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Abstract

Consider simple random walk (Xn)n≥0 on a transitive graph with spectral radius ρ.
Let un = P[Xn = X0] be the n-step return probability and fn be the first return
probability at time n. It is a folklore conjecture that on transient, transitive graphs
un/ρ

n is at most of the order n−3/2. We prove this conjecture for graphs with a
closed, transitive, amenable and nonunimodular subgroup of automorphisms. We also
conjecture that for any transient, transitive graph fn and un are of the same order
and the ratio fn/un even tends to an explicit constant. We give some examples for
which this conjecture holds. For a graph G with a closed, transitive, nonunimodular
subgroup of automorphisms, we prove a weaker asymptotic behavior regarding to this
conjecture, i.e., there is a positive constant c such that fn ≥ un

cnc
.
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1 Introduction and main results

1.1 Local limit law of return probability

Suppose G = (V,E) is a locally finite, connected, infinite graph with vertex set V and
edge set E. Let (Xn)n≥0 be a simple random walk on G started from x ∈ V and denote by
un(x) := Px[Xn = x] the n-step return probability. In particular u0(x) = 1. The spectral
radius ρ of G is ρ := lim supn→∞ un(x)1/n, which doesn’t depend on the choice of x (for
instance see [25, Theorem 6.7]). Set an(x) := un(x)

ρn . When G is (vertex)-transitive, the
quantities un(x) and an(x) don’t depend on x and we simply write them as un and an
respectively.

A graph is called transient if a simple random walk on the graph is transient. It is
known that

∑∞
n=0 an <∞ for transient, transitive graphs; for instance see [37, Theorem

7.8]. Since a2n is also decreasing in n (using a Cauchy–Schwarz inequality as in the
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proof of Lemma 10.1 in [37]), one has that a2n = o( 1
n ). If some odd terms a2k+1 > 0,

then one still has that an = o( 1
n ) since a2n+1

a2n
→ 1 (for instance see Lemma 6.9). Hence

for transient, transitive graph one always has that an = o( 1
n ). So what’s more can one

say about the asymptotic behavior of an for such graphs? The following conjecture is
folklore.

Conjecture 1.1. If a graph G is transient and transitive, then one has that

an � n−
3
2 .

Here for two functions g, h : N → [0,∞), we write f(n) � g(n) to denote that there
exists a constant c > 0 such that f(n) ≤ cg(n) for all n ≥ 0. We write f(n) � g(n) if
g(n) � f(n). We write f(n) � g(n) if both f(n) � g(n) and f(n) � g(n) hold. We write
f(n) ∼ g(n) if limn→∞

f(n)
g(n) = 1.

There are transient, non-transitive graphs such that an(x) is bounded away from zero;
for example see certain radial trees in [18].

It is known that Conjecture 1.1 holds for all transient, transitive, amenable graphs,
for example Zd (d ≥ 3). Let’s briefly review this: for a transient, transitive and amenable
graph G, its spectral radius ρ equals 1 (for example see Theorem 6.7 in [25]) and thus
Conjecture 1.1 becomes un � n−

3
2 in this case. If G has polynomial growth rate, i.e.,

|B(x, r)| = O(rκ) for some real number κ > 0, then G is roughly isometric to a Cayley
graph (hence they have the same growth rate); see the discussion in the paragraph
below the proof of Theorem 7.18 on page 265 of [25]. Furthermore there is an integer
d > 0 such that |B(x, r)| = Θ(rd); for example see Theorem 5.11 of [37]. Since G is
transient, one must have d ≥ 3. Therefore un � n−

d
2 ≤ n− 3

2 (for example see Corollary
14.5 of [37]). If G has superpolynomial growth rate, then for any d > 0, |B(x, r)| � rd by
Theorem 5.11 of [37]. Hence un � n−

d
2 for all d > 0, in particular un � n−

3
2 .

It is also known that Conjecture 1.1 hold for hyperbolic graphs [19, 20], certain free
products [9, 10, 11, 35] and certain Cartesian product [12]. In particular for a regular
tree Tb+1 with degree b+ 1 ≥ 3, it is known that a2n ∼ 1√

2π
· b+1

2b ·n
−3/2. However beyond

the several cases just mentioned Conjecture 1.1 is generally open for non-amenable
Cayley graphs.

Our first result is that Conjecture 1.1 holds for a certain family of transitive and
nonamenable graphs. See Section 5 for specific examples which Theorem 1.2 applies to.

Theorem 1.2. If G is a locally finite, connected graph with a closed, transitive, amenable
and nonunimodular subgroup of automorphisms, then an � n−

3
2 .

1.2 First return probability

Suppose G = (V,E) is a locally finite, connected graph and (Xi)i≥0 is a simple random
walk on G. For x ∈ V , the first return probability fn(x) is defined as fn(x) := Px[Xn =

x,Xi 6= x, i = 1, · · · , n− 1], n ≥ 1. We use the convention that f0(x) = 0. If G is transitive,
then fn(x) doesn’t depend on x and we simply write it as fn.

Write U(x, x|z) =
∑∞
n=0 un(x)zn and F (x, x|z) =

∑∞
n=0 fn(x)zn for the generating

functions. When the graph G is transitive, we simply write U(z) and F (z) for U(x, x|z)
and F (x, x|z). Since ρ = lim supn→∞ un(x)1/n, the radius of convergence rU for U(x, x|z)
satisfies rU = 1

ρ . It is well known that U(x, x|z) = 1
1−F (x,x|z) for |z| < 1

ρ ; for instance see

[37, Lemma 1.13(a)]. Let rF be the radius of convergence of F (x, x|z). It is known that
rU = rF , in other words,

Claim 1.3. If G = (V,E) is a locally finite, connected graph with spectral radius ρ, then
for all x ∈ V ,

lim sup
n→∞

fn(x)1/n = ρ.
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Proof. This is a simple application of Pringsheim’s theorem; for instance see Exercise
6.58 in [25].

We conjecture something much stronger holds for all transient, transitive graphs.

Conjecture 1.4. If G is a locally finite, connected, transitive, transient graph, then

fn � un.

Actually we conjecture the following equality holds:

lim
n→∞,d|n

fn
un

=
(
1− F (ρ−1)

)2 ∈ (0, 1),

where d is the period of a simple random walk on G, i.e., d := gcd{n ≥ 1: un > 0} ∈ {1, 2}.
Conjecture 1.4 is known to hold for Zd(d ≥ 3) ([15]) and hyperbolic graphs ([19,

Proposition 4.1 and Theorem 1.1]). See Section 6 for more examples and discussions on
this.

Interestingly different behaviors occur for recurrent graphs. On Z, it is well-known
that f2n ∼ 1

2
√
πn3/2 while u2n ∼ 1√

πn
. On Z2, it happens that f2n ∼ π

n log2 n
([24] or [22,

Lemma 3.1]) while u2n ∼ 1
πn . See [21] for some other results on first return probability

on recurrent graphs.
The following is a partial result for nonunimodular transitive graphs, or more gener-

ally, graphs with a closed, transitive, nonunimodular subgroup of automorphisms.

Theorem 1.5. If G is a locally finite, connected graph with a closed, transitive and
nonunimodular subgroup of automorphisms, then there is a constant c > 0 such that

fn �
un
nc
.

Theorem 1.2 and Theorem 1.5 are also examples that sometimes nonunimodularity
may help; see [23, Theorem 1.2] for another example on Bernoulli percolation.

1.3 Organization of the paper and ideas of proof

We prove Theorem 1.2 in Section 2 and Theorem 1.5 in Section 3 respectively and
then extend these results to the quasi-transitive case in Section 4. In Section 5 we
give some nonunimodular examples for Conjecture 1.1. Finally in Section 6 we discuss
Conjecture 1.4 and give some examples for which this conjecture holds.

For Theorem 1.2 we observe that there is a natural choice of ρ-harmonic function
h and the Doob h-transform gives a new ph-walk, and an is the just the n-step return
probability for this new ph-walk. Next we observe that the ph-walk is symmetric w.r.t.
the level structure of the nonunimodular graph (Lemma 2.13). Since one-dimensional
symmetric random walk is well-understood, one can deduce that the probability that
the ph-walk reaches a highest level k and returns to level 0 at time n is bounded by
(k ∨ 1)3/2/n3/2 (Lemma 2.18). Using the level structure again, on the event of reaching
level k and back to level 0 at time n, the probability for the ph-walk returning to the
starting point at time n is bounded by e−ck. Combining all this, we are done.

For Theorem 1.5, one can use mass-transport principle to deduce that the expected
size of the intersection of a simple random walk path with level k conditioned on returning
at time n is at most ne−ck (Proposition 3.3). In particular, this implies that conditioned
on returning at time n, the simple random walk has probability at least one half not
reaching level C log n for large constant C. Then one can construct a first returning
event as follows: first the walker starting from x travels to a point y in a lower level
−k = −C log n with respect to x in k steps, and then does an excursion for n− 2k steps
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without hitting the k-th level with respect to y (in particular not hitting x), and then
travels back to x in k steps. This event itself has probability at least of order un

nc for some
constant c > 0.

2 Proof of Theorem 1.2

Suppose G = (V,E) is a locally finite, connected graph. An automorphism of G is
a bijection φ : G → G such that whenever x and e are incident in G, then so are the
images φ(x) and φ(e). We denote by Aut(G) the group of automorphisms of G. Suppose
Γ ⊂ Aut(G) is a closed subgroup of G, where we use the weak topology generated by
the action of Aut(G) on G. We say Γ is transitive, if for any pair of vertices x, y ∈ V ,
there is an element γ ∈ Γ such that γ(x) = y. Denote by x ∼ y when x, y are neighbors
in G. (Recall that for two functions f, g : N → (0,∞), we also write f(n) ∼ g(n) if
limn→∞

f(n)
g(n) = 1. The meaning of the symbol ∼ can be easily determined from the

context.)

2.1 Amenability of graphs and groups

Here we define of the amenability of graphs and groups.

For a locally finite, connected graph G = (V,E) and K ⊂ V , let ∂EK denote the edge
boundary of K, namely, the set of edges connecting K to its complement.

Definition 2.1 (Amenability of graphs). For a locally finite, connected, infinite graph
G = (V,E), let ΦE be the edge-expansion constant given by

ΦE = ΦE(G) := inf
{ |∂EK|
|K|

; ∅ 6= K ⊂ V is finite
}
.

We say the graph G is amenable if ΦE(G) = 0.

A well-known result of Kesten states that for a locally finite, connected graph G, G is
amenable if and only if its spectral radius ρ = 1; see [25, Theorem 6.7] for a quantitative
version.

Definition 2.2 (Amenability of groups). Suppose Γ is locally compact Hausdorff group
and L∞(Γ) be the Banach space of measurable essentially bounded real-valued functions
on Γ with respect to left Haar measure. We say that Γ is amenable if there is an invariant
mean on L∞(Γ).

Here a linear functional on L∞(Γ) is called a mean if it maps the constant function 1

to 1 and nonnegative functions to nonnegative numbers. Also a mean µ is called invariant
if µ(Lγf) = µ(f) for all f ∈ L∞(Γ), γ ∈ Γ, where Lγf(x) := f(γx),∀x ∈ Γ.

The following theorem for transitive graphs is due to [31]; and Salvatori generalized
it to the quasi-transitive cases.

Theorem 2.3 ([31], [30]). Let G be a graph and Γ be a closed quasi-transitive subgroup
of Aut(G). Then G is amenable iff Γ is amenable and unimodular.

So in particular if a graph G has a closed, transitive and nonunimodular subgroup of
automorphisms, then G is nonamenable.

For groups of automorphisms of graphs, Benjamini et al [4] gave the following
interpretation

Lemma 2.4 (Lemma 3.3 of [4]). Suppose Γ is a closed subgroup of Aut(G) for the graph
G = (V,E). Then Γ is amenable iff G has a Γ-invariant mean. Here, a mean µ is Γ-
invariant on l∞(V ) if µ(f) = µ(Lγf) for every γ ∈ Γ, f ∈ l∞(V ), where Lγf(x) = f(γx)

for x ∈ V .

EJP 27 (2022), paper 136.
Page 4/27

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP859
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Return probabilities on nonunimodular transitive graphs

2.2 Preliminaries on nonunimodular transitive graphs

Suppose G is a graph and Γ is a closed subgroup of Aut(G). There is a left Haar
measure |·| on Γ which is unique up to a multiplicative constant. We say Γ is unimodular if
the left Haar measure is also a right Haar measure; otherwise we say Γ is nonunimodular.

For a vertex x, denote by Γx = {γ ∈ Γ: γ(x) = x} the stabilizer of x in Γ. Let
m(x) = |Γx| be the left Haar measure of the stabilizer Γx.

Lemma 2.5 (Lemma 1.29 of [37]). Suppose Γ ⊂ Aut(G) is a closed, transitive subgroup.
For any x, y ∈ V , let Γxy denote the orbit of y under Γx and |Γxy| denote the size of the
orbit. Then

m(y)

m(x)
=
|Γyx|
|Γxy|

∀x, y ∈ V. (2.1)

Proposition 2.6 ([33]). Suppose Γ ⊂ Aut(G) is a closed, transitive subgroup. Then Γ is
unimodular if and only if

|Γyx| = |Γxy| ∀x, y ∈ V.

Definition 2.7. Suppose Γ ⊂ Aut(G) is a closed subgroup of automorphisms of the
graph G = (V,E). Define the modular function ∆ : V × V → (0,∞) by

∆(x, y) =
|Γyx|
|Γxy|

.

The following lemma contains the first two items in [23, Lemma 2.3] that we shall
need.

Lemma 2.8. The modular function ∆ has the following properties.

1. ∆ is Γ-diagonally invariant, namely,

∆(x, y) = ∆(γx, γy) ∀x, y ∈ V ∀ γ ∈ Γ.

2. ∆ satisfies the cocycle identity, i.e.,

∆(x, y)∆(y, z) = ∆(x, z) ∀x, y, z ∈ V.

A key technique is the mass-transport principle.

Proposition 2.9 (Theorem 8.7 of [25]). Suppose Γ ⊂ Aut(G) is a closed, transitive
subgroup. If f : V × V → [0,∞] is a Γ-diagonally invariant function, then∑

v∈V
f(x, v) =

∑
v∈V

f(v, x)∆(x, v) (2.2)

The following lemma is a simple application of the mass-transport principle.

Lemma 2.10. Suppose Γ is a closed, nonunimodular, transitive subgroup of Aut(G).
Write B :=

{m(y)
m(x) : y ∼ x

}
for the set of all possible values of the modular function on

two neighboring vertices. Write B+ := {q ∈ B : q > 1} = {q1, · · · , qk} and B− := {q ∈
B : q < 1}. For q ∈ B write tq := |{y : y ∼ x, m(y)

m(x) = q}| for the number of neighbors of x

such that the modular function ∆(x, y) takes the value q. Then

(i) B− = {q−1 : q ∈ B+} and

(ii) tq−1 = qtq for all q ∈ B.

Proof. For q ∈ B, define f : V × V → (0,∞) by

f(x, y) := 1{y∼x,m(y)
m(x)

=q}.
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Obviously f is Γ-diagonally invariant.
By the mass-transport principle (Proposition 2.9),∑

y∈V
f(x, y) =

∑
y∈V

f(y, x)∆(x, y),

i.e.,
tq = tq−1q−1. (2.3)

In particular, one has tq > 0 iff tq−1 > 0. Hence B− = {q−1 : q ∈ B+}. Moreover, (2.3)
gives the conclusion (ii).

2.3 A ρ-harmonic function

Suppose G = (V,E) is a transitive, locally finite, infinite graph with spectral radius ρ.
Let P denote the transition operator associated with simple random walk (Xi)i≥0 on G,
i.e.,

(Pf)(x) = Ex[f(X1)] =
∑
y∈V

p(x, y)f(y),

where p(x, y) = Px[X1 = y]. We also write p(n)(x, y) = Px[Xn = y] for the n-step
transition probability from x to y. In particular un = p(n)(x, x),∀x. We say a function
f : V → R is ρ-harmonic if Pf = ρf .

If there is a ρ-harmonic positive function h on V , then one can define the Doob
transform ph : V × V → (0,∞) by

ph(x, y) =
p(x, y)h(y)

ρ · h(x)
.

Since h is ρ-harmonic, the function ph defines a transition probability on G and we call
the corresponding Markov chain the ph-walk. Recall that an := un

ρn . For any vertex x of
the transitive graph G, obviously the n-step transition probability of the ph-walk satisfies:

p
(n)
h (x, x) =

p(n)(x, x)h(x)

ρnh(x)
=
un
ρn

= an. (2.4)

Lemma 2.11. Let G be a connected graph with a closed, transitive, amenable and
nonunimodular subgroup Γ of automorphisms. Let h : V → (0,∞) be given by h(x) =√
m(x). Then the function h is ρ-harmonic on G and Γ-ratio invariant in the sense that

h(γy)

h(γx)
=
h(y)

h(x)
∀x, y ∈ V,∀ γ ∈ Γ.

For this lemma we need Theorem 1(b) from [31]. It says that if G is a connected,
transitive graph with spectral radius ρ and degree d, and Γ is a closed subgroup of
Aut(G) which acts transitively on G, then one has that

ρ ≤ 1

d

∑
y : y∼x

√
|Γyx|
|Γxy|

,

with equality holds if and only if Γ is amenable.

Proof of Lemma 2.11. The Γ-ratio invariance of h follows from the Γ-diagonally invari-
ance of the modular function ∆; see Lemma 2.8.

Since Γ is amenable, Theorem 1(b) of [31] then implies the ρ-harmonicity of h:

ρ =
1

d

∑
y : y∼x

√
|Γyx|
|Γxy|

=
1

d

∑
y : y∼x

√
m(y)

m(x)
, (2.5)

where d is the degree of G and the second equality is due to Lemma 2.5.
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Proposition 2.12. Given a positive, Γ-ratio invariant, ρ-harmonic function h on a tran-
sient, transitive graph G, the ph-walk on G is transient, Γ-invariant and reversible.

Proof. Transience follows from [37, Theorem 7.8]:
∑
n≥0 p

(n)
h (x, x)

(2.4)
=
∑
n≥0 an <∞.

Since h is Γ-ratio invariant, ph is Γ-invariant:

ph(γx, γy) = ph(x, y),∀x, y ∈ X, γ ∈ Γ.

Reversibility: let π(x) = h(x)2, then

π(x)ph(x, y) = h(x)2 p(x, y)h(y)

ρ · h(x)
=

1{x∼y}h(y)h(x)

d · ρ
, (2.6)

where d is the degree of G. Hence π(x)ph(x, y) = π(y)ph(y, x).

2.4 Proof of Theorem 1.2

Throughout this subsection, we assume G is a connected graph with a closed, transi-
tive, amenable and nonunimodular subgroup Γ of automorphisms.

We first study the ph-walk associated with the ρ-harmonic function h(x) =
√
m(x)

from Lemma 2.11. This random walk is a special case of the so-called “square-root
biased” random walk in [32, Definition 5.6].

Let (Sn)n≥0 be a ph-walk on G started with o. Let (Yn)n≥0 be given by Yn :=

log ∆(S0, Sn). Then using the cocycle identity for the modular function (Lemma 2.8), we
know that the increment sequence (Zi)i≥1 is a sequence of i.i.d. random variables, where
Zi := Yi − Yi−1 = log ∆(Si−1, Si), i ≥ 1.

Lemma 2.13. The random walk (Yn)n≥0 is a symmetric random walk on R starting from
0 with i.i.d. increments and the increments are bounded and have mean 0.

Proof. From Lemma 2.10, the range of Zi is the finite set {log q : q ∈ B}. In particular,
the increments are bounded.

Notice that

P[Z1 = log q] =
∑

y : y∼x,m(y)
m(x)

=q

ph(x, y) =
∑

y : y∼x,m(y)
m(x)

=q

1

d
·
√
m(y)

ρ
√
m(x)

=
tq ·
√
q

dρ
.

In particular, (Yi)i≥0 is symmetric: for any q ∈ B+,

P[Z1 = log q] =
tq ·
√
q

dρ

(2.3)
=

tq−1 ·
√
q−1

dρ
= P[Z1 = − log q]

Hence E[Z1] = 0.

Definition 2.14. Define Mn := max{Yi : 0 ≤ i ≤ n} and t0 := max{log q : q ∈ B} > 0 and

τr := inf{i ≥ 0: Yi ≥ rt0}.

Lemma 2.15 (Ballot theorem). For r ≥ 1,

P
[
Yj > 0, j = 1, · · · , n− 1, rt0 ≤ Yn < (r + 1)t0

]
� r

n3/2
(2.7)

and

P
[
Yj < t0, j = 1, · · · , n− 1,−(r + 1)t0 < Yn ≤ −rt0

]
� r

n3/2
(2.8)
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For Lemma 2.15 we need Theorem 8 and 9 from [1]. As in [1] we say a random
variable U is non-lattice if there is no real number λ > 0 such that λU is an integer-valued
random variable.

Theorem 2.16 (Theorem 8 in [1]). Suppose U satisfies E[U ] = 0, Var(U) > 0 and
E[U2+α] <∞ for some α > 0, and U is non-lattice. Then for any fixed β > 0, given i.i.d.
random variables U1, U2, . . . distributed as U with associated partial sums Wi =

∑i
j=1 Uj ,

for all k such that 0 ≤ k = O(
√
n),

P
{
k ≤Wn ≤ k + β,Wi > 0 ∀ 0 < i < n

}
= Θ

(
k + 1

n3/2

)
.

Theorem 9 from [1] states a corresponding result for the case of U being lattice.

Proof of Lemma 2.15. The inequality (2.7) comes directly from Theorem 8 and 9 [1].
Actually for the upper bound one can drop the assumption k = O(

√
n) (for instance

see Theorem 1 in the arxiv version [2]. The n1/2 there was a typo, it should be n3/2.)
Similarly by applying Theorem 8 and 9 [1] to the partial sums of −Zi’s, one also has that

P
[
Yj < 0, j = 1, · · · , n− 1,−(r + 1)t0 < Yn ≤ −rt0

]
� r

n3/2
. (2.9)

By Lemma 2.13, the vector
(
Y1, . . . , Yn

)
has the same distribution as

(
Y2−Y1, . . . , Yn−

Y1, Yn+1 − Y1

)
conditioned on Y1. Hence

P
[
Yj < t0, j = 1, · · · , n− 1,−(r + 1)t0 < Yn ≤ −rt0

]
= P

[
Yj+1 − Y1 < t0, j = 1, · · · , n− 1,−(r + 1)t0 < Yn+1 − Y1 ≤ −rt0 | Y1 = −t0

]
=

P
[
Y1 = −t0, Yj+1 < 0, j = 1, · · · , n− 1,−(r + 2)t0 < Yn+1 ≤ −(r + 1)t0

]
P[Y1 = −t0]

� P
[
Yj < 0, j = 1, · · · , n,−(r + 2)t0 < Yn+1 ≤ −(r + 1)t0

] (2.9)
� (r + 1)

n3/2
� r

n3/2
,

where in the last step we use r ≥ 1.

Lemma 2.17. For the first hitting times τr := inf{i ≥ 0: Yi ≥ rt0} one has the following
estimate: for all r ≥ 1,

P[τr = k] � r

k3/2
. (2.10)

Proof. Since the increments (Zi)i≥0 are a sequence of i.i.d. random variables, the vector
(Z1, · · · , Zn) has the same distribution as (Zn, Zn−1, · · · , Z1). Thus (Y1, Y2, · · · , Yn) as the
partial sum of (Z1, · · · , Zn) has the same distribution as (Zn, Zn + Zn−1, · · · , Zn + · · · +
Z1) = (Yn − Yn−1, Yn − Yn−2, · · · , Yn − Y0), written as

(Y1, Y2, · · · , Yn)
D
= (Yn − Yn−1, Yn − Yn−2, · · · , Yn − Y0). (2.11)

Therefore

P[τr = k] = P[Yk ≥ rt0, Yj < rt0, j = 0, 1, · · · , k − 1]

≤ P
[
Yk − Yj > 0, j = 0, · · · , k − 1, Yk − Y0 ∈ [rt0, (r + 1)t0)

]
(2.11)

= P
[
Yj > 0, j = 1, · · · , k − 1, Yk ∈ [rt0, (r + 1)t0)

]
(2.7)
� r

k3/2
.

Lemma 2.18. One has that

P
[
Mn ∈ [rt0, (r + 1)t0), Yn = 0

]
� (r ∨ 1)3/2

n3/2
, 0 ≤ r ≤ n

2
. (2.12)
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Proof. We will prove the conclusion for 1 ≤ r ≤ n/2, the case of r = 0 being similar and
omitted.

Note that on the event {Mn ∈ [rt0, (r + 1)t0), Yn = 0}, r ≤ τr ≤ n− r for 1 ≤ r ≤ n/2.
Using the strong Markov property of (Yn)n≥0, by conditioning on τr, Yτr one has that

P
[
Mn ∈ [rt0, (r + 1)t0), Yn = 0

]
≤

n−r∑
k=r

P[τr = k]P
[
Yj < t0, j = 1, · · · , n− k,−(r + 1)t0 < Yn−k ≤ −rt0

]
. (2.13)

Therefore

P
[
Mn ∈ [rt0, (r + 1)t0), Yn = 0

]
(2.13),(2.8)
≤

n−r∑
k=r

P[τr = k]c
r

(n− k)
3
2

(2.10)
≤ c1

r

n3/2

n/2∑
k=r

P[τr = k] +

n−r∑
k=n/2

c2
r

k3/2
c3

r

(n− k)
3
2

≤ c1
r

n3/2
+ c4

r2

n3/2

n−r∑
k=n/2

1

(n− k)
3
2

≤ c5
r3/2

n3/2
. (2.14)

Proof of Theorem 1.2. Write Lr(o) = {v ∈ V : log ∆(o, v) ∈ [rt0, (r + 1)t0]}. Let x ∈ V

be the first vertex in Lr(o) visited by the ph-walk (Si)0≤i≤n. Consider the set Γxo. By
Lemma 2.5,

|Γxo|
|Γox|

=
m(x)

m(o)
= ∆(o, x) ≥ ert0 .

Hence |Γxo| ≥ |Γox| · ert0 ≥ ert0 . On the event {Mn ∈ [rt0, (r + 1)t0), Yn = 0}, by the
Γ-invariance of the ph-walk, the vertices in the set Γxo are equally likely to be the
endpoints of the ph-walk. Hence

P
[
Sn = o |Mn ∈ [rt0, (r + 1)t0), Yn = 0

]
≤ 1

|Γxo|
≤ e−rt0 .

Therefore for the ph-walk (Sn)n≥0 starting from o, by Lemma 2.18 one has that

P[Sn = o] ≤ P
[
Mn ∈ [0, t0), Yn = 0

]
+

n/2∑
r=1

P
[
Sn = o |Mn ∈ [rt0, (r + 1)t0), Yn = 0

]
× P

[
Mn ∈ [rt0, (r + 1)t0), Yn = 0

]
≤ c 1

n3/2
+

n/2∑
r=1

c5
r3/2

n3/2
e−rt0 � 1

n3/2
.

This establishes p(n)
h (o, o) � n− 3

2 and then by (2.4) we are done.

3 Proof of Theorem 1.5

We begin with some setup and notation for this section.

1. Suppose G = (V,E) is a transitive and Γ is a closed, transitive, nonunimodular
subgroup of automorphisms. Let d be the degree of G. For x, y ∈ V (G), let dist(x, y)

denote the graph distance between x and y in G.
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2. For o ∈ V , let Ln(o) = {(v0, v1, · · · , vn) : v0 = vn = o, vi ∼ vi+1 for i = 0, . . . , n − 1}
be the set of cycles rooted at o with length n in G.

3. Let (Xn)n≥0 be a simple random walk on G. Denote by Po the law of (Xn)n≥0 when
the walk starts from X0 = o. For w ∈ Ln(o), Po[(X0, · · · , Xn) = w] = 1

dn is the
probability of traveling along the particular path w by a simple random walk for
the first n steps.

Definition 3.1. From item 3 in the above, conditioned on Xn = X0 = o, the trajectory
(X0, . . . , Xn) can be sampled from Ln(o) uniformly at random. We denote the law of the
conditional trajectory by Pn,o. Let En,o denote the corresponding expectation.

Lemma 3.2. For a transitive graph G = (V,E) and o, x ∈ V , one has that

Pn,o[x ∈ w] = Pn,x[o ∈ w].

The proof of Lemma 3.2 is a routine application of the reversibility and symmetry of
the random walk together with the transitivity of the graph. Hence the proof is omitted.

For k ∈ Z, define that Lk(x) :=
{
y ∈ V : log ∆(x, y) ∈ [kt0, (k + 1)t0]

}
.

Proposition 3.3. For 0 ≤ k ≤ n one has that

En,x
[
|w ∩ Lk(x)|

]
≤ ne−t0k, (3.1)

where |w ∩ Lk(x)| is the number of vertices in the intersection of w with Lk(x).

Proof. Define a function f : V × V → [0,∞) by

f(x, y) = 1y∈Lk(x) ·Pn,x[y ∈ w] = 1y∈Lk(x) ·En,x
[
1y∈w

]
.

The function f is Γ-diagonally invariant by the Γ-diagonal invariance of the modular
function ∆ (Lemma 2.8) and transitivity of the graph. By the mass-transport principle,
we have

En,x
[
|w ∩ Lk(x)|

]
=

∑
y∈V

1y∈Lk(x)En,x
[
1y∈w

]
=
∑
y∈V

f(x, y)

=
∑
y∈V

f(y, x)∆(x, y) =
∑
y∈V

1x∈Lk(y)Pn,y[x ∈ w] ·∆(x, y) (3.2)

If 1x∈Lk(y) = 1, then log ∆(y, x) ∈ [kt0, (k + 1)t0] and log ∆(x, y) = − log ∆(y, x) ∈
[
−

(k + 1)t0,−kt0
]
. This implies that if 1x∈Lk(y) = 1, then y ∈ L−k−1(x) and ∆(x, y) ≤ e−kt0 .

Therefore
En,x

[
|w ∩ Lk(x)|

]
≤ e−kt0

∑
y∈V

1y∈L−k−1(x) ·Pn,y[x ∈ w] (3.3)

By Lemma 3.2 one has that

En,x
[
|w ∩ Lk(x)|

]
≤ e−kt0

∑
y∈V

1y∈L−k−1(x) ·Pn,x[y ∈ w]. (3.4)

Since w0 = wn = x for all w ∈ Ln(x), one has |w| ≤ n and thus (3.1):

En,x
[
|w ∩ Lk(x)|

] (3.4)
≤ e−kt0En,x

[∣∣w ∩ (L−k−1(x)
)∣∣] ≤ e−kt0En,x[|w|] ≤ ne−t0k.

Lemma 3.4. Suppose G = (V,E) is a transitive graph with spectral radius ρ. There is a
constant c1 = c1(G) > 0 and n1 = n1(G) ≥ 0 such that for all k ≥ 1 and n ≥ 2k + n1,

un−2k ≥ c1unρ−2k (3.5)
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Proof. We first review a classical application of Cauchy–Schwarz inequality from the
proof Lemma 10.1 in [37]. Let (·, ·) denote the standard inner product on l2(V ). Let
f : V → R be a non-negative function with finite support. Let P be the transition
operator associated with simple random walk on G. Then P is a self-adjoint operator on
l2(V ) and (Pnf, Pnf) = (f, P 2nf) is finite for each n. Using Cauchy–Schwarz inequality
one has that

(Pn+1f, Pn+1f)2 = (Pnf, Pn+1f)2 ≤ (Pnf, Pnf)(Pn+2f, Pn+2f).

Hence the sequence (Pn+1f,Pn+1f)
(Pnf,Pnf) is increasing. The limit is then equal to (Pnf, Pnf)1/n.

Hence by taking f = 1x one has that

u2 ≤
u2k+2

u2k
≤ lim
n→∞

u
1/n
2n = ρ2. (3.6)

Now if n is even, then (3.5) actually holds for c1 = 1: for n = 2m, by (3.6) one has
that

un
un−2k

=
u2m

u2m−2k
=

k∏
j=1

u2m−2k+2j

u2m−2k+2(j−1)
≤ ρ2k.

Second, if n is odd, say n = 2m+ 1, then we can assume that there exists a smallest
odd number 2l + 1 > 0 such that u2l+1 > 0; otherwise (3.5) is trivial because both sides
are zero. In particular, u2l+1 =

∑2l+1
j=1 fju2l+1−j = f2l+1 (when j < 2l + 1, if j is odd, then

fj ≤ uj = 0; if j is even, then u2l+1−j = 0).
The inequality (2.10) in Lemma 1 of [5] says that

un = u2m+1 ≤ u2m. (3.7)

Take n1 = 2l + 1. For k ≥ 1 and n− 2k = 2m+ 1− 2k ≥ n1 = 2l + 1, one has that

un−2k = u2m+1−2k ≥ f2l+1u2m−2k−2l = u2l+1u2m−2k−2l

≥ u2l+1u2mρ
−(2k+2l)

(3.7)
≥ u2l+1

ρ2l
u2m+1ρ

−2k =
u2l+1

ρ2l
unρ

−2k, (3.8)

where in the second step we use (3.5) with c1 = 1 for the even case that we already
proved.

Since u2l+1

ρ2l

(3.7)
≤ u2l

ρ2l
≤ 1, taking c1 = u2l+1

ρ2l
and n1 = 2l + 1 we have the desired

conclusion for odd n.

Proof of Theorem 1.5. Write H+
k (x) =

⋃
n≥k Lk(x). By the definition of t0, a path w ∈

Ln(x) intersects with H+
k (x) if and only if |w ∩ Lk(x)| ≥ 1. By Proposition 3.3, for k ≥ 0,

Pn,x[w ∩H+
k (x) 6= ∅] = Pn,x[|w ∩ Lk(x)| ≥ 1] ≤ En,x[|w ∩ Lk(x)|] ≤ ne−kt0 (3.9)

Take C > 0 large such that ne−kt0 ≤ 1
2 for k ≥ k(n) := bC log nc. Hence

Pn,x[w ∩H+
k (x) = ∅] ≥ 1

2
, ∀ k ≥ k(n). (3.10)

Note that there is a path γ of length k = k(n) from x to some y such that dist(y, x) =

k + 1 and log ∆(x, y) = −(k + 1)t0.
Suppose we first travel from x to y along γ in the first k + 1 steps, and then do an

excursion from y to y such that the cycle has length n− 2(k + 1) and doesn’t intersect
with Lk(y), then travel from y to x along the reversal of γ. Then we come back to x for
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the first time at time n. Recall that we denote by fn the first return probability for simple
random walk. Since bC log nc ≥ bC log

(
n−bC log nc

)
c, for all n sufficiently large the first

return probability fn satisfies

fn ≥ 1

dk(n)+1
× un−2k(n)−2 ×Pn−2k(n)−2,y[w ∩ Lk(n)(y) = ∅]× 1

dk(n)+1

(3.10)
≥ 1

d2k(n)+2
× un−2k(n)−2 ×

1

2
Lem.3.4
≥ c1

2(dρ)2k(n)+2
un �

1

nc
un.

It is easy to see that ρ ≥ 1
d ; but the equality can’t hold in our case. In fact Theorem

6.10 in [25] says that for a connected, regular, infinite graph with spectral radius ρ and
degree d, one always has that ρ · d ≥ 2

√
d− 1 > 1.

4 Extensions to quasi-transitive graphs

Suppose Γ ⊂ Aut(G) is a closed subgroup of automorphisms of a locally finite,
connected graph G = (V,E). For v ∈ V , let Γv = {γv : γ ∈ Γ} denote the orbit of v under
Γ. Let G/Γ = {Γv : v ∈ V } be the set of orbits for the action of Γ on G. We say Γ is
quasi-transitive if G/Γ is a finite set. In this section we extend Theorem 1.2 and 1.5 to
the quasi-transitive case.

4.1 Extension of Theorem 1.2

Recall that for a graph G = (V,E) with spectral radius ρ and a vertex x ∈ V , we
denote by un(x) = P[Xn = x | X0 = x] the n-step return probability for simple random
walk (Xi)i≥0 on G and an(x) = un(x)

ρn .

Theorem 4.1. Suppose G = (V,E) is a locally finite, connected graph with a closed,
quasi-transitive, amenable and nonunimodular subgroup of automorphisms. Then
an(x) � n− 3

2 , ∀x ∈ V .

The idea for the quasi-transitive case is the same as the transitive case: find a
ρ-harmonic function h and then consider the associated ph-walk.

4.1.1 The ρ-harmonic function h in the quasi-transitive case

We first set up some notation. Throughout this subsection we assume G = (V,E) is a
connected, infinite graph with Γ being a closed, amenable, quasi-transitive subgroup
of Aut(G). Let O = {o1, . . . , oL} be a complete set of representatives in V for the orbits
of Γ. Let I = {1, . . . , L} be the index set. For x ∈ V , let dx be the degree of x. We
also write dx = di when x ∈ Γoi since the degrees of the vertices in the same orbit are
the same. Recall that m(x) = |Γx| is the left-Haar measure of the stabilizer Γx. Recall
that in the case Γ acts transitively on G we use Theorem 1(b) from [31] to establish the
ρ-harmonicity of the associated function h. Here we need a natural extension of Theorem
1(b) from [31], namely Theorem 1(b) from [28].

Let A = (a(i, j))i,j∈I be the matrix as defined in [28], namely,

a(i, j) =
∑
y∈Γoj

1{y∼x}

dx

√
dx
dy

m(y)

m(x)
=

∑
y∈Γoj ,y∼x

1√
dxdy

√
m(y)

m(x)
, x ∈ Γoi, i, j ∈ I.

Note that the Γ-invariance of ∆(x, y) = m(y)
m(x) (Lemma 2.8) yields that a(i, j) does not

depend on the choice of x ∈ Γoi. Obviously the matrix A is irreducible and nonnegative.
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Hence by Perron-Frobenius theorem there is a positive vector ~v = (v1, . . . , vL)T associ-
ated to the largest eigenvalue ρ(A) (we normalize ~v to have l2-norm 1). Theorem 1(b)
of [28] says that for amenable Γ one has that ρ = λ(A), where ρ is the spectral radius
of G and λ(A) is the largest eigenvalue of the finite matrix A. Hence for all i ∈ I the
eigenvalue equation becomes

ρvi =

L∑
j=1

a(i, j)vj . (4.1)

Also Lemma 3(1) of [28] says that the matrix A is symmetric, i.e.,

a(i, j) = a(j, i). (4.2)

Definition 4.2. Define v : V → (0,∞) by setting v(x) = vi for x ∈ Γoi. Let h : V → (0,∞)

be given by h(x) = v(x)
√

m(x)
dx

.

We will see that this function h is ρ-harmonic and hence as before one can define the
associated ph-walk on G via the transition probabilities:

ph(x, y) =
p(x, y)h(y)

ρh(x)
=

1y∼x
dx
· h(y)

ρh(x)
.

Proposition 4.3. The function h defined in Definition 4.2 is ρ-harmonic. The associated
ph-walk on G is reversible with respect to v2m.

Proof. We first verify that h is ρ-harmonic. For an arbitrary vertex x ∈ V , say x ∈ Γoi,
we have that

1

dx

∑
y∼x

h(y) =

L∑
j=1

∑
y∈Γoj ,y∼x

1

dx
h(y) =

L∑
j=1

∑
y∈Γoj ,y∼x

1

dx
vj

√
m(y)

dy

=

L∑
j=1

√
m(x)√
dx

vj
∑

y∈Γoj ,y∼x

1√
dxdy

√
m(y)

m(x)

=

√
m(x)√
dx

L∑
j=1

vja(i, j)
(4.1)
=

√
m(x)√
dx

· ρvi = ρ · h(x).

For reversibility of the ph-walk, it is also easy to verify that v(x)2m(x)ph(x, y) =

v(y)2m(y)ph(y, x) and details are skipped.

4.1.2 The increments have mean zero when starting from the stationary distri-
bution

Let (Sn)n≥0 be a ph-walk on G and let Yn = log ∆(S0, Sn) be the associated process on

R. Here we recall the modular function ∆(x, y) =
|Γyx|
|Γxy| given in Definition 2.7. Using

Lemma 2.5 one has that ∆(x, y) = m(y)
m(x) . Hence the cocycle identity ∆(x, y)∆(y, z) =

∆(x, z) still holds in the quasi-transitive case. By the cocycle identity the increment
at time i of the process (Yn)n≥0 is log ∆(Si, Si+1). Note that the distribution of this
increment log ∆(Si, Si+1) depends (and only depends) on the orbit of Si. So in order to
have mean-zero increments in the long run one must have mean-zero increments when
starting from the stationary distribution and this is indeed the case (Prop. 4.5).

Definition 4.4. Recall that the vector ~v = (v1, . . . , vL)T with l2-norm 1 is the unique
eigenvector associated with the largest eigenvalue ρ of the matrix A. Define π = (πi)i∈I
by πi = v2

i , i ∈ I.
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Proposition 4.5. The measure π = (πi)i∈I is the stationary probability measure for the
induced chain on I of the ph-walk. Let (Sn)n≥0 be a ph-walk on G with starting point S0

sampled from the measure π. Then

E
[

log ∆(S0, S1)
]

= 0 (4.3)

The following lemma is an analogue of Lemma 2.10.

Lemma 4.6. Write Bi,j =
{m(y)
m(x) : x ∈ Γoi, y ∈ Γoj , x ∼ y

}
. For q ∈ Bi,j , let Ni,j,q =

{y : y ∈ Γoj , y ∼ oi, m(y)
m(oi)

= q}. Then q ∈ Bi,j if and only if q−1 ∈ Bj,i and

#Ni,j,q =
1

q
#Nj,i,q−1 . (4.4)

Proof. Let f : V × V → [0,∞) be the indicator function given by

f(x, y) = 1{x∈Γoi, y∈Γoj , x∼y, m(y)
m(x)

=q}.

Obviously f is Γ-diagonally invariant. Hence by the mass-transport principle (Prop. 2.9)
one has (4.4):

#Ni,j,q =
∑
z∈Γoj

f(oi, z) =
∑
y∈Γoi

f(y, oj)
m(y)

m(oj)
=

1

q
#Nj,i,q−1 .

Proof of Proposition 4.5. The ph-walk (Sn)n≥0 induces a Markov chain on the index set
I with transition probability P̃h given by: ∀ i, j ∈ I,

P̃h(i, j) = P[S1 ∈ Γoj | S0 ∈ Γoi] =
∑

y∈Γoj ,y∼oi

ph(oi, y)

=
∑

y∈Γoj ,y∼oi

h(y)

di · ρ · h(oi)
=

∑
y∈Γoj ,y∼oi

1

ρ
· vj
vi
· 1√

didj
·

√
m(y)

m(oi)

=
∑
q∈Bi,j

1

ρ
· vj
vi
· 1√

didj
· √q ·#Ni,j,q.

Now we verify the stationarity of π for P̃h:

L∑
i=1

πiP̃h(i, j) =

L∑
i=1

v2
i

∑
q∈Bi,j

1

ρ
· vj
vi
· 1√

didj
· √q ·#Ni,j,q

= vj

L∑
i=1

vi
∑

q−1∈Bj,i

1

ρ
· 1√

didj
· √q ·#Ni,j,q

(4.4)
= vj

L∑
i=1

vi
∑

q−1∈Bj,i

1

ρ
· 1√

didj
·
√
q−1 ·#Nj,i,q−1

= vj

L∑
i=1

via(j, i) · 1

ρ

(4.2)
= vj

L∑
i=1

via(i, j) · 1

ρ

(4.1)
= v2

j = πj .

EJP 27 (2022), paper 136.
Page 14/27

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP859
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Return probabilities on nonunimodular transitive graphs

Finally we verify (4.3):

E
[

log ∆(S0, S1)
]

=

L∑
i=1

πi

L∑
j=1

∑
q∈Bi,j

∑
y∈Ni,j,q

ph(oi, y) log q

=

L∑
i=1

v2
i

L∑
j=1

∑
q∈Bi,j

∑
y∈Ni,j,q

(1

ρ
· vj
vi
· 1√

didj
· √q

)
· log q

=

L∑
i=1

v2
i

L∑
j=1

∑
q∈Bi,j

#Ni,j,q
ρ

· vj
vi
· 1√

didj
· √q log q

=
1

ρ

L∑
i=1

L∑
j=1

∑
q∈Bi,j

(√
q#Ni,j,q

)
· (vivj) ·

1√
didj

· log q.

By (4.4), the term ti,j,q =
(√
q#Ni,j,q

)
· (vivj) · 1√

didj
· log q exactly cancels the term tj,i,q−1

and one obtains (4.3).

4.1.3 Proof of Theorem 4.1

Similar to the transitive case, to prove Theorem 4.1 it suffices to show the following
analogue of Lemma 2.18.

Lemma 4.7. Let (Sn)n≥0 be a ph-walk on G starting from a random point in O sampled
according to the measure π from Definition 4.4. As the transitive case, let Mn =

max{Yi : 0 ≤ i ≤ n} and t0 = max{log ∆(x, y) : x ∼ y} > 0. Let Yk = log ∆(S0, Sk), k ≥ 0.
Then

P
[
Mn ∈ [rt0, (r + 1)t0), Yn = 0

]
� (r ∨ 1)3/2

n3/2
, 0 ≤ r ≤ n

2
. (4.5)

The proof of Lemma 4.7 follows a similar strategy for Lemma 2.18. Hence we put the
details of the proof in the appendix for completeness.

4.2 Extension of Theorem 1.5

Theorem 4.8. Suppose G = (V,E) is a locally finite, connected graph with spectral
radius ρ and a closed, quasi-transitive and nonunimodular subgroup of automorphisms.
Write fn(x) = Px[Xn = x,Xi 6= x,∀ 1 ≤ i ≤ n− 1] for the first return probability, where
(Xn)n≥0 is a simple random walk on G starting from X0 = x. Then there exists c > 0

such that for all x ∈ V, n > 0,

fn(x) � 1

nc
un(x).

Proof. For the quasi-transitive case, it is easy to see that there are constants C > 1 and
n0 > 0 such that for any n ≥ n0,

1

C
un(y) ≤ un(x) ≤ Cun(y), ∀x, y ∈ V.

Lemma 3.2 obviously holds for o, x in the same orbit and then similar to Proposition 3.3
one has that

En,o
[
|w ∩ Lk(o) ∩ Γo|

]
≤ ne−t0k, (4.6)

By quasi-transitivity and connectedness of G, there is a constant D > 0 such that for
any o, x ∈ V , there is a point x′ = x(o) ∈ Γo such that dist(x, x′) ≤ D. Note that

Po[Xn = o,Xi = x for some i < n]

� Po[Xn+2dist(x,x′) = o,Xj = x′ for some j < n+ 2dist(x, x′)].
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Since by Lemma 3.4 un(o) � un+2t(o) for t ≤ D, one has that

Pn,o[x ∈ w] � Pn+2dist(x,x′),o[x
′ ∈ w].

Summing this over x ∈ Lk(o) (the corresponding x′ ∈ Lk+t′(o) for some t′ satisfies
|t′| ≤ D, and each x′ can added up to |B(o,D)| times) and using (4.6) one has that

En,o
[
|w ∩ Lk(o)|

]
�
(
n+ 2D

)
e−t0k � ne−t0k.

The rest is the same as the transitive case.

5 Some nonunimodular examples for Conjecture 1.1

We have seen that Conjecture 1.1 holds for all transient, transitive, amenable graphs.
In this section we give some nonunimodular examples for which Theorem 1.2 applies.
Among the following examples, the result an � n−3/2 for grandparent graphs in Exam-
ple 5.3 and an � n−3/2 for certain Cartesian products as in Example 5.6 seem to be
new.

We first recall a simple criterion for the amenability of a subgroup of automorphisms
of certain graphs. If G has infinitely many ends, the following proposition from [31] gives
a way to determine amenability of a closed transitive subgroup of automorphisms.

Proposition 5.1 (Proposition 2 of [31]). Let Γ be a closed, transitive subgroup of Aut(G)

for the graph G and G has infinitely many ends. Then Γ is amenable iff it fixes a unique
end.

Example 5.2 (Toy model). Consider a regular tree Tb+1 with degree b + 1 ≥ 3. Let ξ
be an end of the tree and Γξ be the subgroup of automorphisms that fixes the end ξ.
Then Γξ is a closed, amenable, nonunimodular, transitive subgroup of Aut(Tb+1). The
transitivity can be easily verified. The amenability follows from Proposition 5.1. The
nonunimodularity follows from a simple application of Proposition 2.6.

Typical examples on nonunimodular transitive graphs are grandparent graphs and
Diestel-Leader graphs which we now briefly recall.

Example 5.3 (Grandparent graph). Let ξ be a fixed end of a regular tree Tb+1 (b ≥ 2)
as in the toy model. For a vertex v ∈ Tb+1, there is a unique ray ξv := {v0, v1, v2, . . .}
representing ξ started at v0 = v. Call v2 in the ray ξv the (ξ-)grandparent of v. Add
edges between all vertices and their grandparents and the graph G obtained is called a
grandparent graph. It is easy to see that Aut(G) = Γξ, the subgroup of Aut(Tb+1) that
fixes the end ξ. Hence Theorem 1.2 applies to grandparent graphs.

In fact from the proof of Theorem 1.2 and the underlying tree-like structure of G, one
has that an � n−3/2. (The lower bound can be showed by considering the probability
that the ph-walk started from x returns to the level L0(x) at time n without using any
vertex of in Lk(x), k > 0; the tree-like structure then force the returning point at time n
in the level L0(x) must be x itself.)

Remark 5.4. For the toy model in Example 5.2 or the grandparent graph in Example 5.3,
using Lemma 2.18 and the fact that a2n � n−3/2 for these two cases one actually
improves (3.9) to

Pn,x[w ∩H+
k (x) 6= ∅] � (k ∨ 1)3/2e−kt0 .

Hence there is a large constant k (independent of n) such that

Pn,x[w ∩H+
k (x) 6= ∅] ≤ 1

2
. (5.1)

Then one can adapt the proof of Theorem 1.5 to show that fn � un (a path with length of
constant order instead of log n would suffice). So a natural question is whether such an
inequality (5.1) holds for general nonunimodular, transitive graphs.
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Example 5.5 (Diestel-Leader graph). Woess asked whether there is a vertex-transitive
graph that is not roughly isometric to any Cayley graph. Diestel and Leader [14]
construct a family of graphs DL(q, r) and conjectured these graphs are not roughly
isometric to any Cayley graph when q 6= r. Later it was proved this is indeed the case
[17]. Now these graphs are called Diestel-Leader graphs.

Let G1 = Tq+1, G2 = Tr+1 be two regular trees with degree q+1, r+1 ≥ 3 respectively.
Let ξi be an end of Gi, i = 1, 2. Let Γi be the subgroup of Aut(Gi) that fixes the end ξi.
Fix two reference points o1, o2 ∈ G1, G2 respectively.

For i = 1, 2, define the horocyclic function hi on V (Gi) with respect to the end ξi and
reference point oi as follows:

hi(xi) =
log ∆(oi, xi)

log di
, xi ∈ V (Gi),

where d1 = q, d2 = r and ∆(x, y) is the modular function for the subgroup Γi. (This
definition differs by a negative sign as the one defined in some references like [6].)

The Diestel-Leader graph G = DL(q, r) consists of the couples x1x2 of V (G1)× V (G2)

such that h1(x1) +h2(x2) = 0, and x1x2 is a neighbor of y1y2 if and only if xi is a neighbor
of yi in Gi for i = 1, 2. A schematic drawing DL(2, 2) can be found in Figure 2 on
page 180 of [3]. When q 6= r, the Diestel-Leader graph G = DL(q, r) is a transitive
nonunimodular graph.

The automorphism group Aut(G) of G = DL(q, r) for q 6= r can be described as

Aut(G) = {γ1γ2 ∈ Γ1 × Γ2 : h1(γ1o1) + h2(γ2o2) = 0};

see [6, Proposition 3.3] for a proof. It is amenable since it is a closed subgroup of the
amenable group Γ1 × Γ2. Hence Theorem 1.2 applies to Diestel-Leader graphs. Actually
for Diestel-Leader graphs G = DL(q, r), q 6= r, it is known that ([3, Theorem 2])

u2n ∼ c1ρ2n exp
(
− c2n1/3

)
n−5/6,

where ρ =
2
√
qr

q+r is the spectral radius, and c1, c2 are explicit positive constants.

Suppose G1, G2 are two transitive graphs with spectral radii ρ1, ρ2 and degrees d1, d2

respectively. It is well-known that the Cartesian product G1 × G2 has spectral radius
ρ = ρ(G1×G2) = d1ρ1+d2ρ2

d1+d2
(for instance see the proof of Proposition 18.1 in [37].) In fact

the proof of Proposition 18.1 in [37] also implies that if the return probabilities satisfy
un(Gi) ≤ Ciρni · nλi for some constants Ci > 0, i = 1, 2, then the return probabilities on
the Cartesian product satisfy un(G1 ×G2) ≤ Cρn · nλ1+λ2 for some constant C > 0.

Example 5.6 (Cartesian product). Let G1 be a connected, transitive graph. Let G2 be
a connected graph with a closed, amenable, nonunimodular, transitive subgroup Γ of
automorphisms. It is well known that the return probability on G1 satisfies un(G1) ≤
ρ(G1)n · nλ1 with λ1 = 0 (for instance see (6.13) in [25, Proposition 6.6]). Theorem 1.2
implies that the return probability on G2 satisfies un(G2) ≤ Cρ(G2)nn−3/2. Hence the
above implication of the proof of Proposition 18.1 in [37] yields that Conjecture 1.1 also
holds for the Cartesian product G1 ×G2.

Example 5.7 (A free product). For G = Cα ∗ Cβ (β, α ≥ 2,max{α, β} > 2), the free
product of two complete graphs of α, β vertices respectively, one can show that G
has no closed, amenable and transitive subgroup. Actually if there is such a group Γ,
then by Proposition 5.1 it must fix an end. But then it is easy to see that it can’t be
transitive. However this graph G still has a closed, amenable, nonunimodular, quasi-
transitive subgroup; see Example 4 on page 362 of [29]. Hence the quasi-transitive
case Theorem 4.1 applies. (Actually for such free products, an ∼ cn−3/2; see [34].)
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6 Discussions on Conjecture 1.4

6.1 A sufficient condition for Conjecture 1.4

Recall that for a connected transitive graph G with spectral radius ρ, we denote by
un the n-step return probability for a simple random walk on G and an := un

ρn .

Proposition 6.1. Suppose G is a locally finite, connected, transitive, transient graph. If
for any ε > 0, there exists N = N(ε) > 0 such that for all n ≥ 2N one has that

n−N∑
i=N

uiun−i ≤ εun (6.1)

or equivalently
n−N∑
i=N

aian−i ≤ εan, (6.2)

then Conjecture 1.4 holds for G.

The inequality (6.1) can be interpreted as conditioned on returning to the starting
point at time n, the expected number of returns of the simple random walk to the
starting point between time N and n−N is at most ε. Since an = un

ρn , the equivalence
between (6.1) and (6.2) is obvious.

Before proving Proposition 6.1, we first give some examples for Conjecture 1.4 using
this proposition.

6.2 Examples for Conjecture 1.4

Lemma 6.2. The condition (6.1) holds if (un)N ≥ 0 has one of the following asymptotic
behavior:

(i) u2n � ρ2n · n−α for some constants α > 1 and ρ ∈ (0, 1],

(ii) u2n � ρ2n · n−α · e−cnβ for some constants ρ ∈ (0, 1], α real, c > 0 and 0 < β < 1;

(iii) u2n � ρ2n · e−n/(logn) for some constant ρ ∈ (0, 1].

Lemma 6.2 is inspired by Remark 1 in [13]. If all odd terms u2k+1 = 0, then one can
verify condition (6.1) easily in each of the three cases. If some odd terms u2k+1 > 0, then
by Lemma 6.9 the full sequence will satisfy the same asymptotic behavior instead of
merely the even terms and hence condition (6.1) can be verified similar to the case of all
odd terms being zero. We thus omit the details of the verification of Lemma 6.2.

The reason for making Conjecture 1.4 is that there are a lot of examples support the
conjecture.

Example 6.3 (graphs with polynomial growth rate). If G is a transient, transitive graph
with polynomial growth rate, then as discussed in Section 1, there exists an integer
k ≥ 3 such that the volume of a ball with radius n in G has order nk. Also the return
probability satisfies u2n � n−

k
2 ; see Corollary 14.5, Theorem 14.12 and 14.19 in [37].

Hence by Lemma 6.2 and Proposition 6.1 such a graph G satisfies Conjecture 1.4. This
was already noticed in [15].

Conjecture 1.4 is open for general amenable Cayley graphs. For example we don’t
even know whether it holds for all Cayley graphs of certain lamplight groups; see the
discussion after Example 6.6.

Example 6.4 (hyperbolic graphs). If G is a hyperbolic graph, then one has that a2n �
n−3/2 [19]. Hence (6.2) is satisfied and then Conjecture 1.4 holds. This was already
noticed by Gouëzel in [19, Proposition 4.1].
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Example 6.5 (free products). There are quite a lot Cayley graphs of free products of
groups for which one knows well about the asymptotic behavior of the return probabili-
ties. We just mention a few of them here.

(i) For the free products of two complete graphs as in Example 5.7, one has that
a2n � n−3/2 by [34].

(ii) It was known that [11, 35] that the n-step return probabilities behaves like u2n ∼
cρ2nn−3/2 under quite general conditions for random walks on a free product of
discrete groups. For readers’ convenience, quite a few of such conditions can be
found in Corollary 6.12 of [36].

(iii) For the free products Zd ∗ Zd (natural generators, i.e., integer vectors with Eu-
clidean length one), one has that

a2n �
{
n−3/2 if d ∈ {1, 2, 3, 4}
n−d/2 if d ≥ 5.

This was due to Cartwright [10]. Actually a general result holds for Zd ∗ . . . ∗ Zd
(s ≥ 2 times); see [10] or [36, Theorem 6.13].

Given the explicit asymptotic behavior of return probabilities, it is easy to verify
condition (6.1) holds for all these examples and hence Conjecture 1.4 holds for them.

It seems to be new that the Examples 6.6 and 6.7 below satisfy Conjecture 1.4.
(Proposition 4.1 of [19] also applies to graphs listed in Example 6.5.)

Example 6.6 (some Cayley graphs of lamplighter groups). Consider a lamplighter group
H o Z, where H is a finite group. Revelle [27, Theorem 1] showed that the return
probability of simple random walk on the Cayley graph G of the lamplighter group H oZ
with a suitable chosen generating set satisfies

u2n ∼ c2n1/6 exp
[
− c1n1/3

]
.

Hence by Lemma 6.2 and Proposition 6.1 such a graph G also satisfies Conjecture 1.4.

Unfortunately we don’t even know whether Conjecture 1.4 hold for all Cayley graphs
of such lamplighter group H oZ. Theorem 1.1 of [26] says that if Γ is a finitely generated
group and G1, G2 are two Cayley graphs generated by symmetric finite generating sets
of Γ, then the return probabilities on G1 and G2 satisfy

un(G1) ' un(G2)

in the sense that there exists a constant C ≥ 1 so that

un(G1) ≤ C · un/C(G2) and un(G2) ≤ C · un/C(G1).

Applying this to Revelle’s lamplighter group examples, one has that for any Cayley graph
of H oZ the return probabilities satisfy

c4n
1/6 exp

[
− C3n

1/3
]
≤ u2n ≤ C3n

1/6 exp
[
− c4n1/3

]
for some constants C3, c4 > 0. However we are not able to verify (6.1) with only this
inequality.

Example 6.7 (some nonunimodular graphs). As noted in Example 5.3, for grandparent
graph one has that an � n−3/2. Hence (6.2) is satisfied and then Conjecture 1.4 holds by
Proposition 6.1.

As noted in Example 5.5, the explicit asymptotic behavior of return probabilities is
known for Diestel–Leader graphs [3, Theorem 2]. By Lemma 6.2 and Proposition 6.1 one
has that Conjecture 1.4 hold for all Diestel–Leader graphs.

In light of all these examples it is likely to be true that the condition (6.1) holds for
all transient, transitive graphs.
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6.3 Proof of Proposition 6.1

A key ingredient for Proposition 6.1 is the following theorem from [13].

Theorem 6.8 (Theorem 1 of [13]). Let µ = {µn} be a probability measure on nonnegative
integers, where µn = µ(n) is the mass of n. Let r ≥ 1 be the radius of the generating
function

µ̂(z) =

∞∑
n=0

µnz
n.

Assume that

(i)

lim
n→∞

µ∗2n
µn

:= lim
n→∞

∑n
i=0 µiµn−i
µn

= C exists (<∞);

(ii)

lim
n→∞

µn+1

µn
=

1

r
(> 0);

(iii) µ̂ converges at its radius of convergence:

µ̂(r) = D <∞;

(iv) φ(w) is a function analytic in a region containing the range of µ̂(z) for |z| ≤ r.

Then there exists a measure φ(µ) = {φ(µ)n, n ≥ 0} on nonnegative integers with its

generating function φ̂(µ)(z) :=
∑∞
n=0 φ(µ)nz

n satisfies

φ̂(µ)(z) = φ(µ̂(z)), for |z| ≤ r,

and for which

lim
n→∞

φ(µ)n
µn

= φ′(D). (6.3)

Also we must have C = 2D in assumption (i).

The following lemma is a special case (x = y) of [36, Theorem 5.2(b)].

Lemma 6.9. Suppose G is a locally finite, connected transitive graph with spectral
radius ρ and period d := gcd{n ≥ 1, un > 0} ∈ {1, 2}. Then

lim
n→∞,d|n

un+d

un
= ρd.

Recall that U(z) =
∑∞
n=0 unz

n and F (z) =
∑∞
n=0 fnz

n are the generating functions
associated with the return probabilities (un)n≥0 and first return probabilities (fn)n≥0

respectively. For recurrent, transitive graphs, the spectral radius ρ satisfies ρ = 1 and
U(1) =∞, F (1) = 1. For transient, transitive graphs one has the following simple result.

Lemma 6.10. Suppose G is a transient, transitive graph with spectral radius ρ. Then

(a) U(ρ−1) <∞ and F (ρ−1) < 1 and

(b) for all complex number z with |z| ≤ ρ−1, one has that

U(z) =
1

1− F (z)
. (6.4)

The inequality U(ρ−1) < ∞ in Part (a) of Lemma 6.10 is just the fact
∑∞
n=0 an < ∞

which we already mentioned in Section 1 (Theorem 7.8 of [37]). Part (b) of Lemma 6.10
is basically contained in Lemma 1.13 of [37] and then one can deduce F (ρ−1) < 1 using
U(ρ−1) <∞ and (6.4). The proof is thus omitted.
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Proof of Proposition 6.1. Recall that d := gcd{n ≥ 1: un > 0} ∈ {1, 2} denotes the period
of simple random walk. We only deal with the case of d = 1; the case d = 2 is similar.

We shall use Theorem 6.8. In light of the relation (6.4) in Lemma 6.10 it is natural to
take the function φ : w 7→ 1 − 1

U(1)w and probability measure µ = {µn, n ≥ 0} given by
µn = un

U(1) , n ≥ 0. Then

µ̂(z) =

∞∑
n=0

µnz
n =

U(z)

U(1)
has radius of convergence r = ρ−1.

The assumption (i) in Theorem 6.8 now becomes

lim
n→∞

µ∗2n
µn

= lim
n→∞

∑n
j=0 ujun−j

U(1)un
= C. (6.5)

Assumption (ii) now becomes (and is verified by Lemma 6.9):

lim
n→∞

µn+1

µn
= lim
n→∞

un+1

un
=

1

r
= ρ. (6.6)

Assumption (iii) is also easy to verify in our set up:

µ̂(r) =
U(ρ−1)

U(1)
= D <∞. (6.7)

As for assumption (iv), by Lemma 6.10 U(z) = 1
1−F (z) holds for all |z| ≤ 1

ρ . In

particular |U(z)| ≥ 1
1−|F (ρ−1)| > 0 for |z| ≤ ρ−1. Hence the function φ : w 7→ 1− 1

U(1)w is

analytic in a region containing the range of µ̂(z) = U(z)
U(1) for |z| ≤ r = ρ−1.

The choice of φ yields that

φ̂(µ)(z) = φ(µ̂(z)) = 1− 1

U(1)µ̂(z)
= 1− 1

U(z)
= F (z) =

∞∑
n=1

fnz
n, for |z| ≤ r

and

φ′(D) =
1

U(1)D2

(6.7)
=

U(1)

U(ρ−1)2
.

It is easy to see that if (6.1) holds, then by (6.6) one has that (6.5) holds for C = 2D =

2U(ρ−1)
U(1) .

Hence if (6.1) holds for a graph G, then all the assumptions of Theorem 6.8 hold.
Thus one has that

lim
n→∞

φ(µ)n
µn

(6.3)
= φ′(D) =

U(1)

U(ρ−1)2
.

Since φ(µ)n = fn and µn = un
U(1) one has that Conjecture 1.4 holds for G:

lim
n→∞

fn
un

=
1

U(ρ−1)2
= [1− F (ρ−1)]2.

If the period d = 2, it is easy to see that u2n+1 = 0 for all n. Hence we just take the
probability measure µ = {µn, n ≥ 0} to be given by µn = u2n

U(1) , n ≥ 0. In this case r = ρ−2

and µ̂(z) = U(
√
z)

U(1) for |z| ≤ ρ−2. The rest is similar to the case of d = 1 and omitted.
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6.4 Final remark about Conjecture 1.4

Recall that condition (6.1) roughly says that conditioned on returning to the starting
point at time n, the expectation of returns of the simple random walk between time N
and n−N is small for large N . Proposition 6.1 says that if (6.1) holds, then Conjecture 1.4
holds. We remark that on the other hand if Conjecture 1.4 holds, then Conjecture 6.11
holds. Here Conjecture 6.11 roughly says that conditioned on returning to the starting
point at time n, with high probability most of the returns of the simple random walk
occurred near time 0 or n.

Suppose G = (V,E) is a locally finite, connected, transitive, transient graph with
spectral radius ρ. Fix an arbitrary vertex o ∈ V . Let (Xn)n≥0 be a simple random walk on
G starting from o. Write fn for the first return probability at time n and F (z) =

∑∞
n=1 fnz

n

for the corresponding generating function. Let d denote the period of the simple random
walk. We will consider the returning times to o conditioned on {Xn = X0 = o}. Define
the returning times (si)i≥0, (li)i≥0 as follows (here (li)i≥0 records the returning times in
the reverse order):

• s0 = l0 = 0 and,

• for i ≥ 0,

si+1 = min
{
k : k > si, Xk = o

}
, li+1 = min

{
k : k > li, Xn−k = o

}
.

Let

α = α(n) = max
{
k ≥ 0: sk ≤

n

2

}
, β = β(n) = max

{
k ≥ 0: lk ≤

n

2

}
.

Consider the random variable

Vn =
(
(s1, . . . , sα, 0, 0, . . .), (l1, . . . , lβ , 0, 0, . . .)

)
which takes values in the space NN ×NN.

Conjecture 6.11. For any transient, transitive graph, the distribution of Vn conditioned
on the event {Xn = X0 = o} converges as n→∞, d|n, to the distribution of the random
variable (

(T1, . . . , TL, 0, 0, . . .), (T̂1, . . . , T̂L̂, 0, 0, . . .)
)

where (Tj)j≥1 are the partial sums of an i.i.d. sequence (ξi)i≥1 with distribution given

by P[ξi = k] = fkρ
−k

F (ρ−1) and L is an independent random variable with a geometric

distribution with parameter 1− F (ρ−1), and (T̂1, . . . , T̂L̂, 0, 0, . . .) is an independent copy
of (T1, . . . , TL, 0, 0, . . .).

Conjecture 6.11 is inspired by [8, Proposition 2.2] which says that Conjecture 6.11
holds for regular trees. The sketch below is also a simple modification of the proof of [8,
Proposition 2.2].

Sketch of the implication of Conjecture 1.4⇒ Conjecture 6.11. We only deal with the
case d = 1 here; the case of d = 2 can be treated similarly. If Conjecture 1.4 holds and
d = 1, then

lim
n→∞

fn
un

=
(
1− F (ρ−1)

)2 ∈ (0, 1).

When m is fixed and n→∞, by the above limit and Lemma 6.9 one has that

fn−m
un

=
fn−m
un−m

· un−m
un

∼
(
1− F (ρ−1)

)2 · ρ−m.
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Therefore when n is large, if m =
∑a
i=1 ki +

∑b
j=1 rb, then

P
[
α = a, si =

i∑
t=1

kt, i ∈ {1, . . . , a}, β = b, lj =

j∑
t=1

rt, j ∈ {1, . . . , b} | Xn = X0 = o
]

=

( a∏
i=1

fki

)
· fn−m
un

·
( b∏
j=1

frj

)

∼
( a∏
i=1

fki

)
·
( b∏
j=1

frj

)
·
(
1− F (ρ−1)

)2 · ρ−m
=

( a∏
i=1

fkiρ
−ki
)
·
( b∏
j=1

frjρ
−rj
)
·
(
1− F (ρ−1)

)2
, (6.8)

where we use the convention that
∏0
i=1 = 1. Note that the last expression in (6.8) gives

a probability measure since

∑
a≥0,ki≥1,b≥0,rj≥1

( a∏
i=1

fkiρ
−ki
)
·
( b∏
j=1

frjρ
−rj
)
·
(
1− F (ρ−1)

)2
= 1.

From (6.8) it is easy to obtain the desired conclusion; for instance to see the distribution
of α is tending to Geometric with parameter 1− F (ρ−1), it suffices to sum (6.8) over all
possible ki, rj , b.

A Proof of Lemma 4.7

Proof of Lemma 4.7. Let Ω = {(i, j, q) : Ni,j,q 6= ∅}. Let (ξn)n≥0 be a Markov chain on Ω

induced by the ph-walk (Sn)n≥0. More precisely, the initial distribution of ξ1 is given by

P[ξ1 = (i, j, q)] = P[S0 = oi, S1 ∈ Γoj ,∆(S0, S1) = q] =
(√
q#Ni,j,q

)
· (vivj) ·

1

ρ
√
didj

,

and the transition probability is given by

P
[
ξk+1 = (i′, j′, q′) | ξk = (i, j, q)

]
= 1{i′=j} · P[Sk+1 ∈ Γoj′ and ∆(Sk, Sk+1) = q′ | Sk ∈ Γoj ]

= 1{i′=j} ·
(√

q′#Nj,j′,q′
)
· vj

′

vj
· 1

ρ
√
djdj′

,

Obviously (ξn)n≥1 is a finite, irreducible Markov chain starting from the stationary
probability measure.

Let f : Ω → R be a function defined by f
(
(i, j, q)

)
= log q. Write Zk = f(ξk) for

k ≥ 1. Then it is easy to see that (Yn)n≥0 has the same law as the partial sums of the
sequence (Zk)k≥1. So in the following we will assume that (Yn)n≥0 are the partial sums:
Y0 = 0, Yn =

∑n
k=1 Zk for n ≥ 1.

The first step is to prove the ballot theorem in this setup.

Claim A.1. There is a constant c > 0 such that for all 0 ≤ k ≤ n,

P
[
Yj > 0, j = 1, · · · , n− 1, Yn ∈ [kt0, (k + 1)t0)

]
≤ ck ∨ 1

n3/2
. (A.1)

Proof of Claim A.1. We follow the proof of Theorem 1 in [2].
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First by Theorem 1 in [7] there is a constant c1 > 0 such that for all n,

sup
x∈R

P[x ≤ Yn ≤ x+ t0] ≤ c1√
n
. (A.2)

Secondly we show that the item (iii) of Lemma 3 in [2] still holds in this setup, namely,
for h ≥ 0 and Th(Y ) := inf{n : Yn < −h},

P[Th(Y ) ≥ n] ≤ ch ∨ 1√
n
. (A.3)

Fix an arbitrary x = (i, j, q) ∈ Ω and write Px,Ex for the law of the Markov chain
(ξn)n≥1 and expectation conditioned on ξ1 = x. Also let Rk be the k-th return to x of
the Markov chain (ξn)n≥0, i.e., R1 = inf{k ≥ 1: ξk = x} and Rn = inf{k > Rn−1 : ξk = x}
for n ≥ 2. Let Ui =

∑Ri+1−1
k=Ri

Zk be the sum of the i-th excursion. Since during each
excursion the expected number of visits to the states y ∈ Ω is a stationary measure (see
Theorem 6.5.2 of [16]), one has Ex[Ui] = 0 by (4.3). Hence (Ui) are i.i.d. r.v.’s with mean
zero. Let Λn = max{k : Rk ≤ n} be the number of returns to x up to time n. By a large
deviation principle, for β = 2E[R2 −R1] there is a constant c2 > 0 such that

Px[Λn ≤
n

β
] ≤ exp(−c2n)

c2
. (A.4)

For h ≥ 0, let Th(U) = inf{n :
∑n
i=1 Ui < −h}. Therefore

Px[Th(Y ) ≥ n] ≤ Px[Λn ≤
n

β
] + Px[Λn >

n

β
, Th(Y ) ≥ n]

≤ Px[Λn ≤
n

β
] + Px[Th(U) ≥ n

β
]

≤ exp(−c2n)

c2
+
c3(h ∨ 1)√

n/β
≤ cx

h ∨ 1√
n

(A.5)

where in the last step we use the item (iii) of Lemma 3 in [2] for the i.i.d. sequence (Ui).
Taking c = max{cx : x ∈ Ω} one has (A.3).

Since (ξn)n≥0 is an irreducible Markov chain with a finite state space Ω, there exists
a constant δ > 0 such that for any x, y ∈ Ω, n ≥ 1, if P[ξn = y | ξ1 = x] > 0, then
P[ξn = y | ξ1 = x] > δ. Hence for any x, y ∈ Ω such that P[ξn = y | ξ1 = x] > 0, by (A.2)
one has that

sup
t∈R

P[t ≤ Yn ≤ t+ t0 | ξ1 = x, ξn = y] ≤ c1
P[ξ1 = x]δ

√
n

=
c4√
n
. (A.6)

Similarly for any x, y ∈ Ω such that P[ξn = y | ξ1 = x] > 0,

Px[Th(Y ) ≥ n | ξn = y] ≤ ch ∨ 1√
n
. (A.7)

Now fix a pair x, y ∈ Ω such that P[ξbn4 c = x, ξd 3n4 e = y] > 0. Consider the probability

Lk,n = Lk,n(x, y) := P
[
Yj > 0, j = 1, · · · , n− 1, Yn ∈ [kt0, (k + 1)t0), ξbn4 c = x, ξd 3n4 e = y

]
.

Let Y r be the sequence given by Y r0 = 0 and for i with 0 ≤ i < n, Y ri+1 = Y ri − Zn−i, i.e.,
partial sums of the sequence (−Zn−i)n−1

i=0 . For h ≥ 0, let T rh(Y ) be the minimum of n and
the first time t that Y rt ≤ −h. By considering the reversed chain of (ξn)n≥1 and −f , one
has that (A.7) also holds for T rh(Y ), in particular,

P
[
T r(k+1)t0

(Y ) > bn
4
c | ξd 3n4 e = y

]
≤ c (k + 1)t0 ∨ 1√

n
. (A.8)

In order that Yn ∈ [kt0, (k + 1)t0) and Yi > 0 for all 0 < i < n, it is necessary that
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(a) T0(Y ) > bn4 c,
(b) T r(k+1)t0

(Y ) > bn4 c, and

(c) Yn ∈ [kt0, (k + 1)t0).

Writing gk,n(x, y) = P
[
kt0 ≤ Yn < (k + 1)t0 | T0(Y ) > bn4 c, T

r
(k+1)t0

(Y ) > bn4 c, ξbn4 c =

x, ξd 3n4 e = y
]
, one has that

Lk,n ≤ P
[
T0(Y ) > bn

4
c, T r(k+1)t0

(Y ) > bn
4
c, ξbn4 c = x, ξd 3n4 e = y

]
· gk,n(x, y)

= P[ξbn4 c = x, ξd 3n4 e = y] · P
[
T0(Y ) > bn

4
c | ξbn4 c = x

]
·

P
[
T r(k+1)t0

(Y ) > bn
4
c | ξd 3n4 e = y

]
· gk,n(x, y)

(A.7),(A.8)
≤ c2

(k + 1)t0 ∨ 1

n
· P[ξbn4 c = x, ξd 3n4 e = y] · gk,n(x, y) (A.9)

where in the second step we use Markov property for (ξn)n≥0. By Markov property
and (A.6) (applied to Yd 3n4 e − Ybn4 c conditioned on ξbn4 c, ξd 3n4 e, Yb

n
4 c and Y rbn4 c

) one has that

gk,n(x, y) ≤ c4√
n/2

. Therefore summing (A.9) over all possible pairs (x, y) ∈ Ω × Ω such

that P[ξbn4 c = x, ξd 3n4 e = y] > 0, one has (A.1).

The second step is show the following analogue of Lemma 2.17:

Claim A.2. Let τr := inf{i ≥ 0: Yi ≥ rt0}. One has that for r ≥ 1,

P[τr = k] � r

k3/2
. (A.10)

Proof of Claim A.2. Consider the reversed chain (ξ̃n)n≥0 of (ξn)n≥0 started from the

stationary distribution. Let Z̃k = f(ξ̃n). The vector (Zn, · · · , Z1) has the same distribution
as (Z̃1, Z̃2, · · · , Z̃n). Let Ỹn be the partial sums of (Z̃k)k≥1.

The rest is the same as the proof of Lemma 2.17 just by replacing the ballot theorem
by Claim A.1 for Ỹ instead.

Now we are ready to show (4.5).
Similar to (2.8), for k ∈ [r, n− r] using Markov property and Claim A.1 one has that

P
[
Yj−Yk < t0, j = k+1, · · · , n, Yn−Yk ∈ (−(r+1)t0,−rt0] | Yk, ξk

]
≤ c r + 1

(n− k)3/2
. (A.11)

Taking expectation one has that

P
[
Mn ∈ [rt0, (r + 1)t0), Yn = 0, τr = k

]
≤ P[τr = k] · c r + 1

(n− k)3/2
. (A.12)

Hence similar to the deduction of (2.14), we have (4.5).
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