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1. Introduction

Concentration inequalities are widely used in statistical learning. For example,
model selection techniques rely heavily on concentration inequalities [28]. They
have also been used for high dimensional procedures [1, 7] or for studying various
machine learning framework, such as time series forecasting [25], online machine
learning [33] or classification problems [19].
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Many concentration inequalities have been proposed under different scenarios
and assumptions. The simpler case corresponds to the independent and identi-
cally distributed hypothesis. Interested readers may consult [9] for an overview
on concentration inequalities in this case.

However, in many machine learning applications, the i.i.d. assumption does
not hold. It is the case for instance for time series which exhibit inherent tem-
poral dependence.

As simple model of dependent times series are Markov chains. A Markov
chain is a sequence of random variables (Xt) verifying:

Xt = F (Xt−1, . . . , Xt−i, εt), for a function F and i.i.d. innovations (εt)t∈Z.
(1.1)

Many approaches have been used to establish concentration inequalities for
Markov chains. These approaches include renewal technique (see [6]), Marton
coupling (see [32]) and martingale decomposition (see [2, 12, 14, 16, 23]).

However, Markov chains are not sufficient to model any type of dependence.
Some data may exhibit non-causal dependence. In the uni-dimensional case, it
means that one data point does not merely depend on past data points, but also
future data.

For example, this situation occurs for textual data. Textual data are a typical
example of data generated by a non-causal process, because dependence on
words goes forward, but also backward. A key task involving textual data is
the completion problem. It consists in filling blanks in a text using surrounding
words. This task is achieved by creating a language model, i.e., a probability
distribution of words for a given context (past and future words).

In practice, non-causal models are already used to learn language models.
Notable examples of such models are bidirectional neural networks [34]. They
have recently received a lot of attention for their performances in Natural Lan-
guage Processing. In particular, the BERT model [21] has become a staple for
a very large range of NLP tasks, such as translation, part-of-speech tagging,
sentiment analysis. However, despite their success in practical applications, it
lacks a theoretical framework to analyze such non-causal models.

If the dimension of the lattice of random variables increases, we obtained a
random field. The natural extension of Markov chains to random fields leads
to causal random fields: here the dependence is propagated along with prefer-
ential directions (see [17] for an example of application). Non-causal random
fields appear more naturally in some applications. For instance, it is natural
to model the generation of pictures by a non-causal random field defined over
a two-dimensional lattice. In this case, the completion problem consists in fill-
ing missing pixels using neighboring pixels [4]. It had to use information from
each direction (up, down, left, right) to be able to complete the missing pixel.
However, contrary to the case of textual data, such pixel completion techniques
are not state-of-the-art for image processing. Another application of impor-
tance is the case of completing geographical data sets which make sense for
an ecology setting (see http://doukhan.u-cergy.fr/EcoDep.html), for which
applications are of fundamental importance.
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1.1. Our contribution

In this article, we extend the Markovian framework presented in Eq. (1.1) to
handle non-causal data. In the 1-dimensional case, we assume that the model is
a solution of the following equations

Xt = F (Xt−s, . . . , Xt−1, Xt+1, . . . , Xt+s, εt), with i.i.d. (εt)t∈Z.

We straightforwardly generalize this approach to random fields indexed by
Z
κ,i.e., the multi-dimensional case. In this case, data are a solution of the fol-

lowing equation

Xt = F ((Xt+s)s∈B, εt), for some neighborhood B and i.i.d. (εt)t∈Z.

This kind of random field was introduced by [18]. It provides conditions for
the existence and uniqueness of the solution of such an equation.

We aim at establishing concentration inequalities for these processes using
realistic hypotheses on the data. In particular, we want our hypotheses to be
reasonable for text data. These hypotheses are non-causal versions of the hy-
potheses of [2] or [16].

Our main results are Hoeffding-type inequalities. The main hypothesis for
these inequalities is relaxed versions of the contraction assumption used in [2,
14, 16].

Our technique of proof relies on a convenient local approximation of a non-
causal random field by a function of a finite number of i.i.d. random variables. We
also give some examples of such random fields and compare our framework with
other classical dependent frameworks. Finally, we present a simple application
of our results to model selection, inspired by [27].

1.2. Outline of the paper

In Section 2, we introduce non-causal random fields proposed in [18]. We also
present our hypotheses in this section. We take some examples of models satis-
fying our framework and define the statistic SI of interest for which we aim at
proving a concentration inequality. Main results may be found in Section 3 as
well as some immediate applications to machine learning and comparisons with
other concentration inequalities. The rest of the paper is dedicated to the proof
of main results.

In the section 4, we introduce an approximation S̃
[d]
I of SI which only depends

on a finite number of independent variables. We also establish a result evaluating
the quality of this approximation.

Then, in section 5 we prove the main concentration inequality using the

McDiarmid’s inequality proposed by [13] on S̃
[d]
I .
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2. Model

In this section, we will present a model inspired by [18] in order to consider
non-causal random field. Then, we introduce our hypotheses and the targeted
statistic SI .

2.1. Some definitions and notations

From now, all random variables are defined on a probability space (Ω,F ,P).

Dimension of the random field Let κ ∈ N denote the dimension of the
random field of interest.

This dimension should not be confused the classical dimension that appears
in high-dimensional statistics, i.e., the number of parameters of the model. Here,
the number of parameters increases exponentially with the dimension κ.

Probabilistic setting Let X be a Banach space endowed with a norm ‖ · ‖.
We define the m−norm ‖X‖m of a random variable X as

‖X‖m = (E‖X‖m)
1
m with ‖ · ‖ is a norm on X .

We also use the uniform norm ‖X‖∞ = inf{C, ‖X‖ ≤ C a.s. } = limm→∞ ‖X‖m.

Neighborhoods V(δ, s) and B Let δ be a κ-tuple of non-negative integer, i.e.,
δ = (δ1, . . . , δκ) ∈ N

κ and s be a κ-tuple of integers, i.e., s = (s1, . . . sκ) ∈ Z
κ.

The δ-neighborhood of s, V(δ, s) is defined as the following κ-orthotope

V(δ, s) = {t = (t1, . . . , tκ) ∈ (Z)κ/ ∀i, si − δi ≤ ti ≤ si + δi}.

Thereafter, we will study a specific neighborhood B = V(δ, 0)\{0} for a fixed
value of δ.

Moreover we will denote by nB the cardinal of V(δ, 0) = B
⋃
{0} (thus nB =

card(B) + 1).

Additionally, we introduce the notation B+ s which denote the set B shifted
by s, i.e., B + s = V(δ, s)\{s}.

Innovations εεε = (εt)t∈Zκ . Let (εt)t∈Zκ be a random field indexed by Z
κ of

independent and identically distributed random variables εt on a Banach space
E. To shorten the notation, we denote by εεε = (εt)t∈Zκ the whole random field.

Additionally, we define με the probability distribution of one random variable
εt and μ =

⊗
t∈Zκ

με, the product of these distributions on EZ
κ

. Then, μ is the

distribution of εεε = (εt)t∈Zκ .
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2.2. Local non-causal relations

In this paper, we will study the κ-dimensional non-causal random field (Xt)t∈Zκ .
This random field presents a local dependence, for each t ∈ Z

κ, Xt depends on
its neighborhood indexed by V(δ, t) and on the innovation εt.

Formally, we assume it exists a function F : XB×E → X such that (Xt)t∈Zκ

is a stationary solution of the following equation

∀t ∈ Z
κ, Xt = F ((Xt+s)s∈B, εt). (2.1)

The reference [18] ensures the existence and uniqueness of such solutions
giving contraction hypothesis on F . Here, we just suppose to have one (strongly)
stationary random field (Xt)t∈Zκ verifying this equation and we do not assume
the uniqueness.

Thereafter, we denote by μX the stationary distribution of one marginal
random variable Xt. We assume that laws μX and με are stable by F. It means
that, if (Xt)t∈B is drawn with marginal distribution μX and ε is drawn with
distribution με, then the random variable F ((Xs)s∈B, ε) follows the distribution
μX .

For s ∈ B, Xt+s depends on Xt, but Xt also depends on Xt+s. Therefore, it
is no longer possible to describe (Xt)t∈Zκ as a result of a martingale process.
This is why, we call (Xt)t∈Zκ a non-causal random field.

Remark 2.1. It is important to note that the evolution of the random field is
defined by a local equation. This is similar to settings of auto-regressive times
series in the uni-dimensional case. This is why our framework can be seen as
a generalization of stationary Markov chains. Indeed when δ = κ = 1 and
B = {−1}, (Xt)t∈Z is an homogeneous and stationary Markov chain.

Remark 2.2. We have to assume that the set B of index is finite. Indeed the
quantity nB = card(B) + 1 play an important role in our results. Consequently,
models with infinite memory (such as AR(∞)) don’t fit into the framework de-
fined by Equation 2.1

2.2.1. Contraction hypothesis

Numerous concentration inequalities for Markov chains and other martingales
rely on contraction hypotheses (e.g. [2, 14, 16]).

Let’s consider a X -valued Markov chain (Xt)t∈Z given by

Xt = F (Xt−1, εt), where εt are i.i.d. random variables.

The classical contraction hypothesis requires that it exists ρ < 1 such that
for all y, y′ ∈ X , and for all ε ∈ E

‖F (y, ε)− F (y′, ε)‖ ≤ ρ‖y − y′‖. (2.2)

It is relatively easy to extend this condition to a non-causal random field defined
by Equation (2.1). It would be the following condition.
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Definition 2.1. Absolute Contraction It exists (λt)t∈B, such that ρ :=∑
t∈B λt < 1, and for any X -valued tuples Y = (yt)t∈B and Y ′ = (y′t)t∈B indexed

by B and for all ε ∈ E.

‖F (Y , ε)− F (Y ′, ε)‖ ≤
∑
s∈B

λs‖ys − y′s‖. (2.3)

This condition is similar to the condition proposed by [18]. It is strong con-
dition, and it is not satisfied by many usual models.

We therefore want to relax this condition. To that end, we consider that the
contraction is only verified for a m order moment. This leads to the following
hypothesis.

Definition 2.2. Weak contraction hypothesis (Hm
1 ). Let m ∈ N. There

exists (λs)s∈B ∈ [0, 1]B such that, for all tuples of X -valued random variables
(Yt)t∈Zκ , (Y ′

t )t∈Zκ with marginal distribution μX and a random fields εεε = (εt)t∈Zκ

with product distribution μ.

1. ∀t ∈ Z
κ, ‖Yt − Y ′

t ‖ admit moment at order m.
2. ∀t ∈ Z

κ, ‖F ((Yt+s)s∈B, εt)−F ((Y ′
t+s)s∈B, εt)‖m ≤

∑
s∈B λs‖Yt+s−Y ′

t+s‖m.
3.
∑

s∈B λs < 1. We denote thereafter ρ =
∑

s∈B λs.

We emphasize that (Hm
1 ) depends on m because the contraction concerns

only the m−moment and does not require the function F to be contracting
(Equation (2.3)).This hypothesis is hard to verify on the new model because εt
and (Yt) are in general dependent on one another. To prove this condition, we
generally need to verify a stronger contraction hypothesis. However, it should
be possible to test this hypothesis, whereas it is impossible for the absolute
contraction condition because we do not have access to the function F .

However, the weak contraction hypothesis leads to weaker results than abso-
lute contraction. Therefore we also use the following compromise: When m goes
to ∞, (Hm

1 ) becomes

Definition 2.3. Uniform contraction hypothesis (H∞
1 ). There exists

(λs)s∈B ∈ [0, 1]B such that, for all X -valued tuples of random variables (Yt)t∈Zκ ,
(Y ′

t )t∈Zκ with marginal distribution μX and a random fields εεε = (εt)t∈Zκ with
product distribution μ.

1. ∀t ∈ Z
κ, ‖Yt − Y ′

t ‖ admit moment at order ∞
2. ∀t ∈ Z

κ, ‖F ((Yt+s)s∈B, εt)−F ((Y ′
t+s)s∈B, εt)‖∞ ≤

∑
s∈B λs‖Yt+s−Y ′

t+s‖∞.
3.
∑

s∈B λs < 1.

Remark 2.3. If the set X has a finite diameter, i.e. diam (X ) = sup
x,x′∈X

(‖x−x′‖)

and if there are no null set under the measure μX , then ∀t ∈ Z
κ, ‖Yt − Y ′

t ‖∞ ≤
diam (X ). Moreover, F : XB×E → X admits also a finite diameter diam (F ) =
sup

x,x′∈X
(‖F (x, ε)− F (x′, ε)‖∞).

Let’s assume that diam (F ) < diam (X ). In this case, it is tempting to think
that hypothesis (H∞

1 ) is satisfied. However, it may exist couplings of (Yt)t∈Zκ ,
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(Y ′
t )t∈Zκ with marginal distribution μX such that ‖Yt − Y ′

t ‖∞ is far smaller
than diam (X ). Therefore hypothesis (H∞

1 ) is not necessarily satisfied when the
diameter of F is smaller than the diameter of X .

We have the following relation between those hypotheses and the absolute
contraction.

Lemma 2.1. If F verifies the absolute contraction and if the first condition of
the weak (respectively uniform) contraction condition holds, then it verifies the
weak (resp. uniform) contraction condition.

The first condition of weak and uniform contraction condition are immedi-
ately verified as soon as X is bounded. However, this is not a necessary condition,
in particular for (Hm

1 ). In particular, its first condition is verified as soon as μX

is short tail.

The relation between (Hm
1 ) and (H∞

1 ) is uneasy to establish. If (H∞
1 ) is

verified, then, for every coupling, it exists a rank m0 such that the condition 2
of the hypothesis (Hm

1 ) is verified for every m > m0. However, it is not clear if
such a rank m0 exists for every coupling.

2.2.2. Coupling hypothesis

We introduce a coupling hypothesis similar to the condition used in [16]. It con-
trols the moment of the difference between two independents variables following
the same distribution μX .

Definition 2.4. Coupling hypothesis (Hm
2 ). Let m ∈ N ∪ {∞}. We sup-

pose that for two X -valued independent random variables X, Y with marginal
distribution μX , it exists a constant Vm such that

‖Y −X‖m ≤ Vm.

This hypothesis is immediately verified as soon as the diameter of X is finite.
Moreover, if (Hm

1 ) is verified, so is (Hm
2 ). Nevertheless, we point out that the

quantity Vm plays a important role in our concentration inequality result and
may be significantly smaller than the diameter of X . Consequently, even when
the diameter is finite, it may be advantageous to use hypothesis (Hm

1 ) and
(Hm

2 ).

Remark 2.4. If m,m′ ∈ N ∪ {∞} and m′ ≤ m, then (Hm
2 ) =⇒ (Hm′

2 )

2.2.3. Examples

We provide below some examples of non-causal random fields.
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Non-causal linear fields Under our framework, the simplest possible non-
causal random fields is the bidirectional linear model. In this case κ = 1, and
we have α−1, α1 such that

F (Xt−1, Xt+1, εt) = α−1Xt−1 + α1Xt+1 + εt.

Where the εt are a Gaussian white noise of variance σ2. In this setting, absolute
contraction is satisfied if α−1 + α1 < 1..

Remark 2.5. This is equivalent, when α1 �= 0 to a classical AR(2) model.

Bidirectional linear field can be generalize to linear random fields

Xt = F ((Xt+i)i∈B, εt) =
∑
s∈B

αsXt+s + εt.

In any case, absolute contraction is satisfied as soon as
∑

s∈B αs < 1.

Finite LARCH random fields Finite LARCH(n) random fields [35] are
defined by

Xt = F ((Xt−i)i∈[1,n], εt) = εt

(
α0 +

n∑
i=1

αiXt−i

)
.

They can be generalized to non-causal LARCH(n) fields defined by

Xt = F ((Xt+s)s∈B, εt) = εt

(
α0 +

∑
s∈B

αsXt+s

)
.

In this case, a sufficient condition to fulfill (Hm
1 ) is: ‖εt‖∞

∑
s∈B αs < 1.

Finite ARCH random fields ARCH models are widely used in econometric
and can be easily extended to the non-causal case. Here, we propose a Bi-
ARCH(1,1) model defined by

Xt = F (Xt−1, Xt+1, εt)

= εt
√

α−1Xt−1 + α1Xt+1 + β, where ε is a real random variable.

In this case, (Hm
1 ) is satisfied providing ‖ε‖∞(α1 + α−1) < 1. (Hm

2 ) is satisfied
if ε is bounded and the process stationary. Those processes can be extend to
the multidimensional case, such processes verify

Xt = F ((Xt+s)s∈B, εt) = εt

√
α0 +

∑
s∈B

αsX2
t+s.
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Bidirectional RNN Bidirectional recurrent neural networks (BRNN) have
been used in Natural Language Processing. They have many applications from
text translation to part of speech tagging and speech recognition. Here, we
present the formal version of a single-layer bidirectional neural network with a
white noise εt.

F (Xt, εt) = f
(
AXt

)
+ εt.

Where A is a p× 2k matrix, f is an activation function and Xt is the 2k vector

Xt = (Xt−k, . . . , Xt−1, Xt+1, . . . , Xt+k).

We suppose that the activation function is 1-Lipschitz. This is the case for most
activation function (sigmoid, RELU, softmax). There is also an operator norm
‖‖op,m associated with the norm ‖‖m.

With this condition, the contraction condition (Hm
1 ) is verified as soon as

‖A‖op,m < 1.

If the white noise is bounded, the condition (H∞
2 ) is verified. Instead, if it is

subgaussian, we only have (Hm
2 ).

2.3. Function of interest Φ and the statistic SI

Throughout this article, we focus on a function Φ : X B̄ �→ R defined on a small
neighborhood

B̄ = V(δ̄, 0) =
κ∏

i=1

[−δ̄i, δ̄i]. (2.4)

And we denote by nB̄ the cardinal of B̄. It is important to clarify that definitions
of B and B̄ are slightly different, the point {0} is included in the set B̄ and not in
B. Whereas definitions of nB and nB̄ are comparable, indeed nB = card(B) + 1
and nB̄ = card(B̄).

Then, for a given subset I of indices, we define the statistic SI

SI =
∑
s∈I

Φ((Xs+t)t∈B̄) . (2.5)

We first recall that the process is strongly stationary, thus E[Φ((Xs+t)t∈B̄)] =
E[SI ] is well defined. Our goal is to control the difference between SI and E[SI ],
which is the deviation of SI .We introduce below some hypotheses concerning
this function Φ.
Lipschitz separability hypothesis (H3) We assume that Φ is L-Lipschitz
separable, i.e., there exists a constant L > 0 such that

For all (ut)t∈B̄, (vt)t∈B̄ tuples of X B̄,

‖Φ((ut)t∈B̄)− Φ((vt)t∈B̄)‖ ≤ L
∑
t∈B̄

‖ut − vt‖. (2.6)
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This hypothesis is close to the condition proposed by [16] in the causal dependent
case. Moreover, recent works (see [36]) suggest that such hypothesis is suitable to
deal with deep learning models and provide algorithm to estimate the Lipschitz
constant.

To simplify, we assume throughout the article that L = 1 but setting L �= 1
would only add a multiplicative factor in our results.

Bound for Φ (H4) We assume that Φ is bounded.

∀x ∈ X B̄, |Φ(x)| ≤ M. (2.7)

This hypothesis is immediately verified when X is bounded. The case of un-
bounded X will be discuss in section 3.4.

3. Main Results

3.1. Concentration inequality within i.i.d. assumption

Numerous concentration inequalities have been established to control the devia-
tion of a random variables. Hoeffding’s and McDiarmid’s inequalities, proposed
respectively in [20] and [30], are among the most widely used in machine learn-
ing. Their classical versions are based on the i.i.d. assumption.

Below, we recall the Hoeffding’s inequality.

Theorem 3.1 (Hoeffding’s inequality). Let X1, . . . , Xn be independent real ran-
dom variables and SI =

∑n
i=1 Xi.

We suppose that there exist two tuples (a1, . . . , an) and (b1, . . . , bn) such that
with probability 1,

∀i ∈ [1, n], ai ≤ Xi ≤ bi. (3.1)

Then

P (SI − E [SI ] ≥ ε) ≤ exp

(
−2ε2∑n

i=1(bi − ai)2

)
. (3.2)

In the field of statistical learning, Hoeffding’s and McDiarmid’s have lots of
applications ([9, 28] give examples).

In this article, we aim to prove a Hoeffding-type inequality in the non-causal
setting defined in Section 2.

Remark 3.1. Other types of concentration inequalities (Bernstein, von Bahr-
Esseen) could have been proved in the same context using the same approach.
Indeed, it should also be possible, as in the i.i.d. case, to derive additional in-
equalities from the exponential inequality given in Lemma 4.8.

Nevertheless, we focus on Hoeffding’s inequality because of its simplicity and
its use in many applications.
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3.2. Concentration inequalities and expected deviation bounds for
non-causal random fields

We state below simplified versions of our results. Full theorems may be found
in Section 5.2.

Theorem 3.2 (Concentration inequality, uniform contraction case). Let nB =
Card(B) + 1 and nB̄ = Card(B̄). If (H∞

1 ), (H∞
2 ) and (H3) are verified, there is

a constant A such that, for ε > 2nB̄V∞,

P (|SI − E [SI ] | ≥ ε) ≤ 2 exp

(
−2 (ε− 2nB̄V∞)

2

(nB̄V∞)
2
(1 +AnB̄n

3
Bκ!

2 �ln(n)�κ n)

)
.

With A such that Υ(d)2dκ ≤ A(κ!)2 �ln(n)�κ, where Υ is the function defined
in Lemma 4.6 and can be bounded independently of nB̄, m or n.

Constant A does not depend on nB , nB̄ or n and its explicit value it may be
found in Theorem 5.1.The dominant term in the denominator is AV2

∞n3
B̄
n3
Bκ!

2

�lnn�κ n. It is O(n(lnn)κ), whereas classical i.i.d. Hoeffding’s inequality are
O(n).

Moreover, this term is strongly affected by the dimension of the random
field κ. However, in practice, this constraint is not a problem, because, in most
practical cases, κ ∈ 1, 2.

Other important factors are parametric dimensions of our model, represented
by nB and nB̄ . It is logical that the quality of the inequality decreases when the
number of variables to control increases. Our inequality is very sensitive to these
factors and is therefore not a suitable result for high dimension estimation,i.e.,
when n is smaller than nB and nB̄ . We recall that for a simple Markov chain
both of these terms would be equal to 2.

Finally, the condition ε ≥ 2nB̄V∞ is not restrictive for applications as we
will show in subsection 3.4.

We now give a simplified version of our concentration inequality for the
weaker assumptions (Hm

1 ) and (Hm
2 ).

Theorem 3.3 (Concentration inequality, weak contraction case). Let nB =
Card(B) + 1 and nB̄ = Card(B̄). If (Hm

1 ), (Hm
2 ), (H3) and (H4) are verified,

there are constants A,B,C,D,E,F ,H such that, for ε ≥ 2F (nB̄nB)
3
κ! �ln(n)�2κ

n
2
m .

P (|SI − E [SI ] | ≥ ε) ≤ 2 exp

⎛⎜⎝ −2
(

ε
2 − F (nB̄nB)

3
κ! �ln(n)�2κ n 2

m

)2
(
HnB̄n

2
m

)2
(1 + EnB̄n

3
B(κ!)

2 �ln(n)�κ n)

⎞⎟⎠
+

ρm

n

(
2nBnB̄C �ln(n)�κ +

(
D

n3
Bn

2
B̄
Υ(d) ln(n)2κ

)m)
.

These constants are
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• A =
1+

ln(ρ−1)
κ!nB

+ln(ρ−1)
(κ−1

e )
κ−1

(κ−1)!

ln(ρ−1)κ , then Υ(d) ≤ Aκ!, where Υ is the function

defined in Lemma 4.6 and can be bounded independently of nB̄, m or n.
• B = 1

ρ2 + 1

ρ(nB̄nB)
1
m

+ 2M
Υ(d)Vm(nB̄nB)2

.

• C =
⌈

1− 1
m

ln(ρ−1)

⌉κ
, then dκ ≤ C �ln(n)�κ.

• D = ρ ln(ρ−1)2κ

2(1− 1
m )

2κ .

• E such that Υ(d)2dκ ≤ E(κ!)2 �ln(n)�κ.
• F = 2BC2AVm.
• H = Vm

ρ

Similar remarks can be made about the dimension κ and on parameters nB ,
nB̄ as about the previous theorem.

The denominator in the exponential is O
(
nn

4
m (ln(n))κ

)
. Compared to the

i.i.d case, there is an additional term in n
4
m (ln(n))κ that we intend to explain.

The term n
4
m comes from the (Hm

1 ) which is less strong than the classical
contraction hypothesis. As in the strong contraction case, the term (ln(n))κ

comes from the dependence, and is obtained by similar article for unidirectional
dependence. [16].

(Hm
1 ) and (Hm

2 ) are rather weaker assumptions than (H∞
1 ) and (H∞

2 ) and
thus lead to deteriorated concentration inequalities. In fact, in the exponential

term, the denominator is asymptotically dominated by O
(
n1+ 4

m (ln(n))κ
)
in-

stead of O (n(ln(n))κ) under assumptions (H∞
1 ) and (H∞

2 ) and O (n) under
i.i.d. assumption.

We point out that this theorem only gives interesting results when m > 4
(the reason for this becomes clearer in Theorem 3.4).

The two extra additive terms decrease faster than the main term and are not
dominant for applications as we will show in subsection 3.4.

These two theorems lead to the next corollaries for the expected deviation.

Corollary 3.1 (Simplified expected deviation bound, uniform contraction case).
We assume (H∞

1 ), (H∞
2 ) and (H3). Let A be the constant defined in Theorem

3.2. It holds

E[|SI − E [SI ] |] ≤ nB̄V∞

(
2 +

√
π

2
(1 +AnB̄n

3
B(κ!)

2 �ln(n)�κ n)
)
.

Corollary 3.2 (Simplified expected deviation bound, weak contraction case).
We assume (Hm

1 ), (Hm
2 ), (H3) and (H4). Let A,B,C,D,E,F ,H be the constants

defined in Theorem 3.3. It holds

E[|SI − E [SI ] |]

≤ 2nB̄Hn
2
m

√
π

2
(1 + EnB̄n

3
B(κ!)

2 �ln(n)�κ n) + 2F (nB̄nB)
3
κ! �ln(n)�2κ n 2

m

+ 2ρmM

(
2nBnB̄C �ln(n)�κ +

(
D

n3
Bn

2
B̄
Υ(d) ln(n)2κ

)m)
.
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Remark 3.2. To show how constants occurring in Corollaries 3.2 and 3.3 can
be explicitly computed, we provide below a simple example.

We assume that it exists α−1 and α+1 such that

∀t ∈ Z, Xt = F (Xt−1, Xt+1, εt) = α−1Xt−1 + α+1Xt+1 + εt.

This framework corresponds to the most simple bi-linear random field.
Additionally, we introduce a function φ and a statistic SI such that

SI =
∑
t∈I

φ (Xt−1, Xt+1) .

In this simple case, nB = nB̄ = 3, κ = 1 and ρ = α−1 + α+1. We now assume
that (H∞

1 ), (H∞
2 ) and (H3) hold.

A is defined in Theorem 3.2 as a constant such that Υ(d)2dκ ≤ A(κ!)2 �ln(n)�κ.
We recall from Theorem 4.1 that Υ(d) ≤ υ = 1

nB
+ κ!

ln(ρ−1)κ + κ
(

κ−1
ln(ρ−1)e

)κ−1

and from Theorem 5.1 that d =
⌈

ln(n)
ln(ρ−1)

⌉
. Assuming that n ≥ 2, it follows that

A ≤

(
1
3 + 1

ln(ρ−1) + 1
)2

ln(ρ−1)

(
1

ln(ρ−1)
+

1

ln(2)

)
=

(
1

ln(ρ−1)

)4(
1 +

4

3
ln(ρ−1)

)(
1 +

ln(ρ−1)

ln(2)

)
.

Therefore, we get the following bound for E[|SI − E [SI ] |].

E[|SI − E [SI ] |] ≤ G(ρ,V∞, n)

∼
n→∞

27V∞
ln(ρ)2

√
π

2

(
1 +

4

3
ln(ρ−1)

)(
1 +

ln(ρ−1)

ln(2)

)
n ln(n).

When hypotheses (Hm
1 ), (Hm

2 ), (H3) and (H4) hold, then the constants occur-
ring in Corollary 3.2 can be similarly explicitly computed. See Corollary 5.3 for
instance.

Note that SI is defined as a sum, and not an average of random variables.
Therefore the expected deviation E[|SI − E [SI ] |] does not go to 0.

3.3. Comparison with other results

In this section, we compare our hypotheses and results with other frameworks
and concentration inequalities in the literature.

Independent and identically distributed case The first concentration
inequalities were proved for i.i.d. random variables. We have already presented
the classical Hoeffding’s inequality. McDiarmid’s is similar, but somewhat more
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general, since it does not refer to a sum of random variables
∑n

i=1 φ(Xi), but
to a general random function of random variables φ(X1, . . . , Xn).

The requirements for Hoeffding’s inequality (see Equation (3.1)) or its equiv-
alent for McDiarmid’s inequality, are uniform in the sense of [24] (uniform
bounded difference assumption). However, some attempts [13, 24] have been
made to relax this condition. Instead of assuming such conditions with prob-
ability 1, they may only be required with probability 1 − ρ (with ρ small).
However, relaxing these conditions degrades the quality of the bound.

This can be compared to the difference between the conditions (H∞
1 ) and

(Hm
1 ). Indeed, the moment condition implies that the application F is a con-

tracting mapping with high probability.

Markov chain The causal dependence can be easily described using a Markov
chain, where the values Xt verify an equation of type Xt = F (Xt−1, εt) for an
(i.i.d) innovation εt. We have borrowed a lot from this approach. Our non-
causal master Equation (2.1) has the same form as a classical Markov chain
causal equation.

In order to establish concentration inequalities on Markov chains, further
assumptions about the behavior of the function F are required. For example,
classical hypotheses include conditions on the mixing time and spectral gap
[32]. However, these conditions are difficult to translate in a non-causal and
multidimensional case. Therefore, we use an approach similar to [2, 16] and
introduce a contraction hypothesis. However, as far as we know, our contraction
hypotheses (H∞

1 ) and (Hm
1 ) are weaker than the absolute contraction hypothesis

used in previous works (e.g. [16]). That is why the convergence rate obtained by
[16] is better than our own. They obtain a convergence rate in O(

√
n) instead

of the O(
√
ln(n)n) of our Corollary 3.1.

Simultaneous auto regressive scheme The simultaneous autoregressive
scheme models the evolution of a lattice through time. At each time step, values
on the lattice are updated using the previous values. Causal and non-causal
versions of such models were studied in [11]. Our hypothesis (Hm

1 ) is close to
the Stochastic Lipchitz Continuity hypothesis from this article. Our work differs
in that we are interested in non-asymptotic results.

Weak dependence for causal time series Another possibility is to use
weak dependence (see [15]) to model dependence in time series. It can be ap-
plied to more general processes because it accounts for long-range dependence.
However, weak dependence conditions are non-local, and therefore more difficult
to verify. In the causal case, they lead to a similar rate of convergence as our
results under the uniform contraction hypothesis. For example, they are used by
[3] for model selection to obtain a convergence rate asymptotically dominated

by O(

√
ln

5
2 (n)n).

Weak dependence for non-causal time series For non-causal time series,
many results have been obtained using the notion of weak dependence [15]. This
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notion replaces our contraction condition (H∞
1 ) or (Hm

1 ). However, it is difficult
to compare our setting with these results because their concentration inequalities
are not Hoeffding or Mc-Diarmid type inequalities. In particular, they introduce
an autocovariance term that does not appear in our concentration inequalities.

Markovian random field Few results are similar to ours for general random
fields. The usual framework for treating non-causal random fields is the Marko-
vian random field framework, where the random variables are distributed on a
graph, instead of a lattice. To our knowledge, there are no similar concentration
results that apply to general Markovian random fields.

An interesting sub-case of Markovian random fields is the Ising model, which
is commonly used in physics and imagery [29]. Ising models can be viewed as a
special case of our model, where X = {−1, 1} and B = {−1, 1}κ. The transition
is governed by the following equation

F ((Xt+s)s∈B, εt) = 21

(
ε >

exp(β
∑

s∈B Xt+s)

exp(β
∑

s∈B Xt+s) + exp(−β
∑

s∈B Xt+s)

)
− 1,

where εt follow an uniform distribution in (0, 1). Some concentration results have
been established with coupling conditions [10], it leads to polynomial (rather
exponential) concentration inequalities. However, it is hard to compare them
with our results, because, even if (H∞

1 ) is not satisfied for the Ising model,
(Hm

1 ) seems reasonable but hard to verify.

3.4. Application to learning theory

In this subsection, we provide an application of our results to learning theory.
We adapt the approach of [5], [26] and [27] with our framework, to get an oracle
bound for the model selection problem.

3.4.1. Application to the completion problem

A classical problem in learning theory is the completion problem (both in re-
gression or classification). The objective is to predict Xt using its neighbours

on a κ dimensional lattice (Xt)t∈B̄. The prediction is given by a model f̂

x̂s = f̂((xs+t)t∈B̄\{0}).

This completion problem may seem trivial, but it is actually the backbone
of many NLP tasks. Indeed, predicting words is often used as a primary task to
train the encoder in an encoder-decoder scheme. It creates a language model,
i.e., a distribution of probability of a word in a text. This language model is then
used for more complex task (translation, text segmentation, question answering
etc.).
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We also introduce a cost function c : X 2 �→ R. c(x̂s, xs) quantifies the error
made when the considered algorithm predict x̂s instead of xs. In this case, the
function of interest Φ introduced earlier corresponds to the cost of f̂ on a sample

Φ((Xs+t)t∈B̄) = c(f̂((Xs+t)t∈B̄\{0}), Xs).

And
SI =

∑
s∈I

Φ((Xs+t)t∈B̄) =
∑
s∈I

c(f̂((Xs+t)t∈B̄\{0}), Xs).

Remark 3.3. We emphasize that B and B̄ may be different in practice. Indeed,
in practice, we can not know the size of B. We may also want to try a simpler
model (with nB̄ < nB) to reduce overfitting.

Remark 3.4. The cost function c : X 2 �→ R can be chosen by the user. Clas-
sical choices include cross entropy, Kullback-Leibler divergence, etc. When X
is unbounded, some classical cost function such as quadratic distance must be
truncated to satisfy (H4).

Remark 3.5. If (H4) is verified with a given upper bound M , it is always
possible to bound this cost function by a constant and then to divide this function
by this constant.

Therefore, we could assume that M = 1 in hypothesis (H4) without loss of
generality.

On Figure 1, the red neighborhood V(δ̄, t) is used to compute

x̂t = f̂((xt+s)s∈B̄). However, to compute this in practice, we must know the
values of all the xt in the neighborhood V(δ̄, t). It implies that the training set
(the blue set) is only a subset of the set of all known values (the grey one)

In the completion problem, we want to control the gap between the theoretical
risk of an estimator f̂ , denoted by R(f̂),

R(f̂) = E[c(f̂((Xs+t)t∈B̄\{0}), Xs)], (3.3)

and its empirical risk,

Remp(f̂) =
1

n

∑
s∈I

c(f̂((Xs+t)t∈B̄\{0}), Xs). (3.4)

Immediate application of our results gives tail and moment inequalities for
|R(f̂)−Remp(f̂)| under hypotheses (H∞

1 ), (H∞
2 ) and (Hm

1 ), (Hm
2 ).

Theorem 3.4 (Tail inequalities). Let nB = Card(B) + 1 and nB̄ = Card(B̄).
• If (H∞

1 ), (H∞
2 ) and (H3) are verified, there are constants such that, for

ε > 2nB̄V∞
n ,

P

(
|R(f̂)−Remp(f̂)| ≥ ε

)
≤ 2 exp

⎛⎜⎝ −2n2
(
ε− 2nB̄V∞

n

)2
(nB̄V∞)

2
(1 +AnB̄n

3
Bκ!

2 �ln(n)�κ n)

⎞⎟⎠ .
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Fig 1. Learning diagram

• If (Hm
1 ), (Hm

2 ), (H3) and (H4) are verified, there are constants such that,

for ε ≥ 2L1(n)

n1− 2
m
,

P

(
|R(f̂)−Remp(f̂)| ≥ ε

)
≤ 2 exp

⎛⎜⎝ −2n2− 4
m

(
ε
2 − L1(n)

n1− 2
m

)2
(HnB̄)

2
(1 + EnB̄n

3
B(κ!)

2 �ln(n)�κ n)

⎞⎟⎠+
ρm

n
L2(n),

with L1(n) = F (nB̄nB)
3
κ! �ln(n)�2κ and L2(n) = 2nBnB̄C �ln(n)�κ +(

D
n3
Bn2

B̄
Υ(d) ln(n)2κ

)m
.

Proof. It is a direct application of Theorems 3.2 and 3.3 with SI =
∑

s∈I
c(f̂((Xs+t)t∈B̄\{0}), Xs). Moreover, the constants involved are the same as in
Theorem 3.2 and 3.3.

If we assume that E[exp(|R(f̂)−Remp(f̂)|)] exists, we get the following useful
result.

Corollary 3.3.

• If (H∞
1 ), (H∞

2 ) and (H3) are verified. For each s > 0,

E[exp(s|R(f̂)−Remp(f̂)|)]



Concentration inequalities for non-causal random fields 1699

≤ exp

(
2snB̄V∞

n
+

(nB̄V∞s)
2 (

1 +AnB̄n
3
Bκ!

2 �ln(n)�κ n
)

8n2

)

×
(
1 +

nB̄V∞s

n

√
2π (1 +AnB̄n

3
Bκ!

2 �ln(n)�κ n)
)
. (3.5)

• If (Hm
1 ), (Hm

2 ), (H3) and (H4) are verified. For each s > 0,

E[exp(s|R(f̂)−Remp(f̂)|)]

≤ exp

(
1

2n1− 4
m

(
4sL(n) + (HnB̄s)

2 (
1 + EnB̄n

3
B(κ!)

2 �ln(n)�κ n
)))

×
(
1 +

exp (Ms) ρmL2(n)

n
+

2HnB̄s

n1− 2
m

√
2π (1 + EnB̄n

3
B(κ!)

2 �ln(n)�κ n)
)
.

(3.6)

The proof can be found in the appendix A.

3.4.2. Model selection

In this subsection, we present a model selection result for a finite set of models.
It is an extension of well known results ([5]) within our framework. It should
also be possible to obtain results for an infinite set of learning function using
the Vapnik-Chervonenkis dimension [8].

We consider a finite set F of models f̂ and assume that we have an algorithm
that can find the model with the lowest empirical risk. Our goal is to bound the
difference between the theoretical risk of the selected model and the theoretical
risk of the better model in the set.

We assume here that all models f̂ are independent of the dataset used to
compute the empirical risk. This hypothesis has been relaxed in previous work
[31]. However, in order to provide a simple example, we retain this hypothesis.

Formally, we define: f̃ = argmin
f̂∈F

(
Remp(f̂)

)
and f∗ = argmin

f̂∈F

(
R(f̂)

)
and

we aim to bound R(f̃)−R(f∗).

Corollary 3.4 (Model selection on dependent non-causal field, tail inequality).

If (H∞
1 ),(H∞

2 ) and (H3) hold. For ε > 4nB̄V∞
n ,

P

(
R(f̃)−R(f∗) > ε

)
≤ 2N exp

⎛⎜⎝ −2n2
(

ε
2 − 2nB̄V∞

n

)2
(nB̄V∞)

2
(1 +AnB̄n

3
Bκ!

2 �ln(n)�κ n)

⎞⎟⎠ .

(3.7)

If (Hm
1 ), (Hm

2 ), (H3) and (H4), hold. For ε ≥ 4L1(n)

n1− 2
m
,

P

(
R(f̃)−R(f∗) > ε

)
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≤ N

⎛⎜⎝2 exp

⎛⎜⎝ −2n2− 4
m

(
ε
4 − L1(n)

n1− 2
m

)2
(HnB̄)

2
(1 + EnB̄n

3
B(κ!)

2 �ln(n)�κ n)

⎞⎟⎠+
ρm

n
L2(n)

⎞⎟⎠ . (3.8)

Proof.

R(f̃)−R(f∗) = R(f̃)−Remp(f̃) +Remp(f̃)−Remp(f
∗) +Remp(f

∗)−R(f∗)

≤
(
R(f̃)−Remp(f̃)

)
+
(
Remp(f̃)−Remp(f

∗)
)

+ (Remp(f
∗)−R(f∗))

≤ 2sup
f̂∈F

|R(f̂)−Remp(f̂)|+
(
Remp(f̃)−Remp(f

∗)
)

≤ 2sup
f̂∈F

|R(f̂)−Remp(f̂)| because
(
Remp(f̃)−Remp(f

∗)
)
≤ 0.

Thus, for all ε,

P

(
R(f̃)−R(f∗) > ε

)
≤ P

(
sup
f̂∈F

|R(f̂)−Remp(f̂)| >
ε

2

)
≤
∑
f̂∈F

P

(
|R(f̂)−Remp(f̂)| >

ε

2

)
by union bound

≤ NP

(
|R(f̂)−Remp(f̂)| >

ε

2

)
.

Then, Theorem 3.4 yields result for both hypotheses.

Bound for the expectation can also be obtained. We focus here on the case
where hypotheses (H∞

1 ), (H∞
2 ) and (H3) hold.

Corollary 3.5 (Model selection on dependent non-causal field, expectation
inequality). If (H∞

1 ), (H∞
2 ) and (H3) hold,

E[R(f̃)−R(f∗)]

≤ 2nB̄V∞
n

(
2 +

√
(1 +AnB̄n

3
Bκ!

2 �ln(n)�κ n)
(√

ln(N)

2
+
√
2π

))
.

We can also provide an asymptotic equivalent,

E[R(f̃)−R(f∗)] ≤ H(nB̄ , nB , κ, ρ,N, n)

∼
n→∞

2V∞

(√
ln(N)

2
+

√
2π

)
nB̄nBκ!

√
AnB̄nB

√
ln(n)

κ

n
.

Proof. We showed in previous corollary that R(f̃) − R(f∗) ≤ 2sup
f̂∈F

|R(f̂) −

Remp(f̂)|.
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Moreover, for all s > 0,

E[sup
f̂∈F

|R(f̂)−Remp(f̂)|]

=
1

s
E

[
ln

(
sup
f̂∈F

exp
(
s|R(f̂)−Remp(f̂)|

))]

≤ 1

s
ln

(
E

[
sup
f̂∈F

exp
(
s|R(f̂)−Remp(f̂)|

)])
using Jensen inequality

≤ 1

s
ln

⎛⎝E

⎡⎣∑
f̂∈F

exp
(
s|R(f̂)−Remp(f̂)|

)⎤⎦⎞⎠
=

1

s
ln
(
NE

[
exp

(
s|R(f̂)−Remp(f̂)|

)])
.

If (H∞
1 ), (H∞

2 ) and (H3) hold, applying Equation (3.5) from Corollary 3.3.
We get

E[R(f̃)−R(f∗)] ≤2 ln(N)

s
+

4nB̄V∞
n

+
s (nB̄V∞)

2 (
1 +AnB̄n

3
Bκ!

2 �ln(n)�κ n
)

4n2

+
2nB̄V∞

n

√
2π (1 +AnB̄n

3
Bκ!

2 �ln(n)�κ n),

using ln(1 + x) ≤ x.

Then choosing s = 2n
nB̄V∞

√
2 ln(N)

1+AnB̄n3
Bκ!2�ln(n)�κn , we get

E[R(f̃)−R(f∗)]

≤ 2nB̄V∞
n

(√
ln(N)

2
(1 +AnB̄n

3
Bκ!

2 �ln(n)�κ n) + 2

+
√
2π (1 +AnB̄n

3
Bκ!

2 �ln(n)�κ n)
)

≤ 2nB̄V∞
n

(
2 +

√
(1 +AnB̄n

3
Bκ!

2 �ln(n)�κ n)
(√

ln(N)

2
+

√
2π

))
.

Remark 3.6. In the case where E

[
exp

(
s|R(f̂)−Remp(f̂)|

)]
does not exist,

or if we only have (Hm
1 ), (Hm

2 ), (H3) and (H4), it is possible to use a simpler
bound. It may be obtained noticing

E[R(f̃)−R(f∗)] ≤ E[sup
f̂∈F

|R(f̂)−Remp(f̂)|] ≤ NE[|R(f̂)−Remp(f̂)|]

and using Corollaries 3.1 or 3.2. If we do so, learning bound increase with N
instead of

√
ln(N). If we assume (Hm

1 ), (Hm
2 ), (H3) and (H4), we then get
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asymptotic bound

E[R(f̃)−R(f∗)] ≤ H(nB̄ , nB, κ, ρ,N, n) ∼
n→∞

Hκ!
√

2Eπ(nB̄nB)3 ln(n)κ

n
1
2− 2

m

.

Where H and E are constants defined in Corollary 3.2.

Remark 3.7. In [27], a bound is provided for the expected maximal deviation
in the i.i.d case,

E[sup
f̂∈F

|R(f̂)−Remp(f̂)|] ≤
√

ln(2N)

2n
.

Under our setting, with hypotheses (H∞
1 ), (H∞

2 ) and (H3), we obtained compa-

rable bound (Corollary 3.5) with an extra term
√

ln(n)
κ
.

4. Approximation

In Sections 4 and 5, we will prove the results of section 3. To this end, we
introduce a useful approximation of non-causal random fields. [18] has already
shown that a non-causal solution (Xt) of (2.1) can be expressed as a function
of an infinite number of i.i.d. random variables. We present an approximation
of (Xt) by a function of a finite number of i.i.d. random variables.

4.1. Approximation of Xt

4.1.1. Notations

Let’s first recall and introduce some notations to handle random fields.

• We already introduce the notation εεε = (εt)t∈Zκ . Similarly, we use the
notation εεε′ = (ε′t)t∈Zκ where ε′t are also random variables Ω �→ E.

• For s ∈ Z
κ, θs will be the s-shift operator, i.e. for s ∈ Z

κ, θs((εt)t∈Zκ) =
(εs+t)t∈Zκ .

• For s ∈ Z
κ, we denote by εεεs the s-shifted random field, ie εεεs = θs(εεε) =

θs((εt)t∈Zκ) = (εs+t)t∈Zκ .

4.1.2. Exact reconstruction

Theorem 1 from [18] ensures, under suitable conditions on F, the existence and
uniqueness of a function H such that, for each t ∈ Z

κ

Xt = H(εεεt). (4.1)

We make two comments on this result.
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• This theorem provides an expression of each Xt according to an infinite
number of i.i.d. random variables (the whole random field εεε). However
many concentration inequalities involve only a finite number of random
variable.

• This theorem relies on an absolute contraction hypothesis on F (similar
to Equation 2.3) which is a stronger assumption than (H∞

1 ) and (Hm
1 ).

For those two reasons, we cannot use this exact reconstruction of the solution
Xt of Equation (2.1).

4.1.3. Intuition

The idea is to approximate each Xt by another random variable X̃t which,
similarly to H(εεε), depends on the innovation εεε. However, unlike H(εεε), we will
only use a finite number of random variable εt. The ones that are located in a
finite neighborhood surrounding Xt.

4.1.4. Definition

Let’s recall some notations and formally define the function H̃ [d].

• In the equation ∀t ∈ Z
κ, Xt = F ((Xt+s)s∈B, εt) (Equation (2.1)), B is a

κ−orthotope defined by B = V(δ, 0)\{0} =
∏κ

i=1[−δi, δi]\{0}.
• We define the dilatation by d of the κ−orthotope V(δ, 0) centered on s.

With our notations, it corresponds to the κ−orthotope V(dδ, s) defined
for all d in N and s in Z

κ by

V(dδ, s) = {t = (t1, . . . , tκ) ∈ (Z)κ/ ∀i, si − dδi ≤ ti ≤ si + dδi}. (4.2)

• We define recursively the function H̃ [d] by

H̃ [d](X, (εt)t∈V(dδ,s)) =

{
X if d = 0,

F
(
(H̃ [d−1]

(
X, (εu)u∈V(δ(d−1),t+s)

)
)s∈B, εs

)
else.

(4.3)
• Eventually, we are able to define the approximation.

∀d ∈ N, ∀t ∈ Z
κ, X̃

[d]
t = H̃ [d](X̄, (εs)s∈V(dδ,t)). (4.4)

Where X̄ is an independant random variable draw sampled with distribu-
tion μX .

We can reformulate Equation (4.3) using the notation X̃
[d]
t .

∀d ∈ N, ∀t ∈ Z
κ, X̃

[d]
t =

{
X̄ if d = 0,

F
(
(X̃

[d−1]
t+s )s∈B, εt

)
else.
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In this way, X̃
[d]
t is an approximation of Xt involving random variables εt which

belong to the finite neighborhood V(dδ, t). Outside, of this neighborhood, we
complete the approximation with a random variable X̄ draw form the law μX

and independent from (Xt)t∈Zκ and εεε.

Remark 4.1. We emphasize that if the function H from Theorem 1 of [18]
exists and is unique, then limd→∞ H̃ [d](X, (εt)t∈V(dδ,t)) = H(εεε).

Nevertheless this limit might not exist and not be unique, but even in this
case, for all finite d, the approximation H̃ [d](X, (εt)t∈V(dδ,t)) is always defined.

4.1.5. Approximation error

The approximation X̃
[d]
t is useful only if we are able to control the approximation

error. That is the goal of the two following Lemma.

Lemma 4.1. Let m ∈ N ∪ {∞}. If (Hm
1 ) and (Hm

2 ) are verified, then

∀t ∈ Z
κ, ∀d ∈ N, ‖Xt − X̃

[d]
t ‖m ≤ ρdVm.

The proof can be found in the appendix B. The lemma is the key to control
the quality of our approximation.

Earlier, we define the statistic SI (see Equation (2.5)), which depends on
random variables (Xt)t∈I . We now introduce an approximation of the statistic

SI that we call S̃
[d]
I relying on approximations X̃

[d]
t for t in I.

We recall that
SI =

∑
t∈I

Φ((Xt+s)s∈B̄). (4.5)

Similarly, we define

S̃
[d]
I =

∑
t∈I

Φ((X̃
[d]
t+s)s∈B̄). (4.6)

Using Lemma 4.1, we are able to control the difference between SI and S̃
[d]
I .

This is the purpose of the following corollary.

Corollary 4.1 (Moment inequality for the approximation error). Let m ∈
N∪{∞}. We assume (Hm

1 ), (Hm
2 ) and (H3). We recall that we denote Card(I)

by n and Card(B̄) by nB̄. Then it holds:

‖SI − S̃
[d]
I ‖m ≤ nnB̄ρ

d
Vm. (4.7)

Proof. By definition of SI and S̃
[d]
I (Equations (4.5) and (4.6)), using (H3), it

holds:

‖SI−S̃
[d]
I ‖m ≤

∑
t∈I

‖Φ((Xt+s)s∈B̄)−Φ((X̃
[d]
t+s)s∈B̄)‖m ≤

∑
t∈I

∑
s∈B̄

‖Xt+s−X̃
[d]
t+s‖m.

Then, using Lemma 4.1

‖SI − S̃
[d]
I ‖m ≤ nnB̄ρ

d
Vm.
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4.2. Concentration inequality for S̃
[d]
I

In this subsection, we will establish a concentration inequality for S̃
[d]
I . Indeed,

S̃
[d]
I may be seen as a function of a finite number of random variables, thus it is

possible to establish a McDiarmid’s inequality for S̃
[d]
I .

More precisely, we aim to show the following theorem.

Theorem 4.1 (Tail inequality for the approximation). Let d ∈ N. If we assume
(H∞

1 ), (H∞
2 ) and (H3)

∀ε > 0,P
(
|S̃[d]

I − E

[
S̃
[d]
I

]
| ≥ ε

)
≤ 2 exp

⎛⎝ −2ε2

(nB̄V∞)
2
(
n2ρ2d +N2 (nBΥ(d))

2
)
⎞⎠.

(4.8)
If we assume (Hm

1 ), (Hm
2 ), (H2) and (H3), ∀(t1, t2) > 0,

∀ε > 2npM + pc̄,

P

(
|S̃[d]

I − E

[
S̃
[d]
I

]
| ≥ ε

)
≤ 2

(
p+ exp

(
−2(ε− (pc̄+ 2npM))2

t21 +N2t22

))
, (4.9)

with

p ≤
(
nnB̄ρ

d
Vm

t1

)m

+N2

(
nB̄nBVmΥ(d)

t2

)m

and c̄ = t1 +N2t2,

and

Υ(d) such that Υ(d) ≤ υ =
1

nB
+

κ!

ln(ρ−1)κ
+ κ

(
κ− 1

ln(ρ−1)e

)κ−1

∼
κ→∞

κ!

ln(ρ−1)κ
.

This theorem is a direct application of a McDiarmid-type inequality. This
type of inequality holds if the random variable we want to control is a function
of a finite number of independent random variables, which is the case here.

Indeed, S̃
[d]
I can be expressed as a function of a finite number of random variables

X̃
[d]
t , and each of these variables X̃

[d]
t is itself a function of a finite number of

innovations εt and the independent random variable X̄.
We need to present two things necessary to apply a McDiarmid inequality:

• The necessary counting element to count the number of independent ran-

dom variables that appears in S̃
[d]
I .

• The precise version of the McDiarmid inequality we are going to use.

4.2.1. Counting random variables

The rest of this section will require to count the number of random variables

that occur in S̃
[d]
I . There are two types of random variables we want to count.

The first is the number of approximate random variables X̃
[d]
t , the second is the

number of innovations εt. For this purpose, we introduce the following cardinal
number:
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• n = Card(I), the number of variables Xt appearing in SI (see Section
2.3).

• nB = Card(B
⋃
{0}) = Card(B) + 1, the number of random variables in

the κ−orthotope B and the point {0}.
• nB̄ = Card(B̄) the number of components of Φ (see Section 2.3).
• nd = Card(V(dδ, t)) the number of innovations εt of εεε used in the approx-

imation X̃
[d]
t (see Equation 4.4).

• N1 = Card(
⋃

t∈I
(
V(δ̄, t)

)
) = Card(

⋃
t∈I

(
B̄ + t

)
) the number of approxi-

mate random variables X̃
[d]
t appearing in S̃

[d]
I .

• N2 = Card(
⋃

t∈I
(⋃

s∈B̄+t

(
V(dδ̄, t)

))
) number of innovations εt appearing

in S̃
[d]
I .

There are some relations between these numbers.

Lemma 4.2.

• n ≤ N1 ≤ nnB̄ and N1 ≤ N2 ≤ N1nd.
• nd = Card(V(dδ, t)) =

∏κ
i=1 (2dδi + 1) ≤ dκ

∏κ
i=1

(
2δi +

1
d

)
≤ dκnB.

Higher bounds for N1 and N2 are reached when the above unions involve
pairwise disjoint sets. Nevertheless, it is not often the case in practice. For ex-
ample, in machine learning settings, the training and validation sets are usually
connected spaces. Therefore, adding more hypotheses about the topology of I
should improve these bounds.

4.2.2. An extention of McDiarmid’s inequality

In order to obtain a concentration inequality for S̃
[d]
I , we need a special McDi-

armid’s inequality. Indeed, if hypotheses (Hm
1 ) and (Hm

2 ) are verified without
absolute contraction, the uniform difference-bound hypothesis (as defined in
[24]) is not satisfied, thus classical McDiarmid’s inequality [30] does not hold.

Therefore, we need an extended version of McDiarmid’s inequality that holds
even if the bounded difference hypothesis is verified only with high probability.
There are several results of this type ([13, 22, 24, 37]). Here, we have chosen to
use the extended McDiarmid’s inequality from [13].

We are under the “A-difference bounded” assumption which corresponds to
Assumption 1.2. from [13] and the extension of McDiarmid’s inequality (Theo-
rem 2.1. from [13]).

Definition 4.1 (A-difference-bound). f :
∏N

i=1 Ωi → R is p-difference bounded
by (cj)j∈[1,N ] if and only if.

• It exists A ⊂
∏N

i=1 Ωi.
• For (w,w′) ∈ A2 such that w and w′ differ only in the j-th coordinate,

|f(w)− f(w′)| ≤ cj.
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Lemma 4.3 (p-difference-bound McDiarmid, Theorem 2.1. from [13]). If f is
A-difference bounded by (cj)j∈[1,N ].

∀t > 0,

P(|f(X1, . . . , Xn)− E [f(X1, . . . , Xn)|A] | ≥ t) ≤ 2

(
p+ exp

(
−2(t− pc̄)2∑N

j=1 c
2
j

))
,

with c̄ =
∑N

j=1 ci and p = 1− P(A).

4.2.3. Difference bound for S̃
[d]
I

To check these assumptions (strong difference bound or A-difference bound),

we need to bound the difference between the statistic S̃
[d]
I and the statistic S̃

[d]
I

when one of its composing random variables is replaced by an i.i.d copy. To deal
with this case, we need to introduce further notations.

We recall that

S̃
[d]
I =

∑
t∈I

Φ((X̃
[d]
t+s)s∈B̄) =

∑
t∈I

Φ(H̃ [d](X̄, (εs)s∈V(dδ,t))).

Two types of random variables are involved in S̃
[d]
I .

• The marginal variables εs (for s ∈
⋃

t∈I V(dδ̄, t)).
• The (unique) variable X̄.

We introduce the following notations.

• For all t in Z
κ, X̃

[d]′
t = H̃ [d](X̄ ′, (εs)s∈V(dδ,t)) where X̄ ′ is drawn from the

law μX and independent from (Xt)t∈Zκ , εεε and X̄.

• For all t in Z
κ and for all i in V(dδ̄, t), X̃ [d,i]

t = H̃ [d](X̄, (εs)s∈V(dδ,t)\{i}
⋃

ε′i)
where ε′i is drawn from the law με and independent from (Xt)t∈Zκ , εεε and
X̄.
For all i in Z

κ not in V(dδ̄, t), we define X̃
[d,i]
t = X̃

[d]
t .

• For all t in Z
κ, S̃

[d]′
I =

∑
t∈I Φ((X̃

[d]′
t+s)s∈B̄).

• For all t in Z
κ and for all i in

⋃
t∈I V(dδ̄, t), S̃I

[d,i]
=
∑

t∈I Φ(X̃
[d,i]
t ).

Lemma 4.4. Let m ∈ N ∪ {∞}. If (Hm
1 ) and (Hm

2 ) are verified,

• For all t in Z
κ, ‖X̃ [d]

t − X̃
[d]′
t ‖m ≤ ρdVm.

• For all t and i in Z
κ.

– If i /∈ V(dδ̄, t), X̃ [d]
t = X̃

[d,i]
t .

– Otherwise, there is a unique c ∈ [0, d] such that i ∈ V(cδ, t) and

i /∈ V((c− 1)dδ, t) and ‖X̃ [d]
t − X̃

[d,i]
t ‖m ≤ ρcVm.

Proof. We assume (Hm
1 ) and (Hm

2 ).

• The demonstration of the first point is the same as Lemma 4.1.



1708 R. Garnier and R. Langhendries

• Firstly, if i /∈ V(dδ, t), by definition of X̃
[d,i]
t , X̃

[d,i]
t = X̃

[d]
t .

Secondly, if i ∈ V(dδ, t), we can write V(dδ, t) =
⋃d

c=0 V(cδ, t)\V((c−1)δ, t)
with V(0, t) = {t} and V(−1, t) = ∅.
Moreover, for all c1 �= c2, V(c1δ, t)\V((c1 − 1)δ, t)

⋂
V(c2δ, t)\V((c2 −

1)δ, t) = ∅.
Consequently, it exists an unique c in [0, d] such that i ∈ V(cδ, t) and
i /∈ V((c − 1)δ, t). Then with the same argument as Lemma 4.1, we can

show that ‖X̃ [d]
t − X̃

[d,i]
t ‖m ≤ ρcVm.

We can now bound the difference between S̃
[d]
I and S̃

[d]′
I and S̃

[d]
I and S̃I

[d,i]
.

Lemma 4.5 (Difference bound for S̃
[d]
I ). Let m ∈ N ∪ {∞}. If (Hm

1 ), (Hm
2 )

and (H3), then

‖S̃[d]
I − S̃

[d]′
I ‖m ≤ nnB̄ρ

d
Vm.

And,

‖S̃[d]
I − S̃I

[d,i]‖m ≤ nB̄Vm

(
1 + nBκ

d∑
c=1

cκ−1ρc

)
.

The proof of this lemma can be found in the appendix C.

In previous Lemma, the quantity
∑d

c=1 c
κ−1ρc occurs, we show in the next

Lemma that we can bound this quantity independently of d.

Lemma 4.6. If (Hm
1 ), (Hm

2 ), and (H3). For all d ∈ N, it holds

‖S̃I
[d,i] − S̃

[d]
I ‖m ≤ nB̄nBVmΥ(d).

The function Υ is defined by

Υ(d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ

(
1

nBκ
+

(κ− 1)!

ln(ρ−1)κ

(
1− ρd+1

κ−1∑
i=0

(
(d+ 1) ln(ρ−1)

)i
i!

))
,

if d <
⌊

κ−1
ln(ρ−1)

⌋
.

κ

(
1

nBκ
+

(κ− 1)!

ln(ρ−1)κ

⎛⎜⎝1− e−(κ−1)
κ−1∑
i=0

(⌊
κ−1

ln(ρ−1)

⌋
ln(ρ−1)

)i
i!

⎞⎟⎠
+
(

κ−1
ln(ρ−1)e

)κ−1
)
,

if d =

⌊
κ− 1

ln(ρ−1)

⌋
.

κ

(
1

nBκ
+

(κ− 1)!

ln(ρ−1)κ

(
1− ρd

κ−1∑
i=0

(
d ln(ρ−1)

)i
i!

)
+

(
κ− 1

ln(ρ−1)e

)κ−1
)
,

if d >

⌊
κ− 1

ln(ρ−1)

⌋
.
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With

Υ(d) ≤ υ =
1

nB
+

κ!

ln(ρ−1)κ
+ κ

(
κ− 1

ln(ρ−1)e

)κ−1

.

We point out that the constant υ is independent from d and υ ∼
κ→∞

κ!
ln(ρ−1)κ

(using Stirling formula).

The proof of this lemma can be found in the appendix D.

4.2.4. McDiarmid’s inequality

We can now use McDiarmid’s inequality for S̃
[d]
I and prove Theorem 4.1.

Here, we distinguish two cases. Either, we have (H∞
1 ) and (H∞

2 ), and we
can use a classical version of McDiarmid’s inequality. The result is presented in
Lemma 4.7. Either, we have only (Hm

1 ) and (Hm
2 ) for a finite value of m. In

this case, the standard bounded difference hypothesis is not satisfied, thus we
will use the notion of “A-difference bound” and apply Lemma 4.3. The result is
presented in Lemma 4.8.

Lemma 4.7. If (H∞
1 ),(H∞

2 ) and (H3). Let d ∈ N. It holds

P

(
|S̃[d]

I − E

[
S̃
[d]
I

]
| ≥ ε

)
≤ 2 exp

⎛⎜⎜⎜⎝−2
ε2

(nnB̄ρ
dV∞)2 +

N2∑
i=1

(nB̄nBV∞Υ(d))
2

⎞⎟⎟⎟⎠
≤ 2 exp

⎛⎝ −2ε2

(nB̄V∞)
2
(
n2ρ2d +N2 (nBΥ(d))

2
)
⎞⎠ .

Proof. Using Lemma 4.5 and 4.6 with hypotheses (H∞
1 ) and (H∞

2 ), we get

• |S̃[d]
I − S̃

[d]′
I | ≤ ci with ci = nnB̄ρ

d
V∞ almost surely.

• ∀i ∈
⋃

t∈I V(dδ̄, t), |S̃[d]
I − S̃I

[d,i]| ≤ ci with ci = nB̄nBV∞Υ(d). almost
surely.

Applying McDiarmid’s inequality yields the result.

Lemma 4.8. Let m ∈ N. If we assume (Hm
1 ), (Hm

2 ), (H3) and (H4). Let
d ∈ N, and t1, t2 > 0. There is p ∈ (0, 1), such that, for ε ≥ 2npM + pc̄.

P

(
|S̃[d]

I − E

[
S̃
[d]
I

]
| ≥ ε

)
≤ 2

(
p+ exp

(
−2(ε− (pc̄+ 2npM))2

t21 +N2t22

))
,

with

p ≤
(
nnB̄ρ

d
Vm

t1

)m

+N2

(
nB̄nBVmΥ(d)

t2

)m

and c̄ = t1 +N2t2.
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Proof. First, we establish a A-difference bound (Definition 4.1). Let t1, t2 > 0,
using Lemma 4.5, 4.6 and Markov’s inequality, it holds

∀t1 > 0,P(|S̃[d]
I − S̃

[d]′
I | ≥ t1) ≤

(
nnB̄ρ

d
Vm

t1

)m

.

Then, for all i ∈
⋃

t∈I V(dδ̄, t), for all t2 > 0,P(|S̃[d]
I − S̃I

[d,i]| ≥ t2) ≤(
nB̄nBVmΥ(d)

t2

)m
. We define the event A =

⋃
i∈
⋃

t∈I V(dδ̄,t)

(
|S̃[d]

I − S̃I
[d,i]| > t2

)
⋃(

|S̃[d]
I − S̃

[d]′
I | > t1

)
and p = 1− P(A).

By union bound, it holds p ≤
(

nnB̄ρd
Vm

t1

)m
+ N2

(
nB̄nBVmΥ(d)

t2

)m
. We also

define c̄ = t1 +N2t2. Therefore, applying Theorem 2.1 from [13], we get

∀ε > 0,P
(
|S̃[d]

I − E

[
S̃
[d]
I |A

]
| ≥ ε

)
≤ 2

(
p+ exp

(
−2(ε− pc̄)2

t21 +N2t22

))
.

Moreover
E

[
S̃
[d]
I

]
= P(A)E

[
S̃
[d]
I |A

]
+ P(Ā)E

[
S̃
[d]
I |Ā

]
.

Then

|E
[
S̃
[d]
I

]
− E

[
S̃
[d]
I |A

]
| = (1− P(A)) |E

[
S̃
[d]
I |Ā

]
− E

[
S̃
[d]
I |A

]
|

≤ p2nM with M = ‖Φ‖∞ (see Hypothesis (H4)).

Eventually, we get

∀ε > 2npM,P
(
|S̃[d]

I − E

[
S̃
[d]
I

]
| ≥ ε

)
= P

(
|S̃[d]

I − E

[
S̃
[d]
I |A

]
+ E

[
S̃
[d]
I |A

]
− E

[
S̃
[d]
I

]
| ≥ ε

)
≤ P

(
|S̃[d]

I − E

[
S̃
[d]
I |A

]
| ≥ ε− 2npM

)
≤ 2

(
p+ exp

(
−2(ε− (pc̄+ 2npM))2

t21 +N2t22

))
.

5. Concentration inequalities for SI

Now we are finally able to prove the result of section 3 and prove concentration
inequalities for SI . To do this, we use the concentration inequalities from the

previous section (with S̃
[d]
I ) and Lemma 4.1.

5.1. General concentration inequalities

Lemma 5.1 (General concentration inequality for SI). Let d ∈ N. If (H∞
1 ),

(H∞
2 ) and (H3) are verified, the following relation holds for ε > 2nnB̄ρ

d
V∞.

P (|SI − E [SI ] | ≥ ε) ≤ 2 exp

⎛⎝ −2
(
ε− 2nnB̄ρ

d
V∞

)2
(nB̄V∞)

2
(
n2ρ2d +N2 (nBΥ(d))

2
)
⎞⎠ . (5.1)
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Let m ∈ N. If (Hm
1 ), (Hm

2 ), (H3) and (H4), are verified. For t1, t2 > 0, there
is p ∈ (0, 1) such that for ε > 4npM + 2pc̄.

P (|SI − E [SI ] | ≥ ε)

≤ 2

(
p+ exp

(−2( ε2 − (pc̄+ 2npM))2

t21 +N2t22

))
+

(
2nnB̄ρ

d
Vm

ε

)m

, (5.2)

with

p ≤
(
nnB̄ρ

d
Vm

t1

)m

+N2

(
nB̄nBVmΥ(d)

t2

)m

and c̄ = t1 +N2t2.

Proof. If (H∞
1 ) and (H3) are verified Using Corollary 4.1, we have almost

surely:

|SI − E[SI ]| = |SI − S̃
[d]
I + S̃

[d]
I − E

[
S̃
[d]
I

]
+ E

[
S̃
[d]
I

]
− E [SI ] |

≤ |SI − S̃
[d]
I |+ |S̃[d]

I − E[S̃
[d]
I ]|+ |E

[
S̃
[d]
I

]
− E [SI ] |

≤ |S̃[d]
I − E[S̃

[d]
I ]|+ 2nnB̄ρ

d
V∞.

Therefore, for ε > 2nnB̄ρ
d
V∞.

P (|SI − E [SI ] | ≥ ε) ≤ P

(
|S̃[d]

I − E

[
S̃
[d]
I

]
| ≥ ε− 2nnB̄ρ

d
V∞

)
≤ 2 exp

⎛⎝ −2
(
ε− 2nnB̄ρ

d
V∞

)2
(nB̄V∞)

2
(
n2ρ2d +N2 (nBΥ(d))

2
)
⎞⎠ .

If (Hm
1 ), (Hm

2 ) and (H3) are verified Using Corollary 4.1 and Markov in-
equality,

∀t > 0,P
(
|SI − S̃

[d]
I | ≥ t

)
≤
(
nnB̄ρ

d
Vm

t

)m

.

Then

P (|SI − E[SI ]| ≥ ε) = P

(
|SI − S̃

[d]
I + S̃

[d]
I − E[SI ]| ≥ ε

)
≤ P

(
|SI − S̃

[d]
I |+ |S̃[d]

I − E[SI ]| ≥ ε
)

≤ P

(
|SI − S̃

[d]
I | ≥ ε

2

)
+ P

(
|S̃[d]

I − E[SI ]| ≥
ε

2

)
≤ 2

(
p+ exp

(−2( ε2 − (pc̄+ 2npM))2

t21 +N2t22

))
+

(
2nnB̄ρ

d
Vm

ε

)m

.

Remark 5.1. The choice of the parameter d is a trade-off between the quality
of the approximation and the number of random variables involved in the Mc-
Diarmid’s inequality. Indeed, when d is high, the approximation error decreases
(see Lemma 4.5), conversely the number of random variables N2 increases (see
the bound for N2 in the Lemma 4.2).
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5.2. Concentration inequalities with optimized parameters

Equations (5.1) and (5.2) in Lemma 5.1 were established for each d ∈ N and
each positive value of t1, t2. Therefore, we can choose an appropriate value for
each of these parameters to improve our bounds.

Moreover, the quantity N2 is not easy to interpret and even less to estimate.
Therefore, in the following theorems, we fix parameters d, t1, t2 and replace N2

by an upper bound corresponding to the worst case.

Theorem 5.1 (Improved concentration inequality for SI , uniform contraction
case). If (H∞

1 ), (H∞
2 ) and (H3), for ε > 2nB̄V∞

P (|SI − E [SI ] | ≥ ε) ≤ 2 exp

(
−2 (ε− 2nB̄V∞)

2

(nB̄V∞)
2
(1 + nB̄n

3
BΥ(d)2ndκ)

)
,

with Kρ(∞) = 1
ln(ρ−1) , d̃ = Kρ(∞) ln(n) and d =

⌈
d̃
⌉
=
⌈

ln(n)
ln(ρ−1)

⌉
.

Proof. We use the previous Lemma 5.1 and set d̃ = ln(n)
ln(ρ−1) and d =

⌈
d̃
⌉
.

Therefore

dκ =

⌈
ln(n)

ln(ρ−1)

⌉κ
.

ρd ≤ ρd̃ = exp(− ln(ρ−1)d) =
1

n
.

From Lemma 4.2, we get N2 ≤ N1nd ≤ nB̄nBd
κn. Then, according to Lemma

5.1, it holds

∀ε > 2nnB̄ρ
d
V∞,

P (|SI − E [SI ] | ≥ ε) ≤ 2 exp

⎛⎝ −2
(
ε− 2nnB̄ρ

d
V∞

)2
(nB̄V∞)

2
(
n2ρ2d +N2 (nBΥ(d))

2
)
⎞⎠

⇒ ∀ε > 2nB̄V∞,

P (|SI − E [SI ] | ≥ ε) ≤ 2 exp

(
−2 (ε− 2nB̄V∞)

2

(nB̄V∞)
2
(1 + nB̄n

3
BΥ(d)2ndκ)

)
.

Remark 5.2. The notation Kρ(∞) = 1
ln(ρ−1) has been introduced in anticipa-

tion to Corollary 5.2 and the notation Kρ(m) =
1− 1

m

ln(ρ−1) .

Theorem 5.2 (Improved concentration inequality for SI , weak contraction
case). If we assume (Hm

1 ), (Hm
2 ) (H3) and (H4). It holds, for ε ≥ 4nB̄nBd

2κ

ρ−1n
2
mL(n)

P (|SI − E [SI ] | ≥ ε)

≤ 2 exp

⎛⎜⎝−2ρ2
(

ε
2 − 2nB̄nBd

2κρ−1n
2
mL(n)

)2
(
nB̄Vmn

2
m

)2
(1 + nnB̄n

3
BΥ(d)2dκ)

⎞⎟⎠
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+
ρm

n

(
2nB̄nBd

κ +

(
Vm

2nBd2κL(n)

)m)
.

With Kρ(m) =
1− 1

m

ln(ρ−1) , d̃ = Kρ(m) ln(n), d =
⌈
d̃
⌉
=

⌈
(1− 1

m ) ln(n)
ln(ρ−1)

⌉
.

And L(n) =
(

nB̄Vm

ρ

)(
1

dκ(nB̄nBdκ)
1
m n

+ nB̄n
2
BΥ(d)

)
+ 2M

dκn
2
m
.

The proof can be found in the Appendix E.

Remark 5.3. In Theorems 5.1 and 5.2, quantities nB̄ , nB,Vm,V∞, κ and ρ are
constants and the function Υ(d) can always be bound by a constant υ independent
of d (see Lemma 4.6).

Remark 5.4. In Theorem 5.2, an extra additive term appears. This term de-
creases rapidly with n and is therefore often not harmful in practice.

Moreover, adding appropriate hypotheses about m can lead to a fully expo-
nential concentration inequality.

5.3. Expected deviation bounds

Expected deviation bounds may be obtained from previous theorems. In this
case, we want to bound E[|SI − E [SI ] |].
Corollary 5.1. We assume (H∞

1 ), (H∞
2 ) and (H3), it holds

E[|SI − E [SI ] |] ≤ nB̄V∞

(
2 +

√
π

2
(1 + nB̄n

3
BΥ(d)2dκn)

)
,

with Kρ(∞) = 1
ln(ρ−1) and d = �Kρ(∞) ln(n)�.

Proof.

E[|SI − E [SI ] |] =
∫ ∞

0

P (|SI − E [SI ] | ≥ t) dt

=

∫ 2nB̄V∞

0

P (|SI − E [SI ] | ≥ t) dt

+

∫ ∞

2nB̄V∞

P (|SI − E [SI ] | ≥ t) dt

≤ 2nB̄V∞ +

∫ ∞

2nB̄V∞

2 exp

(
−2 (t− 2nB̄V∞)

2

(nB̄V∞)
2
(1 + nB̄n

3
BΥ(d)2dκn)

)
dt

≤ 2nB̄V∞ + nB̄V∞

√
π

2
(1 + nB̄n

3
BΥ(d)2dκn).

Corollary 5.2. We assume (Hm
1 ), (Hm

2 ), (H3) and (H4), it holds

E[|SI − E [SI ] |] ≤2
nB̄Vmn

2
m

ρ

√
π

2
(1 + nnB̄n

3
BΥ(d)2dκ) + 4nB̄nBd

2κρ−1n
2
mL(n)
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+ 2ρmM

(
2nB̄nBd

κ +

(
Vm

2nBd2κL(n)

)m)
,

with Kρ(m) =
1− 1

m

ln(ρ−1) , d = �Kρ(m) ln(n)� and L(n) =
(

nB̄Vm

ρ

)
(

1

dκ(nB̄nBdκ)
1
m n

+ nB̄n
2
BΥ(d)

)
+ 2M

dκn
2
m
.

Proof.

E[|SI − E [SI ] |]

=

∫ ∞

0

P (|SI − E [SI ] | ≥ t) dt

=

∫ 4nB̄nBd2κρ−1n
2
m L(n)

0

P (|SI − E [SI ] | ≥ t) dt

+

∫ ∞

4nB̄nBd2κρ−1n
2
m L(n)

P (|SI − E [SI ] | ≥ t) dt

≤ 4nB̄nBd
2κρ−1n

2
mL(n) +

∫ 2nM

4nB̄nBd2κρ−1n
2
m L(n)

P (|SI − E [SI ] | ≥ t) dt

(because SI ≤ nM (see hypothesis (H4)))

≤ 4nB̄nBd
2κρ−1n

2
mL(n) +

∫ 2nM

4nB̄nBd2κρ−1n
2
m L(n)

× 2 exp

⎛⎜⎝−2ρ2
(

t
2 − 2nB̄nBd

2κρ−1n
2
mL(n)

)2
(
nB̄Vmn

2
m

)2
(1 + nnB̄n

3
BΥ(d)2dκ)

⎞⎟⎠ dt

+ 2Mρm
(
2nB̄nBd

κ +

(
Vm

2nBd2κL(n)

)m)
.

Moreover,

∫ 2nM

4nB̄nBd2κρ−1n
2
m L(n)

2 exp

⎛⎜⎝−2ρ2
(

t
2 − 2nB̄nBd

2κρ−1n
2
mL(n)

)2
(
nB̄Vmn

2
m

)2
(1 + nnB̄n

3
BΥ(d)2dκ)

⎞⎟⎠ dt

= 4

∫ 2nM

0

exp

⎛⎜⎝ −2ρ2t2(
nB̄Vmn

2
m

)2
(1 + nnB̄n

3
BΥ(d)2dκ)

⎞⎟⎠ dt

≤ 2
nB̄Vmn

2
m

ρ

√
π

2
(1 + nnB̄n

3
BΥ(d)2dκ).

Therefore,

E[|SI − E [SI ] |] ≤4nB̄nBd
2κρ−1n

2
mL(n) + 2

nB̄Vmn
2
m

ρ

√
π

2
(1 + nnB̄n

3
BΥ(d)2dκ)
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+ 2ρmM

(
2nB̄nBd

κ +

(
Vm

2nBd2κL(n)

)m)
.

Using these moment inequalities, we can also analyze the limit behavior of
E[|SI − E [SI ] |].
Corollary 5.3.

• We assume (H∞
1 ), (H∞

2 ) and (H3). It holds

E[|SI − E [SI ] |] ≤ G1(κ, ρ,V∞, nB̄ , nB , n)

∼
n→∞

nBnB̄V∞υ

√
π

2
nBnB̄(Kρ(∞))κn ln(n)

κ
,

=
n→∞

O
(√

nln(n)
κ

)
,

with Kρ(∞) = 1
ln(ρ−1) .

• We assume (Hm
1 ), (Hm

2 ), (H2) and (H3). It holds

E[|SI − E [SI ] |] ≤ G2(κ, ρ,Vm, nB̄ , nB , n)

∼
n→∞

nB̄nBVmυn
2
m

ρ

√
2πnB̄nBKρ(m)κ ln(n)κn

=
n→∞

O
(
n

2
m

√
nln(n)

κ

)
,

with Kρ(m) =
1− 1

m

ln(ρ−1) .

Proof. We use Corollaries 5.1 and 5.2 and the bound ∀d ∈ N,Υ(d) ≤ υ (see
Lemma 4.6).

Remark 5.5. Theorem 5.2, Corollaries 5.2 and 5.3 with hypotheses (Hm
1 ) and

(Hm
2 ) are useful only if m > 4. If this is not the case limn→+∞ n

2
m− 1

2 �= 0,

hence limn→+∞ E

[
|SI−E[SI ]|

n

]
�= 0. In the context of learning theory, this means

that the empirical risk may not converge to theoretical risk (see Section 3.4).

Appendix A: Proof of Corollary 3.3

Proof. If (H∞
1 ), (H∞

2 ) and (H3) are verified

E[exp(s|R(f̂)−Remp(f̂)|)] =
∫ ∞

t=0

P

(
exp(s|R(f̂)−Remp(f̂)|) ≥ t

)
dt

=

∫ exp
(

2snB̄V∞
n

)
t=0

P

(
exp(s|R(f̂)−Remp(f̂)|) ≥ t

)
dt

+

∫ ∞

t=exp
(

2snB̄V∞
n

) P(exp(s|R(f̂)−Remp(f̂)|) ≥ t
)
dt.
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From one side,∫ exp
(

2snB̄V∞
n

)
t=0

P

(
exp(s|R(f̂)−Remp(f̂)|) ≥ t

)
dt ≤ exp

(
2snB̄V∞

n

)
.

From the other side,∫ ∞

t=exp
(

2snB̄V∞
n

) P(exp(s|R(f̂)−Remp(f̂)|) ≥ t
)
dt

=

∫ ∞

t=exp
(

2snB̄V∞
n

) P
(
|R(f̂)−Remp(f̂)| ≥

ln(t)

s

)
dt

=

∫ ∞

t=exp
(

2snB̄V∞
n

) exp
⎛⎜⎝ −2n2

(
ln(t)
s − 2nB̄V∞

n

)2
(nB̄V∞)

2
(1 +AnB̄n

3
Bκ!

2 �ln(n)�κ n)

⎞⎟⎠ dt

≤ exp

(
2snB̄V∞

n

)∫ ∞

t=1

2 exp

(
−2n2 ln(t)2

(nB̄V∞s)
2
(1 +AnB̄n

3
Bκ!

2 �ln(n)�κ n)

)
dt.

Then, ∫ ∞

t=1

2 exp

(
−2n2 ln(t)2

(nB̄V∞s)
2
(1 +AnB̄n

3
Bκ!

2 �ln(n)�κ n)

)
dt

= 2

∫ ∞

t=0

exp

(
−2n2t2

(nB̄V∞s)
2
(1 +AnB̄n

3
Bκ!

2 �ln(n)�κ n)
+ t

)
dt

≤ nB̄V∞s

n

√
2π (1 +AnB̄n

3
Bκ!

2 �ln(n)�κ n)

× exp

(
(nB̄V∞s)

2 (
1 +AnB̄n

3
Bκ!

2 �ln(n)�κ n
)

8n2

)
.

It yields,

E[exp(s|R(f̂)−Remp(f̂)|)]

≤ exp

(
2snB̄V∞

n
+

(nB̄V∞s)
2 (

1 +AnB̄n
3
Bκ!

2 �ln(n)�κ n
)

8n2

)

×
(
1 +

nB̄V∞s

n

√
2π (1 +AnB̄n

3
Bκ!

2 �ln(n)�κ n)
)
.

If (Hm
1 ), (Hm

2 ), (H3) and (H4) are verified The demonstration is very similar
to the previous point. Indeed, we have,

E[exp(s|R(f̂)−Remp(f̂)|)]

≤ exp

(
2sL1(n)

n1− 2
m

)
+

∫ exp(Ms)

t=exp

(
2sL1(n)

n
1− 2

m

) P

(
|R(f̂)−Remp(f̂)| ≥

ln(t)

s

)
dt
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≤ exp

(
2sL1(n)

n1− 2
m

)
+

∫ exp(Ms)

t=exp

(
2sL1(n)

n
1− 2

m

)

× 2 exp

⎛⎜⎝ −2n2− 4
m

(
ln(t)
2s − L1(n)

n1− 2
m

)2
(HnB̄)

2
(1 + EnB̄n

3
B(κ!)

2 �ln(n)�κ n)

⎞⎟⎠+
ρmL2(n)

n
dt.

And,

∫ exp(Ms)

t=exp

(
2sL1(n)

n
1− 2

m

) 2 exp

⎛⎜⎝ −2n2− 4
m

(
ln(t)
2s − L1(n)

n1− 2
m

)2
(HnB̄)

2
(1 + EnB̄n

3
B(κ!)

2 �ln(n)�κ n)

⎞⎟⎠ dt

= exp

(
2sL1(n)

n1− 2
m

)∫ ∞

t=1

2 exp

(
−n2− 4

m ln(t)2

2 (HnB̄s)
2
(1 + EnB̄n

3
B(κ!)

2 �ln(n)�κ n)

)
dt

= 2 exp

(
2sL1(n)

n1− 2
m

)∫ ∞

t=0

exp

(
−n2− 4

m t2

2 (HnB̄s)
2
(1 + EnB̄n

3
B(κ!)

2 �ln(n)�κ n)
+ t

)
dt

= 2 exp

(
2sL1(n)

n1− 2
m

)
HnB̄s

n1− 2
m

√
2π (1 + EnB̄n

3
B(κ!)

2 �ln(n)�κ n)

× exp

(
(HnB̄s)

2 (
1 + EnB̄n

3
B(κ!)

2 �ln(n)�κ n
)

2n2− 4
m

)

≤ 2 exp

(
1

2n1− 4
m

(
4sL1(n) + (HnB̄s)

2 (
1 + EnB̄n

3
B(κ!)

2 �ln(n)�κ n
)))

× HnB̄s

n1− 2
m

√
2π (1 + EnB̄n

3
B(κ!)

2 �ln(n)�κ n).

Consequently,

E[exp(s|R(f̂)−Remp(f̂)|)]

≤ exp

(
1

2n1− 4
m

(
4sL(n) + (HnB̄s)

2 (
1 + EnB̄n

3
B(κ!)

2 �ln(n)�κ n
)))

×
(
1 +

exp (Ms) ρmL2(n)

n
+

2HnB̄s

n1− 2
m

√
2π (1 + EnB̄n

3
B(κ!)

2 �ln(n)�κ n)
)
.

Appendix B: Proof of Lemma 4.1

Proof. Let’s prove by induction that for each i in [0, d],

∀t ∈ Z
κ, ∀d ∈ N, ‖Xt − X̃

[i]
t ‖m ≤ ρiVm. (B.1)

For i = 0, X̃
[0]
t = X̄ and X̄ is drawn from the law μX . Therefore, using hypoth-

esis (Hm
2 ), we get

∀t ∈ Z
κ, ‖Xt − X̃

[0]
t ‖m ≤ Vm.
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Thus Equation (B.1) is verified for i = 0.
Moreover, if we suppose that (B.1) is verified for i. For each t ∈ Z

κ, it holds

‖Xt − X̃
[i+1]
t ‖m ≤ ‖F ((Xt+s)s∈B, εt)− F

(
(X̃

[i]
t+s)s∈B, εt

)
‖m

≤
∑
s∈B

λs‖Xt+s − X̃
[i]
t+s‖m ≤

∑
s∈B

λsρ
i
Vm ≤ ρi+1

Vm.

Consequently, by induction, Equation (B.1) is verified for each i in [0, d]. Finally,
setting i = d yields Lemma 4.1.

Appendix C: Proof of Lemma 4.5

Proof. We first show that ‖S̃[d]
I − S̃

[d]′
I ‖m ≤ nnB̄ρ

d
Vm

‖S̃[d]
I − S̃

[d]′
I ‖m = ‖

∑
t∈I

Φ((X̃
[d]
t+s)s∈B̄)−

∑
t∈I

Φ((X̃
[d]′
t+s)s∈B̄)‖m

≤
∑
t∈I

‖Φ((X̃ [d]
t+s)s∈B̄)− Φ((X̃

[d]′
t+s)s∈B̄)‖m

≤
∑
t∈I

∑
s∈B̄

‖X̃ [d]
t+s − X̃

[d]′
t+s‖m

≤ nnB̄ρ
d
Vm using Lemma 4.4.

We then bound ‖S̃[d]
I − S̃I

[d,i]‖m For all t and i Z
κ we have the following

properties

X̃
[d]
t �= X̃

[d,i]
t ⇐⇒ i ∈ V(dδ, t) ⇐⇒ t ∈ V(dδ, i).

‖S̃I
[d,i] − S̃

[d]
I ‖m = ‖

∑
t∈I

Φ((X̃
[d]
t+s)s∈B̄)−

∑
t∈I

Φ((X̃
[d,i]
t+s )s∈B̄)‖m

≤
∑
t∈I

∑
s∈B̄

‖X̃ [d]
t+s − X̃

[d,i]
t+s ‖m

≤
∑
t∈Zκ

∑
s∈B̄+t

‖X̃ [d]
s − X̃ [d,i]

s ‖m.

Only random variables X̃
[d,i]
t with t ∈ V(dδ, i) are impacted by the replacement

of εi by ε′i. Thus, at worst, each t ∈ V(dδ, i) appears nB̄ times in the sum.
Therefore, we get

‖S̃I
[d,i] − S̃

[d]
I ‖m ≤

∑
t∈V(dδ,i)

nB̄‖X̃
[d,i]
t − X̃

[d]
t ‖m.

Moreover, for all t in Z
κ

V(dδ, t) =
d⋃

c=0

V (cδ, t) \V ((c− 1)δ, t) with V(0, t) = t and V(−1, t) = ∅.
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And by definition of V(dδ, t) (see Section 2.1), it holds

∀r1 �= r2, (V(r1δ, t)\V((r1 − 1)δ, t))
⋂

(V(r2δ, t)\V((r2 − 1)δ, ts)) = ∅.

Therefore,
⋃d

c=0 V(cδ, t)\V(c− 1, t) is a partition of the set V(dδ, t) and we can
rewrite the previous inequality as

‖S̃I
[d,i] − S̃

[d]
I ‖m ≤ nB̄

d∑
c=0

⎛⎝ ∑
s∈V(cδ,i)\V((c−1)δ,i)

‖X̃ [d,i]
s − X̃ [d]

s ‖m

⎞⎠ .

Using Lemma 4.4. We get

‖S̃I
[d,i] − S̃

[d]
I ‖m ≤ nB̄

d∑
c=0

Card(V(cδ, i)\V((c− 1)δ, i))ρcVm.

∀c ∈ N,V(cδ, i) is a κ−orthotope and

Card(V(cδ, i)) =
κ∏

j=1

(2cδj + 1) .

We recall that nB =
∏κ

j=1 (2δj + 1) = Card(B) + 1. Then, for all c > 1,

Card(V(cδ, i)\V((c− 1)δ, i)) = Card(V(cδ, i))− Card(V((c− 1)δ, i))

=
κ∏

j=1

(2cδj + 1)−
κ∏

j=1

(2(c− 1)δj + 1)

≤ cκ
κ∏

j=1

(
2δj +

1

c

)
− (c− 1)κ

κ∏
j=1

(
2δj +

1

c− 1

)

≤
κ∏

j=1

(
2δj +

1

c− 1

)
(cκ − (c− 1)κ)

≤
κ∏

j=1

(2δj + 1) (cκ − (c− 1)κ)

≤ nB (cκ − (c− 1)κ) ≤ nBκc
κ−1.

Eventually, we get ‖S̃I
[d,i] − S̃

[d]
I ‖m ≤ nB̄Vm

(
1 +

∑d
c=1 nBκc

κ−1ρc
)
.

Appendix D: Proof of Lemma 4.6

Proof. Let p ∈ N and (a, b) ∈ R
2.

We first compute Ip =
∫ b

a
tpρtdt.

Ip =

∫ b

a

tpρtdt =

[
tp

ρt

ln(ρ)

]b
a

+
p

ln(ρ−1)

∫ b

a

tp−1ρtdt =
apρa − bpρb

ln(ρ−1)
+

p

ln(ρ−1)
Ip−1.



1720 R. Garnier and R. Langhendries

And

I0 =

∫ b

a

ρtdt =
ρa − ρb

ln(ρ−1)
.

By induction, we get

Ip =

p∑
i=0

aiρa − biρb

ln(ρ−1)p−i+1
× p!

i!
=

p!

ln(ρ−1)p+1

p∑
i=0

(
aiρa − biρb

)
ln(ρ−1)i

i!
. (D.1)

Let f(t) = tpρt; we have f ′(t) = tp−1ρt
(
p− t ln(ρ−1)

)
. Then f ′(t) = 0 ⇐⇒

t = p
ln(ρ−1) . Thus f is increasing on [0, p

ln(ρ−1) ] and decreasing on [ p
ln(ρ−1) ,+∞].

Applying this to our case,

• if d < � κ−1
ln(ρ−1)�. Then:

∑d
c=1 c

κ−1ρc ≤
∫ d+1

0
tκ−1ρtdt.

• if d = � κ−1
ln(ρ−1)�, Then

∑d
c=1 c

κ−1ρc ≤
∫ 	 κ−1

ln(ρ−1)



0 tκ−1ρtdt+
(

κ−1
ln(ρ−1)e

)κ−1

.

• if d > � κ−1
ln(ρ−1)�. Then

∑d
c=1 c

κ−1ρc ≤
∫ 	 κ−1

ln(ρ−1)



0 tκ−1ρtdt+
(

κ−1
ln(ρ−1)e

)κ−1

+∫ d

	 κ−1

ln(ρ−1)

 t

κ−1ρtdt.

Using Equation (D.1), we get

•
∫ d+1

0
tκ−1ρtdt ≤ (κ−1)!

ln(ρ−1)κ

(
1− ρd+1

∑κ−1
i=0

((d+1) ln(ρ−1))
i

i!

)
.

•
∫ d⌊

κ−1

ln(ρ−1)

⌋ tκ−1ρtdt

≤ (κ−1)!
ln(ρ−1)κ

(
ρ

⌊
κ−1

ln(ρ−1)

⌋ ∑κ−1
i=0

(⌊
κ−1

ln(ρ−1)

⌋
ln(ρ−1)

)i

i! − ρd
∑κ−1

i=0
(d ln(ρ−1))

i

i!

)
.

We recall that,

‖S̃I
[d,i] − S̃

[d]
I ‖m ≤ nB̄Vm

(
1 + nBκ

d∑
c=1

cκ−1ρc

)

≤ nB̄nBVmκ

(
1

nBκ
+

d∑
c=1

cκ−1ρc

)
.

We now define the function Υ.

Υ : N �→ R
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Υ(d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ

(
1

nBκ
+

(κ− 1)!

ln(ρ−1)κ

(
1− ρd+1

κ−1∑
i=0

(
(d+ 1) ln(ρ−1)

)i
i!

))
,

if d <
⌊

κ−1
ln(ρ−1)

⌋
.

κ

(
1

nBκ
+

(κ− 1)!

ln(ρ−1)κ

⎛⎜⎝1− e−(κ−1)
κ−1∑
i=0

(⌊
κ−1

ln(ρ−1)

⌋
ln(ρ−1)

)i
i!

⎞⎟⎠
+
(

κ−1
ln(ρ−1)e

)κ−1
)
,

if d =

⌊
κ− 1

ln(ρ−1)

⌋
.

κ

(
1

nBκ
+

(κ− 1)!

ln(ρ−1)κ

(
1− ρd

κ−1∑
i=0

(
d ln(ρ−1)

)i
i!

)
+

(
κ− 1

ln(ρ−1)e

)κ−1
)
,

if d >

⌊
κ− 1

ln(ρ−1)

⌋
.

Consequently, we proved that,

‖S̃I
[d,i] − S̃

[d]
I ‖m ≤ nB̄nBVmΥ(d).

It is important to note that we can easily verify that the function Υ is in-
creasing and bounded by its limit when d → ∞. It holds

∀d ∈ N,Υ(d) ≤ lim
d→∞

Υ(d) = κ

(
1

nBκ
+

(κ− 1)!

ln(ρ−1)κ
+

(
κ− 1

ln(ρ−1)e

)κ−1
)

≤ 1

nB
+

κ!

ln(ρ−1)κ
+ κ

(
κ− 1

ln(ρ−1)e

)κ−1

.

Thereafter, we will denote υ = 1
nB

+ κ!
ln(ρ−1)κ + κ

(
κ−1

ln(ρ−1)e

)κ−1

. Moreover, we

emphasize that using Stirling formula, we can proved that υ ∼
κ→∞

κ!
ln(ρ−1)κ .

Appendix E: Proof of Theorem 5.2

Proof. From Lemma 4.2, we get N2 ≤ N1nd ≤ nB̄nBd
κn.

We set d̃ =
(1− 1

m ) ln(n)

ln(ρ−1) , d =
⌈
d̃
⌉
, t1 = n1+ 1

m ρd̃nB̄Vm

ρ(nB̄nBdκ)
1
m

and t2 = n
2
m nBnB̄Υ(d)Vm

ρ .

Then

p ≤
(
nnB̄ρ

d
Vm

t1

)m

+N2

(
nB̄nBVmΥ(d)

t2

)m

≤
(
nnB̄ρ

d̃
Vm

t1

)m

+N2

(
nB̄nBVmΥ(d)

t2

)m
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≤ ρmnB̄nBd
κ

n
+ nB̄nBd

κn
ρm

n2

≤ 2nB̄nBd
κρm

n
.

We also note that ρd̃ = ρd̃ = exp(− ln(ρ−1)Kρ(m) ln(n)) = exp(−
(
1− 1

m

)
ln(n)) = n−(1− 1

m ).
On the other hand,

t21 +N2t
2
2 ≤

(
n1+ 1

m ρd̃nB̄Vm

ρ(nB̄nBdκ)
1
m

)2

+ nB̄nBd
κn

(
n

2
mnBnB̄Υ(d)Vm

ρ

)2

=

(
nB̄Vmn

2
m

ρ

)2(
1

(nB̄nBdκ)
2
m

+ nnB̄n
3
BΥ(d)2dκ

)
.

And

c̄ = t1 +N2t2 ≤ n1+ 1
m ρd̃nB̄Vm

ρ(nB̄nBdκ)
1
m

+ nB̄nBd
κn

(
n

2
mnBnB̄Υ(d)Vm

ρ

)

≤
(
nB̄Vmn

2
m

ρ

)(
1

(nB̄nBdκ)
1
m

+ nB̄n
2
BΥ(d)dκn

)
.

Therefore,

2npM + pc̄

≤ 2nB̄nBd
κρm

n

((
nB̄Vmn

2
m

ρ

)(
1

(nB̄nBdκ)
1
m

+ nB̄n
2
BΥ(d)dκn

)
+ 2nM

)

≤ 2nB̄nBd
κρm

((
nB̄Vmn

2
m

ρ

)(
1

(nB̄nBdκ)
1
mn

+ nB̄n
2
BΥ(d)dκ

)
+ 2M

)

≤ 2nB̄nBd
2κρmn

2
m

((
nB̄Vm

ρ

)(
1

dκ(nB̄nBdκ)
1
mn

+ nB̄n
2
BΥ(d)

)
+

2M

dκn
2
m

)
≤ 2nB̄nBd

2κρmn
2
mL(n).

With L(n) =
(

nB̄Vm

ρ

)(
1

dκ(nB̄nBdκ)
1
m n

+ nB̄n
2
BΥ(d)

)
+ 2M

dκn
2
m
.

Consequently using p ≤ 2nB̄nBdκρm

n . It holds ∀ε > 4nB̄nBd
2κρmn

2
mL(n),

exp

(−2( ε2 − (pc̄+ 2npM))2

t21 +N2t22

)

≤ exp

⎛⎜⎜⎜⎝ −2
(

ε
2 − 2nB̄nBd

2κρmn
2
mL(n)

)2
(

nB̄Vmn
2
m

ρ

)2(
1

(nB̄nBdκ)
2
m

+ nnB̄n
3
BΥ(d)2dκ

)
⎞⎟⎟⎟⎠ .
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In particular; ∀ε > 4nB̄nBd
2κρ−1n

2
mL(n),

exp

(−2( ε2 − (pc̄+ 2npM))2

t21 +N2t22

)

≤ exp

⎛⎜⎜⎜⎝ −2
(

ε
2 − 2nB̄nBd

2κρ−1n
2
mL(n)

)2
(

nB̄Vmn
2
m

ρ

)2(
1

(nB̄nBdκ)
2
m

+ nnB̄n
3
BΥ(d)2dκ

)
⎞⎟⎟⎟⎠ .

Finally,

∀ε > 4nB̄nBd
2κρ−1n

2
mL(n),

(
2nnB̄ρ

d
Vm

ε

)m

≤
(

2nnB̄ρ
d̃
Vm

4nB̄nBd2κρ−1n
2
mL(n)

)m

≤ ρm

n

(
Vm

2nBd2κL(n)

)m

.

Using Equation (5.2), for ε > 4nB̄nBd
2κρ−1n

2
mL(n), we get

P (|SI − E [SI ] | ≥ ε) ≤2 exp

⎛⎜⎜⎜⎝ −2
(

ε
2 − 2nB̄nBd

2κρ−1n
2
mL(n)

)2
(

nB̄Vmn
2
m

ρ

)2(
1

(nB̄nBdκ)
2
m

+ nnB̄n
3
BΥ(d)2dκ

)
⎞⎟⎟⎟⎠

+
2nB̄nBd

κρm

n
+

ρm

n

(
Vm

2nBd2κL(n)

)m

.
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