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Abstract

We consider autoregressive sequences Xn = aXn−1 + ξn and Mn = max{aMn−1, ξn}
with a constant a ∈ (0, 1) and with positive, independent and identically distributed
innovations {ξk}. It is known that if P(ξ1 > x) ∼ d

log x
with some d ∈ (0,− log a) then

the chains {Xn} and {Mn} are null recurrent. We investigate the tail behaviour of
recurrence times in this case of logarithmically decaying tails. More precisely, we
show that the tails of recurrence times are regularly varying of index −1 − d/ log a.
We also prove limit theorems for {Xn} and {Mn} conditioned to stay over a fixed level
x0.
Furthermore, we study tail asymptotics for recurrence times of {Xn} and {Mn} in the
case when these chains are positive recurrent and the tail of log ξ1 is subexponential.
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1 Introduction

Let {ξn}n≥1 be a sequence of independent and identically distributed random vari-
ables. Let a ∈ (0, 1) be a constant. The corresponding AR(1)-sequence X = {Xn}n≥0 is
defined by

Xn := aXn−1 + ξn, n ≥ 1,

where the starting position X0 can be either random or deterministic.
Besides the Markov chain X we shall consider the so-called maximal autoregressive

sequence M = {Mn}n≥0, where

Mn = max{aMn−1, ξn}, n ≥ 1.
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Persistence of autoregressive sequences with logarithmic tails

The Markov chains X and M have rather similar properties. If, for example, the
innovations are non-negative then these two chains are recurrent, positive recurrent or
transient at the same time. More precisely, according to Theorem 3.1 in Zerner [17], the
chains {Xn} and {Mn} are recurrent if and only if

∞∑
n=0

n∏
m=0

P(|ξ1| ≤ ta−m) =∞ (1.1)

for every t satisfying P(|ξ1| ≤ t) > 0. Furthermore, X and M are positive recurrent if
and only if E[log(1 + |ξ1|)] is finite.

In the sequel we will assume that the innovations satisfy

P(ξn ≥ 0) = 1. (1.2)

Under this standing assumption we may define

ηn := logA ξn and Rn := logAMn,

where A = a−1. Then the sequence R = {Rn}n≥0 satisfies the recursive relation

Rn = max{Rn−1 − 1, ηn}, n ≥ 1.

This Markov chain is a special random exchange process, see Helland and Nilsen [11]
for the definition of this class of processes.

In this paper we shall consider the case when the tail of innovations decreases
logarithmically. More precisely, in the main part of the paper we will deal with the
situation when

P(ξ1 > x) ∼ d

log x
as x→∞ (1.3)

with some constant d > 0. This is equivalent to

P(η1 > y) ∼ c

y
, where c :=

d

logA
. (1.4)

(We shall explicitly mention one of these two conditions every time we need it.)
Notice also that if d > 0 then E log(1+ξ1) =∞ and, consequently, the chains {Xn}n≥0

and {Mn}n≥0 are not positive recurrent. If (1.3) holds then, using the criterion (1.1), we
conclude that

• d > logA (c > 1) ⇒ {Xn}n≥0 and {Mn}n≥0 are transient;

• d < logA (c < 1) ⇒ {Xn}n≥0 and {Mn}n≥0 are null-recurrent.

In the critical case d = logA (c = 1) one has to consider further terms in the asymptotic
representation for the tails P(ξ1 > x) and P(η1 > y). Assume that, for some k ≥ 0,

P(η1 > y) =
1

y

k∑
j=0

j∏
l=1

1

log(l) y
+ (rk + o(1))

1

y

k+1∏
l=1

1

log(l) y
, y →∞,

where log(l) x is the l-th iteration of the logarithm. Then, applying (1.1) once again, we
obtain

• rk > 1 ⇒ {Xn} and {Mn} are transient;

• rk < 1 ⇒ {Xn} and {Mn} are null-recurrent.
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Persistence of autoregressive sequences with logarithmic tails

A further similarity between the chains {Xn}n≥0 and {Mn}n≥0 consists in the joint
scaling behaviour of these chains. More precisely, Buraczewski and Iksanov [7] have
shown that if (1.3) is valid then(

logAX[nt]

n

)
t≥0
⇒ Z = (Zt)t≥0 (1.5)

in the Skorohod J1-topology on the space D. The limiting process Z is a self-similar
Markov process. Convergence of one-dimensional marginals was previously established
in [15]. In [7] it is described with the help of an appropriate Poisson point process. One
can describe this limiting process also via the transition probabilities:

Px((x− t)+ ≤ Zt ≤ y) =

(
y

y + t

)c
, y ≥ (x− t)+, x ≥ 0, (1.6)

where c is defined in (1.4). When the limiting process starts at the origin this formula
can be deduced from Remark 1.3 in [7]. For the case of a general non-negative starting
point the transition probabilities can be deduced using (1.8) below. It is easy to see that
if X0 = M0 then

Mk ≤ Xk ≤ (k + 1)Mk for all k ≥ 1.

This implies that (1.5) is equivalent to(
logAMnt

n

)
t≥0
⇒ Z. (1.7)

In its turn, (1.7) is equivalent to (
Rnt
n

)
t≥0
⇒ Z. (1.8)

The main purpose of this paper is to study the asymptotic behaviour of the recurrence
times

T (X)
x := inf{k ≥ 1 : Xk ≤ x},

T (M)
x := inf{k ≥ 1 : Mk ≤ x},

T (R)
x := inf{k ≥ 1 : Rk ≤ x}.

Persistence of auto-regressive processes has attracted a significant attention of many
researchers in the recent past, but almost all results known in the literature deal with the
case when some power moments of the innovations ξk are finite. Under this assumption
it is known that the tail of T (X)

x has an exponential decay, i.e.

− 1

n
logP(T (X)

x > n)→ λ ∈ (0,∞). (1.9)

For further details in this case we refer to [4], [12] and references therein. If all
power moments of innovations are finite then P(T

(X)
x > n) ∼ Ce−λn and the conditional

distribution P(Xn ∈ ·|T (X)
x > n) converges towards the corresponding quasi-stationary

distribution, see [12]. It is worth mentioning that one can compute the persistence
exponent λ only in some special cases. Some examples of autoregressive processes, for
which there exist closed form expressions for λ, can be found in [1] and [4]. The authors
of [3] have found a series expansion for λ in the case of normally distributed innovations.

In to contrast to the above mentioned contributions we focus on innovations with fat
tail when all power moments of innovations are infinite. This will imply that (1.9) does
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Persistence of autoregressive sequences with logarithmic tails

not hold anymore and instead we will prove that the tails of the first hitting times T (X)
x

exhibit subexponential decay.
We start with the null-recurrent case. More precisely we consider first the innovations

that satisfy (1.3). As we have mentioned before, the chains {Xn}n≥0, {Mn}n≥0 and
{Rn}n≥0 have the same scaling limit Z in this case. For that reason we first collect some
crucial for us properties of the process Z.

Theorem 1.1. a) If c ≤ 1 then the process Z is recurrent. If c < 1 then the stopping
time T (Z)

0 := inf{s > 0 : Zs = 0 or Zs− = 0} is almost surely finite and, furthermore,
for every z > 0,

P
(
T

(Z)
0 > t

∣∣Z0 = z
)

=

{
1, t < z,

1
B(c,1−c)

∫ z/t
0

(1− u)c−1u−cdu, t ≥ z, (1.10)

where B(a, b) denotes the usual Euler Beta function evaluated at the points a and b.

b) The function u(z) = z1−c is harmonic for Z killed at T (Z)
0 , that is

u(z) = Ez[u(Zt);T
(Z)
0 > t], t, z > 0.

c) The sequence of distributions Pz

(
Z ∈ ·|T (Z)

0 > 1
)

on D[0, 1] converges weakly, as

z → 0, towards a non-degenerate distribution Q.

We now turn to the recurrence times of the chains {Mn}n≥0 and {Rn}n≥0. Since
Rn = logAMn,

T (R)
x0

= inf{n ≥ 1 : Rn ≤ x0} = inf{n ≥ 1 : Mn ≤ Ax0} = T
(M)
Ax0 .

Thus, it suffices to formulate the results for one of these processes.
Set

u0(x) :=

∫ x

0

P(η1 > y)dy, x ≥ 0

and

U0(x) :=

∫ x

0

e−u0(y)dy, x ≥ 0. (1.11)

If (1.4) holds then u0(x) ∼ c log x as x→∞ and e−u0(x) is regularly varying of index −c.
Consequently, the function U0(x) is regularly varying of index 1− c.
Theorem 1.2. Assume that x0 is such that P(η1 ≤ x0)P(η1 > x0) > 0. Then the equation

G(x) = Ex[G(R1);T (R)
x0

> 1], x > x0

has a non-trivial non-negative solution if and only if Eη+1 =∞. In the latter case

G(x) = C

1 +

∞∑
j=1

j−1∏
k=0

P(η1 ≤ x0 + k)1(x0+j,∞)(x)


for every C > 0.

If (1.4) holds with some c ∈ (0, 1) then

(i) G(x) ∼ γU0(x) for some γ ∈ (0,∞);

(ii) there exists a constant C > 0 such that such that for x > x0

1

C

G(x ∧ n)

G(n)
≤ Px(T (R)

x0
> n) ≤ CG(x)

G(n)
, n ≥ 1;
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Persistence of autoregressive sequences with logarithmic tails

(iii) there exists a positive constant κ = κ(c) such that for x > x0

Px(T (R)
x0

> n) ∼ κ
G(x)

G(n)
, n→∞.

and the sequence of conditional distributions Px

(
R[nt]

n ∈ ·
∣∣T (R)

x0 > n
)

on D[0, 1]

converges weakly to Q defined in Theorem 1.1.

We now state our main result for the chain {Xn}n≥0. We emphasize, that the construc-
tion of the harmonic function G in Theorem 1.2 is established in a rather explicit way. In
contrast to this the proof for the existence of the harmonic function for autoregressive
processes {Xn}n≥0 – formulated in the following theorem – requires more powerful
analytical and probabilistic tools.

Theorem 1.3. Assume that (1.4) holds with some c ∈ (0, 1). (This is equivalent to (1.3)
with 0 < d < logA.) For every x0 satisfying P(ax0 + ξ1 ≤ x0) > 0 we have:

(i) There exists a strictly positive on (x0,∞) function V such that

V (x) = Ex[V (X1);T (X)
x0

> 1], x > x0.

In other words, V is harmonic for the chain {Xn} killed at leaving (x0,∞). Further-
more, V (Ax) ∼ U0(x), where U0 is defined in (1.11).

(ii) There exists a constant C such that

1

C

V (x ∧An)

V (An)
≤ Px(T (X)

x0
> n) ≤ C V (x)

V (An)
(1.12)

for all n ≥ 1 and all x > x0.

(iii) There exists a positive constant κ = κ(c) such that, for every x > x0,

Px(T (X)
x0

> n) ∼ κ
V (x)

V (An)
, n→∞. (1.13)

Furthermore, the sequence of conditional distributions

Px

(
logAX[nt]

n
∈ ·
∣∣∣T (X)

x0
> n

)
on D[0, 1] converges weakly to Q defined in Theorem 1.1.

We now turn to the positive recurrent case: E[η1] < ∞. To determine the tail
behaviour of recurrence times we shall assume that F (y) := P(η1 > y) is subexponential.
We make use of the following class introduced in [13].

Definition 1.4. A distribution function F with finite µ+ =
∫∞
0
F (y)dy < ∞ belongs to

the class S∗ of strong subexponential distributions if F (x) > 0 for all x and∫ x
0
F (x− y)F (y)dy

F (x)
→ 2µ+, as x→∞.

This class is a proper subclass of class S of subexponential distributions. It is shown
in [13] that the Pareto, lognormal and Weibull distributions belong to the class S∗. An
example of a subexponential distribution with finite mean which does not belong to S∗
can be found in [9].
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Persistence of autoregressive sequences with logarithmic tails

Theorem 1.5. Assume that x0 is such that P(η1 ≤ x0)P(η1 > x0) > 0. Assume also that
Eη1 <∞ and that F ∈ S∗. Then, for any x > x0

Px(T (R)
x0

> n) ∼ Ex[T (R)
x0

]P(η1 > n). (1.14)

The expectation Ex[T
(R)
x0 ] can be computed explicitly: for every n ≥ 0 and every x ∈

(x0 + n, x0 + n+ 1] one has

Ex[T (R)
x0

] =
1∏∞

k=0 P(η1 ≤ x0 + k)

1 +

n∑
j=1

j−1∏
k=0

P(η1 ≤ x0 + k)

 . (1.15)

Our approach to the proof of this theorem is based on a recursive equation for the
tail of T (R)

x0 , see Proposition 6.1 below. In the case of the chain {Xn}n≥0 we do not have
such an equation and we have to work with upper and lower estimates. This leads to
more restrictive assumptions on the tail of innovations ηk.

Theorem 1.6. Assume that x0 is such that P(ax0 + ξ1 ≤ x0) > 0. Assume also that
Eη <∞,that F ∈ S∗ and that

P(η > x) ∼ P(η > x− log x), as x→∞. (1.16)

Then, for any x > x0,
Px(T (X)

x0
> n) ∼ Ex[T (X)

x0
]P(η > n). (1.17)

The rest of the paper is organised as follows. In Section 2 we discuss properties of
Z and prove Theorem 1.1. In Section 3 we construct harmonic functions for processes
under consideration proving corresponding parts of Theorem 1.2 and Theorem 1.3. In
Section 4 we derive lower and upper bounds for recurrence times T (R)

x0 and T (X)
x0 proving

part (ii) of Theorem 1.2 and Theorem 1.3. In Section 5 we obtain the asymptotics for
tails of recurrence times given in part (iii) of Theorem 1.2 and Theorem 1.3. In Section 6
we prove Theorem 1.5 and in Section 7 we prove Theorem 1.6.

2 Properties of the limiting process Z: proof of Theorem 1.1

In this section we analyze the limit process (Zt)t≥0 and prove Theorem 1.1. We split
the proof into several steps. Each of these steps corresponds to one subsection below.

2.1 Lamperti representation of Z

First we observe, that the explicit formula (1.6) for the transition probabilities
demonstrates that the process Z is self-similar of index 1. One of the standard approaches
used in the analysis of these processes is the Lamperti transformation, which connects
self-similar Markov processes with Lévy processes. The main goal of this subsection
consists in the derivation of such a representation.

First, it follows from (1.6) that if t < x then

Px(Zt = x− t) =

(
x− t
x

)c
and

Px(Zt ∈ dy)

dy
=

ctyc−1

(t+ y)c+1
, y > x− t. (2.1)

If t ≥ x then
Px(Zt ∈ dy)

dy
=

ctyc−1

(t+ y)c+1
, y > 0. (2.2)

It is immediate from (1.6) that if c ≤ 1 then∫ ∞
0

Px(Zt ≤ y)dt =∞
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Persistence of autoregressive sequences with logarithmic tails

for all x, y > 0. Therefore, the process Z is recurrent: it spends infinite amount of time
in every interval [0, y].

We next show that the state 0 is recurrent in the case c < 1. More precisely, we show
that Pz(T

(Z)
0 <∞) = 1 for every z > 0. For that reason we compute first the generator

of Z. Fix some x > 0 and a continuously differentiable bounded function f . It follows
then from (2.1) that

Ex[f(Zt)] = f(x− t)
(
x− t
x

)c
+ ct

∫ ∞
x−t

yc−1

(y + t)c+1
f(y)dy, t < x.

Therefore,

Ex[f(Zt)]− f(x)

t
=
f(x− t)− f(x)

t
+ f(x− t)

(
x−t
x

)c − 1

t
+ c

∫ ∞
x−t

yc−1

(y + t)c+1
f(y)dy.

Letting now t→ 0, we conclude that

Lf(x) = −f ′(x)− cf(x)

x
+ c

∫ ∞
x

f(y)

y2
dy

= −f ′(x) + c

∫ ∞
x

f(y)− f(x)

y2
dy, x > 0. (2.3)

It is easy to see that this generator can be represented as follows

Lf(x) = −
(

1− c
∫ ∞
1

log u

1 + log2 u

du

u2

)
f ′(x)

+
c

x

∫ ∞
1

(
f(ux)− f(x)− log u

1 + log2 u
xf ′(x)

)
du

u2

= −
(

1− c
∫ ∞
1

log u

1 + log2 u

du

u2

)
f ′(x) +

1

x

∫ ∞
1

h∗(x, u)
c log2 u

u2(1 + log2 u)
du,

where

h∗(x, u) =

(
f(ux)− f(x)− log u

1 + log2 u
xf ′(x)

)
1 + log2 u

log2 u
. (2.4)

Then, according to Theorem 6.1 in Lamperti [14], {Zt, t < T
(Z)
0 } can be represented

as the exponential functional of a time-changed Lévy process with the following Lévy-
Khintchine exponent:

Ψ(λ) = −iλ
(

1− c
∫ ∞
1

log u

1 + log2 u

du

u2

)
+

∫ ∞
0

(
eiλy − 1− iλy

1 + y2

)
ce−ydy.

Simplifying this expression, we get

Ψ(λ) = −iλ+ c

∫ ∞
0

(eiλy − 1)e−ydy.

This corresponds to the process ζt − t, where (ζt)t≥0 is a compound Poisson process with
intensity c and with exponentially distributed jumps. In particular, ζt − t→ −∞ a.s. as
t → ∞ in the case c < 1 and ζt − t is oscillating in the case c = 1. Then T

(Z)
0 is finite

almost surely iff c < 1.

2.2 Analysis of the tails of TZ0

We continue the proof of part a) of Theorem 1.1 and establish the formula (1.10) for
the tail of the first hitting time. Let

g(t, z) := Pz(T
(Z)
0 > t).
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To find g we will now derive a differential equation for g and then solve it explicitly. It is
clear that g(t, z) = 1 for all t ≤ z. Using (2.2), we see that g solves the equation

g(t, z) = g(t− s, z − s)
(
z − s
z

)c
+ cs

∫ ∞
z−s

yc−1

(y + s)c+1
g(t− s, y)dy, s < z.

Letting s → 0 we obtain the following decomposition for the expression on the right
hand side:

g(t− s, z − s)
(

1− cs

z

)
+ cs

∫ ∞
z

g(t, y)

y2
dy + o(s).

Therefore,
g(t, z)− g(t− s, z − s)

s
= − c

z
g(t, z) + c

∫ ∞
z

g(t, y)

y2
dy + o(1). (2.5)

Since the process Z is self-similar with index 1,

g(t, z) = P(T
(Z)
0 > t | Z0 = z) = P(T

(Z)
0 > t/z | Z0 = 1) = g

(
t

z
, 1

)
=: h

(
t

z

)
.

Thus, the relation (2.5) can be written in the following way:

h(t/z)− h((t− s)/(z − s))
s

= − c
z
h(t/z) + c

∫ ∞
z

h(t/y)

y2
dy + o(1).

Set now

∆ =
t

z
− t− s
z − s

.

Then

s =
z2

z − t
∆ + o(∆)

and, consequently,(
z − t
z2

)
h(t/z)− h(t/z −∆)

∆
= − c

z
h(t/z) + c

∫ ∞
z

h(t/y)

y2
dy + o(1).

Letting here ∆→ 0, we conclude that the function h satisfies(
1

z
− t

z2

)
h′
(
t

z

)
= − c

z
h

(
t

z

)
+ c

∫ ∞
z

h(t/y)

y2
dy, t > z.

Noting that h(r) = 1 for all r ≤ 1 and substituting t/y = x, we get∫ ∞
z

h(t/y)

y2
dy =

∫ t

z

h(t/y)

y2
dy +

1

t

=
1

t

∫ t/z

1

h(x)dx+
1

t
.

Therefore,

(1− y)h′(y) = −ch(y) +
c

y

(
1 +

∫ y

1

h(x)dx

)
, y > 1.

Differentiating this equation, we get

(1− y)h′′(y)− h′(y) = −ch′(y) +
c

y
h(y)− c

y2

(
1 +

∫ y

1

h(x)dx

)
= −ch′(y) +

c

y
h(y)− 1

y
((1− y)h′(y) + ch(y)).
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Rearranging the terms, we arrive at the equation

(1− y)h′′(y) =

(
1− c− 1− y

y

)
h′(y).

This is equivalent to

(log h′(y))′ =
h′′(y)

h′(y)
=
c− 1

y − 1
− 1

y
.

Consequently,

h′(y) = C(y − 1)c−1y−1 and h(x) = C

∫ ∞
x

(y − 1)c−1y−1dy.

The boundary condition h(1) = 1 leads to the equality

h(x) =

∫∞
x

(y − 1)c−1y−1dy∫∞
1

(y − 1)c−1y−1dy
, x ≥ 1.

Substituting in these integrals y = 1/z, we finally get

h(x) =
1

B(c, 1− c)

∫ 1/x

0

(1− z)c−1z−cdz, x ≥ 1.

As a result we have (1.10). This formula can be also obtained via the Lamperti transfor-
mation mentioned above. If Z0 = 1 then T (Z)

0 has the same distribution as I :=
∫∞
0
eζtdt

and 1/I has the beta distribution with parameters c and 1− c, see Bertoin and Yor [6].

2.3 Harmonic function for the killed process

We now turn to the proof of part (b). Recall, that this in the part we claim that
u(z) = z1−c is harmonic for the process Z killed at the origin.

We start by showing that

Ex[Z1−c
t ] = (max{t, x})1−c. (2.6)

When t ≤ x, in view of (2.1),

Ex[Z1−c
t ] =

∫ ∞
x−t

y1−cPx(Zt ∈ dy)

= (x− t)1−c
(
x− t
x

)c
+

∫ ∞
x−t

ct

(t+ y)c+1
dy

=
x− t
xc

+ ct

∫ ∞
x

dy

yc+1
= x1−c.

When t > x, by (2.2),

Ex[Z1−c
t ] =

∫ ∞
0

ct

(t+ y)c+1
dy = t1−c.

Using (2.6), we obtain

Ex[Z1−c
t ;T

(Z)
0 > t] = Ex[Z1−c

t ]−Ex[Z1−c
t ;T

(Z)
0 ≤ t]

= (max{t, x})1−c −
∫ t

0

Px(T
(Z)
0 ∈ ds)E0[Z1−c

t−s ]

= (max{t, x})1−c −
∫ t

0

(t− s)1−cPx(T
(Z)
0 ∈ ds). (2.7)
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It follows from (1.10) that the integral in (2.7) is zero for t ≤ x, and that for t > x one has∫ t

0

(t− s)1−cPx(T
(Z)
0 ∈ ds)

=

∫ t

x

(t− s)1−cPx(T
(Z)
0 ∈ ds)

=
1

B(c, 1− c)

∫ t

x

(t− s)1−c
(

1− x

s

)c−1 (x
s

)−c x
s2
ds

=
1

B(c, 1− c)

∫ t

x

(t− s)1−c
(

1− x

s

)c−1 ( s
x

)c−1 1

s
ds

=
x1−c

B(c, 1− c)

∫ t

x

(t− s)1−c (s− x)
c−1 1

s
ds.

With the help of the substitution v =
(
s−x
t−s

)
we get∫ t

x

(t− s)1−c (s− x)
c−1 1

s
ds =

∫ ∞
0

vc−1
1 + v

x+ tv

(
t

1 + v
− x+ tv

(1 + v)2

)
dv

= t

∫ ∞
0

vc−1

x+ tv
dv −

∫ ∞
0

vc−1

1 + v
dv

=

((
t

x

)1−c

− 1

)∫ ∞
0

vc−1

1 + v
dv.

Noting now that
∫∞
0

vc−1

1+v dv = B(c, 1− c), we conclude that∫ t

0

(t− s)1−cPx(T
(Z)
0 ∈ ds) = max{t1−c − x1−c, 0}.

Plugging this into (2.7), we conclude that

Ex[Z1−c
t ;T

(Z)
0 > t] = x1−c

for all x, t > 0. Thus, (b) is proven.

2.4 Convergence of one-dimensional conditioned marginals

As a first step towards assertion c) of Theorem 1.1 we first consider one-dimensional
marginals. For t ≤ x one has

Px(Zt ≤ y;T
(Z)
0 > t) = Px(Zt ≤ y), y > 0.

If t > x then

Px(Zt ≤ y;T
(Z)
0 > t) = Px(Zt ≤ y)−Px(Zt ≤ y;T

(Z)
0 ≤ t)

= Px(Zt ≤ y)−
∫ t

x

Px(T
(Z)
0 ∈ ds)P0(Zt−s ≤ y).

Using now (1.6) and (1.10), we get

Px(Zt ≤ y;T
(Z)
0 > t)

=

(
y

y + t

)c
− 1

B(c, 1− c)

∫ t

x

(
y

y + t− s

)c (
1− x

s

)c−1 (x
s

)−c x
s2
ds

=

(
y

y + t

)c
− 1

B(c, 1− c)

∫ t

x

(
y

y + t− s

)c ( s
x
− 1
)c−1 1

s
ds.
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This representation can be used to obtain an exact formula for the transition kernel
Px(Zt ≤ y;T

(Z)
0 > t) in terms of the hypergeometric function of two variables. Instead of

doing that we shall determine the asymptotic, as x → 0, behaviour of the distribution
function Px(Zt ≤ y;T

(Z)
0 > t). We start by noting that

Px(Zt ≤ y;T
(Z)
0 > t)

=

(
y

y + t

)c
Px(T

(Z)
0 > t)− 1

B(c, 1− c)

∫ t

x

∆y,t(s)
( s
x
− 1
)c−1 1

s
ds, (2.8)

where

∆y,t(s) =

(
y

y + t− s

)c
−
(

y

y + t

)c
.

Fix some ε > 0. It is easy to see that

∆y,t(s) =
yc

(y + t)c

[(
1 +

s

t+ y − s

)c
− 1

]
≤ cyc

(y + t)c
s

y + t− ε

for all s ≤ ε. Therefore, for all x < ε,∫ ε

x

∆y,t(s)
( s
x
− 1
)c−1 1

s
ds ≤ cyc

(y + t− ε)(y + t)c

∫ ε

x

( s
x
− 1
)c−1

ds

≤ yc

(y + t− ε)(y + t)c
x1−cεc. (2.9)

Furthermore, as x→ 0,∫ t

ε

∆y,t(s)
( s
x
− 1
)c−1 1

s
ds = x1−c

∫ t

ε

∆y,t(s) (s− x)
c−1 1

s
ds

= x1−c(1 + o(1))

∫ t

ε

∆y,t(s)s
c−2ds.

Combining this with (2.9) and letting ε→ 0, we conclude that

lim
x→0

xc−1
∫ t

x

∆y,t(s)
( s
x
− 1
)c−1 1

s
ds =

∫ t

0

∆y,t(s)s
c−2ds. (2.10)

Using the equality

∆y,t(s) =

∫ y/(t+y−s)

y/(t+y)

cuc−1du

and the Fubini theorem, we have∫ t

0

∆y,t(s)s
c−2ds =

∫ t

0

(∫ y/(t+y−s)

y/(t+y)

cuc−1du

)
sc−2ds

=

∫ 1

y/(y+t)

cuc−1

(∫ t

y+t−y/u
sc−2ds

)
du

=
c

1− c

∫ 1

y/(y+t)

cuc−1
(
(y + t− y/u)c−1 − tc−1

)
du

=
c

1− c

∫ 1

y/(y+t)

((y + t)u− y)c−1du− c

1− c

∫ 1

y/(y+t)

uc−1du

=
1

1− c
tc

y + t
− 1

1− c
tc−1

(
1−

(
y

y + t

)c)
.
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Combining this with (2.10) and noting that

Px(T
(Z)
0 > t) ∼ x1−c

(1− c)B(c, 1− c)
tc−1, x→ 0, (2.11)

we conclude that

lim
x→0

∫ t
x

∆y,t(s)
(
s
x − 1

)c−1 1
sds

Px(T
(Z)
0 > t)

= B(c, 1− c)
[(

y

y + t

)c
− y

y + t

]
.

Combining this with (2.8), we finally obtain

lim
x→0

Px(Zt ≤ y | T (Z)
0 > t) =

y

y + t
, y > 0. (2.12)

2.5 Functional convergence of the h-transformed process

Recall that we have to show, that the law Pz

(
Z ∈ · | T (Z)

0 > 1
)

converges in the

Skorokhod space. In order to establish this, we first analyze the Doob h- transform using
the harmonic function u(x) = x1−c from part b) of Theorem (1.1) and prove functional
convergence for the h-transformed process. As is well-known the Doob h-transform of L
using this harmonic function is given by:

L̂f(x) :=
1

u(x)
L(uf)(x), x > 0.

The corresponding probability measure is given by

Êx[g(Z)] :=
1

u(x)
Ex[g(Z)u(Zt); τ

(Z)
0 > t]

for every bounded measurable functional g on D[0, t].
From (2.3) we infer that

L̂f(x) =
1

u(x)

[
−u(x)f ′(x)− u′(x)f(x)− cu(x)f(x)

x
+ c

∫ ∞
x

u(y)f(y)

y2
dy

]
= −f ′(x)− f(x)

x
+

c

x1−c

∫ ∞
x

f(y)

y1+c
dy

= −f ′(x) +
c

x1−c

∫ ∞
x

f(y)− f(x)

y1+c
dy. (2.13)

As a result we have the following representation:

L̂f(x) = −f ′(x) +
c

x

∫ ∞
1

f(ux)− f(x)

u1+c
du

= −
(

1− c
∫ ∞
1

log u

1 + log2 u

du

u1+c

)
f ′(x) +

1

x

∫ ∞
1

h∗(x, u)
c log2 u

u1+c(1 + log2 u)
du,

where h∗ is given as in equation (2.4). This implies that, under P̂, Z is self-similar and
can be expressed via a Lévy process with the characteristic exponent

Ψ̂(λ) = −iλ+ c

∫ ∞
0

(eiλy − 1)e−cydy.

This corresponds to ζ̂t − t, where (ζ̂t)t≥0 is a compound Poisson process with intensity
c and with positive jumps, which have exponential with parameter c distribution. This
Lévy process is clearly oscillating. Consequently, using Theorem 1 in [6] we conclude
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that every exponential functional is almost surely infinite and there by the results of
section 5.1 in [6] we arrive at

P̂x(T
(Z)
0 =∞) = 1, x > 0.

According to Theorem 2 in Caballero and Chaumont [8], the sequence of measures
P̂x converges weakly on D[0, 1], as x→ 0, to a non-degenerate probabilistic measure P̂0.

2.6 Functional convergence of the conditioned process

Making use of the functional limit theorem for the h-transformed process we now

show that Px
(
Z ∈ · |T (Z)

0 > 1
)

also converges weakly on D[0, 1].

It follows from the definition of P̂x that

P̂0(Z1 ≤ y) = lim
x→0

P̂x(Z1 ≤ y)

= lim
x→0

Px(T
(Z)
0 > 1)

u(x)
Ex[u(Z1)1{Z1 ≤ y} | T (Z)

0 > 1].

Applying now (2.11) and (2.12), we obtain

P̂0(Z1 ≤ y) =
1

(1− c)B(c, 1− c)

∫ y

0

z1−c

(1 + z)2
dz.

Consequently, the density of Z1 under P̂0 is proportional to z1−c

(1+z)2 . Let g be a bounded

and continuous functional on D[0, 1] and let ε be a fixed positive number. Since P̂0(Z1 =

ε) = 0, the weak convergence P̂x ⇒ P̂0 implies that

lim
x→0

Êx

[
g(Z)

u(Z1)
;Z1 > ε

]
= Ê0

[
g(Z)

u(Z1)
;Z1 > ε

]
. (2.14)

Since g is bounded,∣∣∣∣Êx [ g(Z)

u(Z1)
;Z1 ≤ ε

]∣∣∣∣ ≤ CgÊx [ 1

u(Z1)
;Z1 ≤ ε

]
≤ Cg

Px(T
(Z)
0 > 1)

u(x)
Px(Z1 ≤ ε | T (Z)

0 > 1).

Using (2.11) and (2.12), we conclude that

lim sup
x→0

∣∣∣∣Êx [ g(Z)

u(Z1)
;Z1 ≤ ε

]∣∣∣∣ ≤ Cg
(1− c)B(c, 1− c)

ε. (2.15)

Finally, recalling that the density of Z1 under P̂0 is proportional to z1−c

(1+z)2 , we get∣∣∣∣Ê0

[
g(Z)

u(Z1)
;Z1 ≤ ε

]∣∣∣∣ ≤ CgÊ0

[
1

u(Z1)
;Z1 ≤ ε

]
= Cg

∫ ε

0

(1 + z)−2dz ≤ Cgε. (2.16)

Combining (2.14)—(2.16) and letting ε→ 0, we conclude that

lim
x→0

Êx

[
g(Z)

u(Z1)

]
= Ê0

[
g(Z)

u(Z1)

]
.
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Noting now that

Ex[g(Z) | T (Z)
0 > 1] =

u(x)

Px(T
(Z)
0 > 1)

Êx

[
g(Z)

u(Z1)

]
and taking into account (2.11), we obtain

lim
x→∞

Ex[g(Z) | T (Z)
0 > 1] = (1− c)B(c, 1− c)Ê0

[
g(Z)

u(Z1)

]
.

This completes the proof of Theorem 1.1.

3 Analysis of harmonic functions in discrete time

In this section we construct and analyze harmonic functions of the involved discrete
time Markov chains killed at the first hitting time.

3.1 Harmonic function for the random exchange process and for the maximal
autoregressive process

Surprisingly, it will turn out, that in the case of the process {Rn}n ≥ 0 it is possible to
explicitly calculate the harmonic function. We will prove the following proposition, which
coincides with the first part of Theorem 1.2. Observe that in the following proposition
we do not need to assume the condition (1.4).

Proposition 3.1. Assume that x0 is such that P(η1 ≤ x0)P(η1 > x0) > 0. Then the
equation

G(x) := Ex[G(R1);T (R)
x0

> 1] = Ex[G(R1);R1 > x0], x > x0. (3.1)

has a non-trivial non-negative solution if and only if Eη+1 =∞. In the latter case

G(x) = C

1 +

∞∑
j=1

j−1∏
k=0

P(η1 ≤ x0 + k)1(x0+j+1,∞)(x)


for every C > 0.

Proof. We first consider the equation (3.1) for x ∈ (x0, x0 + 1]. In this case one has

{R1 > x0} = {R1 = η1 > x0}.

Therefore,
G(x) = E[G(η1); η1 > x0] for all x ∈ (x0, x0 + 1].

For all x > x0 + 1 on the other hand one has Px(T
(R)
x0 > 1) = 1. This implies that (3.1)

reduces to

G(x) = Ex[G(R1)]

= G(x− 1)P(η1 ≤ x− 1) + E[G(η1); η1 > x− 1], x > x0 + 1. (3.2)

If x ∈ (x0 + 1, x0 + 2] then x− 1 ∈ (x0, x0 + 1] and, consequently, G(x− 1) = G(x0 + 1) for
all x ∈ (x0 + 1, x0 + 2]. From this observation and from (3.2) we have

G(x)

= G(x0 + 1)P(η1 ≤ x− 1) + E[G(η1); η1 > x− 1]

= G(x0 + 1)P(η1 ≤ x− 1) + E[G(η1); η1 ∈ (x− 1, x0 + 1]] + E[G(η1); η1 > x0 + 1]

= G(x0 + 1)P(η1 ≤ x0 + 1) + E[G(η1); η1 > x0 + 1]. (3.3)
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This equality implies that G(x) = G(x0 + 2) for all x ∈ (x0 + 1, x0 + 2]. Note also that

G(x0 + 1) = E[G(η1); η1 > x0]

= G(x0 + 1)P(η1 ∈ (x0, x0 + 1])) + E[G(η1); η1 > x0 + 1].

Combining this with (3.3), we conclude that

G(x0 + 2) = G(x0 + 1) (1 + P(η1 ≤ x0)) .

Fix now an integer n and consider the case x ∈ (x0 + n, x0 + n+ 1]. Assume that we
have already shown that G(y) = G(x0 + n) for all y ∈ (x0 + n− 1, x0 + n]. Then we have
from (3.2)

G(x) = G(x− 1)P(η1 ≤ x− 1) + E[G(η1); η1 > x− 1]

= G(x0 + n)P(η1 ≤ x0 + n) + E[G(η1); η1 > x0 + n].

Therefore, G(x) = G(x0 + n + 1) for all x ∈ (x0 + n, x0 + n + 1]. This means that this
property is valid for all n.

One has also equalities

G(x0 + n+ 1) = G(x0 + n)P(η1 ≤ x0 + n) + E[G(η1); η1 > x0 + n]

and

G(x0 + n) = G(x0 + n− 1)P(η1 ≤ x0 + n− 1) + E[G(η1); η1 > x0 + n− 1]

= G(x0 + n− 1)P(η1 ≤ x0 + n− 1)

+G(x0 + n)P(η1 ∈ (x0 + n− 1, x0 + n]) + E[G(η1); η1 > x0 + n].

Taking the difference we obtain

G(x0 + n+ 1)−G(x0 + n)

= G(x0 + n)P(η1 ≤ x0 + n)−G(x0 + n− 1)P(η1 ≤ x0 + n− 1)

−G(x0 + n)P(η1 ∈ (x0 + n− 1, x0 + n])

= P(η1 ≤ x0 + n− 1) (G(x0 + n)−G(x0 + n− 1)) .

Consequently,

G(x0 + n+ 1)−G(x0 + n) = G(x0 + 1)

n−1∏
k=0

P(η1 ≤ x0 + k), n ≥ 1.

As a result we have

G(x) = G(x0 + 1)

1 +

n∑
j=1

j−1∏
k=0

P(η1 ≤ x0 + k)

 , x ∈ (x0 + n, x0 + n+ 1]. (3.4)

Finally, in order to get a non-trivial solution we have to show that the equation

G(x0 + 1) = E[G(η1); η1 > x0]

is solvable. In view of (3.4), the previous equation is equivalent to

G(x0 + 1) = G(x0 + 1)

∞∑
n=0

1 +

n∑
j=1

j−1∏
k=0

P(η1 ≤ x0 + k)

P(η1 ∈ (x0 + n, x0 + n+ 1]).
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Now we infer that (3.1) has a non-trivial solution if and only if

1 =

∞∑
n=0

1 +

n∑
j=1

j−1∏
k=0

P(η1 ≤ x0 + k)

P(η1 ∈ (x0 + n, x0 + n+ 1]).

Clearly,

∞∑
n=0

1 +

n∑
j=1

j−1∏
k=0

P(η1 ≤ x0 + k)

P(η1 ∈ (x0 + n, x0 + n+ 1])

= P(η1 > x0) +

∞∑
j=1

j−1∏
k=0

P(η1 ≤ x0 + k)

∞∑
n=j

P(η1 ∈ (x0 + n, x0 + n+ 1])

= P(η1 > x0) +

∞∑
j=1

(1−P(η1 ≤ x0 + j))

j−1∏
k=0

P(η1 ≤ x0 + k).

Furthermore, for every N ≥ 1,

N∑
j=1

(1−P(η1 ≤ x0 + j))

j−1∏
k=0

P(η1 ≤ x0 + k)

=

N∑
j=1

j−1∏
k=0

P(η1 ≤ x0 + k)−
N∑
j=1

j∏
k=0

P(η1 ≤ x0 + k)

= P(η1 ≤ x0)−
N∏
k=0

P(η1 ≤ x0 + k).

This implies that

∞∑
n=0

1 +

n∑
j=1

j−1∏
k=0

P(η1 ≤ x0 + k)

P(η1 ∈ (x0 + n, x0 + n+ 1])

= 1− lim
N→∞

N∏
k=0

P(η1 ≤ x0 + k).

Thus, there is a non trivial solution G(x) if and only if

lim
N→∞

N∏
k=0

P(η1 ≤ x0 + k) = 0.

Noting that this is equivalent to Eη+1 =∞, we finish the proof of the proposition.

We notice also that Eη+1 =∞, which ensures the existence of a harmonic function,
in fact means that {Rn} is either null recurrent or transient. If {Rn} is recurrent and
P(η1 ≤ x0) > 0 then, according to (1.1), the function G(x) grows unboundedly.

We proceed with proving part (i) of Theorem 1.2.

Lemma 3.2. Assume, that if (1.4) holds with some c ∈ (0, 1) then there exists γ ∈ (0,∞)

such that

G(x) ∼ γU0(x).
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Proof. Observe that

j−1∏
k=0

P(η1 ≤ x0 + k) =

j−1∏
k=0

(
1−P(η1 > x0 + k)

)
= exp

(j−1∑
k=0

log
(
1−P(η1 > x0 + k)

))
Using Taylor’s formula for the logarithm and taking into account (1.4) we conclude that

j−1∏
k=0

P(η1 ≤ x0 + k) ∼ c1 exp
(
−
j−1∑
k=0

P(η1 > x0 + k)
)

∼ c2 exp
(∫ j

0

P(η1 > y) dy
)

= c2e
−u0(j).

Recalling that u0 is regularly varying of index −c we conclude that G is asymptotically
equivalent to a multiple of U0. This finishes the proof of the lemma.

We conclude this paragraph with the following remark concerning the cases which
are excluded from Theorem 1.2.

Remark 3.3. a) If c = 1 then one has to take into account the asymptotic behaviour
of the difference P(η1 > y)− 1/y. Assume, for example, that

P(η1 > y) =
1

y
+
θ + o(1)

y log y

for some θ ∈ (0, 1). Then {Rn} is null recurrent and there exists a slowly varying
function L1 such that e−u0(x) ∼ (log x)−θL1(log x). This implies that

G(x) ∼ 1

1− θ
(log x)1−θL1(log x) if θ < 1.

b) If {Rn} is transient then the function x 7→ Px(T
(R)
x0 =∞) is harmonic and its limit,

as x→∞, is equal to one. Then, according to (3.4),

Px(T (R)
x0

=∞) =
1 +

∑
j∈[1,x−x0)

∏j−1
k=0 P(η1 ≤ x0 + k)

1 +
∑∞
j=1

∏j−1
k=0 P(η1 ≤ x0 + k)

, x > x0. (3.5)

If (1.4) holds with some positive c > 1 then the chain is transient and, using the
Karamata representation theorem, we obtain

Px(T (R)
x0

<∞) ∼ 1

(c− 1)

L(x)

xc−1
, x→∞.

3.2 Harmonic function for the autoregressive process: proof of Theorem 1.3(i)

In contrast to the previous subsection it does not seem possible to find explicit repre-
sentations for the harmonic function in the autoregressive case. Instead we construct a
harmonic function via appropriate supermartingales. First we prove assertions needed
in the construction of the supermartingales.

Lemma 3.4. Let W be an increasing, regularly varying of index r ∈ (0, 1) function. We

assume also that W ′(x) = O
(
W (x)
x

)
. If (1.4) holds then, as z →∞,

E[W (logA(Az−1 +Aη1))]

= W (z − 1)P(η1 ≤ z − 1) + E[W (η1); η1 > z − 1] + o

(
W (z)

z2

)
.
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Proof. We start by decomposing the expectation into two parts:

E[W (logA(Az−1 +Aη1))]

= E[W (logA(Az−1 +Aη1)); η1 ≤ z − 1] + E[W (logA(Az−1 +Aη1)); η1 > z − 1]

= E[W (z − 1 + logA(1 +Aη1−z+1)); η1 ≤ z − 1]

+ E[W (η1 + logA(1 +Az−1−η1)); η1 > z − 1].

By the mean value theorem,

E[W (z − 1 + logA(1 +Aη1−z+1)); η1 ≤ z − 1]

= W (z − 1)P(η1 ≤ z − 1) + E[W ′(z − 1 + θ1) logA(1 +Aη1−z+1); η1 ≤ z − 1],

where θ1 = θ1(z, η1) ∈ (0, logA 2). Using now the assumption W ′(x) = O
(
W (x)
x

)
, we

obtain

E[W (z − 1 + logA(+Aη1−z+1)); η1 ≤ z − 1]

= W (z − 1)P(η1 ≤ z − 1) +O

(
W (z)

z

)
E[logA(1 +Aη1−z+1); η1 ≤ z − 1].

It is easy to see that

logA(1 +Aη1−z+1) = O

(
1

z2

)
if η1 ≤ z − 1− 2 logA z. Furthermore, (1.4) implies that

P(z − 1− 2 logA z < η1 ≤ z − 1) = o

(
1

z

)
.

Combining these relations, we infer that

E[logA(1 +Aη1−z+1); η1 ≤ z − 1] = o

(
1

z

)
.

As a result we have

E[W (z − 1 + logA(+Aη1−z+1)); η1 ≤ z − 1]

= W (z − 1)P(η1 ≤ z − 1) + o

(
W (z)

z2

)
. (3.6)

Using the mean value theorem and the assumption W ′(x) = O
(
W (x)
x

)
once again, we

get

E[W (η1 + logA(1 +Az−1−η1)); η1 > z − 1]

= E[W (η1); η1 > z − 1] +O

(
W (z)

z

)
E[logA(1 +Az−1−η1); η1 > z − 1].

Similar to the first part of the proof,

E[logA(1 +Az−1−η1); η1 > z − 1] = o

(
1

z

)
.

This leads to the equality

E[W (η1 + logA(1 +Az−1−η1)); η1 > z − 1]

= E[W (η1); η1 > z − 1] + o

(
W (z)

z2

)
.

Combining this with (3.6), we obtain the desired equality.
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For every ε ≥ 0 we define

uε(x) = (1 + ε)

∫ x

0

P(η1 > y)dy, x ≥ 0

and

Uε(x) =

{
0, x ≤ 0∫ x
0
e−uε(y)dy, x > 0.

Lemma 3.5. For every ε ∈ [0, 1−cc ) one has

E[Uε(logA(Az−1 +Aη1))] = Uε(z)−
ε

1 + ε
e−uε(z) +O

(
Uε(z)

z2

)
.

Proof. (1.4) yields
uε(x) ∼ (1 + ε)c log x as x→∞.

Furthermore, Uε(x) is regularly varying of index 1− c(1 + ε) and that

U ′ε(x) = e−uε(x) ∼ (1− c(1 + ε))
Uε(x)

x
.

Therefore, we may apply Lemma 3.4 to the function Uε:

E[Uε(logA(Az−1 +Aη1))]

= Uε(z − 1)P(η1 ≤ z − 1) + E[Uε(η1); η1 > z − 1] + o

(
Uε(z)

z2

)
.

Integrating by parts, we have

E[Uε(η1); η1 > z − 1] = Uε(z − 1)P(η1 > z − 1) +

∫ ∞
z−1

e−uε(y)P(η1 > y)dy

= Uε(z − 1)P(η1 > z − 1) +
1

1 + ε

∫ ∞
z−1

e−uε(y)u′ε(y)dy

= Uε(z − 1)P(η1 > z − 1) +
1

1 + ε
e−uε(z−1).

Consequently,

E[Uε(logA(Az−1 +Aη1))] = Uε(z − 1) +
1

1 + ε
e−uε(z−1) + o

(
Uε(z)

z2

)
. (3.7)

It remains now to notice that, by the Taylor formula,

Uε(z) = Uε(z − 1) + U ′ε(z − 1) +
1

2
U ′′ε (z − 1 + θ)

= Uε(z − 1) + e−uε(z−1) +O

(
Uε(z)

z2

)
.

Using this in Equation (3.7) finishes the proof.

Combining the functions U0 and Uε we can now easily construct supermartingales.
To this end we notice that applying Lemma 3.5 and using Uε(x) = o(U0(x)), we get

Ex[U0(logAX1) + Uε(logAX1)]

= E[U0(logA(Ax−1 +Aη1)) + Uε(logA(Ax−1 +Aη1))]

= U0(logA x) + Uε(logA x)− ε

1 + ε
e−uε(logA x) +O

(
U0(logA x)

(logA x)2

)
.
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We know that e−uε(z) is regularly varying of index −(1 + ε)c and that U0(z)
z2 is regularly

varying of index −c− 1. Thus, for every ε < 1−c
c there exists x∗ such that

Ex[U0(logAX1) + Uε(logAX1)] ≤ U0(logA x) + Uε(logA x), x ≥ x∗.

This inequality implies that if x0 ≥ x∗ then the sequence

Zn := U0(logAXn∧T (X)
x0

) + Uε(logAXn∧T (X)
x0

)

is a supermartingale. We next notice that

Zn+11{T (X)
x0

> n+ 1} − Zn1{T (X)
x0

> n}

= (Zn+1 − Zn)1{T (X)
x0

> n} − Zn+11{T (X)
x0

= n+ 1}

≤ (Zn+1 − Zn)1{T (X)
x0

> n}.

This implies that Zn1{T (X)
x0 > n} is also a supermartingale.

Proposition 3.6. If x0 ≥ x∗ then the function

V (x) := lim
n→∞

Ex[U0(logAXn);T (X)
x0

> n]

is well-defined, strictly positive on (x0,∞) and harmonic for {Xn}n≥0 killed when exiting
(x0,∞). Furthermore, we have

V (x) ∼ U0(logA x) as x→∞. (3.8)

Proof. Using the supermartingale property of Zn1{T (X)
x0 > n} we conclude by the super-

martingale convergence theorem that the function

Vε(x) := lim
n→∞

Ex[U0(logAXn) + Uε(logAXn);T (X)
x0

> n]

is well-defined and finite. Furthermore,

Vε(x) ≤ U0(logA x) + Uε(logA x) ≤ CU0(logA x), x > x0.

We now recall that Uε(z) = o(U0(z)). Thus, for every δ > 0 there exists B such that
Uε(z) ≤ δU0(z) for all z ≥ B. Therefore,

Ex[Uε(logAXn);T (X)
x0

> n]

= Ex[Uε(logAXn); logAXn ≤ B, T (X)
x0

> n]

+ Ex[Uε(logAXn); logAXn > B, T (X)
x0

> n]

≤ Uε(B)Px(T (X)
x0

> n) + δEx[U0(logAXn);T (X)
x0

> n].

Recalling that PX(T
(X)
x0 > n)→ 0, we get

lim sup
n→∞

Ex[Uε(logAXn);T (X)
x0

> n] ≤ δVε(x).

Letting now δ → 0 we conclude that

lim
n→∞

Ex[Uε(logAXn);T (X)
x0

> n] = 0

This means that Vε does not depend on ε. Thus we may set

V (x) := lim
n→∞

Ex[U0(logAXn);T (X)
x0

> n].
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Since U0 and the chain {Xn} are increasing, we infer that the function V (x) is increasing
as well.

By the Markov property,

Ex[U0(logAXn+1);T (X)
x0

> n+ 1] =

∫ ∞
x0

Px(X1 ∈ dy)Ey[U0(logAXn);T (X)
x0

> n].

It follows from the supermartinale property of U0(logAXn) + Uε(logAXn) that

Ey[U0(logAXn);T (X)
x0

> n] ≤ Ey[U0(logAXn) + Uε(logAXn);T (X)
x0

> n]

≤ U0(logA y) + Uε(logA y), n ≥ 1

This allows one to apply the dominated convergence theorem and to conclude that

V (x) = Ex[V (X1);T (X)
x0

> 1], x > x0.

In other words, V (x) is harmonic for Xn killed at T (X)
x0 . It is also clear that

V (x) ≤ U0(logA x) + Uε(logA x) ≤ CU0(logA x).

To show that this function is strictly positive we notice that

E[U0(logA(Az−1 +Aη1))] ≥ U0(z − 1)P(η1 ≤ z − 1) + E[U0(η1); η1 > z − 1].

Using now the integration by parts, we get

E[U0(logA(Az−1 +Aη1))] ≥ U0(z − 1) + e−u0(z−1) ≥ U0(z).

In other words, the sequence U0(logAXn) is a submartingale. Then, by the optional
stopping theorem,

Ex[U0(logAXn);T (X)
x0

> n] ≥ U0(logA x)−Ex[U0(logAXT
(X)
x0

);T (X)
x0
≤ n].

Letting here n→∞, we conclude that

V (x) ≥ U0(logA x)−E[U0(logAXT
(X)
x0

)] ≥ U0(logA x)− U0(logA x0).

Thus, V (x) > 0 for every x > x0. Furthermore, one has the relation

V (x) ∼ U0(logA x) as x→∞.

Thus, the proof is complete.

It remains to construct a harmonic function for the case x0 ≤ x∗. Let V∗ be the
function corresponding to the stopping time T (X)

x∗ , i.e.

V∗(x) = Ex[V∗(X1);X1 > x∗], x > x∗.

Define

V (x) = V∗(x)1{x > x∗}+

∞∑
j=0

∫ x∗

x0

Px(Xj ∈ dz, T (X)
x0

> j)g(z), (3.9)

where

g(z) := Ez[V∗(X1);X1 > x∗].
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Then one has

Ex[V (X1);X1 > x0]

= Ex[V∗(X1);X1 > x∗] +

∫ ∞
x0

Px(X1 ∈ dy)

∞∑
j=0

∫ x∗

x0

Py(Xj ∈ dz, T (X)
x0

> j)g(z)

= Ex[V∗(X1);X1 > x∗] +

∞∑
j=1

∫ x∗

x0

Px(Xj ∈ dz, T (X)
x0

> j)g(z).

If x > x∗ then
Ex[V∗(X1);X1 > x∗] = V∗(x).

Moreover, for x ∈ (x0, x∗] we have

Ex[V∗(X1);X1 > x∗] =

∫ x∗

x0

Px(X0 ∈ dz, T (X)
x0

> 0)g(z).

As a result,
Ex[V (X1);X1 > x0] = V (x), x > x0,

i.e. V is harmonic.
Since V (x) is strictly positive on the half-line (x0,∞), we may perform the corre-

sponding Doob h-transform via the transition probabilities:

P̂(V )
x (X1 ∈ dy) =

V (y)

V (x)
Px(X1 ∈ dy), x, y > x0. (3.10)

The chain Xn becomes transient under this new measure. To see this we consider the
sequence (V (Xn))−1/2. It is immediate from the definition of P̂ that

Ê(V )
x

[
1√

V (X1)

]
=

1

V (x)
Ex

[
V (X1)√
V (X1)

1{T (X)
x0

> 1}

]

=
1

V (x)
Ex

[√
V (X1)1{T (X)

x0
> 1}

]
.

Applying now the Jensen inequality, we obtain

Ê(V )
x

[
1√

V (X1)

]
≤ 1

V (x)

√
Ex

[
V (X1)1{T (X)

x0 > 1}
]

=
1√
V (x)

.

In other words, the sequence (V (Xn))−1/2 is a positive supermartingale. Due to the
Doob convergence theorem, this sequence converges almost surely. Noticing that
P̂x(lim supXn =∞) = 1 implies that this limit of (V (Xn))−1/2 is zero. This means that

Xn →∞ P̂(V ) − a.s.

We now show that (3.8) holds also in the case when the harmonic function is defined
by (3.9). Since the function g(z) is increasing,

∞∑
j=0

∫ x∗

x0

Px(Xj ∈ dz, T (X)
x0

> j)g(z)

≤ g(x∗)

∞∑
j=0

Px(Xj ≤ x∗, T (X)
x0

> j)

≤ g(x∗)
V (x)

infy∈(x0,x∗) V (y)

∞∑
j=0

P̂x(Xj ≤ x∗)

= C(x0, x∗)V (x)

∞∑
j=0

P̂x(Xj ≤ x∗).
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Due to the transience of {Xn} under P̂,

∞∑
j=0

∫ x∗

x0

P̂x(Xj ≤ x∗)→ 0 as x→∞.

This implies that
∞∑
j=0

∫ x∗

x0

Px(Xj ∈ dz, T (X)
x0

> j)g(z) = o(V (x))

and, consequently,

V (x) ∼ V∗(x) ∼ U0(logA x).

Thus, the proof of Theorem 1.3(i) is complete.

4 Lower and upper bounds for tails of recurrence times

We shall consider the chain {Xn}n≥0 only and prove the bounds formulated in Theo-
rem 1.3(ii). The proofs of corresponding estimates for chains {Mn}n≥0 and {Rn}n≥0 are
simpler.

4.1 A lower bound for the tail of T (X)
x0

The main result of this subsection consists in the lower bound for the tails of the first
hitting time.

Lemma 4.1. Under the conditions of Theorem 1.3 there exists a constant c > 0 such
that

P(T (X)
x0

> n) ≥ cV (x ∧An)

V (An)
.

Proof. We first consider the case x0 ≥ x∗. As we have seen in the previous section
the harmonic function V (x) is increasing in this case. Again let P̂ denote the Doob
h-transform of P via the harmonic function V , for its definition see (3.10). We start by
showing that

lim inf
n→∞

P̂(Xn ≤ ABn) > 0 (4.1)

for an appropriate constant B. For this we define

σy := inf{n ≥ 1 : Xn ≥ Ay}.

By the total probability formula, for x < A2n and B > 2,

P̂x(Xσ2n ≤ ABn, σ2n ≤ n)

=

n∑
k=1

∫ A2n

x0

P̂x (σ2n > k − 1, Xk−1 ∈ dz) P̂z(X1 ∈ (A2n, ABn])

≥ inf
z<A2n

P̂z(X1 ∈ (A2n, ABn])

P̂z(X1 > A2n)

n∑
k=1

∫ A2n

x0

P̂x (σ2n > k − 1, Xk−1 ∈ dz) P̂z(X1 > A2n)

= inf
z<A2n

P̂z(X1 ∈ (A2n, ABn])

P̂z(X1 > A2n)
P̂x(σ2n ≤ n).
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For every r ≥ 2, using the integration by parts, we get

P̂z(X1 > Arn)

=
1

V (z)

∫ ∞
Arn

V (y)Pz(X1 ∈ dy)

=
1 + o(1)

V (z)

∫ ∞
Arn

U0(logA y)Pz(X1 ∈ dy)

=
1 + o(1)

V (z)

(
U0(rn)Pz(X1 > Arn) +

∫ ∞
Arn

U ′0(logA y)(logA y)′Pz(X1 > y)dy

)
.

According to (1.4),

Pz(X1 > y) = P(η1 > logA(y − az)) ∼ c

logA y

uniformly in z ≤ A2n, y ≥ A2n. Therefore,

P̂z(X1 > Arn) =
1 + o(1)

V (z)

(
U0(rn)

c

rn
+

∫ ∞
rn

e−u0(t)P(η1 > t)dt

)
=

1 + o(1)

V (z)

(
U0(rn)

c

rn
+ e−u0(rn)

)
=

1 + o(1)

V (z)
r−c

U0(n)

n
.

This implies that

inf
z<A2n

P̂z(X1 ∈ (A2n, ABn])

P̂z(X1 > A2n)
= 1−

(
2

B

)c
+ o(1).

Taking B = 21+2/c, we conclude that

P̂x(Xσ2n
≤ A21+2/cn, σ2n ≤ n) ≥ 1

2
P̂x(σ2n ≤ n), x ≤ A2n

for all n large enough. Using this bound, we obtain

P̂x(Xn ≤ ABn)

≥ P̂x(σ2n > n) + P̂x(Xn ≤ ABn, Xσ2n
≤ ABn, σ2n ≤ n)

≥ P̂x(σ2n > n) +
1

2
P̂(σ2n ≤ n)P̂x(Xn ≤ ABn|Xσ2n

≤ ABn, σ2n ≤ n).

By the strong Markov property,

P̂x(Xn ≤ ABn, Xσ2n
≤ ABn, σ2n ≤ n)

=

n∑
k=1

∫ ABn

A2n

P̂x(σ2n = k,Xk ∈ dz)P̂z(Xn−k ≤ ABn)

≥
n∑
k=1

∫ ABn

A2n

P̂x(σ2n = k,Xk ∈ dz)P̂z(Xj ≤ Xj−1 for all j ≤ n− k)

≥ P̂x(σ2n ≤ n,Xσ2n ≤ ABn) inf
z∈(A2n,ABn)

P̂z(Xj ≤ Xj−1 for all j ≤ n).

Therefore,

P̂x(Xn ≤ ABn|Xσ2n
≤ ABn, σ2n ≤ n) ≥ inf

z∈(A2n,ABn]
P̂z(Xj ≤ Xj−1 for all j ≤ n).
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If X0 = z ≥ A2n then Xj ≥ A2n−j for every j ≥ 1. If An ≥ x0 then Pz(T
(X)
x0 > n) = 1 and,

consequently,

P̂z(Xj ≤ Xj−1 for all j ≤ n) ≥ V (An)

V (z)
Pz(Xj ≤ Xj−1 for all j ≤ n)

For every y we have

Py(X1 ≤ y) = P(η1 ≤ logA y + logA(1− a)).

Thus, by the Markov property,

Pz(Xj ≤ Xj−1 for all j ≤ n)

≥ Pz(Xj ≤ Xj−1 for all j ≤ n− 1)P(η1 ≤ n+ 1 + logA(1− a))

≥ . . . ≥
n−1∏
j=0

P(η1 ≤ 2n− j + logA(1− a))

≥ (P(η1 ≤ n+ 1 + logA(1− a)))
n ∼ e−c.

This implies that

inf
z∈(A2n,ABn]

P̂z(Xj ≤ Xj−1 for all j ≤ n) ≥ V (An)

V (ABn)

e−c

2
≥ C0.

Therefore,

P̂x(Xn ≤ ABn) ≥ P̂x(σ2n > n) +
C0

2
P̂x(σ2n ≤ n) ≥ C0

2

for all sufficiently large n. This finishes the proof of equation (4.1).

Recalling that V is increasing, we obtain the bound

Px(T (X)
x0

> n) = V (x)Ê(V )
x

[
1

V (Xn)

]
≥ V (x)

V (ABn)
P̂(V )
x (Xn ≤ ABn) ≥ e−c

4

V (x)

V (ABn)
, x ≤ A2n.

Consequently,

Px(T (X)
x0

> n) ≥ C1
V (x ∧An)

V (An)
(4.2)

for all x > x0 ≥ x∗.
Thus, it remains to consider the case x0 ≤ x∗. If x > x∗ + 1 then Px(T

(X)
x0 > n) ≥

Px(T
(X)
x∗ > n). Applying (4.2) with x0 = x∗, we get

Px(T (X)
x0

> n) ≥ C1
V∗(x ∧An)

V∗(An)
≥ C2

V (x ∧An)

V (An)
.

If x ≤ x∗ + 1 then

Px(T (X)
x0

> n) ≥ P(ξ1 > x∗ + 1)Px∗+1(T (X)
x0

> n− 1) ≥ C3
V (x ∧An)

V (An)
.

Together with (4.2) the proof is complete.
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4.2 Upper bounds for P(T
(X)
x0 > n)

Lemma 4.2. If V (x) is increasing on (x0,∞) then

Px(T (X)
x0

> n) ≤ C V (x)

V (An)
, x > x0, n ≥ 1.

Proof. Since Px(Xn > y) is monotonically increasing in x,

Px(Xn > y | T (X)
x0

> n) ≥ Px(Xn > y) for all x, y > x0.

Consequently,

Ex[W (Xn) | T (X)
x0

> n] ≥ Ex[W (Xn)] ≥ Ex[W (Xn)1{Xn > x0}]

for every nonnegative increasing function W . (To prove this, one approximates W by
functions of the form

∑
k ck1(yk,∞).) In particular, for W = V one gets

V (x) = Ex[V (Xn), T (X)
x0

> n]

= Px(T (X)
x0

> n)Ex[V (Xn) | T (X)
x0

> n]

≥ Px(T (X)
x0

> n)Ex[V (Xn)1{Xn > x0}]

and can conclude

Px(T (X)
x0

> n) ≤ V (x)

Ex[V (Xn)1{Xn > x0}]
≤ V (x)

E0[V (Xn)1{Xn > x0}]
. (4.3)

As we already know, logAXn

n converges weakly to the distribution with density

cyc−1

(y + 1)c+1
1R+(y) .

The asymptotic behaviour in (4.3) is obtained most conveniently if one assumes that
logAXn

n converges almost everywhere to some Z with this distribution. (On a suitable
probability space, the sequence can always be constructed in such a way.) Then, as
v(x) := V (logA x) varies regularly with index 1− c,

V (Xn)

V (An)
=
v(logAXn)

v(n)
=
v
(

logAXn

n n
)

v(n)
∼ v(Zn)

v(n)
→ Z1−c .

(More precisely, due to the monotonicity of V , one first gets for every fixed N ∈ N

lim sup
n→∞

v
(

logAXn

n n
)

v(n)
≤ lim sup

n→∞

v
(

supk:k≥N
logAXk

k n
)

v(n)
=

(
sup
k:k≥N

logAXk

k

)1−c

.

N →∞ shows lim supn→∞
v(logAXn)

v(n) ≤ Z1−c and likewise one checks that the lower limit
has at least this value.)

Now one can apply the Fatou lemma:

lim inf
n→∞

E0[V (Xn)1{Xn > x0}]
V (An)

≥ E[Z1−c] =

∫ ∞
0

y1−c
cyc−1

(y + 1)c+1
= 1 ,

so (4.3) yields the desired bound.
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Remark 4.3. We know from the construction of V that this function is increasing for
x0 ≥ x∗. We now notice that, using Theorem 1.3(iii), one can infer that V is increasing
for all x0. Indeed, by the monotonicity of the chain {Xn},

Px(T (X)
x0

> n) ≤ Py(T (X)
x0

> n)

for all n and for all x ≤ y. Combining this with the asymptotic relation Px(T
(X)
x0 > n) ∼

κ(c) V (x)
V (An) , we conclude that V (x) ≤ V (y). Thus, the bound in Lemma 4.2 holds for each

x0 and, consequently, the upper bound in Theorem 1.3(ii) is valid.

Since the we do not have the monotonicity property of V in the case x0 ≤ x∗ we next
prove an alternative upper bound, avoiding the use of monotonicity arguments.

Lemma 4.4. Assume that there exist x1 and a subexponential distribution F such that

Px(T (X)
x1

> n) ≤ C(x)F (n), n ≥ 0, x > x1.

If x0 < x1 is such that P(ax1 + ξ1 < x0) > 0 then there exists C(x0, x) such that

Px(T (X)
x0

> n) ≤ C(x, x0)F (n), n ≥ 0, x > x0.

Proof. The assumption P(ax1 + ξ1 < x0) > 0 implies that

p := Px1
(X

T
(X)
x1

≤ x0) > 0.

Then we can represent the law of T (X)
x1 as a mixture of two distributions:

Px1
(T (X)
x1
∈ B)

= pPx1
(T (X)
x1
∈ B|X

T
(X)
x1

≤ x0) + (1− p)Px1
(T (X)
x1
∈ B|X

T
(X)
x1

> x0)

=: pP(θ ∈ B) + (1− p)P(ζ ∈ B).

Noting that {Xn} may visit (x0, x1] several times before T (X)
x0 and using the monotonicity

of the chain, we get

Px1
(T (X)
x0

> n) ≤ p
∞∑
k=0

(1− p)kP(ζ1 + ζ2 + . . .+ ζk + θ > n),

where {ζk} are independent copies of ζ. Under the assumptions of the lemma we have

P(ζ > n) ≤ C1F (n) and P(θ > n) ≤ C2F (n).

Then, by Proposition 4 in [5],

Px1(T (X)
x0

> n) ≤ CF (n).

If the starting point x is smaller than x1 then

Px(T (X)
x0

> n) ≤ Px1
(T (X)
x0

> n) ≤ CF (n).

If the starting point x is bigger than x1 then Px(T
(X)
x0 > n) is bounded by the tail of the

convolution of Px(T
(X)
x1 ∈ ·) and Px1

(T
(X)
x0 ∈ ·). Since the tails of these two distributions

are O(F (n)), the tail of their convolution is also O(F (n)). This completes the proof of
the lemma.
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Corollary 4.5. If (1.4) holds then

Px(T (X)
x0

> n) ≤ C V (x)

V (An)

for all x > x0 and all n ≥ 1.

Proof. It suffices to consider the case x0 < x∗.
Since V∗(A

n) is regularly varying then, in view of Lemma 4.2, the conditions of
Lemma 4.4 are valid for x1 = x∗ and F (n) ∼ CU0(n). Combining now Lemmata 4.2
and 4.4, we have, for x > x∗,

Px(T (X)
x0

> n) ≤ Px(T (X)
x∗ > n/2) + Px∗(T

(X)
x0

> n/2) ≤ C1V∗(x) + C2

V∗(An/2)

Recalling that V∗(An) is regularly varying and that V (x) ≥ V∗(x) in the case x0 < x∗,
we have the desired estimate for x > x∗. In the case x ≤ x∗ it suffices to apply
Lemma 4.4.

5 Proof of asymptotic relations

In this section we shall prove asymptotic relations in Theorem 1.3(iii). Exact asymp-
totics in Theorem 1.2 can be derived by exactly the same arguments, and we omit their
proof.

We are going to apply Theorem 3.10 from Durrett [10] to the sequence of Markov
processes

v
(n)
t :=

logAX[nt]

n
, t ≥ 0.

Since this sequence converges weakly to the process Z, which is non-degenerate and
Px(T

(Z)
0 > t) is strictly positive for all x, t > 0, we conclude that the conditions (i)-(iii)

from [10] are fulfilled. Moreover, we have already shown that Px
(
· |T (Z)

0 > 1
)

converges,

as x→ 0, to a non-degenerate limit. Thus, it remains to check that

• PAnxn (T
(X)
x0 > ntn)→ Px(T

(Z)
0 > t) if xn → x > 0 and tn → t > 0;

• PAnxn (T
(X)
x0 > ntn)→ 0 whenever xn → 0 and tn → t > 0;

• the sequence v(n) is tight; and

• limh→0 lim infn→∞PAx(v
(n)
t > h | T (X)

x0 > n) = 1 for every t > 0.

We start with the first condition.

Lemma 5.1. If xn → x > 0 and tn → t > 0 then

PAnxn (T (X)
x0

> ntn)→ Px(T
(Z)
0 > t).

Proof. Since Py(T
(X)
x0 > m) is increasing in y and decreasing in m, it suffices to prove

the lemma in the special case xn = x and tn = t. We are going to apply Theorem 2.1
from [10]. We set

A0 :=

{
f ∈ D[0, t] : inf

s≤t
f(s) > 0

}
and

An :=

{
f ∈ D[0, t] : inf

s≤t
f(s) >

x0
n

}
, n ≥ 1.

Furthermore, for every ε > 0 we define

Gε :=

{
f ∈ D[0, t] : inf

s≤t
f(s) > ε

}
.
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Then we have
Px(Z ∈ ∂Gε) = 0 for all ε, t > 0. (5.1)

It is clear that Gε ⊂ An for all n > x0/ε and G1/n ↑ A0. Thus, in order to apply Theorem
2.1 from [10] we have only to show that

lim sup
n→∞

PAxn(T (X)
x0

> nt) ≤ Px(T
(Z)
0 > t). (5.2)

Fix some ε < x and δ < t. Then, using the monotonicity of the chain {Xn}, we get

PAxn(T (X)
x0

> nt) ≤ PAxn

(
inf

s≤t−δ
X[sn] > Aεn

)
+ PAεn(T (X)

x0
> δn).

According to the upper bound in (1.12),

PAεn(T (X)
x0

> δn) ≤ C V (Aεn)

V (Aδn)
.

Recalling that V (Ax) is regularly varying of index 1− c, we conclude

lim sup
n→∞

PAεn(T (X)
x0

> δn) ≤ C
(ε
δ

)1−c
.

Furthermore, combining (1.5) and (5.1), we get

PAxn

(
inf

s≤t−δ
X[sn] > Aεn

)
→ Px

(
inf

s≤t−δ
Zs > ε

)
.

Consequently,

lim sup
n→∞

PAxn(T (X)
x0

> nt) ≤ Px

(
inf

s≤t−δ
Zs > ε

)
+ C

(ε
δ

)1−c
≤ Px(T

(Z)
0 > t− δ) + C

(ε
δ

)1−c
.

Letting here first ε→ 0 and then δ → 0, we arrive at (5.2). Thus, the proof is complete.

Lemma 5.2. If tn → t > 0 and xn → 0 then

PAxnn(T (X)
x0

> nt)→ 0.

This is a simple consequence of the upper bound in (1.12) and we omit its proof.

Lemma 5.3. For all x > x0 and all t > 0 one has

lim
h→0

lim sup
n→∞

Px(v
(n)
t > h | T (X)

x0
> n) = 1.

Proof. By the definition of v(n),

Px(v
(n)
t ≤ h | T (X)

x0
> n) =

Px(X[nt] ≤ Ahn, T
(X)
x0 > n)

Px(T
(X)
x0 > n)

.

Set s = min{1, t}/2. Then, by the monotonicity of Xn,

Px(X[nt] ≤ Ahn, T (X)
x0

> n) ≤ Px(T (X)
x0

> ns)P0(X[n(t−s)] ≤ Ahn).

Therefore,

Px(v
(n)
t > h | T (X)

x0
> n) ≤ Px(T

(X)
x0 > ns)

Px(T
(X)
x0 > n)

P0(X[n(t−s)] ≤ Ahn).
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Taking into account (1.5), (1.12) and (1.6), we get

lim sup
n→∞

Px(v
(n)
t > h|T (X)

x0
> n) ≤ Csc−1P0(Zt−s ≤ h) ≤ Csc−1

(
h

h+ t− s

)c
.

This yields the desired relation.

To show the tightness we shall use the following upper bound for the conditional
distribution of Xn.

Lemma 5.4. There exists a constant C such that

Px(Xn ≥ Ay|T (X)
x0

> n) ≤ Cn
y
, y ≥ 2 logA

(
x+

1

1− a

)
.

Proof. If ξk < Ay/2 for all k ≤ n then

Xn = anx+ an−1ξ1 + an−2ξ2 + . . .+ ξn

≤ x+Ay/2
n−1∑
j=0

aj ≤ x+Ay/2
1

1− a
≤ Ay

for all y ≥ 2 logA

(
x+ 1

1−a

)
. Therefore,

Px(Xn ≥ Ay, T (X)
x0

> n) ≤
n∑
k=1

Px(ξk ≥ Ay/2, T (X)
x0

> n)

≤
n∑
k=1

Px(ξk ≥ Ay/2, T (X)
x0

> k − 1)

≤ P(ξ1 ≥ Ay/2)

n∑
k=1

Px(T (X)
x0

> k − 1)

Using the upper bound in (1.12) and recalling that V (Ax) is regularly varying with index
1− c, we conclude that

n∑
k=1

Px(T (X)
x0

> k − 1) ≤ 1 + C

n−1∑
j=1

V (x)

V (Aj)
≤ C nV (x)

V (An)
.

Consequently,

Px(Xn ≥ Ay, T (X)
x0

> n) ≤ C nV (x)

V (An)
P(η1 ≥ y/2).

Combining this with (1.4) and with the lower bound in (1.12), we obtain the desired
estimate.

Lemma 5.5. The sequence v(n) is tight.

Proof. According to Theorem 3.6 in [10], it suffices show that

lim
K→∞

lim sup
n→∞

Px(Xn > AnK |T (X)
x0

> n) = 0 (5.3)

and

lim
t→0

lim sup
n→∞

Px(X[nt] > Anh|T (X)
x0

> n) = 0, h > 0. (5.4)
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(5.3) is immediate from Lemma 5.4. To show (5.4) we first notice that, for every t < 1,

Px(X[nt] > Anh|T (X)
x0

> n) ≤ Px(X[nt] > Anh|T (X)
x0

> nt)
Px(T

(X)
x0 > nt)

Px(T
(X)
x0 > n)

.

Applying Lemma 5.4 to the first probability term on the right hand side, we get

Px(X[nt] > Anh|T (X)
x0

> n) ≤ C t

h

Px(T
(X)
x0 > nt)

Px(T
(X)
x0 > n)

.

Using again (1.12), we have

lim sup
n→∞

Px(T
(X)
x0 > nt)

Px(T
(X)
x0 > n)

≤ Ctc−1.

As a result we have the estimate

lim sup
n→∞

Px(X[nt] > Anh|T (X)
x0

> n) ≤ C t
c

h
,

which implies (5.4).

We have checked all the conditions in Theorem 3.10 in [10]. Therefore, the se-

quence of distributions Px

(
v(n) ∈ ·|T (X)

x0 > n
)

on D[0, 1] converges weakly towards the

distribution Q introduced in Theorem 1.1.

5.1 Tail asymptotics of the first hitting time

In this section we aim to prove (1.13), which is a part of Theorem 1.1 (iii). Since V is
harmonic,

V (x) = Ex[V (Xn);T (X)
x0

> n]

= Ex[V (Xn);T (X)
x0

> n,Xn ≤ AKn] + Ex[V (Xn);T (X)
x0

> n,Xn > AKn] (5.5)

for every K > 0.
We know that V (x) ≤ CU0(logA x). Therefore,

Ex[V (Xn);T (X)
x0

> n,Xn > AKn]

≤ CEx[U0(logAXn);T (X)
x0

> n,Xn > AKn]

= CU0(Kn)Px(logAXn ≥ Kn;T (X)
x0

> n)

+ C

∫ ∞
Kn

U ′0(y)Px(logAXn ≥ y;T (X)
x0

> n)dy.

Combining Lemma 5.4 and (1.12), we have

Px(logAXn ≥ y;T (X)
x0

> n) ≤ C nV (x)

yV (An)
.

Consequently,

Ex[V (Xn);T (X)
x0

> n,Xn > AKn]

≤ C1
V (x)

V (An)

(
U0(Kn)

K
+ n

∫ ∞
Kn

U ′0(y)

y
dy

)
≤ C2

V (x)

V (An)

(
U0(Kn)

K
+ n

∫ ∞
Kn

U0(y)

y2
dy

)
≤ C3

V (x)

V (An)

U0(Kn)

K
.
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Recalling that V (An) ∼ U0(n) and that U0 is regularly varying, we finally get

lim sup
n→∞

Ex[V (Xn);T (X)
x0

> n,Xn > AKn] ≤ C

Kc
V (x). (5.6)

For the first summand on the right hand side of (6.8) we have

Ex[V (Xn);T (X)
x0

> n,Xn ≤ AKn]

= Px(T (X)
x0

> n)Ex[V (Xn)1{Xn ≤ AKn}|T (X)
x0

> n]

= V (An)Px(T (X)
x0

> n)Ex

[
V (Xn)

V (An)
1{Xn ≤ AKn}

∣∣∣T (X)
x0

> n

]
.

It follows from the already proven conditional limit theorem and from (2.12) that

lim
n→∞

Px

(
logAXn

n
≤ y
∣∣∣T (X)
x0

> n

)
=

y

y + 1
, y > 0.

Combining this with the regular variation property of V , we obtain

Ex

[
V (Xn)

V (An)
1{Xn ≤ AKn}

∣∣∣T (X)
x0

> n

]
= (1 + o(1))Ex

[(
logAXn

n

)1−c

1{Xn ≤ AKn}
∣∣∣T (X)
x0

> n

]

= (1 + o(1))

∫ K

0

yc−1

(1 + y)2
dy.

Consequently,

Ex[V (Xn);T (X)
x0

> n,Xn ≤ AKn]

= (1 + o(1))V (An)Px(T (X)
x0

> n)

∫ K

0

yc−1

(1 + y)2
dy. (5.7)

Plugging (5.6) and (5.7) into (5.5) and letting K →∞, we obtain

Px(T (X)
x0

> n) ∼
(∫ ∞

0

yc−1

(1 + y)2
dy

)−1
V (x)

V (An)
.

Thus, (1.13) holds with

κ(c) =

(∫ ∞
0

yc−1

(1 + y)2
dy

)−1
=

1

(1− c)B(c, 1− c)
.

6 Proof of Theorem 1.5

As we have already seen in the analysis of the harmonic function explicit calculations
are often possible in the case of the Markov chain {Rn}n≥0. This will be also the case in
the following subsections.

6.1 Expectation of hitting times for the maximal autoregressive process

Put u(x) = Ex[T
(R)
x0 ]. In this subsection we will derive representation (1.15) for u(x).

Observe that the Markov property implies that u(x) satisfies the following equality

u(x) = Px(T (R)
x0

= 1) + Ex[1 + u(R1);T (R)
x0

> 1]

= Px(R1 ≤ x0) + Ex[1 + u(R1);R1 > x0], x > x0. (6.1)
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Assume first that x ∈ (x0, x0 + 1]. In this case one has

{R1 > x0} = {R1 = η1 > x0}.

Therefore,

u(x) = P(η1 ≤ x0) + E[1 + u(η1); η1 > x0]

= 1 + E[u(η1); η1 > x0] for all x ∈ (x0, x0 + 1].

For all x > x0 + 1 one has Px(T
(R)
x0 = 1) = 0. This implies that (6.1) reduces to

u(x) = Ex[1 + u(R1)]

= 1 + u(x− 1)P(η1 ≤ x− 1) + E[u(η1); η1 > x− 1], x > x0 + 1. (6.2)

If x ∈ (x0 + 1, x0 + 2] then x− 1 ∈ (x0, x0 + 1] and, consequently, u(x− 1) = u(x0 + 1) for
all x ∈ (x0 + 1, x0 + 2]. From this observation and from (6.2) we have

u(x) = 1 + u(x0 + 1)P(η1 ≤ x− 1) + E[u(η1); η1 > x− 1]

= 1 + u(x0 + 1)P(η1 ≤ x− 1)

+ E[u(η1); η1 ∈ (x− 1, x0 + 1]] + E[u(η1); η1 > x0 + 1]

= 1 + u(x0 + 1)P(η1 ≤ x0 + 1) + E[u(η1); η1 > x0 + 1]. (6.3)

This equality implies that u(x) = u(x0 + 2) for all x ∈ (x0 + 1, x0 + 2]. Note also that

u(x0 + 1) = 1 + E[u(η1); η1 > x0]

= 1 + u(x0 + 1)P(η1 ∈ (x0, x0 + 1])) + E[u(η1); η1 > x0 + 1].

Combining this with (6.3), we conclude that

u(x0 + 2) = u(x0 + 1) (1 + P(η1 ≤ x0)) .

Fix now an integer n and consider the case x ∈ (x0 + n, x0 + n+ 1]. Assume that we
have already shown that u(y) = u(x0 + n) for all y ∈ (x0 + n− 1, x0 + n]. Then we have
from (6.2)

u(x) = 1 + u(x0 + n)P(η1 ≤ x− 1) + E[u(η1); η1 > x− 1]

= 1 + u(x0 + n)P(η1 ≤ x0 + n) + E[u(η1); η1 > x0 + n].

Therefore, u(x) = u(x0 + n + 1) for all x ∈ (x0 + n, x0 + n + 1]. This means that this
property is valid for all n.

One has also equalities

u(x0 + n+ 1) = 1 + u(x0 + n)P(η1 ≤ x0 + n) + E[u(η1); η1 > x0 + n]

and

u(x0 + n) = 1 + u(x0 + n− 1)P(η1 ≤ x0 + n− 1) + E[u(η1); η1 > x0 + n− 1]

= 1 + u(x0 + n− 1)P(η1 ≤ x0 + n− 1)

+ u(x0 + n)P(η1 ∈ (x0 + n− 1, x0 + n]) + E[u(η1); η1 > x0 + n].

Taking the difference we obtain

u(x0 + n+ 1)− u(x0 + n)

= u(x0 + n)P(η1 ≤ x0 + n)− u(x0 + n− 1)P(η1 ≤ x0 + n− 1)

− u(x0 + n)P(η1 ∈ (x0 + n− 1, x0 + n])

= P(η1 ≤ x0 + n− 1) (u(x0 + n)− u(x0 + n− 1)) .
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Consequently,

u(x0 + n+ 1)− u(x0 + n) = u(x0 + 1)

n−1∏
k=0

P(η1 ≤ x0 + k), n ≥ 1.

As a result, we have the following expression for the expectation of the hitting time

u(x) = u(x0 + 1)

1 +

n∑
j=1

j−1∏
k=0

P(η1 ≤ x0 + k)

 , x ∈ (x0 + n, x0 + n+ 1]. (6.4)

Finally, in order to get a finite solution we have to show that the equation

u(x0 + 1) = 1 + E[u(η1); η1 > x0]

is solvable. In view of (6.4), the previous equation is equivalent to

u(x0 + 1) = 1 + u(x0 + 1)

∞∑
n=0

1 +

n∑
j=1

j−1∏
k=0

P(η1 ≤ x0 + k)

P(η1 ∈ (x0 + n, x0 + n+ 1]).

Now we conclude that (6.1) has a finite solution if and only if

∞∑
n=0

1 +

n∑
j=1

j−1∏
k=0

P(η1 ≤ x0 + k)

P(η1 ∈ (x0 + n, x0 + n+ 1]) < 1.

Clearly,

∞∑
n=0

1 +

n∑
j=1

j−1∏
k=0

P(η1 ≤ x0 + k)

P(η1 ∈ (x0 + n, x0 + n+ 1])

= P(η1 > x0) +

∞∑
j=1

j−1∏
k=0

P(η1 ≤ x0 + k)

∞∑
n=j

P(η1 ∈ (x0 + n, x0 + n+ 1])

= P(η1 > x0) +

∞∑
j=1

(1−P(η1 ≤ x0 + j))

j−1∏
k=0

P(η1 ≤ x0 + k).

Furthermore, for every N ≥ 1,

N∑
j=1

(1−P(η1 ≤ x0 + j))

j−1∏
k=0

P(η1 ≤ x0 + k)

=
N∑
j=1

j−1∏
k=0

P(η1 ≤ x0 + k)−
N∑
j=1

j∏
k=0

P(η1 ≤ x0 + k)

= P(η1 ≤ x0)−
N∏
k=0

P(η1 ≤ x0 + k).

This implies that

∞∑
n=0

1 +

n∑
j=1

j−1∏
k=0

P(η1 ≤ x0 + k)

P(η1 ∈ (x0 + n, x0 + n+ 1])

= 1− lim
N→∞

N∏
k=0

P(η1 ≤ x0 + k).
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Thus, there is a finite solution u(x) if and only if

lim
N→∞

N∏
k=0

P(η1 ≤ x0 + k) > 0.

Note that this is equivalent to Eη+1 <∞. Then,

u(x0 + 1) =
1∏∞

k=0 P(η1 ≤ x0 + k)
.

Plugging this result into (6.4) gives us an explicit formula for the expected hitting time.

6.2 Recursion for tails of exit times

We will consider now Px(T
(R)
x0 > n). Define

v(n, k) = Px0+k+1(T (R)
x0

> n), n, k ≥ 0

and

vn = v(n, 0).

Then the following result holds.

Proposition 6.1. Assume that 0 < P(η1 < x0) < 1. Then, for integer n, k ≥ 0,

Px(T (R)
x0

> n) = v(n, k), x ∈ (x0 + k, x0 + k + 1]. (6.5)

For n ≤ k we have v(n, k) = 1 and for n > k the following recursive equality holds

v(n, k) = v(n, 0) +

k∑
m=1

v(n−m, 0)

m−1∏
j=0

P(η1 ≤ x0 + j). (6.6)

Furthermore,

vn = P(η1 > x0 + n− 1) + vn−1P(η1 ∈ (x0, x0 + n− 1]) (6.7)

+

n−2∑
m=1

vn−m−1P(η1 ∈ (x0 +m,x0 + n− 1])

m−1∏
j=0

P(η1 ≤ x0 + j)

and hence (6.6) and (6.7) allow us to find Px(T
(R)
x0 > n) recursively.

Proof. It is clear that for n ≤ k it holds Px(T
(R)
x0 > n) = v(n, k) = 1. Hence, in the rest of

the proof we will assume that n > k.

Let x ∈ (x0, x0 + 1]. Then, for n > 0 we have,

Px(T (R)
x0

> n) =

∫ ∞
x0

Px(R1 ∈ dy)Py(T (R)
x0

> n− 1)

=

∫ ∞
x0

P(η1 ∈ dy)Py(T (R)
x0

> n− 1). (6.8)

Clearly this probability is the same for each x ∈ (x0, x0 + 1] and hence (6.5) holds for
k = 0.
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Next consider x ∈ (x0 + 1, x0 + 2]. For every n > 1 we have

Px(T (R)
x0

> n)

= Px−1(T (R)
x0

> n− 1)P(η1 ≤ x− 1) +

∫ ∞
x−1

P(η1 ∈ dy)Py(T (R)
x0

> n− 1)

= Px0+1(T (R)
x0

> n− 1)P(η1 ≤ x− 1) +

∫ x0+1

x−1
P(η1 ∈ dy)Px0+1(T (R)

x0
> n− 1)

+

∫ ∞
x0+1

P(η1 ∈ dy)Py(T (R)
x0

> n− 1)

= v(n− 1, 0)P(η1 ≤ x0 + 1) +

∫ ∞
x0+1

P(η1 ∈ dy)Py(T (R)
x0

> n− 1). (6.9)

This expression is constant for x ∈ (x0 + 1, x0 + 2] and hence (6.5) holds for k = 1. Note
also that it follows from (6.8) that

v(n, 0) = v(n− 1, 0)P(η1 ∈ (x0, x0 + 1]) +

∫ ∞
x0+1

P(η1 ∈ dy)Py(T (R)
x0

> n− 1).

Subtracting this expression from (6.9) we obtain

v(n, 1)− v(n, 0) = v(n− 1, 0)P(η1 ≤ x0). (6.10)

We will now prove by induction that for x ∈ (x0 + k, x0 + k] the tail Px(T
(R)
x0 > n) is

constant and will simultaneously show that for k ≥ 2 that

v(n, k)− v(n, k − 1) = (v(n− 1, k − 1)− v(n− 1, k − 2))P(η1 ≤ x0 + k − 1). (6.11)

First consider the base of induction k = 2. In this case, for n > 2 and for x ∈
(x0 + 2, x0 + 3], we have

Px(T (R)
x0

> n)

= Px−1(T (R)
x0

> n− 1)P(η1 ≤ x− 1) +

∫ ∞
x−1

P(η1 ∈ dy)Py(T (R)
x0

> n− 1)

= Px0+2(T (R)
x0

> n− 1) +

∫ x0+2

x−1
P(η1 ∈ dy)Px0+2(T (R)

x0
> n− 1)

+

∫ ∞
x0+2

P(η1 ∈ dy)Py(T (R)
x0

> n− 1)

= v(n− 1, 1)P(η1 ≤ x0 + 2) +

∫ ∞
x0+2

P(η1 ∈ dy)Py(T (R)
x0

> n− 1).

This expression clearly does not depend on x. Thus,

v(n, 2) = v(n− 1, 1)P(η1 ≤ x0 + 2) +

∫ ∞
x0+2

P(η1 ∈ dy)Py(T (R)
x0

> n− 1). (6.12)

It also follows from (6.9) that

v(n, 1) = v(n− 1, 0)P(η1 ≤ x0 + 1) + v(n− 1, 1)P(η1 ∈ (x0 + 1, x0 + 2])

+

∫ ∞
x0+2

P(η1 ∈ dy)Py(T (R)
x0

> n− 1).

Subtracting this equation from (6.12) we obtain

v(n, 2)− v(n, 1) = (v(n− 1, 1)− v(n− 1, 0))P(η1 ≤ x0 + 1).
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This is exactly (6.11) with k = 2. Thus, the base case is true.

We will now prove the induction step. Consider x ∈ (x0 + k, x0 + k + 1]. For n > k we
obtain, using the induction hypothesis,

Px(T (R)
x0

> n)

= Px−1(T (R)
x0

> n− 1)P(η1 ≤ x− 1) +

∫ ∞
x−1

P(η1 ∈ dy)Py(T (R)
x0

> n− 1)

= Px0+k(T (R)
x0

> n− 1) +

∫ x0+k

x−1
P(η1 ∈ dy)Px0+k(T (R)

x0
> n− 1)

+

∫ ∞
x0+k

P(η1 ∈ dy)Py(T (R)
x0

> n− 1)

= v(n− 1, k − 1)P(η1 ≤ x0 + k) +

∫ ∞
x0+k

P(η1 ∈ dy)Py(T (R)
x0

> n− 1).

This expression clearly does not depend on x and hence (6.5) holds. Thus,

v(n, k) = v(n− 1, k − 1)P(η1 ≤ x0 + k) +

∫ ∞
x0+k

P(η1 ∈ dy)Py(T (R)
x0

> n− 1). (6.13)

The same expression is true for k − 1 by the induction hypothesis. Hence,

v(n, k − 1) = v(n− 1, k − 2)P(η1 ≤ x0 + k − 1)

+ v(n− 1, k − 1)P(η1 ∈ (x0 + k − 1, x0 + k])

+

∫ ∞
x0+k

P(η1 ∈ dy)Py(T (R)
x0

> n− 1).

Subtracting this expression from (6.13) we obtain (6.11).

Now it follows from (6.10) and (6.11) that

v(n, k)− v(n, k − 1) = v(n− k, 0)

k−1∏
j=0

P(η1 ≤ x0 + j). (6.14)

for n > k. Then the standard telescoping argument gives (6.6). Plugging (6.14) into (6.8)
we obtain

vn =

∫ ∞
x0+1

P(η1 ∈ dy)Py(T (R)
x0

> n− 1) + vn−1P(η1 ∈ (x0, x0 + 1])

=

n−2∑
l=1

P(η1 ∈ (x0 + l, x0 + l + 1])v(n− 1, l) + P(η1 > x0 + n− 1)

+ vn−1P(η1 ∈ (x0, x0 + 1])

=

n−2∑
l=1

P(η1 ∈ (x0 + l, x0 + l + 1])

vn−1 +

l∑
m=1

vn−m

m−1∏
j=0

P(η1 ≤ x0 + j)


+ P(η1 > x0 + n− 1) + vn−1P(η1 ∈ (x0, x0 + 1]).

Swapping the order of summation we obtain (6.7).
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6.3 Heavy tails

To analyse the heavy-tailed case we need first the following definition. We say that a
non-negative sequence (an)n≥0 is subexponential if

lim
n→∞

an
an−1

= 1, a∞ :=

∞∑
n=0

an <∞

n∑
k=0

akan−k ∼ 2a∞an, n→∞.

We start by deriving an upper bound for vn.

Lemma 6.2. Assume that F ∈ S∗, where F (x) = P(η1 ≤ x). Then there exists a constant
C such that

vn ≤ CP(η1 > n), n ≥ 0.

Proof. Note that it follows from (6.7) that vn ≤ wn, where the sequence {wn} is given by
w1 = P(η1 > x0) and for n ≥ 2,

wn = P(η1 > x0 + n− 1) + wn−1P(η1 > x0)

+

n−2∑
m=1

wn−m−1P(η1 > x0 +m)

m−1∏
j=0

P(η1 ≤ x0 + j).

Set d0 = P(η1 > x0) and

dm := P(η1 > x0 +m)

m−1∏
j=0

P(η1 ≤ x0 + j), m ≥ 1.

Set also cn = P(η1 > x0 + n− 1), n ≥ 1 Then we have w1 = c1 and

wn = cn +

n−2∑
m=0

wn−m−1dm, n ≥ 2. (6.15)

Using (6.15), we obtain the following equality for generating functions:

∞∑
n=1

wns
n =

∞∑
n=1

cns
n +

∞∑
n=2

sn
n−2∑
m=0

wn−m−1dm

=

∞∑
n=1

cns
n + s

∞∑
m=0

dms
m

∞∑
n=m+2

wn−m−1s
n−m−1

=

∞∑
n=1

cns
n + s

∞∑
m=0

dms
m

( ∞∑
n=1

wns
n

)
.

Set, for brevity,

ŵ(s) =

∞∑
n=1

wns
n, ĉ(s) =

∞∑
n=1

cns
n, and d̂(s) =

∞∑
n=0

dns
n.

Then we have
ŵ(s) = ĉ(s) + sd̂(s)ŵ(s).

Solving this equality we obtain

ŵ(s) =
ĉ(s)

1− sd̂(s)
.
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Noting that

dm = (1−P(η1 ≤ x0 +m))

m−1∏
j=0

P(η1 ≤ x0 + j))

=

m−1∏
j=0

P(η1 ≤ x0 + j))−
m∏
j=0

P(η1 ≤ x0 + j)),

we get

∞∑
m=0

dm = 1−
∞∏
j=0

P(η1 ≤ x0 + j)) < 1,

where the last inequality follows from the assumption Eη <∞. Also it is clear that

dn+1

dn
= P(η1 ≤ n+ x0)→ 1, n→∞

and

dn ∼ P(η1 > n)

∞∏
j=0

P(η1 ≤ x0 + j).

Since F ∈ S∗ we can see that (dn)n≥0 is a subexponential sequence.
Then, it follows from the results in the theory of locally subexponential distribu-

tions (see Corollary 2 and Proposition 4 in [5]) that 1

1−sd̂(s)
is a generating function of

subexponential sequence behaving like C2P(η1 > n). The same statement holds for ĉ(s).
Hence wn is obtained as a convolution of two subexponential sequences asymptotically
equivalent to C1P(η1 > n) and C2P(η1 > n) and therefore behaves as C3P(η1 > n) for
some C3. This implies the statement of the lemma.

In the following lemma we complete the proof of Theorem 1.5.

Lemma 6.3. Assume that F ∈ S∗, where F (x) = P(η1 ≤ x). Then, for any x > x0,

Px(T (R)
x0

> n) ∼ u(x)P(η1 > n), n→∞,

where the function u(x) = Ex[T
(R)
x0 ] has been computed in (6.4).

Proof. First we derive a lower bound. For every N ≥ 1 one has

{T (R)
x0

> n} ⊇
N⋃
k=1

{T (R)
x0

> n, ηk > x0 + n}

=

N⋃
k=1

{T (R)
x0

> k − 1, ηk > x0 + n}.

Therefore, by the inclusion-exclusion argument,

Px(T (R)
x0

> n) ≥
N∑
k=1

Px(T (R)
x0

> k − 1)P(ηk > x0 + n)

−
N−1∑
k=1

Px(T (R)
x0

> k − 1)P(ηk > x0 + n)

N∑
j=k+1

P(ηj > x0 + n)

≥ (1−NP(η1 > x0 + n))P(η1 > x0 + n)

N∑
k=1

Px(T (R)
x0

> k − 1).
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This implies that

lim inf
n→∞

Px(T
(R)
x0 > n)

P(η1 > x0 + n)
≥

N∑
k=1

Px(T (R)
x0

> k − 1).

Letting N to infinity we obtain

lim inf
n→∞

Px(T
(R)
x0 > n)

P(η1 > x0 + n)
≥
∞∑
k=1

Px(T (R)
x0

> k − 1) = Ex[T (R)
x0

] = u(x). (6.16)

We next derive the corresponding asymptotic precise upper bound for vn. Fix ε > 0.
From Lemma 6.2 and from the subexponentiality of P(η1 > x0 + n) we conclude that
there exists N such that

n−N∑
m=N+1

vn−m−1P(η1 ∈ (x0 +m,x0 + n− 1]) ≤ C
n−N∑
m=N

F (n−m)F (m) ≤ ε

2
F (x0 + n)

for all n ≥ 2N . Also, since F ∈ S∗ for any fixed i,

P(η1 ∈ (x0 + n− i, x0 + n]) = o(F (n))

and therefore for all n ≥ 2N ,

n−2∑
m=n−N

vn−m−1P(η1 ∈ (x0 +m,x0 + n− 1]) ≤ ε

2
F (x0 + n).

Combining these estimates with the representation (6.7), we get

vn ≤ (1 + ε)cn +

N∑
m=0

dmvn−m−1, n ≥ 2N,

where the sequences {cn} and dn are defined in the proof of Lemma 6.2.

Set now w
(N)
n = vn for n < 2N and

w(N)
n = (1 + ε)P(η1 > x0 + n− 1) +

N∑
m=0

dmw
(N)
n−m−1.

Clearly vn ≤ w(N)
n for all n.

Set also ŵ(N)(s) =
∑∞
n=2N w

(N)
n sn and ĉ(N)(s) =

∑∞
n=2N cns

n. Then one has

ŵ(N)(s) = (1 + ε)ĉ(N)(s) + s

N∑
m=0

dms
m

∞∑
n=2N

w
(N)
n−m−1s

n−m−1

= (1 + ε)ĉ(N)(s) + s

N∑
m=0

dms
m

2N−1∑
n=2N−m−1

w
(N)
n−m−1s

n−m−1

+ sŵ(N)(s)

N∑
m=0

dms
m.

Therefore,

ŵ(N)(s) =
(1 + ε)ĉ(N)(s) + s

∑N
m=0 dms

m
∑2N−1
n=2N−m−1 w

(N)
n−m−1s

n−m−1

1− s
∑N
m=0 dms

m
.
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This implies that

w(N)
n ∼

(
1 + ε

1−
∑N
m=0 dm

)
cn.

Consequently,

lim sup
n→∞

vn
cn
≤ 1 + ε

1−
∑N
m=0 dm

≤ 1 + ε

1−
∑∞
m=0 dm

= (1 + ε)u(x0 + 1).

Letting ε→ 0, we get

lim sup
n→∞

vn
cn
≤ u(x0 + 1).

Combining this with the lower bound (6.16), we conclude that

vn ∼ u(x0 + 1)P(η1 > n), n→∞. (6.17)

Assume now that x ∈ (x0 + k, x0 + k + 1] for some k ≥ 1. Then, by Proposition 6.1,

P(T (R)
x0

> n) = vn +
k∑

m=1

vn−m

m−1∏
j=0

P(η1 ≤ x0 + j).

Using now (6.17), we conclude that

P(T (R)
x0

> n) ∼ u(x0 + 1)

1 +

k∑
m=1

m−1∏
j=0

P(η1 ≤ x0 + j)

P(η > n).

Noting that u(x0+1)
(

1 +
∑k
m=1

∏m−1
j=0 P(η1 ≤ x0 + j)

)
= u(x) we complete the proof.

7 Proof of Theorem 1.6

The lower bound for the tail of T (X)
x0 can be obtained by exactly the same arguments

as the lower bound for T (R)
x0 in Lemma 6.3.

We turn to the corresponding upper bound. Set c = 1
2
∑∞

j=1 j
−2 . For every y ≥ x0 we

define the events {
ξk ≤

An−k

(n− k + 1)2
cy

}
, k ≤ n.

On the intersection of these sets one has

Xn = anX0 +
∑
k=1

an−kξk

≤ anX0 +

n∑
k=1

cy

(n− k + 1)2
≤ anX0 + y/2.

If n is sufficiently large, say n ≥ n0 = n0(X0) then we infer that Xn ≤ y. Therefore,

Px(Xn > y, T (X)
x0

> n) ≤
n∑
k=1

Px(T (X)
x0

> k − 1)cn−k(y), n ≥ n0, (7.1)

where

cj(y) := P

(
ξ1 >

Aj

(j + 1)2
cy

)
, j ≥ 0.
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We first use this estimate with y = x0. In this case we have

Px(T (X)
x0

> n) ≤
n∑
k=1

Px(T (X)
x0

> k − 1)cn−k(x0), n ≥ n0.

Consider the sequence {wn} which is defined via the recursion

wn =

n∑
k=1

wk−1cn−k(x0)

with initial condition w0 = w1 = . . . = wn0−1 = 1. Then clearly

Px(T (X)
x0

> n) ≤ wn, n ≥ 0. (7.2)

It is immediate from the definition of {wn} that

∞∑
n=n0

wns
n =

∞∑
n=n0

sn
n∑
k=1

wk−1cn−k(x0)

=

∞∑
n=n0

sn
n0−1∑
k=1

wk−1cn−k(x0) +

∞∑
n=n0

sn
n∑

k=n0

wk−1cn−k(x0)

Setting

dn(x0) :=

n0−1∑
k=1

wk−1cn−k(x0)

and interchanging the order of summation in the second series, we conclude that

∞∑
n=n0

wns
n =

∑∞
n=n0

dn(x0)sn

1− s
∑∞
j=0 cj(x0)sj

.

Using once again the results from [5], we infer that

wn ∼ CP(η1 > n)

provided that
∑∞
j=0 cj(x0) < 1. Combining this with (7.2), we obtain

Px(T (X)
x0

> n) ≤ CP(η1 > n), n ≥ 0. (7.3)

Using Lemma 4.4, we conclude that (7.3) is valid for all x0 such that P(ax0 + ξ1 < x0) is
strictly positive.

Combining now (7.1), (7.3) and recalling that the sequences P(η1 > n) and cn(y) are
subexponential, we conclude that

lim sup
n→∞

Px(Xn > y, T
(X)
x0 > n)

P(η1 > n)
≤ Ex[T (X)

x0
] + C(y), (7.4)

where

C(y) :=

∞∑
k=0

ck(y).

This quantity is finite due to the assumption Eη1 <∞. Furthermore, C(y)→ 0 as y →∞.
Fix now a integer-valued sequence Nn →∞ such that P(η1 > n) ∼ P(η1 > n−Nn).

By the monotonicity of the chain {Xn},

Px(T (X)
x0

> n)

= Px(Xn−Nn > y, T (X)
x0

> n) + Px(Xn−Nn ≤ y, T (X)
x0

> n)

≤ Px(Xn−Nn > y, T (X)
x0

> n−Nn) + Px(T (X)
x0

> n−Nn)Py(T (X)
x0

> Nn).
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Applying (7.3) and (7.4), we get

lim sup
n→∞

Px(T
(X)
x0 > n)

P(η1 > n)
≤ Ex[T (X)

x0
] + C(y) + C lim

n→∞
Py(T (X)

x0
> Nn)

= Ex[T (X)
x0

] + C(y).

Letting now y →∞ and recalling that limy→∞ C(y) = 0, we finally obtain

lim sup
n→∞

Px(T
(X)
x0 > n)

P(η1 > n)
≤ Ex[T (X)

x0
].

Thus, the proof is complete.
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