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Abstract

We develop stochastic analysis tools for marked binomial processes (MBP) that are
the discrete analogues of the marked Poisson processes. They include in particular:
(i) the statement of a chaos decomposition for square-integrable functionals of MBP,
(ii) the design of a tailor-made Malliavin calculus of variations, (iii) the statement of
the analogues of Stroock’s, Clark’s and Mehler’s formulas. We provide our formalism
with two applications: (Appl) studying the (compound) Poisson approximation of MBP
functional by combining it with the Chen-Stein method and (App2) solving an optimal
hedging problem in the trinomial model.
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1 Introduction

The aim of this paper is to develop a stochastic analysis for marked binomial processes
(MBP); these are the discrete analogues of the marked Poisson processes, i.e., point
processes that are defined on IN x E, where IN := {n, n > 1} and E is a state space of
random marks.

Our main theoretical achievements (described in section 3) are:

(I) the statement of a chaos decomposition for square-integrable functionals of MBP,
in terms of multiple discrete stochastic integrals with respect to some specific
normal martingales (Theorem 3.8);
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(IT) the design of a tailor-made Malliavin calculus of variations, from suitable versions of
classical operators (the Malliavin derivative, the divergence operator, the Ornstein-
Uhlenbeck generator and its pseudo-inverse), and an integration by parts formula
(Proposition 3.15);

(III) the statement of the discrete analogues of three useful functional identities already
established in the Gaussian and the Poisson cases: Stroock’s formula (Theorem 4.1),
Clark’s formula (Theorem 4.4) and Mehler’s formula (Theorem 4.9).

Our findings represent natural, yet powerful counterparts to existing results on the
Gaussian (see e.g. [37, 38]) and Poisson (see [10] for a variational approach, [40, 45]
for a chaotic approach) spaces. They also find their place among discrete-time theories:
comparable calculus have been developed on the Rademacher space in [46], for i.i.d.
random variables in [11, 15, 19, 48], and for obtuse random walks in [25]. In particular,
our analysis unfolds from the decomposition in chaos of square-integrable functionals
and revolves around ad-hoc versions of classical operators like the Malliavin derivative,
the divergence operator, the Ornstein-Uhlenbeck generator and its pseudo-inverse. As
by-products of this formalism, we can state three discrete-time functional identities that
can be understood compared to their Poisson counterparts: Stroock’s formula stated in
[32], Clark’s formula in [32, 58] and Mehler’s formula in [31]. They provide applications
that justify our study.

Indeed, as described in sections 5 and 6, we stress that our main motivations come
from two distinct applications.

(App 1) The implementation of the Malliavin-Stein method; introduced in [36, 37] to
deal with Normal approximation on a Gaussian space, we use it here to assess the
total variation distance between the law of a (compound) Poisson random variable and
that of a (sufficiently regular) integer-valued MBP functional. Stein’s method, initially
developed to quantify the rate of convergence in the Central Limit Theorem in [55] was
further adapted to deal with the Poisson approximation of sums of dependent variables
in [12]. The so-called Chen-Stein method has been first performed to quantify the
Poisson approximation [1, 2, 8] or the compound Poisson one [6, 9] by sums of possibly
dependent indicators random variables. It relies on location arguments around the
notion of neighbourhood of dependence sets. In the same spirit of [43], we combine
Chen-Stein method with the Malliavin calculus to quantify the (compound) Poisson
approximation of integer-valued MBP functionals and revisit two related issues: the
Poisson approximation of the length of the longest head run in a series of independent
coin tosses in Subsection 5.1 and the compound Poisson approximation of the number of
occurrences of a rare word in a DNA sequence in Subsection 5.2.

(App 2) The explicit computation of the squared-loss minimizing strategy in a trinomial-
type model in Section 6. In some complete market models, the replication strategy
writes in terms of Malliavin derivative through the Clark-Ocone formula: historically
highlighted in the Black-Scholes model as in [42, 28], this has also been shown in the
Cox-Ross-Rubinstein (chapter one in [46] and in [47]) or in more generalized discrete-
time complete market models that can be ingeniously built from an obtuse random walk
as in [25]. In incomplete markets like the trinomial model, not all claims are attainable
so that we are led to consider a loss minimizing hedging problem as in [24, 52, 54]. By
replacing the trinomial model by a surrogate (equivalent) one driven by a MBP that we
call jump-binomial model, and combining our tools with the minimal variance approach
(see [54]), we give an explicit expression of the squared-loss minimizing strategy in the
trinomial/jump-binomial model in terms of the Malliavin derivative for MBP.

The paper is structured as follows. Section 2 is devoted to the framework and main
notations.
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Notation The following set notations are used throughout the paper. Let us denote
N ={n,n > 1} and Z; = NU {0}. We consider a measurable space (X, X) where
X = N x E, where E is a countable subset of Z. We denote [a,b] := {a,...,b} for any
a,b € Z such that a < b; in the particular case where a = 1, we will opt for the lighter
notation [b] := {1,...,b}. By convention, [1,0] = @. For any ¢t € IN let X; := [t] x E. Any n-
tuple of X" can be denoted by bold letters; for instance, (t,,k,) = ((t1, k1), ..., (tn, kn)).
For any A € X, we denote A™< = {(t,,k,) € A™ : t; < --- < t,}, the corresponding
time-ordered set, and A™7 = {(t,,k,) € A" : Vi # j, t; # t;}, the set with pairwise
distinct (in time) elements.

2 Framework and main notation

Setup (2, A, P) will hereafter be an abstract probability space assumed to be wide
enough to support all random objects in question.

The mark space Consider the measurable space (X, X') where X =N x E and E is a
countable (possibly finite) subset of Z that we call the mark set. Denote by 91x (resp.
‘ftx) the space of simple, integer-valued, o-finite (resp. finite) measures on X.

Let NX be the smallest o-field of subsets of 91x such that the mapping x € 9x + x(A)
is measurable for all A € X.

Point processes A point process (resp. finite point process) is a random element 7 in

MNx (resp. in ‘JATX) that satisfies n(A) € Z4 U {oco} (resp. n(A) € Z,) for all A € X. In this
simple frame, we may and will assume that any element 7 of 91x is proper, i.e., it can be
written as

n(X)

=Y 6x,, (2.1)
n=1

where {X,,, n > 1} denotes a countable collection of X-valued random elements, and
for z € X, ¢, is the Dirac measure at x. For a complete exposé on the subject of point
processes, the reader can refer to the section 6.1 of the monograph [33], or to [30].

Marked binomial process Let A € (0,1). The underlying marked process 7 is the
random element of (Mx,NX) that is a measurable map from (2, 4) to (DNx, N¥X). In
analogy with marked Poisson processes (see [33], chapter 7), we can represent the
marked binomial process as an element of 91 such that for all A € X and P-almost
surely all w € €2,

N(A) W) =D 11, (w)<oo} (T, (), Ve () (A), (2.2)
t=1

where:

* (Ty)i>0 is a sequence of jump times such that To = 0, T; := 22:1 & (t € IN) and
the inter-arrival random variables {{;, t € IN} are i.i.d. geometric random variables
supported on IN with mean 1/, i.e., such that P({&; = k}) = A(1 — \)¥~! for k > 1.

* {V;, t € N} is a collection of i.i.d. E-valued random elements such that P-almost
surely n(T, Vi) = 1 for T; < oo, and that is assumed to be independent of the T;.

By a slight abuse of notation, we shall use the shortcut n(¢, k) = n({(t, k)}) for (¢, k) € X.
We can construct the marked binomial process as follows:

1. Consider an infinite number of independent Bernoulli experiments where a success
stands for a jump and occurs with probability A\. The random variable N, that counts
the number of jumps (or successes) until time ¢ follows a binomial distribution
Bin(t, A).
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2. If there is a jump at time ¢, i.e., if there exists s € IN such that T, = ¢, draw a mark
k € E according to the distribution Q and let n(¢, k) = 1. Otherwise, if there is no
jump at time ¢, let n(t, k) = 0 for all k € E and (¢, -) = 0 where we define 7(t,-) by

77(@ ) = Z 77(757 k)

keE

The underlying jump process N = (N;);>¢ is defined by No = 0 and N; = > v 1¢T,<¢}-
Note that for any ¢t € IN, N; is a binomial random variable with mean At. The random
variables AN; := N; — N;_; = n(¢,-) are independent Bernoulli random variables, and
for any k,¢ € E, t,s € IN such that ¢ # s, the random variables 7(¢, k) and 7(s, () are
independent.

Last, let W; = Vy, be the random variable indicating the mark associated with a jump
occurring at time ¢. In fact, n can be viewed as the time-ordered sequence ((T¢, V¢))i>1.
This means that 7 can be identified to the set of elements of X it weights as illustrated
below.

isdefinedon ([7] \ {5,7}) x IN.

— For this realization of 7:
(2,3) = 1(3,1) = 7(6,5) = 1: (2,3),(3,1), (6,5) are ON
(1) = (4.-) = 0: (1,), (4,) are OFF
1 + d¢5,2) + 0(7.3)isdefined on [7] x IN.
‘ For this realization of 1 + d(5,2) + d(7.3):

(2,3),(3,1), (5,2), (6,5), (7,3) are ON
Figure 1: Realization of a MBP on X = [7] x IN
In the case E = {1}, X can be identified to IN and we refer to  as a simple binomial

process.

Associated filtered probability space For any A € X, n(A) is the map w € Q —
n(A)(w). We may (and will) assume that A = o({n(A) =k, k > 0}) and F := (F;)¢>0 is
the canonical filtration defined from 7, by

Fo:={0,Q} and F,:=o(n(s,k),s<t,k€E), t>1

Let Q be the common distribution of the V; and P,, =P o n~! be the image measure of
P under 7 on the space (Mx, N¥), i.e., the distribution of 1. Let us define v the measure
on X such that

N, Ni—1
v(t, k) = E{Z 1{V3_k}:| - E{ > 1{V3_k}:| = Mpp — At — D)pr = Apr =2 AQ({k}),
s=1 s=1

where the second equality comes from Wald’s lemma. The intensity of n — viewed as a
random measure on X - is defined for any A € X by

v(A) =E[R(A)] = > v(tk). (2.3)

(t,k)EA

Random variables on 91y We denote hereafter by R(91x) the class of real-valued mea-

surable functions § on 9y and by £°(Q2) := £°(Q, A) the class of real-valued measurable
functions F on 2. Since A = o(7), for any F € £°(Q), there exists a function § € R(Mx)
such that F = f(n). The function f is called a representative of F and is P ® n~!-a.s.
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uniquely defined. By default, the representative of a random variable F € £°(2) will
be denoted by the corresponding Gothic lowercase letter, §. Last, for p € IN, we define
LP(P) := L?(9Q, A, P) the set of p-integrable functions on 2 with respect to P.

The compound binomial process Y = (Y,);>; of intensity v is defined by

N, t
Y, = Z;VS = z_; AN, W,. (2.4)

By Wald’s lemma, we can check that

E[Y, = Y;1|Fi1] = Y Mepr = AE[V4].
kE€E

The corresponding compensated compound binomial process, i.e., the (P, ¥F)-martingale
Y := (Y4)ser, is defined by Y, = 0 and for any ¢ € IN,

Yt_(ivs) S M= Y k[1{n(s,,€):1}prk} = Y kAZ. (25)
s=1

(s,k)eXy (s,k)eX, (s,k)eXy

The elements of the family Z := {AZ ), (t,k) € X} are such that: (i) E[AZ k)] = 0,
(i1) AZ(tﬁ,) and AZ(S,,) are independent for s # ¢, (iii) For all ¢ > 1, the random variables
AZ k) and AZ( 1) are identically distributed and centered, since we have

E[1{ym=1}] = vt k) = AQ{k}) = E[Ly0,0=13) (2.6)

by definition (2.3) of v. However fort € N, k, ¢ € E, AZ, ;) and AZ, 4y are not orthogonal
for the inner product (X,Y) — E[XY].

3 Main theoretical results

In this section we develop stochastic analysis tools for marked binomial processes
(MBP). In particular: (i) we establish a chaos decomposition for any square-integrable
functional of MBP, (ii) we define a modicum of Malliavin operators (gradient, divergence,
Ornstein-Uhlenbeck operators), (iii) we connect these operators to their analogues in L.

3.1 Chaos decomposition

To define marked binomial chaoses, we build a discrete analogue of the It6-Wiener
integral.

3.1.1 (Multiple) stochastic integrals

Processes A process u = (u(t)k))(t’k)ex is a measurable random variable defined on
(M(X) x X, F ® &) that can be written u = -, ) oxc w(, (, k)1 (t,k)=1}, Where

{u(n, (t,k)), (t,k) € X} is a family of measurable functions from 9tx x X to R and u is
called the representative of u. As for random variables, the representative of a process
will be denoted by a Gothic letter.

Definition 3.1. The set of simple processes, denoted by U, is the set of random variables
of the form
w= > u(n, (k) 3.1
(t,k) Xy
where T € N, and u is the representative of u. Let P be the subspace of U made of
simple predictable processes, i.e., of the form (3.1) where u(n, (t,-)) is F;_;-measurable
for anyt € [T).
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We denote by L?(P ® v) the Hilbert space of processes that are square-integrable
with respect to the measure P ® v. We define the corresponding inner product and norm
by

(u, 0)12(pon) = B| /X u(r, (&, ))o(n, (¢, k) dv(t, k)|,
and

Il ey = B[ [ uon (802 au(e. ).

Normal martingales We define the analogue of the It6-Wiener integral for any function

that is square-integrable with respect to the intensity measure. This requires that the
integral satisfies an isometry property; since the family Z is not orthogonal, we can
not construct the It6-Wiener integral — as usual - from the increments of the process Y
defined by (2.5). Let us then define a suitable random variable family for integration,
linked to normal martingales. For T' € IN, define Zy = {AZy; (t,k) € Xr}. The
dimension of the related spanned space is equal to

T

s T _ T .=

1+) B x (S> = (B[ + 1) =:m,
s=1

so that we can derive from Z7 an orthogonal family, Ry = {AR 1) ; (£, k) € Xr}. Assume
that E = {k',...,k™}; then, the Gram-Schmidt process provides AR = 1,

n—1
E[AZ 1 AR (1)
AR(t}kl) = AZ(t’kl) and AR(t,kn) = Az(t,k”') - Z E[(AR(l kj))2}
=1 :

AR i), (3.2)

for n € [m], by noting that (i) the random variables AR ;) and AR, ) are identically
distributed since AZ ;) and AZ ;) are (as a consequence of (2.6)) and (ii) that for any
s <t 1, B[AR( AZp)] = B|AR( ) E[AZ0)|F.] | = 0, for k,¢ € E.

For any t € [T'], (AZ,k), k € E) is actually the image of (AR 1), k € E) by the linear
transformation associated to the m x m triangular matrix 9! defined by

1 o - 0
Y1 1 e 0

M = (mij)i,je[u,ﬁ]] = . : . E (3.3)
Ynl Yn2 tee 1

where v;; == E[AZ(LM)AR(ij)}/E[(AR(ij))2] fori < j. As M is invertible, (AR 1), k €
E) is obtained via the product of M~! by the vector (AZ(, ), k € E). Since this linear
transformation is bijective, the family R can be constructed in a similar fashion when E
is countably infinite, by induction.

Remark 3.2. (1) We can construct such a family R even if E is not countable (if for
instance E = R), by drawing inspiration from the orthogonal power jump process for
Lévy processes. This was introduced in [39] to define the so-called Teugels integrals
and taken over in [41] to state a generalization of the Clark-Ocone formula for Lévy
processes. Transposing it into our framework, that would give: Define for any n € N,

Az =X - B[X] = (A -B| Y (av.y|

s€(t] s€(t]

and the family R by ARq = 1, and AR{™ = X{") 4 27;11 v X, where the ,,; are real

numbers such that the processes of the collection {(ARE”))@h n € IN} are strongly
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orthogonal martingales, i.e., for any ¢t € IN, the product AR™AR(™ is a uniformly
integrable martingale for all (n,m) € IN?, m # n.

(2) In the different frame of obtuse random walks, a construction of the discrete-time
analogues of normal martingales in R” (resp. in C™) from an initial process that satisfies
the predictable representation theorem was proposed in [4] (resp. in [3]). These tools
were reused in [25] to state a Clark-Ocone-type formula and were further adapted to
deal with discrete-time processes on the sequence space in [22].

Integrals of square-integrable predictable processes These are defined as the dis-
crete stochastic integrals with respect to the family R. Let xj, := E[AR%t k)] and 7 be the
measure on X such that for (¢, k) € X,

v(t k) = krr(t, k). (3.4)

Proposition 3.3. Any u € U of representative u is integrable with respect to the family
‘R by

Ji(u) = Z u(n, (t, k) AR )-
(t,k)exX

The integral J, extends to square-integrable predictable processes via the isometry
formula

B9[] = E[lulits ) 3.5)

where U is the measure on X defined by v(t, k) = kyv(t, k) and ki = E[AR%t | for
(t, k) e X.

Proof. The proof is close to that of Proposition 1.3.2. in [46] and won’t be detailed.
It relies on the fact that AR ;) and J;_; are independent, AR ;) is centered and
E[AR%t,k)] = KRk. O

Discrete Itd-Wiener type integral For f € L?(X, v), the discrete type integral denoted
by J1(f) is defined by

I = D ft.k)AR.

(t,k)EX
Let us also define for f € L*(X,v),
J(fi 2)= Y ft,k))AZk. (3.6)
(t,k)ex

To define multiple stochastic integrals, we work in a space of symmetric functions. The
space LQ(X, u)"o where v is defined by (2.3) is by convention identified to R; let thus for
any f € L*(X,v)°%, Jo(fo) = fo-

Definition 3.4. Forn € IN, let L?(X, v)°" denote the subspace of L?(X, v)®" = L2(X, )"
composed of the functions f, € R(X") symmetric in their n variables, i.e., such that for

any permutation 7 of {1,...,n}, fu((tr1): kr1))s - - s (Ernyokirn))) = (E1, k1), - - (Ens b)),
for all (t1,k1),...,(tn, k,) € X. The space L?(X,v)°" is endowed with the inner product

<fnagn>L2(X,u)°" = n'/x B fn(tnakn) gn(tn,kn) dV®n(tn,kn)7

where the tensor measure v*" is defined on X™7 by v®" = Q" | v.

The multiple stochastic integral can be defined on Cx (X™, R), the set of real functions
with compact support on X" and extended by isometry to L?(X, v)°".
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Proposition 3.5. The R-stochastic integral of order n is the mapping defined on

Cx (X", R) by
Jn(fa) =1 > Jnoa(falx, (t,5))) AR p), (3.7)
(t,k)ex
where ” x” denotes the first n — 1 variables of f,((t1,k1),..., (tn,ks)). It can be written
as
Jn(fn) = n! Z fn(twu kn) H A1%(1271@) (3.8)
(b kn)EXM< i=1

Besides, it satisfies the isometry formula: for any f, € L2(X,v)°", g, € L2(X,v)°™,

E[Jn(fn)Jm(gm)] = 1{n} (m)n'<fn7 gn>L2(X,z7)°"7 (3.9)

so that its domain can be extended to L?(X, 7)°" ~ L2(X, v)°" where v is defined by (3.4).

When it is unambiguous, L?(»°") will indifferently refer to L2(X, v)°" or L?(X, 7)°".
Proof. The proof is close to that of Proposition 1.3.2. in [46] and will not be detailed. O

3.2 Marked binomial chaoses and decomposition

This subsection is devoted to the statement of a chaos decomposition (in terms
of multiple integrals) for any square-integrable marked binomial functional, that are
random variables of the form

n

F=folgeo=oy+ Y, O Li)=nyfaltn: ko) [T Linceono=1: (3.10)
neN (t, k,)exn i=1

where any function f,, is an element of L!(v°"), that is the subspace of L!(v®") :=
LY(X, X, v)®" = LY(X, X, )" composed of the functions symmetric in their n variables.
We introduce the space of cylindrical functions, which is dense in L2(P).

Definition 3.6. A functional F is cylindrical if there exists T' € IN such that

F = folgx)=oy + Z Z 1 x)=n} fn(tn, Kn) H Lo ki)=1} (3.11)
nEN (t, kn)EXE i=1
where Xp = [T] x E.

Let H, := R and let for any n € N, H,, be the subspace of L?(P) made of integrals of
order n > 1:

Hp = {Jn(fn) i fn € LQ(V0n>}'

H, is called the chaos of order n. In what follows L°(P,J;) denotes the set of F;-
measurable random variables.

Lemma 3.7. Foranyt € IN,
LOP,F) = (HoD - ©H) NLOYP,TF,). (3.12)

Proof. It is enough to note that for any s,t € IN, s < t, the space H, N L°(P,J;) is
generated by the orthogonal basis

{1}u {H ARt k), 1<t <o <ty <ty (B, .o ks) € ES} ) (3.13)
=1
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Indeed, any element of this basis can be written in terms of multiple integrals as

IT ARk = 5 (1 iy, eo oy e ) @nd 1= Jo(1),
=1

and any F € H, N L°(P,F,;) can be written as F = J,(f,1y:) with f, € L?(v°%). We
conclude by noting that the dimensions of (Ho @ - ® H;) N LY(P, ;) and LO(P,TF;)
in (3.12) are both equal to

1+S_i1 E[* x C) — (1+ [E)".

The proof is thus complete. O

As a direct consequence of Lemma 3.7, any random variable F € L°(P, J;) writes

t

F=E[F]+ Y Ju(falge)-

n=1

This also means that the space of cylindrical functions coincides with the linear space
spanned by multiple stochastic integrals, i.e.,

S= Span{ U Hn}
n=0

Its completion in L?(P) is denoted by @7@0 ‘H,,. We can state the main theorem of this
chapter.

Theorem 3.8. We have the chaos decomposition

L2(P) = P Hn. (3.14)

n>=0

In other terms, any random variable F € L?(P) has a unique chaos expansion given by

F=E[F]+ ) Ju(fa) (3.15)

n>1

Proof. The proof follows closely that of Proposition 1.5.3 in [46] by combining Lemma 3.7
and the denseness of S in L2(P). O

We immediately deduce an expression of the covariance of two square-integrable
variables in terms of their chaos decomposition.

Corollary 3.9. For any F,G € L(P),

cov(F,G) = Zn!<fn79n>L2(le7)®"'

n>1

Proof. Immediately using (3.15) together with Proposition 3.3. O

3.3 Doléans exponentials
Define for any h € L?(v) the exponential vector by

§(h) =E[E(W)] + %Jn(h‘@”). (3.16)

n>1
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The family (£;(h));>1 defined by &;(h) = £(h1}) can be viewed as a discrete Doléans
exponential solution of the equation in differences: for any ¢t € IN, ¢ > 2,

§i(h) — &—1(h) = &—1(h) Z g(t, k)AZ 4 1y = &—1(R) 1 (g5 Z),

k€eE
where g € L%(v) is defined in the following theorem.

Proposition 3.10. For any h € LQ(V), the discrete Doléans exponential (3.16) writes

e =B TT (1+ 30 2t k) AR )

t>1 kEE
=Bl [T (1+ 3 9t 1) (L aenmy — AQUED)), (3.17)
t>1 keE

where g is the element of L (v) such that J,(g; Z) = J1(h).

Proof. The proof is postponed as technical results to Appendix A. O

3.4 Malliavin calculus

The Malliavin calculus is embodied by a family of operators, the gradient D, the
divergence operator §, the Ornstein-Uhlenbeck generator L, and its pseudo-inverse L1,
as well as a keystone integration by parts formula.

3.4.1 Gradient, divergence and integration by parts

Gradient As one way to develop it, we introduce the Malliavin derivative or gradient
as the annihilation operator acting on the space L?(P) seen via Theorem 3.8 as a Fock
space.

Definition 3.11. Let the linear operator D : S — L?(P ® v) be defined for J,,(f,) € Hn,

by

Dy In(fn) = 1T no1 (fu (%, (8, 5)) Lxgn1.<.~ (%)), (3.18)
where the symbol x stands for the first n — 1 variables (t;,k;) (with i € [n — 1]) of
fn((tlv kl), e, (tnfl, knfl), (t7 k)) and € (Xﬂt)n_l’< = {(th k1)7 ey (tnfl, knfl) S
Xnob<'t; £ t}.

Divergence The divergence operator is defined as the creation operator acting on L?(P).
Let

U= { Z Jn(fos105)5 far1 € L2 @ L2 (v), n € [0,T], T € ]N}. (3.19)
nef0,T7]

Definition 3.12. Let the linear, unbounded, closable operator § : dom § — L?(P) whose
domain dom ¢ (that will be described later) contains the set of processes the expansion
of which is of the form ), -, Jn(fu(x,-)) and satisties

S+ DU s Fagyns < oo,
n>=0

and which is defined for any element J,,(fn+1(x,-)) of U by
§(Jn(fn+1(*y ))) = Jn+1(fn+1)7 (320)

where
n+1

= 1
Jnt1 = o > far (k) (i ki), (B ki), - (b ), (s, K2)).-
i=1
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In the frame of classical Malliavin calculus, the divergence of adapted processes
coincides with the It6-Wiener integral. We get the analogue: for any A € X, §(1A) =
n(A) —v(A) holds and

O(u) = Ji(u) = Z u(n, (6, k) ARy s u € U. (3.21)
(t,k)ex

This property holds for any P ® v-square integrable process u € U. Let u = J,,—1(fn(%,+))
for some f, € L2?(v°"). The predictability of w implies that f,(x, (t,k)) = gn(*,
(t,k))1p1,i—1)= (%) for some g,, € L?(v°"). Equation (3.21) follows by writing

Su)=Tn(far)=n D Jns1(Gn(x (k)L ec1p(5) ARy = > u(n, (65) AR k).
(t,k)eX (t,k)eX

To state gradient’s closability property we need an integration by parts formula, ap-
pearing as a duality relation between D and §. Here stands its version restricted to
S xU.

Lemma 3.13 (Integration by parts formula on S x U). For any (F,u) € S x U,
E[F(u)] = E[(DF, u)12(x,5)]- (3.22)

Proof. The proof is identical to that of Theorem 1.8.2 in [46] replacing the intensity
measure v by v to benefit from the isometry property. O

Corollary 3.14 (Closability). The operator D is closable from L?(P) to L?(P ® v).

Proof. Let (F,),>0 be a sequence of random variables defined on S such that F,, con-
verges to 0 in L?(P) and the sequence (DF,,),>¢ converges to A in L?(P ® 7). Let u be a
simple process of the form (3.1) for some 7' € IN. From the integration by parts formula
(3.22),

=E|F, Z u ARy |
(t.k)eX

> DiwyFn i)
(t,k)eX

where E(t,k)eX U k) AR p) € L%(P). Indeed, the process (ARt 1) U(t,k)) (¢,k)ex, Delongs
to L2(Q x X, P ® 7) since, by the Cauchy-Schwarz inequality,

> |U(t,k>AR(t,k)|2]< > mkBud ] < .

(t,k)eXr (t,k)EXT

E

Then,

<A,U>L2(p®,;) = nlLIEIOE F Z U(t,k)AR(t,k) = 0,

(t,k)exX

for any simple process u. It follows that A = 0 and then the operator D is closable from
L2(P) to L?(Q x X, P ® 7). By equivalence of the norms | - [|12(x,7) and || - [|r.2(x ., this
result can be extended to L2(Q2 x X, P @ v). O

By adjointness the operator § is also closable from L?(P ® v) to L?(P). Thus the
domain D of D is the closure of S with respect to the norm

1/2
1D == (IFI2(p) + IDFIE2psr) ) -
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or equivalently which decomposition (3.12) satisfies >, ”"!”fn”i?(u@n) < 0. The
domain of ¢ is given by

dom § = {u € L*(P®v):3c>0,VF € D, |(DF, u)|r2(pey) < c||FllLz@) } -

The integration by parts formula can thus be extended to the respective domains of D
and 6.

Proposition 3.15 (Integration by parts formula on S x U). For any F € D, u € dom §,

E[F 6(u)] = E[<DF,U>L2(X71~,)}. (323)

3.4.2 The Ornstein-Uhlenbeck structure

Define the Ornstein-Uhlenbeck semi-group by its action on the chaos decomposition: for
any F € L?(P) decomposed as (3.15),

PTF = Z 67”TJ71,(f71,)-
n>0

Proposition 3.16. The Ornstein-Uhlenbeck generator (also called number operator) is
defined for J,,(f,) € Hn by
L(Jn(fn)) = _an(fn)'

The domain of L fulfils the identity: F € dom L if and only if F € D and DF € dom ¢ and,
in this case, LF = —0DF.

Proof. The identity LF = —§DF can be stated first for F = J,,(f,,) with f, € L2(v°"),
using (3.21) and then extended to dom L by closability of the operator D. O

The pseudo-inverse L~! is defined on the subspace of L?(P) of centered random
variables is given, for any F written as (3.15), by

1
—1p <
L™F = E an(fn). (3.24)

n>=1

3.4.3 Link with operators in L'

The analogues of the former operators can be defined in L! starting from a Mecke-type
formula. Let the mapping 7 : 9x — 9x be the restriction of 1 to §; := o{ns, s # t}, i.e.,

m(n) =YD (s, k). (3.25)
s#t keE

Lemma 3.17. Let  be a marked binomial process on X with intensity measure v. Then
for any real-valued, non-negative, X x Jix-measurable function u,

Bl Y un(th)

(t,k) In(t,k)=1

= E|:/X u(m(n) + 5(t,k)7 (t, k))du(t, k)|. (3.26)

Proof. Formula (3.26) can be stated using similar arguments as in [16], section 2.3. O

Remark 3.18. Clearly, the formula (3.26) still holds provided the process u of represen-
tative u belongs to L!(P ® v). Furthermore, replacing n by 1 — d(t,k) in (3.26), we can
state that

E[(t’k)z u(77 = O(t.k) (¢, k‘))} = E{/Xu(wt(n), (t, kz))du(t, k)| (3.27)

In(t,k)=1
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Gradient vs add-one cost operator
The mappings defined on 9ix x X and 9x x N by

(777 (ta k)) = 7Tt(7l) + 5(t,k:) and (T)a t) = Wt(’])’ (3.28)

can be interpreted as the mappings acting on 7 respectively by forcing the lighting of
a point at (¢, k) or turning off any point at time ¢. As a reminiscence of Poisson space
theory, define the add-one cost operator D7, for any F € £°(Q), by

D iy F = F(me(n) + 81.1)) — f(me () (3.29)
The difference operator D™ measures the effect of adding a point (¢,k) € X to n
compared to the process shortened to what occurs at time ¢t. The product formula
can be deduced from (3.29) and is reminiscent to Poisson setting (see e.g. [46],

Proposition 6.4.8). For F,G € £°(Q) of respective representatives § and g, such that
F(D*G), G(D*F), (D*F)(D*G) e L'(P ®v),

D&k)(FG) = f(ﬂt(n))(D(t,k)G) + g(ﬂt(n))(D(t’k)F) + (Da,k)F)(D&k)G) (3.30)

With additional hypotheses, operators DT and D coincide. The definition of D and the
chaos decomposition ensure that if F € D, then DF € L?(P). The following proposition
provides the converse, and a more tractable expression of the gradient as a difference
operator.

Proposition 3.19. Let F € L?(P). IfD*F € L?(P ® v), then F € D. Moreover,
DF =DTF ; P®r—as. (3.31)

Proof. Let (t,k) € Xp. The mapping of D(t’k) at F = J,(fn) € S gives

n

Db =nt S ke (k) TTDG AR

(tvukn)e(XT)n’< i=1

zn' Z fn((tlakl)a"'a(t7k)a"'7(tnakn)) HAR(t“kL)
(tn kn) (X \{(t,k) ) ~1< =

=n! Z fn((tnflvkn71)7(t7k)> HAR(tzki)
(tn—1,kn_1)EXT\{(t,k) )"~ 1< };&

= an—l(fn(*a (t, k))lAﬁ) = D(t,k)Jn(fn)a

where X7' = Xp \ {(t,k), k € E}. Thus, for any F € S, D, yF = F(m(n) + 61.x)) —
F(mi(n)). It extends to D by a denseness argument relying on the closability of D
(Corollary 3.14). O

Ornstein-Uhlenbeck generator vs operator L In this section, we study whether -
under possible additional assumptions - the operators 6§, L and their L!-versions coin-
cide. Define on L'(P ® v) the operator § such that for any process u € L'(P ® v) of
representative u,

= Sl (k) - /X w(, (RN = Y unAZer.  (3.32)

(t,k)In(t,k)=1 (t,k)eX
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As mi(n) + d(¢,x) = n on {n(t, k) = 1}, we can additionally introduce the operator L acting
on the elements F € £°(Q) such that D*F € L!(P ® v), in the following way:

LF := —§(D*F)
== > [fm) +0ur) —Fm)] + / [F(me(n) + ¢e,k)) — F(me(m)) ] du(t, k)
(t,k)|n(t.k)=1 X
== f(n) = §(n — )] + | [Df 1 F] dv(t, k)
2 =i [ DG F
= > [D(_tk)F]+/ [D{; 1 F] dv(t, k), (3.33)

(t,k)|n(t,k)=1

where D~ can be interpreted as a remove-one gain operator defined for any F € £°(Q)
by

D wF =) = F(n = 0L (e )=13- (3.34)
The Mecke equation (3.26) ensures that this definition does not depend P-almost surely
on the choice of the representative. Let D be the operator defined on £°() by

Dy(F) = f(n) — f(m:(n)) 5 t € .

We get the following formula which is not a full L!-integration by parts formula because
of the predictability assumption.

Proposition 3.20. For any predictable process u € L°(2 x N) and F € £°(2) such that
D*Fu and D;Fu belong to L' (P ® v), we have

E[ /X (D*F) uge du(t,k:)] — B[F3(u)] +E[ /X (D.F) ugepy dv(t, k)|

This latter expression can be
E {/ (DF) w(y g dv(t, k)] = E[F5(u)), (3.35)
X

where ]S(t,k)F = D(t W — D¢F = §(m(n) 4+ 6@x)) — f(n). The operator D is the exact
discrete analogue of the usual gradient on Poisson space. Since the intensity measure 7
is not diffuse, D™ and D are not equal P ® v-almost surely. We end up this section with
some remarks of interest for applications in Sections 5 and 6.

Conclusion: L! vs L2 In the case EN: {1}, i.e.,g is a simple binomial process, we have
AZy = AZ1) = ARq,1) so that § = § and LF = LF. In the general case, this is no longer
true. Unfortunately, even if F € dom L such that D*F € L?(P ® v) and DF € L'(P ® v),
we can not state LF = LF P-almost surely. Although we have D*F = DF, §(DF) =
Z(t,k)eX(D(t,k)F)AR(t,k) whereas if DF € Ll(P & I/), (5(DF) = Z(t,k)ex(D(t,k)F)AZ(t,k)'
Nevertheless, it follows from the definition (3.3) of 9 that

LF == > DunF) Y mldZey = Y > m(DumF)AZg, = LF, (3.36)

(t,k)eX LEE (t,L)EX kEE

where F is any square-integrable random variable such that D, Z)ﬁ = keE m,;el(D(*t k)F)

for (¢,¢) € X. By Clark’s formula (see section 4), this is uniquely defined provided E[f‘]
is given. However, we can not combine L' and L? theories as possible in the Poisson
case (see [17]) via the correspondence between the carré du champ operator and a
L'-operator denoted by T'.
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4 Some useful functional identities

4.1 Stroock’s formula

The operator D can be canonically iterated by letting DY) = Dt and defining the
n-th (n € IN) difference operator by the recursion formula D = D*(D"~1). We get
explicitly for any F € £°(Q),

F= D?;h 1)(DEZTIJZ‘))W-,(M,M)F) = Z ( )” U‘F( +Zétw kj) )

JC[n] JjeJ

(n)
D k)

where 7ltr] : 91 — Ny is the restriction of 1 to o {ns, s € N\ {t1,...,t,}}, i.e.,

rltal () = Z Z n(s, k). (4.1)
SEN\{t1,....tn } KEE

We can then prove the discrete analogue of the Stroock’s formula, proved by the epony-
mous author in the Brownian case [56]; that is the expression of the functions f,, in (3.15)
in terms of the n-th difference operator D(™). This is the exact analogue of Poisson Fock
space representation.
Theorem 4.1 (Stroock’s formula). Let F € L?(P). Then, D/WF ¢ L?(P ® v®") for any
n € N, and F has a chaos decomposition of the form (3.8) with f, = E[F] and for all
(tna kn) 6 XTL’

fu((tn, kn)) = E[DE?:J{ )F} (4.2)

Proof. This is based on the two following lemmas whose proofs are postponed to Ap-
pendix A.

Lemma 4.2. For any F € L?(P),

L AR(t ki)
(tmkn)F] E|:F :|

Ko
=1 v

Lemma 4.3. For any F, G € L*(P),

1
E[FG] = E[FIE[G] + ) m<E[D<">F], E[D™G])12(x 5)en-
n>1
The proof follows closely that of Theorem 1.3 in [32]. Let F € L?(P) and the mapping
0F such that:
0% (s,,1,) = E[D | F]; V(sn,1,) € X"

(Sn ,1")

Let us first state the identity for any random variable of the form G = £(g) with g € L2(v),
well chosen to approximate F. Indeed follows from the orthogonality of the AR, that

{GH AR, e, >] [(E[G] +30 N galtn k) ﬁARmki)) ﬁ AR;/)]

n>=1 (t, k,)eXn =1 j=1
= gm(sma lm);

for all (s,,,1,) € X™. By Lemma 4.2, the left member is also equal to (m!)~10S ((sm, 1m))-
Now, from Lemma 4.3 together with the isometry identity (3.5), follows

>8] () | = 3 Syl salon) = B <0

Following the proof of Theorem 1.3 in [32] we can prove that: (i) F = S stands P-almost
surely where S := Z@O(n!)‘lJ »(0Y), (ii) the uniqueness of the decomposition. The proof
is complete. O
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4.2 Clark’s formula and corollaries

The Brownian martingale representation theorem (e.g. Proposition 1.3.14 in [38])
states that a martingale adapted to the filtration of a Brownian motion is a stochastic
integral whose integrand is given by Clark’s formula in terms of the Malliavin gradient
of the terminal value of the martingale. Here we have the analogue.

Theorem 4.4 (Clark’s formula). For any F € L2(P),
F=E[F]+ Y E[DquF|Fi1] AR (4.3)
(t,k)eX
Applying the latter formula to F — E [F\&'}] leads to the following result.
Corollary 4.5. Foranyt € N and F € L*(P),

F=E[F|F]+ Y > E[DuuF|F1]ARq . (4.4
s>t+1keE

Example 4.6. Let us introduce the normalized family R := {AR 1), (¢, k) € X} where
AR( k) := AR 1)//mx and define Yy = - 1y >4 cp AR( x). Since Y, has finite fourth

moment, the application of Clark’s formula (4.3) to ?tz provides the existence of a
predictable process ¢ such that

t
Vi =t+> gAY,

s=1

This means that (Y;);c satisfies a structure equation and then is a normal martingale.
We can see again (see Section 3 and Remark 3.2) that our construction is intrinsically
related to the existence of normal martingales.

We can state the analogue of the so-called Chernoff-Nash-Poincaré inequality of
Gaussian analysis in [13, 35]. Our result is clearly a reminiscence of its counterpart in
the Poisson space in [32, 58], for independent random variables in [15, 18, 19] or for
marked point processes in [21].

Corollary 4.7 (Poincaré inequality). For any F € L%(P),

var(F) < E{/ D) F* di(t, k) |.
X
Proof. The proof is similar to the one of Corollary 3.5 in [15] and will not be detailed. O

Proof of Theorem 4.4. The proof is based on the following lemma whose proof is strictly
the same as Proposition 1.2.3 in [46] and will not be further detailed.

Lemma 4.8. For any (t,n) € N?, f, € L?(v°"),

Let F € S. It follows from both its chaos decomposition (3.15) and the definition of
the gradient operator (3.18) that for some 7" € IN,

F=E[F]+> J(fulip) =EF +> n > Juoi(falx (65)1p_pjn-1.<) AR

n>1 n=1l (t,k)eXr
(t,k)eXr n=>1

=E[F]+ Y  E[DqunF|Fi1] AR,
(t,k)eXr
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where we used Lemma 4.8 to obtain the second line. The operator that maps F € L2(P)
to (E[D¢xF|F:—1], (t,k) € X) is bounded with norm equal to 1. Indeed, from (4.3)
stated for cylindrical functionals together with the isometry property (3.9),

IEDF|7. = [P~ EF]| op) < [F ~ EF|| @) + (BE) = [FlFe).

1] HL?(P@&)
with equality in case F = J;(f1) for some f; € L?(v). Then result can be thus extended
to any random variable F € L?(P) using a standard Cauchy argument. O

4.3 Mehler’s formula

In this part, we give a pathwise representation of the pseudo-inverse L~! using the
operators (P;)-cr,. We call it Mehler’s formula as in [31] and proceed in a similar
fashion by providing an integral representation of (P;),cg, in L'(P).

Integral representation of the semi-group For n € 91x, we consider the binomial
process N associated to n and split it into two processes according to independent random
draws of a Bernoulli random variable with mean . This means that any point charged
by 1 belongs to (") with probability v and to (!~ with probability 1 — ~. Crucially:
since the measure v is not diffuse, we need to ensure that on {5n(¢,k) = 1}, the point
(t,k) € X can not be simultaneously charged by n) and n*=7). For 7 > 0, define the
probability kernel K™ : {0,1} — [0, 1] such that for all (¢,k) € X, K™ := e "Jp+(1—e"7)d;.
Considering 7 as a proper process via Definition (2.1), let nk- be the 7-thinning (see [33],
definition 5.3) of n defined by

N
K™ = Z 5((T,,,Vt),s;)a
t=1

where (¢]);>1 is a sequence of variables which conditional distribution, given {N = n}
(for n € IN) and {(T;, V), ¢t € [n]}, is that of independent random variables written as
119,<+} Where (0¢)¢>1 is a sequence of independent exponential random variables with
mean 1. We can prove that 7k~ is a marked binomial process on X x {0, 1} of intensity
measure v @ K7. Define

0™ = (- x {0}) and ™= (o x {1}), (4.5)

that are (not independent) marked binomial processes with respective intensities e™"v
and (1 — e 7)v. To see that the two processes are not independent, one can use the
Laplace characterisation of binomial processes, that can be found in [33] (exercise 3.5).
Nevertheless, we have 70 + ™! = 7.

The formula below is very similar to the one existing in the Poisson space (see [31]
or in its original formulation in [46], Lemma 6.8.1). The main difference lies in the
presence here of the random variable €. Implicitly defined in the thinning appearing in
the analogue formula for Poisson processes, it is explicitly required here to guarantee
that a same point can not be lighted simultaneously by ™" and 7.

Proposition 4.9. Letn € ‘)A“(X and F € L'(P) of representative . For any 7 € R,

P.F =P f(n™" +n"") = / E[f(n™" + 77)|n] L, (d7) ; P—a.s., (4.6)

where II,, denotes the distribution of a marked binomial process of intensity measure v
and 1) is a point process whose law given 7 is such that

P({ii(t, k) = 1} | {n(t,k) = 0}) = AQ({k}) and
P({ii(t, k) = 0} | {n(t.k) = 1}) = 1 - AQ({k}). @.7)
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The first equality in (4.6) ensures that for any F € L}(P), 7 € R,
E[P,F] = E[F],
while Jensen’s inequality together with (4.6) imply the contractivity property of (P,) ¢cr, :
E[|P.F]’] <E[F|’]; pe N. (4.8)

Proof of Proposition 4.9. It is enough to prove it for F = £(h) = f(n) where, as 7 is finite,
there exists T' ¢ IN such that

i =] [1+Zg<s,k>(1{,,<s,k>_1}—AQ({k}))},

se[T] kEE

with g € L2(Xr) such that J;(h) = J;(g; Z). On the one hand, by action of the semi-group
P on the quasi-chaos decomposition (3.15),

P.F=¢eu) =[] (1 +eT Y g(s, k) (Lingsm=1) — AQ({k})))-

s€[T) k€E

On the other hand, by definition of ™° (4.5) and 7, whose law given 7 is provided
by (4.7),

B + i) ] = ] E[H S 05 ) (Lt ooty — AQU{R) M

se[T] keE
= 1] (1 +> g(s, k) (1= e AQUEY) + e Lyiany=1) — AQ({k}))
s€(T] keE
=TI (173 g5 0 (Apaem=1y — AQUK}) ) = PF.
s€(T) keE
Since 7 is finite, the result holds in L?(P). The proof is complete. O

Commutation of (P;).cr, The semi-group satisfies the usual commutation property:

Corollary 4.10. For any F € L?(P), and 7 € R,

DP.F =e "P,DF; P —as. (4.9)

Proof. Let F = ¢(h) = f(n) such that E[F] = 1 and

i) =TT (14 3 95 ) (Linei=ny = AQUED) ),
selN kEE
where g € L?(v) is such that J;(h) = J1(g; Z). Then, from Mehler’s formula (4.6),
Prf(n) = g(e_Th) = H (1 +e 7 Z 9(87 k) (1{77(s,k):1} - )‘Q({k}))) .
seN keE

On the one hand, for any (s, k) € X,

Do Prim) = TT (14 €77 90O (Limmssimo=1) — AQ({ED) )

relN leE
-1 (1 +e7TY g O (A ima =1y — AQ({k})))
relN LeE

= e Tg(s, k) Pof(ms(n)).
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On the other hand, follows from

Dot =g(s:k) [T (1+ 3 900k (L mian=1y = AQUED) ) = gls k()

relN\{s} keE

that for any (s, k) € X,

P (D uf(msm) =g(s. k) [T (1+e7 3 90 (Lgmtmioemr=n) — AQUED))
relN\{s} keE
= g(S, k) PTf(”S(n))'
Hence the result. O

Mehler’s formula appears as a useful corollary of the commutation property.
Theorem 4.11. For any F € L?(P) such that E[F] =

L7'F = —/ P,Fdr;: Pov —ae. (4.10)
0

Moreover, -
—DL7'F = / ¢ "P,DFdr; P®v —a.e. (4.11)
0

The combination of Theorem 4.11 with the contraction property of (P, );cr, enables
to bound DL~'F with respect to the norm of DF:

IDL™'F|lL2pew) < [IDF|l12Pow)-

Proof of Theorem 4.11. Let F € L?(P), E[F] = 0. By (4.8), P,F € L?(P) for any 7 € IN.

m

! (Zh(h)) Z —Jn(fa) = / Ze—"*Jn(fn)dr, (4.12)
n=1 =1

for any m € IN. Moreover, the random variable R,, defined by
Roim [ (pr= e Jar= [T (X e aati)ar
0 n=1 n=m+1
converges to zero in L?(P) by noting that Jo(fy) = E[F] = 0 and
(o) o0 2 0 [e%s)
E[Rgn] S / E |:< Z e_"TJn(fn) :l dr = Z n'”fn”iz(x’l;)@n / €_2nT dr.
0 n=m-+1 n=m-+1 0

We have that

oo

o 2 e’} S
E (/ PTFdT> <E / P F|2dr :Zn!\\fnniz(xj)@n/ e dr < oo,
0 0 oyt 0

and then the first point is proved by letting m go to infinity in (4.12). As for (4.11), the
commutation (4.9) and contractivity (4.8) properties satisfied by (P ) ecr , ensure that

o0 o0
EU |D(575)P7Fd7] _ EU e_T|PTD(S7g)F|dT} < (vV2) 'E[|D(s o F]
0 0

is finite for v-a.e. (s,/) € X. The result follows by applying the operator D to each side
of equality (4.10) and using of the commutation property (4.9). O
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5 Application 1: Poisson approximations via Stein’s method

The Chen-Stein method (see e.g. [8, 20]) was derived from Stein’s (see e.g. [5]) to
assess probability distances between the law of an integer-valued random variable and a
Poisson distribution. The first related results dealt with the Poisson approximation of
sums of possibly dependent random variables (see [1]) and were based on the study of
neighbourhoods of dependence. In this section, we revisit this latter by combining it with
the Malliavin calculus for MBP. In particular, we state a Stein-Malliavin type criterion
(see e.g. [36, 37] for the historical result for Normal approximation) for the Poisson
(resp.compound Poisson) approximation by simple binomial (resp. marked binomial)
functionals with respect to the total variation distance. This is defined for two Z_ -random
variables X and Y (the case of interest here), by

dTv(Px,Py) = sup |P(X S A) — P(Y S A)|,
ACZy

where for any random variable X, we denote by Px its distribution, i.e., the pushforward
measure of P by X. First, we can state a result for Poisson approximation, in the same
vein as [43] on the Poisson space. Let P()\g) the Poisson law with mean )\q. For a function
¢ : Z, — R, consider V the forward difference V¢ := (- + 1) — ¢, and V?¢ its second
iteration V2 := V(V), that satisfies the useful (see e.g. [43], proof of Theorem 3.3)
inequality: for all a, k € Z,

k) — — k— < M k—a)lk—a-— 1
(k) = p(a) = V(o) (k — a)| < ———=(k —a)(k —a—1)]. (5.1)
For any A C Z,, we denote by ¢ : Z, — R the unique solution to the Chen-Stein
equation

P(P(Xo) € A) — 1a(k) = kpa(k) — dopa(k+1); k € Zy, (5.2)

satisfying the condition V24 (0) = 0. Let us denote ||¢||c = maxacz, [[¢also, [Volloo =
maxacz, ||[Veal o and V2000 = maxacz, |V2¢A |- The function class K = {¢a, A C
Z, } fulfils the estimates (see [43]):

2 1—e o
oo < i 1» 7); \Y (o] < Ny 5.3
lelloe < min (1,4/5-). Vel " (5.3)

_ =20
IVl < 2Vl < 2227,

0
Note that this last bound is connected to Remark 4.4 in Torrisi ([57], page 2227) where
the need to replace the bound (1 — e=*¢)/AZ in Theorem 3.1 of [43] by (1 — e~*?) /), has
been pointed out.

as well as
(5.4)

Theorem 5.1. Consider A\ € R’ and let I € D be a Z-valued random variable and
such that E[F] = A¢. Then,

drv (Pr, P(\)) < T\/E“)\o - /]N(ﬁF)DL—l(F - E[F})V(dt)ﬂ

1—e 0
I )

L

[/}N |(D:F)(D,F — 1)||D,L™(F — E[F))| u(dt)} (5.5)

Proof. Let A C Z, and pa be the solution of the Stein equation (5.2). First, letting
u=DTL™}(F — E[F]) and G = ¢4 (F), we have

[(Df G)ul < [lpllos DFLTH(E — E[F])].
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This implies that (D G)u € L'(P®v) since DTL~!(F—E[F]) € L'(P®v) as a consequence
of (4.11) together with the contraction property (4.8). Similarly we can prove that
(D:G)u € L}(P ® v) so that the integration by parts formula (3.35) holds. Moreover,
since F € D, then DF = D*F P-almost surely and, as E = {1}, it follows from last part of
Section 3 that § = § and LF = LF. With our notatlon (see Section 2), we can write here
that 7, (n) + &; = 1 + 0, P-almost surely so that D,F = f(n + 6;) — f(n) P-almost surely. By
definition of the operators L and L~! and using (3.35), we get

E[Fa(F) — dopa(F + 1)| = B|(F — E[F])pa(F) = XV (F)]
= E[(LL(F — E[F))¢a(F)| -~ E[AoVeoa(F)]
=B [ BilpalF) DL (F = BIF) v(a)| - B[aVioa(F)
= —E[WA(F) /]N(]StF) D,L~Y(F — E[F])v(dt) + remA}

—E[MVea(F)],

where the last line comes from
/}N Dy(ipa(F)) DL~ (F — E[F]) v(dt) = Vipa (F) /}N (D,F) (D,L™'(F — E[F])) v(dt)
+/ R D LHF — E[F]) v(dt),
N

and R, ; is a residual random function such that 934 ; < ||V2<pA||oo|(f)tF)(]5tF —1)|/2. By
using inequality (5.1), with k = f(1) + D,F and a = §(n), we get

Bfjremal) = B[| [ st (DL (7~ i) v

< [ealeg] [ B0 Dok - v)joL ! — BiE) | a0)|

Then, from Cauchy-Schwarz inequality,

|E[Foa(F) — Xopa(F +1)]| < ||V<PA||00\/E U/\O - /}N(ﬁtF) DL~ (F — E[F])V(dt)ﬂ

+ HVQQDAHOC

5 E[/]N |(D:F)(D,F — 1)||D,L™*(F — E[F))| u(dt)}

The result is then obtained by taking the supremum over the set {A C Z.} and using
the uniform bounds (5.3) on V.¢ and V_2<p. O

The aim is now to provide such a bound for the compound Poisson approximation.
Let PC(\p, V) denote the law of a compound Poisson variable with parameters (Ao, V),
i.e., that can be written as the distribution of the variable

NP
E Vi7
=1

where N¥ is a Poisson random variable with mean )¢ and {V;, i € IN} is a family of
independent non-negative random variables with distribution V. For any A C Z,, we
denote by 14 the unique solution of the Chen-Stein equation (see [6], Theorem 1)

1a(0) — P(PC(Ny, V) = Lioa () — /X koa(l+ B)du(t k) ; £ € Z, . (5.6)
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The function class X' = {pa, A C Z,} satisfies (see [20], Theorem 3.5):
pe = max |[Yalleo V max [[Vipallco < min |1 _ e (5.7)
Pe - ACZ+ Allco ACZ+ Allco X ) )\OV({I}) M .

Proposition 5.2. Let \g € R, V a probability distribution on N and V; a random
variable with law V. For any 7. -valued random variable F € D such that E[F] = A\(E[V4],

drv (Pr, PE(Xg, V)
<| [ [P (G0~ BH@DUAGrn) + beay)) ~ k(i) + D] (e )

+°v>e‘ /X [DFL7(f(n) — E[f(n)]) — k] du(t, k)‘- (5.8)

This result is only interesting when the variable F is a marked binomial functional in
the first chaos, i.e., F = J;(f) (f € L?(v)) and is not relevant for functionals in higher
chaoses. In this latter case, we can provide a bound by means of a Taylor expansion and
in terms of the iterated operator V2. We choose not to present it since it turns out to
be sub-optimal in the case F € H; that coincides with the frame of the application in
Section 5.2.

Proof of Proposition 5.2. Let a Z-valued random variable F € D such that E[F] =
ME[V;1]. Via Stein’s method for Poisson compound approximation, we are led to control

B[Fua(F) | koa(Pek)dv(t. )] = B[F-BE)uA(F) - | Kn(Frb)—oa(F)dv(t. )|
Let u = DTL™Y(F — E[F]) and G = ¢4 (F). We have
(DF Gl < gl [D¥L (F — BF])|.

Then, (D; G)u € L}(P ® v) since DYL~}(F — E[F]) € L' (P ® v) from (4.11) together with

the contraction property (4.8). Then, by definition of L. and L~! and using (3.35),

E[(F-E[F|)s(F)] = E[(LL™)(F-E[F])us(F)] = E| /

DL~ (F—E[F])Dya (F)dv(t, k)} .
X

On the other hand,

[ DT~ BEDDUA®)V(e k) — [ K@ +F) = 0a(E) (e )
X X
= /X DL (f(n) — E[f(n)]) [a (F(me(n) + 0.1)) — ¥a(§(n))] dw(t, k)
- /X k[0a(G(n) + k) — 64 ()] dw(t, k)
= [ DAL (i) — Bl (men) + 80)) = oGl + )] (e )

= [ oali DY (i) — Blien)]) - K] du(e. )
We conclude by taking the expectation and then the supremum over {¢)», A C Z,}. O

EJP 27 (2022), paper 164. https://www.imstat.org/ejp
Page 22/39


https://doi.org/10.1214/22-EJP892
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Malliavin calculus for marked binomial processes

5.1 Head run problems

Consider a large number of independent coin tosses with success (falling head)
probability p,, € (0,1). Whatever the value of p,, there will be sequences, called head
runs, where the coin will fall on head each time. We aim at computing the probability
that U, the length of the longest head run beginning in the first n tosses, is less than a
test length m,, € IN. The crucial fact is that head runs occur in clumps; indeed, if there is
a run with length m,, at position ¢, the probability that another run with the same length
starts at position ¢ + 1 is p,,. Considering m,, = 5 and the series

00011001010101111101000011111111111001
—— —

My =5 My =5 My,=>

00011001010101111101000011111111111001
~—~— S~
My, =>5 My =5 My =>5
we see that there are runs with length m,, at positions j = 14, 26, 27, 28, 29, 30, 31, 32. We
need to “declump” the sequences in order to count only the first occurrence. Let (C?);en
be a sequence of i.i.d. Bernoulli random variables with mean p,,, m,, € IN be the “test”
value and consider the random variable

H Cp + Z (1—Cp)CPCyy - Ch

that gives the total number of clumps of runs with length m, or more. Note that
E[U,] = pm((n —1)(1 — p,) + 1) =: \,,. Let N” be a binomial process with intensity p,,.
The random variable U,, can be rewritten as

H AN7 + Z (1 - ANJ)ANZ  ANY - ANGY =2 Up + Z Ui (5:9)
=1 i=1 /

i.e., as a simple binomial functional with mean p,,. As U,, € D, DU,, = D*U,, P ® v-almost
surely, and

DU n—l [(ma] H ANn+Z (1[z+1 i+ma,] (t)(1- ANn H ANH—Z_'_]'{ } H AN'H—I)
i=1,i#t i=1 0=1,i+L#t

(5.10)

is not null for ¢t € 7, := [n + m,, — 1]. We can quantify the Poisson approximation of U,.

Theorem 5.3. Let \,, = p/"((n — 1)(1 — pn) + 1). Then, there exists ¢ > 0 such that

ez

drv(Pu,,P(A\)) < Pn”

\ |:pn ‘2(my, — 1)q,21 + 2mpgn + 1] + om (1 _ pn>2szn—1

+2(n—mp+ 1)1 —pu)pit +o(pi)|. (5.11)

Remark 5.4. This result gives an insight into the distribution of T,,, the length of the
longest head run. As explained in [2], the distribution of T,, may be approximated as

P(T, <t)=P(U, =0) =e .

The definition of a test length requires that the sequence (\,,),>1 is bounded away from
0 and oo. In other words, this means there exists a deterministic constant ¢ such that

mp, = logy /. ((n —1)(1—pp) + 1) +c.
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Under this assumption, (1/A,,),>1 is bounded and p]' is asymptotically equivalent to 1/n,
so that the Poisson approximation in Theorem 5.3 is of order 1/n. We do slightly better
than in [2] where the convergence rate is of order m, /n and is obtained by studying
neighbourhood of dependence to deal with the local dependence structure of U,.

Proof of Theorem 5.3. Since U is a functional of a simple binomial process we have
D,U, = D{U,, D;U, = 1(,1=0yD*U,, and LU,, = LU,,. Note that \2 = p>"™ + 2(n —
1)gnp>™ + ( 1)2¢2p>™. We want to bound A; and A, the two terms in the right-hand
side of (5.5), i.e.,

Ay = \/E{ An 7/ (D;U,)D,L~1(U,, — E[Un])z/(dt)ﬂ,

and
Ag = E[/ |(D:U,,) (DU, — 1)||D,L~(U,, — E[Un})‘u(dt)}

Our demonstration is based on the following lemma whose proof is postponed to Ap-
pendix B.

Lemma 5.5.

\/E[‘var[F] - /n ﬁtF(—DtL—lF)du(t)ﬂ < om2 (1 —pp)*p2mn =t 4 o(p2™»).

Bound on A;

A < \Anvar[Un]H\/EUvar[Un] 7/ (D,U,)DL-1(U, E[Un])u(dt)ﬂ =: A1+ Asa,

where, using that for j > i, E[U}U}] = 0if j € [i + 1,7 + m,,], we have

(A +2 Z U"U”+QZ Z E[U?U}L]f%i)

i=m,+1 1=1 j=i4+m,+1
=2(n—my — I)QnPimn +(n—=1)(n—2m, — Q)Qipimn )\EL
= 2Mmgnpy ™" + (2my = Danpp™" +pp""

A =|A

This together with Lemma 5.5 leads to the existence of a constant ¢ such that

Ay < P2 2(mp — D)2 + 2mpgn + 1] + em2p2™ 1 + o(p2™). (5.12)

Bound on A, Using Corollary 4.11,

As < EUJ (a0 | (DU)? — (DU /OOO D,P,U, dTDV(dt):|

—(1- pn)EU (Ieun)? - (DtUn)” /Ooo ¢~"P,D,U, dTDI/(dt)}

n

<a-pm| [ (o, - 00, )uian].

n

by conditioning w.r.t. F;_; and using that |D,U,| < 1. Moreover,

My, t—1
U)2:( H AN, + Z (1—ANy) H ANZM—HANH@) {(A+B—C)?,

i=1,i#t i=max(t— mn,l) 0=1,i+0F#t
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Case t > m,, Note that D, ([];"3 AN;) = 0 so that D,U,, = B—C. Assume there exists iy €
{t —my,t— 1} such that B;, = 1 where B; := (1 — AN;) H;”:”LHZ# AN, . Then, AN;, =0
implies B; = 0 for any ¢ € [max(1,ip — my,), min(t — 1,ip — 1)] = [max (1,49 — my), i0 — 1]
whereas AN, ¢ = 1leads to B; = 0 for any ¢ € [max(t — my,,i0 + 1), min(t — 1,49 + my)]=
[io +1,t —1]; this entails B = Y./} B, = 0+ B;, = 1. Thus B € {0,1} and

1=t—my,

P({B < 1}) = 1. Besides, since B, C € {0,1},
(D,U,,)? = B> — 2BC + C2 = (B — C) — 2BC + 2C = (D,U,,) + 2C(1 — B).

This proves that D,U,, < (D;U,,)? P-a.s. On the event {C = 1}, [[,2, AN;4, = 1 so that
B;_; is equal to 0 if and only if AN;_; = 1. This entails HZL:"L#2 AN;_ 5,4 is equal to 1
and then B;_» is equal to 0 if and only if AN, 5, = 1. By induction, we can prove that,
on {C =1}, B=0ifand only if AN; =1 for any ¢ € {t — m,,,...,t — 1} (with probability
prtv). Then

E[C(1 — B)] = E[1(p_o} [{C = }JP{C = 1}) = p2".

so that we get for t > m,,,
E[(D;U,)* = D{U,] = pi™",

Moreover, for t < m,, D;:U,, = (A+B—C) and AB = 0. In that case, since A, B, C € {0,1},
(D,U,)? = A% + B® + C? — 2AC — 2BC = D,U,, + 2C(1 — A — B).
Since AB = 0,
E[|(D;U,)? = D;U,[] = 2E[CL{a—oyn{p=oj) < 2(1 — pji=~")py™ < 2p3™.

Finally,
As <2(n+m, —1)(1 — pn)pgm”.

n

Inserting this in (5.12) and using that (1 — e~ *»)/\, < A1, we get (5.11). O

5.2 Number of occurrences of a word in a DNA sequence

Identifying words with unexpected frequencies is crucial in DNA sequence analysis,
and in diagnostic issues in particular. A DNA sequence can be represented by a finite
series X X, - --X,, of characters taken from the alphabet A := {A,C, G, T} where the
letters stand for the four bases adenine, cytosine, guanine and thymine. Here, we model
the sequence X;Xs - - - X,, with an homogeneous and stationary Markov chain of order m.
Since a m-order Markov chain on A can be rewritten as a Markov chain of order 1 on
A™, we assume hereafter that m = 1. The invariant probability measure is denoted by p.
The aim is to compute the number of occurrences, within the sequence, of a given word
W, of size h,, (with h,, > m), W,, = wyws---wy,,. Letforany j € J, :={1,...,n—h,+1}
the random variable

Zj = 1 =ws Xy 1=, } -

Since the underlying Markov chain is homogeneous and stationary with invariant mea-
sure pu, B[Z;] = p(W,) (j € J,). The number of occurrences of the word W, is then
provided by
T(W,) = Z Zj.
JETn

We want to analyze its asymptotics when n goes to infinity and h,, grows as log(n).
We propose to address this issue using the Stein-Malliavin method rather than the
dependency neighbourhood study used in most related works (e.g. [26, 51, 49]). As
explained in [51], the word W,, may appear in clumps; if W,, has a periodic decomposition,
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its occurrences in the sequence can overlap. A k-clump is thus the occurrence of a
concatenated word C composed of exactly k overlapping occurrences of W,,. For instance,
if W,, = ACTAA, the sequence

G TGAAACTAACG
ACTAACTAA

has a at position 5 = 2 and a 1-clump at position 57 = 20. Then, we must consider
(Zj)jejn, the “declumped” sequence associated to (Z;);cz,, such that 'Zj only counts
occurrences that do not overlap the preceding one. As noted in the remark 2 of [51], we
can define (with a slight abuse since the variables Xy, X_;, ..., X_j;42 may not be known)
the ij by

2j=2;(1=Zj-1) (1 =Zjn,41); J€Tn

Let f(k) (W,,) and Z;k) (j € Jn,k € IN) be the random variables that indicate respectively
the number of k-clumps and whether there is a k-clump at position j. Let us write

T(W,) = ZkE]N kf(k)(Wn); it can be well approximated (see e.g [7, 49]) by the random

variable B )
T(W,) = > > KZ;,
JE€EIn keEN

and we have drv(Pz(w,), Pf(wn)) < 2h,u(W,,). Moreover, it appears in [49] that for

any j € J,, Z§.’“’ is a Bernoulli-distributed random variable with mean
pe = (1 — )2 (W) (5.13)

where «a can be written with respect to the principal periods of W,,. An explicit expression
of a in the case of a first-order Markov chain is provided in [51], section 3. This last
point suggests to approximate T(W,,) by T(W,,). Let us introduce the marked binomial
functional

H, = Z VAN, (5.14)

JE€ETn

where (V;);en is a sequence of i.i.d. random variables with geometric distribution V
with parameter (1 — ) and « appears in (5.13). In fact, (1 — a)a*~! is the probability
that the word W,, overlaps exactly k£ times after having occurred at position j. The
sequence (V;);cw is also supposed to be independent of the increments (AN;);c 7, of
the binomial process N with intensity (1 — a)u(W,,) so that PC(\,,V) is exactly the
Pélya-Aeppli distribution with parameters (A, «) where A, = (n — h,, + 1)(1 — @) u(Wy,).
Some computations highlight that T(W,,) and H,, are identically distributed, so that
drv(Pz(wy, ), Pu,) = 0. The quantity drv (Pu,,P€(\,, V)) has yet to be controlled using
Theorem 5.2, that results in the following bound.

Proposition 5.6. Let A\, = (n — h,, + 1)(1 — @)u(W,,). Then,

drv (Psw,): PC(An, V) < drv(Pgw,), Pza,)) +drv(Pzay, ), Pu,)
+ drv(Pw,, PC(A,, V))
< 2k (W) + (1 — by + 1)0pep(Wn)?.

The convergence occurs since the assumption on the order of the length A, (in logn)
entails that nu(W,,) = O(1) (see e.g. [51]). We retrieve the rate of convergence of
this approximation in log n/n, without the additional assumptions made on the size of
the “neighbourhood of dependence” as in [51] or on the order of the magnitude of the
maximal overlap as in [26].
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Proof of Proposition 5.6. Consider the random variable H, = > .. ; V;ANj, as defined

by (5.14). Since H,, belongs to Hi, then LH, = H, so that Difl(Hn — E[H,]) =

DTL-'(H, — E[H,]) = DTH,. Moreover for any (k) € J, x N, D?;yk)Hn = k and

ﬁ(t,k)Hn = (k — £)1{(t,0)=1 P-almost surely. Then the second term in (5.8) vanishes and
we must still control

| [ KBLA () + i) — o) + D], )|

On the other hand, by denoting H,,* = 3" 7o VAN,

|E [¢a(b(mt () +01.r))) — ¥a(B(n) + F)]|
Z E [(?/JA(U(W:&(U) + k) — a(b(n) + k‘)) 1{7;(:&,@):1}] ‘

LeN

—| SB[ (0 (0 + 60)) = 0 () + 60) + ) o
LeN

< IVealloe Y B|[H +k = (B + k+0)[Lp0.0-1

LeN

= IV¥alloo D n(Wi)(1 = @)*a’ ™" = [|V4a | ocp(Wo).-
LeN

Then,
| FR AL n)+ Ga0)) = daln) + 4] dv(t. )] < (0= o (W)

This provides a bound for dpv(Py, , PC(A,, V)) and the conclusion follows by using the
triangular inequality together with the previous bounds. O

6 Application 2: optimal hedging in the trinomial model

Trinomial model In a filtered probability space (%1, A% (F8), .4 P'), we consider a
simple financial market modelled by two assets, i.e., a couple of R, -valued processes
(AP S, cp, and T = Z, N [0,T] (T € N) is called the trading interval. Denote also
T* =T\ {0}. The riskless asset (A"!);cr, deterministic, is defined by A% = ay(1 +7)*
(t € T) for r € R*; wl.o.g. we take ap = 1 and r < 1. The stock price (S{"!);cr which
models the risky asset is the F-adapted process such that S§' = 1 and for t € T*,

ASIT = girigiri (6.1)

where 0" = blixmiogy + alyxmio gy + rlixui_gy and the real numbers a,r, b satisfy
—1<a<0<r<b. The family {X!", ¢t € T*} consists of i.i.d. {—1,0, 1}-valued random
variables such that P({X{" = k}) =: p{ri for all k € {—1,0,1}.

6.1 A surrogate model: the jump-binomial model

Let us replace the trinomial model by a more computationally amenable one called
Jjump-binomial model (J-Bi) and that is based on a MBP. In (Q, A, (F;):e1, P), let us define
the riskless asset (A;)icpo,r] by Ao = 1 and Ay = Ag(1 + )" for all ¢ € [1,T]. The stock
price is the F-adapted process (St)te[[o,T]] with (deterministic) initial value So = 1 that
satisfies for any ¢ € [1,T],

AS; = 60,81, (6.2)
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with 0y := r1{y(t,)=0) + 01 {n(t,1)=1} + 0y, -1)=1)-

There exists a correspondence between the classical trinomial model and our jump-
binomial model: the role played by the random variables X! in the classical trinomial
model is held here (in the jump-binomial model) by the i.i.d random variables AY; :=
n(t,1) —n(t,—1). This correspondence can be informally illustrated through the following
figures.

Trinomial model Jump-binomial model (2, A, (J});cq0,77. P, S)

S = (1 + J])Stfl

1

Syt = (14 b)SiT, !

4 <
. Xt =0 . . B £ =0
Sty T S = (LS Si1 M) g = (1418
i Il -
St = (1 4+ a)St, t‘_ -
St = (1 + (L)St,1
Xirie {-1,0,1} AY: =n(t, 1) —n(¢,—1) € {-1,0,1}

Figure 2: Trinomial model VS Jump-binomial model

Equivalence in law of the ratios By setting Sy = S, A = p"} +pi™ > 0 and p = p{i/),
we get for all s € R,

E[sst/st‘l} = E[slﬂﬂ =511 =N+ s Ap + 51N — p) = Eps {ssyi/szr—il]. (6.3)

All the results that can be stated in the jump-binomial models can be retrieved in the
trinomial model defined by (6.1) by virtue of the identity (6.3) and the correspondence
(see Figure 2) between the two models. The introduction of the jump-binomial model has
been in fact motivated by the following remark. A Karatzas-Ocone-type hedging formula
for replicable claims in the trinomial model (underlying by a sequence of {—1, 0, 1}-valued
i.i.d. variables) can not be derived from the Clark-Ocone formula stated in [15] (Theorem
3.3.) because of the F;-measurability of the term D, E[F|F;]. On the contrary, the Clark
formula (4.3) for MBP writes as a stochastic integral with a predictable integrand, from
which we will obtain the replication strategy.

Incompleteness As explained in [50], the trinomial model stands for an incomplete
market; so does the jump-binomial model. Adapting their arguments in our context, we
can show that the set of probability measures M equivalent to P and with respect to
which (S;)ser is a (M, F)-martingale coincides with the interior of a convex polyhedron
with 27" vertices.

Prospects The jump-binomial model can advantageously replace the trinomial for other
purposes such that utility maximization problems. In [27], the author recently obtained
explicit expressions of the optimal expected (logarithmic, exponential and power) utility
of an insider whose level of information is given by an initially enlarged filtration.

6.2 Loss minimizing hedging in the trinomial/jump-binomial model

Portfolio management in incomplete markets The value of the portfolio at ¢t € T is

Vi = Ay + ¢ Sy,
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where (a4, ¢1)teT is a couple of F-predictable processes modelling respectively the
amounts of riskless and risky assets held in the portfolio. Its discounted value is
V: := V;/A;. We aim at proving a hedging formula; That is, given a nonnegative Fr-
measurable random variable F (called claim), to find an admissible strategy ¢ = («, )
that is self-financing, i.e., such that

At (Oét+1 — Oét) + St (Wt-{-l — (Pt) =0 ; forte T \ {71}7 (64)

and whose corresponding portfolio value satisfies Vo > 0, V; > 0forallt € T\ {T},
and Vr = F. In an incomplete market, there is no systematic hedging formula, since
all claims are not attainable: They have an intrinsic risk (see [52]) so that one aims at
reducing the a priori risk to this minimal component (see [24, 52, 54]). The question of
hedging in an incomplete market has been widely investigated for years (e.g. in [14, 23]
in continuous time, in [54] in discrete time). As the jump-binomial model is incomplete,
we study the optimization problem in return:

nE[F-z-V 7, 6.5
min B[(F - o — Vr(1))’] (6.5)
where the claim I and the initial capital + € R} are given, and S is the set of F-

predictable admissible strategies. The mean-variance tradeoff process (K;):ecp+ (defined
in [54], (0.2)) is given for any t € T* by

_ <~ (B[AS, %, 4])°
K= Z var[AS, | Fo_1]

s=1

We also introduce the discrete analogue of the minimal martingale measure (see [23]),
i.e., the signed measure P defined on (2, %) such that

AP 1+ 1-6,AS,

dP 111 9,E[AS,|Fy]’

(6.6)

where (6;);c1- is the F-predictable process such that 6, = E[AS; | F;_1|/E[(AS;)? | F¢—1],
for t € T*. Last, consider the Kunita-Watanabe decomposition of F (see e.g. [34, 54]),
i.e., the unique couple of processes (¢F, LY) where ¢F is a square-integrable admissible
strategy and LF is a F-martingale, strongly orthogonal to S, with null initial value and
such that
F=Fo+ Y &AS, +L5; P-as.
teT*
An expression of the quadratic-loss minimizing strategy is given in [53] (Proposition 4.3).

Theorem 6.1 (Schweizer, 1992). Provided (K;):c7~ is deterministic, the solution of (6.5)
is given by 7
E[AS, |5, 4]

W(E[F\%] — 2= Vi1(p")) (6.7)

o =& +

where E denotes the expectation with respect to the measure f’, i.e., the minimal
martingale measure defined by (6.6).

If the claim F is attainable, then ¢* = ¢F. The term ¢F in (6.7) can be interpreted as
a pure hedging demand, and the second one as a demand for mean-variance purposes
(see [53]).

Loss minimizing hedging in jump-binomial model We can now solve (6.5) in (J-Bi).

Lemma 6.2. The mean-variance tradeoff process of the ternary model is deterministic.
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Proof. For any t € T*,

(E [Agt | Sttfl} )2 _ (E [atANt — r|F1])? _ (A(bp + aq) — r)?
var[AS; | Fs_1] var[0; ANy — r|Fy_1] Ap(1 — Ap)b? + a?Xq(1 — A\q)’
is a deterministic constant. Hence the result. O

Letting p := Ag¢/(1 — Ap), the family R provided by Gram-Schmidt process (3.2) is
such that

2

AR(tJ) = AZ(t,l) and AR(t7_1) = Az(t,—l) + m

ARy = AZg, 1) + pAZg -

Lemma 6.3 (Kunita-Watanabe decomposition in the jump-binomial model). For any claim
F € L2(P) there exist a square-integrable admissible strategy ¢* and a F-martingale LF,
strongly orthogonal to S, with null initial value such that

F=Fo+ Y &AS, +LE; P-as.

teT>
Moreover, for any t € T*,
1 ~ _ _
Fo_ (ZwtykE[D(tﬁk)Fﬁt,l]) and LF = E[F— 3 €FAS, 33] —E[F— 3 ngsS}
St—1 kEE s€T* seT*
(6.8)
where E[L{] = 0, the sequence w = (wy ;) (t,x)ex is defined by
o (b—ap)ky T aK_1
ST b= ap)?ey + a2k 0T (b—ap)PRy + ar_y
The minimal martingale measure P, equivalent to P can be explicitly given by
dP 1—-6,AS
= e25 (6.9)

dP T 1-— GtE[A§t|&'}_1}7
with fort € T*,

Si_1(\(bp +aq) — ) _ Abp+aq) —r

0 = = == :
Sffl()\Q(pr +a2q) + 12 = 2X(bp+aq))  St—1((b —ap)?k1 + a®k_1)

Proof. From the proof of Lemma 2.7 in [54], £’ can be simply written

E [AE[F\&Q}AE;%_@

= — ; te T .
b E[(AS)? | T ] <

The application of the Clark decomposition to E[F|F,] — E[F|F,_,] yields
ZkeE E {E [D(t,k)F|3~t—l] AR(t,k)gt—l ((b — ap)AR(t,l) + aAR(t’,l)) ‘ fft_l}
E[(ASy)? | Fe—1]

Zut,kE[D(t,k)F|§t71]7
keE

& =
_ 1

Si—1v¢

where we have used that E[AR; /) AR,1)|F:—1] = 0 for £ # k due to the independence
of AR(t,A) and F;_; and the orthogonality of the family R. The sequence v = (v;)eT=
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is defined by v; = A\2(b%p + a%q) + 72 — 2\(bp + aq) = (b — ap)?k; + a®k_1, by using that
bAZ 1) +alZ 1y = (b—ap)AR,1) +aARy,—1y. The sequence u = (u k) (t,x)ex i given
by

w1 = (b—ap)kr and w,_1 =ak_q.

Last, let wy ; = w1 /v, for (¢, k) € X. The proof is complete. O

The two previous lemmas directly lead to the main result of the section.

Theorem 6.4 (Loss quadratic minimizing strategy). Let P be the minimal martingale
measure defined by (6.9) and let a claim F. The quadratic loss minimizing hedge p* is
given by

or =& +9t( [F|F:] — 2 — Vi_1(e")),

where for any t € T*, £§ is given by The Kunita-Watanabe decomposition (6.8). Moreover,
the quota of the riskless asset (A;)ier is given by ag = E[F|/Sy and for any t € T*,

Qp = 01 — (SDt - (Pt—l)gt—l-

Proof. Since the mean-variance process is deterministic by Lemma 6.2, it is enough to
incorporate the result of Lemma 6.3 into Theorem 6.1. The process (a4):cr is defined by
the self-financing condition (6.4). O

The expression (6.8) of £F that is the replication strategy if F is attainable, reminds
that obtained in the binomial model (see [46], Proposition 1.14.4) or in generalized
discrete-time complete market models that can be constructed from an obtuse random
walk as in [25].

A Technical results

Proof of Proposition 3.10. We will use the following result (whose proof is similar to [46],
Proposition 6.2.5): for g € L?(v) and f,, € L?(v°"),

Jn+1(9 o f’n) =n Z Jn(fn(*a (t’k)) ( )1[t 1] "( ))AR(t k)

(t,k)eX

+ Z n(falj—17) AR k), (A1)
(t,k)exX

where o denotes the symmetric tensor product and satisfies for (t,,k,) € X",
n+1

gofn(tn+1akn+1 Zg ti, ki fﬁl(tmk )

For any T' € IN,t € [T — 1] define

T :1+Z—J A& 1),

n=1
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where we assume w.l.o.g. that E[¢]] = 1. Let T be such that T > ¢. Then,

t
LYY his k)G ARy

s=1keE

=1+ Z > h(s, k) AR ) + Z —Jn+1(h®”+11[ jnt1)

s=1keE

—ZZH.ZJ (h®" (%, (5, K)) 0 h(-)Tja_pjn (%) AR g

n=1kecE s=1

T
1 n n n
=1+ J1(h1[t]) + Z aJn+1(h® +11[t]n+1) - Z 1)!Jn+1(h® +11[t]n+1)

n=1 n=1
T+1
=1+ Ji(h1y +Z—J (h®" 10 ) = ¢,

where we used (A.1) in the second line and (3.7) in the penultimate one. Since by (3.16),
forall t € IN, ¢! tends to & (h) P-almost surely when T' goes to infinity, we get

=1+ ( S hs, k)AR(S,k))gs_l(h).

s=1 keE
Besides, the sequence (§;(h));>1 satisfies the equation in differences
§e(h) —&—1(h) = &—1(h) Z gt k) (L m=13 — 2\Q{K})),
k€E

where J;(h) = J1(g; Z). Provided the product converges, define the sequence of expo-
nential products (7 (g)):>1 - that stand for the Doléans exponentials with respect to Z -
by

& (h) = ftz(g)
=TT (1 + X 9ls ) (Lpneem=ty = XQUED) ) =1+ D" (3 k(s H) AR 1) ) €21 (9).
s=1 kek s=1 keE

By uniqueness of the decomposition, provided the series and product converge, ¢Z(g)
&i(h) for any t € IN. This leads to the conclusion.

m

Proof of Lemma 4.2. It is enough to state the result for F = £(h), with h € L2(v).

By (3.17),
§h) =EEMT+ > > [ hsi6) AR, 0.

m€eN JCIN ieJ
[I=m

It follows from (4.1) that for any (t,,k,) € X" and any set {(s;, (), i € J,|J| = m} with
m > n, there exists ig € J such that (s;,,4;,) ¢ (t.,k,). Then, by independence of the
ZXR{m),

E[D(tmk /(T ntsine AR(M))]

ieJ
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ZE[AR(%AOJ [DEQ k) ( [T 7sit)ARG,., >)] =0.
i€3\{io}

For (¢, k) € X let t(; 1) be the representative of AR, ). With a similar argument we prove
the same result for any set {(s;,¢;), i € J,|J| = n} different from (t,,k,) so that the
expectation does not vanish if and only if {(s;,4;), i € J, |[J| = n} = (tn, kn) = {(ti, ki), i €
[n]}. In that case,

E[ > L=l e ( 11 h(ti, ki)ARm,mﬂ
i€

JCN
= E[ Z 15—y ( H h(ti, ki) AR, ) (T, ) (1) + Ot 1))

JCIN ieJ
Tt k) ARG, ) (me i () )
ie€J
= > L= [T (i ki) —”'Hh ti.ki) =B[DE)  F].
JCIN ieJ

Besides, using the alternative characterization of F = £(h), and the orthogonality of the
centered variables AR,

E [F 11 %AR(ti,ki)} — B[Ble(h) H ;AR(M)]
i=1 ¢ . i
+E[H (143 s,k AR(sm)H ARG k)]

seN keE
_ E[H (143 hti ) ARG, 1) MAR(M)] - H hits, k).
1=1 keE =1
The result is extended to L2(P) by denseness of the Doléans exponential family. O

Proof of Lemma 4.3. It is enough to state the equality for F = £(f), G = £(g) where

f,g € L?(v) and such that E[F] = E[G] = 1. On the one hand, there exists 7' € IN such
that

E[FC] - -1 11 E[(l + 3 F(E k) ARG ) (1 +Zg(s,€)AR(s’e))} —1

te[T] se[T] kEE LeE
- 11 (Hanf(t, R)g(t, k)) -1
te[T] keE
= > S TT( meftamatts ) = 50 3 TI0 - 005, Desceen
ne(T] JC]N7EJ keE nE[T]JCT]]EJ

7= 131=
On the other hand, for any n € [T] and I,, C [T] of cardinality n,
D{E) = [T £(th) { I (1+ S remaren)| =TT sk
Jjel, te[T)\{t;,j€l} keE JjEl,
Then, by denoting by I the ordered sets I,, with respect to the jump times ¢;,
1 n n
> E<E[D( F], ED™G) e xmen = Y. [T ), 90t Drecc,men-

nelT] n€[T] I35 C[T] j€I

|15y |=n

The result is extended to L?(P) by denseness of the class of Doléans exponentials. [
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B Bounds based on contractions and application

Frame : Simple binomial process In this part, assume that E = {1}. Then, X can
be identified to N and v(A) = MA| for A € P(IN). We have L?(P) = & H, where

neZy
Ho = {Jn(fn); fn € L2(r°")} and

Jn(fn) = Z fn(tl, .. ,tn) H AZti with AZti = 1{77(151'):1} - A

t, N < i=1

Star contractions Let k, ¢ € IN. For symmetric functions f € L?(v°F) and g € L%(v°9),
the contraction kernel on IN*+9-"=* and denoted f «% g is defined by

f*f‘ g(yeaz’r7£7tk7’r‘7sq7’l") = /Z f(YA ZT*Z7tk7T) X g(yf; z’l"ff7 Squ)dye(yZ) (Bl)
N
where (YZyzr—E;tk—ra Sq—r) = (yl» e Yoy 21, Zr—ty b1y ety ST, Sq—r)-

A general bound in terms of contractions Consider a random variable F = E[F] +
o Jn(fn) = E[F]+ > | F, for some m € IN. Using the same approach as in [29] we

can show that
\/EUvar[F]—/]N]StF(—DtL—lF)dy(t)’Q]

<X EUvar[Fi]—/N]StFi(—DtL—lFi)dy(t)’Q]

1€[my]

+ Y EU/NﬁtFi(DtLle)du(t)H.

(4,3)€lmn]”

Adapting the result of Proposition 5.5 in [44], for any i, j € [m] (i < j) we can prove the
existence of constants c;, ¢;; such that

~ 2
E ‘Var[Fi]—/ DtFi(—DtL_lFi)du(t)‘ <o max fixl filleeer),
N (r,0)€[i] X [rAi—1]

and

~ 2
E’ D,F;(=D,L"'F,)d t‘ <o ikl Fillpeyiss e
| [ Brpaman] | <o a1 e

Then, there exists a constant ¢ depending on the ¢;’s and the ¢;;’s such that

\/E Uvar[F] - /]N D,F(~D,L-1F)dw(t) (2]

1]||fz' . filliz ai-r—o)

< c[ max
(i,m,8) E[myp] X [i] X [rAi—

V4 o :| . * *
max i %, [ yiti—r—ey| = ¢(m] +m5). (B.2)
(i,j,r,e)e[mn]x[[z'+1,mn]1x[¢]x[r]||f Fillaqes ) (m :)

Application to head run problem (section 5.1)

Proof of Lemma 5.5. The proof is based on the following decomposition.
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Lemma B.1. The chaos decomposition of U,, writes

=E[U,] + i Ti(ur)
k=1

where for any k € [my], tp = (t1,...,t) € [n — 1]<,

e t) = [pn —kﬂl[m (1m0 — )~ )L (st oy

k
=1 —tp|<ma )P k+1H1[n1](tj):|'

Proof. As D,Ey S) = D(Z) we can assume that the ¢, are ordered. Let us proceed by induction
onk. Fork =1, follows from (5.10) and (4.2) that

ur(t) = E[D:Up] = 1p, 1 (O)pi» " + (1= po)pii~ (min(my, t) — 1) = Ly (t)pi

Assume that there exists k € [m,,] such that

k—1 My t1—1 My,
DG Un =] 1) [T aNe+ 30 a-any ] ang,
Jj=1 =1 ’igtk_l i:max(tk_lfmn,l) Zzl,i+£¢tk_1

- H Lty 4m ) (£5) L -1 (¢ H ANE o

Since we have assumed that ¢, > t;_; the latter equation still holds at rank & by replacing
whenever necessary k — 1 by k. We deduce from Stroock’s formula that

EDMU,
uk(tk) = [ ];’ ]
17k t1—1
= H |: 1[7nn](tj)p1]2 + Z (1 *pn H 1[n 1 1[t1+'mn]( ) ?n:|
=1 i=max(ty —muy,1)
17k
= | I it
j=1
+ min(t; — tg + My, t1)(1 — pr)p Hl[n () Lty 4 (E )pZ‘"],
which achieves the proof. O

Let us go back to the proof of Lemma 5.5. Assume first for any &, ¢ < m,, such that ¢ >

p there exists one element in (ye,ZT Gt Sqmr)= (Y15« -, Ye, 21, Zr—s 1, o s Ehep, ST, - - - 5
sq—r) larger than m,. Let ¥* := max; ;; (vi,zj,t), y, = ming (Yi, 2j,81), ¥° =
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max; ;1 (Ys, 25, 5) and y, = min; ;; (ys, 25, 81). We can show that:
¢
U, % uq(zrffa tp—r, Sqfr)

1 . _ o e .
= Fiar 2 min(y, — ¥,y ) min(y, =57+ ma,y ) (L= pa) P T 4 o(pre )
T oye

1 . _ ke _
~ kg >y, -V A ma)(y, =V ma) (1= pn)’pimeETI 4 o(pm et
Ty /<y, +my
ys<1:+tm"

My —1 N 2
1 )
< 1— " 2, 2m, —k—q+/{
T!q!( Pn)Ph ;:e o)

where the set y,/y* < y,,¥° < y_ consists of all {-tuple of [n — 1]%7 such that, for
v = (y1,--.,ye), max; y; —min; y; is less than or equal to m,, —1 and larger than ¢. Assume
now that for any k,q < m,, ¢ > k all elements in (y¢, z,_¢, tx—r,Ss—r) are less than or
equal to m,,. Then,

1 e _
iy g (T b Sqr) = i D Yy (L=pa) P o(p )

P yeema)t#
2
1 /m ke _
2 (™Y 0 e gy

We can see that the closer k£ and ¢ are to m,, (whatever ¢ < k), the smaller uy *f Ug.

Moreover, if ¢ is close to zero, uy *fi uq is even smaller. Then using (B.2) together with
the previous remark, we have

~ 2
\/Eﬂvar[F] —/ DtF(—DthlF)dy(t)‘ } < ¢(m} +mj)
N
< cup + uy <m2(1 —pp)?p2me =t 4 o(p2mn).

where ¢ is a generic constant that may change from one line to another. Hence the
result. O
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