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Abstract: Working with so-called linkages allows to define a copula-based,
[0, 1]-valued multivariate dependence measure ζ1(X, Y ) quantifying the
scale-invariant extent of dependence of a random variable Y on a d-dimen-
sional random vector X = (X1, . . . , Xd) which exhibits various good and
natural properties. In particular, ζ1(X, Y ) = 0 if and only if X and Y
are independent, ζ1(X, Y ) is maximal exclusively if Y is a function of X,
and ignoring one or several coordinates of X can not increase the resulting
dependence value. After introducing and analyzing the metric D1 under-
lying the construction of the dependence measure and deriving examples
showing how much information can be lost by only considering all pairwise
dependence values ζ1(X1, Y ), . . . , ζ1(Xd, Y ) we derive a so-called checker-
board estimator for ζ1(X, Y ) and show that it is strongly consistent in
full generality, i.e., without any smoothness restrictions on the underlying
copula. Some simulations illustrating the small sample performance of the
estimator complement the established theoretical results.
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1. Introduction

Consider a random vector (X1, X2, . . . , Xd, Y ) on a probability space (Ω,A,P),
write X = (X1, . . . , Xd), and suppose that (X1, Y1), . . . , (Xn, Yn) is a sample of
(X, Y ). Two of the major questions (think of problems like feature selection or
regression) in statistics are (i) how much information X provides about Y (or,
equivalently, how dependent Y is on X) and (ii) how this dependence can be
estimated in terms of (X1, Y1), . . . , (Xn, Yn). Seemingly natural requirements
for a measure δ quantifying the extent of dependence of Y on X are:

(N) δ(X, Y ) ∈ [0, 1] (normalization).
(I) δ(X, Y ) = 0 if and only if Y and X are independent (independence).
(C) δ(X, Y ) = 1 if and only if Y is a function of X (complete dependence).
(S) δ is scale-invariant.

(IG) δ fulfills the information gain inequality

δ(X1, Y ) ≤ δ((X1, X2), Y ) ≤ · · · ≤ δ((X1, . . . , Xd), Y ).

Not surprisingly, various ‘dependence measures’ (fulfilling the afore-mentioned
five properties to different extents) and their estimators have been introduced
and studied in the past 15 years, see for instance, [3, 8, 9, 11, 16, 24, 37, 38,
47, 46, 48] and the references therein. The majority of these works focuses on
the bivariate setting, including the measures ξ studied in [9] (implemented in
the R-package xicor), ζ1 studied in [24, 48] (R-package qad) or MIC studied
in [37, 38] (R-package minerva). Leaving the 2-dimensional setting and aiming
at general multivariate measures the number of works decreases significantly,
for a brief survey we refer to [3, 23, 46] and the references therein. In [47,
46], for instance, the authors introduce the by now well known multivariate,
characteristic function based dependence measure distance correlation which
generalizes the idea of correlation and is able to characterize independence of
two random vectors X and Y in arbitrary dimension. Distance correlation,
however, is not capable of detecting complete dependence in full generality, i.e.,
it does not attain the value 1 exclusively for the case that Y is a function of X
(and hence violates the afore-mentioned property (C)).
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The recently introduced measure of conditional dependence T (see [3]), which
is a multivariate extension of the highly performant bivariate measure ξ (see
[9]) resolves this problem. Its remarkable estimator Tn, implemented in the R-
package FOCI, performs generally very well and has attracted a lot of attention
in the statistical community, which is reflected by a large number of follow-
up works. In [10, 21], for instance, extensions of the (conditional) dependence
measure to topological spaces and multivariate output Y were developed and
studied. Furthermore, the authors in [44] derived the (previously conjectured)
asymptotic normality of Tn under independence (see [3]) and some mild con-
ditions, a result which, in turn, allows to apply Tn in the context of testing
for conditional independence. Following [44] Tn does not have optimal power
in testing for independence, which agrees with the bivariate setting as stud-
ied, e.g., in [32, 45]. For an excellent overview concerning Tn and related no-
tions/generalizations we refer to [19] and the references therein.

In the current paper we focus on an extension of the bivariate, copula-based
dependence measure ζ1 and its so-called checkerboard estimator to multivariate
X. In dimension two, ζ1 and ξ are closely related - in fact, ξ is the L2-version of
the older L1-based measure ζ1. Moreover, the estimators of the population values
- although being based on entirely different ideas - perform comparably well (see
[24]) in most situations, with the ζ1 estimator exhibiting a slightly higher power
in detecting deviation from independence as well as attaining only values within
[0, 1], whereas the estimator of ξ may also be negative (a property potentially
hard to interpret for applicants outside the statistical community). As main
result we will show that the introduced extension of ζ1 yields a dependence
measure fulfilling all five properties (N), (I), (C), (S), (IG), and derive a strongly
consistent estimator for it.

Note that the seemingly natural extension of ζ1 interpreted as distance to
independence does not yield a reasonable measure: In fact, for random variables
X,Y with continuous bivariate distribution function H, marginals F,G and
(unique) copula A according to [48] the measure ζ1 is defined by

ζ1(X,Y ) = ζ1(A) = 3D1(A,Π).

Thereby Π denotes the bivariate product copula and D1 is the metric on the
family C2 of all bivariate copulas defined by

D1(A,B) :=

∫
[0,1]

∫
[0,1]

|KA(u, [0, v])−KB(u, [0, v])| dλ(u) dλ(v),

where KA(·, ·),KB(·, ·) denote the Markov kernels (regular conditional distribu-
tions) of A,B ∈ C2, respectively. Proceeding analogously and considering

D1(A,B) :=

∫
[0,1]

∫
[0,1]d

|KA(u, [0, v])−KB(u, [0, v])| dλd(u) dλ(v),

does not yield a metric on the family Cρ of all ρ-dimensional copulas since,
firstly, the (conditional) probability measures KA(u, ·) and KB(u, ·) are only
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unique A1,...,d and B1,...,d-almost everywhere, whereby A1,...,d and B1,...,d de-
note the d-dimensional marginal copulas of A and B, respectively. And secondly,
none of the two marginals needs to be uniformly distributed on [0, 1]d. An al-
ternative approach based on ζ1 of all pairs was studied in [15], the obtained
notion, however, did not exhibit the desired properties either since only consid-
ering all bivariate marginals may go hand in hand with losing a lot of relevant
information.

In the sequel we will show how working with the so-called linkage operator
(see [31]) which allows to transform general random vectorsX to random vectors
uniformly distributed on [0, 1]d provides a way to overcome the afore-mentioned
problems and hence opens the door to extending ζ1 to a measure fulfilling all five
desired properties. Notice that a similar, linkage-based approach was studied [7],
the focus there, however, was on the technically less demanding case of absolutely
continuous random vectors and, moreover, no estimator was provided. Also note
that focusing only on univariate variables Y entails no restriction since the
dependence of a random vector (Y1, . . . , Ym) = Y on X may be quantified by
simply considering the dependence scores of (X, Y1), . . . , (X, Ym).

The rest of this paper is organized as follows: Section 2 gathers preliminaries
and notations that will be used in the sequel. In Section 3 we recall the definition
of linkages, express the connection between copulas and their linkage in terms
of Markov kernels and prove a characterization of copulas fulfilling the so-called
conditional independence property. In Section 4 we then introduce the metricD1

on the space Cρ
Πd

of linkages, discuss various (topological) properties (extending
those in [48]) and show that the family of so-called checkerboard copulas (which
are key for the construction of our estimator) is dense in (Cρ

Πd
, D1). Based on D1

we then construct the non-parametric measure of dependence ζ1 in Section 5
and show that the obtained measure fulfills all five properties mentioned before.
Finally, we construct a checkerboard estimator for which we prove strong con-
sistency in full generality (Section 6). Various examples and graphics illustrate
both the obtained results and the ideas underlying the proofs. A simulation
study illustrating the performance of our estimator and some technical proofs
can be found in the Appendix A and B.

2. Notation and preliminaries

Throughout the paper ρ ∈ N will denote the dimension and d is defined by d :=
ρ− 1. Bold symbols will be used to denote vectors, e.g., x = (x1, x2, . . . , xd) ∈
Rd and we will also write (x, y) for (x1, . . . , xd, y) ∈ Rρ. The ρ-dimensional
Lebesgue-measure will be denoted by λρ, in case of ρ = 1 we will also simply
write λ and I will denote the unit interval [0, 1]. Moreover, Cρ denotes the family
of all ρ-dimensional copulas, in the two-dimensional setting we will also write
C, d∞ will denote the uniform metric on Cρ, i.e.,

d∞(A,B) := max
x∈Iρ

|A(x)−B(x)| .
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It is well known that (Cρ, d∞) is a compact metric space (see, for instance, [14,
36]). For every C ∈ Cρ the corresponding ρ-stochastic measure will be denoted by
μC , i.e., μC([0,x]) = C(x) for all x ∈ Iρ, whereby [0,x] :=×ρ

i=1
[0, xi] = [0, x1]×

· · ·×[0, xρ]. Πρ and Mρ denote the ρ-dimensional product and the ρ-dimensional
minimum copula, i.e., Πρ(x1, . . . , xρ) =

∏ρ
j=1 xj as well as Mρ(x1, . . . , xρ) =

min{x1, . . . , xρ}, for ρ = 2 we will also simply write Π and M . If we consider
the marginal copula with respect to the first k variables, we will simply write Ak,
i.e., we have Ak(x1, . . . , xk) = A(x1, . . . , xk, 1, . . . , 1), furthermore Cij denotes
the i-j-marginal for i �= j and i, j ∈ {1, . . . , ρ}, i.e.,

Cij(xi, xj) = C(1, . . . , 1, xi, 1, . . . , 1, xj , 1, . . . , 1).

For more background on copulas and ρ-stochastic probability measures we refer
to [14, 27, 36] and the references therein.

In what follows, Markov kernels will play a prominent role. For every metric
space (Ω, d) the Borel σ-field on Ω will be denoted by B(Ω). Let (Ω1,A1) and
(Ω2,A2) be measurable spaces. A map K : Ω1×A2 → [0, 1] is called Markov ker-
nel from (Ω1,A1) to (Ω2,A2) if for every fixed A2 ∈ A2 the map ω1 �→ K(ω1, A2)
is A1-B(R)-measurable and for every fixed ω1 ∈ Ω1 the map A2 �→ K(ω1, A2) is
a probability measure on A2. Given a j-dimensional random vector Y and a k-
dimensional random vector X on a probability space (Ω,A,P), i.e., measurable
mappings Y : (Ω,A,P) → (Rj ,B(Rj)) and X : (Ω,A,P) → (Rk,B(Rk)), we say
that a Markov kernel K is a regular conditional distribution of Y given X if

K(X(ω), F ) = E(1F ◦ Y |X)(ω)

holds P-almost surely for every F ∈ B(Rj). It is well-known that for each random
vector (X,Y ) a regular conditional distribution K(·, ·) of Y given X always
exists and is unique for PX -a.e. x ∈ Rk, whereby PX denotes the push-forward of
P underX. It is well known thatK(·, ·) only depends on P(X,Y ), hence, if (X,Y )
has distribution function H (in which case we will also write (X,Y ) ∼ H) we
will let KH(·, ·) denote (a version of) the regular conditional distribution of Y
given X and simply refer to it as Markov kernel of H. Furthermore, we will
write Fρ for the family of all ρ-dimensional distribution functions.

If C ∈ Cρ is a copula, then we will consider the Markov kernel of C (with
respect to the first k-coordinates) as mapping KC : Ik × B(Iρ−k) → I. Defining
the x-section of a set G ∈ B(Iρ) as Gx := {y ∈ Iρ−k : (x,y) ∈ G} the so-called
disintegration theorem yields

μC(G) =

∫
Ik
KC(x, Gx) dμCk(x), (1)

so for the particular case k = d := ρ− 1 we have

μC(I
d × F ) =

∫
Id
KC(x, F ) dμCd(x) = λ(F ). (2)

For more background on conditional expectations, regular conditional distribu-
tions and general disintegration we refer to [25, 27].
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In the sequel U(0, 1) will denote the uniform distribution on I and if X ∼ F
we write F− for the pseudo-inverse of the distribution function F , i.e., F−(y) :=
inf{x ∈ R : F (x) ≥ y}.

3. Copulas and linkages

Suppose that X1, . . . , Xd are random variables on (Ω,A,P) with cumulative dis-
tribution functions F1, . . . , Fd and letH denote the cumulative distribution func-
tion of the random vector X = (X1, X2, . . . , Xd). According to Sklar’s theorem
(see, for instance, [14, 36]) there exists a unique subcopula S : cl(Range(F1))×
· · · × cl(Range(Fd)) → [0, 1] such that for all x ∈ Rd

H(x1, . . . , xd) = S(F1(x1), . . . , Fd(xd)). (3)

If F1, . . . , Fd are continuous distribution functions, then S is a copula and
unique, otherwise S can be extended in uncountably many ways to a copula
C ∈ Cd (see [14]). To ensure uniqueness of C in the general setting, we agree on
working with the multi-linear interpolation of S (see, for instance, [14, 17]).

In what follows we will work with the so-called modified distribution function
(see [14, 2.3.4.] or [42]). Let Z be a random variable on (Ω,A,P) with distribution
function F and r ∈ [0, 1] be fixed. Then F r : R → [0, 1], defined by

F r(z) := F (z−) + r [F (z)− F (z−)] = P(Z < z) + r · P(Z = z)

is called modified distribution function of Z. The following well known lemma
which considers random r gathers the main properties of the generalized distri-
butional transform (a.k.a. generalized PIT) FR(Z) of Z (for a proof see [42]).

Lemma 3.1 (Generalized PIT). Suppose that Z has distribution function F ,
that R is uniformly distributed and that Z and R are independent. Furthermore,
set U := FR(Z). Then the random variable U is uniformly distributed on [0, 1]
and the identity F−(U) = Z holds with probability 1.

To simplify notation we will write

Fd|1...d−1(xd|x1, . . . , xd−1) := KH(x1, . . . , xd−1, [0, xd])

as well as

F r
d|1...d−1(xd|x1, . . . , xd−1) :=KH(x1, . . . , xd−1, [0, xd))+rKH(x1, . . . , xd−1, {xd}),

for the conditional and the modified conditional distribution functions, respec-
tively, where X = (X1, . . . , Xd) ∼ H and r ∈ I. If R ∼ U(0, 1) and X are
independent, then for all vectors (x1, . . . , xd−1) ∈ Rd−1 the random variable
FR
d|1...d−1(Xd|x1, . . . , xd−1) (i.e., the generalized probability integral transform

FR
d|1...d−1(Y |x1, . . . , xd) of the random variable Y ∼ KH(x1, . . . , xd−1, ·)), is uni-

formly distributed on I. Suppose that r = (r1, r2, . . . , rd) ∈ Id, then following
[39, 43] the transformations Φr : Rd → Id and Ψ : Id → Rd are defined by

Φr(x1, x2, . . . , xd) := (F r1
1 (x1), F

r2
2|1(x2|x1), . . . , F

rd
d|1...d−1(xd|x1, . . . , xd−1))
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for all x ∈ Rd and

Ψ(u1, u2, . . . , ud) := (z1, z2, . . . , zd),

whereby z1 = F−
1 (u1) and, inductively

zi = F−
i|1...i−1(ui|z1, z2, . . . , zi−1)

for i = 2, 3, . . . , d. Both transformations are well known in statistics: Φr is
called Rosenblatt transformation and was introduced by Rosenblatt in 1952
[39] for absolutely continuous random variables and generalized in [41, 43] to
the general setting. The ‘inverse’ transformation Ψ is well known in the context
of generating samples. The following lemma gathers the main properties of the
mappings ΦR and Ψ (see [31, 39] for the absolutely continuous setting as well
as [43, Proposition 2 and Theorem 3] and [42, Section 3] for the general case).

Lemma 3.2. Suppose that X = (X1, X2, . . . , Xd) ∼ H, U = (U1, U2, . . . Ud) ∼
Πd ∈ Cd and that R = (R1, R2, . . . , Rd) ∼ Πd is independent of X and U . Then
the following statements hold:

1. ΦR(X1, X2, . . . , Xd) ∼ Πd,

2. Ψ(U1, U2, . . . , Ud) ∼ H.

In particular, ΦR ◦Ψ(U1, U2, . . . , Ud) ∼ Πd, and

3. Ψ ◦ ΦR(X1, X2, . . . , Xd) = (X1, X2, . . . , Xd) with probability 1.

For the rest of the paper we agree on the following conventions. Suppose that
X = (X1, . . . , Xd) and Y are defined on the same probability space (Ω,A,P),
(X, Y ) ∼ H with univariate marginals F1, . . . , Fd and G, respectively. We say a
random vector X is uniform if its distribution function restricted to Id coincides
with Πd, i.e., P

X = λd|Id . Moreover, let R1, . . . , Rd, Rρ be i.i.d., uniformly dis-
tributed on I and write R = (R1, . . . , Rd). Following [31] the joint distribution
function of the random vector (U , V ) defined by

(U , V ) := (ΦR(X),ΦRρ(Y )) (4)

is called linkage of (X, Y ), or linkage of H. The family of all ρ-dimensional
linkages, i.e., copulas with d-dimensional uniform margin, will be denoted by

Cρ
Πd

:= {C ∈ Cρ : C(x1, . . . , xd, 1) = Πd(x1, . . . , xd)}.
Interpreting the linkage construction as operator from Fρ to Cρ

Πd
we will also

write L : Fρ → Cρ
Πd

.

In other words: if (X, Y ) ∼ H then (U , V ) = (ΦR(X),ΦRρ(Y )) ∼ L(H).
In the sequel we will mainly focus on the linkage operation on the space

of copulas, i.e., the mapping L : Cρ → Cρ
Πd

assigning each copula its linkage,
implying that for every ρ-dimensional random vector (X, Y ) ∼ C ∈ Cρ we
have (U , V ) = (ΦR(X), Y ) ∼ L(C). Notice that the random vectors (X1, Y )
and (U1, V ) have the same distribution by construction. The following useful
lemmata describe the connection between the copula and its linkage in terms of
the corresponding Markov kernels and partial derivatives.
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Lemma 3.3. Suppose that (X1, . . . , Xd, Y ) ∼ A ∈ Cρ and let (U , V ) be defined
according to Eq. (4). Then

KL(A)(x1, x2 . . . , xd, [0, y]) := KA

(
Ψ(x1, x2, . . . , xd), [0, y]

)
defines a Markov kernel of L(A), i.e., the following identity holds for all (x, y) =
(x1, . . . , xd, y) ∈ Iρ:

L(A)(x1, x2, . . . , xd, y) =

∫
[0,x]

KA

(
Ψ(u1, u2, . . . , ud), [0, y]

)
dλd(u)

Proof. Obviously, the mapping F �→ KA(Ψ(x1, x2, . . . , xd), F ) is a probabil-
ity measure for every fixed x ∈ Id. Moreover, measurability of the mapping
(x1, . . . , xd) �→ KA

(
Ψ(x1, x2, . . . , xd), [0, y]

)
for every fixed y ∈ [0, 1] is a direct

consequence of measurability of Ψ and the fact that KA(·, ·) is a Markov kernel.
Since the family

D := {E ⊆ I : (x1, . . . , xd) �→ KA

(
Ψ(x1, x2, . . . , xd), E

)
is measureable}

forms a Dynkin system containing the family of all intervals of the form [0, y] we
conclude thatKL(A)(·, ·) is a Markov kernel and it remains to show that (x, y) �→
KA(Ψ(x), [0, y]) is a regular conditional distribution of L(A). Fix y ∈ [0, 1], then
using change of coordinates and applying Lemma 3.2 repeatedly yields∫

[0,u]

KA

(
Ψ(x1, x2, . . . , xd), [0, y]

)
dλd(x)

=

∫
Id

(
1[0,u](x)

)
KA

(
Ψ(x), [0, y]

)
dPΦR◦Ψ(U)(x)

=

∫
Ω

1[0,u]

(
ΦR ◦Ψ(U)

)
KA

(
Ψ ◦ ΦR ◦Ψ(U), [0, y]

)
dP

=

∫
Ω

1[0,u]

(
ΦR(X)

)
KA

(
Ψ ◦ ΦR(X), [0, y]

)
dP

=

∫
Ω

1[0,u]

(
ΦR(X)

)
KA

(
X, [0, y]

)
dP

= P(ΦR(X) ≤ u, Y ≤ y) = L(A)(u1, u2, . . . , ud, y),

which completes the proof.

Lemma 3.4. Suppose that (U1, . . . , Ud, V ) ∼ C ∈ Cρ
Πd

and let KC(·, ·) denote
the Markov kernel of C. Then, for every v ∈ I we have

KC(u1, . . . , ud, [0, v]) =
∂dC

∂u1 · · · ∂ud
(u1, . . . , ud, v) (5)

for λd-a.e. u ∈ Id. The same result holds for any ordering of the mixed partial
derivatives in Eq. (5).
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Proof. Since both, a proof for the existence of the mixed partial derivatives
and the fact that the ordering does not matter seems to be hard to find in the
literature a proof is given in the Appendix (see A).

Obviously every linkage C ∈ Cρ
Πd

fulfills L(C) = C and, consequently, we

have KL(C)(x, [0, y]) = KC(x, [0, y]) for every y ∈ I and λd-a.e. x ∈ Id.

Figure 1 depicts a sample of size n = 1.000 drawn from a tri-variate copula
C underlying the following random vector (X̃1, X̃2, Ỹ ): The bivariate margin
(X̃1, X̃2) follows a Marshall Olkin copula MO0.5,1 with parameter α = 0.5 and

β = 1, whereas Ỹ is defined by Ỹ = X̃1 + X̃2. The graphics show how the
dependence structure between the first and second coordinate is removed by
applying the linkage operation.

In general, deriving analytic formulas for L(A) is intractable. For copulas
A ∈ Cρ satisfying the so-called conditional independence property (w.r.t. the
first coordinate, also see [4])

KA

(
x1,

ρ×
i=2

Ei

)
=

ρ∏
i=2

KA1i(x1, Ei) (6)

for λ-a.e. x1 ∈ I and E2, . . . , Eρ ∈ B(I), however, the linkage is easily express-
able (see Proposition 3.6). Letting Cρ

⊥ denote the family of all copulas satisfying
Eq. (6) it is straightforward to verify that there is a one-to-one correspondence
between Cρ

⊥ and C2 × C2 × · · · × C2 = (C2)d. The construction of higher di-
mensional copulas from copulas in C2 is also discussed in [14][Section 5] via the
so-called C-lifting - considering C = {Π2}t∈I establishes the link to Eq. (6).
Furthermore, the conditional independence property is also crucial in the con-
text of factor copula models, see, e.g., [1, 28, 29] and the references therein. In
fact, Eq. (6) yields a 1-factor copula model in which X2, . . . , Xρ are assumed to
be conditionally independent given the random variable X1.

The following lemma will be useful for deriving the afore-mentioned expres-
sion for the linkage:

Lemma 3.5. Suppose that A ∈ Cρ fulfills the conditional independence property
(w.r.t. to the first coordinate). Then for every j ∈ {2, . . . , ρ} we have

1. KAj (x1, [0, x2]×· · ·× [0, xj ]) =
∏j

i=2 KA1i(x1, [0, xi]) for λ-a.e. x1 ∈ I and

2. KAj (x1, . . . , xj−1, [0, xj ]) = KA1j (x1, [0, xj ]) for μAj−1-a.e. (x1, . . . , xj−1)∈
Ij−1.

Proof. Setting xj+1 = 1, xj+2 = 1, xj+3 = 1, . . . , xρ = 1 and using the fact
that KA1i(x1, [0, 1]) = 1 for every i ∈ 2, . . . , ρ the first assertion follows. Using
disintegration for every (x1, . . . , xj) ∈ Ij on the one hand we have

Aj(x1, . . . , xj) =

∫
[0,x1]×···×[0,xj−1]

KAj (s1, . . . , sj−1, [0, xj ])dμAj−1(s1, . . . , sj−1),
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Fig 1. Sample of size n = 1.000 drawn from the copula C underlying to the random vector
(X̃1, X̃2, Ỹ ), where (X̃1, X̃2) follows a Marshall Olkin copula MO0.5,1 with parameter α = 0.5

and β = 1 and Ỹ is defined by X̃1 + X̃2 and its linkage L(Cα). (a) depicts the sample of
(X1, X2, Y ) ∼ C, (b) a sample of (U1, U2, V ) ∼ L(C). (c-e) show the bivariate marginal
samples of C and (f-h) the bivariate samples of the linkage L(C), respectively.

on the other hand, applying (6) and disintegration yields

Aj(x1, . . . , xj) =

∫
[0,x1]

KAj (s1, [0, x2]× · · · × [0, xj ]) dλ(s1)

=

∫
[0,x1]

KA1j (s1, [0, xj ])

j−1∏
i=2

KA1i(s1, [0, xi]) dλ(s1)

=

∫
[0,x1]

KA1j (s1, [0, xj ])KAj−1(s1, [0, x2]× · · · × [0, xj−1]) dλ(s1)
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=

∫
[0,x1]×···×[0,xj−1]

KA1j (s1, [0, xj ])dμAj−1(s1, . . . , sj−1).

Applying Radon-Nikodym therefore yields the second assertion.

Proposition 3.6. Suppose that (X1, . . . , Xd, Y ) ∼ A ∈ Cρ and assume there
is some coordinate j ∈ {1, . . . , d} such that X1, . . . , Xj−1, Xj+1, . . . , Xd, Y are
conditionally independent given Xj. Then the following identity holds for all
x1, . . . , xd, y ∈ I:

L(A)(x1, . . . , xd, y) = Ajρ(xj , y)Πd(x1, . . . , xj−1, xj+1, . . . , xd).

Proof. Without loss of generality we may consider j = 1. Using disintegration
and change of coordinates as well as applying Lemma 3.3 and Lemma 3.5 yields

L(A)(x1, . . . , xd, y) =

∫
Ω

1[0,x] ◦ ΦR(X)KA(X, [0, y]) dP

=

∫
Ω

∫
Id
1[0,x] ◦ ΦR(ω)(s)KA(s, [0, y])dP

X(s) dP(ω)

=

∫
Ω

∫
I

∫
Id−1

1[0,x] ◦ ΦR(ω)(s)KA1ρ(s1, [0, y])KAd(s1, d(s2, . . . , sd))dλ(s1)dP(ω)

=

∫
[0,x1]

∫
Ω

KA1ρ(s1, [0, y])

d∏
i=2

∫
I

1[0,xi](F
Ri(ω)

i|1 (si|s1))KA1i(s1, dsi)dP(ω)dλ(s1)

=

∫
[0,x1]

KA1ρ(s1, [0, y])

d∏
i=2

xi dλ(s1) = A1ρ(x1, y)Πd−1(x2, . . . , xd),

which completes the proof.

The conditional independence property in Eq. (6) may seem far to restrictive
to be of any practical relevance. The following examples, however, show that
both, the family of empirical multilinear copulas and the class of completely
dependent copulas (according to [15, Definition 1]) satisfy Eq. (6), implying
that the family of copulas satisfying Eq. (6) is dense in (Cρ, d∞).

Example 3.7. Suppose that (X1, Y1), . . . , (Xn, Yn) is a sample from C ∈ Cρ

and let Ĉn denote the resulting empirical copula obtained via multilinear in-
terpolation of the subcopula (see, for instance, [18]). Since every ρ-dimensional
empirical multilinear copula is universally simplified (see [35, Theorem 7.1]),
Eq. (6) is obviously satisfied and Proposition 3.6 directly yields

L(Ĉn)(x1, . . . , xd, y) = Ĉ1ρ
n (x1, y) ·Πd−1(x2, . . . , xd)

for all (x, y) ∈ Iρ.

Figure 2 depicts the density of a 3-dimensional empirical multilinear copula
Ĉn and its linkage L(Ĉn) for a sample of size n = 20 drawn from (X̃1, X̃2, Ỹ ),
whereby (X̃1, X̃2) ∼ MO0.3,1 and Ỹ = X̃1 + X̃2 (top 2 panels).
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Fig 2. (a) Density of the empirical multilinear copula Ĉn ∈ C3 of a sample of size n = 20

according to Example 3.7. (b) Density of the linkage L(Ĉn) of the empirical multilinear copula

Ĉn. (c-e) Density of the bivariate margins of Ĉn. (f-h) Density of the bivariate margins of

L(Ĉn).

Example 3.8. Suppose that (X, Y ) ∼ A ∈ Cρ, whereby X ∼ Ad is completely
dependent (w.r.t. the first coordinate) according to Definition 1 in [15], i.e.,
there exist λ-preserving transformations S2, S3, . . . , Sd : I → I such that for all
E ∈ B(Id−1)

KAd(x1, E) = 1E(S2(x1), S3(x1), . . . , Sd(x1))

is a regular conditional distribution of Ad. In particular, for every j ∈ {2, . . . , d}
and Ej ∈ B(I) we have that KA1j (x1, Ej) = 1Ej ◦ Sj(x1) holds for λ-a.e. x1 ∈ I



2218 F. Griessenberger et al.

and every j ∈ {2, . . . , d}. Hence using disintegration yields

KA1ρ(x1, Eρ) =

∫
Id−1

KA(x1, s2, . . . , sd, Eρ)KAd(x1, d(s2, . . . , sd))

= KA(x1, S2(x1), . . . , Sd(x1), Eρ)

for every fixed Eρ ∈ B(I) and λ-almost every x1 ∈ I. Furthermore, again by
using disintegration we get∫

[0,x1]

KA

(
s1,

ρ×
j=2

Ej

)
dλ(s1) = μA

(
[0, x1]×

(
ρ×

j=2

Ej

))

=

∫
[0,x1]×(×d

j=2 Ej)
KA(s1, s2, . . . , sd, Eρ)dμAd(s1, . . . , sd)

=

∫
[0,x1]

∫
×d

j=2 Ej

KA(s, Eρ)KAd(s1, d(s2, . . . , sd))dλ(s1)

=

∫
[0,x1]

KA(s1, S2(s1), . . . , Sd(s1), Eρ)

d∏
j=2

1Ej ◦ Sj(s1)dλ(s1)

=

∫
[0,x1]

ρ∏
j=2

KA1j (s1, Ej)dλ(s1)

for every x1 ∈ I implying Eq. (6) via Radon-Nikodym theorem. Altogether this
shows

L(A)(x, y) = A1ρ(x1, y)Πd−1(x2, . . . , xd).

Studying the map L in more detail it is possible to find copulas A,B ∈ Cρ

such that d∞(A,B) is strikingly large where although d∞(L(A), L(B)) = 0
holds. In the 3-dimensional setting, for instance, define A ∈ C3 implicitly by
μA := μM ⊗ λ and B ∈ C3 by μB := μW ⊗ λ, whereby M denotes the upper
and W the lower Fréchet-Hoeffding bound. It is straightforward to verify that
d∞(A,B) = 1/2 holds, corresponding to 75% of the diameter of (C3, d∞); on
the other hand we have L(A) = Π3 = L(B), implying d∞(L(A), L(B)) = 0.
Conversely, if d∞(A,B) is small, one might expect that so is d∞(L(A), L(B)).
The following theorem shows that this conjecture is wrong.

Theorem 3.9. The linkage operation L : Cρ → Cρ
Πd

is not continuous w.r.t.
d∞.

Proof. We construct a sequence of 3-dimensional copulas An which converges
to A w.r.t. d∞, however, L(An) does not converge to L(A). Suppose that A ∈
C3
Π2

⊆ C3 fulfills A23 �= Π2. Since A ∈ C3
Π2

we have L(A) = A. According to
[13, Proposition 3.2] we can find a sequence of empirical multilinear copulas
(An)n∈N such that limn→∞ d∞(An, A) = 0. Considering Example 3.7 we know
that L(An)

23 = Π2, so altogether we get

lim inf
n→∞

d∞(L(An), L(A)) ≥ lim inf
n→∞

d∞(L(An)
23, L(A)23) = d∞(Π2, A

23) > 0.
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Extending this construction in arbitrary dimensions ρ ≥ 4 is straightforward.

4. The metric space (Cρ
Πd

, D1)

We now tackle the extension of the dependence measure ζ1 introduced in [48] to
the multivariate setting and start with introducing the pseudometrics D1, D∞
and Dp on Cρ whose restrictions to Cρ

Πd
are metrics.

Definition 4.1. Suppose that A,B ∈ Cρ and let L(A), L(B) denote the link-
age of A and B according to Eq. (4), respectively. Then the pseudometrics
D1, D∞, Dp : Cρ → [0, 1] are defined by

D1(A,B) :=

∫
I

∫
Id
|KL(A)(x, [0, y])−KL(B)(x, [0, y])|dλd(x)dλ(y) (7)

D∞(A,B) := sup
y∈I

∫
Id
|KL(A)(x, [0, y])−KL(B)(x, [0, y])|dλd(x) (8)

as well as

Dp
p(A,B) :=

∫
I

∫
Id

∣∣KL(A)(x, [0, y])−KL(B)(x, [0, y])
∣∣p dλd(x)dλ(y) (9)

for p ∈ (1,∞).

As in [48] in the sequel we will mainly work with D1 which can be interpreted
as L1-distance of the conditional distribution functions of the corresponding
linkages. To simplify notation we will also write

φA,B(y) :=

∫
Id
|KL(A)(x, [0, y])−KL(B)(x, [0, y])|dλd(x) (10)

for all A,B ∈ Cρ.

Remark 4.2. Since every copula A ∈ C2 fulfills A = L(A), in the bivariate setting
the pseudometrics D1, D∞ and Dp coincide with the metrics defined in [48].
Notice that in the ρ-dimensional setting the pseudometrics defined according to
Eq. (9) are conceptionally different to those studied in [15] - the latter consider
conditioning on only one variable (hence assuring identical distributions of the
conditioning variable), whereas here we condition on d-variables in order to
quantify the influence of a d-dimensional random vectorX on a random variable
Y .

The following lemma shows that D1, Dp, D∞ defined according to (7), (8)
and (9) are indeed metrics on the family of linkages and pseudometrics on Cρ.
The proof essentially follows [48, Lemma 4] with some minor adaptations and
is, therefore, deferred to the Appendix A.

Lemma 4.3. D1, D∞ and Dp defined according to (7), (8) and (9) are metrics
on Cρ

Πd
and pseudo-metrics on Cρ.
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As in the bivariate setting the following inequalities, the proof of which is
analogous to [48, Lemma 5 and Theorem 6] and can therefore be found in the
Appendix, hold:

Proposition 4.4. For every pair A,B ∈ Cρ the function φA,B defined accord-
ing to Eq. (10) is Lipschitz-continuous with Lipschitz constant 2. Moreover the
following inequalities hold:

1. d∞(L(A), L(B)) ≤ D∞(A,B)

2. D1(A,B) ≤ D∞(A,B) ≤ 2
√
D1(A,B)

3. Dp
p(A,B) ≤ D1(A,B) ≤ Dp(A,B)

Proposition 4.4 yields the following direct consequence.

Corollary 4.5. For A,A1, A2, . . . ∈ Cρ the following three conditions are equiv-
alent:

1. limn→∞ D1(An, A) = 0,
2. limn→∞ D∞(An, A) = 0,
3. limn→∞ Dp(An, A) = 0.

In other words: All three metrics induce the same notion of convergence.

Remark 4.6. The idea of constructing metrics via Markov operators correspond-
ing to copulas as introduced in [48] carries over to the constructions studied
here: In fact, defining a linear operator TC : L1(I,B(I), λ) → L1(Id,B(Id), λd)
by setting

(TCf)(x) :=

∫
Id
f(y)KC(x, dy)

for every f ∈ L1(I,B(I), λ) and every C ∈ Cρ
Πd

it is straightforward to verify
that TC fulfills the following three conditions:

1. TC1 = 1.
2. For every f ∈ L1(I,B(I), λ), f ≥ 0 implies TCf ≥ 0.
3.

∫
Id
(TCf)(x)dλ

d(x) =
∫
I
f(y)dλ(y) for every f ∈ L1(I,B(I), λ).

Hence, TC is a Markov operator in the sense of [33][Definition 1]. Moreover,
following the proofs of Lemma 2 and Theorem 6 in [48] it can easily be verified
that for every sequence (Cn)n∈N ∈ Cρ

Πd
and C ∈ Cρ

Πd
convergence of the corre-

sponding Markov operators in the strong operator topology on L1(Id,B(Id), λd)
is equivalent to convergence w.r.t. D1.

It is well known that the family of shuffles of M as well as the family of
checkerboard copulas are a dense subset of Cρ with respect to the uniform dis-
tance d∞ (see, e.g., [34]). According to [48] in the bivariate setting shuffles of
M are not dense in (C2, D1) since shuffles of M are special cases of complete
dependence, checkerboard copulas, however, are dense. We now show that the
just-mentioned denseness also holds in (Cρ

Πd
, D1) and start by recalling the defi-

nition of checkerboard approximations. Let N ∈ N be arbitrary but fixed. Doing
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Fig 3. Empirical copula and pseudo-observations of the sample (X, Y )1, . . . , (X, Y )n of size
n = 30 drawn from (X, Y ) = (X1, X2, Y ) according to Example 4.9 (left panel) and density

of the 7-checkerboard approximation CB7(Ân) of the empirical multilinear copula Ân (right
panel).

so, for every N ∈ N and every vector i = (i1, . . . , id) ∈ I := {1, . . . , N}d the
d-dimensional hypercube Ri

N is defined by

Ri
N =

[
i1 − 1

N
,
i1
N

]
× · · · ×

[
id − 1

N
,
id
N

]
. (11)

Definition 4.7. A copula A ∈ Cρ is called checkerboard copula with resolution
N ∈ N if and only if μA distributes its mass uniformly on each ρ-dimensional
hypercube Ri

N with i ∈ I. We will refer to CBN as the family of all checkerboard
copulas with resolution N , the set CB :=

⋃
N∈N CBN denotes the family of all

checkerboard copulas.

Definition 4.8. For a copula A ∈ Cρ and N ∈ N the (absolutely continuous)
copula CBN (A) ∈ CBN , defined by

CBN (A)(x, y) := Nρ

∫
[0,(x,y)]

∑
i∈I,j∈J

μA

(
Ri

N ×
[
j−1
N

, j
N

])
1
Ri

N
×[ j−1

N
, j
N ](s, t)dλ

ρ(s, t),

(12)

is called N -checkerboard approximation of A (or simply N -checkerboard of A),
whereby I := {1, . . . , N}d and J := {1, . . . , N}.
Example 4.9. Suppose thatX1 ∼ U(0, 1), setX2 = 2X1( mod 1) as well as Y =
X1. Furthermore, let (X1, Y1), . . . , (Xn, Yn be a sample of size n = 30 drawn
from (X, Y ) = (X1, X2, Y ). Figure 3 depicts the empirical multilinear copula
Ân together with the pseudo-observations of the sample and the 7-checkerboard
approximation CB7(Ân).

In the following we partially extend Definition 3.1 from [26] and say that a
sequence of copulas (An)n∈N ∈ Cρ converges k-weakly conditional to C ∈ Cρ

if and only if for μAk -a.e. x ∈ Ik we have that the sequence (KAn(x, ·))n∈N of
probability measures on B(Iρ−k) converges weakly to the probability measure
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KA(x, ·). In the latter case we will write An
‘k-wcc’−−−−→ A. Considering, however,

that bivariate and higher dimensional marginal measures of two ρ-dimensional
copulas may be singular with respect to each other, this definition of k-weak
conditional convergence only makes sense in subclasses of copulas having, e.g.,
the same marginals (as it is the case for Cρ

Πd
), a fact illustrated by the following

example:

Example 4.10. Let (An)n∈N be a sequence of ρ-dimensional copulas such that
An = Πρ for every n ∈ N and ρ ≥ 3. Then the Markov-kernel KAn(x, ·) is
only unique for λd-a.e. x ∈ Id and we could, e.g., define KAn(x, ·) for ev-
ery x ∈ [0, 1] by KAn((x, x, . . . , x), [0, y]) := 1[0,y](x) for every x ∈ I. Con-
sidering the upper Fréchet Hoeffding bound Mρ ∈ Cρ with Markov kernel
KMρ((x, x, . . . , x), [0, y]) = 1[0,y](x) for λ-a.e. x ∈ I, we would have that An

converges d-weakly conditional to Mρ, which is absurd.

Within the class of linkages, however, weak conditional convergence does
make sense and, additionally, fulfills the following natural properties:

Proposition 4.11. Let (Cn)n∈N ∈ Cρ
Πd

be a sequence of linkages such that Cn

converges ‘d-wcc’, to C, i.e. for λd-a.e. x ∈ Id we have

KCn(x, ·)
weakly−−−−→ KC(x, ·)

as n → ∞. Then the following assertions hold:

1. limn→∞ D1(Cn, C) = 0.
2. limn→∞ d∞(Cn, C) = 0.

3. For every k ∈ {1, . . . , d} we have Cn
‘k-wcc’−−−−→ C as n → ∞.

Proof. Let y ∈ [0, 1] be arbitrary but fixed. Then considering

0 = μC(I
d × {y}) =

∫
Id
KC(x, {y})dλd(x)

we can find a set Λ1 ∈ B(Id) with λd(Λ1) = 1 such that KC(x, {y}) = 0 holds
for every x ∈ Λ1. Letting Λ denote the set of all x ∈ Λ1 such that KCn(x, ·)
converges weakly to KC(x, ·) for every x ∈ Λ we get

lim
n→∞

KCn(x, [0, y]) = KC(x, [0, y]),

and applying Lebesgue’s theorem on dominated convergence completes the proof
of the first assertion. Assertion (2) is a direct consequence of Proposition 4.4 (1)
and (2).

To prove assertion (3) we can proceed as follows: Set m := d − k and fix
q ∈ I ∩ Q. Then there exists a set Λq ∈ B(Id) with λd(Λq) = 1 such that
KC(x, {q}) = 0 as well as limn→∞ KCn(x, [0, q]) = KC(x, [0, q]) for every x ∈
Λq. Setting Λ :=

⋂
q∈Q∩I Λq obviously λd(Λ) = 1. Considering the x̃-section Λx̃

of Λ, defined by
Λx̃ := {s ∈ Im : (x̃, s) ∈ Λ}
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for every x̃ := (x1, . . . , xk), and defining Γ := {x̃ ∈ Ik : λm(Λx̃) = 1} yields
Γ ∈ B(Ik) and λk(Γ) = 1. For every x̃ ∈ Γ, (y1, . . . , ym) ∈ Λx̃ and ym+1 ∈ Q ∩ I

we therefore get

lim
n→∞

KCn

(
x̃,

m+1×
i=1

[0, yi]

)
= lim

n→∞

∫
×m

i=1[0,yi]

KCn((x̃, s), [0, ym+1])dλ
m(s)

= lim
n→∞

∫
×m

i=1[0,yi]∩Λx̃

KCn((x̃, s), [0, ym+1])dλ
m(s)

=

∫
×m

i=1[0,yi]∩Λx̃

lim
n→∞

KCn((x̃, s), [0, ym+1])dλ
m(s)

=

∫
×m

i=1[0,yi]

KC((x̃, s), [0, ym+1])dλ
m(s)

= KC

(
x̃,

m+1×
i=1

[0, yi]

)
.

Thereby we used the fact that, without loss of generality, we may assume that
the identity

KA

(
x̃,

m+1×
i=1

[0, yi]

)
=

∫
×m

i=1[0,yi]

KA((x̃, s), [0, ym+1])dλ
m(s)

holds for A = Cn and A = C, all x̃ ∈ Ik and all (y1, . . . , ym) ∈ Im. Since weak
convergence of m+1-dimensional distribution functions H1, H2, . . . to H is well
known to be equivalent to pointwise convergence on a dense subset, we have
shown that λk-almost all conditional distribution functions

(y1, . . . , ym+1) �→ KCn

(
x̃,

m+1×
i=1

[0, yi]

)

converge weakly to (y1, . . . , ym+1) �→ KC

(
x̃,×m+1

i=1
[0, yi]

)
, which completes the

proof.

The following theorem shows that the checkerboard aggregation CBN (C) of
a linkage C converges to C even w.r.t. ‘d-wcc’, implying convergence w.r.t. D1.

Theorem 4.12. For every C ∈ Cρ
Πd

the checkerboard approximation CBN (C)

of C converges d-weakly conditional to C, i.e., for λd-a.e. x ∈ Id we have

KCBN (C)(x, ·)
weakly−−−−→ KC(x, ·)

as N → ∞.

Proof. The proof is quite technical and hence deferred to the Appendix A.
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Corollary 4.13. For every C ∈ Cρ
Πd

the checkerboard approximation CBN (C)
of C converges to C with respect to the metric D1, i.e., we have

lim
N→∞

D1(CBN (C), C) = 0.

Proof. The assertion directly follows from property (1) in Proposition 4.11.

Since checkerboard copulas are absolutely continuous, Corollary 4.13 implies
the following result.

Corollary 4.14. The set of all absolutely continuous copulas is dense in (Cρ
Πd

, D1).

Further topological properties of the metric space (Cρ
Πd

, D1) analogous to the
ones mentioned in [48] also hold in arbitrary dimensions. Proving the following
result can be done in exactly same manner as in [15, Theorem 3].

Theorem 4.15. The metric space (Cρ
Πd

, D1) is complete and separable.

5. A non-parametric and multivariate dependence measure ζ1

Main objective of this section is to study the multivariate measure of dependence
ζ1(X, Y ) defined according to (13) which quantifies the extent of dependence
of a univariate random variable Y on a d-dimensional random vector X =
(X1, . . . , Xd). Ensuring uniqueness of the underlying copula we will from now
only consider ρ-dimensional random vectors (X, Y ) with continuous distribution
function, the general setting and consequences on the dependence measure ζ1 are
briefly discussed in Section 7. After introducing the measure ζ1 and providing an
alternative handy expression we show that ζ1 fulfills all five properties mentioned
in the introduction and then derive a strongly consistent estimator ζ̂1n of ζ1

which works in full generality (i.e., without any smoothness assumptions about
the underlying copula A).

For (X, Y ) with copula A ∈ Cρ the dependence measure ζ1(X, Y ) is defined
by

ζ1(X, Y ) := ζ1(A) = 3D1(A,Πρ). (13)

The normalization factor 3 will become clear in Theorem 5.6 and will, addi-
tionally, also be discussed in Section 7. Obviously, ζ1 can be interpreted as
L1-distance of the conditional distribution function of L(A) and independence
copula Πρ.

Lemma 5.1. Suppose that (X, Y ) has continuous distribution function H and
copula A. Then

ζ1(X, Y ) = 3

∫
I

∫
Id
|KA(x, [0, y])− y|dμAd(x)dλ(y),

whereby Ad denotes the (marginal) copula of the random vector X = (X1, . . . ,
Xd).
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Proof. Suppose that U = (U1, . . . , Ud) ∼ Πd. Since the Markov kernel of Πρ

is KΠρ(x, [0, y]) = y applying Lemma 3.3, change of coordinates and using the
second assertion in Lemma 3.2 yields

D1(A,Πρ) =

∫
I

∫
Id
|KL(A)(x, [0, y])− y| dλd(x)dλ(y)

=

∫
I

∫
Id
|KA(Ψ(x), [0, y])− y| dPU (x)dλ(y)

=

∫
I

∫
Id
|KA(x, [0, y])− y| dPΨ(U)(x)dλ(y)

=

∫
I

∫
Id
|KA(x, [0, y])− y|μAd(x)dλ(y),

which completes the proof.

Remark 5.2. The so-called ‘simple measure of conditional dependence T (Y,X)’
as recently introduced in [3] and defined by

T (Y,X) :=

∫
E(V ar(P(Y ≥ t|X)))dμ(t)∫

V ar(1{Y≥t})dμ(t)
, (14)

whereby μ denotes the law PY of Y , is easily shown to coincide with the squared
D2 distance between A and Πρ in our setting, whereby A denotes the copula
underlying the random vector (X, Y ), i.e., we have T (Y,X) = 6D2

2(A,Πρ).
In [3] a strongly consistent estimator Tn for T (Y,X) with very good small
sample performance was derived. Since from our point of view an interpretation
of negative values of Tn (which are possible) are not at all straightforward for
applicants outside the statistical community our estimator for ζ1 (which is easily
transferable to D2) only attains values in [0, 1].

Before deriving the estimator we will focus on the main properties of ζ1, and
start with recalling the definition of complete dependence of a random variable
Y (response) on a random vector X (input).

Definition 5.3 (Complete dependence, [30]). Let (X, Y ) be a random vector
defined on (Ω,A,P). We say that Y is completely dependent on X if there
exists a measurable function f such that we have P(Y = f(X)) = 1.

The subsequent lemma provides some characterizations of complete depen-
dence in the setting considered so far:

Lemma 5.4. Suppose that (X, Y ) ∼ H with H continuous and let F1, . . . , Fd

and G denote the corresponding univariate marginal distribution functions. Fur-
thermore set U = (U1, . . . , Ud) with U1 := F1(X1), U2 := F2(X2), . . . , Ud :=
Fd(Xd) and V := G(Y ), and let A denote the copula of (U , V ). Then the fol-
lowing statements are equivalent:

1. (X, Y ) is completely dependent.

2. There exists a μAd-λ preserving transformation h : Id → I such that V =
h(U) a.s..
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3. There exists a μAd-λ preserving transformation h : Id → I such that the
measure μA can be expressed as

μA(E × F ) = μAd(E ∩ h−1(F ))

for every E ∈ B(Id) and F ∈ B(I). In particular, we have

A(x, y) = μAd([0,x] ∩ h−1([0, y]))

for all x ∈ Id and y ∈ I.

4. There exists a μAd-λ preserving transformation h : Id → I such that

K(x, F ) := 1F ◦ h(x) = δh(x)(F )

is a regular conditional distribution of A.

5. There exists a μAd-λ preserving transformation h : Id → I such that
μA(Γ(h)) = 1, whereby Γ(h) := {(x, h(x)) : x ∈ Id} denotes the graph
of h.

Proof. (1) ⇔ (2): Suppose that (X, Y ) is completely dependent. Defining h :
Id → I by

h(u1, . . . , ud) := G ◦ f(F−
1 (u1), . . . , F

−
d (ud)),

obviously h is measurable. Moreover, for P-almost every ω ∈ Ω we have

V = G(Y ) = G ◦ f(X) = G ◦ f ◦ F−(U) = h(U),

whereby F− = (F−
1 , . . . , F−

d ). Considering that for every E ∈ B([0, 1]) we have

μh
Ad(E) = μAd(h−1(E)) = PU (h−1(E)) = Ph(U)(E) = PV (E) = λ(E),

shows that h is μAd − λ preserving. To show the reverse implication define the
measurable function f : Rd → R by f(x) := G− ◦ h ◦ F (x), which yields

Y = G−(V ) = G− ◦ h(U) = G− ◦ h ◦ F (X) = f(X) a.s..

(2) ⇒ (3): The implication follows from the fact that for every E ∈ B(Id) and
F ∈ B(I) we have

μA(E × F ) = P(U ,V )(E × F ) = P(U ,h(U))(E × F )

= PU (E ∩ h−1(F )) = μAd(E ∩ h−1(F ))).

(3) ⇒ (4): It suffices to show that K(x, F ) := 1F ◦h(x) = δh(x)(F ) is a Markov
kernel of A. Since h is μAd -λ preserving, K(x, F ) is a Markov kernel. If E ∈
B([0, 1]d) and F ∈ B([0, 1]) then

μA(E × F ) = μAd(E ∩ h−1(F )) =

∫
E

1F ◦ h(u)μAd(u) =

∫
E

K(x, F ) dμAd(x),
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so K(x, F ) is a regular conditional distribution of A.
(4) ⇒ (2): Using disintegration we have

P(V = h(U)) = μA(Γ(h)) =

∫
Id
KA(u, {h(u)})dμAd(u)

=

∫
Id
1{h(u)} (h(u)) dμAd(u) = 1.

Altogether we have therefore shown that the conditions (2), (3) and (4) are
equivalent and it remains to show that (4) and (5) are equivalent, which, using
disintegration, can be done as follows: On the one hand,

μA(Γ(h)) =

∫
Id
KA(x, (Γ(h))x) dμAd(x) =

∫
Id
1{h(x)} ◦ h(x)dμAd(x) = 1,

and on the other hand, μA(Γ(h)) = 1 implies that KA(x, {h(x)}) = 1 for μAd -
almost every x ∈ Id, and the proof is complete.

The following example shows that Lemma 5.4 no longer holds for discontinu-
ous marginal distribution functions and working with multilinear interpolation
to assure uniqueness of the copula.

Example 5.5. Suppose that X and Y are discrete random variables with

P(X = i, Y = j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1/3 if i = 1, j = 1

1/3 if i = 2, j = 2

1/3 if i = 3, j = 1

0 otherwise.

Obviously, Y is completely dependent on X (but not vice versa). However, it
is straightforward to verify that the unique copula A underlying (X,Y ) in the
afore-mentioned sense assigns mass uniformly to each of the rectangles [0, 1/3]×
[0, 2/3], [1/3, 2/3] × [2/3, 1] and [2/3, 1] × [0, 2/3] and is hence far away from
complete dependence according to Eq. (5) in Lemma 5.4. Figure 4 depicts the
support of (X,Y ) as well as the density of the absolutely continuous copula A.

We can now prove the main result of this section:

Theorem 5.6. Let (X, Y ) be a ρ-dimensional random vector with continuous
distribution function H and copula A. Then ζ1 fulfils the following properties:

1. ζ1(X, Y ) ∈ [0, 1] (normalization).

2. ζ1(X, Y ) = 0 if and only if Y and X are independent (or equivalently, if
and only if L(A) = Πρ) (independence).

3. ζ1(X, Y ) = 1 if and only if Y is a function of X (complete dependence).

4. If ϕ1, . . . , ϕd, ϕρ : R → R are strictly increasing or decreasing transfor-
mations, then writing ϕ := (ϕ1, . . . , ϕd) we have ζ1(ϕ(X), ϕρ(Y )) =
ζ1(X, Y ) (scale-invariance).
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Fig 4. Support of (X,Y ) (left panel) and density of the corresponding unique copula A (right
panel) according to Example 5.5.

5. For X = (X1, X2, . . . , Xd) the following chain of inequalities holds:

ζ1(X1, Y ) ≤ ζ1((X1, X2), Y ) ≤ . . . ≤ ζ1((X1, . . . , Xd), Y )

(information gain).

Proof. Considering that D1 is a metric on Cρ
Πd

the second assertion directly
follows if we can show that L(A) = Πρ if, and only if, Y and X are indepen-
dent, which can be done as follows: Since Y and X have continuous marginal
distribution functions Sklar’s theorem implies that Y and X are independent if,
and only if, V and U , defined according to Lemma 5.4, are independent. Using
the independence property of conditional expectations (see [27]) we get that
KA(x, [0, y]) = y for every y ∈ I and μAd -a.e. x ∈ Id. Hence, applying Lemma
3.3 we have

L(A)(x, y) =

∫
[0,x]

ydλd(u) = Πρ(x, y).

Suppose now that L(A) = Πρ. Then applying Lemma 3.4 we get for every y ∈ I

that KL(A)(x, [0, y]) = y for λd-a.e. x ∈ Id. Hence, using Lemma 3.2 and 3.3 it
follows that

A(x, y) =

∫
[0,x]

KA(s, [0, y]) dμAd(s) =

∫
Id
1[0,x](s)KA(s, [0, y]) dμAd(s)

=

∫
Id
1[0,x] ◦Ψ(s)KA(Ψ(s), [0, y]) dλd(s) = y

∫
Id
1[0,x] ◦Ψ(s) dλd(s)

= y

∫
[0,x]

dμAd = Ad(x)y,

implying that V and U are independent.
Let y ∈ (0, 1) be arbitrary but fixed and set

Dy :=

{
f : Id → [0, 1] : f is measurable and

∫
Id
f(x)dμAd(x) = y

}
.
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Then according to [7, Lemma 3.3] f maximizes the function

ψ : f̂ �→
∫
Id

∣∣∣f̂(x)− y
∣∣∣ dμAd

on Dy if and only if f is an indicator function. In addition to that, we obtain
maxf∈Dy

∫
Id
|f(x)− y| dμAd(x) = 2y(1− y). Following the proof of [48, Lemma

12] we conclude that that for every A ∈ Cρ the function φA,Πρ fulfills φA,Πρ(y) ≤
2y(1 − y) for every y ∈ [0, 1] with equality if and only if (X, Y ) is completely
dependent. Hence ζ1(X, Y ) ≤ 1 with equality ζ1(X, Y ) = 1 if and only if
(X, Y ) is completely dependent. To show the remaining assertions we proceed
as follows:

According to [14, Theorem 2.4.1] copulas are invariant with respect to con-
tinuous and strictly increasing transformations, hence, assertion (4) is trivial if
ϕ1, . . . , ϕρ are all strictly increasing. Otherwise we can proceed as follows: Let
I = {i1, . . . , ik} denote the set of indices corresponding to strictly decreasing
mappings (ϕij )j∈{1,...,k} and define σi : I → I by

σi(u) =

{
1− u if i ∈ I

u otherwise.

Following [14, Theorem 2.4.3] we denote the copula Ã underlying the random
vector (ϕ(X), ϕρ(Y )) by

Ã(u, v) := μ
(σ1,...,σd,σρ)
A ([0, u1]× . . .× [0, ud]× [0, v])

= P(σ1(U1) ≤ u1, . . . , σd(Ud) ≤ ud, σρ(V ) ≤ v).

Suppose that ρ ∈ I, i.e., that ϕρ is strictly decreasing (otherwise the proof
proceeds in the same manner with several simplifications). Using change of co-
ordinates as well as the fact that

KÃ(σ1(x1), . . . , σd(xd), [0, y]) = KA(x1, . . . , xd, [1− y, 1])

holds for every y ∈ [0, 1] and μAd -a.e. x ∈ Id we have∫
I

∫
Id

∣∣∣∣KÃ(x, [0, y])− y

∣∣∣∣ dμÃd(x)dλ(y)

=

∫
I

∫
Id
|KÃ(x, [0, y])− y| dμ(σ1,...,σd)

Ad (x)dλ(y)

=

∫
I

∫
Id
|KÃ(σ1(x1), . . . , σd(xd), [0, y])− y| dμAd(x1, . . . , xd)dλ(y)

=

∫
I

∫
Id
|KA(x, [1− y, 1])− y| dμAd(x)dλ(y).

Therefore considering∫
I

∫
Id
|KA(x, [1− y, 1])− y| dμAd(x)dλ(y)
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=

∫
I

∫
Id
|KA(x, [0, y])− y| dμAd(x)dλ(y)

assertion (4) follows.
Finally, using disintegration yields that

KA1ρ(x1, [0, y]) =

∫
I

KA12,ρ(x1, x2, [0, y])KA12(x1, dx2)

holds for λ-a.e. x1 ∈ I and that

KA1,...,j−1;ρ(x1, . . . , xj−1, [0, y])

=

∫
I

KA1,...,j;ρ(x1, . . . , xj , [0, y])KA1,...,j−1;j (x1, . . . , xj−1, dxj)

holds for μA1,...,j−1-a.e. (x1, . . . , xj−1) ∈ Ij−1 and every j ∈ {3, . . . , d}. Using
the triangle inequality and disintegration we therefore obtain

ζ1(X1, Y ) = 3

∫
I

∫
I

|KA1ρ(x1, [0, y])− y| dλ(x1)dλ(y)

= 3

∫
I

∫
I

∣∣∣∣
∫
I

KA12,ρ(x1, x2, [0, y])KA12(x1, dx2)− y

∣∣∣∣ dλ(x1)dλ(y)

≤ 3

∫
I

∫
I2
|KA12,ρ(x1, x2, [0, y])− y| dμA12(x1, x2)dλ(y)

= ζ1((X1, X2), Y ).

Proceeding in the same manner yields assertion (5).

The following example shows that there are situations where random vari-
ables (input/predictor variables) considered individually have no influence on
the response Y , considered jointly, however, they provide a lot of information
on Y .

Example 5.7. Suppose that (X1, X2, Y ) ∼ CCube ∈ C3
Π2

, whereby CCube denotes
the uniform distribution on the union of the four cubes(

0, 1
2

)
×

(
0, 1

2

)
×

(
0, 1

2

) (
0, 1

2

)
×

(
1
2 , 1

)
×

(
1
2 , 1

)(
1
2 , 1

)
×

(
0, 1

2

)
×

(
1
2 , 1

) (
1
2 , 1

)
×

(
0, 1

2

)
×

(
1
2 , 1

)
.

Figure 1 in [35] depicts the density of the copula CCube. Obviously, CCube sat-
isfies

C12
Cube = C13

Cube = C23
Cube = Π,

implying ζ1(X1, Y ) = ζ1(X2, Y ) = ζ1(X1, X2) = 0. In other words: Only know-
ing X1 or only knowing X2 provides no additional information on Y . On the
other hand, it is straightforward to verify that ζ1(CCube) = 0.75, i.e., knowing
(X1, X2) provides a lot of information on Y .
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Fig 5. Density of the copula CN
Cube (top panel) and the copula C̃N

Cube (bottom panel) for N = 4

defined in the proof of Theorem 5.8. The dependence measure ζ1 fulfills ζ1
((

CN
Cube

)13)
=

ζ1
((

CN
Cube

)23)
= ζ1

((
CN

Cube

)12)
= 0 as well as ζ1

(
CN

Cube

)
= 7

8
= ζ1

(
C̃N

Cube

)
.

Slightly modifying Example 5.7 yields the following striking result.

Theorem 5.8. For every δ ∈ [0, 1) we find a copula A ∈ Cρ with the following
properties: If (X1, X2, . . . , Xd, Y ) ∼ A then ζ1(X1, Y ) = ζ1(X2, Y ) = . . . =
ζ1(Xd, Y ) = 0 but

ζ1((X1, X2, . . . , Xd), Y ) > δ.

Proof. Fix N ∈ N satisfying N > 1
1−δ and let Ri,j,k

N denote the 3-dimensional
hypercube defined by

Ri,j,k
N :=

[
i− 1

N
,
i

N

]
×

[
j − 1

N
,
j

N

]
×

[
k − 1

N
,
k

N

]

for (i, j, k) ∈ {1, . . . , N}3. Letting CN
Cube denote the uniform distribution on

the union of the N2 cubes Ri,j,k
N whereby (i, j) ∈ {1, . . . , N}2 and k := j +

i − 1( mod N), it is straightforward to verify that
(
CN

Cube

)12
=

(
CN

Cube

)13
=(

CN
Cube

)23
= Π2. Figure 5 (top panel) depicts the density of C4

Cube. Let C̃N
Cube

denote the uniform distribution on the union of the cubes Ri,j,i
N with (i, j) ∈

{1, . . . , N}2. Figure 5 (bottom panel) depicts the density of C̃4
Cube. For every

j ∈ {2, . . . , N} there exists an interval exchange transformations hj : I → I such
that

KCN
Cube

(hj(x1), x2, [0, y]) = KC̃N
Cube

(x1, x2, [0, y])
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holds for λ2-a.e. (x1, x2) ∈ I ×
(
j−1
N , j

N

)
and every y ∈ I. Since every hj is

λ-preserving using change of coordinates it is straightforward to verify that

D1

(
CN

Cube,Π3

)
= D1

(
C̃N

Cube,Π3

)
holds for every N ∈ N. It remains to show

D1

((
C̃N

Cube

)13

,Π2

)
= D1(CBN (M),Π2) ≥ δ

which can be done as follows: According to the results of Section 6 in [48] we
can find a transformation matrix TN such that VN Π2 := VN (μΠ2) = μCBN (M)

holds (see Eq. 29 in [48]). Using the triangle inequality and the fact that for all
bivariate copulas C1, C2 ∈ C2 the inequality

D1(VN C1, VN C2) ≤ 1
ND1(C1, C2)

holds, we get

D1 (CBN (M),Π2) ≥ D1(Π2,M)−D1 (CBN (M),M)

=
1

3
−D1(VN Π2, VN M) ≥ 1

3
− 1

N
D1(Π2,M)

=
1

3
− 1

3N
.

Letting (X1, X2, Y ) be a random vector with distribution function CN
Cube we

therefore have

ζ1((X1, X2), Y ) = ζ1(CN
Cube) = ζ1(C̃N

Cube) ≥ 1− 1
N > δ,

whereas ζ1(X1, Y ) = ζ1(X2, Y ) = 0, which proves the assertion for dimen-
sion 3. Adding uniformly distributed random variables X3, . . . , Xd such that
(X3, . . . , Xd) and (X1, X2, Y ) are independent completes the proof for arbitrary
ρ ≥ 3.

While Theorem 5.8 demonstrates that considering additional ‘input’ variables
can increase the information gain on Y significantly, it is equally interesting to
know, in which cases adding input variables provides no further information on
the output Y w.r.t. ζ1. The following proposition shows that the conditional
independence property as defined in Eq. (6), is sufficient.

Proposition 5.9. If (X1, X2, . . . , Xd, Y ) ∼ A and let X2, . . . , Xd, Y be condi-
tionally independent given the variable X1 (i.e., Eq. (6) is satisfied), then we
have

ζ1((X1, . . . , Xd), Y ) = ζ1(X1, Y ). (15)

Proof. Since X2, . . . , Xd, Y are conditional independent given X1 we can apply
Lemma 3.5 (2) and obtain that for every y ∈ I

KA(x1, . . . , xd, [0, y]) = KA1ρ(x1, [0, y])
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holds for μAd -a.e. x ∈ Id. Therefore, we have

ζ1(X1, Y ) = 3

∫
I

∫
I

|KA1ρ(x1, [0, y])− y|dλ(x1)dλ(y)

= 3

∫
I

∫
Id
|KA1ρ(x1, [0, y])− y|dμAd(x1, . . . , xd)dλ(y)

= 3

∫
I

∫
Id
|KA(x1, . . . , xd, [0, y])− y|dμAd(x1, . . . , xd)dλ(y)

= ζ1((X1, . . . , Xd), Y ),

which completes the proof.

At the first glance, it might seem natural that the conditional independence
property is also a necessary condition for Eq. (15) - the following example falsifies
this conjecture.

Example 5.10. Let A ∈ C3
Π2

be defined by

A(x1, x2, y) := x1x2y +
1

2
x1(1− x1)x

2
2y(1− y).

It is straightforward to verify that A is a 3-dimensional copula with the fol-
lowing two-dimensional marginals: A12(x1, x2) = x1x2, A

23(x2, y) = x2y and
A13(x1, y) = x1y +

1
2x1(1− x1)y(1− y). Hence, the corresponding Markov ker-

nels are given by

KA12(x, [0, z]) = KA23(x, [0, z]) = z for λ-a.e. x ∈ I,
KA13(x1, [0, y]) = y + 1

2 (2x1 − 1)y(y − 1) for λ-a.e. x1 ∈ I,
KA(x1, [0, x2]× [0, y]) = x2y +

1
2 (2x1 − 1)x2

2y(y − 1) for λ-a.e. x1 ∈ I and
KA(x1, x2, [0, y]) = y + (2x1 − 1)x2(y − 1)y for λ2-a.e. (x1, x2) ∈ I2.

Obviously, we have that KA(x1, [0, x2]× [0, y]) �= KA12(x1, [0, y])KA13(x1, [0, y])
for λ-a.e. x1 ∈ I, so Eq. (6) does not hold and X2 and Y are not conditionally
independent given X1. Nevertheless, the integrand of D1 fulfills

|KA13(x1, [0, y])− y| =
∣∣∣∣
∫
I

(KA(x1, x2, [0, y])− y)KA12(x1, dx2)

∣∣∣∣ (16)

≤
∫
I

|KA(x1, x2, [0, y])− y|KA12(x1, dx2), (17)

with equality if and only if KA(x1, x2, [0, y]) ≥ y or KA(x1, x2, [0, y]) ≤ y for
KA12(x1, ·)-a.e. x2 ∈ I. The latter implies that D1(A

13,Π2) = D1(A,Π3) if, and
only if, we have equality in Eq. (17) for λ2-a.e. (x1, y) ∈ I2. Since in our example
obviously

KA(x1, x2, [0, y]) = y + (2x1 − 1)x2(y − 1)y ≥ y ⇔ (2x1 − 1)(y − 1)y ≥ 0,

we have equality in Eq. (17), implying

ζ1(X1, Y ) = ζ1((X1, X2), Y ) =
1

8
.
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6. A strongly consistent estimator for ζ1(X,Y )

As illustrated in Proposition 3.3 in [24], without prior aggregation the empirical
multilinear copula can not be used to estimate ζ1 in full generality. Mimicking
the approach [24] we will use so-called empirical checkerboard copulas and con-
struct a strongly consistent estimator for ζ1 in full generality, i.e., without any
regularity assumptions on the underlying copula. The following lemma will be
key for establishing strong consistency (see Lemma 1 in [22]).

Lemma 6.1. Suppose that A ∈ Cρ and Ân denotes the empirical multilinear
copula estimator. Then with probability 1 we have

d∞(Ân, A) = O
(√

log logn

n

)
. (18)

Our so-called empirical checkerboard estimator ζ̂1n of ζ1 is defined by

ζ̂1n := 3

∫
I

∫
Id
|KL(CBN(n)(Ân))

(x, [0, y])− y| dλd(x)dλ(y)

= 3

∫
I

∫
Id
|K

CBN(n)(Ân)
(x, [0, y])− y| dμ(CBN(n)(Ân))d

(x)dλ(y),

where the resolution N(n) depends on the sample size n. In other words: We
aggregate the empirical multilinear copula to a checkerboard with a coarser grid
and then plug the checkerboard copula in the analytic expression of ζ1(A). Con-
sidering that according to Theorem 3.9 the linkage operation is discontinuous
w.r.t. d∞, the proof in the 2-dimensional setting as established in [24] can not
be directly applied to the ρ-dimensional setting considered here, a different ap-
proach is needed. We start with the following lemma whose proof is analogous
to the one of [24, Lemma 3.10]:

Lemma 6.2. Suppose that A,B ∈ Cρ. Then the corresponding checkerboard
approximations CBN (A), CBN (B) ∈ CBN fulfill

d∞(CBN (A),CBN (B)) ≤ d∞(A,B).

The next lemma states that D1(A,Πρ) can be approximated well by dis-
cretization in y.

Lemma 6.3. For every A ∈ Cρ and N ≥ 1 we have

D1(A,Πρ)−
2

N
≤ 1

N

N∑
j=1

∫
Id

∣∣∣∣KA

(
x,

[
0, j

N

])
− j

N

∣∣∣∣ dμAd(x) ≤ D1(A,Πρ) +
2

N
.

(19)

Proof. According to Proposition 4.4 the function φA,Π is Lipschitz-continuous
with Lipschitz constant 2. We therefore have∣∣∣∣∣∣

N∑
j=1

∫ j
N

j−1
N

φA,Πρ(y)− ΦA,Πρ

(
j
N

)
dλ(y)

∣∣∣∣∣∣ ≤
N∑
j=1

∫ j
N

j−1
N

∣∣φA,Πρ(y)− φA,Πρ

(
j
N

)∣∣ dλ(y)
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≤ 2

N
,

which, considering

1

N

N∑
j=1

∫
Id

∣∣∣∣KA

(
x,

[
0, j

N

])
− j

N

∣∣∣∣ dμAd(x) =
1

N

N∑
j=1

φA,Πρ

(
j

N

)

yields the desired result.

Based on the previous two lemmata we can now prove the main result of this
section (despite being technical the proof is not moved to the Appendix since it
contains various ideas).

Theorem 6.4. Let (X1, Y1), (X2, Y2), . . . be a random sample from (X, Y )
and assume that (X, Y ) has continuous distribution function H and underlying
copula A ∈ Cρ. Then setting N(n) := �ns� for some s fulfilling 0 < s < 1

2d

lim
n→∞

ζ̂1n = lim
n→∞

ζ1(CBN(n)(Ân)) = ζ1(A)

holds with probability 1.

Proof. To simplify notation we will write AN for the checkerboard approxima-
tion CBN (A) and ÂN for the empirical checkerboard copula CBN(n)(Ân). Fix
ε > 0. Then there exists a continuous function fε : I

ρ → R such that

‖KA − fε‖L1(μ
Ad⊗λ) =

∫
Id×I

|KA(x, [0, y])− fε(x, y)| d(μAd ⊗ λ)(x, y) < ε,

(20)

see, for instance, [40, Theorem 3.14] or [6, Corollary 4.2.2]. Since fε is uniformly
continuous there exists some δ ∈ (0, ε) such that

||x− x′||ρ < δ =⇒ |fε(x)− fε(x
′)| < ε

holds for all x,x′ ∈ Iρ. If N0 ∈ N fulfills 1
N0

< δ and N ≥ N0 then using the
triangle inequality yields∣∣∣D1(ÂN ,Πρ)−D1(A,Πρ)

∣∣∣
=

∣∣∣∣
∫
I

∫
Id
|KÂN

(x, [0, y])− y| dμÂd
N
(x)dλ(y)−

∫
I

∫
Id
|KA(x, [0, y])− y|dμAd(x)dλ(y)

∣∣∣∣
≤

∣∣∣∣
∫
I

∫
Id
|KÂN

(x, [0, y])− y| dμÂd
N
(x)dλ(y)−

∫
I

∫
Id
|KAN (x, [0, y])− y|dμAd

N
(x)dλ(y)

∣∣∣∣︸ ︷︷ ︸
=:I1

+

∣∣∣∣
∫
I

∫
Id
|KAN (x, [0, y])− y| dμAd

N
(x)dλ(y)−

∫
I

∫
Id
|KA(x, [0, y])− y|dμAd(x)dλ(y)

∣∣∣∣︸ ︷︷ ︸
=:I2

.
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We first consider the second integral I2. Using the fact that AN is an N -
checkerboard copula we have

μAd
N
(Ri

N )KAN
(x, [0, y]) = μAN

(Ri
N × [0, y]) (21)

for every x ∈ int(Ri
N ); if μAd

N
(Ri

N ) = 0 for some i ∈ I we obviously have

μAN
(Ri

N × [0, y]) = 0 = μA(R
i
N × [0, y]) for every y ∈ I. Applying Lemma 6.3,

Eq. (21) and the fact that

μAN
(Ri

N × [0, y])

μAd
N
(Ri

N )
=

μA(R
i
N × [0, y])

μAd(Ri
N )

holds for y ∈
{
0, 1

N , 2
N , . . . , N

N

}
and every i ∈ I0 := {i ∈ I with μAd(Ri

N ) > 0}
we get

I2 ≤ 4

N
+

∣∣∣∣ 1N
N∑

j=1

∫
Id

∣∣∣∣KAN

(
x,

[
0, j

N

])
− j

N

∣∣∣∣ dμAd
N
(x)

− 1

N

N∑
j=1

∫
Id

∣∣∣∣KA

(
x,

[
0, j

N

])
− j

N

∣∣∣∣ dμAd(x)

∣∣∣∣
=

4

N
+

∣∣∣∣ 1N
N∑

j=1

∑
i∈I0

∫
Ri

N

∣∣∣∣∣μAN

(
Ri

N ×
[
0, j

N

])
μAd

N
(Ri

N )
− j

N

∣∣∣∣∣ dμAd
N
(x)

− 1

N

N∑
j=1

∑
i∈I0

∫
Ri

N

∣∣∣∣KA

(
x,

[
0, j

N

])
− j

N

∣∣∣∣ dμAd(x)

∣∣∣∣
=

4

N
+

∣∣∣∣ 1N
N∑

j=1

∑
i∈I0

∫
Ri

N

∣∣∣∣∣μA

(
Ri

N ×
[
0, j

N

])
μAd(Ri

N )
− j

N

∣∣∣∣∣ dμAd(x)

− 1

N

N∑
j=1

∑
i∈I0

∫
Ri

N

∣∣∣∣KA

(
x,

[
0, j

N

])
− j

N

∣∣∣∣ dμAd(x)

∣∣∣∣
≤ 4

N
+

1

N

N∑
j=1

∑
i∈I0

∫
Ri

N

∣∣∣∣∣μA

(
Ri

N ×
[
0, j

N

])
μAd(Ri

N )
−KA

(
x,

[
0, j

N

])∣∣∣∣∣ dμAd(x)

=
4

N
+

1

N

N∑
j=1

∑
i∈I0

∫
Ri

N

∣∣∣∣ 1

μAd(Ri
N )

∫
Ri

N

KA

(
s,

[
0, j

N

])

−KA

(
x,

[
0, j

N

])
dμAd(s)

∣∣∣∣ dμAd(x)

≤ 4

N
+

N∑
j=1

∫
[ j−1

N
, j
N ]

∑
i∈I0

∫
Ri

N

1

μAd(Ri
N )

∫
Ri

N

∣∣∣∣KA

(
s,

[
0, j

N

])

−KA

(
x,

[
0, j

N

]) ∣∣∣∣ dμAd(s) dμAd(x) dλ(y).

Again using the triangle inequality, the fact that the mapping y �→ KA(·, [0, y])
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is non-decreasing as well as disintegration we therefore get

I2 ≤ 4

N
+

N∑
j=1

∫
[ j−1

N
, j
N ]

∑
i∈I0

∫
Ri

N

1

μAd(Ri
N )

∫
Ri

N

∣∣∣∣KA

(
s,

[
0, j

N

])

−KA (s, [0, y])

∣∣∣∣ dμAd(s) dμAd(x) dλ(y)

+

N∑
j=1

∫
[ j−1

N
, j
N ]

∑
i∈I0

∫
Ri

N

1

μAd(Ri
N )

∫
Ri

N

∣∣∣∣KA (s, [0, y])

−KA (x, [0, y])

∣∣∣∣ dμAd(s) dμAd(x) dλ(y)

+

N∑
j=1

∫
[ j−1

N
, j
N ]

∑
i∈I0

∫
Ri

N

1

μAd(Ri
N )

∫
Ri

N

∣∣∣∣KA (x, [0, y])

−KA

(
x,

[
0, j

N

]) ∣∣∣∣ dμAd(s) dμAd(x) dλ(y)

≤ 6

N
+

∫
[0,1]

∑
i∈I0

∫
Ri

N

1

μAd(Ri
N )

∫
Ri

N

∣∣∣∣KA (s, [0, y])

−KA (x, [0, y])

∣∣∣∣ dμAd(s) dμAd(x) dλ(y).

Applying the triangle inequality and equation (20) yields

I2 ≤ 6

N

+

∫
[0,1]

∑
i∈I0

∫
Ri

N

1

μAd(Ri
N )

∫
Ri

N

|KA (s, [0, y])− fε(s, y)| dμAd(s) dμAd(x) dλ(y)

+

∫
[0,1]

∑
i∈I0

∫
Ri

N

1

μAd(Ri
N )

∫
Ri

N

|fε(s, y)− fε(x, y)| dμAd(s) dμAd(x) dλ(y)

+

∫
[0,1]

∑
i∈I0

∫
Ri

N

1

μAd(Ri
N )

∫
Ri

N

|fε(x, y)−KA (x, [0, y])| dμAd(s) dμAd(x) dλ(y)

≤ 6

N
+ ‖KA − fε‖L1(μ

Ad×λ) + ε+ ‖KA − fε‖L1(μ
Ad×λ)

< 9ε.

For I1 we proceed as follows. Using equation (21), applying the triangle in-
equality and the fact that

∣∣|x| − |y|
∣∣ ≤ |x− y| holds for all real numbers x, y we

have

I1 =

∣∣∣∣
∫
I

∑
i∈I0

(∫
Ri

N

∣∣∣∣∣μÂN
(Ri

N × [0, y])

μÂd
N
(Ri

N )
− y

∣∣∣∣∣ dμÂd
N
(x)

−
∫
Ri

N

∣∣∣∣∣μAN (Ri
N × [0, y])

μAd
N
(Ri

N )
− y

∣∣∣∣∣ dμAd
N
(x)

)
dλ(y)

∣∣∣∣
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=

∣∣∣∣∣∣
∫
I

∑
i∈I0

∣∣∣μÂN
(Ri

N × [0, y])− yμÂd
N
(Ri

N )
∣∣∣− ∣∣∣μAN (Ri

N × [0, y])− yμAd
N
(Ri

N )
∣∣∣ dλ(y)

∣∣∣∣∣∣
≤

∫
I

∑
i∈I0

∣∣∣μÂN
(Ri

N × [0, y])− μAN (Ri
N × [0, y])

∣∣∣+ y
∣∣∣μÂd

N
(Ri

N )− μAd
N
(Ri

N )
∣∣∣ dλ(y)

≤ C ·Nd ·
(
d∞(ÂN , AN ) + d∞(Âd

N , Ad
N )

)
≤ C ·Nd ·

(
d∞(Ân, A) + d∞(Âd

n, A
d)
)

≤ 2C ·Nd · d∞(Ân, A).

According to Lemma 6.1 there exists a set Λ ∈ A with P(Λ) = 1 such that for
every ω ∈ Λ we can find a constant c(ω) > 0 and an index n0 = n0(ω) ∈ N such
that

d∞(Ân(ω), A) ≤ c(ω)

√
log(log(n))

n

holds for all n ≥ n0. Altogether we conclude that for every ω ∈ Λ and N(n) =
�ns� with 0 < s < 1

2d we have convergence and the proof is complete.

Remark 6.5. Simulations (see Appendix B) insinuate that the range of the pa-
rameter s according to Theorem 6.4 for which we have consistency can be ex-
tended to the interval

(
0, 1

d

)
. We conjecture that the optimal choice of s (optimal

in the sense that the estimator performs well independent of the underlying de-
pendence structure) is setting s = 1

ρ .

As a consequence, the publicly available R-package ‘qmd’ (short for: quan-
tification of multivariate dependence), which contains the afore-mentioned es-
timator considers s = 1

ρ . All simulations presented in the Appendix can be
reproduced using the ‘qmd’-package.

7. Concluding remarks

This paper generalizes and extends results going back to [7, 48] by considering
linkages and a metric on the space of linkages which induced the multivariate de-
pendence measure ζ1. The derived checkerboard estimator is strongly consistent
in full generality.

As one of the next steps we will address properties of ζ1 (Theorem 5.6) and

strong consistency of ζ̂1n in the discrete and mixed setting. As already mentioned,
ties have a strong influence on the resulting copula. We conjecture that when
working with multilinear interpolations (to assure uniqueness of the copula)
the marginal distribution of Y has to be incorporated in the definition of ζ1,
particularly in order to attain the maximum value of 1 can not be reached in
the setting of complete dependence. One possible approach could be to modify
the definition of ζ1 to

ζ1(X, Y ) :=
D1(A,Πρ)

D1(C,Π2)
, (22)
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where A ∈ Cρ is the copula underyling (X, Y ) and C ∈ C2 denotes the cop-
ula underlying (Y, Y ) (constructed via bilinear interpolation of the subcopula
induced by (Y, Y )).

Additionally, we will try to prove or falsify the conjecture that the permissible
range of the parameter s according to Theorem 6.4 can be enlarged to

(
0, 1

d

)
.

Appendix A: Additional proofs

Proof of Lemma 3.4. We prove the statement for dimension ρ = 4, the general
case can be handled analogously. Since C ∈ C4

Π3
is a linkage disintegration yields

C(x1, x2, x3, y) =

∫
[0,x1]

∫
[0,x2]

∫
[0,x3]

KC(s1, s2, s3, [0, y])dλ(s3)dλ(s2)dλ(s1)

for all x1, x2, x3, y ∈ I. Fix y ∈ I. Then for arbitrary (x2, x3) ∈ I2 there exists a
set Λy

(x2,x3)
∈ B(I) with λ(Λy

(x2,x3)
) = 1 such that for every x1 ∈ Λy

(x2,x3)
∩ (0, 1)

the partial derivative ∂C
∂x1

in (x1, x2, x3, y) exists and fulfills

∂

∂x1
C(x1, x2, x3, y) =

∫
[0,x2]

∫
[0,x3]

KC(x1, s2, s3, [0, y])dλ(s3)dλ(s2).

Setting Λy := (0, 1) ∩
⋂

(x2,x3)∈Q2∩I2 Λ
y
(x2,x3)

obviously yields Λy ∈ B(I) as

well as λ(Λy) = 1. Consider x1 ∈ Λy as well as (x2, x3) ∈ I2, suppose that
x2, x2, x3, x3 ∈ Q ∩ I fulfill x2 ≤ x2 ≤ x2, x3 ≤ x3 ≤ x3 and define Ih by

Ih(x1, x2, x3, y) :=
C(x1 + h, x2, x3, y)− C(x1, x2, x3, y)

h

for h ∈ [−x1, 1− x1] \ {0}. Using the fact that C is 4-increasing obviously

Ih(x1, x2, x3, y) ≤ Ih(x1, x2, x3, y) ≤ Ih(x1, x2, x3, y) (23)

holds. Moreover, by construction, for the left and the right part of Eq. (23) the
limit for h → 0 exists and fulfills

lim
h→0

Ih(x1, x2, x3, y) =

∫
[0,x2]

∫
[0,x3]

KC(x1, s2, s3, [0, y])dλ(s3)dλ(s2),

lim
h→0

Ih(x1, x2, x3, y) =

∫
[0,x2]

∫
[0,x3]

KC(x1, s2, s3, [0, y])dλ(s3)dλ(s2),

which (via considering limes inferior and limes superior and the fact that Q is
dense in R) implies the existence of limh→0 Ih(x1, x2, x3, y) =

∂
∂x1

C(x1, x2, x3, y)
as well as

∂

∂x1
C(x1, x2, x3, y) =

∫
[0,x2]

∫
[0,x3]

KC(x1, s2, s3, [0, y])dλ(s3)dλ(s2)︸ ︷︷ ︸
=:F1(x1,x2,x3,y)
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for every (x2, x3) ∈ I2 and x1 ∈ Λy.
Now fix x1 ∈ Λy and x3 ∈ I. Then the mapping x2 �→ F1(x1, x2, x3, y) is

absolutely continuous and non-decreasing, so there exists a set Λy
(x1,x3)

with

λ(Λy
(x1,x3)

) = 1 such that the partial derivative ∂F1

∂x2
exists and fulfills

∂

∂x2
F1(x1, x2, x3, y) =

∫
[0,x3]

KC(x1, x2, s3, [0, y])dλ(s3)︸ ︷︷ ︸
=:F2(x1,x2,x3,y)

. (24)

Proceeding as before and considering Λy
x1

:= (0, 1) ∩
⋂

x3∈Q∩I Λ
y
(x1,x3)

we get

that for x1 ∈ Λy, x2 ∈ Λy
x1

and arbitrary x3 ∈ I the partial derivative of
F1 with respect to x2 exists and satisfies Eq. (24). Furthermore, we find a set
Λy
(x1,x2)

∈ B(I) with λ(Λy
(x1,x2)

) = 1 such that

∂

∂x3
F2(x1, x2, x3, y) = KA(x1, x2, x3, [0, y]) (25)

holds for x1 ∈ Λy, x2 ∈ Λy
x1

and x3 ∈ Λy
(x1,x2)

.

In the sequel we will use the following Dini derivatives of a function f :
(0, 1)4 → I with respect to the first coordinate (see, for instance, [20])

∂+

∂x1
f(x1, x2, x3, y) := inf

h>0
sup

Δ∈(−h,h)\{0}

f(x1 +Δ, x2, x3, y)− f(x1, x2, x3, y)

Δ
,

∂−

∂x1
f(x1, x2, x3, y) := sup

h>0
inf

Δ∈(−h,h)\{0}

f(x1 +Δ, x2, x3, y)− f(x1, x2, x3, y)

Δ
.

and consider the set Γy defined by

Γy :=

{
(x1, x2, x3) ∈ (0, 1)3 :

∂+

∂x1
C(x1, x2, x3, y) =

∂−

∂x1
C(x1, x2, x3, y) = F1(x1, x2, x3, y),

∂+

∂x2
F1(x1, x2, x3, y) =

∂−

∂x2
F1(x1, x2, x3, y) = F2(x1, x2, x3, y),

∂+

∂x3
F2(x1, x2, x3, y) =

∂−

∂x3
F2(x1, x2, x3, y) = KC(x1, x2, x3, [0, y])

}
.

Note that continuity of the maps x1 �→ C(x1, x2, x3, y), x2 �→ F1(x1, x2, x3, y)
and x3 �→ F2(x1, x2, x3, y) implies measurability of the considered Dini deriva-
tives, so Γy ∈ B(I3) follows immediately. Finally using disintegration twice and
considering

λ3(Γy) =

∫
I

λ2(Γy
x1
)dλ(x1) =

∫
Λy

λ2(Γy
x1
)dλ(x1)

=

∫
Λy

∫
I

λ
((

Γy
x1

)
x2

)
dλ(x2)dλ(x1)
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=

∫
Λy

∫
Λy

x1

λ
((

Γy
x1

)
x2

)
︸ ︷︷ ︸
≥λ(Λy

(x1,x2)
)=1

dλ(x2)dλ(x1)

shows λ3(Γy) = 1.
Using Fubini’s theorem, repeating the above procedure with a different order

of the partial derivatives yields another Borel set of full λ3-measure and the
proof is complete.

Proof of Lemma 4.3. First of all we show that the integrand of D1 (or Dp,
respectively) is measurable. Define H on [0, 1]ρ by H(x, y) = KL(A)(x, [0, y]).
Then H is measurable in x and non-decreasing and right-continuous in y. Fix
z ∈ [0, 1]. For every q ∈ Q ∩ [0, 1] define

Λq := {x ∈ Id : H(x, q) < z} ∈ B([0, 1]d),

and set
Λ :=

⋃
q∈Q∩I

Λq × [0, q] ∈ B([0, 1]ρ).

Using right-continuity it is straightforward to see that Λ = H−1([0, z)), from
which measurability of H directly follows.

Furthermore, if D1(A,B) = 0 then there exists a set Λ ⊆ [0, 1]ρ with λρ(Λ) =
1 such that for every (x, y) ∈ Λ we have KL(A)(x, [0, y]) = KL(B)(x, [0, y]). It
follows that

λ(Λx) = λ({y ∈ I : (x, y) ∈ Λ}) = 1

holds for almost every x ∈ Id. For every such x we have that the kernels coincide
on a dense set, so the conditional distribution functions have to be identical.
Using disintegration shows L(A) = L(B). Note that on the space of copulas
we might have D1(A,B) = 0 although A �= B. The remaining properties of
a metric are obviously fulfilled. The fact that D∞ and Dp are metrics can be
shown analogously.

Proof of Proposition 4.4. We start by showing that the function φA,B defined
by

φA,B(y) :=

∫
Id
|KL(A)(x, [0, y])−KL(B)(x, [0, y])|dλd(x)

is Lipschitz continuous with Lipschitz constant L = 2. In fact, if s < t, defining
G by

G := {x ∈ [0, 1]d : KL(A)(x, (s, t]) > KL(B)(x, (s, t])}
and using Scheffé’s theorem (see [12]), we have

|φA,B(s)− φA,B(t)| ≤
∫
Id
|KL(A)(x, (s, t])−KL(B)(x, (s, t])|dλd(x)

= 2

∫
G

KL(A)(x, (s, t])−KL(B)(x, (s, t])dλ
d(x)
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≤ 2

∫
Id
KL(A)(x, (s, t]) dλ

d(x) ≤ 2λ((s, t]) = 2(t− s),

which shows Lipschitz continuity.
Statement (1) follows directly from disintegration and the triangle inequality

since

d∞(L(A), L(B)) = sup
(x,y)∈Iρ

|L(A)(x, y)− L(B)(x, y)|

= sup
(x,y)∈Iρ

∣∣∣∣∣
∫
[0,x]

KL(A)(s, [0, y])−KL(B)(s, [0, y])dλ
d(s)

∣∣∣∣∣
≤ sup

y∈I

∫
Id

∣∣KL(A)(s, [0, y])−KL(B)(s, [0, y])
∣∣ dλd(s)

= D∞(A,B).

The first inequality in the second assertion is obvious. Using Lipschitz continuity
we can find some y0 ∈ [0, 1] such that φA,B(y0) = supy∈[0,1] φA,B(y). Further-
more the area between the graph of φA,B and the x-axis contains the triangle

Δ1 with vertices {(y0 − φA,B(y0)
2 , 0), (y0, 0), (y0, φA,B(y0))} or the triangle Δ2

with vertices {(y0, 0), (y0 + φA,B(y0)
2 , 0), (y0, φA,B(y0))}. Hence, we have

∫
[0,1]

φA,B(y)dλ(y) ≥
φA,B(y0)

φA,B(y0)
2

2
=

D∞(A,B)2

4
,

which proves assertion (2). The first inequality in the third assertion is trivial
since the integrand only attains values in [0, 1], the second one follows from
Hölder’s inequality.

Proof of Theorem 4.12. Since C ∈ Cρ
Πd

it is straightforward to verify that
CBN (C) ∈ Cρ

Πd
holds for every N ∈ N. Fix y ∈ (0, 1), let JN (y) denote the

unique interval of the form JN (y) :=
(

j(y)−1
N , j(y)

N

]
containing y, and let Q

be a countable dense subset of (0, 1). For every q ∈ Q we find a set Λq with
λd(Λq) = 1 such that for every x ∈ Λq the point x is a Lebesgue point of
the mappings (x �→ KC(x, [0, q])) and (x �→ KC(x, (q − δ, q + δ))) for every
δ ∈ Q ∩ (0, 1). Setting Λ0 :=

⋂
q∈Q Λq and defining Eq by

Eq := {x ∈ Λ0 : KC(x, {q}) = 0}

for every q ∈ Q, both Λ0 and Eq are of λd-measure 1. Considering Λ :=
(
⋂

q∈Q Eq) \Qd therefore yields λd(Λ) = 1.
As first major step we now show that

lim
N→∞

KCBN (C) (x, JN (y)) = 0

holds for every (x, y) ∈ Λ×Q. Fix (x, y) ∈ Λ×Q and ε > 0. Then there exists
some δ ∈ Q ∩ (0, 1] such that KC(x, (y − δ, y + δ)) < ε. Furthermore, there
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exists an N0 ∈ N such that for all N ≥ N0 we have JN (y) ⊆ (y − δ, y + δ). Let
(Ri

N (x))N∈N denote the unique sequence of hypercubes (according to equation
(11)) containing x. It is straightforward to verify that (Ri

N (x))N∈N shrinks
nicely to x with respect to λd (see [40]). Using the fact that the probability
measure KCBN (C)(x, ·) is constant on each hypercube and

μCBN (C)(R
i
N (x)× JN (y)) = μC(R

i
N (x)× JN (y))

holds for every N ∈ N yields

KCBN (C)

(
x, JN (y)

)
=

1

λd(Ri
N (x))

∫
Ri

N (x)

KCBN (C)

(
s, JN (y)

)
dλd(s)

=
1

λd(Ri
N (x))

μCBN (C)

(
Ri

N (x)× JN (y)
)

=
1

λd(Ri
N (x))

∫
Ri

N (x)

KC

(
s, JN (y)

)
dλd(s)

≤ 1

λd(Ri
N (x))

∫
Ri

N (x)

KC

(
s, (y − δ, y + δ)

)
dλd(s).

Applying Lebesgue’s differentiation theorem (see [40, Theorem 7.10]) we obtain

lim sup
N→∞

KCBN (C)

(
x, JN (y)

)
= lim sup

N→∞

1

λd(Ri
N (x))

∫
Ri

N (x)

KC

(
s, JN (y)

)
dλd(s)

≤ lim sup
N→∞

1

λd(Ri
N (x))

∫
Ri

N (x)

KC

(
s, (y − δ, y + δ)

)
dλd(s)

= KC

(
x, (y − δ, y + δ)

)
< ε.

Since ε was arbitrary we have shown that limN→∞ KCBN (C) (x, JN (y)) = 0.
Let (x, y) be as before. Then using the afore-mentioned property of CBN (C)

again yields

KCBN (C)(x, [0, y]) =
1

λd(Ri
N (x))

∫
Ri

N (x)

KCBN (C)(s, [0, y]) dλ
d(s)

=
1

λd(Ri
N (x))

∫
Ri

N (x)

KC(s, [0, y]) dλ
d(s)

+
1

λd(Ri
N (x))

∫
Ri

N (x)

KCBN (C)(s, [0, y])−KC(s, [0, y]) dλ
d(s)

≤ 1

λd(Ri
N (x))

∫
Ri

N (x)

KC(s, [0, y]) dλ
d(s)

+
1

λd(Ri
N (x))

∫
Ri

N (x)

KCBN (C)

(
s,

[
0, j(y)

N

])
dλd(s)

− 1

λd(Ri
N (x))

∫
Ri

N (x)

KC

(
s,

[
0, j(y)−1

N

])
dλd(s)
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=
1

λd(Ri
N (x))

∫
Ri

N (x)

KC(s, [0, y]) dλ
d(s)

+
1

λd(Ri
N (x))

∫
Ri

N (x)

KCBN (C)(s, JN (y)) dλd(s)

=
1

λd(Ri
N (x))

∫
Ri

N (x)

KC(s, [0, y]) dλ
d(s)

+KCBN (C)(x, JN (y)).

Applying Lebesgue’s differentiation theorem and the results of the first part of
the proof yields

lim sup
N→∞

KCBN (C)(x, [0, y]) ≤ KC(x, [0, y]).

Proceeding in a similar manner we also get

KCBN (C)(x, [0, y]) ≥
1

λd(Ri
N (x))

∫
Ri

N (x)

KC(s, [0, y]) dλ
d(s)

+
1

λd(Ri
N (x))

∫
Ri

N (x)

KCBN (C)

(
s,

[
0, j(y)−1

N

])
dλd(s)

− 1

λd(Ri
N (x))

∫
Ri

N (x)

KC

(
s,

[
0, j(y)

N

])
dλd(s)

=
1

λd(Ri
N (x))

∫
Ri

N (x)

KC(s, [0, y]) dλ
d(s)

−KCBN (C)(x, JN (y)),

implying

lim inf
N→∞

KCBN (C)(x, [0, y]) ≥ KC(x, [0, y]).

Altogether we have shown

lim
N→∞

KCBN (C)(x, [0, y]) = KC(x, [0, y]).

Since weak convergence of univariate distribution functions F1, F2, . . . to F is
equivalent to pointwise convergence on a dense subset (see [5]), we have shown
that λd-almost all conditional distribution functions (y �→ KCBN (C)(x, [0, y]))
converge weakly to (y �→ KC(x, [0, y])).

Appendix B: Simulation study

In order to illustrate the small/moderate sample performance as well as the con-

vergence speed of our estimator ζ̂1n we consider several dependence structures
ranging from independence to complete dependence. If not specified otherwise,
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we considered s ∈ { 1
ρ ,

1
2d}. Furthermore, the minimum resolution of the checker-

board aggregation was set to N = 2. For the extreme cases of independence and
complete dependence we compared our estimator with the results obtained by
the ‘simple measure of conditional dependence Tn’ (using the function ‘codec’
in the R-package ‘FOCI’, see [2]).

B.1. Independence

To test the performance of ζ̂1n in the setting of Y and X being independent
for different dependence structures of X we considered d ∈ {2, 3, 4}, generated
samples (x1, y1), . . . , (xn, yn) of sizes n ∈ {100, 500, 1.000, 5.000, 10.000} and

calculated ζ̂1n as well as Tn. These steps were repeated R = 1.000 times, the

obtained results are depicted as boxplots in Figs. 6, 7 and 8. Obviously, ζ̂1n only
attains positive values and tends to 0 for increasing sample size, whereas Tn

varies strongly around 0, i.e., also attains large negative values. Hence, inter-
preting values of ζ̂1n between 0 and 0.3 must be done with care and always under

consideration of the sample size n. The simulations insinuate that ζ̂1n exhibits
slightly smaller variance.

Fig 6. Boxplots summarizing the 1.000 obtained estimates for ζ̂1n((X1, X2), Y ) for two differ-
ent choices of s (s1 = 1/3 (magenta) and s2 = 1/4 (green)) as well as for Tn(Y, (X1, X2))
(gray). Samples of size n are drawn from normally distributed as well as exponentially dis-
tributed random variables: X1 ∼ N (0, 1), X2 ∼ N (0, 1), Y ∼ E(1); X1, X2, Y independent.

Fig 7. Boxplots summarizing the 1.000 obtained estimates for ζ̂1n((X1, X2, X3), Y ) for
two different choices of s (s1 = 1/4 (magenta) and s2 = 1/6 (green)) as well as for
Tn(Y, (X1, X2, X3)) (gray). Samples of size n are drawn from: X1 ∼ U(0, 1), X2 := X1 + ε
with ε ∼ N (0, 0.12), X3 ∼ E(1) and Y ∼ U(0, 1); X and Y are independent.
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Fig 8. Boxplots summarizing the 1.000 obtained estimates for ζ̂1n((X1, X2, X3, X4), Y ) for
two different choices of s (s1 = 1/5 (magenta) and s2 = 1/8 (green)) as well as for
Tn(Y, (X1, X2, X3, X4)) (gray). Samples of size n are drawn from: X1 ∼ U(0, 1), X2 := 2X1(
mod 1) + ε1, X3 ∼ U(0, 1), X4 := 2X3( mod 1) + ε2, whereby ε1, ε2 ∼ N (0, 0.12) and
Y ∼ U(0, 1); X, Y independent.

Fig 9. Boxplots summarizing the 1.000 obtained estimates for ζ̂1n(CCube) for two different
choices of s (s1 = 1/3 (magenta) and s2 = 1/4 (green)). The true value of ζ1(CCube) = 0.75
is depicted as black horizontal line.

B.2. CCube

To test the performance of ζ̂1n for CCube ∈ C3 according to Example 5.7, we

generated samples of size n ∈ {100, 500, 1.000, 5.000, 10.000} and calculated ζ̂1n.
These steps were repeated R = 1.000 times, the obtained results are depicted as
boxplots in Figs. 9. Obviously, ζ̂1n converges to the true value from below. Not

surprisingly the speed of convergence of ζ̂1n strongly depends on the resolution
N , defined by N(n) := �ns�.

B.3. Complete (functional) dependence

In order to test the performance of ζ̂1n for the opposite extreme of complete de-
pendence, we generated samples of size n ∈ {100, 500, 1.000, 5.000, 10.000} and

calculated ζ̂1n as well as Tn for several different functional dependence structures.
These steps were repeated R = 1.000 times. The results for some specific depen-
dence structures in the three-, four- and five-dimensional setting are depicted in
Figs. 10, 11, 12 and 13. It can be seen that the convergence speed of ζ̂1n is the
better the larger the parameter s (or the lower the dimension).
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Fig 10. Boxplots summarizing the 1.000 obtained estimates for ζ̂1n((X1, X2), Y ) for two dif-
ferent choices of s (s1 = 1/3 (magenta) and s2 = 1/4 (green)) as well as for Tn(Y, (X1, X2))
(gray). Samples of size n are drawn from: X1 ∼ U(−1, 1), X2 ∼ U(−1, 1) and Y := X2

1 +X2
2 .

Fig 11. Boxplots summarizing the 1.000 obtained estimates for ζ̂1n((X1, X2), Y ) for two dif-
ferent choices of s (s1 = 1/3 (magenta) and s2 = 1/4 (green)) as well as for Tn(Y, (X1, X2))
(gray). Samples of size n are drawn from: X1 ∼ N (0, 1), X2 ∼ N (0, 1) and Y := X1/X2.

Fig 12. Boxplots summarizing the 1.000 obtained estimates for ζ̂1n((X1, X2, X3), Y ) for
two different choices of s (s1 = 1/4 (magenta) and s2 = 1/6 (green)) as well as for
Tn(Y, (X1, X2, X3)) (gray). Samples of size n are drawn from: X1 ∼ U(0, 1), X2 := 2X1(
mod 1), X3 ∼ U(0, 1) and Y := X1 +X2 +X3( mod 1).
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Fig 13. Boxplots summarizing the 1.000 obtained estimates for ζ̂1n((X1, X2, X3, X4), Y ) for
two different choices of s (s1 = 1/5 (magenta) and s2 = 1/8 (green)) as well as for
Tn(Y, (X1, X2, X3, X4)) (gray). Samples of size n are drawn from: X1 ∼ U(0, 1), X2 ∼
U(0, 1), X3 ∼ U(0, 1), X4 ∼ U(0, 1) and Y := X1 +X2 +X3 +X4.
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