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Abstract

We establish an explicit rate of convergence for some systems of mean-field interacting
diffusions with logistic binary branching, towards solutions of nonlinear evolution
equations with non-local self-diffusion and logistic mass growth, which were shown
to describe their large population limits in [12]. The proof relies on a novel coupling
argument for binary branching diffusions based on optimal transport, allowing us to
sharply mimic the trajectory of the interacting binary branching population by means
of a system of independent particles with suitably distributed random space-time
births. We are thus able to derive an optimal convergence rate, in the dual bounded-
Lipschitz distance on finite measures, for the empirical measure of the population,
from the convergence rate in 2-Wasserstein distance of empirical distributions of i.i.d.
samples. Our approach and results extend propagation of chaos techniques and ideas,
from kinetic models to stochastic systems of interacting branching populations, and
appear to be new in this setting, even in the simple case of pure binary branching
diffusions.
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1 Introduction and main result

Mathematical models of interacting and randomly evolving populations have been
intensively studied the last decades through probabilistic and analytic approaches.
Both viewpoints are able to integrate several biologically or ecologically meaningful
features including: individuals’ displacements, reproduction and deaths, competition
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Quantitative mean-field limit for branching diffusions

for resources, selection, and dispersive or attractive interactions. While PDE and
analysis methods can provide aggregate deterministic descriptions of the collective or
macroscopic behavior of such populations (see [16, 2, 3, 10, 11] and [6], to name but
a few works), probabilistic methods have successfully been employed to describe the
random behaviors and interactions of individuals at the microscopic (or finite population)
level. Moreover, probabilistic weak convergence tools can be used to justify, in a
rigorous way, how certain nonlinear evolution PDEs arise as limits in law of the empirical
processes of individual-based models, when the population size goes to infinity (see for
example [14, 1, 12, 5] and [4]). Nevertheless, although it is clear that certain law of large
numbers for exchangeable random systems underlies the passage from the microscopic
to the macroscopic scale in branching population models, the speed of this convergence
is not explicitly known, even in the simple case of pure binary branching diffusions.

In this work, we develop a probabilistic approach to obtain quantitative convergence
estimates for the large population limit of a general class of spatially branching diffusions
with logistic growth and mean-field interactive spatial dynamics. The population and its
evolution are described by a right-continuous measure-valued Markov process taking
values for fixed K ∈ N \ {0} in the space of weighted finite point measures over Rd

MK(Rd) :=

{
1

K

N∑
n=1

δxn : xn ∈ Rd, N ∈ N \ {0}

}
⊆M+(Rd).

Here,M+(Rd) stands for the space of finite nonnegative measures on Rd endowed with
the weak topology and δx is the Dirac mass at x ∈ Rd. We denote said process by

µKt =
1

K

NK
t∑

n=1

δXn,K
t

, t ≥ 0,

where NK
t := K〈µKt , 1〉 ∈ N, with 〈·, ·〉 denoting the integral pairing, is the number

of living individuals at time t ≥ 0 and X1,K
t , . . . , XNK

t ,K
t are their positions in Rd. The

parameter K measures the population size and can be interpreted as the carrying
capacity of the underlying environment (see [1]).

The dynamics of (µKt )t≥0 is summarized as follows:

• The initial population is described by a random measure µK0 ∈MK(Rd).

• Each living individual carries at each instant t > 0 two clocks independent between
them: one reproduction clock, exponential of parameter r > 0 and independent of
everything else in the system, and one mortality clock, conditionally exponential of
parameter cNK

t /K, for c > 0, given the population size NK
t . If the reproduction

clock of a particle rings at time t when at position x, it gives birth to a new
particle at that same position. If the mortality clock rings the particle disappears.
Equivalently, the process jumps from µKt− to µKt = µKt−+K−1δx in the first case and
to µKt = µKt− −K−1δx in the second.

• Between birth or death events, for each n = 1, ..., NK
t , the individual Xn,K

t evolves
according to the diffusion process

dXn,K
t = b

(
Xn,K
t , H ∗ µKt (Xn,K

t )
)

dt+ σ
(
Xn,K
t , G ∗ µKt (Xn,K

t )
)

dBnt ,

where (Bn)n≥1 are Brownian motions in Rd, independent between them and in-
dependent of µK0 and of the birth and death clocks. In particular, the drift and
the diffusion coefficients are affected by the local concentration of individuals,
through the convolution of the empirical measure µKt with the kernels H and G,
respectively.
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Quantitative mean-field limit for branching diffusions

This model is a subclass of the non-local Lotka-Volterra cross-diffusion systems
introduced in [12] as a microscopic, individual-based counterpart of the celebrated
Shigesada-Kawasaki-Teramoto cross-diffusion system [16]. Here, we consider a sim-
plified setting, consisting in one single species with self-interaction at the individuals’
displacements level, and we assume that the demographic parameters determining
births and deaths are spatially homogeneous. In particular, the competitive pressure
exerted on each individual is global and proportional to the population size, which
corresponds to a constant competition kernel in the general model of [12].

Following [12] one can prove that, when K goes to infinity, for each T > 0 the
empirical measure process (µKt )t∈[0,T ] converges in law (in the Skorokhod space of
finite measure-valued paths on [0, T ]) to a deterministic continuous measure-valued func-
tion (µt)t∈[0,T ], which is the unique weak solution of a non-local self-diffusion equation
(see (1.2) below). The following are assumptions that ensure this convergence and which
will be required to establish our main result.

Hypothesis (H):

H.1. µ0 ∈M+(Rd) is a given non-null measure and the random measures (µK0 )K∈N\{0} ⊆
MK(Rd) are such that the sequence (〈µK0 , 1〉)K∈N\{0} converges in law as K →∞
to 〈µ0, 1〉. Moreover, for each K ∈ N \ {0}, conditionally on 〈µK0 , 1〉, the measure
µK0 is supported on NK

0 = K〈µK0 , 1〉 i.i.d. random variables with common law not
depending on K and given by the normalized measure µ̄0 := µ0/〈µ0, 1〉.

H.2. The functions σ : Rd ×R+ → Rd⊗d and b : Rd ×R+ → Rd (with Rd⊗d denoting the
space of d⊗ d matrices) are Lipschitz continuous. Moreover, there exists Cσ > 0

such that
|σ(x, v)| ≤ Cσ(1 + v), ∀x ∈ Rd, v ∈ R+.

H.3. The functions G,H : Rd → R+ are bounded and Lipschitz continuous.

Remark 1. Given µ0 ∈M+(Rd), it is always possible to construct a sequence of random
measures (µK0 )K∈N\{0} ⊆ MK(Rd), such that (H.1) holds. See Lemma 9 c) for an
example of such construction.

Under assumption (H), (µKt )t≥0 is a Markov process which has finitely many jumps in
each finite time interval and whose law is uniquely determined. See [12] for details and
[9] for general background on measure-valued Markov processes.

Let a := σσt and, given µ ∈M+(Rd), define an operator acting on C2(Rd) functions
φ by

Lµφ(x) =
1

2
Tr (a(x,G ∗ µ(x))Hess(φ)(x)) + b(x,H ∗ µ(x)) · ∇φ(x). (1.1)

Then, as a particular case of [12, Theorem 3.1], we have the following statement.

Theorem 2. Assume (H) with µ0 ∈M+(Rd) given and that supK∈N\{0}E(〈µK0 , 1〉p) <∞
for some p ≥ 3. Then, as K →∞, the sequence of processes (µK)K∈N\{0} converges in
law in D([0, T ],M+(Rd)) to the unique (deterministic) continuous finite measure-valued
function (µt)t∈[0,T ] solution of

〈µt, f(t, ·)〉 = 〈µ0, f(0, ·)〉+
∫ t

0

〈
µs, ∂sf(s, ·)+Lµs

f(s, ·)+(r−c〈µs, 1〉)f(s, ·)
〉

ds, ∀t ∈ [0, T ],

(1.2)
for every f ∈ C1,2

b ([0, T ]×Rd) such that sup(t,x)∈[0,T ]×Rd(1 + |x|)|∇f(t, x)| <∞.

Notice that the total mass nt := 〈µt, 1〉 of the measure µt has an autonomous, logistic
evolution in (0,∞), that is

∂tnt = (r − cnt)nt, t ≥ 0.
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Our main result is the quantification of the convergence to the large population limit
in Theorem 2. Recall that the weak topology on the spaceM+(Rd) can be metrized by
means of the dual bounded-Lipschitz norm, which we denote by ‖ · ‖BL∗ (see Section 2
for details). We have:

Theorem 3. Assume (H) with µ0 ∈M+(Rd) given, that supK∈N\{0}E(〈µK0 , 1〉p) <∞ for
some p ≥ 4, and that

∫
Rd |x|q µ0(dx) <∞ for some q > 2. Then, for all K ∈ N \ {0} and

T > 0 one has

sup
t∈[0,T ]

E
(∥∥µKt − µt∥∥BL∗

)
≤ CT

(
I4(K) +

√
Rd,q(K)

)
,

where CT > 0 depends on T, p, q, and on the data of the model, I4(K) = E
(
|〈µK0 , 1〉 −

〈µ0, 1〉|4
) 1

4 , and Rd,q : N \ {0} → R+ is the function defined by

Rd,q(K) := K−
(q−2)

q +


K−

1
2 , if d < 4 and q 6= 4,

K−
1
2 log(1 +K), if d = 4 and q 6= 4,

K−
2
d , if d > 4 and q 6= d

d−2 .

(1.3)

The fact that 〈µK0 , 1〉 converges at least as fast as K−1/4 in L4 to 〈µ0, 1〉 can be granted
for large families of random measures satisfying (H.1) (see Lemma 9 in Section 2.2
for details as well as for possible relaxations of assumption (H.1)). The convergence
rate in Theorem 3 thus essentially depends non-increasingly on the dimension d, and
on the amount of finite moments of the measure µ0. For modeling purposes, the most
relevant setting is d = 3, in which case the rate is equivalent to K−1/4 if q ∈ [4,+∞),
or to the slower rate K−(q−2)/(2q) if q ∈ (2, 4). We notice also that the same result can
be obtained in the case that each individual of the population additionally carries an
independent, autonomous exponential killing clock of a given fixed parameter (with the
natural modification of the limiting PDE).

To prove Theorem 3 we will extend to the branching populations setting some
probabilistic coupling techniques based on optimal transport, which were developed to
quantify propagation of chaos in binary interacting particle systems from kinetic theory
[7, 8]. See [17] and [15] for general background on propagation of chaos theory.

In the next section, we establish some preliminary results and present the strategy of
the proof of Theorem 3, along with an outline of the remainder of the paper. We shall
also discuss the ideas underlying our approach and some consequences of our main
result, in the light of propagation of chaos theory.

2 Preliminaries and strategy of the proof

Denote by BL(Rd) the space of real Lipschitz continuous bounded functions in Rd

with the norm

‖ϕ‖BL = sup
x6=y

|ϕ(x)− ϕ(y)|
x− y

+ sup
x
|ϕ(x)|,

and by ‖·‖BL∗ the corresponding dual norm on the spaceM(Rd) of finite signed measures
on Rd. The induced distance

‖µ− ν‖BL∗ = sup
‖ϕ‖BL≤1

|〈µ− ν, ϕ〉|,

is well known to generate the weak convergence topology onM+(Rd). The subspace of
M+(Rd) of probability measures is denoted by P(Rd). Given a measure µ ∈ M+(Rd),
its q-th moment for q ∈ [1,∞) is denoted by

Mq(µ) =

∫
Rd

|x|q µ(dx). (2.1)
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For p ∈ [1,∞), the p-Wasserstein distance Wp(µ, ν) between two probability measures
µ, ν ∈ P(Rd) is defined by

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
Rd×Rd

|x− y|p π(dx, dy)

) 1
p

,

where Π(µ, ν) is the set of probability measures overRd×Rd that have µ and ν as first and
second marginals respectively. A coupling π ∈ Π(µ, ν) realizing the infimum always exists
and is called an optimal coupling between µ and ν for the transport cost c(x, y) = |x−y|p.
Wp defines a complete distance if restricted to the space {µ ∈ P(Rd) : Mp(µ) <∞} and
is equivalent therein to the weak topology strengthened with the convergence of p-th
moments. See [18] for background.

For every µ ∈M+(Rd), we will throughout denote by µ̄ the probability measure on
Rd obtained from it by normalization:

µ̄ :=
1

〈µ, 1〉
µ ∈ P(Rd). (2.2)

This notation is consistent with the relation between µ0 and µ̄0 in assumption (H.1).
The following simple relations for finite measures, proved in Appendix, will be useful.

Lemma 4. Let µ, ν ∈ M+(Rd) and let µ̄, ν̄ ∈ P(Rd) be their corresponding normalized
versions defined as in (2.2). We have

‖µ− ν‖BL∗ ≤ 〈µ, 1〉‖µ̄− ν̄‖BL∗ +
∣∣〈µ, 1〉 − 〈ν, 1〉∣∣,

and

‖µ̄− ν̄‖BL∗ ≤ inf
π∈Π(µ̄,ν̄)

∫
|x− y| ∧ 2π(dx, dy) ≤W1(µ̄, ν̄).

The basic estimate on which our main result relies, is the quantitative bound in
2-Wasserstein distance for empirical measures of i.i.d. samples, proved in [13] and stated
next for convenience.

Theorem 5. Let µ̃ ∈ P(Rd) be given and (Xn)n∈N be i.i.d. random variables with law
µ̃. Assume that Mq(µ̃) <∞ for some q > 2, with Mq(µ̃) defined as in (2.1). Then, there
exists a constant Cd,q > 0 depending only on d and q such that, for all N ∈ N \ {0},

E

(
W 2

2

(
1

N

N∑
n=1

δXn , µ̃

))
≤ Cd,qM

2
q
q (µ̃)Rd,q(N),

with Rd,q defined as in (1.3).

We can deduce analogous estimates for random empirical measures inMK(Rd) with
atoms satisfying a certain conditional independence property:

Lemma 6. Let µ ∈M+(Rd) be such that Mq(µ) <∞ for some q > 2, with Mq(µ) defined
in (2.1). Let also N be a random variable in N with E(N) <∞ and νK a random variable
in MK(Rd) that, conditionally on N , is supported on N atoms that are i.i.d. random
variables of law µ̄ defined from µ as in (2.2). Then, there exists a constant Cd,q > 0 that
depends only on d and q such that

E
(N
K
W 2

2

(
ν̄K , µ̄

))
≤ Cd,qM

2
q
q (µ̄)E(1 ∨ (N/K))Rd,q(K),

where ν̄K is the normalized version of νK as in (2.2) and with Rd,q defined as in (1.3).

See Appendix for the proof. Notice that under assumption (H.1), Lemma 6 immedi-
ately provides quantitative estimates for W 2

2 (µ̄Kt , µ̄t) when t = 0; however, the required
conditional independence property is lost as soon as t > 0, even in the case of pure
branching diffusions.
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2.1 Proof strategy and plan of the paper

The proof of Theorem 3 is based on the construction, for each K, of a coupling
between the system (µKt )t≥0, and an auxiliary system of particles inMK(Rd) denoted by

νKt :=
1

K

NK
t∑

n=1

δY n,K
t

, t ≥ 0,

such that the following condition holds:

Condition (C):

C.1. νK0 = µK0 and K〈νKt , 1〉 = K〈µKt , 1〉 = NK
t for all t ≥ 0 almost surely.

C.2. For each t ≥ 0, conditionally on 〈νKt , 1〉, the atoms of νKt are i.i.d. random variables
of law µ̄t = µt/〈µt, 1〉.

C.3. For each T > 0 there is a constant CT > 0 depending on T and on the data of
Theorem 3 such that

E
(NK

t

K
W 2

2

(
ν̄Kt , µ̄

K
t

))
≤ CT (Rd,q(K) + I2

4 (K)), ∀t ∈ [0, T ],

with I4(K) defined in the statement of Theorem 3.

Let us describe how this construction will be used and how the arguments of the
proof will unfold in the remainder of the paper:

• Thanks to condition (C.1), Lemma 4 and some auxiliary estimates, obtaining the
desired bound boils down, by triangular inequality, to controlling uniformly on

t ∈ [0, T ] for each T > 0, the quantities E
(NK

t

K W 2
2

(
ν̄Kt , µ̄

K
t

))
and E

(NK
t

K W 2
2

(
ν̄Kt , µ̄t

))
.

• Condition (C.2) and Lemma 6 together imply that the quantity E
(NK

t

K W 2
2

(
ν̄Kt , µ̄t

))
is bounded by CT Rd,q(K) for all t ∈ [0, T ].

• The previous facts and the bound in condition (C.3), together, will imply the bound
asserted in Theorem 3.

In Section 3 we explicitly construct the coupled particle systems, (µKt )t≥0 and (νKt )t≥0,
using common Brownian motions and a suitable Poisson point measure. In this con-
struction, condition (C.1) will be simply verified since the two systems will start from
the same state and their corresponding birth and death events will be simultaneous.
In order to ensure condition (C.2), each atom Y n,Kt of νKt will be defined as a suitable
McKean-Vlasov diffusion (defined in Proposition 11), which will evolve independently of
everything else in the system after being born and will have the law µ̄t at each time t
from that moment on.

The crucial, far from obvious feature of the coupling is condition (C.3). Since we have

E
(NK

t

K
W 2

2

(
ν̄Kt , µ̄

K
t

))
≤ E

(
NK
t

K

1

NK
t

NK
t∑

n=1

‖Xn,K
t −Y n,Kt ‖2

)
= E

(
1

K

NK
t∑

n=1

‖Xn,K
t −Y n,Kt ‖2

)
,

and the coefficients are Lipschitz, coupling particles (Xn,K
t , Y n,Kt ) by using the same driv-

ing Brownian motion will allow us to keep their trajectories close and hence W 2
2

(
ν̄Kt , µ̄

K
t

)
small in between birth or death events. However, ensuring (C.3) will moreover require
that the birth positions of the two particles be coupled too, in the best possible way
(in the L2 sense). This is where optimal transport ideas and techniques introduced in
[7, 8] will come into play. Indeed, on one hand, the birth position of a new particle in
the system (νKt )t≥0, born at a random time s, is sampled in Rd according to the law µ̄s.
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On the other, choosing randomly a particle that branches at time s in system (µKt )t≥0 is
equivalent to sampling a position in Rd according to the empirical law µ̄Ks−. Thus, the
optimal way to couple a pair of atoms in the two systems at their birth time s is to sample
them simultaneously from the optimal coupling for W 2

2 of the law µ̄s and the (random)
law µ̄Ks−. This joint sampling must be done in a measurable way in terms of the state
of the process at time s−, which requires adapting a non-trivial construction from [7],
which we do in Lemma 13.

In Section 4 we consider the simpler case of pure binary branching processes (i.e.
with no mean-field interaction between the particles nor competition). We establish
some auxiliary estimates, we prove that condition (C.3) holds in that particular case, and
we deduce Theorem 3 in this specific setting, with slightly better bounds. In Section 5
we follow similar steps to deduce the proof of Theorem 3 as stated in the general case.
Finally, in the last section, Section 6, we discuss potential extensions of the developed
ideas and results to more general branching population models.

Before delving into the proofs, we briefly discuss the relation of our results with the
propagation of chaos property, and comment on condition (H.1) and extensions of it in
that framework.

2.2 Propagation of chaos for interacting branching diffusions

It is well known that convergence of the empirical probability distribution of N
exchangeable particles to some deterministic probability measure, when N is a non-
random integer that goes to infinity, is equivalent to the property of propagation of chaos,
or asymptotic independence of the particles [17, 15]. The following generalization allows
us to see Theorem 3 as a propagation of chaos type result.

Definition 7. Let (NK)K∈N\{0} be random variables in N going in law to∞ as K →∞.

We say that a family ((Y 1,K , . . . , Y N
K ,K))K∈N\{0} of random vectors, (Rd)N

K

-valued
and exchangeable conditionally on NK for each K, is conditionally P -chaotic given
(NK)K∈N\{0} if for some P ∈ P(Rd) and every j ∈ N \ {0} the (random) conditional

distributions
(
L(Y 1,K , . . . , Y j∧N

K ,K | NK)
)
K∈N\{0} given NK and the event {NK ≥ j},

converge in law in P((Rd)j) to P⊗j as K →∞.

In the case that NK = K for all K ∈ N \ {0}, one recovers the well known notion of
P -chaoticity [17, 15]. We deduce the following result, proved in Section 5.

Corollary 8. Under the same assumptions of Theorem 3, we have that for each t ≥ 0 the
family ((X1,K

t , . . . , XNK
t , K

t ))K∈N\{0} is conditionally Pt-chaotic given (NK
t )K∈N\{0}, with

Pt = µt/〈µt, 1〉.
We end this section gathering some remarks about assumption (H.1), including its

possible relaxation to a chaoticity condition. The proof of this result is given in the
Appendix.

Lemma 9. a) Under (H.1), (µK0 )K∈N\{0} converges in law as K →∞ to µ0 ∈M+(Rd).

b) Let µ̃0 ∈ P(Rd) be given and for each K ∈ N \ {0} let µK0 ∈MK(Rd) be a random
point measure. Assume that (〈µK0 , 1〉)K∈N\{0} converges in law as K → ∞ to a
constant in (0,∞) and that there exists a µ̃0-chaotic family of exchangeable random
vectors

((Y 1,N , . . . , Y N,N ) : N ∈ N \ {0}),

such that for all K, conditionally on K〈µK0 , 1〉 = N , the set of atoms of µK0 has the
same law as (Y 1,N , . . . , Y N,N ). Then, (µK0 )K∈N\{0} converges in law as K →∞ to a
(deterministic) limit µ0 ∈M+(Rd) now given by

µ0 := lim
K→∞

〈µK0 , 1〉µ̃0. (2.3)
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Quantitative mean-field limit for branching diffusions

and (with the notation (2.2)) one has µ̄0 = µ̃0.

c) Given µ0 ∈M+(Rd), assumption (H.1) holds if, for example, for each K we choose
KµK0 to be a Poisson point measure on Rd of intensity Kµ0. In this case I4(K)

given in Theorem 3 satisfies I4(K) ≤ CK−1/2.

Remark 10. If instead of (H.1) we only suppose that (µK0 )K∈N\{0} satisfies the condition
given in Lemma 9 b), Theorem 2 still holds with µ0 given by (2.3), and Theorem 3 holds
but with an additional term on the r.h.s. of generic form: CTE

(
1
K

∑
NK

0

n=1

∥∥Xn,K
0 −Y n,K0

∥∥2)
,

where
((
X1,K

0 , . . . , XN,K
0

)
,
(
Y 1,K

0 , . . . , Y N,K0

))
is for each N,K ∈ N, conditionally on

{NK
0 = N}, a coupling of the N atoms of µK0 and an i.i.d. sample of size N of the law µ̃0.

See Remark 27 for details and for the optimal value of this term.

3 Pathwise constructions and coupling algorithm

For the rest of the article we will omit the superscripts K in the particles’ positions,
e.g. we write

(
X1
t , . . . , X

NK
t

t

)
=
(
X1,K
t , . . . , XNK

t ,K
t

)
since we will be working with fixed

K ∈ N \ {0} and no ambiguity is possible.

We will construct both systems (µKt = 1
K

∑NK
t

n=1 δXn
t

)t≥0 and (νKt = 1
K

∑NK
t

n=1 δY n
t

)t≥0

from the following set of independent stochastic inputs, defined in a common complete
probability space (Ω,F ,P):

• A sequence (W j)j≥1 of independent Brownian motions in Rd.

• A Poisson point measure N (ds,dρ, dθ) on [0,∞) × [0,∞) × [0,∞), with intensity
ds⊗ dρ⊗ dθ.

• A sequence (Zj0)j≥1 of i.i.d. random vectors of law µ̄0, defined from µ0 as in (2.2).

• A random variable NK
0 in N.

We will also make use of a special diffusion process considered in [12], which can be
seen as a nonlinear process in the sense of McKean [17, 15]. In the current setting, this
process is characterized in the next result:

Proposition 11. Assume (H) and let (µt)t≥0 be the unique weak solution in M+(Rd)

given by Theorem 2 of the nonlinear equation (1.2) with initial condition µ0, written for
short as

∂µt
∂t

= L∗µt
µt +

(
r − c〈µt, 1〉

)
µt, t ≥ 0,

with L∗µ denoting the adjoint operator of Lµ in (1.1). Let W be a d−dimensional Brownian
motion and Y0 an independent random variable in Rd with law µ̄0 = µ0/〈µ0, 1〉. Then,
there is pathwise existence and uniqueness for the SDE

Yt = Y0 +

∫ t

0

b(Ys, H ∗ µs(Ys)) ds+

∫ t

0

σ(Ys, G ∗ µs(Ys)) dWs, t ≥ 0. (3.1)

Moreover, the flow of time-marginal laws of (Yt)t≥0 is the unique weak solution (µ̃t)t≥0

in P(Rd) of the linear, non-homogeneous in time Fokker-Planck equation

∂µ̃t
∂t

= L∗µt
µ̃t, t ≥ 0, (3.2)

(w.r.t. test functions as in Theorem 2) with initial condition µ̃0 = µ̄0, and for all t ≥ 0

we have µ̃t = µ̄t, the normalized version of µt (see (2.2)). Last, for every bounded
measurable function f : Rd → R we have 〈µt, f〉 = E(f(Yt)nt), where nt is the unique
solution with n0 = 〈µ0, 1〉 of the logistic equation

dnt =
(
r − cnt

)
nt dt. (3.3)
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The proof of Proposition 11 is postponed to Section 5.

Remark 12. a) The pathwise properties of the SDE (3.1) stated in Proposition 11
imply for fixed τ > 0 that if Y ′τ is a random variable of law µ̄τ independent of W ,
then the solution (Y ′t )t≥τ of the SDE

Y ′t = Y ′τ +

∫ t

τ

b(Y ′s , H ∗ µs(Y ′s )) ds+

∫ t

τ

σ(Y ′s , G ∗ µs(Y ′s )) dWs, t ≥ τ,

has the same law as (Yt)t≥τ . In particular, Y ′t has law µ̄t for all t ≥ τ .

b) When σ and b in (H.2.) depend only on the position x and not on the nonnegative
real variable v, the process (3.1) is the standard diffusion associated with the
generator acting on C2(Rd) functions φ:

Lφ(x) =
1

2
Tr
(
a(x)Hessφ(x)) + b(x) · ∇φ(x),

which in that case also drives each of the particles of the branching system (µKt )t≥0.
Notice also that in this setting, thanks to the Lipschitz character of the coefficients,
if µ̄0 has finite moments of order q ≥ 2, then finiteness of these moments is
uniformly propagated over any time interval [0, T ].

Last, the following construction, based on optimal transport and adapted from [7],
will allow us to couple the births positions in the two systems in the most efficient way,
as discussed in Section 2.1.

Lemma 13. Let i : R→ N denote the function defined by

ρ 7→ i(ρ) = bρc+ 1,

and N be a positive integer. Let also (µ̃t)t≥0 be a given weakly continuous flow of
probability measures on Rd with finite second order moments. There exists a measurable
mapping

ΛN : R+ × (Rd)N × [0, N)→ Rd, (t,x, ρ) 7→ ΛNt (x, ρ),

with the following properties:

• For every t ≥ 0 and x = (x1, . . . , xN ) ∈ (Rd)N , if ρ is uniformly chosen from [0, N),
then the pair (ΛNt (x, ρ), xi(ρ)) is an optimal coupling between µ̃t and 1

N

∑N
i=1 δxi

with respect to the cost function (u, v) 7→ |u− v|2.

• If Y is any exchangeable random vector in (Rd)N , then E
( ∫ j

j−1
φ(ΛNt (Y, τ))dτ

)
=

〈µ̃t, φ〉 for any j ∈ {1, . . . , N}, and any bounded measurable function φ.

• The function Λ: N×R+ ×
(⋃

N∈N\{0}(R
d)N

)
×R+ → Rd given by

Λ(N, t,x, ρ) = ΛNt
(
(xn)Nn=1, ρ ∧N

)
,

if x = (xn)Nn=1 ∈ (Rd)N , and 0 ∈ Rd otherwise, is measurable.

Proof. The proof of the first and second assertions is essentially the same as in [7,
Lemma 3] (the only difference being that we do not remove one particle from the vector
x to construct an empirical measure). The last assertion follows noting that Λ−1(A) =⋃
N 6=0{N}× (ΛN )−1(A) is a measurable set for any Borel set A ∈ Rd such that 0 6∈ A, and

Λ−1({0}) =
(⋃

N 6=0{N} ×R+ × ∪n 6=N (Rd)n ×R+

)
∪
(⋃

N 6=0{N} × (ΛN )−1({0})
)

.
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3.1 Coupling algorithm

We now give an algorithm to construct (µKt = 1
K

∑NK
t

n=1 δXn
t

)t≥0 and (νKt = 1
K

∑NK
t

n=1

δY n
t

)t≥0, jointly in the same probability space. Before doing so, we also introduce a
sequence of labelling processes

(jt(n) : t ≥ 0)n≥1,

taking values in the positive integers, that will be dynamically defined to select from
(W j)j≥1 the Brownian motions driving each coupled pairs of particles (Xn

t , Y
n
t ), between

reproduction or death events.

In the algorithm and in the remainder of this Section, (µt)t≥0 denotes the unique
weak solution in M+(Rd) of the nonlinear equation (1.2) given by Theorem 2, and Λ

stands for the function constructed in Lemma 13 with (µ̃t)t≥0 = (µ̄t)t≥0, the normalized
version of (µt)t≥0.

Algorithm (A):

0. We set Y n0 = Xn
0 = Zn0 for n ∈ {1, . . . , NK

0 } and µK0 = νK0 = 1
K

∑NK
0

n=1 δZn
0

. We also

set two counters: N
K

0 = NK
0 and m = 0, and we define T0 = 0. Last, we initialize

j0(n) = n for all n ≥ 1.

1. For t ≥ Tm, we set jt(n) = jTm(n) and dBnt = dW
jt(n)
t , n ≥ 1, and we define the

dynamics of the two populations by:

Xn
t = XTm

+

∫ t

Tm

b
(
Xn
s , H∗µKs (Xn

s )
)

ds+

∫ t

Tm

σ
(
Xn
s , G∗µKs (Xn

s )
)
dBns , n = 1, . . . , NK

Tm
,

and

Y nt = YTm
+

∫ t

Tm

b
(
Y ns , H ∗µs(Y ns )

)
ds+

∫ t

Tm

σ
(
Y ns , G∗µs(Y ns )

)
dBns , n = 1, . . . , NK

Tm
,

until the first time t > Tm with (t, ρ, θ) an atom of N , such that

ρ ≤ NK
Tm

and θ ≤ r + c
NK
Tm

K
.

We then set Tm+1 = t.

2. For (t, ρ, θ) = (Tm+1, ρ, θ) as before,

– If θ ≤ r, we update NK
t := NK

t− + 1 and N
K

t := N
K

t− + 1, then we define:

X
NK

t
t := X

i(ρ)
t− and Y

NK
t

t := Λ
NK

t−
t

(
(Xn

t−)
NK

t−
n=1, ρ

)
.

– If r < θ ≤ r + cNK
Tm
/K, we update NK

t := NK
t− − 1, then we redefine:

(
X

i(ρ)
t , X

i(ρ)+1
t , . . . , X

NK
t

t

)
:=
(
X

i(ρ)+1
t− , X

i(ρ)+2
t− , . . . , X

NK
t−

t−
)
,(

Y
i(ρ)
t , Y

i(ρ)+1
t , . . . , Y

NK
t

t

)
:=
(
Y

i(ρ)+1
t− , Y

i(ρ)+2
t− , . . . , Y

NK
t−

t−
)
,

and we set jt(n) := jt−(n+ 1) for all n ≥ i(ρ).

3. We increase m by one and go to Step 1.
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Let us explain in words how the algorithm works. The systems (µKt )t≥0 and (νKt )t≥0

start at time t = 0 from the same empirical measure, and pairs of particles are given
birth or die in the two systems simultaneously from then on. The variable NK

t counts

the current number of living particles in each system at time t. The variable N
K

t in turn
counts how many particles have been alive in each of the two systems or, equivalently,
how many Brownian motions from (W j)j≥1 have been used, during the whole time
interval [0, t]. The usefulness of this counter will come clear shortly.

Now, given an atom (t, ρ, θ), its coordinate t is used to sample a proposal of a birth
or dead time, and θ an “action” among those two, according to whether θ ≤ r or
r < θ ≤ r + cNK

t−/K respectively.
In a birth event, ρ ≤ NK

t− samples two positions in space, one distributed according
to µ̄Kt− for the system µK , where µ̄Kt− is the normalization (see (2.2)) of µKt−, and one
according to µ̄t for the system νK , which are optimally coupled as explained before. The
pair of newborn particles picks upon birth at time t a new, common driving Brownian

motion (WN
K

s )s≥t that is independent of the past of the systems.
In a death event, ρ ≤ NK

t− samples a uniformly distributed atom from µ̄Kt− for the
system µK and from ν̄Kt− for the system νK , with equal index i(ρ), where ν̄Kt− is the
normalization (see (2.2)) of νKt−. The two corresponding particles are then removed, and

their common driving Brownian motion, which corresponds to some W j with j ≤ NK

t , is
discarded forever. The indexes of the particles in the two systems are then updated, as
well as the Brownian motions from (W j)j≥1 labelled Bi(ρ), Bi(ρ)+1, ..., in order that the
particles still alive remain indexed by a full discrete interval of the form {1, . . . , NK

t },
and that the underlying Brownian motion W j driving each pair is preserved. Notice that,

due to this updating rule, for all times t ≥ 0 we have jt(NK
t ) = N

K

t .
The system (νKt )t≥0 satisfies condition (C.1) by construction. In the next paragraph,

we will check that it also satisfies condition (C.2).

3.2 Verification of condition (C.2)

We will denote by (Ft)t≥0 the complete filtration generated by all the random objects
effectively employed in the algorithm until each time:

Ft := σ
(
NK

0 , (Zn0 )n∈{1,...,NK
0 }, (N ((0, s], · , · ) : s ≤ t), (Bns : s ≤ t)n∈{1,...,NK

t }

)
, (3.4)

and by (Gt)t≥0 its subfiltration

Gt := σ (NK
s : s ≤ t). (3.5)

Notice that N is an (Ft)t≥0-Poisson process, and that (NK
t )t≥0, (N

K

t )t≥0 and (jt(n) :

t ≥ 0), n ≥ 1 are processes adapted to (Gt)t≥0.

Remark 14. Thanks to Lemma 13, the mapping

(t, ω, ρ) 7→
(

Λ
NK

t−
t

(
(Xn

t−)
NK

t−
n=1, ρ

)
, X

i(ρ)
t−

)
=

(
Λ
(
NK
t−, t, (X

n
t−)

NK
t−

n=1, ρ ∧NK
t−

)
, X

i(ρ)
t−

)
,

is measurable with respect to Pred(Ft)⊗B(R), with Pred(Ft) ⊆ B(R)⊗F the predictable
sigma-field associated with (Ft)t≥0.

The following identity in law is crucial to check (C.2).

Lemma 15. Assume (H). Let (µt)t≥0 be the unique weak solution inM+(Rd) of equa-
tion (1.2) in Theorem 2, and Λ denote the function constructed in Lemma 13 with the flow
of probability measures (µ̄t)t≥0, the normalized version of (µt)t≥0. Let (T j)j≥1 denote the
sequence of consecutive birth times in (0,∞) of one new particle in the system (νKt )t≥0
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constructed with algorithm (A), and (T j , ρj) be the first two coordinates of the atom

(t, ρ, θ) corresponding to t = T j . Then, conditionally on FT j− and
{
ρj ≤ NK

T j−

}
,

Y
NK

Tj

T j
= Λ

NK
Tj−
(

(Xn
t−)

NK
t−

n=1, ρj

)
has law µ̄T j

.

Proof. Let f : Rd → R be a bounded measurable function and (Ut)t≥0 a bounded (Ft)t≥0-
predictable process (with Ft given in (3.4)). We have

f
(
Y

NK
Tj

T j

)
1{

ρj≤NK
Tj−

}UT j

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

f

(
Λ
NK

t−
t

(
(Xn

t−)
NK

t−
n=1, ρ

))
1{ρ≤NK

t−, N
K
t−=NK

0 +j−1, θ≤r}Ut N (dt, dρ, dθ).

By Remark 14, we can use the compensation formula with respect to the filtration
(Ft)t≥0, and deduce with Lemma 13 that

E

(
f
(
Y

NK
Tj

T j

)
1{

ρj≤NK
Tj−

}UT j

)
=

∫ ∞
0

∫ ∞
0

E
(
〈µ̄t, f〉NK

t 1{NK
t =NK

0 +j−1, θ≤r}Ut

)
dθdt

= E

(∫
[0,∞)3

〈µ̄t, f〉1{ρ≤NK
t−, N

K
t−=NK

0 +j−1, θ≤r}Ut N (dt,dρ,dθ)

)

= E

(
〈µ̄T j

, f〉1{
ρj≤NK

Tj−

}UT j

)
.

Since any bounded random variable measurable w.r.t. FT j− can be written as UT j
for

some predictable process (Ut)t≥0, the statement is proved.

Proposition 16. Assume (H). For each t ≥ 0, conditionally on 〈νKt , 1〉, the K〈νKt , 1〉
atoms of the measure νKt constructed in algorithm (A) are i.i.d. random variables of law
µ̄t = µt/〈µt, 1〉, with (µs)s≥0 the unique weak solution inM+(Rd) of equation (1.2) given
by Theorem 2. That is to say, condition (C.2) holds.

Proof. The proof will be done constructing an alternative system (ν̂Kt = 1
K

∑NK
t

n=1 δŶ n
t

)t≥0

with the same law as (νKt )t≥0, for which the required property is easily checked. This
system is defined on the same probability space as (νKt )t≥0, by means of a variant of the
construction of (νKt )t≥0 in algorithm (A). This algorithm is as follows:

0. Define for all j ≥ 1:

Zjt = Zj0 +

∫ t

0

b
(
Zjs , H ∗ µs(Zjs)

)
ds+

∫ t

0

σ
(
Zjs , G ∗ µs(Zjs)

)
dW j

s , t ≥ 0.

Set Ŷ n0 = Zn0 for n ∈ {1, . . . , NK
0 } and ν̂K0 = 1

K

∑NK
0

n=1 δŶ n
0

. As before, we set the

same counters N
K

0 = NK
0 and m = 0, we define T0 = 0 and we initialize j0(n) = n

for all n ≥ 1.

1. For t ≥ Tm, we set jt(n) = jTm(n) and dBnt = dW
jt(n)
t , n ≥ 1, and we take

Ŷ nt = Z
jt(n)
t , n = 1, . . . , NK

Tm
,

until the first time t > Tm with (t, ρ, θ) an atom of N , such that ρ ≤ NK
Tm

and
θ ≤ r + cNK

Tm
/K. We then set Tm+1 = t.
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2. For (t, ρ, θ) = (Tm+1, ρ, θ) as before,

– If θ ≤ r, we update NK
t := NK

t− + 1 and N
K

t := N
K

t− + 1, then we define:

Ŷ
NK

t
t := Z

N
K
t

t .

– If r < θ ≤ r + cNK
Tm
/K, we update NK

t := NK
t− − 1, and we redefine:(

Ŷ
i(ρ)
t , Ŷ

i(ρ)+1
t , . . . , Ŷ

NK
t

t

)
:=
(
Ŷ

i(ρ)+1
t− , Ŷ

i(ρ)+2
t− , . . . , Ŷ

NK
t−

t−
)
,

and jt(n) := jt−(n+ 1) for all n ≥ i(ρ).

3. We increase m by one and go to Step 1.

Plainly, instead of sampling at each birth time T j the position of a new independent

particle Y NK
Tj from the atom (T j , ρ, θ) of N as in (A), we now add a new particle Ŷ NK

Tj to

the system by “turning on” at that time the nonlinear diffusion process ZN
K
Tj = ZN

K
0 +j ,

which has evolved independently since time t = 0, driven by the same Brownian motion

WNK
0 +j that drives the process

(
Y

NK
Tj

t : t ≥ T j
)

in the construction (A). Call now

F̂t := σ
(
Ft ∨

(
Z
NK

0 +k

Tk
: NK

0 + k ≤ NK

t

))
,

(with Ft as in (3.4)) the filtration containing the information effectively employed to
construct the process (ν̂Kt ), and let (Vt)t≥0 be a bounded left continuous process adapted
to (F̂t)t≥0. Conditionally on NK

0 , VT j
depends only on N and (W k, Zk0 ) for k < NK

0 + j,

while
(
Z
NK

0 +j
t

)
t≥0

is independent of them. Therefore, we have

E

(
f

(
Ŷ

NK
Tj

T j

)
1{

ρj≤NK
Tj−

}VT j

)
= E

(
f
(
Z
NK

0 +j

T j

)
1{

ρj≤NK
Tj−

}VT j

)
= E

(
〈µ̄T j

, f〉1{
ρj≤NK

Tj−

}VT j

)
,

by Remark 12 a). This implies that, conditionally on F̂T j− and {ρj ≤ NK
T j−
}, the random

variable Ŷ
NK

Tj

T j
has the law µ̄T j

. Comparing this to the setting in Lemma 15, one can check

by induction on j that the processes (νKt )t≥0 and (ν̂Kt ) have the same law on each of
their (common) time intervals [0, T j ], hence over all [0,∞).

To conclude, notice that the i.i.d processes (Zjt )t≥0, j ≥ 1 have law µ̄t at each t ≥ 0,
and they are independent of the filtration (Gt)t≥0 defined in (3.5), with respect to

which the process (NK
t )t≥0 is measurable. Moreover, for each t ≥ 0, {Ŷ 1

t , . . . , Ŷ
NK

t
t } =

{Zjt(1)
t , . . . , Z

jt(N
K
t )

t } is a random subset of {Z1
t , . . . , Z

N
K
t

t }, selected in a way that is
measurable w.r.t. Gt. This readily implies that, conditionally on {NK

t = N}, {Ŷ 1
t , . . . , Ŷ

N
t }

are N i.i.d. random variables of law µ̄t, as required.

4 Proof of Theorem 3: pure binary branching case

We consider in this section the case where interactions take place only through
the reproduction events, that is, due only to the fact that the position of a newborn
individual coincides at its birth with that of its parent (after which all individuals evolve
completely independently). We provide the complete proof for this case as it might be
of independent interest, since convergence bounds are neither available in this basic
setting, and also because it is useful to illustrate directly the main arguments.

We assume the following throughout this section.

Hypothesis (H’):
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H.1’. (H.1) holds.

H.2’. The coefficients σ : Rd → Rd⊗d and b : Rd → Rd do not depend on µKt and, moreover,
they are Lipschitz continuous with σ bounded (for simplicity).

H.3’. The individual instantaneous birth and death rates are time inhomogeneous, spec-
ified by two measurable functions r, c : [0, T ] → R+ bounded by some positive
constants r̄ and c̄, respectively.

Notice that, since r and c are deterministic measurable functions of t, they are pre-
dictable when seen as processes (cf. the sigma-field generated by continuous functions
on R+ is the Borel sigma-field).

The analog of Theorem 2 is standard in this scenario (or can be proved by the same
techniques used in [12]), and the limit in law of the process (µKt )t≥0 is given by the
unique weak solution inM+(Rd) to the linear evolution equation with initial condition
µ0:

〈µt, f(t, ·)〉 = 〈µ0, f(0, ·)〉+
∫ t

0

〈µs, ∂sf(s, ·) +Lf(s, ·) + (r(s)− c(s))f(s, ·)〉ds, ∀t ∈ [0, T ],

(4.1)
for each f ∈ C1,2([0, T ] × Rd), where L is the time-homogeneous operator on C2(Rd)

functions φ:

Lφ(x) =
1

2
Tr
(
a(x)Hessφ(x)) + b(x) · ∇φ(x). (4.2)

The construction of the coupling with the auxiliary system is essentially the same as
in Section 3, using algorithm (A) with two minor modifications:

- Step 1 is carried out until the first time t > Tm, where (t, ρ, θ) is an atom of N such
that ρ ≤ NK

Tm
and θ ≤ r(t) + c(t), at which time we set Tm+1 = t.

- The updates in Step 2 are carried out according to whether θ ≤ r(t) or otherwise
r(t) < θ ≤ r(t) + c(t).

In between birth or deaths events, individuals Xn in the system (µKt )t≥0 evolve according
to the SDEs

dXn
t = b(Xn

t ) dt+ σ(Xn
t ) dBnt , n = 1, . . . , NK

t ,

as also do the individuals Y n in the system (νKt )t≥0.
We establish some controls for the mass of the process (µKt )t≥0.

Lemma 17. Under assumption (H’), for each T > 0 and p ≥ 1 there is a constant CT,p > 0

such that

sup
K∈N\{0}

E

(
sup
t∈[0,T ]

〈µKt , 1〉p
)
< CT,p sup

K∈N\{0}
E(〈µK0 , 1〉p).

Moreover, if supK∈N\{0}E(〈µK0 , 1〉) <∞, for all T > 0 we have

E
(∣∣〈µKt , 1〉 − 〈µt, 1〉∣∣) ≤ CT (I1(K) +K−

1
2

)
, ∀t ∈ [0, T ],

for some CT > 0, with

I1(K) = E
(
|〈µK0 , 1〉 − 〈µ0, 1〉|

)
.

Proof. The first claim is shown as in [12, Lemma 3.3] in a more general setting. For
the second assertion, we write the dynamics of the number of particles in the system in
terms of the Poisson point measure N used in algorithm (A). We obtain for all t ≥ 0 that

NK
t = NK

0 +

∫ t

0

∫
R+

∫
R+

1ρ≤NK
s−

(
1θ≤r(s) − 1r(s)<θ≤r(s)+c(s)

)
N (ds,dρ, dθ)

EJP 27 (2022), paper 150.
Page 14/32

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP874
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Quantitative mean-field limit for branching diffusions

= NK
0 +

∫ t

0

(r(s)− c(s))NK
s ds+MK

t ,

where (MK
t )t≥0 is a martingale since, for all t ≥ 0,

E

(∫ t

0

∫
R+

∫
R+

∣∣∣1ρ≤NK
s

(
1θ≤r(s)−1r(s)<θ≤r(s)+c(s)

)∣∣∣dsdρdθ

)
≤ (r̄+ c̄)E

(∫ t

0

NK
s ds

)
<∞,

by the first part and the assumption on the total mass. Comparing this evolution to the
ODE (4.3) satisfied by the total mass of the limiting measure, we get the estimate

E
(∣∣∣NK

t

K
− 〈µt, 1〉

∣∣∣) ≤ E(∣∣∣NK
0

K
− 〈µ0, 1〉

∣∣∣)+ (r̄ + c̄)

∫ t

0

E
(∣∣∣NK

s

K
− 〈µs, 1〉

∣∣∣) ds+ E
( |MK

t |
K

)
.

The last term is controlled using the Burkholder-Davis-Gundy (BDG) inequality as follows

E

(
|MK

t |
K

)
≤ 1

K
E

(∫ t

0

∫
R+

∫
R+

1{ρ≤NK
s−, θ≤r(s)+c(s)}N (ds,dρ, dθ)

) 1
2

=
E((
∫ t

0
(r(s) + c(s))NK

s ds)
1
2

K

≤ CT√
K

(
sup

K∈N\{0}
E(〈µK0 , 1〉)(r̄ + c̄)er̄t

) 1
2

,

for all t ∈ [0, T ]. We conclude by Gronwall’s lemma that

E
(∣∣∣NK

t

K
− 〈µt, 1〉

∣∣∣) ≤ CT(E(∣∣∣NK
0

K
− 〈µ0, 1〉

∣∣∣)+
1√
K

)
, ∀t ∈ [0, T ].

The analogue of Proposition 11 in this section’s setting is rather elementary, yet
illustrative for the general case, so we state it in full details and prove it next.

Proposition 18. Assume (H’) and let (µt)t≥0 be the unique weak solution inM+(Rd) of
the linear equation (4.1) with initial condition µ0, written for short as

∂µt
∂t

= L∗µt + (r(t)− c(t))µt, t ≥ 0,

with L∗ the adjoint of the operator L given in (4.2). Let (Yt)t≥0 be the unique pathwise
solution to the SDE

Yt = Y0 +

∫ t

0

b(Ys) ds+

∫ t

0

σ(Ys) dWs, t ≥ 0,

where W is a d-dimensional Brownian motion and Y0 an independent random variable
in Rd with law µ̃0 = µ̄0. Then, the flow (µ̃t)t≥0 of time-marginal laws of (Yt)t≥0 is the
unique weak solution of the Fokker-Planck equation

∂µ̃t
∂t

= L∗µ̃t, t ≥ 0,

with initial condition µ̃0 = µ̄0 and one has µ̃t = µ̄t for all t ≥ 0. In particular, for each
bounded real function f we have 〈µt, f〉 = E(f(Yt)nt), where nt is the unique solution
with n0 = 〈µ0, 1〉 of the linear differential equation

dnt = (r(t)− c(t))nt dt. (4.3)
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Proof. The first claim is standard and easily seen using Itô’s formula (uniqueness is
also standard using e.g. the Feynman-Kac formula). The relation between the law of Yt
and µt for all t ≥ 0 is easily shown considering the function h(t, x) = 〈µt, 1〉f(t, x) and
computing

〈µ̃t, h(t, ·)〉

= 〈µ̃0, h(0, ·)〉+

∫ t

0

〈µ̃s, ∂sh(s, ·) + Lh(s, ·)〉ds

= 〈〈µ0, 1〉µ̃0, f(0, ·)〉+

∫ t

0

〈µ̃s, f(s, ·)∂s〈µs, 1〉+ 〈µs, 1〉∂sf(s, ·) + 〈µs, 1〉Lf(s, ·)〉ds

= 〈〈µ0, 1〉µ̃0, f(0, ·)〉+

∫ t

0

〈〈µs, 1〉µ̃s, ∂sf(s, ·) + Lf(s, ·) + (r(s)− c(s))f(s, ·)〉ds.

This means that (〈µt, 1〉µ̃t)t≥0 satisfies equation (4.1). Uniqueness for that equation
yields 〈µt, 1〉µ̃t = µt for all t ≥ 0 as claimed. Consequently,

〈µt, f〉 = E(〈µt, 1〉f(Yt)),

for all bounded f , and the fact that (〈µt, 1〉)t≥0 satisfies (4.3) is immediate.

In order to prove that condition (C.3) holds, one last additional estimate is needed,
which will be used to control the joint evolution of coupled particles, in between birth or
death events.

Lemma 19. Assume (H.2’) and let X = (Xt)t≥0 and Y = (Yt)t≥0 be two diffusion
processes with generator L given in (4.2), both driven by a given Brownian motion B in
Rd. For each T > 0 there exists CT > 0 such that for all 0 < u < t < T

E(‖Xt − Yt‖2 − ‖Xu − Yu‖2) ≤ CT
∫ t

u

E(‖Xs − Ys‖2) ds.

Proof. Let (τn)n∈N be the sequence defined by τn := inf{s ≥ 0 : ‖Xs‖2 + ‖Ys‖2 > n},
which localizes the local martingale parts of X and Y . We first establish a control on the
running suprema of the processes. Using the fact that b is Lipschitz we obtain

sup
u∈[0,t∧τn]

‖Xu‖2 ≤ 2‖X0‖2 + CT + CT

∫ t

0

sup
u∈[0,s∧τn]

‖Xu‖2 ds

+ 2

d∑
i,j=1

(
sup

u∈[0,t∧τn]

∣∣∣∣∫ u

0

σ(ij)(Xs) dB(j)
s

∣∣∣∣)2

.

With the BDG inequality and the fact that σ is also Lipschitz we then get

E

(
sup

u∈[0,t∧τn]

‖Xu‖2
)
≤ 2E

(
‖X0‖2

)
+ CT + CT

∫ t

0

E

(
sup

u∈[0,s∧τn]

‖Xu‖2
)

ds.

Applying Gronwall’s lemma and then Fatou’s lemma upon letting n→∞ we deduce

E

(
sup

s∈[0,T ]

‖Xs‖2
)
≤ CT (E(‖X0‖2) + 1), (4.4)

and a similar estimate holds for the process Y . Now, Itô’s formula shows that

‖Xt − Yt‖2 = ‖Xu − Yu‖2 +

∫ t

u

2(Xs − Ys)t(b(Xs)− b(Ys)) ds
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+

∫ t

u

2(Xs − Ys)t(σ(Xs)− σ(Ys)) dBs +

d∑
i,j=1

∫ t

u

(σ(ij)(Xs)− σ(ij)(Ys))
2 ds.

The sequence (τn)n localizes the local martingale on the right hand side. Taking ex-
pectation for the stopped process and using the Lipschitz character of b and σ leads
to

E(‖Xt∧τn − Yt∧τn‖2) ≤ E(‖Xu − Yu‖2) + C

∫ t

u

E(‖Xs∧τn − Ys∧τn‖2) ds.

By dominated convergence using the bound (4.4), we can take n→∞ and conclude.

Now we can state the bound leading to condition (C.3), and to the proof of the main
result, in the case of pure binary branching.

Lemma 20. Assume (H’) and let (µ̄t)t≥0 and (ν̄Kt )t≥0 be the normalizations (see (2.2)) of
the solution (µt)t≥0 of (4.1) and of the process (νKt )t≥0 constructed using algorithm (A)
(modified as mentioned at the beginning of the section) respectively. Then, there exists a
constant CT > 0 depending on d and q, such that for all K ∈ N \ {0} and t ∈ [0, T ]

E

(
1

K

NK
t∑

n=1

‖Xn
t − Y nt ‖

2

)
≤ CT

∫ t

0

E

(
NK
s

K
W 2

2 (ν̄Ks , µ̄s)

)
ds.

Proof. Consider the product empirical measure ηKt := 1
K

∑NK
t

n=1 δ(Xn
t ,Y

n
t ) and the sequence

of jump times (Tm)m∈N of the process (NK
t )t≥0, defined through algorithm (A). We

decompose the evolution of ηKt in terms of (Tm)m∈N as follows

ηKt = ηK0 + ηKt − ηKT
AK

t

+

∞∑
m=1

1t≥Tm

(
ηKTm
− ηK

T−
m

+ ηK
T−
m
− ηKTm−1

)
,

where AKt :=
∑
s≤t |∆NK

s | with ∆NK
s = NK

s −NK
s−. The aim of this decomposition is to

control separately what happens in between jumps and at the jump instants. Integrating
the function d2(x, y) := ‖x− y‖2 and taking expectation yields

E
(〈
ηKt , d2

〉)
= E

(
〈ηK0 , d2〉

)
+ E

( ∞∑
m=1

1t≥Tm

(
〈ηKTm

, d2〉 − 〈ηKT−
m
, d2〉

))

+ E

(〈
ηKt , d2

〉
−
〈
ηKT

AK
t

, d2

〉
+

∞∑
m=1

1t≥Tm

(
〈ηK
T−
m
, d2〉 − 〈ηKTm−1

, d2〉
))

.

(4.5)

By Lemma 19, and since the evolution of ηKt is independent of the sigma-field (Gt)t≥0

(defined in (3.5)) on each interval [Tm−1, Tm), we get

E
(
1t≥Tm

(〈ηK
T−
m
, d2〉 − 〈ηKTm−1

, d2〉
) ∣∣Gt) (4.6)

= E

(
1

K

NK
Tm−1∑
n=1

‖Xn
T−
m
− Y n

T−
m
‖2 − ‖Xn

Tm−1
− Y nTm−1

‖2
∣∣∣∣Gt)1t≥Tm

≤ 1

K

NK
Tm−1∑
n=1

C

∫ T−
m

Tm−1

E
(
‖Xn

s − Y ns ‖2
∣∣ Gt) ds1t≥Tm

= C

∫ T−
m

Tm−1

E
(
〈ηKs , d2〉

∣∣ Gt) ds1t≥Tm , (4.7)

EJP 27 (2022), paper 150.
Page 17/32

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP874
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Quantitative mean-field limit for branching diffusions

and similarly, for the remaining time interval,

E
(
E
(〈
ηKt , d2

〉
−
〈
ηKTAKt

, d2

〉 ∣∣∣ Gt)) ≤ C ∫ t

TAKt

E
(
〈ηKs , d2〉

∣∣ Gt) ds.

Recalling Step 2 of the variant of algorithm (A) used in this section, the term involving
the jumps of the processes can be written as

E

( ∞∑
m=1

1t≥Tm

(
〈ηKTn

, d2〉 − 〈ηKT−
n
, d2〉

))
= E

( 1

K

∫
[0,t]×R+×R+

(
1ρ≤NK

s−
1θ≤r(s)

∥∥∥XNK
s

s − Y N
K
s

s

∥∥∥2

− 1ρ≤NK
s−
1r(s)<θ≤r(s)+c(s)

∥∥∥X i(ρ)
s− − Y

i(ρ)
s−

∥∥∥2)
N (ds,dρ, dθ)

)
≤ E

(∫
[0,t]×R+×R+

1

K
1ρ≤NK

s−
1θ≤r(s)

∥∥∥X i(ρ)
s− − Λ

NK
s−

s

(
(Xn

s−)
NK

s−
n=1 , ρ

)∥∥∥2

N (ds,dρ,dθ)
)

= E
(∫ t

0

NK
s

K
r(s)W 2

2

(
µ̄Ks , µ̄s

)
ds
)
, (4.8)

where we used Lemma 13 and Remark 14 in the last equality. Since E(〈ηK0 , d2〉) = 0,
combining the two previous estimates and writing C for some constant that may change
from line to line, we deduce

E(〈ηKt , d2〉) ≤ C
∫ t

0

E(〈ηKs , d2〉) ds+ E

(∫ t

0

NK
s

K
r(s)W 2

2

(
µ̄Ks , µ̄s

)
ds

)
≤ C

∫ t

0

E(〈ηKs , d2〉) ds+ C

∫ t

0

E
(NK

s

K
W 2

2

(
ν̄Ks , µ̄s

))
ds

+ C

∫ t

0

E
(NK

s

K
W 2

2

(
µ̄Ks , ν̄

K
s

))
ds

≤ C
∫ t

0

E(〈ηKs , d2〉) ds+ C

∫ t

0

E
(NK

s

K
W 2

2

(
ν̄Ks , µ̄s

))
ds,

where in the last inequality, we used the fact that

E
(NK

t

K
W 2

2

(
µ̄Kt , ν̄

K
t

))
≤ E

(
1

K

NK
t∑

n=1

‖Xn
t − Y nt ‖2

)
, (4.9)

since W 2
2

(
µ̄Kt , ν̄

K
t

)
≤ 1

NK
t

∑NK
t

n=1 ‖Xn
t − Y nt ‖2. We conclude by Gronwall’s lemma.

Corollary 21. Under (H’) condition (C.3) holds with the improved bound: CTRd,q(K).

Proof. Combine inequality (4.9) with Lemma 20 and apply then Lemma 6.

We now have everything that is needed to prove our main result in the case of pure
branching diffusions.

Proof of Theorem 3 under (H’). Since 〈µKt , 1〉 = NK
t /K, applying Lemma 4 and the tri-

angle inequality for W1 we get for all t ∈ [0, T ] that

E
(
‖µKt − µt‖BL∗

)
≤ E

(NK
t

K
W1

(
ν̄Kt , µ̄

K
t

))
+ E

(NK
t

K
W1

(
ν̄t
K , µ̄t

))
+ E

(∣∣〈µKt , 1〉 − 〈µt, 1〉∣∣)
≤
(
E
(NK

t

K
W 2

2

(
ν̄Kt , µ̄t

)) 1
2

+ E
(NK

t

K
W 2

2

(
ν̄Kt , µ̄

K
t

)) 1
2

)
E
(NK

t

K

) 1
2
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+ E
(∣∣〈µKt , 1〉 − 〈µt, 1〉∣∣), (4.10)

where we also used the Cauchy-Schwarz inequality and the inequality W 2
1 ≤W 2

2 in the
second line. Thanks to Lemma 17 we obtain, for all t ∈ [0, T ],

E
(
‖µKt − µt‖BL∗

)
≤ CT

(
E
(NK

t

K
W 2

2

(
ν̄Kt , µ̄t

)) 1
2

+E
(NK

t

K
W 2

2

(
ν̄Kt , µ̄

K
t

)) 1
2

+I1(K)+K−1/2

)
.

Now, thanks to the first bound in Lemma 17, the uniform moment control stated in
Remark 12 b), and conditions (C.1) and (C.2), we can apply Lemma 6 to ν̄ = ν̄Kt , N = NK

t ,

and µ̄ = µ̄t to bound the first term in the right hand side by R1/2
d,q (K). The second term is

bounded by CTR
1/2
d,q (K), due to Corollary 21. Since K−1/2 ≤ R1/2

d,q , we conclude that

E
(
‖µKt − µt‖BL∗

)
≤ CT

(
Rd,q(K)

1
2 + I1(K)

)
, ∀t ∈ [0, T ].

5 Proof of Theorem 3: general case

We now consider processes (µKt )t≥0 satisfying the general assumptions of Theorem 3.
We start by establishing bounds for the mass of the process, analogous to the bounds
in Lemma 17. The convergence bound is less sharp and more difficult to establish now
because of the nonlinearities coming from the interaction.

Lemma 22. Assume (H) and let (µt)t≥0 be the unique solution inM+(Rd) of (1.2). For
each T > 0 and p ≥ 1 there is a constant CT,p > 0 such that

sup
K∈N\{0}

E

(
sup
t∈[0,T ]

〈µKt , 1〉p
)
< CT,p sup

K∈N\{0}
E(〈µK0 , 1〉p).

Moreover, if supK∈N\{0}E(〈µK0 , 1〉4) <∞, for all T > 0 we have

E
((
〈µKt , 1〉 − 〈µt, 1〉

)4) ≤ CT (I4
4 (K) +K−1

)
, ∀t ∈ [0, T ].

Proof. For the first bound on the moments of the total mass we refer to [12, Lemma
3.3]. To prove the convergence bound in the second part, we resort to algorithm (A) to
represent the dynamics of the number of particles by the SDE

NK
t = NK

0 +

∫ t

0

∫
1ρ≤NK

s−

(
1θ≤r − 1

r<θ≤r+c
NK
s−
K

)
N (ds,dρ, dθ)

= NK
0 +

∫ t

0

(
r − cN

K
s

K

)
NK
s ds+MK

t .

Notice that the process (MK
t )t≥0 is a martingale since, for all t ≥ 0,

E

(∫ t

0

∫
R+

∫
R+

∣∣∣∣1ρ≤NK
s

(
1θ≤r − 1

r<θ≤r+c
NK
s−
K

)∣∣∣∣ dsdρdθ

)
≤ (r + c)E

(∫ t

0

(NK
s )2 ds

)
<∞,

by the previous part and the assumptions on the total mass of the system. The limiting
mass in turn satisfies the dynamics

〈µt, 1〉 = 〈µ0, 1〉+

∫ t

0

(r − c〈µs, 1〉)〈µs, 1〉ds.

We will first establish an L2 convergence bound for the total mass. Using Itô’s formula
we get(
NK
t

K
− 〈µt, 1〉

)2

=

(
NK

0

K
− 〈µ0, 1〉

)2

+

∫ t

0

2

(
NK
s−
K
− 〈µs−, 1〉

)
d
(MK

s

K

)
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+

∫ t

0

[
2r

(
NK
s

K
− 〈µs, 1〉

)2

−
(
NK
s

K
− 〈µs, 1〉

)2(
NK
s

K
+ 〈µs, 1〉

)]
ds

+

∫ t

0

∫
1ρ≤NK

s−
1
r<θ≤r+c

NK
s−
K

(
1

K

)2

N (ds,dρ, dθ)

+

∫ t

0

∫
1ρ≤NK

s−
1θ≤r

(
1

K

)2

N (ds,dρ,dθ).

Bounding above the negative term in the second line by 0 gives us(
NK
t

K
− 〈µt, 1〉

)2

≤
(
NK

0

K
− 〈µ0, 1〉

)2

+

∫ t

0

2r

(
NK
s

K
− 〈µs, 1〉

)2

ds+

∫ t

0

r

K

(
NK
s

K

)
ds

+

∫ t

0

c

K

(
NK
s

K

)2

ds+

∫ t

0

2

(
NK
s−
K
− 〈µs−, 1〉

)
d
(MK

s

K

)
+ M̄K

t + M̃K
t

≤
(
NK

0

K
− 〈µ0, 1〉

)2

+

∫ t

0

2r

(
NK
s

K
− 〈µs, 1〉

)2

ds+
rT

K
sup

s∈[0,T ]

〈µKs , 1〉

+
cT

K
sup

s∈[0,T ]

〈µKs , 1〉2 +

∫ t

0

2

(
NK
s−
K
− 〈µs−, 1〉

)
d
(MK

s

K

)
+ M̄K

t + M̃K
t ,

(5.1)

where (M̄K
t )t≥0 and (M̃K

t )t≥0 are compensated Poisson integrals. Let now (τm)m be the

sequence of stopping times defined by τm = inf{t > 0 : N
K

t > m} for m ≥ 1 and τ0 = 0.

Since N
K

s is increasing by one and N
K

r− ≥ m + 1 = N
K

τm > N
K

s− for all r > τm ≥ s, we
have∫ t∧τm

0

2

(
NK
s−
K
− 〈µs−, 1〉

)
d
(MK

s

K

)
= 2

∫ t

0

1{NK
s−≤m}

(
NK
s−
K
− 〈µs−, 1〉

)
d
(MK

s

K

)
= 2

∫ t

0

∫
φ(s, ρ, θ)Ñ (ds,dρ, dθ),

with Ñ the compensated measure associated with N and φ the predictable process

φ(s, ρ, θ) = 1
N

K
s−≤m

1ρ≤NK
s−

1

K

(
1θ≤r − 1

r<θ≤r+c
NK
s−
K

)(
NK
s−
K
− 〈µs−, 1〉

)
.

The inequality NK
s ≤ N

K

s implies that

E

(∫ t

0

∫ ∞
0

∫ ∞
0

|φ(s, ρ, θ)|dsdρdθ

)
≤ E

(∫ t

0

1
N

K
s ≤m

(s)
NK
s

K

(
r + c

NK
s

K

)(NK
s

K
+ 〈µs, 1〉

)
ds

)
≤ E

(∫ t

0

m

K

(
r + c

m

K

)(m
K

+ 〈µs, 1〉
)

ds

)
≤ CT,K,m

(
1 + sup

s∈[0,T ]

〈µs, 1〉
)
,

for each t ∈ [0, T ], and so the integral w.r.t. d
(
MK

s

K

)
in (5.1) is a martingale. By

similar reasonings, the stopped processes (M̄K
t∧τm)t≥0 and (M̃K

t∧τm)t≥0 are also seen to
be martingales. Taking expectation in (5.1) we get

E

((
NK
t∧τm
K

− 〈µt∧τm , 1〉
)2)
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≤ E
((

NK
0

K
− 〈µ0, 1〉

)2)
+ E

(∫ t∧τm

0

2r

(
NK
s

K
− 〈µs, 1〉

)2

ds

)
+
CT
K

≤ E
((

NK
0

K
− 〈µ0, 1〉

)2)
+

∫ t

0

2rE

((
NK
s∧τm
K

− 〈µs∧τm , 1〉
)2)

ds+
CT
K
,

for all t ∈ [0, T ]. Using Gronwall’s lemma we obtain for all t ∈ [0, T ] that

E

((
NK
t∧τm
K

− 〈µt∧τm , 1〉
)2)

≤
(
E

((
NK

0

K
− 〈µ0, 1〉

)2)
+
CT
K

)
e2rT . (5.2)

By Fatou’s lemma, we then get E
((
〈µKt , 1〉 − 〈µt, 1〉

)2) ≤ CT
(
I2
2 (K) + K−1

)
, but the

bound (5.2) will be more practical for our purposes. Let us now address the L4 bound.
Applying Itô’s formula again we get for all t ≥ 0 that(
NK
t

K
− 〈µt, 1〉

)4

=

(
NK

0

K
− 〈µ0, 1〉

)4

+

∫ t

0

4

(
NK
s−

K
− 〈µs− , 1〉

)3

d

(
MK
s

K

)
+

∫ t

0

[
4r

(
NK
s

K
− 〈µs, 1〉

)4

− 4

(
NK
s

K
− 〈µs, 1〉

)4(
NK
s

K
+ 〈µs, 1〉

)]
ds

+

∫ t

0

∫
1ρ≤NK

s−
1θ≤r

[(
NK
s−
K
− 〈µs−, 1〉+

1

K

)4

−
(
NK
s−
K
− 〈µs−, 1〉

)4

− 4

(
NK
s−
K
− 〈µs−, 1〉

)3
1

K

]
N (ds,dρ, dθ)

+

∫ t

0

∫
1ρ≤NK

s−
1
r<θ≤r+c

NK
s−
K

[(
NK
s−
K
− 〈µs−, 1〉 −

1

K

)4

−
(
NK
s−
K
− 〈µs−, 1〉

)4

+ 4

(
NK
s−
K
− 〈µs−, 1〉

)3
1

K

]
N (ds,dρ, dθ).

Bounding the negative term in the second line by 0 and compensating the Poisson
integrals gives us(

NK
t

K
− 〈µt, 1〉

)4

≤
(
NK

0

K
− 〈µ0, 1〉

)4

+

∫ t

0

4r

(
NK
s

K
− 〈µs, 1〉

)4

ds

+

∫ t

0

rNK
s

(
6

(
NK
s

K
− 〈µs, 1〉

)2
1

K2
+ 4

(
NK
s

K
− 〈µs, 1〉

)
1

K3
+

1

K4

)
ds

+

∫ t

0

cNK
s

NK
s

K

(
6

(
NK
s

K
− 〈µs, 1〉

)2
1

K2
− 4

(
NK
s

K
− 〈µs, 1〉

)
1

K3
+

1

K4

)
ds

+

∫ t

0

4

(
NK
s−

K
− 〈µs− , 1〉

)3

d

(
MK
s

K

)
+RKt + R̄Kt ,

for all t ≥ 0, where (RKt )t≥0 and (R̄Kt )t≥0 are compensated Poisson integrals. Using
Young’s inequality we deduce for all t ∈ [0, T ] that(

NK
t

K
− 〈µt, 1〉

)4

≤
(
NK

0

K
− 〈µ0, 1〉

)4

+ C

∫ t

0

(
NK
s

K
− 〈µs, 1〉

)4

ds+
C

K2

∫ t

0

(
NK
s

K
− 〈µs, 1〉

)2

ds
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+
CT
K3

sup
s∈[0,T ]

〈µKs , 1〉+
CT
K

sup
s∈[0,T ]

〈µKs , 1〉2 +
CT
K

sup
s∈[0,T ]

〈µKs , 1〉4

+

∫ t

0

4

(
NK
s−

K
− 〈µs− , 1〉

)3

d

(
MK
s

K

)
+RKt + R̄Kt . (5.3)

Proceeding in a similar way as in the proof of the bound (5.2), we can verify again that the

three processes in the last line are martingales if stopped at τm = inf{t > 0 : N
K

t > m}.
Thus, stopping the inequality (5.3) and taking expectation yields for all t ∈ [0, T ] that

E

((
NK
t∧τm
K

− 〈µt∧τm , 1〉
)4)

≤ I4
4 (K) +

CT
K

+ C

∫ t

0

E

((
NK
s∧τm
K

− 〈µs∧τm , 1〉
)4)

ds

+
C

K2

∫ t

0

E

((
NK
s∧τm
K

− 〈µs∧τm , 1〉
)2)

ds

≤ I4
4 (K) +

CT
K

+ C

∫ t

0

E

((
NK
s∧τm
K

− 〈µs∧τm , 1〉
)4)

ds

+
CTT

K2

(
I2
2 (K) +

1

K

)
,

where we used (5.2) to obtain the second inequality. Gronwall’s inequality and then
Fatou’s lemma yield at last

E

((
NK
t

K
− 〈µt, 1〉

)4)
≤ I4

4 (K) + CT

(
1

K
+
I2
2 (K)

K2

)
, ∀t ∈ [0, T ],

and we obtain the asserted bound noting that I2
2 (K) ≤

√
I4
4 (K) ≤ 1 + I4

4 (K).

We prove now Proposition 11, which relates the solution (µt)t≥0 of equation (1.2) to a
nonlinear process of McKean-Vlasov type.

Proof of Proposition 11. Pathwise existence and uniqueness for the SDE (3.1) comes
from the fact that the (non-homogeneous) coefficients are Lipschitz functions of Ys,
thanks to (H.2). In order to characterize the flow of time-marginal laws of (Yt)t≥0,
consider a function f ∈ C1,2([0, T ]×Rd) satisfying the conditions in Theorem 2. By Itô’s
formula we obtain

f(t, Yt) = f(0, Y0) +

∫ t

0

∂f(s, Ys)

∂s
ds+

∫ t

0

∇f(s, Ys)
tb(Ys, H ∗ µs(Ys)) ds

+

∫ t

0

∇f(s, Ys)
tσ(Ys, G ∗ µs(Ys)) dWs +

1

2

∫ t

0

Tr(a(Ys, G ∗ µs(Ys))Hessf(s, Ys)) ds.

Taking expectation shows that the law of the time-marginal is a weak solution of
equation (3.2) with respect to that set of test functions. Now, consider the function
h(t, x) = 〈µt, 1〉f(t, x). By equation (3.2) we get for all t ≥ 0 that

〈µ̃t, h(t, ·)〉

= 〈µ̃0, h(0, ·)〉+

∫ t

0

〈µ̃s, ∂sh(s, ·) + Lµs
h(s, ·)〉ds

= 〈〈µ0, 1〉µ̃0, f(0, ·)〉+

∫ t

0

〈µ̃s, f(s, ·)∂s〈µs, 1〉+ 〈µs, 1〉∂sf(s, ·) + 〈µs, 1〉Lµs
f(s, ·)〉ds

= 〈〈µ0, 1〉µ̃0, f(0, ·)〉+

∫ t

0

〈〈µs, 1〉µ̃s, ∂sf(s, ·) + Lµs
f(s, ·) + (r − c〈µs, 1〉)f(s, ·)〉ds,
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which implies that (ξt)t≥0 := (〈µt, 1〉µ̃t)t≥0 satisfies the following “linearized” version of
equation (1.2):

〈ξt, f(t, ·)〉 = 〈µ0, f(0, ·)〉+

∫ t

0

〈ξs, ∂sf(s, ·) + Lµs
f(s, ·) + (r − c〈µs, 1〉)f(s, ·)〉 ds, (5.4)

where (µt)t≥0 is the given solution to equation (1.2). With similar (indeed simpler)
arguments as in the uniqueness part of Theorem 2 (see [12, Section 4]) one can show
that uniqueness of weak solutions (with respect to the same class of test functions) of
equation (5.4) holds. But (ξt)t≥0 = (µt)t≥0 is also solution of the linear equation (5.4),
because (µt)t≥0 solves (1.2). We deduce that 〈µt, 1〉µ̃t = µt for all t ≥ 0, and in particular
that µ̃t = µ̄t.

The previous identity yields 〈µt, f〉 = E(〈µt, 1〉f(Yt)) for every bounded measurable f ,
and the fact that (〈µt, 1〉)t≥0 is the unique solution of equation (3.3) is readily obtained
by taking f = 1 in Theorem 2, recalling also that the local Lipschitz character of the
ODE’s coefficient ensures uniqueness for it.

The following propagation of moments result for the unique solution of equation (3.2)
will be needed.

Lemma 23. Assume (H) and let (µt)t≥0 be the unique solution in M+(Rd) of (1.2).
Letting (µ̄t)t≥0 be the normalizations of (µt)t≥0, for each T > 0 and q ≥ 2 there is a
constant C ′T > 0 such that

sup
t∈[0,T ]

Mq(µ̄t) < C ′T (1 +Mq(µ̄0)).

Proof. We will use the fact that diffusion process (Yt)t≥0 studied in Proposition 11
satisfies E(‖Yt‖q) = Mq(µ̄t). Applying Itô’s formula to ‖Yt‖q, t ≥ 0 with q ≥ 2 yields

‖Yt‖q = ‖Y0‖q +

∫ t

0

q‖Ys‖q−2Y t
s b(Ys, H ∗ µs(Ys)) ds+

∫ t

0

q‖Ys‖q−2Y t
s σ(Ys, G ∗ µs(Ys)) dBs

+
1

2

d∑
i,j=1

d∑
k=1

∫ t

0

(
q(q − 2)‖Ys‖q−4|Y (i)

s ||Y (j)
s |+ δij‖Ys‖q−2

)
× σ(ik)(Ys, G ∗ µs(Ys))σ(jk)(Ys, G ∗ µs(Ys))) ds. (5.5)

Since b is Lipschitz we have ‖b(Ys, H ∗ µs(Ys))‖ ≤ C
(
1 + ‖Ys‖ + |H ∗ µs(Ys)|

)
with |H ∗

µs(Ys)| = |
∫
H(x − Ys)µs(dx)| ≤ ‖H‖∞ supt∈[0,T ] |〈µt, 1〉| and similarly for σ and G. We

thus get that

‖b(Ys, H ∗ µs(Ys))‖ ≤ CT
(
1 + ‖Xs‖

)
and ‖σ(Xs, G ∗ µs(Xs))‖ ≤ CT

(
1 + ‖Xs‖

)
.

for all s ∈ [0, T ] and some constant CT > 0. Using this in (5.5) gives us the bound

‖Yt‖q ≤ ‖Y0‖q + C

∫ t

0

‖Ys‖q−2 ds+ C

∫ t

0

‖Ys‖q−1 ds+ C

∫ t

0

‖Ys‖q ds

+

∫ t

0

q‖Ys‖q−2Y t
s σ(Ys, G ∗ µs(Ys)) dBs , ∀t ∈ [0, T ].

Let now (τn)n∈N be a localizing sequence for the local martingale on the right hand side.
Taking expectation of the stopped process yields, for all t ∈ [0, T ], that

E(‖Yt∧τn‖q) ≤ E(‖Y0‖q) + C

∫ t

0

E(‖Ys∧τn‖q−2) ds+ C

∫ t

0

E(‖Ys∧τn‖q−1) ds
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+ C

∫ t

0

E(‖Ys∧τn‖q) ds.

Notice that by Hölder’s inequality, one gets∫ t

0

E(‖Ys∧τn‖q−1) ds ≤
∫ t

0

E(‖Ys∧τn‖q)
q−1
q ds ≤ CT + C

∫ t

0

E(‖Ys∧τn‖q) ds,

for all t ∈ [0, T ], and a similar bound holds for the term of order q − 2. Combined with
the previous, this entails

E(‖Yt∧τn‖q) ≤ E(‖Y0‖)q + CT + C

∫ t

0

E(‖Ys∧τn‖q) ds,

from where Gronwall’s lemma yields, for all t ∈ [0, T ],

E(‖Yt∧τn‖q) ≤ CT (E(‖Y0‖)q + 1).

We conclude with Fatou’s lemma taking n→∞.

In order to check that condition (C.3) holds, we need some additional bounds stated in
the next two results (respectively analogous to Lemmas 20 and 19 in the pure branching
case). In particular, the following result will be used to control the joint evolution of
coupled particles in the two systems, between birth and death events.

Lemma 24. Assume (H.2) and (H.3). Let N and K ∈ N \ {0} be deterministic and fixed,
and consider the diffusion processes (Xn)Nn=1 in (Rd)N evolving according to

dXn
t = b(Xn

t , H ∗ ξKt (Xn
t )) dt+ σ(Xn

t , G ∗ ξKt (Xn
t )) dBnt , t ≥ 0,

where (Bn)Nn=1 are independent Brownian motions in Rd and ξKt stands for the empirical
measure ξKt = 1

K

∑N
n=1 δXn

t
of constant mass N/K. Consider also N i.i.d. copies (Y n)Nn=1

of the process (3.1),

dY nt = b(Y nt , H ∗ µt(Y nt )) dt+ σ(Y nt , G ∗ µt(Y nt )) dBnt , t ≥ 0,

driven by the same Brownian motions (Bn)Nn=1 and where (µt)t≥0 is the unique solution
of (1.2). For each T > 0, there is CT > 0 not depending on K nor on N such that for all
0 < u < t < T and each n = 1, . . . , N ,

E(‖Xn
t − Y nt ‖2 − ‖Xn

u − Y nu ‖2) ≤ CT
∫ t

u

E(‖Xn
s − Y ns ‖2) ds+

∫ t

u

E
(∥∥ξKs − µs∥∥2

BL∗

)
ds.

Proof. We first check that the running supremum of each process (Xn) is square inte-
grable. Using similar bounds as in the proof of Lemma 23, we get for each t ∈ [0, T ],

‖Xn
t ‖2 ≤ ‖Xn

0 ‖2 +

∫ t

0

2‖Xn
s ‖‖b(Xn

s , H ∗ ξKs (Xn
s ))‖ ds+

∫ t

0

2(Xn
s )tσ(Xn

s , G ∗ ξKs (Xn
s )) dBs

+

∫ t

0

‖σ(Xn
s , G ∗ ξKs (Xn

s ))‖2 ds

≤ ‖Xn
0 ‖2 + CT + C

∫ t

0

‖Xn
s ‖ ds+ C

∫ t

0

‖Xn
s ‖2 ds+ C

∫ t

0

‖Xn
s ‖|H ∗ ξKs (Xn

s )|ds

+ C

∫ t

0

|G ∗ ξKs (Xn
s )|2 ds+

∫ t

0

2(Xn
s )tσ(Xn

s , G ∗ ξKs (Xn
s )) dBs

≤ ‖Xn
0 ‖2 + CT + CT‖H‖2∞

(
N

K

)2

+ CT‖G‖2∞
(
N

K

)2

+ C

∫ t

0

‖Xn
s ‖2 ds

+

∫ t

0

2(Xn
s )tσ(Xn

s , G ∗ ξKs (Xn
s )) dBs,
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since, in the present lemma’s setting, 〈ξKs , 1〉 = N/K for all s ≥ 0. Let (τm)m∈N be a
localizing sequence for the local martingale in the previous inequality. As in the proof
of Lemma 19 we localize and then we take supremum until time t ∧ τm on both sides,
obtaining that

sup
u∈[0,t∧τm]

‖Xn
u ‖2 ≤ ‖Xn

0 ‖2 + CT + CT‖H‖2∞
(
N

K

)2

+ CT‖G‖2∞
(
N

K

)2

+ C

∫ t

0

sup
u∈[0,s∧τm]

‖Xn
u ‖2 ds

+

d∑
i,j=1

(
sup

u∈[0,t∧τm]

∣∣∣∣∫ u

0

2(Xn
s )(i)σ(ij)(Xn

s , G ∗ ξKs (Xn
s )) dB(j)

s

∣∣∣∣).
The expectation of the last term is controlled using the BDG inequality by

d∑
i,j=1

E

(
sup

u∈[0,t∧τm]

∣∣∣∣∫ u

0

2(Xn
s )(i)σ(ij)(Xn

s , G ∗ ξKs (Xn
s )) dB(j)

s

∣∣∣∣)

≤
d∑

i,j=1

E

((∫ t∧τm

0

4
(

(Xn
s )(i)σ(ij)(Xn

s , G ∗ ξKs (Xn
s ))
)2

ds

) 1
2
)

≤ CE
((∫ t∧τm

0

‖Xn
s ‖2‖σ(Xn

s , G ∗ ξKs (Xn
s ))‖2 ds

) 1
2
)

≤ CE
((

1 + ‖G‖2∞
(
N

K

)2) 1
2
(∫ t

0

‖Xn
s∧τm‖

2 ds

) 1
2
)

≤
(

1 +

(
N

K

)2)(
CT + CT

∫ t

0

E(‖Xn
s∧τm‖

2) ds

)
.

This allows us to deduce for all t ∈ [0, T ] that

E

(
sup

u∈[0,t∧τm]

‖Xn
u ‖2
)
≤ E

(
‖Xn

0 ‖2
)

+ CT,N,K + CT,N,K

∫ t

0

E

(
sup

u∈[0,s∧τm]

‖Xn
u ‖2
)

ds,

where CT,N,K is a constant depending on T,N and K (recall N and K are deterministic
in the setting of this lemma). From this last inequality, Gronwall’s lemma and monotone
convergence when m→∞ yield

E

(
sup
t∈[0,T ]

‖Xn
t ‖2
)
<∞.

A similar argument can be applied to the process (Y nt )t≥0 in order to obtain the same
conclusion. We now apply Itô’s formula for each fixed n to get

‖Xn
t − Y nt ‖2 = ‖Xn

u − Y nu ‖2 +

∫ t

u

2(Xn
s − Y ns )t

(
b(Xn

s , H ∗ ξKs (Xn
s ))− b(Y ns , H ∗ µs(Y ns ))

)
ds

+

∫ t

u

2(Xn
s − Y ns )t

(
σ(Xn

s , G ∗ ξKs (Xn
s ))− σ(Y ns , G ∗ µs(Y ns ))

)
dBns

+

d∑
i,j=1

∫ t

u

(
σ(ij)(Xn

s , G ∗ ξKs (Xn
s ))− σ(ij)(Y ns , G ∗ µs(Y ns ))

)2
ds.

The Lipschitz character of the coefficients granted by (H.2) imply the bound

‖Xn
t − Y nt ‖2 ≤ ‖Xn

u − Y nu ‖2
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+ C

∫ t

u

(
‖Xn

s − Y ns ‖2 + ‖Xn
s − Y ns ‖|H ∗ ξKs (Xn

s )−H ∗ µs(Y ns )|
)

ds

+ C

∫ v

u

(
‖Xn

s − Y ns ‖2 + |G ∗ ξKs (Xn
s )−G ∗ µs(Y ns )|2

)
ds

+

∫ t

u

2(Xn
s − Y ns )t(σ(Xn

s , G ∗ ξKs (Xn
s ))− σ(Y ns , G ∗ µs(Y ns ))) dBns .

Assumption (H.3) implies that the function H(· − x) is bounded and Lipschitz for each
x ∈ Rd, hence∣∣H ∗ ξKs (Xn

s )−H ∗ µs(Y ns )
∣∣ ≤ ∣∣H ∗ ξKs (Xn

s )−H ∗ µs(Xn
s )
∣∣+ |H ∗ µs(Xn

s )−H ∗ µs(Y ns )|
≤ C‖ξKs − µs‖BL∗ + C‖µs‖BL∗‖Xn

s − Y ns ‖,

holds for all s ≥ 0, and similarly for the terms involving G. Then, the uniform bound on
the mass of (µt)t≥0 on finite time intervals allows us to deduce for all 0 < u < t < T that

‖Xn
t − Y nt ‖2 ≤ ‖Xn

u − Y nu ‖2 + C

∫ t

u

(
‖Xn

s − Y ns ‖2 + ‖Xn
s − Y ns ‖‖ξKs − µs‖BL∗

)
ds

+ C

∫ v

u

(
‖Xn

s − Y ns ‖2 + ‖ξKs − µs‖2BL∗
)

ds

+

∫ t

u

2(Xn
s − Y ns )t(σ(Xn

s , G ∗ ξKs (Xn
s ))− σ(Y ns , G ∗ µs(Y ns ))) dBns

≤ ‖Xn
u − Y nu ‖2 + C

∫ t

u

(
‖Xn

s − Y ns ‖2 + ‖ξKs − µs‖2BL∗
)

ds

+

∫ t

u

2(Xn
s − Y ns )t(σ(Xn

s , G ∗ ξKs (Xn
s ))− σ(Y ns , G ∗ µs(Y ns ))) dBns ,

where we used Young’s inequality for the second inequality, and where C is a constant
depending on T > 0 but not on K nor N that changed from line to line. By considering a
localizing sequence (τm)m for the local martingale on the right hand side, we can take
expectation of the stopped processes to obtain

E(‖Xn
t∧τm − Y

n
t∧τm‖

2) ≤ E(‖Xn
u − Y nu ‖2) + C

∫ t

u

E(‖Xn
s∧τm − Y

n
s∧τm‖

2) ds

+

∫ t

u

E
(∥∥µKs∧τm − µs∧τm∥∥2

BL∗

)
ds,

for all 0 < u < t < T . Thanks to the second moments controls on the running suprema
of Xn and Y n, and since the total mass of µKt is constant in the context of the present
lemma, we can use dominated convergence to take m→∞ and conclude the proof.

The following bound gathering all the previous estimates will allow us to check that
condition (C.3) holds.

Lemma 25. Assume (H) and let (µt)t≥0 be the unique solution inM+(Rd) of (1.2) and
(µ̄t)t≥0 its corresponding normalization. Consider (Y nt )t≥0, (X

n
t )t≥0, and (νKt )t≥0 as

constructed in algorithm (A). Then, for all t ∈ [0, T ] we have

E
( 1

K

NK
t∑

n=1

‖Xn
t − Y nt ‖2

)
≤ CT

[
I2
4 (K) +K−

1
2 +

∫ T

0

E
(NK

s

K
W 2

2 (ν̄Ks , µ̄s)
)

ds

]
,

where CT > 0 is a constant that depends on T and on the parameters of the model.
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Proof. As in the proof of Lemma 20 we consider the product empirical measure ηKt :=
1
K

∑NK
t

n=1 δ(Xn
t ,Y

n
t ) and decompose again

E

(
1

K

NK
t∑

n=1

|Xn
t − Y nt |2

)
= E(〈ηKt , d2〉),

in terms of the sequence of jump times (Tm)m∈N, as in (4.5). We can proceed in a similar
way as in (4.6) to control the evolution between jumps, now with help of Lemma 24, and
control the contributions in the jump instants in the same way as in (4.8), to obtain for
all t ∈ [0, T ] that

E(〈ηKt , d2〉) ≤ C
∫ t

0

E(〈ηKs , d2〉) ds+ C

∫ t

0

E
(NK

s

K
W 2

2 (ν̄Ks , µ̄s)
)

ds

+ C

∫ t

0

E
(NK

s

K
‖µKs − µs‖2BL∗

)
ds,

where C is a positive constant depending on T . We observe that, compared to the case
dealt with in the previous section, the interaction at the level of the dynamics only results
in the addition of the last term in the previous inequality. In order to bound this new
term, we use Lemma 4 to get

E
(NK

s

K

∥∥µKs − µs∥∥2

BL∗

)
≤ E

(NK
s

K

(
〈µs, 1〉‖µ̄Ks − µ̄s‖BL∗ +

∣∣∣NK
s

K
− 〈µs, 1〉

∣∣∣)2)
≤ 2 sup

u∈[0,T ]

〈µu, 1〉2E
(NK

s

K
‖µ̄Ks − µ̄s‖2BL∗

)
+ 2E

(NK
s

K

∣∣∣NK
s

K
− 〈µs, 1〉

∣∣∣2)
≤ CE

(NK
s

K
‖µ̄Ks − ν̄Ks ‖2BL∗

)
+ CE

(NK
s

K
‖µ̄s − ν̄Ks ‖2BL∗

)
+ 2E

(NK
s

K

∣∣∣NK
s

K
− 〈µs, 1〉

∣∣∣2), s ∈ [0, T ],

using also the uniform bounds for the mass of the solution to equation (11) on finite time
intervals. To control the first term of the right hand side, we relate it to the Wasserstein
distance using again Lemma 4, which yields

E
(NK

s

K
‖µ̄Ks − ν̄Ks ‖2BL∗

)
≤ E

(NK
s

K
W 2

2 (µ̄Ks , ν̄
K
s )
)
≤ E(〈ηKs , d2〉), ∀s ≥ 0.

We do the same with the second term to get

E
(NK

s

K
‖µ̄s − ν̄Ks ‖2BL∗

)
≤ E

(NK
s

K
W 2

2 (µ̄s, ν̄
K
s )
)
.

We thus obtain the inequality

E(〈ηKt , d2〉) ≤ C
∫ t

0

E(〈ηKs , d2〉) ds+ C

∫ t

0

E
(NK

s

K
W 2

2 (ν̄Ks , µ̄s)
)

ds

+ 2

∫ t

0

E
(NK

s

K

∣∣∣NK
s

K
− 〈µs, 1〉

∣∣∣2)ds,

for all s ∈ [0, T ], where only the last term needs to be controlled. Using Hölder’s
inequality yields

E
(NK

s

K

∣∣∣NK
s

K
− 〈µs, 1〉

∣∣∣2) ≤ E((NK
s

K

)2) 1
2

E
(∣∣∣NK

s

K
− 〈µs, 1〉

∣∣∣4) 1
2

,
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where the first factor on the r.h.s. is controlled by Lemma 22. Thanks to the second
bound in Lemma 22, we obtain that

E(〈ηKt , d2〉) ≤ C
∫ t

0

E(〈ηKs , d2〉) ds+ C

∫ t

0

E
(NK

s

K
W 2

2 (ν̄Ks , µ̄s)
)

ds+ CT

(
I2
4 (K) +

1√
K

)
,

for each t ∈ [0, T ]. Finally, Gronwall’s lemma yields

E(〈ηKt , d2〉) ≤ CT
[
I2
4 (K) +

1√
K

+

∫ T

0

E
(NK

s

K
W 2

2 (ν̄Ks , µ̄s)
)

ds

]
eCT , ∀t ∈ [0, T ].

We deduce the following result.

Corollary 26. Assume (H). Then, condition (C.3) holds for the systems (µKt )t≥0 and
(νKt )t≥0 constructed in algorithm (A).

Proof. Applying Lemma 25, Lemma 6 and noting that 1/
√
K ≤ CRd,q(K), we obtain the

bound
E(〈ηKt , d2〉) ≤ CT

(
I2
4 (K) +Rd,q(K)

)
, ∀t ∈ [0, T ]. (5.6)

It suffices to combine this with the inequality

E
(NK

t

K
W 2

2

(
µ̄Kt , ν̄

K
t

))
≤ E

( 1

K

NK
t∑

n=1

‖Xn
t − Y nt ‖

2)
,

to conclude.

Finally, everything is in place to prove the main result.

Proof of Theorem 3 under (H). Following (4.10) and using Lemma 22, we get

E
(
‖µKt − µt‖BL∗

)
≤
(
E
(NK

t

K
W 2

2

(
ν̄Kt , µ̄t

)) 1
2

+ E
(NK

t

K
W 2

2

(
ν̄Kt , µ̄

K
t

)) 1
2

)
E
(NK

t

K

) 1
2

+ E
((
〈µKt , 1〉 − 〈µt, 1〉

)2) 1
2

≤ CT
(
E
(NK

t

K
W 2

2

(
ν̄Kt , µ̄t

)) 1
2

+ E
(NK

t

K
W 2

2

(
ν̄Kt , µ̄

K
t

)) 1
2

+ I2(K) +K−1/2

)
,

for all t ∈ [0, T ]. As in the previous section, thanks to condition (C), Lemma 22, Lemma 23,
and Lemma 6 we obtain for all t ∈ [0, T ] that

E
(
‖µKt − µt‖BL∗

)
≤ CT

(
Rd,q(K)

1
2 + I4(K)

)
,

since I2(K) ≤ I4(K), concluding thus the proof.

We end this section proving the conditional propagation of chaos property stated in
Corollary 8.

Proof of Corollary 8. Let Ψd,q(K) denote the function of K appearing on the right hand
side of the bound in Theorem 3. By exchangeability of

(
(X1

t , Y
1
t ), . . . ,

(
XNK

t

t , Y NK
t

t

))
condi-

tionally on NK
t , for all t ≥ 0 we get

E
(NK

t

K
‖X1

t − Y 1
t ‖2

)
= E

(
1

K

NK
t∑

n=1

‖Xn
t − Y nt ‖2

)
≤ CtΨ2

d,q(K), (5.7)
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thanks to (5.6). By Proposition 16, we have L
(
Y 1
t , . . . , Y

j
t | NK

t

)
= µ̄⊗jt on the event

{j ≤ NK
t }. Now, letting ct := 〈µt, 1〉 ∈ (0,∞) denote the limit in law of NK

t /K, and using
the second inequality of Lemma 4 in the third bound below we get, for all ε > 0, that

P
(∥∥∥L(X1

t , . . . , X
j∧NK

t
t

∣∣∣ NK
t

)
− µ̄⊗jt

∥∥∥
BL∗

> ε, NK
t ≥ j

)
≤ P

(
NK
t

K

∥∥∥L(X1
t , . . . , X

j
t

∣∣∣ NK
t

)
− µ̄⊗jt

∥∥∥
BL∗

(
NK
t

K

)−1

>
εct
2

2

ct
, NK

t ≥ j
)

≤ P
(
NK
t

K

∥∥∥L(X1
t , . . . , X

j
t

∣∣∣ NK
t

)
− µ̄⊗jt

∥∥∥
BL∗

>
εct
2
, NK

t ≥ j
)

+ P

(
NK
t

K
<
ct
2

)
≤ 2

εct
E

(
NK
t

K
E

( j∑
n=1

‖Xn
t − Y nt ‖

∣∣∣∣ NK
t

)
1{

NK
t ≥j

})+ P

(
NK
t

K
<
ct
2

)
≤ 2j

εct
E
(NK

t

K
‖X1

t − Y 1
t ‖
)

+ P

(
NK
t

K
<
ct
2

)
≤ 2j

εct
C ′tΨ

2
d,q(K) + P

(
NK
t

K
<
ct
2

)
,

using also the Cauchy-Schwarz inequality, the estimate (5.7) and the fact that
E(NK

t /K)1/2 <∞ in the last inequality. Since NK
t /K → ct in law, the last term goes to 0

when K →∞. The convergences P(NK
t ≥ j)→ 1 and Ψd,q(K)→ 0 as K →∞ then yield

P
(∥∥∥L(X1

t , . . . , X
j
t

∣∣∣ NK
t

)
− µ̄⊗jt

∥∥∥
BL∗

> ε
∣∣∣ NK

t ≥ j
)
−→ 0,

as K →∞, as required.

6 Extensions

We end with some remarks regarding possible extensions of our approach, and the
technical issues that must be solved in order to establish similar results in some related,
more general settings.

Remark 27. If instead of (H.1) it is assumed that the initial data µK0 satisfies the condi-
tion in Lemma 9 b), the arguments and construction leading to the proof of Theorem 3
must be modified, along the following lines:

• In condition (C.1), νK0 = µK0 is not enforced, but K〈νKt , 1〉 = K〈µKt , 1〉 = NK
t is

kept.

• In the construction of the coupling using algorithm (A), the random variables
(Y k)k≥1 are chosen as before while, for any K and N , the random vectors (X1

0 , . . . ,

XN
0 ) are chosen on the event {NK

0 = N}, suitably coupled with (Y 1
0 , . . . , Y

N
0 ). This

results in an extra term of the form E(〈ηK0 , d2〉) on the r.h.s. of the bounds in the
statement and proof of Lemma 25 which in turn translates into an additional term
CTE(〈ηK0 , d2〉)1/2 on the r.h.s. of the bound in Theorem 3.

• In order to minimize the value of this additional term, the coupling of the variables
(X1

0 , . . . , X
N
0 ) and (Y 1

0 , . . . , Y
N
0 ) must be chosen on each event {NK

0 = N} so as to
realize the squared 2-Wasserstein distance between the laws of (X1

0 , . . . , X
N
0 ) and

µ̄⊗N0 in (Rd)N . Denoting

W̃ 2
2 (L(X1

0 , . . . , X
N
0 ), µ̄⊗N0 ) =

1

N
W 2

2 (L(X1
0 , . . . , X

N
0 ), µ̄⊗N0 ),
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the normalized squared 2-Wasserstein distance, the additional term E(〈ηK0 , d2〉)1/2

then writes

E

(
NK

0

K
W̃ 2

2

(
L
(
X1

0 , . . . , X
NK

0
0

∣∣ NK
0

)
, µ̄
⊗NK

0
0

))1/2

.

The ideas and techniques developed in this work can in principle also be extended to
more general systems of interacting branching populations, including the general setting
of [12]. Nevertheless, this requires to deal with significant additional technicalities, and
we have chosen to focus here on the basic ideas. The following possible generalizations
are left for future work:

• The case of populations with spatially or density depending birth or death events, as
in the more general setting studied in [12], seems feasible but presents one major
additional difficulty, namely that the jump times are correlated with the spatial
dynamics. The main consequence of this is that, in any coupling with some auxiliary
system of conditionally independent (or less dependent) particles, the jump times
cannot be expected to happen simultaneously. However, under the condition of
spatial Lipschitz continuity of the reproduction rate and the competition kernel, it
should be possible to keep at least some subsystems effectively coupled on finite
time intervals, while controlling explicitly the discrepancy between jump times in
the two systems, in terms of the distance of the empirical measures of the systems
themselves, in such a way that the discrepancies asymptotically vanish as the
population size goes to infinity.

• A further desirable generalization regards the case of branching events more
general than binary ones. The natural extension of the argument used here would
consist in coupling all the offspring of a branching particle in the original system,
with a set of equally many independent new particles given birth at the same time
in the auxiliary system. However it is not clear how to make compatible the use
of optimal transport plans to couple the branching particle and the positions of
the new particles in the auxiliary system, with the independence requirement in
the auxiliary system. A possible way of coping with this problem could be to make
a two-steps coupling construction: first, between the branching particle in the
original system and the positions of new particles in the auxiliary system (which
would define an exchangeable random vector of particles in any case) and, in a
second step, coupling those positions with independent particles with the required
law.

Appendix

Proof of Lemma 4. Since ‖ν̄‖BL∗ = 〈ν̄, 1〉 = 1, we have

‖µ− ν‖BL∗ = ‖〈µ, 1〉 (µ̄− ν̄) + ν̄ (〈µ, 1〉 − 〈ν, 1〉)‖BL∗

≤ 〈µ, 1〉‖µ̄− ν̄‖BL∗ +
∣∣〈µ, 1〉 − 〈ν, 1〉∣∣.

Now, for any µ, ν ∈ P(Rd), ‖µ − ν‖BL∗ = sup‖ϕ‖BL≤1

∣∣∣∫Rd×Rd(ϕ(x)− ϕ(y))π(dx, dy)
∣∣∣ for

all coupling π ∈ P(R2d) of µ and ν. Using the fact that |ϕ(x)− ϕ(y)| ≤ |x− y| ∧ 2 when
‖ϕ‖BL ≤ 1 and taking infimum over all π ∈ Π(µ, ν) we conclude that ‖µ − ν‖BL∗ ≤
infπ∈Π(µ,ν)

∫
|x− y| ∧ 2π(dx, dy) ≤W1(µ, ν).

Proof of Lemma 6. Write α = 1/2 when d < 4 or α = 2/d when d > 4. Thanks to
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Theorem 5, for some Cd,q > 0,

E
(N
K
W 2

2

(
ν̄K , µ̄

))
= E

(N
K
E
(
W 2

2

(
ν̄K , µ̄

) ∣∣∣ N))
≤ Cd,qM

2
q
q (µ̄)E

(N
K

(
N−α +N−

q−2
q

))
= Cd,qM

2
q
q (µ̄)

(
K−αE

((N
K

)1−α)
+K−

q−2
q E

((N
K

) 2
q
))

≤ Cd,qM
2
q
q (µ̄)

(
K−αE

(N
K

)1−α
+K−

q−2
q E

(N
K

) 2
q
)
,

using Jensen’s inequality in the last line. This implies the result for d 6= 4. When d = 4

we get the bounds

E
(N
K
W 2

2

(
ν̄K , µ̄

))
≤ Cd,qM

2
q
q (µ̄)

(
K−

1
2 E

((N
K

) 1
2

log(1 +N)

)
+K−

q−2
q E

(N
K

) 2
q
)

≤ Cd,qM
2
q
q (µ̄)

(
K−

1
2 E
(N
K

) 1
2

E
(

log2(e+N)
) 1

2

+K−
q−2
q E

(N
K

) 2
q
)
.

The function x ∈ [e,∞) 7→ log2(x) being concave, it can be extended linearly on (−∞, e)
to get a C1 concave function on R. Jensen’s inequality then yields

E
(

log2(e+N)
) 1

2 ≤ log
(
e+KE

(N
K

))
≤ 1 + log(1 +K) + log

(
1 ∨ E

(N
K

))
.

Using this bound, we finally obtain that

E
(N
K
W 2

2

(
ν̄K , µ̄

))
≤ Cd,qM

2
q
q (µ̄)

(
K−

1
2 E
(N
K

) 1
2

+K−
1
2 log(1 +K)E

(N
K

) 1
2

+K−
1
2 E
(N
K

) 1
2

log
(

1 ∨ E
(N
K

))
+K−

q−2
q E

(N
K

) 2
q
)
,

and the case d = 4 follows since K−
1
2 ≤ K− 1

2 log(1 +K) for K ∈ N \ {0}.

Proof of Lemma 9. Since condition (H.1) assumed in a) is a particular case of the as-
sumptions in b), it is enough to prove b) to get both parts. Denote by m ∈ (0,∞) the
limit in law of (〈µK0 , 1〉)K∈N\{0}. Taking µ = mµ̃0 and ν = µK0 in Lemma 4, we get

lim sup
K

P(‖mµ̃0 − µK0 ‖BL∗ ≥ ε) ≤ lim sup
K

P(‖µ̃0 − µ̄K0 ‖BL∗ ≥ ε/(2〈mµ̃0, 1〉)), (A.1)

with µ̄K0 = 1
NK

0

∑NK
0

i=1 δXi
0
. On the other hand, for each δ > 0 and M > 0,

P(‖µ̃0 − µ̄K0 ‖BL∗ ≥ δ) ≤
∑
N≥M

E
[
P(‖µ̃0 − µ̄K0 ‖BL∗ ≥ δ|NK

0 = N)1NK
0 =N

]
+ P(NK

0 < M)

≤ sup
N≥M

P

(∥∥∥∥µ̃0 −
1

N

N∑
i=1

δY i,N

∥∥∥∥
BL∗
≥ δ

)
+ P(〈µK0 , 1〉 < M/K).

Since 〈µK0 , 1〉 converges weakly to a non null constant, the last term goes to 0 when
K → ∞. Now, it is well known that the assumed µ̃0-chaoticity is equivalent to the
convergence in distribution of the random probability 1

N

∑N
i=1 δY i,N to µ̃0 as N →∞. If

follows that lim supK→∞P(‖µ̃0 − µ̄K0 ‖ ≥ δ) = 0 which entails the claim in view of (A.1).
c) The r.v. NK

0 = K〈µK0 , 1〉 is Poisson of parameter K〈µ0, 1〉 and equals in law the
sum

∑K
i=1N

i of independent Poisson r.v. (N i)Ki=1 of parameter 〈µ0, 1〉. By the law
of large numbers, 〈µK0 , 1〉 = NK

0 /K converges in law to the constant 〈µ0, 1〉. It is
immediate from basic properties of Poisson point measures that the NK

0 atoms of µK0
are i.i.d. of law µ̄0 given 〈µK0 , 1〉. Last, NK

0 being Poisson of parameter K〈µ0, 1〉, we have
I4
4 (K) = K−3

(
〈µ0, 1〉+ 3K〈µ0, 1〉2

)
≤ CK−2.
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