid with ¢;(a,b) = 1 for t > 0. Condition (A6) holds since ¢;(a,b) =1

and @) A (a,b) = @A (a,0) = \/&Tn. Using (5.4) and the fact that 1 —e~22t <

2aty, % < 1and e % <1, we get

~ 1 2 a,b 2 ~ Ap a,b|2
anb [eC(LpnAn(a,b)) An‘th, ‘ :| — anb {ecm‘xtk ‘ :| <e,

for n large enough and some constant ¢ > 0. Thus, (A7) holds. As a conse-
quence of Theorem 2.1, the LAN property holds at (ag, by) with v,a, (ag,bo) =
diag(ﬁ, ﬁ) and T'(ag, bo).

Case 2: a < 0. From (5.3), e® X" — X§¥ — b(evt — 1) = Ufot e"dBs, t > 0
is a square integrable martingale. Thus, the martingale convergence theorem
implies that as t — oo,

b ~
XM 5 X3P~ Z 4 z0 Plas,
a

where Z® := o [ ¢**dB; has Gaussian law N(0, —g) Then, the integral ver-
sion of the Toeplitz lemma implies that as ¢t — oo,

b

t
Xabdsg ~
Jo Xids N PR P*-as.,

fot e—95(s
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b

t
Xa7b 2d =~
hXEVs yas by gay2 B
a

f(f e—2asdg
which deduces that as t — oo,
1 ! b pab
—eat/ X%%ds — 0, P%°-a.s.,
vt Jo

t
1 b 2 ~
2at a,b\2 a,b a a,b
X&)ds - — (X" — -+ 2 P%%-a.s.
€ /O(S) S 2a(0 CL+ )7 a.s

Thus, (A4) is satisfied with o7 (a,b) = diag(e?”, -=) and

VT
__1_ _b a)2
F(a,b):( 2aa2(m00a+Z) i)

Moreover, sup,~ E?[|e X*|P] < oo for p > 1. Thus, (A5) is satisfied with
Pi(a,b) = e®. Assume that n—vﬁ"e_ﬁma"A" — 0 where pg > 1 and p close to 1,

then (A6) is valid. Using (5.4) and e2*("An~t%) < 1 and e®* < 1, we get for n
large enough and some constant ¢ > 0,

Fab[Clena, (a,b»%n\Xf',fl?} _ ﬁa,b[QCe“"A"An\Xf;“P <e
Thus, (A7) holds.

As a consequence of Theorem 2.1, under condition nvﬁn e~ 0poaonln _y () the

LAMN property holds at (ag, bg) with ¢na, (ag,by) = di;;g(e“"”A", —L_) and

vnlA,
F(ao,bo).
When A, = 76(11;‘5(2)” with a > 2, we have A, — 0, nA, — oo and
VA, e—6poa0nAn =0
nA, .

5.1.3. Two-dimensional Gaussian diffusion process

Let X% = (X?, X§)* = (X?)¢>0 be the unique strong solution of the following
2-dimensional SDE (see [26, Section 4.1])

dX? = A)XPdt + dB;, (5.5)
with X§ = 0, where
_ ([t 0
a0 = (50 7).
B = (B¢)t>0 is a 2-dimensional Brownian motion, 6 = (61, 62) and © = R2. By
It6’s formula,

t .
Xte = eA(e)t/ efA(a)Sst, where A0t = ¢—01t (CQS Oot —sin 92t> .
0 sinfat  cos Oat
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For t > 0, the density p?(¢,y) of the marginal X{ is given by

1 0 —01]y|?
0 _ 1 1Y
p(ty) = — A\ T P { i [ (5.6)

The observed Fisher information process at 6 = (61, 62) based on (X?)sc(o,4 is
i 1X8)%ds I.
Case 1: 0; > 0. By ergodicity, as t — oo,

I = 1 -
—/ |X9%ds — lim E°[|X?}?] :/ |z|*mg(dz) = —, Pl-as.
t 0 §—00 R2 01

Thus, (A4) is satisfied with ¢} (0) = ¢?(0) = % and I'(0) = %Ig. Furthermore,

for any p > 1, sup,so E°[|X7|?] < oco. Thus, (A5) holds with (6) = 1 for

t > 0. Condition (A6) holds since ¢;(f) = 1 and @}, (0) =2, (0) = \/nITn'

Using (5.6) and the fact that 1 — e=201t% < 20,1, nkn <1 and e %% <1, we
get that for n large enough

~ 1 2 0 |2 ~ 2 2 0 |2 ~ An 0 |2

for some constant ¢ > 0. Thus, (A7) holds. As a consequence of Theorem 2.1,
the LAN property holds at 6° = (69,69) with o, A, (6°) = diag( nlA ) nlA )
and I'(0°) = 75 5.

1

Case 2: 01 < 0. From [26, Section 4.1], as t — oo,

~

e AOXO ! V(9), Pl-as.,

20,
1 ~
— 0,2 X012 — 5|V(¢9)|2, Plas.,

t
1 N
29%6201t/ |X92ds — §|V(0)|27 Pl-as.,
0

where V() ~ N(0, I). Thus, (A4) is satisfied with o} (6) = ©?(0) = —/260,e%*
and T'(9) = $|V(6)[*I2. Morcover, sup,~ Efle?' X? "] < oo for any p > 1.
Thus, (A5) holds with ¢;(f) = e”1*. Assume that /A, e~ (6Po=2)0nAn _,
where pg > 1 and pg close to 1, then (A6) is valid. Using (5.6), we get that for
n large enough

R {ec(wiAn (0)2An] X7, Iz} _RY [ec(wiAn(O))zAn\ka \2}
~ 2 201nAy 6 |2
_ R [620916 AnlX] | } <e,

for some constant ¢ > 0. Thus, (A7) holds. As a consequence of Theorem 2.1,
under condition \/Ane’(6p0*2)9(1)”A"L — 0, the LAMN property holds at §° =
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(09,69)  with @ua, (0°) = diag(—v260e%1m8n —\/209e0nAn)  and
T(6°) = 1|V (0°) .
Notice that when choosing A,

_ logn
(6po—2)8%an

A, — 0, nA, — oo and \/Ane*(m’o’?)e?’m” — 0 as n — oo provided that
nA; — 0 since 69 < 0.

for some a > 2, we have

5.1.4. Null-recurrent diffusion process

Let X% = (X{)i>0 be the unique strong solution of the one-dimensional SDE
(see [21, Section 3.5.1])

0

X!
dx?f = det + 0dBy, (5.7)

where X§ = z¢ and o > 0. Notice that X{ does not follow the Gaussian law.
Observe that b(0, z) and 9yb(#, x) are bounded. In this case, it can be checked

that the sum of type Zz;é Xf:|p for p > 1 will not appear in the estimates
of all tbeo negliogible terms and thus we do not need to use Lemma 4.3 to treat

Z;é E7[|X? [P]. As a result, (A5) is not required. Moreover, thanks to the
fact that Jpb(0, z) is bounded, (A7) is not required (see Remark 4.7). Condition

3
(A6) now writes as nAZ(¢ona, (0))> — 0 as n — oco. The observed Fisher
. . .7 X972
information process at @ based on (X/ Jeclo,r) 18 [, W’X)tg)mmﬁ
2

Case 1: 6 > %-. The process X? is ergodic with invariant density

1 . [ dz
G(g)(1+x2)0/02 Wlth G(Q) _/_Oo (1_’_1;2)9/0_2-

By ergodicity, as T — oo,

po 1 e z2
J— F = .
/ o( 1+ X“’ w21+ e IO = e /_oo (15 22)2rr

Thus, (A4) holds with o7 () = —= and I'(), and (A6) is valid. As a conse-

f(97x) =

VT
quence of Theorem 2.1, the LAN property holds at 6° with ¢, (0°) = \/niTn
and I‘(GO)
Case 2: —Z < 0 < 2. We set v(0) :== 1+ % and
I'(1+~(9)) 2 26
K, B, 0)) = , B=—(1 o +29
B2O)= 35@pBrora —6) 2t e)

where T'(+) is the Gamma function. Let 1 be a random variable with stable
distribution function having the Laplace transform E[e™P"] = -,

With or(0) = Tfi7 it follows from page 298 of [21], we have that as
T — oo,
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where

2 [ x? _
00) = K BA0) s [ st

Thus, (A4) is not valid, and the central limit theorem for continuous local
martingales cannot be applied in this case. Instead, from (3.113) of [21] or
Proposition 1 of [15], we have that as T — oo,

1 1
(@VMT(QL (@) <V9£(9)>T)

(o x Loty
‘( = ), s o e 02<1+<Xf>2>2dt>
o) (VTON(©,1),T(0)) .

where A(0,1) is independent of T'(#), which shows the convergence (3.13) that
2(c2-9)

does not require (A4). Condition (A6) is valid provided that nA,”” "% —
0 as n — oo. Consequently, from the proof of Theorem 2.1, under condition

2(02-69) (60
nA,”"7*" — 0, the LAMN property holds at 6° with ¢, A, (0°) = (nA,)~ 25

and I'(6°).

5.1.5. A generalized exponential growth process

Let X% = (X?);>0 be the unique strong solution of the one-dimensional SDE
dX? = 0a(X?)dt + dBy, (5.8)

with given initial condition Xg = xg9. The unknown parameter 6 is positive. For
some constant ¢ > 0, the known trend coefficient admits the representation

a(z) =cx+r(z), zekR,

such that the function r satisfies the following Lipschitz and growth conditions
with appropriate constants K > 0, L > 0 and v € [0,1). That is, for all (z,y) €
R2,

r(z) = r(y)l < Llz—yl,
r(z)] < K (14 [2]7).

See Dietz and Kutoyants [8]. Suppose further that r is of class C? and its first
and second derivatives 7’ and 7 are bounded. When r(z) = 0 for all 2z € R, X? is
an Ornstein-Uhlenbeck process with exponential rate in infinity. When taking a
large value, X% behaves like an Ornstein-Uhlenbeck process. Notice that X! does
not follow the Gaussian law generally. The observed Fisher information process
at 6 based on the continuous observation (X/)¢e(o,r) is given by fOT a?(X?)dt.
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By [8, Lemma 2.1 and Corollary 2.2], as t — oo and T' — oo,
e 0txl o462+ pf Plas.,

T
6_296T/ a(X))dt — %(1’0 +&% +p%)?, Plas.,
0

where £, = [ e%dB, and pf, = [;* e°*0r(X?)ds. Thus, condition (A4)
satisfies with o7 (0) = e T and T'(0) = 5 (o + &&, + p )2

Moreover, sup;~ E9[|e*9“Xf|p] < oo for p > 1, see Lemma 2.1 of [8]. Hence,
condition (A5) holds with v;(f) = e~?°*. Assume that /A, e(6Po=2)0cnin _;
where pg > 1 and pg close to 1, then condition (A6) is valid. Now, it remains
to check condition (A7). For this, using the Maclaurin series of the exponential
function, we write

760 [ Clonan (0))2An]X] |2 = (CAL) 59 —GenA,
B [e (s (0)% A0 ’“']:HZ 0Ny {(e

Xt(,k )21}

=1

<1+ f: (C%”)iﬁf’ e v Xt "] (59)

i=1
From Lemma 2.1 of [8], we have the following decomposition
e X)) = = 2o+ &+ pf,

for any ¢ > 0, where

t t
¢ = / e79dB,  pf= / e 9 0r(X%)ds.
0 0

Then, for any ¢t > 0 and even number p > 2 and p € N, we get that
E [|e0tx?|] < 37! (|x0|” +E? [|10)P] + E° [|pf|P]) . (5.10)

First, since £/ follows the Gaussian distribution, we have

B [0 = (p— 1 (B [efP?])
= (-1 (i(l - e“'"“)> ' <(@-1! (ﬁ) ’ ; (5.11)

where (p — 1)!! denotes the double factorial of p — 1.
Next, using (2.15) and (2.16) of [8], we have that P-a.s.

0K 0K 20K
1< 25 @) < 2 (24 (ol + €0+ 25 )

where p1 = 0c(1 —7), 7l = supg [n/] and &7 = sup;>q |€7].
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Using Doob’s maximal inequalities, the fact that 1 < £ < 2 and (5.11), we
have that for any t > 0,

B (s 1) ] < (G25) 2 llgr] < 20— 0 (5)

0<s<t

This implies that
0 [1¢6 70 o\ = o\ 1 \%
E” ||€.]P| =E sup |€; = lim E sup |& < 2P 71”( ) .
) =B | (suptetl )| = pim B | (sup 1€21) | < 2010155
Thus, we obtain
=~ 0K 20K | ex\P 0K ~
E? [|pf|?] < (7) 20 (<2+ (lzol + T)eef) + P B [lfflp]>

< <97K)2(( + (ol + 25+ oy 1>”(2$C)%)~
(5.12)

From (5.10), (5.11) and (5.12), we obtain that for any ¢ > 0 and even number
p>2andpeN,

~0 11 —pe _ 1\% OK\" _
B fleeextP) <o {lmor + -0 (g) + (5) 2
WK | o X 1\3
X ((2+(|x0|+ . )e' )p+ef’972p( —1)"(20) >} (5.13)

Inserting (5.13) into (5.9) and using again Maclaurin series of the exponential
function, we get that

B [eCehan @SN <y g 2 Z CA (C0) {| o + W‘””(%@Ji

. (%{) 4i((2+(|x0|+%) GTK)Qi—i—eZisTKﬁli(%—1)!!(%)1')}

<1+85+5

1 1 0K .2 20K, ox\2
+ 3 (exp {90|x0|2An} + 5 oXP {360( . ) (2—|— (|xo| + T) m ) An}> ,

where
11 /9CA,\"
_ = - n . n
Sy BZ:N( o0 ) (20 — 1)1,
1801 (144CA, (0K Lox\
SQ:EZz_(Toc (7) 629”) (20 — 1)1
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Using Stirling’s approximation n! ~ v/2rn(2)" for n large enough, there exists
a natural number ig such that for all ¢ > i,

(2i 1y = 20 V2RO \/5(%)

€
21! omi(L)

This implies that

1,1 /9CA,\" 1 9CA,\" ~/2i\i
~ — — n —1)n n —
51 321'!(290)(2 2 + Z V2mi(i) (206>ﬁ<e)

1= i=ip+1
9CA, 1 /9CA,\"
= 2i — 1)1 n
ZN(QGC)( +3\/_1;rl z( fc )7

which, by the D’Alembert criterion, converges when n is large enough. Similarly,
the series S5 converges for n large enough by using the same arguments. Thus,
we have shown that there exists a constant Cy > 0 such that for n large enough

5o [ C(¢ha, (02 Bn|XY, F] < Co.

Hence, (A7) is valid.
As a consequence of Theorem 2.1, under condition \/Ane(GPO*Q)QOC”A" — 0,
the LAMN property holds for the likelihood at 6° with rate of convergence

Ona, (0°) = e~ enBn and asymptotic random Fisher information
Lg% =

(& 0 0
W@"o +&% + %)%

logn
(Gpo 2)0%can

nA, — oo and \/Ane(6p0_2)0 cnfn 5 () as n — oo provided that nA% — 0
since #° > 0.

Notice that when choosing A, for some a > 2, we have A,, — 0,

5.2. Inhomogeneous diffusions
5.2.1. Inhomogeneous Ornstein-Uhlenbeck process

Let X% = (X?);>0 be the unique strong solution of the one-dimensional SDE
dX? = —0A(t)X?dt + dBy, (5.14)

where X§ = 0, A : R, — R is measurable with fo A?%(s)ds < oo for every t
(see [26, Section 4.2]). By Itd’s formula, X! = £(6,t) fo )~1dB, where
f(0,t) = exp{-0 fo (s)ds}. The observed Flsher mformatlon process at 6
based on (X¢)sc(0,4 is given by fo A2%(5)(X?)%ds. The expected Fisher infor-
mation at 6 and ¢ based on (X?)sc(o,4 is given by

Ixo(t /A2 9,5)2/ f(0,u) *duds.
0
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Case 1: Consider the set of explosive parameters
t [e’g)
Qg = {9 eR: 70/ A(s)ds — o0 as t — oo and / f(0,5)%ds < oo}.
0 0

For any 6 € O, we have sup,, f(0,)~ 2EO[(X0)?] = [i° £(0,5)"%ds < oo and
as t — oo,

F0,071 X0 — / F(0,5)"2ds)?¢, Dlas.,

©1(0)2 /0 A%(s)(X9)%ds — €2, Pl-as.,

where £ ~ N(0,1) and

= /Ooofwvs)”ds / t A2<s>f<e,s)2ds)‘?

Thus, (A4) is satisfied with ©¢(0) and T'() = £2.

Moreover, supt>OE [1£(0,t)"1X9P] < oo for any p > 1. Thus, (A5) holds
with ¢4(8) = f(0,t)~". As a consequence of Theorem 2.1, under (A6)-(A7),
the LAMN property holds at 00 € ©g with @, (6°) and ]."(90) £2.

Case 2: Consider the set of parameters

O = {OG]R lim Iyo(t) = oo,

t—o0

and lim ;A(t)f(ﬁ,t)g /tf(ﬁ,s)_2ds = O},
0

t—oo /IXS (t)

where assume that A is continuous. For any 6 € ©4, as t — oo,
t
)2/ A%(s)(X9)2%ds — 1, in L2*(P?),
0

where ¢(0) = Ixo(t)"2. Thus, (A4) is satisfied with ['(d) = 1. As a conse-
quence of Theorem 2.1, under (A5)-(A7), the LAN property holds at ° € ©;
with @,a, (0) and T'(6°) = 1.

When A(t) = 1, X? becomes the classical homogeneous Ornstein-Uhlenbeck
process which has been addressed in Section 5.1.2.

When A(t) = 1+t, then ©g = (—oo,—%) and ©, = (—%,oo). For t > 0, the
density p?(¢,y) of the marginal X? is given by

1 { v } (5.15)
exp{ — - . .
\/29+1 1+t = Grpm) so7 (L +1— G520)

For 6 € O, we choose ¢;(0) = —(20 + 1)t972, 4,(8) = (1 + )¢, and (A6)
1

I 5r—setrroTsy
is valid provided that nA, >0 _ ( where po > 1 and pg close to

p9 (t’ y) =
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1. Using (5.15), it can be checked that (A7) holds. For § € O, we choose

0i(0) = \/ it (AB) is valid with ¢(0) = ﬂ% (A6) is valid provided
that % — 0 where py > 1 and pg close to 1. Using (5.15), it can be

checked that (A7) holds.

5.2.2. A special inhomogeneous diffusion process

Let X? = (X{):;>0 be the unique strong solution of the one-dimensional SDE,
which is a special case of the Hull-White model,

dX? = ob(t) X dt + o(t)dBy, (5.16)

with given initial condition X§ = 0, where b : Ry — R and o : R, — (0,00)
are known Borel-measurable functions. Here, 8 € R is an unknown parameter.
See Barczy and Pap [3].

By It6’s formula, the SDE (5.16) has a unique strong solution given by

X0 = /Otcr(s) exp {9/: b(u)du}st — £(0,1) /Ota(s)f(G,s)lst,

where f(6,t) = exp{0 fot b(u)du}. The observed Fisher information process at 6

6
based on (X?)¢(0, is given by fg %d& The expected Fisher information

at 6 and ¢ is

L) L 1(s) :
Ixo(t) = E9X92d=/ 92/2 0,u) " ?duds.
wolt) = [ B e as= [ 80,07 [ a6, s
Case 1: Consider the set of parameters
O = {0 €R: lim Ixe(t) =00 and / o?(s)f(0,s) %ds < oo}.
t—o0 0
Then, for any 6 € Oy, we have

sup £(6,1)2R0[(X0)?) = / 02 (5) (8, 5)2ds < o0

t>0

and

F0,0)71x0 — (/OO 02(s)f(9,s)*2ds)%g, Pl.as.,
0

1 [T0P(s)(X0)?
Ixo(t) /0 o2(s)

as t — oo, where & ~ N(0,1) (see the proof of [3, Theorem 7]). Thus, (A4) is
satisfied with o;(0) = Ixe(t)"2 and T'(0) = £2.

ds — €2, Pl-ass.,
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Moreover, sup;s EY[|f(6,t)"1X9|P] < oo for any p > 1. Thus, (A5) holds
with 94(0) = f(6,t)~. As a consequence of Theorem 2.1, under (A6)-(A7),
the LAMN property holds at §° with ¢, (0°) = Ie0 (nA,)~2 and ['(69) = €2,

Case 2: Consider the set of parameters

0, = {9 €R: lim Iyo(t) = o0,
t—o00

. 1 b(t) 2 ! 2 —2 _
and tgﬂmmﬂe,o /Oo— (s)(8, s) ds_o}.

Then, for any 6 € ©1, as t — oo, (see [3, Theorem 10])

LR 2P
IXs(t)/O 72(5) ds — 1, L*(P%).

Thus, (A4) is satisfied with ¢;(0) = Ixe(t)"2 and T'(8) = 1. By Theorem 2.1,
under (A5)-(AT), the LAN property holds at 6° with ¢,,a,, (6°) = I 0 (nAn)_%
and I'(0°) = 1.

When o(t) = ¢ > 0, X? becomes the inhomogeneous Ornstein-Uhlenbeck
process which has been considered in Section 5.2.1.

When b(t) = %th, and o(t) = f—j;i then 9 = (1,00) and ©1 = (—00,3) \

{—1}. For t > 0, the density p’(t,y) of the marginal X/ is given by

1 2
O(t,y) = ex{ Y }’ 5.17
P = s P\ 226, 0) (617)
111 862 — 1
20,t) = t+1)— = — t+1)%.
CO= St g iyt Tepe Y

For any 6 € ©g, we choose ¢;(0) = 22=L () = (H_;t)g, and (A6) is valid

=3
| IR S
provided that nA,, *“?~2?** _ 0 where py > 1 and py close to 1. Using (5.17),
(A7) is valid. For any 6 € ©1, we choose ¢(0) = 1/1;52(311)7 condition (A5) is

: . . . . ni, 3po+1
valid with 1;(0) = —L, and (A6) is valid provided that Y322l — 0
where pg > 1 and pg close to 1. Using (5.17), (A7) is valid. To the best of
our knowledge, the results obtained for this concrete inhomogeneous diffusion
process are new in the context where both the drift and diffusion coefficients

depend on the time variable t.

Remark 5.2. In models (5.14) and (5.16) we consider a particular case that
the initial condition X§ = 0 for simplicity. The case that X§ # 0 can be treated
by a similar argument.
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6. Proof of technical results
6.1. Proof of Lemma 3.1

Proof. For all t € [tg,tg+1], using the chain rule of the Malliavin calculus, we
have

(DO (o)) = (VO (o)) DYE (),

where f : R — R is a continuously differentiable function with compact sup-
port. Thus, we have (Vf(YtiH(tk,x)))* = (Dt(f(Y;ZH(tk,x))))* U? (ty, z) with
Uf (t,x) = (DthiH(tk,x))*l since Dthiﬂ (tg, ) is an invertible matrix a.s.
Then for any ¢ € {1,...,m}, using the duality relationship of the Malliavin

calculus on [tg,tg+1], we get

B[Vt 2)| = B[(VIOE, (002)) 00,V (11 )]

B AinE {/t:kﬂ (Dt(f(Ytiﬂ (tk’x))))* Utg(tkvx) 89,thi+1(tk7l‘)dt]
= Ainﬁ |:f(Y;i+1(tk’x))6 (Uf’(tk,x)@@i}’tiﬂ(tk,x))} : (6.1)

By (3.8), the family ((Vf(Y,?

te+1
tegrable. This is the reason why we can interchange dy, and E. Next, using the
stochastic flow property,

(t, x)))* O,V

tns (L, @), 0 € ©) is uniformly in-

WE[f, )] = | S0 (i )y, (62)
and
B[/, (b)) (U7 (e, 2)00, Y51 (81, 2)) |

—B|f(v

tr41

O (U 1, %), YL, (th ) IV, = ]

= | FOE (8 (U ()00 Y, (1 0) ) [¥i = 0¥, =]
X pg(tkatk-‘rlax)y)dy' (63)

Thus, the desired result follows from (6.1)-(6.3). d

6.2. Proof of Lemma 3.2

Proof. First, using (3.4) and Itd’s formula, we obtain

d t
(V¥ () =T =3 / (VY2 (1, 2)) " V005 (5, YO (1, 2)) AW
j=17tk
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23

t d
f/kvgf@h@r%vwwﬁAfth = (Va0;(s, Y (tk, 7)))?) ds.
j=1
This combined with (3.5) and Ité’s formula implies that

t
(vxyte(tkvx))_laﬂ'yte(tkvf):/ (mese(tlﬁx))_laeib(e»vase(tkvx))dS‘
tr
(6.4)

Then, using (3.6), the product rule (1.48) of Nualart [29], the fact that the
Skorohod integral and the Itd integral of an adapted process coincide, and (6.4),
we obtain

(5(U0(tk, )89 tk+1(tk7x))
=001 Y e @) VY (b ) (VY (1) 00,V (1))
= (06,7, (t, ) (VY (b)) 1)

tht1
- / (VY2 (b5, 2)) 0 (5, YO (t1, 2))dWs

tk

-[ ( (@0, Y2 (b)) (VYL (b))
o s, Y (b, 2)) VLY (1, :E)) ds

- / tkﬂ<(vxne(tk,x)>*lagib(o,s,n"(tk,x»)*ds

123

thy1
- / (VY2 (b5, 2)) 0 (5, YO (t1, 2))dWs

_ /tk+1 / - tr (Ds (((vmyue(tka $))7160ib(97 u, Yue(tkv x)))*)

7 (5, Y 11,2 V. (0.) ) s,

Next, adding and subtracting the vector (VoY (ty, )~ 99, b(0, ty, Y (tr, x)))*
in the first integral and the matrix (VY (ty,2))*0 = (tx, Y (tr, )) in the sec-
ond integral together with Y,/ (t,2) = Y, = z, we obtain

5(U6(tk,x)8gi}/;i+l (tk,:z:)) = An(0'7 (tk,l‘)(%ib(e,tk,z)) (I/Vtk+1 — Wtk)

(6.5)
0,k 0,k 0,k
— R% 4 ROF 4 RO

Finally, from equation (3.3) we write

Wtk+1 Wy, =0~ (tkﬂ Y9 ) (Y

tet1

Y7 —0(0. 11, YA,

tre41

_ /tk“ (b0, 5. Y?) — b(0, 1, V) ds

tr tr

(o5, Y) = ot Y1) dW).
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This combined with (6.5) concludes the desired result. O
6.3. Proof of Lemma 4.4
Proof. For y € R, we denote g(z,y) := Efk@[V‘ﬂY;iH = y|. Then, we get
Bl B2, [v% =X || =B et X))

9
tr
/ "t ters, @, y)dy

tk}atk}-‘rlax y) (tkatk-‘rhxay)dy'

Next, using (4.1) in [27] for homogeneous diffusions and (3.2) in [31] for inho-
mogeneous diffusions, together with the fact that Y7 is the independent copy of
X?. we have

pgo dI ?0

— (g, t T ) Ee ko ((YG) ) Ye = ] .
7] ( kylk+1,T,Y th,T t Jtely t Y

p » dP?k . b

Thus, we write

700 oyo  — x0° |
Eth { tk,x {V | th+1 — th+1}

~, [ap? .
= ‘/]Rd g(x7y)E?k,m [ﬁ((ng)telk) Y;f?c+1 = y‘| pe(tk7tk+17$ay)d?}

tr,T
ap?’
= Ef, . |9(, niH)dﬁ;'“((Yt@)tgk)]
tr,x
dpPy,,
- E?k T |: (l‘ Y;fk+1 )] + Etk i (x’ YVfi+1> (dl’Sglm ((Y;fg)tefk) - 1)
tk,z
ar?’ .
= E?k i [V‘g] + Etk T tk 1[ ‘ th+1:| (dﬁgk’ ((Y;fe)tefk) - 1>‘| y
tr,x

which concludes (4.2). The proof of (4.3) can be obtained by using change of
measures. O

6.4. Proof of Lemma 4.5

We need to introduce the following auxiliary estimate.

Lemma 6.1. Let h : R — R be a convex function and & = (&5)s>0 be a stochastic
process. Then, for any 7 > 0, we have

B [h ( / ' Esds>] < sw BIGE)),
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provided that all the expectations are well-defined.

Proof. Let U be a continuous random variable which is independent of ¢, and has
a uniform distribution over the interval [0, 7]. Then, using Jensen’s inequality,
we get

E[h(/OT fsds)} = E [h (Ey[rév])]

<EIE (6] = 7 [ Bl )lds < swp Elh(re).

s€[0,7]

where Ey is the expectation w.r.t. the uniform distribution over [0, 7]. The result
follows. |

Proof. We start proving (4.4). Using (4.1) for Y, we get

0

Py, . e+
dPt;,m
~g0F ~90F (¢ =097, =070+
_(dP - dPt;,x( )) +(dPy e —dPy) Y9?+(€)
= d]39?+(é) (( t )tGIk)
tr,T
(DI qpUr) 4 (@D — apo )
mz - mz r mz 9%t (¢
oo i St s St (0, )
dPt;’w
09 dlSGi(0+) o0+
T 07T (¢
=/ , 5&(%)((1@1 N ier,)db;
09+e0h 5, 00)us NPl (©
0941 d130i+1(0+) 0+
te,x 91‘ (0)
s o, e (O Oenati
i+1 ‘PnAn( Wit Pt}i,%‘
9?17, d§07n(0+) 0+
T 0 7L
.y 00, (st ) (O hien )
00,40, @um N dPY
0? te4+1 5 b(o 90+(Z) 1 90+(€)
_ B(O:040), 8,V Dy ot v
/G%%RWOM / (00b(0:(04), 1, Y7 D)ot (1, v/ )
0+ 0+ 0+
(AW — o, Y, ) (0(0:04), 1, D) —b(80 (0), 1,7 D)) dr)
APy oo
'~9++(€)((Ytl Jeer,,)d0;
dPt;x
041 tr41 0+ 0+
00T () \ v — 00+ (¢
L R R C R ORTUENA P AT
0?+1+‘P:LA"(00)“1'+1 tr

PO

0+ 0+
(AW — o Y OV 10,1 (04), 1, Y, ) —b(80F(0), 1, ¥, D)) dt)



4314 N.K. Tran and H-L. Ngo

dP 0i+1(0+) o4
W((Yfl N ier)dbisr + -
tr,x
670)1 tret1 (f) 00+(e)
+/ / (0a,, (0., (0+), £, Yl Dot Y, )
09n+tp"" (Go)um th

0+
(AW, — o (¢, v “))(b(am(m) £, Y5 Oy p(e0+(0), ¢, Y, ) dt)
dP (0+) 0(_J+(£)

tr,T i
C— o (Ve
apli

Jeer, )dOn,. (6.6)

tr,T

Thus, we have

~60+ (0) [0 (0) 1+ g0+ 9+(z) Py’ 0%+ (o)
Bo OB v Oy O (e (T P ien) - 1)]

T, ~ 0+
" v
09
: =00 () [07 () 1,00+ 7% (0)
= [ RDOEEOwer o)
09 +0p% 5 (6°)us
tkt1 0+ 0+ 0+
09T () \\n _— 09t (¢ _ 0%+ (¢
T @b 00,3 o O aw - o )
tr
50:(0+)
677 (1) 0y o\ Pt 0% (1)
(O (04), 8. b (0,1, ) dt) = ()|t
Py
Pn SO T 00+ 1
+ 1 By OB e oy o)
91+1+ 1+ (90) Wit1
trt1 0+
Dove — ¢ _ 00t (¢
T @b 0, Oyo ey O w0 )
tr
0 4
(001 (040), £, Y, Oy — w00 (0), £, ¥ ) at)
apy 1O 09+ (1)
’;’T(@((Yt ' )telk)}deﬂrl
Py,
00
m =097 (0) [0 (0) 11,90+ 097 (0)
_|_..._|_/ E , {Etk [VGI (Z)‘y;k,“ ]
00, +¢ms (69)unm

0) 07" (0)

tlt1 0 0
/ (90,50 (00,7, ) o (v O) @ — o (1Y, )

tr
(DO (04), £, Oy — (00 (0), 1,7, D)) at)
dPt;nio"l‘) ((Yei)Jr([)
T T 0+ t
T

tr,T

)tglk) d0m~

Next, we treat the first term on the right-hand side. For this, using Holder’s
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inequality with % + % + % =1 and Jensen’s inequality, we get

07 ~ O+ JUPES 0+
D= [ Br O R o )
p , +1

) tr,x
?-‘rétp;An (eo)ut

tht1 . .
/ (D9,b(6:(04+),, Y7 o1, v Oy (aw, — o 1, v

ty

(b0 04), £, Y79y b9+ (0), 0,7 D) ar)

%((Y"““’»ga]d&
dPy; .
UMWM o Ef;“)[\‘/"?*“”q])%
(O[] [ s, e
k
(W= o OO0, < (0,07 Opan)[])?
i(0+)
O ) ) ]
‘L

Now, using the mean value theorem, Burkholder-Davis-Gundy’s 1nequahty, con-

ditions (A2) and (A3)(b), and Lemma 4.2 (ii) applied to YO O we get for
some constant C' > 0,

~9°+tz bt Dons — 0%+ (¢ 0%t (¢
B @063 ot i) @ o 1)

- (b(0:(0+),1,Y;" “>> bw?*(@,t,n@?”“))dt) ]

~ 0+

i,

tht1 0
/ (B, b(6:04). £, D)ot (e, v O)

ty

0 . 1 0
(AW — o (Y ) (b (60, / o000 (at), 1, V)daar)|']
0
< C(VBADPA+ |2P) (1 + (VBagha, (00)]2]?).

Next, using again (4.1) for Y, Cauchy-Schwarz inequality, and the fact that the
expectation of an exponential martingale is equal to 1, we get

’L(
~0"+ (0) Py 0+ (0) r
Ey: o [(—;’zw)«y ) |
dp,:

tr,x

tr41
(Et; . )[exp{%/k+ (b(0:04),, Y, Dy —p(00+ (), 1,7, D))"

ty
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o+ tht1 o+
ey yaw, - 20 / |(b(0:(04), 8,77 )
tr
1
B0 (0), 1, Y O oL,y “Wdt}})z

2 r

(Efri x( )[exp {2(7’ — 5) /tthrl |(b(91(0+) t, Y i (E))

_ b(&?ﬂ[) t, y i (Z))) _1(t,Y;0?+(Z))|2dt}D%
= (B e {207 - /t:H |(b(6a(04), £, ¥ )
_ b(9?+(£) t, y i (l))) 1(t7}/.tog+(e))|2dt}D%

Then, using the mean value theorem, conditions (A2) and (A3)(b), Lemma 6.1,
and the argument in the proof of [12, Lemma A.1], we get for n large enough,

=697 (0) r bt 9t (e)
E; . [exp {2(r2 - 5)/t |(b(0;(0+4), ¢, Y )
k

— B8 (0), 1, Y ) o 1(t75§9?+(€))|2dtH
fE i ()[exp{Z( 2 - )52 Q(SﬁnA (90))2

t 1
[ [ l@nbe @0y ) o v ) Pdade} |
tr 0

~00t (¢ i fr1 00t (¢
<EO [ {Cloin, 007 [ @ 1O Pjar)]

23

< s B e {Clea, 002000+ 1)

tE[ty,trt1]
07 (0) i 07 (0)
= swp By, [exp {Clela, (0722000 + ¥ ) Y]
t€[0,A,,]
~0%T (¢ i T
<K swp Bg,Oexp {Clein, (00200 P
t€[0,A,]

< KeC(wiLAn(49"))2&n\90|27
for some constants K, C' > 0. Thus, we have shown that
=69t (¢ 0+ 1 i i
D; < C(Ey IV O VAL L+ [e)gha, )1+ VA, (6)e])
X eci(‘»";An(00))2An‘m|27

for some constants C,C; > 0. The same arguments also apply to the other
terms. Therefore,

90+(e) 09F (£) 1 g0+ 90+(e) Py, 09+ (0)
Bo (B oy ) ( ~eéi(f)<m Jer) = 1)]|
dPt;’z
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=00 ()11 (611 @
< C(BL 1V O1) VAL + )
. . o 042 =2
> (@;An(oo)U“_ /An(p;An(90)|x‘)eci(¢nan(9 NAL x|
+ o (00 (L + VAu(pna, (0°) + iia (689)]2])
% eCHl((V’;An(90))2'*‘(‘/’:2”(90))2)AH|I|2 4+
+ona, (0°) (1 + VA (gha, (0°) + -+ oia, (67))]2])
y 6cm<<w;An<9°)>2+~v+<¢::gn<9°>>2)An|z|2>’
for any ¢ > 1, some constants C,C;,...,C,, > 0 and n large enough. This
concludes (4.4).
We next prove (4.5). Proceeding as (6.6) and using (1.1), we get
dpy’ 00+ (¢
s (%] Dier) -1
dPt;r
o i 00 (O 2., 100 (0)
= [ [T @b X ) e e x )
9? +£¢;An (90)u7 tr

Afi(o—‘r) 90+(€)
)dt) AGIB’-F(Z) ((th )telk)dei
dP,’

o0+ o+
(ax) Y = b6 (04), 8, x,

i
t

tr,T
Oia s 00t (¢ 00t (¢
+/ ) / (a9i+1b(0i+1(0+)atath ()))*0_72(]5’ th ())
9?+1+‘P;+Aln (eo)ui+1 tr
Hoi+1(0+)
09t (¢ 09t (¢ dPy, ", 0%+ (¢
(axy Y = b0 (04), 1, X7 ))dt)%((& C Y )dbin
dP; ,
g e OO )e 2y OO
et (0, b(0m (0+), 1, X, " 77)) 0 (8, X, )
9’9’L+LPZAH (Go)um tr

H0m (0+)
09t (¢ 09 (¢ : 09t (¢
(@x7 Y = b(0,(04), 8, X7 ())dt)idﬁtgéf(z) (X7 DYier, )dOnm.

tr,r
Then, using change of measures and (1.1), we get

0
200 (0) [500+ (0) (_TPla (10050
By 0 VO (e (X en) 1)

07 0+ . trt1 0+
-/ B[P [T @biero), e xO))
N O

i
t
tr

H0i(0+)
_ 077 (0) 07t (0) 00t (0) p T 0]
.o Q(t,Xt )(dXt —b(0;(04),t, X, )dt) 7d§’;’;+(£) (X )telk)] db;

tr,T
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9?+1 0+ try1 0+
=09% (0) [590+ 00 (0) 4
+/ i1 Et;,z( )[Vei (Z)/ (69i+1b(0i+1(0+)7t’Xt1 ()))
00, e (60 uit tk
o+ o+ o0+
o2, X7 ) (@x? Y = b0, (04), 8, X7 D at)
APy o,
X % (X! ( ))tefk)} df; 1
dPt;i,z
I 50O [ty [ 02 (0
+-~-+/ B0 [0 / (9, b(00 (0,1, X7y
0%, +oms, (00 um th
0+ 0+ 0+
o2, X0 Oy (@x? Y b0, (04),1, X7 ©)at)
B0m (0+)
dP;", 00+ (¢
x () ier,)|db
dpP;
o 70:(0+) [ 176;(0+) s 0;(0+) \\*
= ) Etkvm {V ' (89ib(9i(0+)ﬂtht ))
05 +ep7 A, (00)u; t

. 0-—2(t7sz‘(O+))(dXt9i(O+) o b(ei(o—i‘),t,thi(O+))dt):|d9i

0 i+1 (o b
1‘+1+507,,An(9 )ui+1 tr

9?+1 ~0,41(04) [0 0 tht1 0;11(04)
Jr/(9 Eli+ {V it+1( +)/ (aei+1b(9i+1(0+),t,Xt i+1 )"
. 0—2(t7Xfi+1(0+))(dei+1(O+) . b(9i+1(0+),t,Xfi+1(0+))dt)}d9i+1

O, ~ . thy
N / Ef:fa(coﬂ |:V0m(0+) / (89, b(0m (04), ¢, Xtﬁ’m(0+)))*
0

0 e (00)un t

)

?—FZL/?LA" (90)11,I tr

071 N N
. U_l(t, Xt@i(oﬂ)dBt] db; + / Ef;f;(oﬁ |:V9i+1(0+)

i+1
0941 +‘p;,+An (0%)uits

9? . R tht1 ‘
-/ B0 [P0 [ @0 b(os04), 8,70

th+1
: / (90,4, 0(0531.(0+), £, X7 O o1 4, X7 OBy | agy

tr

0%, N R
+ -+ / Ef}:r:a(co"r) |:V6m(0+)
0

0, +eTs (60)un,

tht1
. / (90,00, (04), £, X079 0= 1, X0 OBy

ty

Next, using Holder’s inequality with % + % = 1, Burkholder-Davis-Gundy’s
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inequality, conditions (A2) and (A3)(b), and Lemma 4.2 (ii), we get

9°+(z ot dP{ x 097 ()
B[ ‘”(ﬁ“xt ren) = 1))

te,x

< OV +1a) | / (B 1700)7)) s,

09+00 o (09)us
)

which concludes (4.5). Thus, the result follows. O

Ta0m (0+ U m %
| [ (Bfr D7) o
0.+, (09)um

6.5. Proof of Lemma 4.8

Proof. First, observe that ZZ;S EY [H17k7n|]?tk] = 0. Next, using 1t6’s formula,
we get

n—1 n—1
D BT HT palFu] < C((@ha, (0°)) + o+ (o, (09)7) A2 D (1 + X7, 1),
k=0 k=0

Then, taking expectations on both sides and using Lemma 4.3, we obtain

n—1
B[N B [H? P )] < CAZ((9a, (00))% + ...+ (91, (09)%)
k=0

x (n+ 2 v, (0°))
k=0

~ ~ 560
which, by condition (A6), tends to zero. Thus, Z;é EY’ [H? ). | Ft] o
60
Therefore, by Lemma 4.1 a), Hy j» .
Next, using [t6’s formula and Lemma 4.3,
~0 n_l/\ 0 ~ 3 . )
BV B [HapallFu]] O 30 Advla, ()9, (0°)
k=0 6,§€{1,eym}
n—1
x (n+ Y v, (0%),
k=0
500
which, by condition (A6), tends to zero. Thus, > 2 E?°[ Fi.] = 0.

/\0

Therefore, by Lemma 4.1 b), Ha ;. p, Pso.
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Now, using (A2) and (A3) and Lemma 4.3, E?’ [ZZ;& EGO[\Kj,k,antk]] is
bounded by

n—1
CAuphn, ()50 5 (69)((#hn, (600 + ..+ (e, (0)) (n+ 3 672(6%)),
k=0
g0
which, by (A6), tends to zero. Thus, by Lemma 4.1 b), K, » LN for j €
{i,i+1,...,m}.
Finally, we treat &2 ; k. For this, we write &2 k.n = £2,1,i,k,n+62,2,4,k,n, Where

ot = Pon, (00)u; /O 1 (00,002 (0, X2) — D0,b(0°, 11, X2 )
<ot X0, )0 (th, X, ) (B, — Bu)de,

22,0 0n = Pon, (00)u; /O 1 (8g,ib(0?+(€),tk,Xf: ) — 9,b(6%, ty,, X7 ))*
o2t X7 (b(@o,tk,Xf:) - b(@?ﬂz),tk,xt@:)) Andl.

Observe that ZZ;S EY’ [5271,1-7;67"\.7?%] = 0. Using (A2) and (A3) and Lemma 4.3,

n—1
=~p0 ~n0 ~
B[ B [1kn P

k=0
n—1
< OB (@, (09 ((2ha, (007 + 4 (91a, (00)°7) (n + Y v, 2(6%)),
k=0
pe°

which, by (A6), tends to zero. Thus, by Lemma 4.1 a), £€2.1,;,5,n — 0.
Next, using (A2) and (A3) and Lemma 4.3,

n—1
EY [ Z £ [1€2,2,1, 1 Fe]]

k=0
< CAppa, (0°)(€ha, (09) + ..+ (¢)1a, (6°)))

n—1

X (@b, (0°) + ..+ @, (09) (n+ > 17,2(6°)),
k=0

~0
which, by (A6), tends to zero. Thus, by Lemma 4.1 b), {224 k.n 5 0. The
result follows. O

6.6. Proof of Lemma 4.10

Proof. We apply Lemma 4.1 a) with

Ck,n = Ci,k,n
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_ Pin, (0)u; /1 {Z” E90+(£) [Re°+ (0),k 90 )

A i,k,n th XBO 5 tk+1
n

- x? ] }dé.

. . 00+ (¢ 0% (0),k .
Using (4.2) of Lemma 4.4 with V% () = R ,and (4.4) of Lemma 4.5 with
¢ = 2, the mean value theorem for vector-valued functions, and Lemma 4.2 (i)
applied to yo: +(€), we get

n—1

IZEQO[
Son 1

<OZ 2 /¢ 1+ X0 DE GRS O4)

0 0 5
(%A (6°)(1+ v/Brgin, (60| X2 )eCe(Phan @D AnlXE|

+ it (00 (14 VAr(gha, (0°) + it (6)]X7 1)

w eCit1((Pha, (0°)?+(e) ), (0°))An|X] |2

Fuull

+¢a, (00) (1 + VA (eha, (6°) + ---+<P?A (09)1X%, 1)

i O (@, (O0) (@0, (0°)2) A X7y )dg

n—1
. 3 0 . 0
< Clgha, (0285 3 (14 XL + VAugha, (001 X0 1)
k=0
) i1 0\ A S ot 0013
+ O, ()6 (027 Y (1410
k=0
i i 0
VBB, (6) + @8, (OO |XE | ) et (Fran TS, (2N,

n—1

. 3 0 .
et O, ()0, ()AL S (14 X0 P+ V/Bulpha, (6°) +
k=0

m ° Cm 0° 0°))2)A,, 2
gl (O[O (han @D el CDDAIXET

(At 0442 09 2
X ecz(ﬂp"An(e ) An‘th‘

~pgO0+ 0+
Here, we have used the fact that E9 X0 [Z” | = B [Rg (e)’k] = 0 and

i,k,n te, tho
the mean value theorem for vector- Valued functions to Write

09 (0)

0+
oi(s,Ys? o (e))

) = oilte, Yy,

1 ot
= (/ Toi(ts +0(s — 1), Y0 O 4o Oy “)))d)
0

s —t
. o+ o+ ,

123
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where the Jacobian matrix is given by

0to1i 03,015 ... Ogy01i
J, =

k3

004 Op,0ai .. Opy04s

Thus, using Young’s inequality with plo + q% = 1 and pg close to 1, Lemma 4.3
and (AT),

~ 0 n_l/\ 0 ~
B[S B (Gl P

n—1

< CAF(gha, (6°) (n + Z U (0%) + (VBupha, () D v, (0%))
k=0

+ CAGgha, (0065 (0°) (n+ Z V" (0%) + (VAu(pha, (0°)

Fe @ S v (0)) + -+ CAZ g, ()07, (6°)

k=0
n—1 n—1
x (n+ D) + (VB )+ s, 00 3 U (),

which, by condition (A6), tends to zero. Thus, >, _ é [Cl k n|.7:tk] L 0

Next, applying Jensen’s inequality, (4.2) of Lemma 4.4, (4.4) of Lemma 4.5,
the mean value theorem for vector-valued functions, and Lemma 4.2 (i), we get

n—1 0 i 2n 1 N
N e Y LA,
k=0
l
+Ef+X [IRGW 2]+ CvVAL+1xE ( " Xeo [ RET Ok )’

0 9] 2

% (ha, (00) (14 VB, (0°) X)) (Phan 001X
k3 i 0

o, (00 (1 + VAn(pha, (0°) + LA (091X, 1)
o Cit1(Pha, O+ (0°))AnXE, 2 S
; 0

+¢a, (00) (14 VAu(eha,( 90)+~~~+90nmA (0°)1X7, 1)

i (O (Pha, (OO (9T, (690)2) A | XY )}dg

i
L

< CA2(pla, (6%) 21+| 9+ AL (6, (0923 (141X
k=0 0

=~
Il
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. 0 0 2 5 .
VBl ()X ) Phan VAT L OaF s, (67)

n—1
0 . . 0
x @i (00 (141X 1P+ VAu(Pha, (0°) + o (0)1XE, %)
k=0

i i 0 5 .
% eCi+1((%An(9o))2 (it - (0%)? )An\ka 2 4 ...+ CAZ (SDZATL(QO))Q
n—1

0 - 0
X @, (09) ) (1 X0 P 4 VAN (Pha, (0°) + -+ oma, (09) X7, I“)

k=0
s (Cm(@ha, (00D (ol (00 An X2 (6.7)
Thus, using Young’s inequality with plo + qio =1 and pg close to 1, Lemma 4.3
and (A7),

EGO[ZEG (GralBi]] < CA2(6ha, (69) (n—|—21/1tk (")

k=0
n—1
5 _ . _
+ CA(¢ha, (0°) (n+ Z G (0) + (VBgha, (00 D 0 (0%))
k=0
5 . n-l
+ CA (P, ()26 (%) (n+ 3 w7 (6°)
k=0
] ) n—1
T+ (VAu(pha, (0°) + i (00 > v (6"))
k=0
5 ) n—1
ok CAR(pha, (0°) %0, (0%) (n+ > 0,7 (8°)
k=0
] n—1
(VB (6°) + - olia (607 D 0, (6)),
k=0
which, by condition (A6), tends to zero. Thus R an|]—'tk] —0> 0.

90
Therefore, by Lemma 4.1 a), ZZ;; Cikn 50 for any ¢ € {1,...,m}. Thus,
the result follows. O

6.7. Proof of Lemma /.11

Proof. We write

‘PZAn(eo)ui ! 4,0 9(’*(4) a°+(e)k 075 (0 _ 400

= Gi1,kn + Gi2,kms
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where
1
Ci,l,k,n = @;An (eo)ul / (a9qb(9?+(€)a s Xtek ))*O_Q(tk’ Xtek )Mi,l,k,nd&
0
1
Ci,Z,k,n = QPLA" (eo)ul / (aeib(9?+(‘€)’ i, Xtek ))*0_2(tk7 XtQA )Mi,2,k,nd£7
0

e 0 6° 0 6°
M1 k0 = (b(ﬁ .8, X0 ) —b(0°, bk, X7))

ty

— (B0 (0,5, X2') = b(02(0), 1, X)) ) ds,

trt1 0 0
Misjon = / (6060 (00,5, X2") — b(62* (0), 1, X0 ) s

tr

~ 0+ tet1 0+
B[ e 0.

t""Xfo th
0% (0) 67t (0 0
_b(9?+(£)7tk7y;‘/k ))dS’Y;ka = Xtek+1:|'
First, we treat (; 1,». For this, using the mean value theorem, we write
b(6°, 5, XO") = b(09F (), 5, X2") = b(60F,, 5, XO") — b(69F (£), 5, X7")
+b(00 0 5, XE) = b(00 5, X0 ) -+ b(O5 5, X0 ) = b0, 5, XT)

m—1»
+ (8%, 5, X%°) — b(6%, 5, X2")
1
= tgia (6°)uy / D0, b(09F (al), 5, X Vdax
0
1
- SD:L—FAln (Qo)ui+1 / 80i+1b(0101_1 (Ol), S, Xfo)da
0
1
T (6% / 99, b(0°F (), 5, X**)dar.
0
Therefore,

b(6°, 5, X8") — 0(60°, 1, X2') — (b(007(£), 5, X2") — b(02T (€), 11, X0))
= b(0%, 5, X2°) — b(67F (0), 5, X2") — (b(6°, tr, X0 ) — B(69F(£), tr, X1))

1
= i () / (5,b(6%* (at), 5, X°) — 09, b(07* (at), 1y, X°°)) da
0
1
7 0 0
- Spn_‘_Aln (90)11,2-4_1 /0 (89i+1 5(9311 (a)a S, Xg ) - 891’+1b(0?—tl (Oz), lk, ka ))da

1
e gl ) [ (00,005 (@), 5, X) = 0, (60 (@)t X)) do
0
Then, using the mean value theorem for vector-valued functions, we write

09,b(09" (@), 5, X0") — 8,0(6%" (), t1, X[\ )
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6° 6° 0°
Jae Joti +v(s — 1), X0, +o(XT = X0)dv)
S — tk
X - xp)
for all j € {i,...,m}, where the Jacobian matrix is given by

Jld

8§jtb1 8gjzlb1 e 89
Jaej b= . Z
agjtbd 39 w1 (90 wd

This, combined with (A2)-(A3), Lemma 4.2 (i) and Lemma 4.3, we obtain
~ 0 nil/\ 0 ~
B[SO E"[[Gkn| 1]
k=0
3 . =
< OATgla, (0°) (P, (0°) -+ 0a, () (m+ 3 2(0°))
k=0

80
which, by (A6), tends to zero. Thus, by Lemma 4.1 b), Zk o Gislk,n L)
Next, we apply Lemma 4.1 a) to {; 2 k.. To simplify the exposition, we set

= (D0, b(07F(0), th, XP)) 0 (tr, X7, )
tht1
/ (b6 (0), 5, X2) = b6 (0), 14, X7 ) ds,
VIO = (3,660 (0), tk,ka )%o 2 b, X))

trt1
A RO A B G ORI

Then, using (4.3) and (4.2) of Lemma 4.4 with V% and V9?+(€)7 (4.5) and (4.4)
of Lemma 4.5 with ¢ = 2, and Lemma 4.2 (i), | Y., o [Ci 2.k ,n | Ft, ]| is bounded
by

n—1 1
. 0
Chn, @)uil Y- [ V(141X
k=00
00
% {‘/ ' (EGi(OH [[74:0)) d9 )
O0+0p% 5 (0°)us b, X0
i+1(0+) 11770541 (0+)
+ ‘ AU +<,01+1 (0%)uiq1 (Etk!XG HV | ]) d01+1‘

m 3 ot () 0+ 3
+ ‘ / (E (0+)[|V0 (0+)| ]) 2d6,, ’ (E < HVG (£)| D 3
00 +<p'm go)u

tk,th k) tlc
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" (so;A (0°) (1 VB, (0°)| X P O 206
i (0°) (14 VA (eha, (0°) + @3 (0°)] X1, )
« eCiJrl((‘PﬁAn( N2+ (090)%)An| X7, o 4.
+ @, () (1 + VAL (Pha, (0°) + -+ + @i, (09)|X7,])
o oOm((Phia, (6074 H(Ps , (69)7)An| Xy 2)}&
n—1

. i m 0
< OAZpla (09)(ha, (%) + i (0°) + -+ + ol (69) 3 (1+ X T?)
k=0

|
—

+ OA2 (6, (002 Y (1 IXE 1 + VBugha, (OO XE )
0

>
Il

n—1
0 2 i 0
« i i(eha, (0°))° Aan oy + OA2 SOnA (90)@7;;1 (90) Z (1 + |Xt0k |3
k=0

VB, (6) + i (EODIXEL|* e (o P42, 00201

n—1
ok CAZGhA ()00, (69) Y (14 X0 1P 4+ VA (Pha, (6°) +
k=0

o™ (0°)| XA ) Com((#ha, (60074 + (2T, ("N ARIXE |
nAay k

0+
Here, we have used B (e) [V00+(£)] B (?0 [V9?+(5)] due to the fact that

ks ik kXt
YO () s the independent copy of X 977() and the mean value theorem for
vector-valued functions to write

b(O0F (), 5, Y D) — b(09+(0), 11, v ©)

0+ 0+
= ([ 000t~ 10, YO O O )
0

s —t
. o+ o+
Ysei () YG *)

where the Jacobian matrix is given by

Oiby Opby ... Ou,by
7 . L )

Oiby Ouba ... Onyba

Then, using Young’s inequality with p% + q% =1 and pg close to 1, Lemma 4.3
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and (AT),
P18 [l
k=0

< CAZghA, (0°) (#ha, (6°) + -+ iia (60%)) (m + Z NG

n—1
+ CA2 (@, (670 (n + Z e (0°) + (VBapha, (607 D7 0, 7 (6°))

k=0

+ CAZghA, ()6, (0°) (n+ Z e (0°) + (VAu(eha, (0°)
P (00 Z U (00)) o+ OAZGLA, ()6, (6°)

n—1
x (n+ S 000 + (B, (00 e, 0O S ©").

k=0 k=0

~ ~ _ po°
which, by condition (A6), tends to zero. Therefore, Z:;(l) E? [Ci2.en | Fi] L)
as n — 0.

Next, applying Jensen’s inequality, (4.2) of Lemma 4.4, (4.4) of Lemma 4.5,
the mean value theorem for vector-valued functions, and Lemma 4.2 (i),
PR Zok n|]:tk] is bounded by

2(ppa, (0%)us) Z/ {Ef,j,xeﬂ v } +Et7 xe [|Va°+(/z)| }
0+ =
+CVAL+ X)) ( f )ii)o [|Veg+(z)‘4])z
tk
x (@fm (09)(1+ VA (6°)| X7 ])eCi(han @D AnIX, 12
+ o (00 (1 + VAL (pha, (09) + @ (09)1XE, )

Cit1((Pha, (07 +(@) L (6°))° )An\Xt,cl2

X e 4.

m 7 m 0
+ 0nia, (00 (1 VAL (@, (6°) + -+ @lin, (0))1XF)
" ecm((wfmn(90))2+'“+(¢3An(90))2)An\Xf:|2) }dg

—

n—1 n—
< ON3 (i (6%)) Z 14+ X2 [4) + CAZ (gha ( 32(1+|ij|5
k=0

k=
. e .
F VB, (0O)XE0) O Chan @V AN L ok (g (6°))?
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n—1
0
X (69) 30 (14 X0 P+ v/ Bulua, (6°) + 5 (601X 1)
k=0
i+1

s (O, O R, ODIAIXETE L oad (gl (6%))2

n—1
% lia, (00) S (14 XU 4 /B, (0°) + -+ s, (621 XEL )
k=0

; 0
« eCm((%An(90))2+'~-+(¢>Z‘An(90))2)An\ka, I

Then, proceeding as for the term (6.7), we get

EGO[ZEG [zzkn|~7:tk” < CA} (@ha, (6°)) (n+2wtk 90)

k=0
+ OO (gl (09 (n + Z G+ (B, 0 3 7 (")
k=0
+ OAL(gha, (697051 (6°)
n—1 n—1
x (n + 300 + (VB (0°) + @5 (0 D v, (0))
k=0

k=0
ot CAE (@ha, (00))* A, (0°)
n—l

(n + Z U (0%) + (VBa(ha, (%) + -+ iia, ()7 D7 0, 7(6")),
k=0

which, by condition (A6), tends to zero. Thus, 7 EY” (&% kn|]-'fk] o

g0
Therefore, by Lemma 4.1 a), ZZ;S Ci2.kon 0 for any i € {1,...,m}. Thus,
the result follows. O
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