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The permuton limit of strong-Baxter and semi-Baxter
permutations is the skew Brownian permuton

Jacopo Borga*

Abstract

The skew Brownian permuton is a new universal family of random permutons, depend-
ing on two parameters, which should describe the permuton limit of several models of
pattern-avoiding permutations. For some specific choices of the parameters, the skew
Brownian permuton coincides with some previously studied permutons: the biased
Brownian separable permuton and the Baxter permuton. The latter two permutons
are degenerate cases of the skew Brownian permuton.

In the present paper we prove the first convergence result towards a non-degenerate
skew Brownian permuton. Specifically, we prove that strong-Baxter permutations
converge in the permuton sense to the skew Brownian permuton for a non-degenerate
choice of the two parameters. In order to do that, we develop a robust technique
to prove convergence towards the skew Brownian permuton for various families of
random constrained permutations. This technique relies on generating trees for
permutations, allowing an encoding of permutations with multi-dimensional walks in
cones. We apply this technique also to semi-Baxter permutations.
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1 Introduction

Permutons are Borel probability measures on the unit square [0, 1]2 with uniform
marginals and are the natural scaling limits of sequences of permutations. The skew
Brownian permuton is a new family of random permutons, recently introduced in [7],
describing the limit of various models of random constrained permutations, such as
uniform separable permutations [2], uniform permutations in substitution-closed classes
[1] and uniform Baxter permutations [11]. As noticed in [7] (and also recalled later in
this paper), for all these models, the permuton limit is a degenerate version of the skew
Brownian permuton.
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The permuton limit of strong-Baxter and semi-Baxter permutations

Figure 1: Simulations of the objects investigated in the present work. Left: The
diagrams of two uniform strong-Baxter permutations of size 17577 and 27574. Right:
The diagrams of two uniform semi-Baxter permutations of size 823 and 800.

In the present paper, we show that there are natural models of random constrained
permutations converging to the non-degenerate skew Brownian permuton. To do that, we
study the permuton limit of strong-Baxter permutations and semi-Baxter permutations.

This paper might be thought as a companion paper of [7], but we tried to make the
present work as much self-contained as we can. Nevertheless, we do not recall here all
the motivations that justify the interest in studying the skew Brownian permuton and we
refer the curious reader to [7, Section 1.1], where also a quick introduction to permuton
convergence is provided. For a complete introduction to the theory of permutons, as
well as bibliographic pointers, we refer to [6, Section 2.1].

In the next sections, we first recall the construction of the skew Brownian permuton
(see Section 1.1) and then we further motivate the interest in studying the permuton
limit of strong-Baxter permutations and semi-Baxter permutations (see Section 1.2).

1.1 The skew Brownian permuton

We recall the construction of the skew Brownian permuton following [7].

We start by recalling that a two-dimensional Brownian motion of correlation ρ ∈
[−1, 1], denoted1 (Wρ(t))t∈R≥0

= (X ρ(t),Yρ(t)))t∈R≥0
, is a continuous two-dimensional

Gaussian process such that the components X ρ and Yρ are standard one-dimensional
Brownian motions, and Cov(X ρ(t),Yρ(s)) = ρ · min{t, s}. We also recall that a two-
dimensional Brownian excursion (Eρ(t))t∈[0,1] of correlation2 ρ ∈ (−1, 1] in the non-
negative quadrant (here simply called a two-dimensional Brownian excursion of corre-
lation ρ) is a two-dimensional Brownian motion of correlation ρ conditioned to stay in
the non-negative quadrant R2

≥0 and to end at the origin, i.e. Eρ(1) = (0, 0). The latter
process was formally constructed in various works (see for instance [24, Section 3] and
[17]).

Let (Eρ(t))t∈[0,1] be a two-dimensional Brownian excursion of correlation ρ ∈ (−1, 1]

and let q ∈ [0, 1] be a further parameter. Consider the solutions (which exist and are
unique in the strong sense when ρ 6= 1 thanks to [7, Theorem 1.7], and exist in the weak
sense when ρ = 1 thanks to [7, Proposition 1.9]; see Remark 1.3 for further details) of
the following family of stochastic differential equations (SDEs) indexed by u ∈ [0, 1] and

1Here and throughout the paper we denote random quantities using bold characters.
2We remark that we do not include the case ρ = −1 in the definition of the two-dimensional Brownian

excursion. Indeed, when ρ = −1 it is not meaningful to condition a two-dimensional Brownian motion of
correlation ρ = −1 to stay in the non-negative quadrant.
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The permuton limit of strong-Baxter and semi-Baxter permutations

driven by Eρ = (X ρ,Yρ):{
dZ(u)

ρ,q (t) = 1{Z(u)
ρ,q(t)>0} dYρ(t)− 1{Z(u)

ρ,q(t)<0} dX ρ(t) + (2q − 1) · dLZ(u)
ρ,q (t), t ∈ (u, 1),

Z(u)
ρ,q (t) = 0, t ∈ [0, u],

(1.1)
where LZ(u)

ρ,q (t) is the symmetric local-time process at zero of Z(u)
ρ,q , i.e.

LZ(u)
ρ,q (t) = lim

ε→0

1

2ε

∫ t

0

1{Z(u)
ρ,q(s)∈[−ε,ε]}

ds.

Definition 1.1. We call continuous coalescent-walk process driven by (Eρ, q) the collec-

tion of stochastic processes
{
Z(u)
ρ,q

}
u∈[0,1]

.

We also consider the following stochastic process defined in terms of
{
Z(u)
ρ,q

}
u∈[0,1]

:

ϕZρ,q
(t) := Leb

({
x ∈ [0, t)|Z(x)

ρ,q(t) < 0
}
∪
{
x ∈ [t, 1]|Z(t)

ρ,q(x) ≥ 0
})

, t ∈ [0, 1]. (1.2)

Definition 1.2. Fix ρ ∈ (−1, 1] and q ∈ [0, 1]. The skew Brownian permuton of param-
eters ρ, q, denoted µρ,q, is the push-forward of the Lebesgue measure on [0, 1] via the
mapping (Id, ϕZρ,q

), that is

µρ,q(·) := (Id, ϕZρ,q
)∗ Leb(·) = Leb

(
{t ∈ [0, 1]|(t, ϕZρ,q

(t)) ∈ · }
)
. (1.3)

In [7, Theorem 1.11] it was proved that the skew Brownian permuton µρ,q is well-
defined for all (ρ, q) ∈ (−1, 1]× [0, 1].

Remark 1.3. We point out that the continuous coalescent-walk process
{
Z(u)
ρ,q

}
u∈[0,1]

in (1.1) is defined in the following sense: for almost every ω, Z(u)
ρ,q is a solution for almost

every u ∈ [0, 1].
We also recall that in order to define the skew Brownian permuton µ1,q there are

some additional technical difficulties due to the fact that the SDEs in (1.1) when ρ = 1

do not admit strong solutions. See [7, Section 1.4.2] for further details. We however
note that such details are not needed in the present paper.

1.2 Motivations and statements of the main results

We start by recalling that the Baxter permuton, introduced in [11] as the permuton
limit of uniform Baxter permutations, coincides with the skew Brownian permuton of
parameters ρ = −1/2 and q = 1/2. Therefore the corresponding SDEs in (1.1) take the
simplified form{

dZ(u)(t) = 1{Z(u)(t)>0} dYρ(t)− 1{Z(u)(t)<0} dX ρ(t), t ∈ (u, 1),

Z(u)(t) = 0, t ∈ [0, u].
(1.4)

We also recall that the biased Brownian separable permuton {µSp }p∈[0,1], introduced in
[1] as the permuton limit of uniform permutations in substitution-closed classes (see also
[8]), is a one-parameter family of random permutons that can be constructed (see [23])
from a one-dimensional Brownian excursion and a parameter p ∈ [0, 1]. In [7, Theorem
1.12], we proved that for all p ∈ [0, 1], the biased Brownian separable permuton µSp has
the same distribution as the skew Brownian permuton µ1,1−p.

Note that when ρ = 1 and q = 1− p, the SDEs in (1.1) take another simplified form.
We denote by (e(t))t∈[0,1] a one-dimensional Brownian excursion on [0, 1] and note that
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X ρ(t) = Yρ(t) = e(t) when ρ = 1. We also set sgn(x) := 1{x>0} − 1{x≤0}. Then the SDEs
in (1.1) rewrite asdZ

(u)
1,1−p(t) = sgn

(
Z(u)

1,1−p(t)
)
de(t) + (1− 2p) · dLZ(u)

1,1−p(t), t ∈ (u, 1),

Z(u)
1,1−p(t) = 0, t ∈ [0, u].

(1.5)

The unsatisfactory feature of the various instances of skew Brownian permutons
above is that either ρ = 1 or q = 1/2, and in both cases the SDEs in (1.1) take a simplified
form: either the driving process is a one-dimensional Brownian excursion (see (1.5)) or
the local time term in (1.1) cancels (see (1.4)). As mentioned before, the main goal of
this paper is to show that uniform strong-Baxter permutations converge in the permuton
sense to the skew Brownian permuton for a non-trivial choice of the two parameters
ρ and q. This will give a new evidence that the skew Brownian permuton is a natural
family of limiting random permutons for random constrained permutations3. We start by
defining strong-Baxter permutations.

Definition 1.4. Strong-Baxter permutations are permutations avoiding the three vincu-
lar patterns 2 41 3, 3 14 2 and 3 41 2, i.e. permutations σ such that there are no indices 1 ≤
i < j < k− 1 < n such that σ(j + 1) < σ(i) < σ(k) < σ(j) or σ(j) < σ(k) < σ(i) < σ(j + 1)

or σ(j + 1) < σ(k) < σ(i) < σ(j).

Strong-Baxter permutations were introduced in [13] as a natural generalization of
Baxter permutations. The main result in the current paper is the following one.

Theorem 1.5. Let σn be a uniform strong-Baxter permutation of size n. The following
convergence in distribution in the permuton sense holds:

µσn
d−→ µρ,q, (1.6)

where ρ ≈ −0.2151 is the unique real solution of the polynomial

1 + 6ρ+ 8ρ2 + 8ρ3, (1.7)

and q ≈ 0.3008 is the unique real solution of the polynomial

− 1 + 6q − 11q2 + 7q3. (1.8)

As mentioned in the abstract, the techniques developed to prove Theorem 1.5 are
quite robust (see Section 1.3 for further details). We apply them also to the case of
semi-Baxter permutations.

Definition 1.6. Semi-Baxter permutations are permutations avoiding the vincular pat-
tern 2 41 3, i.e. permutations σ such that there are no indices 1 ≤ i < j < k − 1 < n such
that σ(j + 1) < σ(i) < σ(k) < σ(j).

We have the following second result.

Theorem 1.7. Let σn be a uniform semi-Baxter permutation of size n. The following
convergence in distribution in the permuton sense holds:

µσn
d−→ µρ,q, (1.9)

where

ρ = −1 +
√

5

4
≈ −0.8090 and q =

1

2
. (1.10)

In the next section we explain the techniques used to prove Theorems 1.5 and 1.7.
Doing that, we will also explain the organization of the remaining sections of the paper.

3We remark that in [7, Theorem 1.17] we showed that the skew Brownian permuton arise also from SLE-
decorated Liouville quantum spheres. This result give an orthogonal motivation (compared to the ones coming
from the study of random constrained permutations) for studying the skew Brownian permuton. See [9, 10] for
recent progress in this direction.
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1.3 Outline of the strategy for the proofs and generality of our techniques

Despite the strategies to prove Theorems 1.5 and 1.7 are quite involved, in this
section we try to give a brief idea of the main steps in these proofs. In addition we
highlight the substantial differences with the proofs in [11], where convergence in the
permuton sense of Baxter permutations is established.

We start by briefly recalling how we proved in [11] that the scaling limit of Baxter
permutations is the skew Brownian permuton µ−1/2,1/2. The starting point consisted in
using two bijections already available in the literature, one between Baxter permutations
and bipolar orientations [4] and a second one between bipolar orientations and a family
of two-dimensional random walks in the non-negative quadrant, called tandem walks [20].
Composing these two bijections, we obtained a bijection between Baxter permutations
and tandem walks.

To prove the convergence towards the skew Brownian permuton µ−1/2,1/2, we first
studied the scaling limit of the random discrete coalescent-walk process associated
with a random tandem walk and we showed that it converges in law to the continuous
random coalescent-walk process encoded by the SDEs in (1.4). This discrete coalescent-
walk process is defined from the tandem walk in a manner similar to (1.4), but in the
discrete setting (see Section 2.2 for a proper definition of discrete coalescent-walk
processes). For the moment, the reader can simply think of this discrete coalescent-walk
process as a collection of discrete one-dimensional walks driven by the increments of
the corresponding tandem walk.

The last step in the proof was to transfer this coalescent-walk process convergence
result to Baxter permutations using the bijection with tandem walks mentioned above.

We can now explain the techniques used in this paper to prove Theorems 1.5 and 1.7.
The first main difference between Baxter permutations and semi/strong-Baxter permuta-
tions is that bijections between the latter families of permutations and some families of
walks are not available in the literature (as it was the case for Baxter permutations). Our
first contribution in this paper is the following one: in Sections 2 and 3 we develop a
general technique to encode families of permutations enumerated using generating trees
with two-dimensional labels (see Section 2.1 for an introduction to generating trees) first
by some families of two-dimensional random walks4 and then by some specific discrete
coalescent-walk processes. Our main combinatorial results are proved in Theorem 3.10 –
for strong-Baxter permutations – and Theorem 5.7 – for semi-Baxter permutations.

Building on these new combinatorial results, in order to prove Theorem 1.5 (resp. The-
orem 1.7), we will show in Section 4 (resp. Section 5.2) that the discrete coalescent-walk
processes for strong-Baxter permutations (resp. semi-Baxter permutations) converge
to the continuous coalescent-walk process introduced in (1.1) for the specific choices
of the parameters stated in Theorem 1.5 (resp. Theorem 1.7). These coalescent-walk
process convergence results rely on proving the following two key results.

• The first step is to show that a uniform two-dimensional walk encoding a uniform
strong-Baxter permutation (resp. semi-Baxter permutation) converges to a two-
dimensional Brownian excursion Eρ in the non-negative quadrant with a specific
correlation parameter ρ. This is proved in Proposition 4.4 (resp. Proposition 5.10).

• The second step is to show that a one-dimensional walk in the discrete coalescent-
walk process associated with a uniform strong-Baxter permutation (resp. semi-
Baxter) converges to the process Z(u)

ρ,q (t) defined by the SDEs in (1.1) driven by the
two-dimensional Brownian excursion Eρ obtained in the previous step and with
parameter q as in Theorem 1.5 (resp. Theorem 1.7). This is proved in Theorem 4.5
(resp. Theorem 5.11).

4This technique builds on another recent work of the author, see [5].
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We now explain why in both of the two key steps above we need to develop some new
strategies of proof (compared to the one used for Baxter permutations in [11]).

• The convergence of uniform tandem walks (the walks encoding Baxter permuta-
tions) towards the two-dimensional Brownian excursion E−1/2 was obtained in [11]
as an application of Donsker’s theorem thanks to a remarkable (but very peculiar)
property of uniform tandem walks (see [11, Proposition 3.2]). Such a property
is not valid for the walks encoding semi/strong-Baxter permutations. Therefore
the convergence of uniform two-dimensional walks encoding uniform semi/strong-
Baxter permutations is less straightforward: we will need to use precise bounds on
some probabilities related with random walks in cones (this bounds are obtained in
Section A building on the results of Denisov and Wachtel [14] and are applied in
the proofs of Propositions 4.4 and 5.10).

• The convergence of a one-dimensional walk in the discrete coalescent-walk process
associated with a uniform Baxter permutation towards the process Z(u)(t) defined
by the SDEs in (1.4) was obtained in [11] using standard techniques: indeed
such walk turns out to be (surprisingly) a simple random walk (as proved in [11,
Proposition 3.3]).

A one-dimensional walk in the discrete coalescent-walk process associated with a
uniform semi-Baxter or strong-Baxter permutation is not a simple random walk.
Therefore proving its convergence towards the process Z(u)

ρ,q (t) defined by the
SDEs in (1.1) is more challenging and will force us to develop some new tools.
For instance, in Proposition 4.6, building on some results of Ngo and Peigné [25],
we prove that an unconditioned version of a one-dimensional walk in the discrete
coalescent-walk process associated with a uniform strong-Baxter permutation con-
verges towards a skew Brownian motion of parameter q, with q as in Theorems 1.5.
This will be the key-step to then prove convergence towards Z(u)

ρ,q (t) in Theorem 4.5.

Also the case of semi-Baxter permutations displays some remarkable phenomena
that are too complicated to explain in this introduction. Therefore, for the moment,
we just refer the reader to Remark 5.13.

We conclude this section with a quick comment on the generality of the techniques
used in this paper and a quick remark on the possible implications of our results on
decorated planar maps.

As we explained above, the starting point to obtain our results in Theorems 1.5
and 1.7 is the possibility to encode permutations with two-dimensional walks. This is
done using generating trees with two-dimensional labels. There are several other families
of permutations that are encoded by generating trees with two-dimensional labels, such
as plane permutations (see [13, Proposition 5]) or some particular subfamilies of Baxter
permutations (see for instance [3, Theorem 16] and [12]). We believe that the techniques
developed in the present paper allow to prove convergence towards the skew Brownian
permuton also for these other families of permutations.

We finally remark that this is the first paper where the parameter q in Theorems 1.5
and 1.7 has been determined without using symmetry arguments. We plan to use this
new method also in a future work on decorated planar maps. Indeed, the parameter q of
the skew Brownian permuton (implicitly) determines the angle between two SLE-curves
decorating a Liouville quantum sphere, as explained in [7, Theorem 1.17, Remark 1.18].
In the planar map literature there are only two models of decorated planar maps where
convergence to SLE-decorated Liouville quantum spheres is proved: random bipolar
orientations converge to a

√
4/3-Liouville quantum sphere decorated with two SLE12-

curves of angle π/2 ([19, 11]) and random Schnyder woods converge to a 1-Liouville
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quantum sphere decorated with two SLE16-curves of angle 2π/3 ([22]). In both cases the
angle was determined by symmetry arguments. We believe5 that the method developed
in the present paper can be applied to some models of decorated planar maps, such as
bipolar posets (see [18]), in order to determine limiting angles that cannot be identified
using symmetry arguments.

1.4 Notation and basic definitions

We denote by Sn the set of permutations of size n and by S the set of permutations of
finite size. Given a permutation σ ∈ Sn, its diagram is the sets of points of the Cartesian
plane at coordinates (i, σ(i))i∈[n].

If x1, . . . , xn is a sequence of distinct numbers, let std(x1, . . . , xn) be the unique
permutation π in Sn that is in the same relative order as x1, . . . , xn, i.e., π(i) < π(j) if
and only if xi < xj . Given a permutation σ ∈ Sn and a subset of indices I ⊆ [n], let
patI(σ) be the permutation induced by (σ(i))i∈I , namely, patI(σ) := std ((σ(i))i∈I). For
example, if σ = 57832164 and I = {2, 4, 7} then pat{2,4,7}(57832164) = std(736) = 312. If
patI(σ) = π, we then call the set of indices I an occurrence of the pattern π in σ.

Given a random variable X and an event A we write (X;A) for the random variable
X1A.

2 Permutations, generating trees, two-dimensional walks, and
coalescent-walk processes

The goal of this section is to introduce the definitions of generating tree and
coalescent-walk process. Then we also recall the construction of two mappings, the first
one defined between permutations and d-dimensional walks (introduced in [5]) and the
second one defined between coalescent-walk processes and permutations (introduced in
[11]).

2.1 Generating trees for permutations

2.1.1 Definitions

We quickly summarize here all the definitions that we need about generating trees. For
a more detailed and complete description we refer to [5, Section 1.5]. We start with the
following preliminary construction and some definitions.

Definition 2.1. For a permutation σ ∈ Sn and an integer m ∈ [n+ 1], let σ∗m denote the
permutation

σ∗m := std(σ(1), . . . , σ(n),m− 1/2). (2.1)

In words, σ∗m is obtained from σ by appending a new final value equal to m and shifting
by +1 all the other values larger than or equal to m.

A family of permutations C grows on the right if for all permutations σ ∈ S such that
σ∗m ∈ C for some m ∈ [|σ|+ 1], it holds that σ ∈ C.
Definition 2.2. The generating tree associated with a family of permutations C that
grows on the right is the infinite rooted tree whose vertices correspond to the permuta-
tions of C (each appearing exactly once in the tree) and such that permutations of size
n are at level n. The c(σ) children of a vertex corresponding to a permutation σ ∈ C
are the c(σ) vertices v1(σ), . . . , vc(σ)(σ) corresponding to the permutations obtained by
appending a new final value to σ.

Definition 2.3. Consider a set S and an S-valued statistic stc(·) on C whose value
determines

5See also the last open problem in [11, Section 1.6] for further explanations.
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• the number of children in the generating tree of C (in the sense that if σ, σ′ ∈ C and
stc(σ) = stc(σ′) = k ∈ S then c(σ) = c(σ′) =: h(k));

• the values of such statistic for these children (in the sense that if σ, σ′ ∈ C and
stc(σ) = stc(σ′) = k ∈ S then stc(vi(σ)) = stc(vi(σ

′)) =: ei(k), for all i ∈ [c(σ)] =

[h(k)]).

Then we label each vertex of the generating tree with the value of the statistic taken
by the permutation corresponding to the vertex. The associated succession rule is
determined by the label of the root λ and, for every label k, by the labels e1(k), . . . , eh(k)(k)

of the h(k) children of a vertex labeled by k. In full generality, the associated succession
rule is represented by the formula{

Root label : (λ)

(k)→ (e1(k)), . . . , (eh(k)(k)).
(2.2)

We denote by L the set of all labels appearing in the generating tree and for all k ∈ L,
we denote by CL(k) the multiset of labels of the children {e1(k), . . . , eh(k)(k)}.

An example of generating tree, in the case of the class of 123-avoiding6 permutations,
is given in Figure 2. Considering the Z>0-valued statistic that counts the number of
possible insertions of a new point, then the succession rule is{

Root label : (2)

(k)→ (2), (3) . . . , (k + 1).
(2.3)

(2)

(2) (3)

(3)(2) (4)(2) (3)

(3)(2) (3) (2)

Figure 2: The generating tree for
123-avoiding permutations. The chil-
dren of a permutation are obtained
by adding a new point on the right of
the diagram in such a way that it does
not create a pattern 123. For each
diagram we report (on the left) the la-
bel given by the statistic that counts
the number of possible insertions of a
new point. Note that every permuta-
tion with label (k) has k children with
labels (2), (3), . . . , (k + 1).

2.1.2 A bijection between permutations encoded by generating trees and multi-
dimensional walks

We start by assuming that the children labels e1(k), . . . , eh(k)(k) appearing in the succes-
sion rule in (2.2) are distinct7.

There is a simple bijection between a family of permutations encoded by its generating
tree and the set of paths in the tree from the root. We can associate to the endpoint of
each path the permutation corresponding to that vertex. Encoding each path in the tree
with the list of labels appearing on the path, every permutation of size n is bijectively
encoded by a sequence of n labels (k1 = λ, k2, . . . , kn), where ki tracks the value of the

6A permutation σ avoids π if there are no occurrences of the pattern π in σ.
7A general bijection can be constructed without assuming that the children labels e1(k), . . . , eh(k)(k) are

distinct, see [5, Section 1.5.2]. In this paper we only need the present simplified version.
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label, such that every pair of two consecutive labels (ki, ki+1), 1 ≤ i ≤ n− 1, is consistent
with the succession rule in (2.2), i.e. for all 1 ≤ i ≤ n− 1, there exist j = j(i) ∈ [1, h(ki)]

such that ki+1 = ej(ki). We denote by PW this bijection between permutations in the
generating tree and sequences of labels.

Note that whenever L is a subset of Zn for some n ∈ Z>0 (this will be the case of all
the permutation families considered in the article), then these sequences of labels can
be naturally interpreted as n-dimensional walks. The bijection PW is then a map from
permutations (P) to walks (W).

2.2 Discrete coalescent-walk processes and permutations

Coalescent-walk processes were introduced in [11] (see in particular Section 2.4) to
study the scaling limit of Baxter permutations. We now recall their definition and their
relations with permutations. Then in Section 3.2 we show that there exists a natural
coalescent-walk process encoding strong-Baxter permutations (and in Section 5.1.2 we
will do the same for semi-Baxter permutations).

Definition 2.4. Consider a (finite or infinite) interval I of Z. A coalescent-walk process
on I is a family of one-dimensional walks {(Z(t)

s )s≥t,s∈I}t∈I such that:

• Z
(t)
t = 0, for every t ∈ I;

• for t′ ≥ t ∈ I, if Z(t)
k ≥ Z

(t′)
k (resp. Z(t)

k ≤ Z
(t′)
k ) then Z(t)

k′ ≥ Z
(t′)
k′ (resp. Z(t)

k′ ≤ Z
(t′)
k′ )

for every k′ ≥ k.

The set of coalescent-walk processes on some interval I is denoted by C(I).

We highlight the following consequence of the definition above: if Z(t)
k = Z

(t′)
k for

some time k, then Z(t)
k′ = Z

(t′)
k′ for all k′ ≥ k. If this is the case, we say that the walks Z(t)

and Z(t′) coalesce and we call coalescent point of Z(t) and Z(t′) the point (s, Z
(t)
s ) such

that s = min{k ≥ max{t, t′}|Z(t)
k = Z

(t′)
k }.

For a coalescent-walk process Z = {Z(t)}t∈I ∈ C(I) defined on a (finite or infinite)
interval I, we define the following binary relation ≤Z on I:

i ≤Z i,
i ≤Z j, if i < j and Z(i)

j ≤ 0,

j ≤Z i, if i < j and Z(i)
j > 0.

(2.4)

In [11, Proposition 2.9] it was shown that ≤Z defines a total order on I. This total
order allows to associate a permutation with a coalescent-walk process on the interval
[n].

Definition 2.5. Let n ∈ Z≥0 and Z = {Z(t)}i∈[n] ∈ C([n]) be a coalescent-walk process
on [n]. We denote by CP(Z) the only permutation σ ∈ Sn such that for all 1 ≤ i, j ≤ n,

σ(i) ≤ σ(j) ⇐⇒ i ≤Z j. (2.5)

As a consequence, for all j ∈ [n],

σ(j) = #{i ∈ [n]|i ≤Z j} = #{i ∈ [j] : Z
(i)
j ≤ 0}+ #{i ∈ [j + 1, n] : Z

(j)
i > 0}.

In [11, Proposition 2.11] it was shown that pattern extraction in the permutation
CP(Z) depends only on a finite number of walks. This is a key tool to prove permuton
convergence results.
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Proposition 2.6 (Proposition 2.11 in [11]). Let Z = {Z(t)}t∈[n] be a coalescent-walk
process and σ = CP(Z) the corresponding permutation of size n. We fix a set of indexes
I = {i1 < · · · < ik} ⊆ [n]. Then patI(σ) = π if and only if the following condition is
satisfied: for every 1 ≤ ` < s ≤ k,

Z
(i`)
is
≥ 0 ⇐⇒ π(s) < π(`). (2.6)

3 Discrete objects associated with strong-Baxter permutations

Recall that strong-Baxter permutations were defined in Definition 1.4. These permu-
tations have been enumerated using Z2-labeled generating trees and therefore they can
be bijectively encoded by a specific family of two-dimensional walks.

The goal of this section is to specify the maps PW and CP introduced in Section 2 in
the specific case of strong-Baxter permutations (SSb) and the corresponding families of
walks (WSb) and coalescent-walk processes (CSb). While doing that, we further introduce
a third map WCSb between walks and coalescent-walk processes. Thus, we are going to
properly define the following diagram:

SSb WSb

CSb

PW

WCSb
CP

. (3.1)

Actually we will show that this is a commutative diagram of bijections (see Theorem 3.10).

3.1 Succession rule for strong-Baxter permutations and the corresponding
family of two-dimensional walks

We introduce some terminology.

Definition 3.1. Given a family of permutations C, a permutation σ ∈ Cn and an integer
m ∈ [n+ 1], we say that m is an active site of σ if σ∗m ∈ C. We denote by AS(σ) the set of
active sites of σ.

We will adopt the following useful convention. Given a strong-Baxter permutation
π ∈ SnSb with x+ 1 active sites smaller than or equal to π(n) and y+ 1 active sites greater
than π(n), we write

AS(π) = {s−x < · · · < s0} ∪ {s1 < · · · < sy+1},

where the first set corresponds to the x+ 1 active sites smaller than or equal to π(n) and
the second set corresponds to the y + 1 active sites greater than π(n).

In [13, Proposition 23] it was shown that the generating tree for semi-Baxter permu-
tations can be defined by the following succession rule8:

Root label : (0, 0)

(h, k)→


(0, k), (1, k), . . . , (h− 1, k),

(h, k + 1),

(h+ 1, 0), (h+ 1, 1) . . . , (h+ 1, k),

for all h, k ≥ 0.
(3.2)

In particular, the Z2
≥0-valued statistic that determines this succession rule is defined on

every permutation σ ∈ SSb by(
#{m ∈ AS(σ)|m ≤ σ(n)} − 1 , #{m ∈ AS(σ)|m > σ(n)} − 1

)
.

8Note that the succession rule in our paper is obtained from the succession rule in [13, Proposition 23] by
shifting all the labels by a factor (−1,−1). This choice is more convenient for our purposes.
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Using the strategy described in Section 2.1.2, we can define a bijection PW between
strong-Baxter permutations and the set of two-dimensional walks in the non-negative
quadrant, starting at (0, 0), with increments in

ISb := {(−i, 0) : i ≥ 1} ∪ {(0, 1)} ∪ {(1,−i) : i ≥ 0}. (3.3)

Note that the latter family is determined by the succession rule in (3.2). We denote with
WSb the set of two-dimensional walks in the non-negative quadrant, starting at (0, 0),
with increment in ISb. We also denote withWn

Sb the subset of walks inWSb of size n.
We now want to investigate the relations between the increments of a walk W ∈ Wn

Sb

and the active sites of the sequence of permutations:(
PW−1((Wi)i∈[1]),PW−1((Wi)i∈[2]), . . . ,PW−1((Wi)i∈[n])

)
.

First of all, it holds that PW−1((Wi)i∈[1]) is the unique permutation of size 1 and its
active sites are 1 and 2. Now assume that for some m < n, Wm = (x, y) ∈ Z2

≥0 and

PW−1((Wi)i∈[m]) = π. By definition, π has x+ 1 active sites smaller or equal to π(n) and
y + 1 active sites greater than π(n), i.e.,

AS(π) = {s−x < · · · < s0} ∪ {s1 < · · · < sy+1}.

We now distinguish three cases (for a proof of the following results see the proof of [13,
Proposition 23], compare also with Figure 3):

• Case 1: Wm+1 −Wm = (1,−i) for some i ∈ {0} ∪ [y].

In this case PW−1((Wi)i∈[m+1]) = π∗si+1 and the active sites of π∗si+1 are

{s−x < · · · < s0 < si+1} ∪ {si+1 + 1, si+2 + 1 < · · · < sy+1 + 1}.

• Case 2: Wm+1 −Wm = (0, 1).

In this case PW−1((Wi)i∈[m+1]) = π∗s0 and the active sites of π∗s0 are

{s−x < · · · < s0} ∪ {s0 + 1 < s1 + 1 < · · · < sy+1 + 1}.

• Case 3: Wm+1 −Wm = (−i, 0) for some i ∈ [x].

In this case PW−1((Wi)i∈[m+1]) = π∗s−i and the active sites of π∗s−i are

{s−x < · · · < s−i} ∪ {s1 + 1 < · · · < sy+1 + 1}.

An example of the various constructions above is given in Figure 3. We also point out
the following important consequence of the discussion above.

Remark 3.2. Let π be a strong-Baxter permutation of size n and assume that

AS(π) = {s−x < · · · < s0} ∪ {s1 < · · · < sy+1}.

Then π(n) = s0.

3.2 A coalescent-walk process for strong-Baxter permutations

We now define a family of coalescent-walk processes driven by a set of two-dimensional
walks that contains WSb. We consider a (finite or infinite) interval I of Z. Let WSb(I)

denote the set of two-dimensional walks indexed by I, with increments in ISb, and
considered up to an additive constant.
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(0, 0) (0, 1) (1, 0) (2, 0) (2, 1) (3, 0) (4, 0)

(4, 1) (2, 1) (2, 2) (3, 0)

(0, 1) (1,−1) (1, 0) (0, 1) (1,−1) (1, 0) (0, 1)

(−2, 0) (0, 1) (1,−2)

Figure 3: We consider the walk W ∈ W11
Sb given by the eleven black Z2

≥0-labels in
the picture. The increments Wm+1 −Wm of the walk W are written in red between
two consecutive diagrams. For each black label Wm we draw the diagram of the
corresponding permutation PW−1((Wi)i∈[m]). On the right-hand side of each diagram
we draw with small circles the active sites of the permutation and we highlight in red
the site that will be activated by the corresponding red increment Wm+1 −Wm.

Definition 3.3. Let W ∈WSb(I). The coalescent-walk process associated with W is the

family of walks WCSb(W ) = {Z(t)}t∈I , defined for t ∈ I by Z(t)
t = 0, and for all ` ≥ t such

that `+ 1 ∈ I,

• Case 1: W`+1 −W` = (1,−i) for some i ≥ 0, then

Z
(t)
`+1 =


Z

(t)
` − i, if Z

(t)
` − i > 0 (and so Z(t)

` > 0),

Z
(t)
` − 1, if Z

(t)
` ≤ 0,

−1, otherwise.

(3.4)

• Case 2: W`+1 −W` = (0, 1), then

Z
(t)
`+1 =

{
Z

(t)
` + 1, if Z

(t)
` ≥ 0,

Z
(t)
` , otherwise.

(3.5)

• Case 3: W`+1 −W` = (−i, 0) for some i ≥ 1, then

Z
(t)
`+1 =


Z

(t)
` , if Z

(t)
` ≥ 0,

Z
(t)
` + i, if Z

(t)
` < 0 and Z(t)

` + i ≤ 0,

0, otherwise.

(3.6)

Note that WCSb is a mapping form WSb(I) to C(I). We set CSb = WCSb(WSb). For
two examples, one for a walk in WSb(I) and one for a walk inWSb, the reader can look
at Figure 4 and Figure 5.

We give the following equivalent definition for later convenience.
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Z(8)

Z(1)

X

Y −X Y,

t

−X Y,

t

,Z = {Z(t)}1≤t≤10

−X

Y

−X

Y

Figure 4: We explain the construction of a coalescent-walk process. Left: A two-
dimensional walk W = (Wt)t∈[10] = (Xt, Yt)t∈[10] ∈ WSb([10]). Middle: The two
marginals −X (in blue) and Y (in red). Right: The two marginals are shifted and
the ten walks of the coalescent-walk process are constructed in green.

Definition 3.4. Let W ∈WSb(I) and denote by Wt = (Xt, Yt) for t ∈ I. The coalescent-
walk process associated with W is the family of walks WCSb(W ) = {Z(t)}t∈I , defined for

t ∈ I by Z(t)
t = 0, and for all ` ≥ t such that `+ 1 ∈ I,

Z
(t)
`+1 =



Z
(t)
` + (Y`+1 − Y`), if

{
Z

(t)
` = 0 and Z(t)

` − (X`+1 −X`) ≥ 0,

Z
(t)
` > 0 and Z(t)

` + (Y`+1 − Y`) > 0,

−1, if Z
(t)
` > 0 and Z(t)

` + (Y`+1 − Y`) ≤ 0,

Z
(t)
` − (X`+1 −X`), if Z

(t)
` ≤ 0 and Z(t)

` − (X`+1 −X`) < 0,

0, if Z
(t)
` < 0 and Z(t)

` − (X`+1 −X`) ≥ 0.

(3.7)

Remark 3.5. We note that the coalescent points of a coalescent-walk process obtained
in this way have y-coordinates that are always equal either to 0 or to −1.

Remark 3.6. Note that every walk Z(t) must pass through 0 between a non-positive and
a strictly positive excursion. In addition the strictly positive excursions always start at
one. See for instance at the walk Z(1) in Figure 4.

Another similar remarkable fact is that every walk Z(t) must pass through −1 between
a strictly positive and a non-positive excursion. See for instance at the walk Z(2) in
Figure 4.

The following definition and the consecutive lemma should clarify our definition of
coalescent-walk process associated with a walk inWn

Sb and the link with the correspond-
ing strong-Baxter permutation.

Definition 3.7. Let W ∈ Wn
Sb and consider the corresponding coalescent-walk process

CP(W ) = {Z(t)}t∈[n] =: Z. Assume that the set of final values {Z(t)
n }t∈[n] of the n walks

is equal to

FV(Z) := {f−x < · · · < f−1 < f0 = 0 < f1 < · · · < fy},

for some x, y ∈ Z≥0. For all ` ∈ [−x, y] we set mult(f`) := #{t ∈ [m] : Z
(t)
n = f`} and by

convention, we set mult(f`) = 0 for all ` /∈ [−x, y].

Example 3.8. Consider the coalescent-walk process Z in Figure 5. The set of final
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Yt + 1

−Xt − 1

2 1 7 8 10 5 46 9 113

1 2 3 4 6 7 9 105 8 11

7

1

2

0

Figure 5: The coalescent walk process WCSb(W ) for the walk W considered in Figure 3.
In purple we plot the corresponding semi-Baxter permutation CP((WCSb(W ))). Note
that the latter permutation is equal to the permutation PW−1(W ) obtained in the last
diagram in Figure 3. In orange we plot the multiplicities of the final values of WCSb(W ).

values FV(Z) is equal to
FV(Z) = {−3,−2,−1, 0}.

Moreover, mult(−3) = 2, mult(−2) = 1, mult(−1) = 7, and mult(0) = 1 because there are
2 green walks ending at −3, 1 green walk ending at −2, 7 green walks ending at −1,
and 1 green walk ending at 0.

Lemma 3.9. Let W ∈ Wn
Sb. Fix m ∈ [n], and consider the corresponding coalescent-walk

process CP(W|[m]
) = {Z(t)}t∈[m] =: Z and the corresponding strong-Baxter permutation

PW−1(W|[m]
) = π. Assume that Wm = (x, y) ∈ Z2

≥0, i.e. π has x+ 1 active sites smaller
than or equal to π(m) and y + 1 active sites greater than π(m), denoted by

{s−x < · · · < s0} ∪ {s1 < · · · < sy+1}.

Then
FV(Z) = {f−x < · · · < f−1 < f0 = 0 < f1 < · · · < fy} = [−x, y],

and in particular, f` − f`−1 = 1, for all ` ∈ [−x+ 1, y]. Moreover, it holds that

s` = 1 +
∑
j≤`−1

mult(fj), for all ` ∈ [−x, y + 1]. (3.8)

Proof. We prove the statement by induction over m.
For m = 1 then x = 0, y = 0, FV(Z) = {0} = {f0} and mult(f0) = 1. On the other

hand, π = 1 and the set of active sites is given by {s0 = 1, s1 = 2}. Note that (3.8) holds.
Now assume that 1 ≤ m < n and that Z and π verify the statement of the lemma. We

are going to show that also CP(W|[m+1]
) = {Z ′(t)}t∈[m+1] =: Z ′ and the corresponding

strong-Baxter permutation PW−1(W|[m+1]
) = π′ also verify the statement of the lemma.

We distinguish three cases:

EJP 27 (2022), paper 158.
Page 14/53

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP886
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The permuton limit of strong-Baxter and semi-Baxter permutations

• Case 1: Wm+1 −Wm = (1,−i) for some i ∈ {0} ∪ [y] (see the left-hand side of
Figure 6).

As explained in Section 3.1, in this case π′ = π∗si+1 and its active sites of π′ are

{s′−x−1 < · · · < s′0} ∪ {s′1 < · · · < s′y−i+1}.

where s′` = s`+1 for ` ∈ [−x− 1,−1], s′0 = si+1, and s′` = s`+i + 1 for ` ∈ [1, y− i+ 1].

On the other hand, looking at Case 1 in (3.3), we immediately have that

FV(Z ′) = {f ′−x−1 < · · · < f ′−1 < f ′0 = 0 < f ′1 < · · · < f ′y−i} = [−x− 1, y − i],

and mult(f ′`) = mult(f`+1) for all ` ∈ [−x − 1,−2], mult(f ′−1) =
∑i
`=0 mult(f`),

mult(f ′0) = 1, and mult(f ′`) = mult(f`+i) for all ` ∈ [1, y − i].
• Case 2: Wm+1 −Wm = (0, 1) (see the left-hand side of Figure 6).

As explained in Section 3.1, in this case π′ = π∗s0 and its active sites of π′ are

{s′−x < · · · < s′0} ∪ {s′1 < · · · < s′y+2}.

where s′` = s` for ` ∈ [−x, 0], and s′` = s`−1 + 1 for ` ∈ [1, y + 2].

On the other hand, looking at Case 2 in (3.3), we immediately have that

FV(Z ′) = {f ′−x < · · · < f ′−1 < f ′0 = 0 < f ′1 < · · · < f ′y+1} = [−x, y + 1],

and mult(f ′`) = mult(f`) for all ` ∈ [−x,−1], mult(f ′0) = 1, and mult(f ′`) = mult(f`−1)

for all ` ∈ [1, y + 2].

• Case 3: Wm+1−Wm = (−i, 0) for some i ∈ [x] (see the right-hand side of Figure 6).

As explained in Section 3.1, in this case π′ = π∗s−i and its active sites of π′ are

{s′−x+i < · · · < s′0} ∪ {s′1 < · · · < s′y+1},

with s′` = s`−i for all ` ∈ [−x+ i, 0], and s′` = s` + 1 for all ` ∈ [1, y + 1].

On the other hand, looking at Case 3 in (3.3), we immediately have that

FV(Z ′) = {f ′−x+i < · · · < f ′−1 < f ′0 = 0 < f ′1 < · · · < f ′y} = [−x+ i, y],

and mult(f ′`) = mult(f`−i) for all ` ∈ [−x + i,−1], mult(f ′0) = 1 +
∑0
`=−i mult(f`),

and mult(f ′`) = mult(f`) for all ` ∈ [1, y].

With a straightforward computation, based on the expressions of the s′` and mult(f ′`) in
terms of s` and mult(f`), it can be checked that (5.7) holds.

3.3 The diagram commutes

The goal of this section is to prove the following result.

Theorem 3.10. The diagram in (3.1) commutes.

Proof. We show that PW−1 = CP ◦WCSb. Fix n ∈ N and let W ∈ Wn
Sb. We are going to

prove the following.

Claim. Assume that m < n and PW−1((Wi)i∈[m]) = CP ◦WCSb((Wi)i∈[m]). Then

PW−1((Wi)i∈[m+1]) = CP ◦WCSb((Wi)i∈[m+1]).
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1
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1

PW−1(W|[8])
PW−1(W|[9])

Figure 6: Left: The final steps of the coalescent-walk process WCSb(W|[11]) in Figure 5

and the corresponding permutations PW−1(W|[10]) and PW−1(W|[11]) from Figure 3 with
the values of the active sites highlighted in cyan. We have that W11−W10 = (1,−2). Note
that FV(WCSb(W|[10])) = [−2, 2] and from Figure 5, we can determine that mult(−2) = 2,
mult(−1) = mult(0) = mult(2) = 1 and mult(1) = 5 (these numbers are plotted in orange
close to the final values of the various walks). Note also that FV(WCSb(W|[11])) =

[−3, 0] and we have that mult(−3) = 2, mult(−2) = mult(0) = 1, and mult(−1) = 7.
Right: The final steps of the coalescent-walk process WCSb(W|[9]) in Figure 5 and

the corresponding permutations PW−1(W|[8]) and PW−1(W|[9]) from Figure 3. We have
that W9 −W8 = (−2, 0). Here, FV(WCSb(W|[8])) = [−4, 1] and mult(−3) = mult(−1) =

mult(0) = mult(1) = 1, and mult(−4) = mult(−2) = 2. Note also that FV(WCSb(W|[9])) =

[−2, 1] and we have that mult(−2) = 2, mult(−1) = mult(1) = 1, and mult(0) = 5. One
can check, comparing the orange and cyan numbers, that in both cases (3.8) holds.

Proof of the claim. Since by assumption PW−1((Wi)i∈[m]) = CP ◦WCSb((Wi)i∈[m]) it
is enough to show that PW−1((Wi)i∈[m+1])(m+ 1) = CP ◦WCSb((Wi)i∈[m+1])(m+ 1). By
Remark 3.2 and assuming that

AS(PW−1((Wi)i∈[m+1])) = {s−x < · · · < s0} ∪ {s1 < · · · < sy+1},

we have that PW−1((Wi)i∈[m+1])(m+ 1) = s0.

On the other hand, setting WCSb((Wi)i∈[m+1]) = {Z(t)}t∈[m+1] = Z and using Lemma
3.9, we have that

FV(Z) = {f−x < · · · < f−1 < f0 = 0 < f1 < · · · < fy} = [−x, y].

Then by Definition 2.5 and Definition 3.7 we have that

CP ◦WCSb((Wi)i∈[m+1])(m+ 1) = #{t ∈ [m+ 1] : Z
(t)
m+1 ≤ 0}

=
∑
`≤0

mult(f`) = 1 +
∑
`≤−1

mult(f`). (3.9)

Using (3.8) in Lemma 3.9 we can conclude that 1 +
∑
`≤−1 mult(f`) = s0, concluding

the proof of the claim.

4 Probabilistic results for strong-Baxter permutations

The main goal of this section is to prove Theorem 1.5. The proof of this result is
divided in the following steps:
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• In Section 4.1 we explain how to sample a uniform strong-Baxter permutation as a
two-dimensional walk conditioned to stay in a cone.

• Then, in Section 4.2, we prove a scaling limit result for this conditioned two-
dimensional walk.

• In Section 4.3, we prove a scaling limit result for the coalescent-walk process
associated with this conditioned two-dimensional walk.

• Finally, in Section 4.4 we explain how to deduce permuton convergence for strong-
Baxter permutations (Theorem 1.5) from the latter result.

4.1 Sampling a uniform strong-Baxter permutation as a conditioned two-di-
mensional walk

Since the map PW : SSb →WSb is a size-preserving bijection and using the definition
ofWSb, in order to sample a uniform strong-Baxter permutation of size n, it is enough to
sample a uniform two-dimensional walk in the non-negative quadrant of size n, starting
at (0, 0), with increments in ISb.

Consider the following probability measure on ISb (see also the left-hand side of
Figure 7):

µSb =

∞∑
i=1

αγi · δ(−i,0) + αθ−1 · δ(0,1) +

∞∑
i=0

αγ−1θi · δ(1,−i), (4.1)

where δ denotes the delta-Dirac measure and α, θ, γ are the unique solutions of the
following system of equations:

1
γ(1−θ) = γ

(1−γ)2 ,
1
θ = θ

γ(1−θ)2 ,

α = 1
1
θ+

γ
1−γ+

1
γ(1−θ)

,

α > 0, θ > 0, γ > 0, αθ−1 ≤ 1.

(4.2)

With standard computations, we get that γ is the unique real root of the polynomial
−1 + 2γ−γ2 +γ3, θ = −7 + 18γ−14γ2 + 11γ3−3γ4, and α = 36

11 −
83
11γ+ 61

11γ
2−4γ3 + 12

11γ
4.

With a computer one can estimate that θ ≈ 0.43016, γ ≈ 0.56984, and α ≈ 0.14861.

Remark 4.1. We explain how one can find the distribution in (4.1) and what is the
meaning of each equation in the system in (4.2). The general idea is to first look for a
distribution µSb of geometric type (this is useful for consecutive computations such as
the computations in (4.10)). That is, one imposes that every step of type (i, j) receives
probability αγiθj . Then one also imposes three additional conditions (corresponding to
the three equations in the system in (4.2)): the first condition is that µSb is a probability
measure (i.e., the total sum is equal to one); the second and the third conditions ensure
that µSb is a centered distribution (i.e., its expectation is (0, 0)).

Let (X,Y ) be a random variable such that Law(X,Y ) = µSb. With standard compu-
tations we have that:

E[X] = E[Y ] = 0, E[XY ] = − αθ

γ(1− θ)2
, (4.3)

E[X2] = α

(
1

γ(1− θ)
+
γ(1 + γ)

(1− γ3)

)
=: σ2, E[Y 2] = α

(
1

θ
+

θ(1 + θ)

γ(1− θ3)

)
=: σ′

2
. (4.4)

Therefore

Var((X,Y )) = α

(
1

γ(1−θ) + γ(1+γ)
(1−γ3) − θ

γ(1−θ)2

− θ
γ(1−θ)2

1
θ + θ(1+θ)

γ(1−θ3)

)
, (4.5)
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αθ−1

αγαγ2αγ3

αγ−1θ3

αγ−1θ2

αγ−1

αγ−1θ

αγ αγ2 αγ3

αθ−1

αγ−1

αγ−1θ

αγ−1θ2

αγ−1θ3

Figure 7: Left: Some of the increments in the set ISb are plotted together with the

corresponding probability weights given by µSb. Right: Some increments in the set
←
ISb

are plotted together with the corresponding probability weights given by
←
µSb.

and so

ρ = Cor((X,Y )) = − θ

(1− θ)2γ
√(

1
γ(1−θ) + γ(1+γ)

(1−γ3)

)(
1
θ + θ(1+θ)

γ(1−θ3)

) ≈ −0.21508. (4.6)

Equivalently, with some standard computations, we obtain that ρ is the unique real
solution of the polynomial 1 + 6ρ+ 8ρ2 + 8ρ3.

We now denote by

←
ISb:= {(i, 0) : i ≥ 1} ∪ {(0,−1)} ∪ {(−1, i) : i ≥ 0}, (4.7)

i.e. the set of “reversed” increments (recall the definition of the set ISb in (3.3)). We
further denote by

←
µSb=

∞∑
i=1

αγi · δ(i,0) + αθ−1 · δ(0,−1) +

∞∑
i=0

αγ−1θi · δ(−1,i), (4.8)

the “reversed” distribution on
←
ISb induced by µSb (see also the right-hand side of Fig-

ure 7).
For all n ∈ Z>0, we define the following additional probability measure

νnSb =
1

Zn

∑
(h,`)∈LnSb

γhθ`δ(h,`), (4.9)

where LnSb := {Labels at level n in the generating tree for strong-Baxter permutations}
and the normalizing constant satisfies Zn =

∑
(h,`)∈LnSb

γhθ`.

Let (
←
Wn (i))i≥1 be a two-dimensional random walk with increments distributed as

←
µSb and starting probability νnSb(h, `) = P(

←
Wn (1) = (h, `)). Denote by

←
Wn
Sb the set of

two-dimensional walks (xi)i∈[n] in the non-negative quadrant with increments in
←
ISb and

such that xn = (0, 0).

Proposition 4.2. Conditioning on the event

{
(
←
Wn (i))i∈[n]∈

←
Wn
Sb

}
, the walk (

←
Wn (i))i∈[n]

is a uniform walk in
←
Wn
Sb.

Proof. Fix (xi)i∈[n] ∈
←
Wn
Sb. It is enough to show that P

(
(
←
Wn (i))i∈[n] = (xi)i∈[n]

)
is

independent of the choice of (xi)i∈[n]. To do that, assume that x1 = (h, `) and recall that
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xn = (0, 0). By definition of
←
µSb and νnSb we have that

P

(
(
←
Wn (i))i∈[n] = (xi)i∈[n]

)
= νnSb(h, `) · αn−1γ−hθ−` =

γhθ`

Zn
· αn−1γ−hθ−` =

αn−1

Zn
,

(4.10)
and this concludes the proof.

Let (Wn(i))i≥1 be the reversed walk obtained from (
←
Wn (i))i≥1. A consequence of

Proposition 4.2 is the following.

Corollary 4.3. Conditioning on the event
{

(Wn(i))i∈[n] ∈ Wn
Sb

}
, the walk (Wn(i))i∈[n] is

a uniform walk inWn
Sb.

4.2 Scaling limit of the conditioned two-dimensional walks for strong-Baxter
permutations

We define a rescaled version of the walk (Wn(i))i≥1 = (Xn(i),Yn(i))i≥1: for all n ≥ 1,
let Wn : [0, 1] → R2 be the continuous function defined by linearly interpolating the
points

Wn

(
k

n

)
=

(
Xn(k)

σ
√
n
,
Yn(k)

σ′
√
n

)
, for all k ∈ [n], (4.11)

where σ and σ′ were defined in (4.3).
All the spaces of continuous functions considered below are implicitly endowed with

the topology of uniform convergence on every compact set.

Proposition 4.4. Let ρ be the unique real solution of the polynomial

1 + 6ρ+ 8ρ2 + 8ρ3. (4.12)

Conditioning on the event
{

(Wn(i))i∈[n] ∈ Wn
Sb

}
, we have the following convergence in

C([0, 1],R2),

Wn
d−−−−→

n→∞
Eρ, (4.13)

where we recall that Eρ = (Eρ(t))t∈[0,1] denotes a two-dimensional Brownian excursion
of correlation ρ in the non-negative quadrant.

Proof. An immediate consequence of [17, Theorem 6] is that, for every choice of (h, `) ∈
Z2
≥0, (4.13) holds conditioning on{

(Wn(i))i∈[n] ∈ Wn
Sb

}
∩ {Wn(n) = (h, `)} .

Therefore in order to prove the proposition it is enough to show that∑
(h,`)∈Z2

≥0

lim inf
n→∞

P
(
Wn(n) = (h, `)

∣∣(Wn(i))i∈[n] ∈ Wn
Sb

)
= 1. (4.14)

Note that

P
(
Wn(n) = (h, `)

∣∣(Wn(i))i∈[n] ∈ Wn
Sb

)
=
P
(
(Wn(i))i∈[n] ∈ Wn

Sb

∣∣Wn(n) = (h, `)
)
· P (Wn(n) = (h, `))

P
(
(Wn(i))i∈[n] ∈ Wn

Sb

) . (4.15)

From Corollary B.1, there exist a constant C > 0 independent of h, `, n and a parameter
p > 0 such that

P
(
(Wn(i))i∈[n] ∈ Wn

Sb

∣∣Wn(n) = (h, `)
)
≤ C(1 + |(h, `)|p)n−p−1, for all n, h, ` ∈ Z≥0,

(4.16)

EJP 27 (2022), paper 158.
Page 19/53

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP886
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The permuton limit of strong-Baxter and semi-Baxter permutations

where |(h, `)| denotes the Euclidean norm of the vector (h, `). Moreover, using the
definition of the measure νnSb in (4.9), we have that

P
(
(Wn(i))i∈[n] ∈ Wn

Sb

)
=

1

Zn

∑
(h,`)∈LnSb

P
(
(Wn(i))i∈[n] ∈ Wn

Sb

∣∣Wn(n) = (h, `)
)
γhθ`.

(4.17)
Noting that (1, 0) ∈ LnSb for all n ∈ N, and that Zn ≤ 1

(1−γ)(1−θ) for all n ∈ N, we have for
all n ∈ N,

P
(
(Wn(i))i∈[n] ∈ Wn

Sb

)
≥γ(1−γ)(1−θ)P

(
(Wn(i))i∈[n] ∈ Wn

Sb

∣∣Wn(n) = (1, 0)
)
≥ C ′n−p−1,

(4.18)
where in the last inequality we used Corollary B.2. Substituting in (4.15) the bounds
obtained in (4.16) and (4.18), together with the bound P (Wn(n) = (h, `)) ≤ C ′′γhθ`, we
can conclude that

P
(
Wn(n) = (h, `)

∣∣(Wn(i))i∈[n] ∈ Wn
Sb

)
≤ C ′′′(1 + |(h, `)|p)γhθ` for all n, h, ` ∈ Z≥0.

(4.19)
Therefore for every ε > 0 there exists a compact set Kε ⊆ Z2 such that∑

(h,`)∈Z2
≥0
\Kε

P
(
Wn(n) = (h, `)

∣∣(Wn(i))i∈[n] ∈ Wn
Sb

)
≤ ε, for all n ∈ Z≥0. (4.20)

As a consequence, for every ε > 0,∑
(h,`)∈Z2

≥0

lim inf
n→∞

P
(
Wn(n) = (h, `)

∣∣(Wn(i))i∈[n] ∈ Wn
Sb

)
≥ lim inf

n→∞

∑
(h,`)∈Kε

P
(
Wn(n) = (h, `)

∣∣(Wn(i))i∈[n] ∈ Wn
Sb

)
≥ 1− lim sup

n→∞

∑
(h,`)∈Z2

≥0
\Kε

P
(
Wn(n) = (h, `)

∣∣(Wn(i))i∈[n] ∈ Wn
Sb

)
≥ 1− ε. (4.21)

This proves (4.14) and concludes the proof of the proposition.

4.3 Scaling limit of coalescent-walk processes for strong-Baxter permutations

In this section we first prove a scaling limit result for coalescent-walk processes
associated with strong-Baxter permutation, both in the unconditioned (see Theorem 4.5)
and conditioned (see Proposition 4.9 and Proposition 4.10) case. Then, in Section 4.4,
we explain how to deduce permuton convergence for strong-Baxter permutations (Theo-
rem 1.5) from Proposition 4.10.

4.3.1 The unconditioned scaling limit

Let W = (X,Y ) = (X(k),Y (k))k∈Z be a random bi-infinite two-dimensional walk with
step distribution µSb (defined in (4.1)), and let Z = WCSb(W ) be the corresponding

discrete coalescent-walk process. For convenience, we set Z
(j)

i = 0 for i, j ∈ Z, i < j.

We introduce the following rescaled processes: for all n ≥ 1, u ∈ R, let Wn : R→ R2,

and Z(u)

n : R→ R be the continuous processes that interpolate the following points:

Wn

(
k

n

)
=

(
X(k)

σ
√
n
,
Y (k)

σ′
√
n

)
, for all k ∈ Z, (4.22)
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where σ and σ′ are defined in (4.3), and

Z(u)

n

(
k

n

)
=


Z

(dnue)
k

σ′
√
n
, when Z

(dnue)
k ≥ 0,

Z
(dnue)
k

σ
√
n
, when Z

(dnue)
k < 0,

for all k ∈ Z. (4.23)

We also introduce the potential limiting processes. Fix ρ ∈ [−1, 1] and q ∈ [0, 1].
Consider the solutions (that exist and are unique thanks to [7, Theorem 2.1]) of the
following family9 of SDEs indexed by u ∈ R and driven by a two-dimensional Brownian
motion Wρ = (X ρ,Yρ) of correlation ρ:dZ

(u)

ρ,q (t) = 1{Z(u)
ρ,q(t)>0} dYρ(t)− 1{Z(u)

ρ,q(t)<0} dX ρ(t) + (2q − 1) · dLZ(u)
ρ,q (t), t ≥ u,

Z(u)

ρ,q (t) = 0, t ≤ u,
(4.24)

where we recall that LZ(u)
ρ,q (t) is the symmetric local-time process at zero of Z(u)

ρ,q . We

remark that, as stated in [7, Theorem 2.1], the processes
{

(Z(u)

ρ,q (t))t≥u

}
u∈R

are skew

Brownian motions of parameter q. We recall that a skew Brownian motion of parameter
q ∈ [0, 1] is a standard one-dimensional Brownian motion where each excursion is flipped
independently to the positive side with probability q (see for instance [21, Theorem 6]).

We now prove a scaling limit result for a walk of the coalescent-walk process.

Theorem 4.5. Let u ∈ R. The following joint convergence holds in the space C(R,R)3:(
Wn,Z

(u)

n

)
d−−−−→

n→∞

(
Wρ,Z

(u)

ρ,q

)
, (4.25)

where ρ is the unique real solution of the polynomial

1 + 6ρ+ 8ρ2 + 8ρ3, (4.26)

and q is the unique real solution of the polynomial

− 1 + 6q − 11q2 + 7q3. (4.27)

In the remaining part of this section we give the proof of Theorem 4.5. We start by
stating the following key proposition whose proof is postponed to the end of the section.

Proposition 4.6. Fix u ∈ R. We have the following convergence in C(R,R):

Z(u)

n
d−−−−→

n→∞
B(u)

q , (4.28)

where B(u)

q (t) = 0 for t < u and B(u)

q (t) is a skew Brownian motion of parameter q
(defined in (4.27)) for t ≥ u.

The proof of Theorem 4.5 is in some steps similar to the proof of [11, Theorem 4.5],
the main difference being that here we are dealing with a skew Brownian motion instead
of a classical Brownian motion. Since the proof is quite short, we include all the details
for the sake of completeness.

Proof of Theorem 4.5. We want to show the following joint convergence in C(R,R)3:(
Wn,Z

(u)

n

)
d−−−−→

n→∞

(
Wρ,Z

(u)

ρ,q

)
. (4.29)

By Donsker’s theorem and using the expression for the correlation ρ of the distribution
µSb given in (4.6), we have that Wn converges in distribution to Wρ. The convergence

9Note that the SDEs in (4.24) are the unconditioned version of the SDEs in (1.1), p. 3.
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of second component follows from Proposition 4.6 since Z(u)

ρ,q is a skew Brownian motion
of parameter q started at time u. These results prove component-wise convergence
in (4.29).

We now establish joint convergence. Using Prokhorov’s theorem, the marginals Wn

and Z(u)

n are tight and so the left-hand side of (4.29) is a tight sequence. Using a second
time Prokhorov’s theorem, in order to prove (4.29) it is sufficient to show that all joint
subsequential limits have the same distribution. Assume now that on a subsequence, we
have (

Wn,Z
(u)

n

)
d−−−−→

n→∞

(
Wρ, Z̃

)
, (4.30)

where Z̃ is a skew Brownian motion of parameter q started at time u. We want to show

that Z̃ = Z(u)

ρ,q a.s. Thanks to Skorokhod’s theorem, we can also assume that (4.30) is in
fact an almost sure convergence.

Let (Gt)t be the completion of σ(Wρ(s), Z̃(s), s ≤ t) by the negligible events. Then the

processes Wρ and Z̃ are Gt-adapted. We are going to show that Wρ is a (Gt)t-Brownian
motion, i.e., (

Wρ(t+ s)−Wρ(t)
)
⊥⊥ Gt, for t ∈ R, s ∈ R≥0. (4.31)

For fixed n,
(
Wn(t+ s)−Wn(t)

)
⊥⊥ σ

(
W (k), k ≤ bntc

)
and so(

Wn(t+ s)−Wn(t)
)
⊥⊥
(
Wn(r),Z(u)

n (r)
)
r≤n−1bntc

.

Since Wn converges to W, we have that
(
Wρ(t+ s)−Wρ(t)

)
⊥⊥
(
Wρ(r), Z̃(r)

)
r≤t

.

Thus, Wρ is a (Gt)t-Brownian motion.

Now fix ε > 0, ε ∈ Q and an open interval (a, b) with a, b ∈ Q on which Z̃(t) > ε.
We remark that (a, b) depends on Z̃(t). By a.s. convergence, there exists N0 such that

for all n ≥ N0, Z
(u)

n > ε/2 on (a, b). The process (Z(u)

n − Yn)|(a+1/n,b) is constant by

Definition 3.4 and so its limit (Z̃ −Yρ)|(a,b) is constant too a.s. We have shown that a.s.

Z̃ −Yρ is locally constant on the set {t > u : Z̃(t) > ε}. Thus we have that a.s.∫ t

u

1{Z̃(r)>ε} dZ̃(r) =

∫ t

u

1{Z̃(r)>ε} dYρ(r), t ≥ u. (4.32)

The two stochastic integrals above are well-defined: for the first one it is enough
to consider the filtration of Z̃, for the second one, the filtration (Gt)t. Using similar
arguments for negative values, we obtain that∫ t

u

1{|Z̃(r)|>ε} dZ̃(r) =

∫ t

u

1{Z̃(r)>ε} dYρ(r)−
∫ t

u

1{Z̃(r)<−ε} dX ρ(r). (4.33)

By stochastic dominated convergence theorem, we are allowed to take the limit as ε→ 0,
[26, Thm. IV.2.12], and deduce that∫ t

u

1{Z̃(r) 6=0} dZ̃(r) =

∫ t

u

1{Z̃(r)>0} dYρ(r)−
∫ t

u

1{Z̃(r)<0} dX ρ(r). (4.34)

Since Z̃ is a skew Brownian motion of parameter q, we have that (see for instance [21,
Eq.(38-39)]) ∫ t

u

1{Z̃(r)=0} dZ̃(r) = (2q − 1)

∫ t

u

dLZ̃(r),

where we recall that LZ̃ denotes the symmetric local-time process at zero of Z̃. Since∫ t

u

1{Z̃(r)6=0} dZ̃(r) +

∫ t

u

1{Z̃(r)=0} dZ̃(r) = Z̃(t),
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using the two displayed equations above, we obtain that

Z̃(t) =

∫ t

u

1{Z̃(r)>0} dYρ(r)−
∫ t

u

1{Z̃(r)<0} dX ρ(r) + (2q − 1)

∫ t

u

dLZ̃(r), (4.35)

As a result Z̃ verifies (4.24) almost surely and we can apply pathwise uniqueness ([7,

Theorem 2.1]) to complete the proof that Z̃ = Z(u)

ρ,q a.s.

It remains to prove Proposition 4.6. We recall that (see for instance [21, Equation
(17)]) for a skew Brownian motion (Bq(t))t≥0 of parameter q it holds that for any non-
negative and continuous function ϕ with compact support,

E
[
ϕ(Bq(t))

]
= q

∫ +∞

0

ϕ(y)
2e−y

2/2t

√
2πt

dy + (1− q)
∫ 0

−∞
ϕ(y)

2e−y
2/2t

√
2πt

dy. (4.36)

Proof of Proposition 4.6. In order to prove our result it is enough to show:

• convergence of one-dimensional marginal distributions;

• convergence of finite-dimensional marginal distributions;

• tightness.

This three-steps standard approach is also used in [25] to show convergence of
some specific random walks to a skew Brownian permuton. Unfortunately the models
of random walks considered in [25] do not include our walks. Here we show all the

details of the convergence of one-dimensional marginal distributions for the walk Z(u)

n ,
then convergence of finite-dimensional marginal distributions and tightness follows as
in [25], using the same kind of modifications presented here for the convergence of
one-dimensional marginal distributions.

We consider the case u = 0, the general proof being similar. We recall that Zn :=

Z(0)

n : R→ R is the continuous process defined by linearly interpolating the following
points:

Zn

(
k

n

)
=

{
Zk
σ′
√
n
, when Zk ≥ 0,

Zk
σ
√
n
, when Zk < 0,

for all k ∈ Z, (4.37)

whereZk := Z
(0)

k . For the rest of the proof we fix a non-negative and Lipschitz continuous
function ϕ with compact support. We want to show that for all t ≥ 0,

E
[
ϕ
(
Zn(t)

)]
→ q

∫ +∞

0

ϕ(y)
2e−y

2/2t

√
2πt

dy + (1− q)
∫ 0

−∞
ϕ(y)

2e−y
2/2t

√
2πt

dy. (4.38)

Since ϕ is Lipschitz continuous, as shown in the first lines of the proof of [25, Lemma
3.1], it is enough to prove that

E

[
ϕ

(
Zbntc

σ′
√
n

)
;Zbntc > 0

]
→ q

∫ +∞

0

ϕ(y)
2e−y

2/2t

√
2πt

dy, (4.39)

and that

E

[
ϕ

(
Zbntc

σ
√
n

)
;Zbntc < 0

]
→ (1− q)

∫ 0

−∞
ϕ(y)

2e−y
2/2t

√
2πt

dy. (4.40)

We start with the first expectation. It can be decomposed as

E

[
ϕ

(
Zbntc

σ′
√
n

)
;Zbntc > 0

]
=

bntc∑
k=0

+∞∑
`=0

E

[
ϕ

(
Zbntc

σ′
√
n

)
; τ+
` = k, (Zi)i∈[k+1,bntc] > 0

]
,

(4.41)
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where τ+
0 = 0 and τ+

`+1 = inf{i ≥ τ+
` : Zi = 0} for all ` ∈ Z≥0. Note that for all ` ∈ Z≥0,

using Definition 3.4 we have that(
Zbntc; τ

+
` = k, (Zi)i∈[k+1,bntc] > 0

) d
=
(
Sbntc−k; τ+` = k, (Si)i∈[bntc−k] > 0

)
,

where (Si)i≥0 denotes a random walk started at zero at time zero, with step distribution
equal to the distribution of Y (1)− Y (0), and independent of τ+

` . Therefore we can write

E

[
ϕ

(
Zbntc

σ′
√
n

)
;Zbntc > 0

]
=

bntc∑
k=0

(
+∞∑
`=0

P(τ+
` = k)

)
E

[
ϕ

(
Sbntc−k

σ′
√
n

)
; (Si)i∈[bntc−k]>0

]

=

bntc∑
k=0

(
+∞∑
`=0

P(τ+
` = k)

)
E

[
ϕ

(
Sbntc−k

σ′
√
n

)∣∣∣∣(Si)i∈[bntc−k] > 0

]
P
(
(Si)i∈[bntc−k] > 0

)
.

(4.42)

We now focus on studying P(τ+
` = k). We have the following result.

Lemma 4.7. As k →∞,

P(τ+
1 = k) ∼ β

k3/2
, (4.43)

where

β =
1√
2π

(
1

σ′
αθ−1

1− θ
+

1

σ

(
αθ−1 +

αγ−1

1− θ

)
1

1− γ

)
≈ 0.730268. (4.44)

Proof. Recall that Z0 = 0. Using Observation Remark 3.6, we can write (see also
Figure 8)

P(τ+
1 = k) = P(Zk = 0,Z1 = 1, (Zi)i∈[1,k−1] 6= 0) + P(Zk = 0, (Zi)i∈[1,k−1] < 0) =

P(Z1 = 1)

k−2∑
s=1

∑
y∈Z>0

y′∈Z<0

P(Zs = y, (Zi)i∈[s] > 0|Z1 = 1)P(Zs+1 −Zs = −y − 1)

· P(Zk−1 = y′, (Zi)i∈[s+1,k−1] < 0|Zs+1 = −1)P(Zk −Zk−1 = −y′)
+ P(Zk = 0, (Zi)i∈[k−1] < 0). (4.45)

0 s
s+ 1 k − 1

k

y

1

−1

y′

Figure 8: A schema for the event {Zk = 0,Z1 = 1, (Zi)i∈[1,k−1] 6= 0}.

Using Definition 3.4 and letting:
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• (Si)i≥0 be a random walk started at zero at time zero, with step distribution equal
to the distribution of Y (1)− Y (0),

• (S′i)i≥0 be a random walk started at zero at time zero, with step distribution equal
to the distribution of −(X(1)−X(0)),

• (Si)i≥0 is independent of (S′i)i≥0,

we can rewrite the previous expression as

P(τ+
1 = k)

=P(Y (1)− Y (0) = 1)

k−3∑
s=0

∑
y∈Z>0

y′∈Z<0

P(1 + Ss = y, (1 + Si)i∈[s] > 0)P(Y (1)− Y (0) ≤ −y)

· P(−1 + S′k−2 = y′, (−1 + S′i)i∈[s+1,k−2] < 0)P(−(X(1)−X(0)) ≥ −y′)

+
∑

y′∈Z<0

P(S′k−2 = y′, (S′i)i∈[k−2] < 0)P(−(X(1)−X(0)) ≥ −y′). (4.46)

We now focus on
∑k−3
s=0 P(1+Ss = y, (1+Si)i∈[s]>0)P(−1+S′k−2 =y′, (−1+S′i)i∈[s+1,k−2] <

0). From Lemma D.1 we know that as m→∞,

P(1 + Sm = y, (1 + Si)i∈[m] > 0) ∼ c1

σ′
√

2π

h̃(y)

m3/2
, (4.47)

P(−1 + S′m = y′, (−1 + S′i)i∈[m] < 0) ∼ c2

σ
√

2π

h̃′(y′)

m3/2
,

P(1 + Sm = y, (1 + Si)i∈[m] > 0) ≤ C h̃(y)

m3/2
, for all y ∈ Z>0,

P(−1 + S′m = y′, (−1 + S′i)i∈[m] < 0) ≤ C h̃
′(y′)

m3/2
, for all y′ ∈ Z<0,

where h̃ and h̃′ are the functions defined in (D.1) for the walks−Sm and−S′m respectively
and

c1 =
E[−SN ]∑

z∈Z>0
h̃(z)P(S1 ≤ −z)

and c2 =
E[S′N ′ ]∑

z∈Z<0
h̃′(z)P(S′1 ≥ −z)

, (4.48)

with N := inf{n > 0|Sn < 0} and N ′ := inf{n > 0|S′
n > 0}. Using Proposition C.1 and

the estimates above, we have, as k →∞,

k−3∑
s=0

P(1 + Ss = y, (1 + Si)i∈[s] > 0)P(−1 + S′k−2 = y′, (−1 + S′i)i∈[s+1,k−2] < 0)

∼ 1√
2πk3/2

C(y, y′), (4.49)

where C(y, y′) is equal to

c1 · h̃(y)

σ′

( ∞∑
s=0

P(−1 + S′s = y′, (−1 + S′i)i∈[s] < 0)

)

+
c2 · h̃′(y′)

σ

( ∞∑
s=0

P(1 + Ss = y, (1 + Si)i∈[s] > 0)

)
. (4.50)
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Therefore from the uniform bounds in (4.47) and the fact that (we are using again
Lemma D.1)

P(S′k = y′, (S′i)i∈[k−1] < 0) ∼ P(−(X(1)−X(0)) = −1)

σ
√

2π

h̃′(y′)

k3/2
,

P(S′k = y′, (S′i)i∈[k−1] < 0) ≤ C h̃
′(y′)

k3/2
, for all y′ ∈ Z<0, (4.51)

we can conclude from (4.46) that

P(τ+
1 = k) ∼ 1

k3/2
1√
2π

·

(
P(Y (1)− Y (0) = 1)

∑
y∈Z>0

y′∈Z<0

P(Y (1)− Y (0) ≤ −y)P(−(X(1)−X(0)) ≥ −y′)C(y, y′)

+ P(−(X(1)−X(0)) = −1)
∑

y′∈Z<0

h̃′(y′)

σ
P(−(X(1)−X(0)) ≥ −y′)

)
=

β

k3/2
. (4.52)

We finally simplify the expression for the coefficient β above, finding the formula in (4.44).
Note that

∑
y∈Z>0

∞∑
s=0

P(1 + Ss = y, (1 + Si)i∈[s] > 0)P(Y (1)− Y (0) ≤ −y)

=

∞∑
s=0

P(1 + Ss+1 ≤ 0, (1 + Si)i∈[s] > 0) = 1, (4.53)

because a symmetric random walk started at 1 becomes eventually non-positive almost
surely. Similarly,∑

y′∈Z<0

∞∑
s=0

P(−1 + S′s = y′, (−1 + S′i)i∈[s] < 0)P(−(X(1)−X(0)) ≥ −y′) = 1. (4.54)

Therefore, using the expressions of the constants c1 and c2 in (4.48), we obtain that

β =
1√
2π

(
P(Y (1)− Y (0) = 1) + P(−(X(1)−X(0)) = −1)

σ
E[S′N ′ ]

+
P(Y (1)− Y (0) = 1)

σ′
E[−SN ]

)
. (4.55)

Recalling that (see (4.1))

P(Y (1)− Y (0) = 1) = αθ−1, P(Y (1)− Y (0) = y) = αγ−1θ−y, for all y ∈ Z<0

P(−(X(1)−X(0)) = −1) =
αγ−1

1− θ
, P(−(X(1)−X(0)) = y′) = αγy

′
, for all y′ ∈ Z>0,

(4.56)

and using Lemma D.2, we obtain that E [−SN ] = 1
1−θ and E [S′N ′ ] = 1

1−γ and so

β =
1√
2π

(
1

σ

(
αθ−1 +

αγ−1

1− θ

)
1

1− γ
+

1

σ′
αθ−1

1− θ

)
(4.57)

as claimed in (4.44).
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Corollary 4.8. As k → +∞,

+∞∑
`=0

P(τ+
` = k) ∼ 1

β

1

2π
√
k
. (4.58)

Proof. Thanks to10 [16, Theorem B], it is enough have to check that

sup
n∈Z≥0

n · P(τ+
1 = n)

P(τ+
1 > n)

<∞,

and this follows from Lemma 4.7.

With this result in our hands we can now continue to estimate (4.42). We start by
defining for 1 ≤ k ≤ bntc − 2 and s ∈ [ kn ,

k+1
n ),

f+n (s) := n

(
+∞∑
`=0

P(τ+
` = k)

)
E

[
ϕ

(
Sbntc−k

σ′
√
n

)∣∣∣∣(Si)i∈[bntc−k] > 0

]
P
(
(Si)i∈[bntc−k] > 0

)
,

(4.59)
and f+n (s) := 0 on (0, 1

n ) ∪ [ bntc−1n , t). We have that

E

[
ϕ

(
Zbntc

σ′
√
n

)
;Zbntc > 0

]

=

bntc∑
k=0

(
+∞∑
`=0

P(τ+
` = k)

)
E

[
ϕ

(
Sbntc−k

σ′
√
n

)∣∣∣∣(Si)i∈[bntc−k] > 0

]
P
(
(Si)i∈[bntc−k] > 0

)
=

∫ t

0

f+n (s)ds+O(1/
√
n). (4.60)

Indeed each term in the sum in (4.60) is O(1/
√
n); this follows from Lemma D.1, Corol-

lary 4.8, and the fact that11
∑+∞
`=0 P(τ+

` = k) <∞ for all k ∈ Z≥0. Since the walk
Sbntc
σ′
√
n

converges in distribution to a Brownian meander (see for instance [15]), we have that

E

[
ϕ

(
Sbntc

σ′
√
n

)∣∣∣∣(Si)i∈[bntc] > 0

]
∼ 1

t

∫ +∞

0

ϕ(u)ue−u
2/2tdu, (4.61)

Using the latter estimate and the fact that from Lemma D.1,

P
(
(Si)i∈[n] > 0

)
∼ 2

P(Y (1)− Y (0) = 1)E[−SN ]√
2πσ′

1√
n

= 2
αθ−1√

2πσ′(1− θ)
1√
n
, (4.62)

together with Corollary 4.8, we obtain that for any s ∈ (0, t),

f+n (s) ∼ n 1

β

1

2π
√
n
√
s

1

t− s

∫ +∞

0

ϕ(u)ue−u
2/2(t−s)du · 2 αθ−1√

2πσ′(1− θ)
1

√
n
√
t− s

=
αθ−1

(1− θ)
√

2πσ′β

1

π
√
s(t− s)(t− s)

∫ +∞

0

ϕ(u)ue−u
2/2(t−s)du. (4.63)

10This corresponds to [16, Theorem B] where the term in the right-hand side of Equation (1.10) should be
replaced by 1

Γ(1−α)Γ(α)
11As pointed out in [25, Section 2.2] the sequence (τ+

` )`∈Z≥0
is a strictly increasing random walk on Z≥0

with i.i.d. increments distributed as τ+
1 . Thus, its potential

∑+∞
`=0 P(τ

+
` = k) is finite for all k ∈ Z≥0.
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Moreover, recalling that ϕ is Lipschitz continuous with compact support, we have for
1 ≤ k ≤ bntc − 2 and s ∈ [ kn ,

k+1
n ) the bound∣∣f+n (s)
∣∣ ≤ Cn√

bnsc · (bntc − bnsc)
≤ C ′√

s(t− s)
. (4.64)

Therefore by dominated convergence we can conclude that

E

[
ϕ

(
Zbntc

σ′
√
n

)
;Zbntc > 0

]
n→∞−−−−→ αθ−1

(1− θ)
√

2πσ′β

∫ +∞

0

1

π
√
s(t− s)(t− s)

∫ +∞

0

ϕ(u)ue−u
2/2(t−s) du ds

=
αθ−1

(1− θ)
√

2πσ′β

∫ +∞

0

ϕ(y)
2e−y

2/2t

√
2πt

dy, (4.65)

where in the last equality we used some standard integral computations. Using the
expression for β in (4.44) we conclude that

q =
αθ−1

(1− θ)
√

2πσ′β
=

αθ−1

(1−θ)σ′

1
σ′
αθ−1

1−θ + 1
σ

(
αθ−1 + αγ−1

1−θ

)
1

1−γ

=
1

1 + σ′

σ

(
θ+γ−γθ
γ(1−γ)

) . (4.66)

The formula for q given in (4.27) follows substituting the expressions for σ and σ′ given
in (4.3) and using the relations for the parameters θ and γ given in (4.2).

The convergence for the second expectation in (4.40) follows using the same type of
estimates and therefore we omit the details.

4.3.2 The conditioned scaling limit

We now look at the conditioned case. The arguments in this section are quite similar to
the ones in [11, Section 4.3] and so we postpone the proofs of Propositions 4.9 and 4.10
to Section E.

For all n ∈ Z>0, let Wn = (Wn(i))i≥1 = (Xn(i),Yn(i))i≥1 be a uniform walk in Wn
Sb

and12 Zn = {Z(t)
n (·)}t∈[n] = WCSb(Wn) be the corresponding uniform coalescent-walk

process in CSb. Also here, for convenience, we set Z
(j)

n (i) = 0 for i, j ∈ Z>0, i < j.
For all n ≥ 1, u ∈ (0, 1), recall the function Wn : [0, 1]→ R2 defined in (4.11) and let

Z(u)
n : (0, 1)→ R be the continuous process that interpolates the following points defined

for all k ∈ [n],

Z(u)
n

(
k

n

)
=


Z(dnue)
n (k)

σ′
√
n

, when Z
(dnue)
n (k) ≥ 0,

Z(dnue)
n (k)

σ
√
n

, when Z
(dnue)
n (k) < 0,

(4.67)

where σ and σ′ are defined in (4.3).
In the next proposition we state a scaling limit result for a one-dimensional walk in

the conditioned coalescent-walk processes introduced in (4.67). This is a consequence
of Proposition 4.4, Theorem 4.5, and absolute continuity arguments between correlated
Brownian excursions and correlated Brownian motions.

Proposition 4.9. Let u ∈ (0, 1). The following joint convergence in C([0, 1],R)2 ×
C([0, 1),R) holds: (

Wn,Z(u)
n

)
d−−−−→

n→∞

(
Eρ,Z(u)

ρ,q

)
, (4.68)

12For convenience, we denote here the time variable of the walks of coalescent-walk processes between
parenthesis.
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where Z(u)
ρ,q is the strong solution of the SDE in (1.2) and the parameters ρ, q are the

same as in Theorem 4.5.

We also generalize the previous result for a countable number of one-dimensional
walks in the conditioned coalescent-walk processes introduced in (4.67), chosen with
uniform starting points. This result is the key-step for proving Theorem 1.5 in the next
section.

Proposition 4.10. Consider a sequence (ui)i∈Z>0 of i.i.d. uniform random variables on
[0, 1], independent of all other variables below. The following joint convergence in the
space C([0, 1],R2)× C([0, 1),R)Z>0 holds:(

Wn,
(
Z(ui)
n

)
i∈Z>0

)
d−−−−→

n→∞

(
Eρ,

(
Z(ui)
ρ,q

)
i∈Z>0

)
. (4.69)

4.4 The permuton limit of strong-Baxter permutations

We now prove Theorem 1.5, which follows from Proposition 4.10.
We recall some notions and results related to permuton limits that we need in this

section13. The space of permutonsM, endowed with the topology of weak convergence
of measures, is a compact space. Furthermore,M is metrizable by the metric d� that is
defined as follows:

d�(µ, µ′) := sup
R∈R
|µ(R)− µ′(R)|, for every pair of permutons (µ, µ′), (4.70)

where R denotes the set of rectangles contained in [0, 1]2.
We also define the permutation induced by a collection of k points in the square [0, 1]2.

Consider a sequence of k points (X,Y ) = ((x1, y1), . . . , (xk, yk)) in [0, 1]2 and assume
that the x and y coordinates are distinct. We denote by

(
(x(1), y(1)), . . . , (x(k), y(k))

)
the

x-reordering of (X,Y ), that is the only reordering of ((x1, y1), . . . , (xk, yk)) such that
x(1) < · · · < x(k). In this way, the values (y(1), . . . , y(k)) have the same relative order as
the values of a unique permutation of size k. We call this permutation the permutation
induced by the sequence (X,Y ).

Let µ ∈M be a permuton and ((Xi,Yi))i∈Z>0
be an i.i.d. sequence with distribution µ.

We denote by Permk(µ) the random permutation induced by the sequence ((Xi,Yi))i∈[k].

Lemma 4.11 ([1, Lemma 2.3]). There exists a constant k0 such that whenever k > k0,

P
(
d�(µPermk(ν),ν) ≥ 16k−1/4

)
≤ 1

2
e−
√
k, for every random permuton ν. (4.71)

We can now prove Theorem 1.5.

Proof of Theorem 1.5. Since from Proposition 4.10 we know that

(
Wn,

(
Z(ui)
n

)
i∈Z>0

)
is a convergent sequence of random variables converging to

(
Eρ,

(
Z(ui)
ρ,q

)
i∈Z>0

)
and the

space of permutonsM is compact, using Prokhorov’s theorem, both

(
Wn,

(
Z(ui)
n

)
i∈Z>0

)
and µσn are tight sequences of random variables. Assume now that on a subsequence it
holds that (

Wn,
(
Z(ui)
n

)
i∈Z>0

, µσn

)
d−−−−→

n→∞

(
Eρ,

(
Z(ui)
ρ,q

)
i∈Z>0

,ν

)
. (4.72)

In order to complete the proof we need to show that ν
d
= µρ,q. Using Skorokhod’s

theorem, we can assume that the convergence in (4.72) holds almost surely. In par-
ticular, almost surely, µσn → ν in the space of permutons M, and for every i ∈ Z>0,

13Recall that a complete introduction to the theory of permutons can be found in [6, Section 2.1].
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Z(ui)
n → Z(ui)

ρ,q uniformly on [0, 1), where we recall that (ui)i∈Z>0
are i.i.d. uniform

random variables on [0, 1].
We now fix k ∈ Z>0 and denote by ρkn the pattern induced by the permutation σn on

the set of indices {dnu1e, . . . , dnuke} (ρkn remains undefined whenever two indices are
equal; this event has probability tending to zero). Thanks to the uniform convergence
mentioned above, and recalling the definition of Z(u)

n

(
k
n

)
given in (4.67), for all 1 ≤ i <

j ≤ k it holds that

sgn
(
Z(dnuie∧dnuje)
n (dnuie ∨ dnuje)

)
−−−−→
n→∞

sgn(Z(ui∧uj)
ρ,q (uj ∨ ui)) a.s. (4.73)

We highlight that sgn(·) is not continuous at zero, but from [7, Lemma 3.2] we know
that Z(ui∧uj)

ρ,q (uj ∨ ui) is almost surely nonzero and so a continuity point of sgn(·). By
Proposition 2.6 and [7, Lemma 3.2], this means that ρkn −−−−→

n→∞
Permk(µρ,q), where we

recall that Permk(µρ,q) denotes the permutation induced by (ui, ϕZρ,q
(ui))i∈[k] (recall

the definition of µρ,q given in Definition 1.2). Now, from Lemma 4.11, for k large enough
it holds that

P
(
d�(µρkn , µσn) > 16k−1/4

)
≤ 1

2
e−
√
k +O(n−1), (4.74)

where the O(n−1) term is a consequence of the fact that ρkn might be undefined. Since
we know that ρkn −−−−→

n→∞
Permk(µρ,q) and also that µσn → ν, then we have that

P
(
d�(µPermk(µρ,q), µ̃) > 16k−1/4

)
≤ 1

2
e−
√
k. (4.75)

As a consequence, µPermk(µρ,q)
P−−−−→

k→∞
µ̃. Using again Lemma 4.11, we have that

µPermk(µρ,q)
P−−−−→

k→∞
µρ,q. The latter two limits imply that µ̃

a.s.
= µρ,q and this is enough to

complete the proof.

5 The case of semi-Baxter permutations

In this section we show that both the combinatorial constructions developed in
Section 3 and the probabilistic techniques used in Section 4 are robust: we apply them to
another family of permutations, called semi-Baxter permutations, proving Theorem 1.7.

5.1 Discrete objects associated with semi-Baxter permutations

Recall the definition of semi-Baxter permutations from Definition 1.6. Also these
permutations have been enumerated using Z2-labeled generating trees and therefore
they can be bijectively encoded by a specific family of two-dimensional walks.

The goal of this section, as done in Section 3 in the case of strong-Baxter permutations,
is to specify the maps PW and CP introduced in Section 2 to semi-Baxter permutations
(Ssb) and the corresponding families of walks (Wsb) and coalescent-walk processes (Csb).
While doing that, we further introduce a third map WCsb (different from WCSb) between
walks and coalescent-walk processes. Thus, we are going to properly define the following
new diagram

Ssb Wsb

Csb

PW

WCsb
CP

(5.1)

and again to show that this is a commutative diagram of bijections (see Theorem 5.7
below).
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We highlight that the strategy used in this section is step-by-step the same as the
one used for strong-Baxter permutations. Nevertheless, we need to repeat almost all
the combinatorial constructions given in Section 3 and to keep track of all the various
little modifications compared to the case of strong-Baxter permutations. These little
modifications will then be fundamental in Section 4 to determine the correct values of the
parameters ρ and q for the limiting skew Brownian permuton determined by semi-Baxter
permutations. As already mentioned in the introduction, semi-Baxter permutations
will present a different interesting phenomenon compared to the case of strong-Baxter
permutations. This phenomenon is explained in Remark 5.13.

5.1.1 Succession rule for semi-Baxter permutations and a corresponding fam-
ily of two-dimensional walks

Recall Definition 3.1. We will adopt again the following useful convention. Given a
semi-Baxter permutation π ∈ Snsb with x+ 1 active sites smaller than or equal to π(n) and
y + 1 active sites greater than π(n), we write

AS(π) = {s−x < · · · < s0} ∪ {s1 < · · · < sy+1},

where the first set corresponds to the x+ 1 active sites smaller than or equal to π(n) and
the second set corresponds to the y + 1 active sites greater than π(n).

In [13, Proposition 3] it was shown that the generating tree for semi-Baxter permuta-
tions can be defined by the following succession rule14:

Root label : (0, 0)

(h, k)→

{
(0, k + 1), (1, k + 1), . . . , (h, k + 1),

(h+ k + 1, 0), (h+ k, 1) . . . , (h+ 1, k),
for all h, k ≥ 0.

(5.2)

As in the case of strong-Baxter permutations, the Z2
≥0-valued statistic that determines

this succession rule is defined on every permutation σ ∈ Ssb by(
#{m ∈ AS(σ)|m ≤ σ(n)} − 1 , #{m ∈ AS(σ)|m > σ(n)} − 1

)
.

Using the strategy described in Section 2.1.2, we can define a bijection PW between
semi-Baxter permutations and the set of two-dimensional walks in the non-negative
quadrant, starting at (0, 0), with increments in

Isb := {(−i, 1) : i ≥ 0} ∪ {(i,−i+ 1) : i ≥ 1}. (5.3)

We denote with Wsb the set of two-dimensional walks in the non-negative quadrant,
starting at (0, 0), with increment in Isb.

We now investigate the relations between the increments of a walk W ∈ Wn
sb and the

active sites of the sequence of permutations:(
PW−1((Wi)i∈[1]),PW−1((Wi)i∈[2]), . . . ,PW−1((Wi)i∈[n])

)
.

First of all, it holds that PW−1((Wi)i∈[1]) is the unique permutation of size 1 and its
active sites are 1 and 2. Now assume that for some m < n, Wm = (x, y) ∈ Z2

≥0 and

PW−1((Wi)i∈[m]) = π. By definition, π has x+ 1 active sites smaller or equal to π(n) and
y + 1 active sites greater than π(n), i.e.,

AS(π) = {s−x < · · · < s0} ∪ {s1 < · · · < sy+1}.
14Note that the succession rule in our paper is obtained from the succession rule in [13, Proposition 3] by

shifting all the labels by a factor (−1,−1). This choice is more convenient for our purposes.
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We now distinguish two cases (for a proof of the following results see the proof of [13,
Proposition 3], compare also with Figure 9):

• Case 1: Wm+1 −Wm = (i,−i+ 1) for some i ∈ [y + 1].

In this case PW−1((Wi)i∈[m+1]) = π∗si and the active sites of π∗si are

{s−x < · · · < s0 < s1 < · · · < si} ∪ {si + 1, si+1 + 1 < · · · < sy+1 + 1}.

• Case 2: Wm+1 −Wm = (−i, 1) for some i ∈ {0} ∪ [x].

In this case PW−1((Wi)i∈[m+1]) = π∗s−i and the active sites of π∗s−i are

{s−x < · · · < s−i} ∪ {s−i + 1 < s1 + 1 < · · · < sy+1 + 1}.

An example of the construction above is given in Figure 9.

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (2, 1) (3, 1)

(1, 2) (4, 0) (0, 1) (2, 0)

(1, 0) (1, 0) (1, 0) (1, 0) (−2, 1) (1, 0) (−2, 1)

(3,−2) (−4, 1) (2,−1)

Figure 9: We consider the walk W ∈ W11
sb given by the eleven black Z2

≥0-labels in
the picture. The increments Wm+1 −Wm of the walk W are written in red between
two consecutive diagrams. For each black label Wm we draw the diagram of the
corresponding permutation PW−1((Wi)i∈[m]). On the right-hand side of each diagram
we draw with small circles the active sites of the permutation and we highlight in red
the site that will be activated by the corresponding red increment Wm+1 −Wm.

5.1.2 A coalescent-walk process for semi-Baxter permutations

We define a family of coalescent-walk processes driven by a set of two-dimensional walks
that containsWsb. We fix a (finite or infinite) interval I of Z. Let Wsb(I) denote the set
of two-dimensional walks indexed by I, with increments in Isb, and considered up to an
additive constant.

Definition 5.1. Let W ∈Wsb(I). The coalescent-walk process associated with W is the

family of walks WCsb(W ) = {Z(t)}t∈I , defined for t ∈ I by Z(t)
t = 0, and for all ` ≥ t such

that `+ 1 ∈ I,
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• Case 1: W`+1 −W` = (i,−i+ 1) for some i ≥ 1.

Z
(t)
`+1 =

{
Z

(t)
` − i+ 1, if Z

(t)
` − i+ 1 > 0 (and so Z(t)

` ≥ 0),

Z
(t)
` − i, otherwise.

(5.4)

• Case 2: W`+1 −W` = (−i, 1) for some i ≥ 0.

Z
(t)
`+1 =


Z

(t)
` + i, if Z

(t)
` < 0 and Z(t)

` + i < 0,

1, if Z
(t)
` < 0 and Z(t)

` + i ≥ 0,

Z
(t)
` + 1, otherwise.

(5.5)

WCsb is a mapping form Wsb(I) to C(I). We set Csb = WCsb(Wsb). Two examples, one
for a walk in Wsb(I) and one for a walk inWsb, can be found in Figure 10 and Figure 11.
We also give the following equivalent definition for later convenience.

Z(7)

Z(1)

X

Y −X Y,

t

−X Y,

t

,Z = {Z(t)}1≤t≤10

−X

Y

−X

Y

Figure 10: We explain the construction of a coalescent-walk process. Left: A two-
dimensional walk W = (Wt)t∈[10] = (Xt, Yt)t∈[10] ∈Wsb([10]). Middle: The two marginals
−X (in blue) and Y (in red). Right: The two marginals are shifted and the ten walks of
the coalescent-walk process are constructed in green.

Definition 5.2. Let W ∈Wsb(I) and denote by Wt = (Xt, Yt) for t ∈ I. The coalescent-
walk process associated with W is the family of walks WCsb(W ) = {Z(t)}t∈I , defined for

t ∈ I by Z(t)
t = 0, and for all ` ≥ t such that `+ 1 ∈ I,

Z
(t)
`+1 =


Z

(t)
` + (Y`+1 − Y`), if Z

(t)
` ≥ 0 and Z(t)

` + (Y`+1 − Y`) > 0,

Z
(t)
` − (X`+1 −X`), if

{
Z

(t)
` ≥ 0 and Z(t)

` + (Y`+1 − Y`) ≤ 0,

Z
(t)
` < 0 and Z(t)

` − (X`+1 −X`) < 0,

1, if Z
(t)
` < 0 and Z(t)

` − (X`+1 −X`) ≥ 0.

(5.6)

Remark 5.3. By definition, for all t ∈ I, Z(t)
` 6= 0 for all ` > t.

Remark 5.4. By definition, the process (Z
(t)
` )`≥t starts at zero at time t and then it can

be decomposed in alternating strictly positive and strictly negative excursions (after a
strictly positive excursion there is always a strictly negative excursion and vice-versa).
Note also that when the process passes from a strictly negative excursion to a strictly
positive excursion, the first value of the process in the new strictly positive excursion is
always 1.
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Yt + 1

−Xt − 1

2 4 8 5 6 10 19 3 117

1 2 3 4 6 7 9 105 8 11

Figure 11: The coalescent walk process WCsb(W ) for the walk W considered in Figure 9.
In purple we plot the corresponding semi-Baxter permutation CP((WCSb(W ))). Note
that the latter permutation is equal to the permutation PW−1(W ) obtained in the last
diagram in Figure 9.

Remark 5.5. The coalescent points of a coalescent-walk process obtained in this way
have y-coordinates that are always equal to 1.

Note that Definition 3.7 can be extended to semi-Baxter walks. We have the following
analogue of Lemma 3.9.

Lemma 5.6. Let W ∈ Wn
sb. Fix m ∈ [n], and consider the corresponding coalescent-walk

process CP(W|[m]
) = {Z(t)}t∈[m] =: Z and the corresponding semi-Baxter permutation

PW−1(W|[m]
) = π. Assume that Wm = (x, y) ∈ Z2

≥0, i.e. π has x+ 1 active sites smaller
than or equal to π(m) and y + 1 active sites greater than π(m), denoted by

{s−x < · · · < s0} ∪ {s1 < · · · < sy+1}.

Then

FV(Z) = {f−x < · · · < f−1 < f0 = 0 < f1 < · · · < fy} = [−x, y],

and in particular, f` − f`−1 = 1, for all ` ∈ [−x+ 1, y]. Moreover, it holds that

s` = 1 +
∑
j≤`−1

mult(fj), for all ` ∈ [−x, y + 1]. (5.7)

Proof. We prove the statement by induction over m.
For m = 1 then x = 0, y = 0, FV(Z) = {0} = {f0} and mult(f0) = 1. On the other

hand, π = 1 and the set of active sites is given by {s0 = 1, s1 = 2}. Note that (5.7) holds.
Now assume that 0 ≤ m < n and that Z and π verify the statement of the lemma. We

are going to show that also CP(W|[m+1]
) = {Z ′(t)}t∈[m+1] =: Z ′ and the corresponding

semi-Baxter permutation PW−1(W|[m+1]
) = π′ also verify the statement of the lemma. We

distinguish two cases:

• Case 1: Wm+1 −Wm = (i,−i + 1) for some i ∈ [y + 1] (see the right-hand side of
Figure 12).
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As explained in Section 5.1.1, in this case π′ = π∗si and its active sites are

{s′−x−i < · · · < s′0} ∪ {s′1 < · · · < s′y−i+2}.

where s′` = s`+i for ` ∈ [−x− i, 0] and s′` = s`+i−1 + 1 for ` ∈ [1, y − i+ 2].

On the other hand, looking at Case 1 in (5.1), we immediately have that

FV(Z ′) = {f ′−x−i < · · · < f ′−1 < f ′0 = 0 < f ′1 < · · · < f ′y−i+1} = [−x− i, y − i+ 1],

and mult(f ′0) = 1, mult(f ′`) = mult(f`+i) for all ` ∈ [−x − i,−1], and mult(f ′`) =

mult(f`+i−1) for all ` ∈ [1, y − i+ 1].

• Case 2: Wm+1 −Wm = (−i, 1) for some i ∈ {0} ∪ [x] (see the left-hand side of
Figure 12).

As explained in Section 5.1.1, in this case π′ = π∗s−i and its active sites are

{s′−x+i < · · · < s′0} ∪ {s′1 < · · · < s′y+2},

with s′` = s`−i for all ` ∈ [−x+ i, 0], s′1 = s−i+1, and s′` = s`−1 +1 for all ` ∈ [2, y+2].

On the other hand, looking at Case 2 in (5.1), we immediately have that

FV(Z ′) = {f ′−x+i < · · · < f ′−1 < f ′0 = 0 < f ′1 < · · · < f ′y+1} = [−x+ i, y + 1],

and mult(f ′0) = 1, mult(f ′1) =
∑0
`=−i mult(f`), mult(f ′`) = mult(f`−i) for all ` ∈

[−x+ i,−1], and mult(f ′`) = mult(f`−1) for all ` ∈ [2, y + 1].

With a straightforward computation, based on the expressions of the s′` and mult(f ′`) in
terms of s` and mult(f`), it can be checked that (5.7) holds.

Theorem 5.7. The diagram in (5.1) commutes.

The proof is identical to the one of Theorem 3.10, replacing Lemma 3.9 with
Lemma 5.6.

5.2 Probabilistic results for semi-Baxter permutations

Here we follow the same steps as in Section 4 specializing to the case of semi-Baxter
permutations. We will only explain the key-differences between the case of strong-Baxter
permutations and semi-Baxter permutations.

5.2.1 Sampling a uniform semi-Baxter permutation as a conditioned two-di-
mensional walk

We proceed as in Section 4.1. Consider the following probability measure on Isb (see
also the left-hand side of Figure 13):

µsb =

∞∑
i=0

αγi · δ(−i,1) +

∞∑
i=1

αγi · δ(i,−i+1), (5.8)

where α =
√

5− 2 and γ =
√
5−1
2 , and δ denotes the delta-Dirac measure. Let (X,Y ) be

a random variable such that Law(X,Y ) = µsb. With standard computations, one can
verify that:

E[X] = E[Y ] = 0, E[X2] = 2(2 +
√

5), E[Y 2] = 1 +
√

5, E[XY ] = −(2 +
√

5).

(5.9)
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7 8

(3, 1)
(−2, 1)

(1, 2)

(−2, 1)

98

(1, 2) (4, 0)
(3,−2)

(3,−2)(3,−2)

3

3

3

1

1

1

1

1 1

3

3

1

1

1

3

3

1

1

PW−1(W|[7])
PW−1(W|[8]) PW−1(W|[8])

PW−1(W|[9])

1
2
3
4
5

8

1
2
3

6

9

1
2
3

6

9

1
2
3

6

9
10

Figure 12: Left: The final steps of the coalescent-walk process WCsb(W|[8]) in Figure 11

and the corresponding permutations PW−1(W|[7]) and PW−1(W|[8]) from Figure 9 with
the values of the active sites highlighted in cyan. We have that W8 −W7 = (−2, 1). Note
that FV(WCsb(W|[7])) = [−3, 1] and from Figure 11, we can determine that mult(−3) =

mult(−2) = mult(−1) = mult(0) = 1 and mult(1) = 3 (these numbers are plotted in orange
close to the final values of the various walks). Note also that FV(WCsb(W|[8])) = [−1, 2]

and we have that mult(−1) = mult(0) = 1, mult(1) = 3 and mult(2) = 3. Right: The final
steps of the coalescent-walk process WCsb(W|[9]) in Figure 11 and the corresponding

permutations PW−1(W|[8]) and PW−1(W|[9]) from Figure 9. We have that W9 −W8 =

(3,−2). As above, FV(WCsb(W|[8])) = [−1, 2] and mult(−1) = mult(0) = 1, and mult(1) =

mult(2) = 3. Note also that FV(WCsb(W|[9])) = [−4, 0] and we have that mult(−4) =

mult(−3) = 1, mult(−2) = mult(−1) = 3, and mult(0) = 1. One can check, comparing the
orange and cyan numbers, that in both cases (5.7) holds.

Therefore

Var((X,Y )) =

(
2(2 +

√
5) −(2 +

√
5)

−(2 +
√

5) 1 +
√

5

)
(5.10)

and so ρ = Cor((X,Y )) = − 1+
√
5

4 . We now denote by

←
Isb:= {(i,−1) : i ≥ 0} ∪ {(−i, i− 1) : i ≥ 1}, (5.11)

i.e. the set of “reversed” increments (recall the definition of the set Isb in (5.3)). We
further denote by

←
µsb=

∞∑
i=0

αγi · δ(i,−1) +

∞∑
i=1

αγi · δ(−i,i−1), (5.12)

the “reversed” distribution on
←
Isb induced by µsb (see also the right-hand side of Fig-

ure 13).
For all n ∈ Z>0, we define the following additional probability measure

νnsb =
1

Zn

∑
(h,`)∈Lnsb

γ2`+hδ(h,`), (5.13)

where Lnsb := {Labels at level n in the generating tree for semi-Baxter permutations}
and the normalizing constant satisfies Zn =

∑
(h,`)∈Lnsb

γ2`+h.

Let (
←
Wn (i))i≥1 be a two-dimensional random walk with increments distributed as

←
µsb and starting probability νnsb(h, `) = P(

←
Wn (1) = (h, `)). Denote by

←
Wn
sb the set of
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ααγαγ2αγ3

αγ4

αγ3

αγ

αγ2

α αγ αγ2 αγ3

αγ4

αγ3

αγ

αγ2

Figure 13: Left: Some of the increments in the set Isb are plotted together with the

corresponding probability weights given by µsb. Right: Some increments in the set
←
Isb

are plotted together with the corresponding probability weights given by
←
µsb.

two-dimensional walks (xi)i∈[n] in the non-negative quadrant with increments in
←
Isb and

such that xn = (0, 0).

Proposition 5.8. Conditioning on the event

{
(
←
Wn (i))i∈[n] ∈

←
Wn
sb

}
, the walk (

←
Wn (i))i∈[n]

is a uniform walk in
←
Wn
sb.

Proof. Fix (xi)i∈[n] ∈
←
Wn
sb. It is enough to show that P

(
(
←
Wn (i))i∈[n] = (xi)i∈[n]

)
is inde-

pendent of the choice of (xi)i∈[n]. To do that, assume that the walk (xi)i∈[n] is formed by
k increments of the form (−i, i−1) and n−k−1 increments of the form (i,−1). Moreover,
assume that the sum of the k increments of the form (−i, i− 1) is equal to (−s, s− k) and
the sum of the n− k − 1 increments of the form (i,−1) is equal to (q,−n+ k + 1). Under
these assumptions we have that if x1 = (h, `) then xn = (h− s+ q, `+ s− n+ 1). Since

(xi)i∈[n] ∈
←
Wn
sb, it must hold that (h− s+ q, `+ s− n+ 1) = (0, 0) and so s = n− 1− ` and

q = n− 1− `− h, in particular s+ q = 2n− 2`− h− 2.
Under these assumptions,

P

(
(
←
Wn (i))i∈[n] = (xi)i∈[n]

)
= νnsb(h, `) · αn−1 · γs+q

=
γ2`+h

Zn
· αn−1 · γ2n−2`−h−2 =

αn−1 · γ2n−2

Zn
, (5.14)

and this concludes the proof.

Let (Wn(i))i≥1 be the reversed walk obtained from (
←
Wn (i))i≥1. A consequence of

Proposition 5.8 is the following.

Corollary 5.9. Conditioning on the event
{

(Wn(i))i∈[n] ∈ Wn
sb

}
, the walk (Wn(i))i∈[n] is

a uniform walk inWn
sb.

5.2.2 Scaling limit of the conditioned two-dimensional walks for semi-Baxter
permutations

We define a rescaled version of the walk (Wn(i))i≥1 = (Xn(i),Yn(i))i≥1: for all n ≥ 1, let
Wn : [0, 1]→ R2 be the continuous process that linearly interpolates the following points

Wn

(
k

n

)
=

 Xn(k)√
2(2 +

√
5)n

,
Yn(k)√

(1 +
√

5)n

 , for all k ∈ [n].
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Proposition 5.10. Conditioning on the event
{

(Wn(i))i∈[n] ∈ Wn
sb

}
, the following con-

vergence in the space C([0, 1],R2) holds

Wn
d−−−−→

n→∞
Eρ, (5.15)

where ρ = − 1+
√
5

4 .

The proof of this proposition is identical to the proof of Proposition 4.4 using the
expression for ρ given below (5.10).

5.2.3 Scaling limit of coalescent-walk processes and semi-Baxter permutations

Let W = (X,Y ) = (X(k),Y (k))k∈Z be a random bi-infinite two-dimensional walk with
step distribution µsb defined in (5.8), and let Z = WC(W ) be the corresponding discrete

coalescent-walk process. For convenience, we set Z
(j)

i = 0 for i, j ∈ Z, i < j.
We further define the following rescaled processes: for all n ≥ 1, u ∈ R, let Wn : R→

R2, and Z(u)

n : R→ R be the continuous processes that interpolate the following points:

Wn

(
k

n

)
=

 X(k)√
2(2 +

√
5)n

,
Y (k)√

(1 +
√

5)n

 , for all k ∈ Z, (5.16)

and

Z(u)

n

(
k

n

)
=


Z

(dnue)
k√

(1+
√
5)n

, when Z
(dnue)
k ≥ 0,

Z
(dnue)
k√

2(2+
√
5)n

, when Z
(dnue)
k ≤ 0,

for all k ∈ Z. (5.17)

Recall that Wρ = (X ρ,Yρ) denotes a two-dimensional Brownian motion of correlation
ρ.

Theorem 5.11. Fix u ∈ R. The following joint convergence in the space C(R,R)3 holds:(
Wn,Z

(u)

n

)
d−−−−→

n→∞

(
Wρ,Z

(u)

ρ,q

)
, (5.18)

where

ρ = −1 +
√

5

4
and q =

1

2
, (5.19)

and Z(u)

ρ,q is the solution of the SDE in (4.24) driven by Wρ.

Theorem 5.11 follows from the following lemma, as Theorem 4.5 follows from Propo-
sition 4.6. Therefore we just give the proof of the following result.

Proposition 5.12. Fix u ∈ R. We have the following convergence in C(R,R):

Z(u)

n
d−−−−→

n→∞
B(u)

, (5.20)

where B(u)
(t) = 0 for t < u and B(u)

q (t) is a Brownian motion for t ≥ u.

Remark 5.13. We highlight a remarkable difference with the case of strong-Baxter
permutations: the walks of the continuous coalescent-walk process for semi-Baxter per-
mutations are classical Brownian motions. This was also the case of Baxter permutations
(see [11, Theorem 4.5 and Remark 4.3]), but there is a substantial difference between
the walks of the discrete coalescent-walk process associated with Baxter permutations
and the ones associated with semi-Baxter permutations: in [11, Proposition 3.3.] we
proved that the walks of the discrete coalescent-walk process associated with Baxter
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permutations are simple random walks with a specific step distribution that is centered.
On the contrary the walks of the discrete coalescent-walk process associated with semi-
Baxter permutations are not even martingales (this can be checked with a standard

computation using (5.8) and (5.1)). This will force us to first show that Z(u)

n converges
in distribution to a skew Brownian motion (using some arguments similar to the ones
already used for strong-Baxter permutations) and then to deduce that its parameter is
1/2, concluding that it is actually a classical Brownian motion.

In simple words, we can summarize the discussion above as follows:

• walks of the coalescent-walk process for Baxter permutations are symmetric both
in the discrete and in the continuum limit;

• walks of the coalescent-walk process for semi-Baxter permutations are not sym-
metric in the discrete case but they become symmetric in the continuum limit;

• walks of the coalescent-walk process for strong-Baxter permutations are not sym-
metric both in the discrete and in the continuum limit.

Proof of Proposition 5.12. As explained in Remark 5.13, we prove that Z(u)

n
d−−−−→

n→∞
B(u)

1/2,

where B(u)

1/2(t) = 0 for t < u and B(u)

1/2(t) is a skew Brownian motion for t ≥ u of parameter
1/2.

We only consider the case u = 0, the general proof being similar. Again we just prove

convergence of one-dimensional marginal distributions. We recall that Zn := Z(0)

n : R→
R is the continuous process defined by linearly interpolating the following points:

Zn

(
k

n

)
=

{
Zk
σ′
√
n
, when Zk ≥ 0,

Zk
σ
√
n
, when Zk ≤ 0,

for all k ∈ Z. (5.21)

where Zk := Z
(0)

k , and σ′ =
√

1 +
√

5 and σ =
√

2(2 +
√

5). For the rest of the proof we
fix a non-negative and Lipschitz continuous function ϕ with compact support. We want
to show that for all t ≥ 0,

E
[
ϕ
(
Zn(t)

)]
→ 1/2

∫ +∞

0

ϕ(y)
2e−y

2/2t

√
2πt

dy + 1/2

∫ 0

−∞
ϕ(y)

2e−y
2/2t

√
2πt

dy. (5.22)

Since ϕ is Lipschitz continuous it is enough to study

E

[
ϕ

(
Zbntc

σ′
√
n

)
;Zbntc > 0

]
and E

[
ϕ

(
Zbntc

σ
√
n

)
;Zbntc < 0

]
. (5.23)

As before, we just explicitly detail the computations for the first expectation. It can be
decomposed as (recall Remark 5.4)

E

[
ϕ

(
Zbntc

σ′
√
n

)
;Zbntc > 0

]
=

bntc∑
k=0

+∞∑
`=0

E

[
ϕ

(
Zbntc

σ′
√
n

)
; τ+
` = k, (Zi)i∈[k+1,bntc] > 0

]
,

(5.24)
where τ+

0 = 0 and τ+
`+1 = inf{i ≥ τ+

` : Zi−1 < 0,Zi = 1} for all ` ∈ Z≥0. Note that for all
` ∈ Z≥0, using the definition in (5.6) we have that

(Zbntc; τ
+
` = k, (Zi)i∈[k+1,bntc] > 0)

d
= (1 + Sbntc−k; τ+` = k, (1 + Si)i∈[bntc−k] > 0),
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where (Si)i≥0 denotes a random walk started at zero at time zero, with step distribution
equal to the distribution of Y (1)− Y (0), and independent of τ+

` .Therefore we can write

E

[
ϕ

(
Zbntc

σ′
√
n

)
;Zbntc > 0

]

=

bntc∑
k=0

(
+∞∑
`=0

P(τ+
` = k)

)
E

[
ϕ

(
1 + Sbntc−k

σ′
√
n

)
; (1 + Si)i∈[bntc−k] > 0

]

=

bntc∑
k=0

(
+∞∑
`=0

P(τ+
` = k)

)
E

[
ϕ

(
1 + Sbntc−k

σ′
√
n

)∣∣∣∣(1 + Si)i∈[bntc−k] > 0

]
· P
(
(1 + Si)i∈[bntc−k] > 0

)
. (5.25)

We now focus on studying P(τ+
` = k). Note that (τ+

` )`∈Z≥2
are all equidistributed, but

τ+
1 has a slightly different distribution (because Zτ+

0
= Z0 = 0 but Zτ+

`
= 1 for all

` ∈ Z≥1). We have the following result.

Lemma 5.14. As k →∞,

P(τ+
2 = k) ∼ β

k3/2
, (5.26)

where

β =
1√
2π

1

1− γ

(
1

σ′
+

1 + γ

σ

)
. (5.27)

Proof. Recall that Zτ+
1

= 1. Using Observations 5.3 and 5.4, we can write (see also
Figure 14)

P(τ+
2 = k) =

k−2∑
s=0

∑
y∈Z>0

y′,y′′∈Z<0

P(Zs = y, (Zi)i∈[s] > 0)P(Zs+1 −Zs = y′ − y)

P(Zk−1 = y′′, (Zi)i∈[s+1,k−1] < 0|Zs+1 = y′)P(Zk −Zk−1 = 1− y′′). (5.28)

0 h
h+ 1 k − 1

k

y

y′′

y′

1

Figure 14: A schema for the event
{
τ+
2 = k

}
.

Using the definition in (5.6) and letting:

• (Si)i≥0 be a random walk started at zero at time zero, with step distribution equal
to the distribution of Y (1)− Y (0),
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• (S′i)i≥0 be a random walk started at zero at time zero, with step distribution equal
to the distribution of −(X(1)−X(0)),

• (Si)i≥0 is independent of (S′i)i≥0,

we can rewrite the previous expression as

P(τ+
2 = k) =

k−2∑
s=0

∑
y∈Z>0

y′,y′′∈Z<0

P(1 + Sh = y, (1 + Si)i∈[s] > 0)P(Y (1)− Y (0) = y′ − y + 1)

P(y′ + S′k−s−2 = y′′, (y′ + S′i)i∈[k−s−2] < 0)P(−(X(1)−X(0)) ≥ −y′′). (5.29)

We now focus on
∑k−2
s=0 P(1+Ss=y, (1+Si)i∈[s] > 0)P(y′+S′k−s−2 = y′′, (y′+S′i)i∈[k−s−2] <

0). From [14, Theorem 6] we know that as m→∞,

P(1 + Sm = y, (1 + Si)i∈[m] > 0) ∼ c1

σ′
√

2π

h̃(y)

m3/2
, (5.30)

P(y′ + S′m = y′′, (y′ + S′i)i∈[m] < 0) ∼ c2

σ
√

2π

h′(y′)h̃′(y′′)

m3/2
,

P(1 + Sm = y, (1 + Si)i∈[m] > 0) ≤ C h̃(y)

m3/2
, for all y ∈ Z>0,

P(y′ + S′m = y′′, (y′ + S′i)i∈[m] < 0) ≤ Ch
′(y′)h̃′(y′′)

m3/2
, for all y′, y′′ ∈ Z<0,

where h̃, h′ and h̃′ are the functions defined in (D.1) for the walks −Sm, S′m and −S′m
respectively, and

c1 =
E[−SN ]∑

z∈Z>0
h̃(z)P(S1 ≤ −z)

and c2 =
E[S′N ′ ]∑

z∈Z<0
h̃′(z)P(S′1 ≥ −z)

, (5.31)

with N := inf{n > 0|Sn < 0} and N ′ := inf{n > 0|S′
n > 0}.

Using Proposition C.1 and the estimates above, we have, as k →∞,

k−2∑
s=0

P(1 + Ss = y, (1 + Si)i∈[s] > 0)P(y′ + S′k−s−2 = y′′, (y′ + S′i)i∈[k−s−2] < 0)

∼ 1√
2πk3/2

C(y, y′, y′′), (5.32)

where C(y, y′, y′′) is equal to

c1 · h̃(y)

σ′

( ∞∑
s=0

P(y′ + S′s = y′′, (y′ + S′i)i∈[s] < 0)

)

+
c2 · h′(y′)h̃′(y′′)

σ

( ∞∑
s=0

P(1 + Ss = y, (1 + Si)i∈[s] > 0)

)
. (5.33)

Therefore, using the last two uniform bounds in (5.30), we can conclude that

P(τ+
2 = k) ∼ 1

k3/2
1√
2π

·
∑
y∈Z>0

y′,y′′∈Z<0

P(Y (1)− Y (0) = y′ − y + 1)P(−(X(1)−X(0)) ≥ −y′′)C(y, y′, y′′) =
β

k3/2
.

(5.34)
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We finally simplify the expression for β in order to obtain the expression in (5.27). Note
that

∞∑
s=0

∑
y′′∈Z<0

P(−(X(1)−X(0)) ≥ −y′′)P(y′ + S′s = y′′, (y′ + S′i)i∈[s] < 0)

=

∞∑
s=0

P(y′ + S′s+1 ≥ 0, (y′ + S′i)i∈[s] < 0) = 1, (5.35)

because a symmetric random walk started at y′ becomes eventually non-negative almost
surely. Using the latter identity and substituting the expressions of c1 and c2 given
in (5.31), we obtain that

β =
1√
2π

(
E [SN ]

σ′

+
E [S′N ′ ]

σ

∑
y∈Z>0

y′∈Z<0

h′(y′)P(Y (1)−Y (0) = y′− y+ 1)

∞∑
s=0

P(1 +Ss = y, (1 +Si)i∈[s] > 0)

)
.

(5.36)

Noting that∑
y∈Z>0

P(Y (1)−Y (0) = y′−y+1)P(1+Ss = y, (1+Si)i∈[s] > 0) = P(Ss+1 = y′, (Si)i∈[s]≥0),

(5.37)
we obtain the new simplified expression

β =
1√
2π

E [SN ]

σ′
+
E [S′N ′ ]

σ

∞∑
s=0

∑
y′∈Z<0

h′(y′)P(Ss+1 = y′, (Si)i∈[s] ≥ 0)

 . (5.38)

We now compute an expression for the function h′(x) defined in (D.1) for the walk S′m,

h′(x) =

{
1 +

∑+∞
j=1 P(S′1

N ′ + · · ·+ S′j
N ′ < −x) if x < 0,

0 otherwise,
(5.39)

where the (S′j
N ′)j∈Z≥1

are i.i.d. copies of S′
N ′ . Recall that

µsb =

∞∑
i=0

αγi · δ(−i,1) +

∞∑
i=1

αγi · δ(i,−i+1), (5.40)

where α =
√

5− 2 and γ =
√
5−1
2 . Therefore

P(X(1)−X0 = z) = αγ|z| for all z ∈ Z, (5.41)

and

P(Y (1)− Y (0) = z) = αγ|z|+1 for all z ∈ Z≤0,

P(Y (1)− Y (0) = 1) =
α

1− γ
. (5.42)
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From Lemma D.2 we have that P(S′
N ′ = x) = (1− γ)γx−1, for all x ∈ Z>0. Therefore, for

all j, z ∈ Z>0,

P(S′1
N ′ + · · ·+ S′j

N ′ = z) =
∑

z1,...,zj>0
z1+···+zj=z

P(S′1
N ′ = z1, . . . ,S

′j
N ′ = zj)

=
∑

z1,...,zj>0
z1+···+zj=z

(1− γ)jγz−j = 1{j≤z}(1− γ)jγz−j
(
z − 1

j − 1

)
. (5.43)

Therefore for all x ∈ Z<0,

+∞∑
j=1

P(S′1
N ′ + · · ·+ S′j

N ′ < −x) =

+∞∑
j=1

−x−1∑
z=1

P(S′1
N ′ + · · ·+ S′j

N ′ = z)

=

−x−1∑
z=1

γz
z∑
j=1

(1− γ)jγ−j
(
z − 1

j − 1

)
= (1 + x)(γ − 1), (5.44)

and we can conclude that

h′(x) =

{
γ + (γ − 1)x if x < 0,

0 otherwise.
(5.45)

Therefore

β =
1√
2π

E[−SN ]

σ′
+
E[S′N ′ ]

σ

∑
y′∈Z<0

(γ + (γ − 1)y′)

∞∑
s=1

P(Ss = y′, (Si)i∈[s−1] ≥ 0)


=
E[−SN ]√

2π

 1

σ′
+

(1− γ)

σ

∑
y′∈Z<0

(γ + (γ − 1)y′)γ−y
′−1


=
E[−SN ]√

2π

(
1

σ′
+

1 + γ

σ

)
=

1√
2π

1

1− γ

(
1

σ′
+

1 + γ

σ

)
, (5.46)

where we also used that P(SN = −x) = (1− γ)γx−1 = P(S′N ′ = x) and that E[−SN ] =
1

1−γ as a consequence of Lemma D.2 together with the expressions in (5.41) and (5.42).

Corollary 5.15. As k → +∞,

+∞∑
`=0

P(τ+
` = k) ∼ 1

β

1

2π
√
k
. (5.47)

Proof. With some simple modifications of the computations in the proof of Lemma 5.14,
one can show that

√
k ·P(τ+

1 = k)→ 0. Then, it is enough to use the same proof used for
Corollary 4.8.

With this result in our hands we can now continue to estimate (5.25). With the same
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argument used for (4.60), we have that

E

[
ϕ

(
Zbntc

σ′
√
n

)
;Zbntc > 0

]

=

bntc∑
k=0

(
+∞∑
`=0

P(τ+
` = k)

)
E

[
ϕ

(
1 + Sbntc−k

σ′
√
n

)∣∣∣∣(1 + Si)i∈[bntc−k] > 0

]
· P
(
(1 + Si)i∈[bntc−k] > 0

)
=

∫ t

0

f+n (s)ds+O(1/
√
n), (5.48)

where for 1 ≤ k ≤ bntc − 1 and s ∈ [ kn ,
k+1
n ),

f+n (s) := n

(
+∞∑
`=0

P(τ+
` = k)

)
E

[
ϕ

(
1 + Sbntc−k

σ′
√
n

)∣∣∣∣(1 + Si)i∈[bntc−k] > 0

]
· P
(
(1 + Si)i∈[bntc−k] > 0

)
. (5.49)

and f+n (s) := 0 on (0, 1
n ) ∪ [ bntc−1n , t). Using that (as in (4.61))

E

[
ϕ

(
1 + Sbntc

σ′
√
n

)∣∣∣∣(1 + Si)i∈[bntc] > 0

]
∼ 1

t

∫ +∞

0

ϕ(u)ue−u
2/2tdu, (5.50)

and that from Lemma D.1,

P
(
(1 + Si)i∈[n] > 0

)
∼ 2

E[−SN ]

σ′
√

2π

1√
n
, (5.51)

together with Corollary 5.15, we obtain that for all s ∈ (0, t),

f+n (s) ∼ n 1

β

1

2π
√
n
√
s

1

t− s

∫ +∞

0

ϕ(u)ue−u
2/2(t−s)du · 2E[−SN ]

σ′
√

2π

h(1)
√
n
√
t− s

=
E[−SN ]

σ′
√

2πβ

1

π
√
s(t− s)(t− s)

∫ +∞

0

ϕ(u)ue−u
2/2(t−s)du. (5.52)

Therefore, using the same arguments used for (4.65), we can conclude that

E

[
ϕ

(
Zbntc

σ′
√
n

)
;Zbntc > 0

]
n→∞−−−−→ E[−SN ]

σ′
√

2πβ

∫ +∞

0

ϕ(y)
2e−y

2/2t

√
2πt

dy. (5.53)

Using the expression β = E[−SN ]√
2π

(
1
σ′ + 1+γ

σ

)
in (5.46), we can conclude that

q =
E[−SN ]

σ′
√

2πβ
=

1
σ′

1
σ′ + 1+γ

σ

=
1

2
, (5.54)

where in the last equality we used that σ′ =
√

1 +
√

5, σ =
√

2(2 +
√

5), and γ =
√
5−1
2 .

The proof of Theorem 1.7 follows from Theorem 5.11 using exactly the same strategy
explained in Sections 4.3.2 and 4.4.
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A An upper-bound for some local probabilities for random walks
in cones

We fix some notation being consistent with the notation used in [14] in order to help
the reader to follow the proof of Proposition A.1. Let S(n) be a random walk on Rd,
d ≥ 1, where

S(n) := X1 + · · ·+Xn,

and (Xi)i is a family of i.i.d. copies of a random variable X = (X(1), . . . ,X(d)) with
values in Rd. Denote by Sd−1 the unit sphere of Rd and Σ an open and connected subset
of Sd−1. Let K be the cone generated by the rays emanating from the origin and passing
through Σ, that is, Σ = K ∩ Sd−1. Let τx be the exit time from K of the random walk
with starting point x ∈ K, that is,

τx := inf{n ≥ 1 : x+ S(n) /∈ K}.

We make the same assumptions on K as in [14] (see in particular bottom of page 994).
We also recall that the choice of the cone K determines a corresponding parameter p
(see the equations from (2) to (3) in [14] for a precise definition) that plays an important
role in many formulas in [14].

We also impose, as in [14], the following assumptions on the increments of the random
walk:

• E[X(j)] = 0, E[(X(j))2] = 1, j = 1, . . . , d. In addition, we assume that cov(Xi,Xj) =

0.15

• We assume that E[Xα] = 0 with α = p if p > 2 and some α > 2 if p ≤ 2.

In [14, Lemma 28] it was shown that

P(x+ S(n) = y, τx > n) ≤ C(x, y)n−p−d/2, for all n ∈ Z>0 and x, y ∈ K.

In this section, we want to make explicit the dependence in x and y of the constant
C(x, y).

Proposition A.1. There exists a constant C > 0 independent of x, y, n such that

P(x+ S(n) = y, τx > n) ≤ C(1 + |x|p)(1 + |y|p)n−p−d/2, for all n ∈ Z>0 and x, y ∈ K.

In what follows C denotes any constant (possibly different from place to place)
independent of x, y, n.

Proof. From [14, Lemma 27],

P(x+ S(n) = y, τx > n) ≤ C · n−d/2 · P(τx > n/2).

If we show that
P(τx > n) ≤ C(1 + |x|p)n−p/2, (A.1)

then using exactly the same proof as in [14, Lemma 28] we can conclude that

P(x+ S(n) = y, τx > n) ≤ C(1 + |x|p)(1 + |y|p)n−p−d/2, for all n ∈ Z>0 and x, y ∈ K.

Therefore it is enough to prove (A.1). Note that for all ε > 0,

P(τx > n) = P(τx > n,νn ≤ n1−ε) + P(τx > n,νn > n1−ε), (A.2)

15See the bottom part of page 996 in [14] for a discussion on the case cov(Xi,Xj) 6= 0 and the fact that
assuming cov(Xi,Xj) = 0 does not restrict the generality of the results.
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where
νn := min{k ≥ 1 : x+ S(k) ∈ Kn,ε},

and
Kn,ε := {x ∈ K : dist(x, ∂K) ≥ n1/2−ε}.

By [14, Lemma 14]
P(τx > n,νn > n1−ε) ≤ exp{−Cnε}. (A.3)

Therefore, in order to conclude the proof, we have to show that

P(τx > n,νn ≤ n1−ε) ≤ C(1 + |x|p)n−p/2. (A.4)

By [14, Equation (50)],

P(τx > n,νn ≤ n1−ε) ≤ C · n−p/2
(
E
[
u(x+ S(νn)); τx > νn,νn ≤ n1−ε

]
+ E

[
|x+ S(νn)|p; τx > νn, |x+ S(νn)| > n−ε/8

√
n,νn ≤ n1−ε

] )
, (A.5)

where u(x) is a function defined in [14, Equation (3)] that satisfies 0 ≤ u(x) ≤ C|x|p. We
have the following results (whose proof is postponed after the end of the proof of this
proposition).

Claim A.2. It holds that

E
[
u(x+ S(νn)); τx > νn,νn ≤ n1−ε

]
≤ C(1 + |x|p).

Claim A.3. It holds that

E
[
|x+ S(νn)|p; τx > νn, |x+ S(νn)| > n−ε/8

√
n,νn ≤ n1−ε

]
≤ C(1 + |x|p).

Note that (A.4) then follows from (A.5) and the two claims above. This concludes the
proof of Proposition A.1.

It remains to prove Claims A.2 and A.3.

Proof of Claim A.2. From the proof of [14, Lemma 21] we have that

E
[
u(x+ S(νn)); τx > νn,νn ≤ n1−ε

]
= E

[
Yνn ; τx > νn,νn ≤ n1−ε

]
+ E

[
νn−1∑
k=0

f(x+ S(k)); τx > νn,νn ≤ n1−ε
]
, (A.6)

where Yn is a martingale defined by (see [14, Equation (20)])

Y0 = v(x), (A.7)

Yn = v(x+ S(n))−
n−1∑
k=0

f(x+ S(k)), n ≥ 0, (A.8)

with v(·) and f(·) two functions defined in [14, Section 1.3]. We have that the second
expectation in the right-hand side of (A.6) is bounded by

E

[
νn−1∑
k=0

f(x+ S(k)); τx > νn,νn ≤ n1−ε
]
≤ E

[
τx−1∑
k=0

|f(x+ S(k))|; τx > νn

]
≤ C(1 + |x|p),

(A.9)
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where the last bound follows from [14, Equation (24)]. For the first expectation in the
right-hand side of (A.6), we can write using the computations after [14, Equation (52)],

E
[
Yνn ; τx > νn,νn ≤ n1−ε

]
= u(x)− E

[
Yτx ; τx ≤ νn ∧ n1−ε

]
− E

[
u(x+ S(n1−ε)); τx > n1−ε,νn > n1−ε

]
+ E

n1−ε−1∑
k=0

f(x+ S(k)); τx > n1−ε,νn > n1−ε

 , (A.10)

where x ∧ y = min{x, y}. It remains to bound the four terms above. As we already
mentioned 0 ≤ u(x) ≤ C|x|p, so it is enough to find an appropriate bound for the second
and fourth expectations. Recalling the definition of Yn in (A.7) and using the bounds in
[14, Equations (22) and (24)] we have that∣∣E [Yτx ; τx ≤ νn ∧ n1−ε

]∣∣ ≤ C(1 + |x|p). (A.11)

Finally, for the fourth expectation in the left-hand side of (A.10) we can use the same
arguments already used for (A.9) to obtain that

E

n1−ε−1∑
k=0

f(x+ S(k)); τx > n1−ε,νn > n1−ε

 ≤ C(1 + |x|p). (A.12)

This concludes the proof.

Proof of Claim A.3. As in the proof of [14, Lemma 24] we set

µn := min{j ≥ 1 : |Xj | > n1/2−ε/4}, (A.13)

and we write

E
[
|x+ S(νn)|p;τx > νn, |x+ S(νn)| > n−ε/8

√
n,νn ≤ n1−ε

]
(A.14)

=E
[
|x+ S(νn)|p; τx > νn, |x+ S(νn)| > n−ε/8

√
n,νn ≤ n1−ε,µn ≤ νn

]
(A.15)

+E
[
|x+ S(νn)|p; τx > νn, |x+ S(νn)| > n−ε/8

√
n,νn ≤ n1−ε,µn > νn

]
.

(A.16)

From the beginning of the proof of [14, Lemma 24] we have that the second expectation
in the right-hand side of the equation above is bounded by exp{−Cnε/8}, therefore
we focus on the first expectation above. Using the first displayed equation after [14,
Equation (59)] we have that

E
[
|x+ S(νn)|p; τx > νn, |x+ S(νn)| > n−ε/8

√
n,νn ≤ n1−ε,µn ≤ νn

]
≤
n1−ε∑
j=1

E
[
|x+ S(νn)|p; τx > j,νn ≤ n1−ε, j ≤ νn,µn = j

]
. (A.17)

We split the sum above in three parts using the bound

|x+ S(νn)|p ≤ C (|x+ S(j − 1)|p + |Xj |p + |S(νn)− S(j)|p) . (A.18)

EJP 27 (2022), paper 158.
Page 47/53

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP886
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The permuton limit of strong-Baxter and semi-Baxter permutations

For the third term we have that

n1−ε∑
j=1

E
[
|S(νn)− S(j)|p; τx > j,νn ≤ n1−ε, j ≤ νn,µn = j

]
≤

{
Cn−pε/4E[|X|p]E[τx] ≤ Cn−pε/4(1 + |x|2), if p > 2,

C(1 + |x|p)n−δ, with δ > 0, if p ≤ 2,
(A.19)

where the bound for p > 2 is obtained using the first and third equations at page 1026 of
[14] and [14, Lemma 10], while the bound for p ≤ 2 is obtained using the first, fourth
and fifth equation at page 1026 of [14] and [14, Lemma 10].

For the second term we have that

n1−ε∑
j=1

E
[
|Xj |p; τx>j,νn≤n1−ε, j≤νn,µn = j

]
≤

{
C(1 + |x|2) · o(1), if p > 2,

C(1 + |x|p)n−δ, with δ > 0, if p ≤ 2,

(A.20)
where the bounds are obtained from the equations on top of page 1027 in [14].

For the first term we have that

n1−ε∑
j=1

E
[
|x+ S(j − 1)|p; τx > j,νn ≤ n1−ε, j ≤ νn,µn = j

]
≤

{
2p(|x|pdn−ε/2 + Cn3p/2+1 exp{−Cnε/8}+ Cn−pε/4(1 + |x|2)), if p > 2,

2p(|x|pdn−ε/2 + Cn3p/2+1 exp{−Cnε/8}+ C(1 + |x|p)n−δ), if p ≤ 2,
(A.21)

where the bounds are obtained from Equation (63) and the three consecutive equations
in [14] and the same bounds used for (A.19). These three bounds conclude the proof.

B A toolbox for strong-Baxter walks

In this section we rewrite Proposition A.1 using the notation and the specific random
walks considered in Section 4.1.

Recall that (Wn(i))i≥1 is a random walk with increments in

ISb := {(−i, 0) : i ≥ 1} ∪ {(0, 1)} ∪ {(1,−i) : i ≥ 0}. (B.1)

and with step distribution

µSb =

∞∑
i=1

αγi · δ(−i,0) + αθ−1 · δ(0,1) +

∞∑
i=0

αγ−1θi · δ(1,−i), (B.2)

where the various parameters are given below (4.2). Recall also thatWn
Sb denotes the set

of two-dimensional walks in the non-negative quadrant, starting at (0, 0), with increments
in ISb. Therefore, setting K = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0}, we have that

P
(
(Wn(i))i∈[n] ∈ Wn

Sb

∣∣Wn(n) = (h, `)
)

= P

(
←
Wn (n) = (0, 0), (

←
Wn (i))i∈[n] ∈ K

∣∣∣∣ ←Wn (1) = (h, `)

)
, (B.3)

where we recall that (
←
Wn (i))i∈[n] is the time-reversed walk obtained from (Wn(i))i∈[n].

Therefore we have the following reinterpretation of Proposition A.1.
Let p > 0 be the parameter previously described in Section A associated with the

walk (Wn(i))i≥1 and the cone K (we do not need its explicit expression).
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Corollary B.1. There exists a constant C > 0 independent of h, `, n such that

P
(
(Wn(i))i∈[n] ∈ Wn

Sb

∣∣Wn(n) = (h, `)
)
≤ C(1 + |(h, `)|p)n−p−1, for all n, h, ` ∈ Z≥0,

(B.4)
where |(h, `)| denotes the Euclidean norm of the vector (h, `).

We also state the following consequence of [14, Theorem 6].

Corollary B.2. Fix h, ` ∈ Z≥0. There exists a constant C > 0 independent of n such that

P
(
(Wn(i))i∈[n] ∈ Wn

Sb

∣∣Wn(n) = (h, `)
)
≥ Cn−p−1, for all n ∈ Z≥0. (B.5)

C Asymptotic estimates

Proposition C.1. Let (an)n∈Z≥0
and (bn)n∈Z≥0

be two sequences of positive numbers
such that for some α > 1:

• an ∼ a · n−α, for some a > 0;

• bn ∼ b · n−α, for some b > 0;

Then as n→∞,
n∑
k=0

ak · bn−k ∼ n−α
(
a ·
∞∑
k=0

bk + b ·
∞∑
k=0

ak

)
.

Proof. We split the sum in four parts as follows:
∑n
k=0 akbn−k = tn +un + vn +wn, where

tn =

bnαc∑
k=0

akbn−k, un =

bn/2c∑
k=bnαc+1

akbn−k,

vn =

n−bnαc∑
k=bn/2c+1

akbn−k, wn =

n∑
k=n−bnαc+1

akbn−k. (C.1)

By assumption, there exists B > 0 such that for all n ≥ 1, bn ≤ B · n−α. Then

un ≤ B
bn/2c∑

k=bnαc+1

ak · (n− bn/2c)−α = o(n−α).

Similarly, vn = o (n−α). It remains to show that

tn ∼ n−α · b
+∞∑
k=0

ak, wn ∼ n−α · a
+∞∑
k=0

bk. (C.2)

We can write tn − n−α · b
∑+∞
k=0 ak = xn + yn + zn, where

xn = b

bnαc∑
k=0

ak
(
(n− k)−α − n−α

)
, yn =

bnαc∑
k=0

ak
(
bn−k − b(n− k)−α

)
,

zn = −n−α · b
+∞∑

k=bnαc+1

ak. (C.3)

Obviously zn = o (n−α). For xn note that

0 ≤ xn ≤ b
bnαc∑
k=0

ak
(
(n− bnαc)−α − n−α

)
≤ n−α

((
1− bn

αc
n

)−α
− 1

)
b

+∞∑
k=0

ak.
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Hence xn = o (n−α). Finally for yn we have that

|yn| ≤
bnαc∑
k=0

ak(n− k)−α |(n− k)αbn−k − b| ≤ (n− nα)−α

(
sup

`≥n−bnαc
|`αb` − b|

)
+∞∑
k=0

ak.

Therefore yn = o (n−α). This proves that tn ∼ n−α · b
∑+∞
k=0 ak. Similarly, we have that

wn ∼ n−α · a
∑+∞
k=0 bk.

D Local estimates for one-dimensional random walks conditioned
to be positive

Let (Sn)n∈Z≥0
be a one-dimensional random walk started at zero at time zero. Assume

that the increments of (Sn)n∈Z≥0
are i.i.d., centered and with finite variance σ2. Let

τ = inf{n > 0|Sn < 0},

and h be the function defined by

h(x) =

{
1 +

∑+∞
j=1 P(S1

τ + · · ·+ Sjτ > −x) if x > 0,

0 otherwise,
(D.1)

where the random variables Siτ are independent copies of Sτ . We have the following
local estimates (see for instance16 [25, Lemma 2.2] or [27, Theorem 4]):

Lemma D.1. The following estimates hold

P
(
(x+ Si)i∈[n] > 0

)
∼ 2

E[−Sτ ]

σ
√

2π

h(x)√
n
, for all x ∈ Z>0, (D.2)

P(x+ Sn = y, (x+ Si)i∈[n] > 0) ∼ c

σ
√

2π

h(x)h̃(y)

n3/2
, for all x, y ∈ Z>0, (D.3)

P(x+ Sn = y, (x+ Si)i∈[n] > 0) ≤ Ch(x)h̃(y)

n3/2
, for all x, y ∈ Z>0. (D.4)

where c = E[−Sτ ]∑
z∈Z>0

h̃(z)P(S1≤−z)
, C is another constant independent of n, x, y, and h̃ is the

function defined in (D.1) for the walk (−Sn)n∈Z≥0
.

We also explicitly compute E[−Sτ ] in a specific case.

Lemma D.2. Assume that17 there exists two constants α > 0 and γ > 0 such that
P(S1 = y) = αγ−y for all y ∈ Z<0. Then

P(Sτ = x) = (1− γ)γ−x−1, for all x ∈ Z<0, and E[−Sτ ] =
1

1− γ
. (D.5)

Proof. Since τ is a.s. finite, for every x ∈ Z<0,

P(Sτ = x) =

∞∑
h=1

P(Sh = x, (Si)i∈[h−1] ≥ 0)

=

∞∑
h=1

∑
x′∈Z≥0

P(Sh−1 = x′, (Si)i∈[h−1] ≥ 0)P(Sh = x|Sh−1 = x′). (D.6)

16We remark that the expression in Eq.(5) in [25] is wrong. For a correct expression see [27, Eq. (7)].
17Note that we are not assuming any restriction on the expression for P(S1 = y) when y ∈ Z≥0.
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Using that by assumption P(Sh = x|Sh−1 = x′) = αγx
′−x and setting

C =

∞∑
h=1

∑
x′∈Z≥0

P(Sh−1 = x′, (Si)i∈[h−1] ≥ 0)αγx
′
,

we get that P(Sτ = x) = C · γ−x. Using that 1 =
∑
x∈Z<0

P(Sτ = x) =
∑
x∈Z<0

C · γ−x =
Cγ
1−γ . We conclude that P(Sτ = x) = (1 − γ)γ−x−1. The statement for the expectation
follows with a basic computation.

E Technical proofs

We give here the details of the proofs of Propositions 4.9 and 4.10 that we skipped in
Section 4.3.2.

Proof of Proposition 4.9. The convergence in distribution Wn
d−−−−→

n→∞
Eρ follows from

Proposition 4.4 together with Corollary 4.3.

Now let 0 < ε < min{u, (1 − u)}. Note that
(

(Wn −Wn(u))|[u,1−ε],Z(u)
n |[u,1−ε]

)
is a measurable functional of (Wn(k) −Wn(bεnc))bεnc≤k≤b(1−ε)nc. Using Theorem 4.5
together with standard absolute continuity arguments (see for instance [7, Proposition
A.1]), we obtain that(

(Wn −Wn(u))|[u,1−ε],Z(u)
n |[u,1−ε]

)
d−−−−→

n→∞

(
(Eρ − Eρ(u))|[u,1−ε],Z(u)

ρ,q |[u,1−ε]
)
. (E.1)

Using two times Prokorov’s theorem, as already done in Theorem 4.5, we have that the
sequence (

Wn,
(

(Wn −Wn(u))|[u,1−ε],Z(u)
n |[u,1−ε]

)
ε∈Q∩(0,u∧1−u)

)
(E.2)

is tight and its limit in distribution must be(
Eρ,

(
(Eρ − Eρ(u))|[u,1−ε],Z(u)

ρ,q |[u,1−ε]
)
ε∈Q∩(0,u∧1−u)

)
(E.3)

because Z(u)
n |[u,1−ε] is a measurable functional of (Wn(k)−Wn(bεnc))bεnc≤k≤b(1−ε)nc and

the restriction operation Wn 7→ (Wn−Wn(u))|[u,1−ε] is continuous. Therefore we obtain
convergence in distribution of the sequence in (E.2) to the limit in (E.3). By Skorokhod’s
theorem we can now assume that a.s., we have uniform convergence on [0, 1] of Wn to
Eρ, and uniform convergence on [u, 1− ε] of Z(u) to Z(u)

ρ,q for every ε > 0, ε ∈ Q. This is
enough to conclude the proof.

Proof of Proposition 4.10. Fix u1, . . . , uk ∈ (0, 1). The fact that Z(u)
ρ,q is a measurable

functions of Eρ and tightness, give that convergence in distribution in (4.68) holds
jointly for u ∈ {u1, . . . , uk}. Therefore, for every continuous bounded ϕ : C([0, 1],R2) ×
(C([0, 1],R)× C([0, 1),R))Z>0 → R, it holds that

E

[
ϕ

(
Wn,

(
Z(ui)
n

)
i∈[k]

)]
→ E

[
ϕ

(
Eρ,

(
Z(ui)
ρ,q ,

)
i∈[k]

)]
. (E.4)

Using dominated convergence theorem, it is possible to integrate this over u1, . . . , uk ∈
[0, 1]. Therefore, using Fubini–Tonelli’s theorem, we can conclude that

E

[
ϕ

(
Wn,

(
Z(ui)
n

)
i∈[k]

)]
→ E

[
ϕ

(
Eρ,

(
Z(ui)
ρ,q

)
i∈[k]

)]
. (E.5)

Noting that k is arbitrary, we obtain convergence in distribution in the product topology.
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