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Shadow martingales – a stochastic mass transport
approach to the peacock problem*†
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Abstract

Given a family of real probability measures (µt)t≥0 increasing in convex order (a
peacock) we describe a systematic method to create a martingale exactly fitting the
marginals at any time. The key object for our approach is the obstructed shadow
of a measure in a peacock, a generalization of the (obstructed) shadow introduced
in [13, 46]. As input data we take an increasing family of measures (να)α∈[0,1] with
να(R) = α that are submeasures of µ0, called a parametrization of µ0. Then, for any α
we define an evolution (ηαt )t≥0 of the measure να = ηα0 across our peacock by setting
ηαt equal to the obstructed shadow of να in (µs)s∈[0,t]. We identify conditions on the
parametrization (να)α∈[0,1] such that this construction leads to a unique martingale
measure π, the shadow martingale, without any assumptions on the peacock. In the
case of the left-curtain parametrization (ναlc )α∈[0,1] we identify the shadow martingale
as the unique solution to a continuous-time version of the martingale optimal transport
problem.

Furthermore, our method enriches the knowledge on the Predictable Representa-
tion Property (PRP) since any shadow martingale comes with a canonical Choquet
representation in extremal Markov martingales.
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Shadow martingales

1 Introduction

Two finite measures µ and µ′ on R with finite first moments are said to be in convex
order, denoted by µ ≤c µ′, if

∫
ϕdµ ≤

∫
ϕdµ′ for all convex ϕ : R → R. Peacocks are

families (µt)t≥0 of probability measures on R with finite first moments that increase in
convex order. Given a peacock (µt)t≥0, the peacock problem is to construct a probability
measure π such that the canonical process X = (Xt)t≥0 is a martingale w.r.t. its natural
filtration and the marginal distributions coincide with (µt)t≥0, i.e. Lawπ(Xt) = µt for each
t ≥ 0.

There is a wide range of beautiful solutions to this problem employing different ideas
and techniques, e.g. [40, 43, 15, 38, 28, 44, 35, 23, 2, 37, 25]. On the one extreme,
there is the fundamental non-constructive result of Kellerer [40] proving the existence of
Markov solutions for any given peacock. On the other end of the spectrum, there are very
explicit constructions for specific sub classes of peacocks, many of which can be found
in the monograph [27] by Hirsch, Profeta, Roynette, and Yor. However, it is difficult to
manage both aspects by constructing an explicit solution for a generic peacock. Only
recently there have been contributions in this direction by Lowther [43], Hobson [28],
Juillet [37] and Henry-Labordère and Touzi [26].

We propose a new method to systematically construct a martingale associated with a
peacock. Thereby, we rely on the rich theory of optimal transport. In optimal transport a
coupling of two probability measures is interpreted as a plan to transport one marginal
to the other one. More precisely, given a coupling π of two probability measures µ0 and
µ1 on R, i.e. a probability measure π on R2 with π(A×R) = µ0(A) and π(R×B) = µ1(B)

for all Borel sets A and B. The quantity π(A × B) can be interpreted as the amount
of mass (of the measure µ0) that is transported from the set A to the set B under π.
Conversely, a coupling π is fully characterized by the family of values (π(A×B))A,B and
this characterization still holds if we only consider certain families of sets, e.g. only sets
A× B with A of the type (−∞, q]. Note, that given q the values of B 7→ π((−∞, q]× B)

are encoded in the second marginal of π|(−∞,q]×R, i.e. in the measure ηq := π((−∞, q]×·).
Therefore, the family (ηq)q∈R associated with ((µ0)|(−∞,q])q∈R, i.e. the one-step evolution
(µ0((−∞, q]), ηq), completely determines the transport plan π.

In recent years, this mindset of optimal transportation found several new applica-
tions within stochastic analysis sometimes subsumed under the name stochastic mass
transport, see e.g. [14, 6, 19, 42, 8]. In various striking applications it turned out to be
useful to interpret a stochastic process X ≡ (Xt)t≥0 as a device to transport mass from
time 0 to the distribution of X at a (potentially random) time τ . To identify the induced
coupling of the distribution of X at time 0 and time τ it is then necessary to trace the
evolution of fixed parts of the initial distribution, e.g. to consider for A ⊂ R the evolution
in t of

ηAt := P[Xt ∈ ·|X0 ∈ A].

However, observe, that already for two step processes (X0, X1, X2) (corresponding
to three marginal transport problems) the knowledge of only (ηAt )t=1,2 is in general not
sufficient to pin down the law of the full process since it neglects correlations between
X1 and X2.

We call a measure ν a submeasure of µ, if ν ≤+ µ, i.e. if ν(A) ≤ µ(A) for all measurable
sets A. For instance, the restrictions (µ0)|A of µ0 = Law(X0) to the measurable sets
A = (−∞, q] are submeasures of µ0. Using this terminology, the goal of this article is to
uniquely define a martingale associated with a peacock (µt)t≥0 from the following input
data only:

• A parametrization of µ0, i.e. a family of submeasures (να)α∈[0,1] of µ0 s.t. να(R) = α,
να ≤+ νβ for α ≤ β, and ν1 = µ0.

EJP 27 (2022), paper 127.
Page 2/62

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP846
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Shadow martingales

• For each α, the evolution of να through the marginals (µt)t≥0, i.e. a family (ηαt )t≥0

of submeasures of (µt)t≥0, ηαt ≤+ µt for all t ≥ 0, satisfying να = ηα0 ≤c ηαs ≤c ηαt
for all 0 ≤ s ≤ t. These evolutions also need to be consistent in the sense that
ηαt ≤+ ηβt for all α ≤ β in [0, 1] and t ≥ 0.

It is easy to see that, without further assumptions, this data is not sufficient to
uniquely determine the law of a martingale. It turns out that a certain convexity of
(να)α∈[0,1] together with some kind of minimality in the choice of (ηα)α∈[0,1] is the key to
uniquely define a martingale measure via this procedure.

Before introducing the appropriate notions we would like to present our solution in a
special setting which already gives a good idea of the general case (namely Theorem 1.5
in Subsection 1.1):

Corollary 1.1. Let (µt)t≥0 be a peacock with µ({x}) = 0 for all x ∈ R. For any nested
family of intervals (Iα)α∈[0,1] for which

(i) µ0(Iα) = α for any α ∈ [0, 1],

(ii) α 7→
∫
Iα
y dµ0(y) is a convex function and

(iii) sup Iα < +∞ and ∂Iα ∩ ∂Iβ = ∅ for all α 6= β in [0, 1],

there exists a unique solution π to the peacock problem w.r.t. (µt)t≥0 such that for any
other solution ρ to the peacock problem w.r.t. (µt)t≥0 it holds

Lawπ(Xt|X0 ∈ Iα) ≤c Lawρ(Xt|X0 ∈ Iα) (1.1)

for all α ∈ [0, 1] and t ≥ 0. Moreover, (X0, Xt)t≥0 is a Markov process under π.

Remark 1.2. As the reader should have noticed, a completely rigorous statement of
Corollary 1.1 requires to specify on which measurable space the martingale measure π
in Corollary 1.1 is defined. Here, as well as in all of the paper, we use R[0,∞) with the
Borel σ-algebra induced by the product topology on R[0,∞).

Alternatively, if the map t 7→ µt is right-continuous w.r.t. the weak topology (cf.
Section 3.1), by standard martingale regularization (see e.g. [47, II §2]) there exists a
càdlàg modification of the canonical process on R[0,∞) under π that one can use to define
the solution π directly on the Skorokhod space of càdlàg functions from [0,∞) to R, see
Section 6 for an implementation.

Consider the peacock (µt)t≥0 consisting of uniform distributions µt = Unif [−1−t,1+t]

on the intervals [−1 − t, 1 + t] and the interval family Iα = [−α, α], α ∈ [0, 1]. It is not
difficult to check that this pair satisfies the conditions (i)-(iii) in Corollary 1.1 and for two
choices of α, Figure 1 illustrates the evolution (ηαt )t≥0 of να = (µ0)|Iα over time under
the solution to the peacock problem constructed in Corollary 1.1.

We would like to highlight a few features of Corollary 1.1 which all appear in the
general case, Theorem 1.5, again:

• The parametrization of µ0 induced by the intervals Iα, namely (µ0|Iα)α∈[0,1], is in a
certain sense convex, cf. item (ii) in Corollary 1.1.

• The minimality condition (1.1) affects only the conditional one-dimensional marginal
distributions under π. Thus, only the evolution ηαt = αLawπ(Xt|X0 ∈ Iα) of
να = (µ0)|Iα is prescribed by the requirement to be minimal in convex order
but (a priori) no joint distributions are fixed.

• In particular, (1.1) says that Lawπ(Xt|X0 ∈ Iα) is minimal in convex order among
all solutions to the peacock problem, for every α. Explicitly, for every t, every α,
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every convex function ϕ, and any other solution ρ to the peacock problem w.r.t.
(µt)t≥0 we have∫

ϕ dLawπ(Xt|X0 ∈ Iα) ≤
∫
ϕ dLawρ(Xt|X0 ∈ Iα),

so that, in this precise sense, Lawπ(Xt|X0 ∈ Iα) is as concentrated as possible.
Hence, we can think of π as a plan to transport µ0|Iα through (µt)t∈[0,1] as concen-
trated as possible subject to the martingale constraint.

• Finally, it will become apparent during the proof of Theorem 1.5 that the Markov
property turns out to be a consequence of the fact that Law(X|X0) is uniquely
determined by its marginal distributions, see Lemma 4.28, Proposition 4.29.

1.1 Main results

Our main results, Theorem 1.5 and 1.6, enlarge the perspective presented in Corol-
lary 1.1 but are of the same nature. They in fact permit further parametrizations of µ0

and stress the optimal feature of our shadow martingales.
To state Theorem 1.5 we need to introduce the objects that will replace the specific

parametrization (µ0|Iα)α∈[0,1] and property (1.1). We start with the definition of shadows,
the concept that will replace (1.1). To not overload the introduction we give a preliminary
(but correct) definition in Proposition 1.3 and refer to Proposition 4.19 where it is
extended to and proved in a more general setting.

As before a martingale measure is a probability measure under which the canonical
process is a martingale w.r.t. the filtration generated by the process.

Proposition 1.3. For all peacocks (µt)t≥0, t ≥ 0 and ν ≤+ µ0 with α = ν(R) > 0 the set{
αLawπ(Xt) :

π is a martingale measure, ν = αLawπ(X0)

and αLawπ(Xs) ≤+ µs for all s ∈ [0, t]

}
attains a minimum w.r.t. the convex order ≤c. This minimum is called the shadow of ν in
(µs)s∈[0,t] and is denoted by Sµ[0,t](ν).

We say that two finite measures µ and µ′ on R with finite first moments are in convex-
stochastic order, denoted by µ ≤c,s µ′, if

∫
ϕdµ ≤

∫
ϕdµ′ for all convex and increasing

functions ϕ : R → R. A parametrization (να)α∈[0,1] of µ0 is called ≤c,s-convex if for all
α1 < α2 < α3 in [0, 1] it holds

να2 − να1

α2 − α1
≤c,s

να3 − να2

α3 − α2
. (1.2)

Since property (1.2) can be interpreted as increasing slopes of secant lines for the
functions α 7→

∫
ϕdµα, ϕ increasing and convex, this property is called ≤c,s-convexity.

The following three parametrizations, that were introduced in [14] for one step processes,
are examples of ≤c,s-convex parametrizations (cf. Lemma 4.6 for the proof):

• the left-curtain parametrization

ναlc = µ0|(−∞,F−1
µ0

(α)) + (α− µ0(−∞, F−1
µ0

(α)))δF−1
µ0

(α),

where F−1
µ0

is the quantile function of µ0, i.e the generalized inverse of the cumula-
tive distribution function Fµ0

,
• the sunset parametrization ναsun = αµ0 for every α ∈ [0, 1] and
• the middle-curtain parametrization

ναmc = µ0|(qα,q′α) + cαδqα + c′αδq′α ,

where qα ≤ q′α and cα, c′α ∈ [0, 1] are chosen such that ναmc(R) = α and
∫
y dναmc(y) =∫

y dµ0(y).
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−2 −1 0 1 2 −2 −1 0 1 2

Figure 1: The shaded area shows the evolution (ηαt )t≥0 of να through (µt)t≥0 for α = 1
3

(left) and α = 2
3 (right), respectively. Here µt = Unif [−1−t,1+t] and Iα = [−α,+α]. The

measures are represented by their density functions w.r.t. the Lebesgue measure. The
representation is in 3D-perspective with times evolving transversally to the page.

We remark that if µ0 has no atoms the left-monotone and the middle-curtain parametriza-
tions are special cases of the parametrization used in Corollary 1.1. In particular, the
parametrization in Figure 1 is the middle-curtain parametrization of the uniform measure
on [−1, 1].

The final object that we need to introduce are martingale parametrizations. Their
purpose is to allow conditioning on the initial behaviour of a martingale which is not of
the form {X0 ∈ Iα} for some Borel set Iα ⊂ R. Again, as Definition 1.3, Definition 1.4 is
a simplified version of the general Definition 4.1. Notice that the notion of submeasure
from page 2 is also well-defined for measurable spaces other than R. Moreover, we
denote by πα(Xt ∈ · ) the push-forward measure of πα via Xt (it is a measure of mass α).

Definition 1.4. Let π be the law of a martingale indexed by [0,∞). A family (πα)α∈[0,1]

of finite measures is called a martingale parametrization of π if

(i) for every α ∈ [0, 1] one has πα(R[0,∞)) = α,
(ii) we have πα ≤+ πα

′
for all α ≤ α′,

(iii) for every α ∈ (0, 1] the measure πα

α is a martingale measure,
(iv) we have π1 = π.

The family (πα)α∈[0,1] is called a martingale parametrization of π w.r.t. a parametrization
(να)α∈[0,1] of µ0 if it additionally satisfies

(v) πα(X0 ∈ · ) = να for all α ∈ [0, 1].

As we discuss in Subsection 4.1.2, a martingale parametrization (πα)α∈[0,1] w.r.t.
(να)α∈[0,1] is a convenient way of encoding that for each α ∈ [0, 1] the martingale π

transports the submeasure να of µ0 according to πα, i.e. we may interpret πα formally
as “αLawπ(X|X0 ∈ να)”. In particular, any martingale parametrization (πα)α∈[0,1] w.r.t.
(να)α∈[0,1] induces a specific evolution of να for every α ∈ [0, 1], namely ηαt = πα(Xt ∈ · ).
We would like to stress that there might be several martingale parametrizations of π
w.r.t. (να)α∈[0,1] (cf. Example 4.9). We can now state our first main result:

Theorem 1.5. Let (µt)t≥0 be a peacock and (να)α∈[0,1] a ≤c,s-convex parametrization
of µ0. Then, there exists a unique pair (π, (πα)α∈[0,1]) where the martingale measure π
solves the peacock problem w.r.t. (µt)t≥0, (πα)α∈[0,1] is a martingale parametrization of π
w.r.t. (να)α∈[0,1] and

πα(Xt ∈ · ) = Sµ[0,t](να) (1.3)

for all α ∈ [0, 1] and t ≥ 0. We call π the shadow martingale (measure) w.r.t. (µt)t≥0 and
(να)α∈[0,1].

The shadow martingale π can be represented as π = Law
(
MU

)
where U is a [0, 1]-

valued random variable and (Ma)a∈[0,1] is a family of R[0,∞)-valued random variables
such that

EJP 27 (2022), paper 127.
Page 5/62

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP846
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Shadow martingales

(i) {U} ∪ {Ma : a ∈ [0, 1]} is a collection of independent random variables,

(ii) the random variable U is uniformly distributed on [0, 1] with Law(MU
0 |U ≤ α) = 1

αν
α

for all α ∈ (0, 1] and

(iii) for each a ∈ [0, 1], (Ma
t )t≥0 is a Markov martingale which is uniquely determined

by its (one-dimensional) marginal distributions, i.e. any martingale (Yt)t≥0 with
Law(Yt) = Law(Ma

t ) for all t ≥ 0 satisfies Law(Y ) = Law(Ma).

Note that the constraint on π given by (1.3) only involves the evolution (πα(Xt ∈ · ))t≥0

of the submeasures να and a priori no joint distributions. Hence, the theorem states that
taking a ≤c,s-convex parametrization of the initial marginal µ0 and fixing its evolution
to be as concentrated as possible w.r.t. the convex order uniquely characterizes a
martingale.

Specializing to the left-curtain parametrization (ναlc)α∈[0,1] and additionally assuming
that both µ0 has no atoms and t 7→ µt is weakly right-continuous, we can give an
alternative characterization of the associated shadow martingale which identifies it as a
unique solution to a variant of an optimal transport problem, namely a peacock version
of the martingale optimal transport problem:

Theorem 1.6. Let (µt)t≥0 be a peacock and c a sufficiently integrable and regular cost
function with ∂xyyc < 0 (cf. Theorem 9.4). The shadow martingale πlc w.r.t. (µt)t≥0 and
(ναlc)α∈[0,1] satisfies

Eπlc [c(X0, Xt)] = inf {Eρ[c(X0, Xt)] : ρ solves the PCOC problem w.r.t.(µt)t≥0} (1.4)

simultaneously for all t ≥ 0.
If µ0({x}) = 0 for all x ∈ R, πlc is the only solution to the peacock problem w.r.t.

(µt)t≥0 that satisfies (1.4) simultaneously for all t ≥ 0.

The necessity of the assumption of no atoms is best seen by looking at the case
µ0 = δ0. In that case, since the marginals at time t are given, each solution to the
peacock problem w.r.t. (µt)t∈[0,1] is a solution to the optimization problem (1.4).

When considering only finitely many marginals {µt0 , µt1 , . . . , µtn} increasing in convex
order, and a corresponding piecewise constant peacock, Theorem 1.6 reduces to a recent
theorem by Nutz, Stebegg and Tan [46, Theorem 7.16], see also Corollary 8.2 where we
give a short proof of [46, Theorem 7.16] with the tools developed in this paper.

Remark 1.7. In this remark we discuss the necessity of the assumption of ≤c,s-convexity
for the existence and uniqueness part in Theorem 1.5.

The question of existence of a martingale measure satisfying (1.3) for a general
parametrization is proven in Step 1 of Theorem 7.3 (for the easier case of a countable
index set, see Proposition 5.6). So for existence this assumption is not needed.

The assumption of a ≤c,s-convex parameterization is only needed for our proof of the
uniqueness statement of Theorem 1.5. In Remark 5.17 we explain how dropping this
assumption would heavily affect our proof. However, it is worth highlighting that ≤c,s
is not the only possible choice of order relation. In our proof, we only rely on the fact
that the parametrization is �-convex where � stands for any partial order relation that
satisfies the following properties:

• Compatibility with the shadow: ν � ν′ implies Sµ[0,t](ν) � Sµ[0,t](ν′).

• Weaker than ≤c: ν ≤c ν′ implies ν � ν′.
• Representation: There exists a convex function Φ such that ν � ν′ implies

∫
Φ dν ≤∫

Φ dν′ with equality if and only if ν = ν′.

Our line of reasoning would work with any such partial order relation. These properties
are satisfied by ≤c and ≤c,s. While ≤c-convex parameterizations already include the sun-
set and middle-curtain parameterization, it is required to consider≤c,s-parameterizations
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to include the (first introduced in the literature) left-curtain parametrization and there-
fore obtain the conclusions of Theorem 1.5 (and first Theorem 5.15) for the corresponding
shadow martingale. We can find a third partial order relation satisfying the properties
above by a simple change of orientation. The order defined symmetrically to ≤c,s by
replacing increasing convex by decreasing convex functions in (3.1). This ordering, ≤c,
and ≤c,s are the only three examples of ordering we know to satisfy the specifications
listed above. For concreteness, we stick in this article with ≤c,s.

We would like to stress that the assumption of a ≤c,s- (or �-)convex parameterization
is tightly linked with the infinite index set T . As we discuss in Section 8.1, for the
case of a finite index set T our methods can cope with any (not only ≤c,s-convex)
parametrization, see in particular Corollary 8.2. Note that for infinite index sets T and
general parametrizations we did not furnish any counterexample in the conclusions of
the main theorems. In fact we could not definitely exclude that Theorem 1.5 could be
improved in this direction –with different or better arguments as ours in the present
paper.

1.2 Choquet representation and the PRP property

There is another abstract point of view on our main result Theorem 1.5. Any mar-
tingale measure has a Choquet representation, i.e. it can be written as a superposition
of martingale measures that are extremal elements of the convex set of all martingale
measures. Such a representation is interesting because the extremality in the set of all
martingale measures naturally relates to the predictable representation property (PRP).
In stochastic analysis a martingale M is said to satisfy the PRP if and only if any martin-
gale X adapted to the natural filtration of M can be represented as a stochastic integral
with respect to M . According to a theorem by Jacod and Yor a martingale satisfies the
PRP if and only if it’s law is extremal in the convex set of all martingale measures (cf.
[33, 50, 32]). Hence, any martingale measure is a superposition of martingales with
the PRP. To the best of our knowledge, no concrete recipe for the construction of such
a representation is known. However, for shadow martingales there exists a natural
Choquet representation. In fact, this natural Choquet representation is the driving force
behind the proof of Theorem 1.5, especially the uniqueness part.

Given a peacock µ = (µt)t≥0, our construction of the uniquely determined shadow
martingale starts with a representation of µ as a superposition of peacocks, i.e.

µ =

∫
[0,1]

ηa da. (1.5)

This representation is induced by the shadow and the choice of a proper parametrization
(να)α∈[0,1] of µ0 (cf. Lemma 5.4). The peacocks ηa in (1.5) are in general not extremal in
the convex set of all peacocks (in the sense that 2ηa = η′ + η′′ implies η′ = η′′ = ηa) so
that (1.5) cannot be called a Choquet representation of µ. However, they satisfy a very
similar property that we call non self-improvable (NSI) (cf. §4.3):

2ηa = η′ + η′′ and η′0 = η′′0 = ηa0 implies η′ = η′′ = ηa. (1.6)

The main consequence of the NSI property is that for every peacock that satisfies this
property there exists only one martingale measure that is associated with this peacock.
Thus, the unique martingale measures πa associated with ηa are extremal in the set of
martingale measures with fixed initial distribution, i.e.{

2πa = ρ′ + ρ and

ρ′(X0 ∈ · ) = ρ′′(X0 ∈ · ) = πa(X0 ∈ · )
implies ρ′ = ρ′′ = πa .
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Indeed, if ρ′ and ρ′′ are two martingale measures with 2πa = ρ′ + ρ′′ that have the same
initial distribution as πa, the marginal distributions of these three objects satisfy (1.6) and
thus the marginal distributions of ρ′ and ρ′′ are ηa, i.e. they coincide with the marginal
distributions of πa. But then the uniqueness of the associated martingale measure given
by the NSI property yields πa = ρ = ρ′. The superposition of these special martingale
measures

π =

∫ 1

0

πa da (1.7)

is exactly the shadow martingale w.r.t. µ and (να)α∈[0,1]. More precisely, πa is the
distribution of Ma in the representation π = Law(MU ) of the shadow martingale that is
described in the second part of Theorem 1.5.

The representation of the shadow martingale in (1.7) is in general not yet a Choquet
representation because the martingale measures πa are only extremal in the set of
martingale measures with fixed initial distribution. Nevertheless, we can directly obtain
a Choquet representation from (1.7) and then by Jacod and Yor’s theorem we have a
rather explicit representation of the shadow martingale as a superposition of martingales
that satisfy the PRP. In the case of the left-curtain parametrization, this is particularly
easy. The construction of (1.5) is such that for each α ∈ [0, 1] we have

∫ α
0
ηa0da = ναlc

where (ναlc)α∈[0,1] is the left-curtain parametrization. Looking again at the definition
of (ναlc)α∈[0,1] in Subsection 1.1, we see that ηa0 is a Dirac measure for any a ∈ [0, 1].
Hence, the peacocks ηa and the associated martingale measures πa are automatically
extremal in the set of all peacocks and all martingale measures. Therefore, in the case
of the left-curtain parametrization, (1.7) is in fact already a Choquet representation
of the shadow martingale π. More generally, given any ≤c,s-convex parametrization
(να)α∈[0,1] of µ0 we obtain a Choquet representation of the shadow martingale by further
disintegrating (1.7) w.r.t. the initial marginal µ0, i.e. by conditioning on the starting value
of π.

We want to emphasize that this Choquet representation of the shadow martingale is
uniquely determined by the representation of the peacock µ given in (1.5). This repre-
sentation of µ is constructed using only the shadow and a ≤c,s-convex parametrization
of the initial distribution. To show that the peacocks (ηa)a∈[0,1] in (1.5) satisfy the NSI
property (which is very similar to extremality, cf. (1.6)) is in fact a crucial part of our
proof. Moreover, this abstract point of view of our result makes it apparent that the
construction of the shadow martingale is purely based on its marginals as an object in
the space of peacocks and thus these are intrinsic solutions to the peacock problem.

1.3 Outline

There are several contributions to martingale optimal transport theory and the
peacock problem that are related to our results and that we discuss in Section 2. In
Section 3 we recall order relations for finite measures and important properties of the
peacock problem.

In Section 4 we introduce (martingale) parametrizations, (general obstructed) shad-
ows and non self-improvable peacocks. These concepts are not only essential ingredients
of our proof of Theorem 1.5 but are interesting in themselves.

In Section 5, we prove a variant of Theorem 1.5 in the case that the peacock is
indexed by a countable set S ⊂ [0,∞) that contains 0 and satisfies supS ∈ S. In this
setup it is possible to avoid some of the technicalities needed to be able to handle the
general case and concentrate on the key steps and ideas of the proof. Let us briefly
sketch them in the following paragraphs:

We need to construct a family of measures (πα)α∈[0,1] on RS that satisfies both
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Definition 1.4 (i)-(iii) and property (1.3)1 and need to show that this family is uniquely
determined by these two properties (note that (1.3) already implies that π := π1 is a
solution of the peacock problem w.r.t. (µt)t∈S and that condition (v) of Definition 1.4 is
satisfied). To this end, we pursue the following approach:

• STEP 1: Any family of measures (πα)α∈[0,1] on RS satisfies Definition 1.4 (i)-(iii)
if and only if there exists a family of martingale measures (π̂a)a∈[0,1] such that
πα =

∫ α
0
π̂a da for all α ∈ [0, 1]. In particular, the family (πα)α∈[0,1] is uniquely

determined by any such family (π̂a)a∈[0,1] and for Lebesgue-a.e. a ∈ [0, 1] it holds

π̂a = lim
h↓0

πa+h − πa

h
(1.8)

under an appropriate topology (cf. Subsection 3.1). Thus, (πα)α∈[0,1] satisfies
property (1.3) if and only if the following two properties hold: For Lebesgue-a.e.
a ∈ [0, 1] and all t ∈ S the limit

η̂at = lim
h↓0

Sµ[0,t]∩S (νa+h)− Sµ[0,t]∩S (νa)

h
(1.9)

exists and the distribution of Xt under π̂a is η̂at . Step 1 is accomplished in Subsec-
tion 5.1.

• STEP 2: Step 1 implies that there exists a family (πα)α∈[0,1] with the desired
properties, if there exists a family (π̂a)a∈[0,1] of martingale measures on RS such
that the canonical process under π̂a has marginal distributions (η̂at )t∈S for Lebesgue
a.e. a ∈ [0, 1]. By Kellerer’s Theorem, for fixed a ∈ [0, 1] such a martingale measure
π̂a exists if (η̂at )t∈S is a peacock. Using the calculus rules that we develop for
general obstructed shadows, we show in Subsection 5.2 that for Lebesgue-a.e.
a ∈ [0, 1] the limit in (1.9) exists and that (η̂at )t∈S is a peacock.

• STEP 3: Another implication of Step 1 is that the family (πα)α∈[0,1] constructed in
Step 2 is uniquely determined if there exists only one martingale measure with
marginal distributions (η̂at )t∈S for Lebesgue a.e. a ∈ [0, 1]. Unfortunately, just from
the defining equation (1.9), the peacock (η̂at )t∈S does not need to satisfy this very
restrictive property for all a ∈ [0, 1] where (η̂at )t∈S is defined (cf. Example 8.4).

That being said, it is sufficient for us that (η̂at )t∈S is NSI for Lebesgue-a.e. a ∈ [0, 1]

since the NSI property implies the uniqueness of a martingale associated with
(η̂at )t∈S (cf. Section 1.2). To show this, we introduce an auxiliary optimization
problem and establish a corresponding monotonicity principle (cf. Subsection 5.3).
The minimality of the shadow in conjunction with the ≤c,s-convexity of (να)α∈[0,1]

implies that (η̂a)a∈[0,1] is a minimizer of this optimization problem which in turn
implies that (η̂at )t∈S is NSI for Lebesgue-a.e a as desired (see Subsection 5.4).

If S was finite, we could use the concept of Kellerer dilations as in [14] to show that
for all a ∈ [0, 1] where (η̂at )t∈S is well-defined there is only one martingale measure with
these one-dimensional marginal distributions (cf. Remark 4.30). However, as shown in
Example 8.4, this is not true if S is infinite. This major difference between the case of a
finite index set and a countable infinite one, is the reason why we have to develop new
tools and techniques and cannot extend methods used in [14] and [46].

In Section 6 we establish Theorem 1.5 in the setting of a continuous time index set
T ⊂ [0,∞) under the additional assumption that the given peacock is right-continuous.
Martingale regularization techniques imply that martingale measures are uniquely

1Of course with R[0,∞) replaced by RS and [0, t] replaced by S ∩ [0, t].
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determined by their behaviour on a countable index set. We will show in Subsection 6.2
that also the obstructed shadow and the NSI property are determined by the behaviour
of the peacock (µt)t∈T restricted to a well chosen countable index set S ⊂ T . This allows
us to lift the results from Section 5 to the setting of T ⊂ [0,∞) with right-continuous
peacock.

In Section 7 we show how we can pass to an abstract totally ordered index set without
any assumptions on the peacock. In particular, this completes the proof of Theorem 1.5
(recall that it was stated for the totally ordered space T = [0,∞)). Moreover, we explain
how Corollary 1.1 follows from Theorem 1.5.

In Section 8 we discuss counterexamples regarding shadows and NSI peacocks and
provide explicit examples of shadow martingales.

Finally, the proof of Theorem 1.6 is contained in Section 9.

2 Related literature

The optimal transport theory dates back to Monge (1781) and Kantorovich (1939) and
has a huge variety of different facets and applications (see e.g. [49]). Martingale optimal
transport is a relatively new subdomain, that has for instance applications in robust
mathematical finance (see e.g. [1] or the book [24]). Given two probability measures µ0

and µ1 with µ0 ≤c µ1 and a cost function c, the goal is to minimize (or maximize)

π 7→ Eπ[c(X0, X1)]

over the set of couplings of µ0 and µ1 that additionally satisfy the martingale property.
Among the solutions of the problem (for different cost functions) are the couplings
presented by Hobson and Neuberger [30], Hobson and Klimmek [29] and for other
related problems the couplings recently introduced in [34] by Jourdain and Margheriti
and in [14] by Beiglböck and Juillet. Note that martingale optimal transport problems
are a special case of a wider class of transport problems as weak optimal transport
problems [21, 20] or linear transfers [17].

The left-curtain coupling introduced by Beiglböck and Juillet in [13] is of particular
importance for our approach of the peacock problem. Besides being the unique minimizer
for a certain class of cost functions (cf. [13]), the left-curtain coupling has several
different characterizations, for instance concerning the geometry of its support [36] or
in the context of the Skorokhod Embedding problem [10, 14]. Moreover, Hobson and
Norgilas show in [31] that it possesses a natural interpretation in Mathematical Finance.

The existence of the shadow (without coining this name) was established by Rost in
[48] in the context of stopping times for Markov processes. Beiglböck and Juillet later
rediscovered this object in the context of martingale optimal transport and established
several important properties that are used in this paper. In fact, the left-curtain coupling
π is introduced by

π(X0 ≤ a,X1 ∈ ·) = Sµ1(µ0|(−∞,a]).

for every a ∈ R. The shadow martingale w.r.t. the left-curtain parametrization is a
natural extension of this coupling (and hence also of its discrete time extension by Nutz,
Stebegg and Tan in [46]) to the continuous time case. Moreover, shadow martingales
extend the concept of shadow couplings introduced in [14].

The name peacock (alias PCOC) which is derived from the French term Processus
Croissant pour l’Ordre Convexe and likewise the peacock problem were introduced by
Hirsch, Profeta, Roynette and Yor in their monograph [27] and are therefore quite recent.
However, the construction of martingales that match given marginal distributions at
least goes back to the seminal work of Kellerer [40]. Since then a variety of solutions
have been developed before it was subsumed under the name peacock problem. Most
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of these solutions make more or less restrictive additional assumptions on the peacock,
e.g. assuming that the peacock satisfies the (IMRV) property (see [44]) or consists of the
marginal distributions of a solution to a certain class of SDE (see [22]). Moreover, the
construction of fake Brownian motions (e.g. [2, 23]) can be seen as solutions to a (very
specific) peacock problem. The monograph [27] provides a comprehensive overview of
solutions to the peacock problem that work with special classes of peacocks.

Recently there were several contributions that face generic peacocks without a
rich additional structure. There is the solution of Hobson [28] which is based on
the Skorokhod Embedding Problem and the one of Lowther [43] who constructs for
continuous peacocks with connected support a solution under which the canonical
process is a strong Markov process. The approach closest to our class of solutions is
the one independently studied by Henry-Labordère, Tan and Touzi [25] and Juillet [37].
The shadow martingale w.r.t. the left-curtain parametrization (ναlc)α∈[0,1] is the limit of
the discrete time simultaneous minimizer of

Eπ[c(X0, Xtk)] ∀ 1 ≤ k ≤ n

among all martingale coupling of µ0, µt1 , . . . , µtn for all c with ∂xyyc < 0 as n tends to
infinity for a suitable chosen sequence of nested finite partitions of T whose mesh tends
to zero. In contrast, the solution of [25, 37]– when it exists– is constructed as the limit of
the concatenation of the discrete time simultaneous minimizers of

Eπ[c(Xtk−1
, Xtk)] ∀ 1 ≤ k ≤ n

for all c with ∂xyyc < 0. Unsurprisingly, this solution behaves notably differently than the
shadow martingale induced by the left-curtain parametrization (see Example 8.10).

Besides this article we are not aware of solutions to the peacock problem that are
related to shadow martingales w.r.t. a parametrization which is not the left-curtain
one. Similarly, there are no results about uniquely constructing martingales by solely
describing how parts of the initial distribution evolve. In fact, the only approach in this
direction that we are aware of is [16] but in a non-martingale setup.

3 Preliminaries

In this section we introduce our notation and recall objects and properties that
are well known in the context of martingale optimal transport and the peacock prob-
lem. Since we want to work at the level of probability distributions (of processes), we
sometimes choose a non-standard perspective on standard results.

3.1 Notation

We denote by M0(X) (resp. P0(X)) the set of all finite measures (resp. probabilty
measures) on some measurable space X. The underlying space will mostly be the space
of functions from T to R, denoted by RT , for some totally ordered set (T,≤). In this
case, the space RT is equipped with the product topology and the corresponding Borel
σ-algebra, the canonical process on RT is denoted by (Xt)t∈T , i.e. for all t ∈ T

Xt : RT 3 ω 7→ ω(t) ∈ R,

and (Ft)t∈T is its natural filtration defined by Ft = σ(Xs : s ≤ t).
The setM1(RT ) consists of all π ∈M0(RT ) for which all one-dimensional marginal

distributions have a finite first moment. We equip M1(RT ) with the initial topology
generated by the functionals (If )f∈G0∪G1 where

If :M1(RT ) 3 π 7→
∫
RT

f dπ ∈ R
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and {
G0 = {g ◦ (Xt1 , . . . , Xtn) : n ≥ 1, t1, . . . , tn ∈ T, g ∈ Cb(Rn)}
G1 = {|Xt| : t ∈ T} .

We denote this topology on M1(RT ) by T1. In contrast, we denote by T0 the initial
topology onM0(RT ) that is generated by the functionals (If )f∈G0 only. The subspace of
probability measures inM1(RT ) is denoted by P1(RT ) and equipped with the inherited
topology. If T is finite, the topology on P1(RT ) is induced by the 1-Wasserstein metric
W1,l1 corresponding to the l1-metric on RT (see Villani [49, Theorem 6.9]). It is also not
difficult to see, that, if T is countable,M1(RT ) is first countable and therefore continuity
is equivalent to sequential continuity. Note now that we can reduce G0 in the definition
of T0 to the following set of functions

G′0 = {ω ∈ RT 7→ 1} ∪ {g ◦ (Xt1 , . . . , Xtn) : n ≥ 1, t1, . . . , tn ∈ T, g ∈ Cc(Rn)} .

To see this, recall that a sequence (πn)n∈N converges to π w.r.t. some initial topology
T defined by some set of functions G if and only if (If (πn))n∈N converges to If (π) in R
for all f ∈ G. If T is finite and G contains Cc(RT ), the same limit is also satisfied for
any continuous function f that can be dominated by a linear combination generated
with elements fi ∈ G, i.e such that |f | ≤

∑
i ζifi. This is the reason why (i) the topology

generated by G′0 is exactly T0 (also if T is infinite), (ii) functions g ◦ (Xt1 , · · · , Xtn) where
g grows at most linearly at infinity are admissible for T1.

We denote the push-forward of a measure π ∈M1(RT ) under some measurable map
f defined on RT by f#π. If π is a probability distribution, we refer to the push-forward
as the law or distribution of f under π denoted by Lawπ(f). Furthermore, the expression
“marginals of a probability measure π on RT ”, always refers to all the one-dimensional
marginal distributions of the canonical process under π, i.e. to the measures Lawπ(Xt)

for t ∈ T .
Let S be a subset of T and projS : RT → RS the projection on the index set S. The

induced projection map

M1(RT ) 3 π 7→ (projS)#π ∈M1(RS)

is continuous w.r.t. T1 on M1(RT ) and M1(RS). We denote the measure π projected
on the coordinates in S, i.e. (projS)#π, by the shorter notation π|S as if it were the
restriction of a random vector. Moreover, we denote the cumulative distribution function
of a probability measure µ on R by Fµ and its quantile function is

F−1
µ : α ∈ [0, 1] 7→ inf{x ∈ R : Fµ(x) ≥ α}.

We also denote by λ the Lebesgue measure on [0, 1], by UnifI the uniform distribution on
an interval I ⊂ R and by δx the Dirac measure at point x.

3.2 Order relations and potential functions

We use several partial order relations on M1(R). They can all be introduced in a
parallel way saying that µ ∈M1(R) is smaller than or equal to µ′ ∈M1(R) if∫

R

ϕdµ ≤
∫
R

ϕdµ′ (3.1)

for every ϕ in a certain positive cone of measurable test functions. These orders and the
corresponding cones are:
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• The positive order: µ ≤+ µ′ if (3.1) holds for all non-negative ϕ.

• The convex order: µ ≤c µ′ if (3.1) holds for all convex ϕ.

• The convex-positive order: µ ≤c,+ µ′ if (3.1) holds for all non-negative convex ϕ.

• The convex-stochastic order: µ ≤c,s µ′ if (3.1) holds for all increasing convex ϕ.

Both non-negative and convex functions are bounded from below by an affine function
and thus, since the first moments are finite, the integrals in (3.1) are well-defined with
values in (−∞,∞]. The positive order is well-defined for finite measures on a measurable
space (e.g. RT ). Moreover, recall from the introduction that we call π a submeasure of
π′ if π ≤+ π′.

The convex-positive order and the convex-stochastic order are less common in the
literature. For a discussion of these “combined” partial order relations and the relation-
ships between them we refer to [36, Section 1] and especially Theorem 1.7 therein.

Lemma 3.1. Let µ and µ′ be inM1(R).

(i) If µ ≤c µ′, then µ(R) = µ′(R) and
∫
R
y dµ(y) =

∫
R
y dµ′(y).

(ii) If µ ≤c,+ µ′ and µ(R) = µ′(R), then µ ≤c µ′.
(iii) If µ ≤c,s µ′ and

∫
R
y dµ(y) =

∫
R
y dµ′(y), then µ ≤c µ′.

Proof. Item (i): The four functions x 7→ ±1 and x 7→ ±x are convex functions.

Item (ii): If µ ≤c,+ µ′ and µ(R) = µ′(R), equation (3.1) is satisfied for every non-
negative convex function and also for x 7→ −1. Thus (3.1) is satisfied for any convex
function that is bounded from below. Hence, for a general convex function ϕ with∫
R
ϕdµ′ < +∞, (3.1) holds for ϕn = ϕ∨ (−n) and by the monotone convergence theorem

it holds for ϕ as well.

Item (iii): We use a similar argument adding x 7→ −x to the set of nondecreasing
convex functions. Any convex function is the pointwise increasing limit of a sequence of
convex functions with limit slope bounded at −∞.

Lemma 3.2. Let µn, µ′n, µ, µ
′ ∈M1(R) for all n ∈ N.

(i) Suppose (µn)n∈N and (µ′n)n∈N converge to µ and µ′ under T0. If µn ≤+ µ′n for all
n ∈ N, then µ ≤+ µ′.

(ii) Suppose (µn)n∈N and (µ′n)n∈N converge to µ and µ′ under T1. For any order relation
≤c, ≤c,+ or ≤c,s represented by ≤, the relations µn ≤ µ′n for all n ∈ N imply µ ≤ µ′.

Proof. Item (i): It is sufficient to test the positive order by indicator functions of closed
intervals. For any such function ϕ there exists a sequence (ϕm)m∈N of continuous
bounded functions such that 0 ≤ ϕm ≤ ϕ for all m ∈ N and

∫
R
ϕdµ = limm→∞

∫
R
ϕm dµ.

Since convergence in T0 implies
∫
R
ϕm dµ = limn→∞

∫
R
ϕm dµn for all m ∈ N, the claim

follows.

Item (ii): For any (non-negative/increasing) convex function ϕ ∈ L1(µ), there exists a
sequence (ϕm)m∈N of (non-negative/increasing) convex functions with bounded slope at
±∞ such that ϕm ≤ ϕ for all m ∈ N and

∫
ϕdµ = limm→∞

∫
ϕm dµ. Since the slope of

ϕm is bounded, there exist am, bm > 0 such that |ϕm(x)| ≤ am|x|+ bm for all x ∈ R and
hence the claim follows because the sequences converge w.r.t. T1 (cf. Subsection 3.1).

Note that convergence in T0 does in general not preserve the order relations ≤c, ≤c,+
and ≤c,s. However, a sequence that is convergent under T0 and has a uniform upper
bound in ≤c,+, is in fact convergent under T1:
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Lemma 3.3. Let (µn)n∈N be a sequence inM1(R). If there exists a measure θ ∈M1(R)

such that µn ≤c,+ θ for all n ∈ N, then the sequence (µn)n∈N is uniformly integrable, i.e.

lim
N→∞

sup
n∈N

∫
R

|x|1[−N,N ]c dµn(x) = 0.

Hence, (µn)n∈N converges under T0 if and only if (µn)n∈N converges under T1. Moreover,
if (µn)n∈N converges under T0 to µ ∈ M1(R), then it holds

∫
f dµn →

∫
fdµ for all

continuous f for which |f | is dominated by some convex ϕ ∈ L1(θ).

Proof. If ϕ ∈ L1(θ) and |f | ≤ ϕ it holds that∫
R

|f |1[−N,N ]c dµn ≤
∫
R

(ϕ+ |x| −N)+ dθ

from which the results easily follows.

Dealing with the convex order, potential functions are a very useful representation of
finite measures on R. They are defined as follows:

Definition 3.4. Let µ ∈M1(R). The potential function of µ is the function

U(µ) : R 3 x 7→
∫
R

|y − x|dµ(y) ∈ R+.

Since elements ofM1(R) have finite first moments, the potential function is always
well-defined. We collect a few important properties of potential functions below.

Lemma 3.5 (cf. [13, Proposition 4.1]). Let m ∈ [0,∞) and x∗ ∈ R. For a function
u : R→ R the following statements are equivalent:

(i) There exists a finite measure µ ∈ M1(R) with mass µ(R) = m and barycenter
x∗ =

∫
R
x dµ(x) such that U(µ) = u.

(ii) The function u is non-negative, convex and satisfies

lim
x→±∞

u(x)−m|x− x∗| = 0. (3.2)

Moreover, for all µ, µ′ ∈M1(R) we have µ = µ′ if and only if U(µ) = U(µ′).

Convex ordering and convergence inM1(R) can be expressed via potential functions.

Lemma 3.6. For all µ, µ′ and sequences (µn)n∈N inM1(R) with µ(R) = µ′(R) = µn(R)

for all n ∈ N, we have the following properties:

(i) It holds µ ≤c µ′ if and only if U(µ) ≤ U(µ′).

(ii) It holds µn → µ under T1 if and only if U(µn)→ U(µ) pointwise.

Proof. Since for every x ∈ R the function fx : y 7→ |y− x| is convex the direct implication
of (i) is obvious. The reverse implication is part of the folklore (see e.g Exercise 1.7
of [27]). It can be proved as follows: let C be the cone of real functions f for which∫
f dµ ≤

∫
f dµ′. It includes the constants and also the functions fx, x ∈ R. Considering

both sequences (f±n − n)n∈N, by the monotone convergence theorem we obtain ±x ∈ C.
Hence C contains any piecewise (we mean with finitely many pieces) affine convex
function. By the monotone convergence theorem again we see that every convex function
is in C.

Since fx is affine close to ±∞, the direct implication of (ii) is obvious. For the reverse
implication, since all measures have the same finite mass and U(µn)(0) → U(µ)(0) we
have

∫
fdµn →n∈∞

∫
fdµ for x 7→ 1 and x 7→ |x|. Therefore it suffices to establish the
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convergence for every continuous and compactly supported function f . Notice that the
vectorial space spanned by the functions fx and the constant functions includes the
continuous and piecewise affine functions with compact support. Hence we can conclude
by their density in Cc(R) for the uniform norm.

Specified to families monotonously increasing in convex-stochastic order, the second
part of the previous lemma yields the following result.

Corollary 3.7. Let T ⊂ R and (µt)t∈T be a family inM1(R) that is increasing in convex-
stochastic order, i.e. µs ≤c,s µt for all s ≤ t in T . There exists a countable set S ⊂ T such
that t 7→ µt is a continuous map from T \ S toM1(R) under T1.

Proof. For all q ∈ Q the function

t 7→ U(µt)(q) =

∫
R

|y − q|dµt(y) = 2

∫
R

(y − q)+ dµt(y)−
∫
R

(y − q) dµt(y) (3.3)

is continuous except on a countable set Sq because it is the difference of two functions
that are monotonously increasing in t. Set S =

⋃
q∈Q Sq. Observe that ūt := lims↓t U(µs)

is a well defined convex function as a pointwise limit of convex functions. This limit
exists by monotonicity in t of the integrals in (3.3). Also ut(x) := U(µt)(x) is a convex
function and we get ūt = ut on Q for all t 6∈ S. Since both ūt and ut are continuous as
convex functions this equality extends to R. Similarly, it holds limr↑t U(µr)(x) = U(µt)(x)

for all x ∈ R and t 6∈ S. Thus, the map t 7→ U(µt)(x) is continuous for every x ∈ R at any
time t 6∈ S. This transfers to the continuity of t 7→ µt outside of S by Lemma 3.6 (ii).

Despite monotonicity, a family increasing in convex-stochastic order does in general
not admit left- and right-limits everywhere under T1. For instance, the family (µt)t∈[0,1]

with

µt =
1− t2

2− t2
δ− 1

1−t
+

1

2− t2
δ1+t µ1 = δ2

does not have a left-limit at 1.

3.3 Infimum and supremum in convex order

Definition 3.8. Let A be a set of measures inM1(R). If A possesses a smallest upper
bound w.r.t. convex order, we call it the convex supremum of A and denote it by Csup A.
It is then the unique measure ζ such that

(i) µ ≤c ζ for all µ ∈ A and

(ii) ζ ≤c ζ ′ for all ζ ′ that satisfy (i).

Similarly, we define Cinf A as the convex infimum, if it exists.

Proposition 3.9. Let A be a non-empty subset ofM1(R) such that all measures in A
have the same mass and the same barycenter.

(i) The convex infimum Cinf A exists.

(ii) If there exists some θ ∈ M1(R) such that µ ≤c,+ θ holds for all µ ∈ A, then the
convex supremum CsupA exists.

Moreover, their potential functions satisfy

U(Cinf A) = conv

(
inf
µ∈A

U(µ)

)
and U(CsupA) = sup

µ∈A
U(µ).

where conv(f) denotes the convex hull of a function f , i.e. the largest convex function
that is pointwise smaller than f .
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Proof. Item (i): Since the measures of A all have the same mass m and barycenter x and
U(mδx) is convex, the set {g : g convex, g ≤ infµ∈A U(µ)} is not empty. Let u be defined
by u(x) = sup{g(x) : g convex, g ≤ infµ∈A U(µ)}. It is convex as the pointwise supremum
of convex functions and U(mδx) ≤ u ≤ U(µ) for any fixed µ ∈ A. Hence u possesses the
right behaviour at ±∞ in the sense of Lemma 3.5. Therefore u is a potential function and
the corresponding measure satisfies the properties of a convex infimum by Lemma 3.6
(i).

Item (ii): According to [13, Lemma 4.5] applied to mδx and θ the ordering mδx ≤c,+ θ

implies that there exists a θ′ ∈ M1(R) with mδx ≤c θ′ such that for all η ∈ M1(R)

with mδx ≤c η ≤c,+ θ we have η ≤c θ′. More precisely if, if θ(R) = m we choose
θ′ = θ. If not, there exists a ≤ a′ and b, b′ with b ∈ [0, θ({a})], b′ ∈ [0, θ({a′})] such that
θ′ = θ|(−∞,a) + bδa + b′δa′ + θ|(a′,+∞).

In particular, we obtain U(mδx) ≤ U(µ) ≤ U(θ′) for every µ ∈ A and therefore the
convex function u = supµ∈A U(µ) satisfies U(mδx) ≤ u ≤ U(θ′). Thus, u has the right
behaviour at ±∞ in the sense of Lemma 3.5. Hence, by Lemma 3.5 u is a potential
function and the corresponding measure satisfies the properties of a convex supremum
(see Lemma 3.6 (i)).

Remark 3.10. The assumption that all measures in A have the same mass and barycen-
ter is equivalent to the assumption that A has a lower bound w.r.t. the convex order.
Hence, we don’t need an additional lower bound in (i).

Lemma 3.11. Let (µn)n∈N be a sequence inM1(R).

(i) If µm ≤c µn for all n ≤ m in N, then (µn)n∈N converges to Cinf{µn : n ∈ N} under
T1.

(ii) If µn ≤c µm ≤c,+ θ for all n ≤ m in N and some θ ∈M1(R), then (µn)n∈N converges
to Csup{µn : n ∈ N} under T1.

(iii) If (µ′n)n∈N is another sequence in M1(R) and both sequences are increasing in
convex-oder and are uniformly bounded from above in convex-positive order, then

Csup {µn + µ′n : n ∈ N} = Csup {µn : n ∈ N}+ Csup {µ′n : n ∈ N} .

Proof. With Proposition 3.9 and Lemma 3.6 we can rewrite this statement in terms of
sequences of real functions and then the statement is well known.

Lemma 3.12. Let A be a non-empty subset of M1(R) such that all measures in A
have the same mass, the same barycenter and are dominated by some θ ∈ M1(R) in
convex-positive order. If additionally for all µ1, µ2 ∈ A there exists some µ′ ∈ A such
that µ1 ≤c µ′ and µ2 ≤c µ′, then there exists an increasing sequence (µn)n∈N in A that
converges to Csup A under T1.

Proof. The potential function of CsupA is given by u = supµ∈A U(µ). For any q ∈ Q there
exists a sequence (νqk)k∈N of measures in A such that for the corresponding potential
functions uqk = U(νqk) the sequence (uqk(q))k∈N converges to u(q).

Let (qn)n∈N be an enumeration of Q, set µ1 = νq11 and choose a µn ∈ A that is an
upper bound in convex order to the finite set

{µn−1} ∪ {νqlk : 1 ≤ k, l ≤ n}

which is possible by assumption. Thereby, we get an increasing sequence in A that
satisfies limn→∞ U(µn)(q) = u(q) for all q ∈ Q. Since (µn)n∈N is increasing in convex
order, limn→∞ U(µn)(x) = supn∈N U(µn)(x) for all x ∈ R. Thus, supn∈N U(µn) and u are
convex functions that agree on Q and, hence, on R. Hence, limn→∞ U(µn)(x) = u(x) for
all x ∈ R and we can apply Lemma 3.6 (ii) to conclude that (µn)n∈N converges to CsupA
under T1.
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3.4 Peacocks and Kellerer’s theorem

In this section we introduce notation regarding peacocks and martingale measures.
We fix a totally ordered index set (T,≤). As already indicated in Subsection 3.1,

we are not working on the level of processes but with their distributions on the state
space RT . However, we would like to introduce the martingale property and the Markov
property that are typically formulated for processes indexed by T and not probability
measures on RT .

Definition 3.13. Let π ∈ P1(RT ).

(i) We call π a martingale measure if the canonical process (Xt)t∈T is a martingale
w.r.t. its natural filtration under π, i.e. if

Eπ [Xt | Fs] = Xs π-a.e.

for all s ≤ t in T . The set of all martingale measures on RT is denoted by MT .

(ii) The probability measure π is said to be Markov if the canonical process (Xt)t∈T is
a Markov process under π, i.e. if

Eπ [1A(Xt)|Fs] = Eπ [1A(Xt)|Xs] π-a.e.

for all Borel sets A ⊂ R and s < t in T .

We equip MT with the topology inherited from T1 on P1(RT ) and the corresponding
Borel σ-algebra. All subsets of MT are equipped with the subspace topology and sub-
space σ-algebra.2 By Jensen’s inequality, the marginal distributions (Lawπ(Xt))t∈T of a
martingale measure π form a family in P1(R) that is increasing in convex order. Recall
from the introduction that those families are called peacocks:

Definition 3.14. We call a family (µt)t∈T in P1(R) a peacock, if µs ≤c µt for all s ≤ t

and we denote by PT the set of all peacocks indexed by T . Moreover, we say that a
martingale measure π is associated with a peacock (µt)t∈T if Lawπ(Xt) = µt for all t ∈ T .

Since all elements of a family of finite measures increasing in convex order have the
same mass (not always 1) by Lemma 3.1 (i), they can therefore easily be rescaled to
become peacocks. We equip PT with the inherited product topology on P1(R)T where
each factor P1(R) is equipped with T1. The corresponding Borel σ-algebra is the product
σ-algebra.

Definition 3.15. Let S ⊂ T and (µt)t∈S be a family in P1(R). By MT ((µt)t∈S) we denote
the set of all martingale measures π ∈ MT satisfying Lawπ(Xt) = µt for all t ∈ S.

Thanks to the following result we know precisely when MT ((µt)t∈T ) is not empty.

Proposition 3.16 (Kellerer’s Theorem [40, 41]). Let (µt)t∈T be a family in P1(R). The
following are equivalent:

(i) The family (µt)t∈T is a peacock.

(ii) There exists a martingale measure π ∈ MT ((µt)t∈T ) which can moreover be chosen
to be Markov.

The existence of solutions to the peacock problem is also true for martingales on Rd

with d ≥ 2 (cf. [27]) but it is still an open problem whether in this case the martingale
can be chosen to be Markov. An extension to partially ordered sets of indices is possible
but only in certain cases (cf. [35]).

2Recall that the Borel σ-algebra of the subspace topology coincides with the subspace σ-algebra of the Borel
σ-algebra corresponding to the topology on the ambient space.

EJP 27 (2022), paper 127.
Page 17/62

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP846
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Shadow martingales

4 Parametrizations, shadows, and NSI

The goal of this section is to introduce the three concepts that are crucial on the
one hand for the construction of the shadow martingales, namely parametrizations and
obstructed shadows, and on the other hand for the uniqueness of the shadow martingale
measure, namely the NSI property, cf. Subsection 1.3. Throughout this section we fix a
totally ordered set (T,≤).

4.1 Parametrizations

Definition 4.1. Let X be a measurable space and µ ∈ P0(X). A family (µα)α∈[0,1] in
M0(X) is called a parametrization of µ if

(i) µα(X) = α for all α ∈ [0, 1],

(ii) µα ≤+ µα
′

for all α ≤ α′ in [0, 1] and

(iii) µ1 = µ.

Each parametrization of a probability measure µ can be seen as an explicit coupling
of µ with a uniformly distributed random variable on [0, 1] that is added to the probability
space. Recall, that λ denotes the Lebesgue measure on [0, 1].

Remark 4.2. Let X be a measurable space, µ ∈ P0(X) and (µα)α∈[0,1] a family of finite
measures on X. The following are equivalent:

(i) The family (µα)α∈[0,1] is a parametrization of µ.

(ii) There exists a coupling ξ of λ and µ with ξ([0, α]×B) = µα(B) for all α ∈ [0, 1] and
measurable sets B ⊂ E.

Clearly, the coupling ξ is uniquely determined by (µα)α∈[0,1] and vice versa.

Lemma 4.3. Let X be a measurable space, µ, ν ∈ P0(X), (µα)α∈[0,1] a parametrization of
µ and (να)α∈[0,1] a parametrization of ν. If µα = να for all α in a dense subset A of [0, 1],
then µα = να for all α ∈ [0, 1] and, in particular, µ = ν.

Proof. Let α ∈ (0, 1] and (αn)n∈N a sequence in A with αn ↑ α. Remark 4.2 yields that

µα(B) = lim
n→∞

µαn(B) and να(B) = lim
n→∞

ναn(B)

for all measurable sets B ⊂ X.

Given a specific peacock, the degree of freedom in our construction (Theorem 1.5) is
the choice of a parametrization of the initial marginal. Hence, our primary motivation
to consider general (non-interval based) parametrizations of probability measures is to
enlarge the set of possible input choices. For instance, an initial distribution that contains
atoms cannot satisfy condition (i) in Corollary 1.1. The concept of parametrizations
allows us to break these atoms into a continuum of quantiles.

4.1.1 Convex parametrizations

Definition 4.4. Let µ be in P1(R). A parametrization (να)α∈[0,1] of µ is said to be
≤c,s-convex if

να2 − να1

α2 − α1
≤c,s

να3 − να2

α3 − α2
(4.1)

for all α1 < α2 < α3 in [0, 1].
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Since both sides of inequality (4.1) can be interpreted as the slopes of secant lines of
α 7→ να on [α1, α2] and [α2, α3], the inequality yields that α 7→ να is convex in this sense.
Moreover, property (4.1) is equivalent to α 7→

∫
ϕdνα being convex for all increasing

convex functions ϕ : R→ R.

Lemma 4.5. Let µ ∈ P1(R) and (να)α∈[0,1] be a parametrization of µ. If there exists a
sequence of nested intervals (Iα)α∈[0,1] in R such that

(i) sup Iα < +∞ and supp(να) ⊂ Iα for all α ∈ [0, 1),

(ii) supp(να2 − να1) ⊂ Iα1

c for all α1 < α2 in [0, 1] and

(iii) α 7→
∫
R
y dνα(y) is convex,

then the parametrization (να)α∈[0,1] is ≤c,s-convex.

Proof. For all α1 < α2 < α3 in [0, 1] the measure ν̄1,2 := να2−να1

α2−α1
is concentrated on Iα2

by (i) and ν̄2,3 := να3−να2

α3−α2
is concentrated on the closure of the complement Iα2

c by
(ii). Moreover, both of theses measures are probability measures and their barycenters
satisfy ∫

R

y dν̄1,2(y) ≤
∫
R

y dν̄2,3(y)

because α 7→
∫
R
y dνα(y) is convex by property (iii). Let ϕ : R→ R be a convex increasing

function. Since Iα2 is bounded from above, there exists an increasing affine function
l(y) = ay + b with ϕ ≤ l on Iα2 and ϕ ≥ l on Iα2

c. Thus, by using a ≥ 0 we obtain∫
R

ϕdν̄1,2 ≤
∫
R

l dν̄1,2 = a

∫
R

y dν̄1,2(y) + b

≤ a
∫
R

y dν̄2,3(y) + b =

∫
R

l dν̄2,3 ≤
∫
R

ϕdν̄2,3.

Lemma 4.6. The following parametrizations of µ ∈ P1(R) are ≤c,s-convex:

(i) The left-curtain parametrization (ναlc)α∈[0,1] with

ναlc = µ|(−∞,F−1
µ (α)) + (α− µ[(−∞, F−1

µ (α)]])δF−1
µ (α).

(ii) The middle-curtain parametrization (ναmc)α∈[0,1] with

ναmc = µ|(qα,q′α) + cαδqα + c′αδq′α

for qα ≤ q′α in R and cα, c′α ∈ [0, 1] such that ναmc(R) = α and
∫
y dναmc =

∫
y dµ.

(iii) The sunset parametrization (ναsun)α∈[0,1] with ναsun = αµ.

Proof. For item (iii), we have 1
α2−α1

(να2
− να1

) = µ for all α1 < α2 in [0, 1].

For item (i) and item (ii) we can apply Lemma 4.5 because both α 7→
∫
R
y dναlc(y) and

α 7→
∫
R
y dναmc(y) are convex functions. Indeed, it holds

1

α2 − α1

(∫
R

y dνα2

lc −
∫
R

y dνα1

lc

)
≤ F−1

µ (α2) ≤ 1

α3 − α2

(∫
R

y dνα3

lc −
∫
R

y dνα2

lc

)
for all α1 < α2 < α3 in [0, 1] and α 7→

∫
R
y dναmc(y) =

∫
R
y dµ is constant.
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4.1.2 Probability measures on RT

To be able to describe the evolution of a submeasure of the initial measure under some
π ∈ MT we need to consider parametrizations of π as well.

Definition 4.7. Let π in P1(RT ).

(i) Let (να)α∈[0,1] be a parametrization of the initial marginal Lawπ(X0). A family
(πα)α∈[0,1] inM1(RT ) is called a parametrization of π w.r.t. (να)α∈[0,1] if (πα)α∈[0,1]

is a parametrization of π with πα(X0 ∈ ·) = να for all α ∈ [0, 1].

(ii) A parametrization (πα)α∈[0,1] of π is called a martingale parametrization of π, if
1
απ

α ∈ MT for all α ∈ (0, 1].

Remark 4.8. Let π be in P1(RT ) and (να)α∈[0,1] be a parametrization of the initial
marginal Lawπ(X0). Moreover, let (πα)α∈[0,1] be a parametrization of π w.r.t. (να)α∈[0,1].
It is not difficult to prove that for any α ∈ [0, 1], for which there exists a Borel set A ⊂ R
with να = (µ0)|A, it holds πα = αLawπ(X|X0 ∈ A).

Remark 4.8 suggests that we can interpret πα as the way να is transported under
π, i.e. we can see πα(Xt ∈ ·) as a formal version of ‘αLawπ(Xt|X0 ∈ να)’. However, one
has to be careful with this informal notation because contrarily to αLawπ(X|X0 ∈ A)

that is uniquely defined, there can be several parametrizations (πα)α∈[0,1] of the same
measure π w.r.t. (να)α∈[0,1], each giving another meaning to αLawπ(Xt|X0 ∈ να). This is
illustrated in Example 4.9 just below. Hence, the correct interpretation of the existence
of a parametrization (πα)α∈[0,1] of π w.r.t. (να)α∈[0,1] is that να = Lawπα(X0) can be
transported according to πα as part of the dynamic given by π.

Example 4.9. Let (µt)t≥0 be a peacock, (ναsun)α∈[0,1] be the sunset parametrization of
µ0 and let π ∈ P1(R[0,∞) be associated with (µt)t≥0. Let (πα)α∈[0,1] be a (martingale)
parametrization of π w.r.t. (ναsun)α∈[0,1]. For α ∈ [0, 1], set ρα = π − π1−α. Assume that
there is ᾱ ∈ (0, 1) such that πᾱ 6= ρᾱ. Then, the family (ρα)α∈[0,1] is again a (martingale)
parametrization of π w.r.t. (ναsun)α∈[0,1] but different from (πα)α∈[0,1]. For a concrete
example one can choose (µt)t≥0, π and (πα)α∈[0,1] as in Example 8.11.

Remark 4.10. In the last example the assumption that there is a martingale parametriza-
tion satisfying πᾱ 6= ρᾱ for some ᾱ ∈ [0, 1] is always satisfied as soon as the peacock is
not NSI (see § 4.3). NSI peacocks are extremal elements in the set of peacocks with
fixed initial marginal so that they are in a certain sense rare (see Lemma 4.27).

4.2 Shadows

The concept of the shadow of a measure ν through a family of finite measures is
at the center of our construction (cf. Section (1.3)). After recalling previous results
of Beiglböck and Juillet [13] and Nutz, Stebegg and Tan [46] for simple and finitely
obstructed shadows, we establish in Proposition 4.19 the existence of an obstructed
shadow in the generality required for our setup.

4.2.1 The simple shadows

We start by recalling the original concept of (simple) shadows developed in [13]. Given
two finite measures ν and µ on R, the shadow of ν in µ is defined as the minimum in
convex order among all submeasure of µ that are in convex order larger than ν. More
precisely:

Proposition 4.11 (cf. [13, Lemma 4.6]). Let ν, µ ∈ M1(R) satisfying ν ≤c,+ µ. There
exists a unique finite measure η such that

(i) ν ≤c η,
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(ii) η ≤+ µ and

(iii) for all η′ ∈M1(R) with ν ≤c η′ ≤+ µ it holds η ≤c η′.

The measure η is denoted by Sµ(ν) and called the shadow of ν in µ.

For a detailed proof we refer to [13]. We only stress that the proof is based on
potential functions and the potential function of the shadow has an explicit expression in
terms of the potential functions of ν and µ stated in the following lemma:

Lemma 4.12. Let ν, µ ∈M1(R) with ν ≤c,+ µ. It holds

U(Sµ(ν)) = U(µ)− conv(U(µ)− U(ν))

where conv(f) denotes the convex hull of a function f , i.e. the largest convex function
that is pointwise smaller than f . Moreover if µ ≤c µ′ it holds

U(Sµ
′
(ν))− U(Sµ(ν)) ≤ U(µ′)− U(µ).

Proof. The first formula has been brought to our attention by Mathias Beiglböck, for
a proof we refer to [11]. The second follows from an application of the first identity
(for µ and µ′) together with the inequality conv(U(µ′)− U(ν)) ≥ conv(U(µ)− U(ν)) since
µ ≤c µ′.

This result allows one to explicitly calculate shadows. However, in simple situations
one does not need to calculate potentials as the following example shows.

Example 4.13. Let ν ≤c,+ µ inM1(R) such that µ is atomless. If

(i) ν = αδx for some α ≥ 0 and x ∈ R or

(ii) there exists an interval I ⊂ R with supp(ν) ⊂ I and supp(µ) ⊂ Ic,

then there exists an interval J such that Sµ(ν) = µ|J . See [13, Example 4.7] for the proof
of (i). For (ii) consider the shadow of αδx in µ as in (i) where α, x are the mass and the
barycenter of ν, respectively. Since supp(ν) ⊂ I, it holds ν ≤c Sµ(αδx) (see [13, Example
4.2]) and thus Sµ(ν) = Sµ(αδx) = µJ for some interval J .

For measures µ that posses atoms these examples can easily be adapted adding to
µ|J one or two atomic masses at the end points of the interval J .

The calculation rule (ii) in Proposition 4.14 below is one of the key tools to deal
with shadows. Apart from its importance for proofs of more advanced properties of the
shadow it provides us together with Example 4.13 with an alternative (to Lemma 4.12)
and simple way to calculate or approximate shadows iteratively in concrete examples.

Proposition 4.14. Let ν ≤c,+ µ inM1(R).

(i) For all α > 0 it holds αν ≤c,+ αµ and Sαµ(αν) = αSµ(ν).

(ii) For all ν1 + ν2 = ν we have ν2 ≤c,+ µ− Sµ(ν1) and Sµ(ν) = Sµ(ν1) + Sµ−Sµ(ν1)(ν2).

Proof. Item (i) is clear by construction of the shadow. Item (ii) is [13, Theorem 4.8].

Lemma 4.15. Let ν, ν′ ≤c,+ µ.

(i) If ν ≤c ν′, then Sµ(ν) ≤c Sµ(ν′).

(ii) If ν ≤+ ν′, then Sµ(ν) ≤+ Sµ(ν′).

(iii) If ν ≤c,s ν′, then Sµ(ν) ≤c,s Sµ(ν′).
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Proof. Item (i) is a direct consequence of the minimality property of Sµ(ν) and (ii) is
a direct consequence of Proposition 4.14 (ii). If ν ≤c,s ν′, then similar to the shadow,
the set {η : ν ≤c,s η ≤+ µ} has a minimal element w.r.t. the convex-stochastic order
that we denote by η∗ (cf. [45, Lemma 6.2] for decreasing instead of increasing functions
in the definition of ≤c,s). The minimality implies both η∗ ≤c,s Sµ(ν) and η∗ ≤c,s Sµ(ν′).
Moreover, we have ∫

R

y dSµ(ν)(y) =

∫
R

y dν(y) ≤
∫
R

y dη∗(y).

Hence, η∗ = Sµ(ν) by Lemma 3.1 (iii) and we conclude.

4.2.2 The obstructed shadow

We now turn to the definition of obstructed shadows. They can conveniently be con-
structed as a convex supremum over finitely obstructed shadows that were introduced
by Nutz, Stebegg, and Tan in [46]. Recall that (T,≤) is a totally ordered set. Moreover,
we fix a family of measures (µt)t∈T inM1(R). To keep the notation compact we will

• denote (µt)t∈S by µS for all subsets S ⊂ T and

• use the abbreviation Tt = {s ∈ T : s ≤ t}.

This notation will be used in all following sections.

Definition 4.16. Let ν ∈ M1(R) and S ⊂ T . We say ν ≤c,+ µS if there exists a family
(ηt)t∈S such that

(i) ν ≤c,+ ηt for all t ∈ S,

(ii) ηs ≤c ηt for all s ≤ t in S and

(iii) ηt ≤+ µt for all t ∈ S.

Remark 4.17. If T = {?} is a singleton, Definition 4.16 coincides with the one of ≤c,+
in Section 3.2 by choosing η? = ν. Moreover, if ν ≤c,+ µT , then ν ≤c,+ µS for all S ⊂ T .

In the case that T is finite, it was observed in [46] that one can recursively define an
obstructed shadow through finitely many marginals.

Lemma 4.18 ([46, Lemma 6.7]). Let R = {r1 ≤ . . . ≤ rn} be a finite subset of T and
ν ≤c,+ µR. We define inductively the (obstructed) shadow of ν through µR by

Sµr1 ,...,µrn (ν) = Sµrn (Sµr1 ,...,µrn−1 (ν)).

The measure Sµr1 ,...,µrn (ν) is the unique minimal element of the set

{ηrn | (ηr)r∈R : ν ≤c ηr ≤c ηr′ ≤+ µr′ for all r ≤ r′ in R} (4.2)

w.r.t. the convex order ≤c. In particular, Sµr1 ,...,µrn (ν) ≤+ µrn .

Proof. This can be easily shown by induction over n ≥ 2 using Proposition 4.11 and
Lemma 4.15. Alternatively, see [46, Lemma 6.7].

By comparing (4.2) with Proposition 4.11, we see that Sµr1 ,...,µrn (ν) is the shadow
of ν in µrn obstructed by the additional finitely many marginals µr1 , . . . , µrn−1 . Figure 2
illustrates that an additional obstructing marginal can force the shadow to “spread out”
(in convex order).

Taking the convex supremum over all choices of finite subsets R ⊂ T yields the
obstructed shadow of ν through µT .
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Figure 2: The striped red area represents the obstructed shadow of ν in µ1 and (µ1, µ2)

(left) and the simple shadow of ν in µ2 (right).

Proposition 4.19. Let ν ∈ M1(R) with ν ≤c,+ µT and suppose there exists θ ∈ M1(R)

such that µt ≤c,+ θ for every t ∈ T . Then, the set

{Sµr1 ,...,µrn (ν) : {r1 < . . . < rn} ⊂ T, n ≥ 1}

admits a convex supremum. This is called the (general obstructed) shadow of ν through
µT and is denoted by SµT (ν). Moreover, there exists a sequence (Rn)n∈N of nested finite
subsets of T such that (SµRn (ν))n∈N converges to SµT (ν) under T1.

Proof. By Lemma 4.18, Sµr1 ,...,µrn (ν) is increasing in convex order, if we add additional
marginals as obstructions. Thus, for all finite R = {r1, . . . , rn} ⊂ T it holds that SµR(ν) =

Sµr1 ,...,µrn (ν), and therefore SµR(ν) ≤+ µrn ≤c,+ θ. Consequently, the convex supremum
exists by Proposition 3.9 (ii).

Again by Lemma 4.18, it holds SµR1 (ν) ≤c SµR1∪R2 (ν) and SµR2 (ν) ≤c SµR1∪R2 (ν) for
all finite R1, R2 ⊂ T . Thus, by Lemma 3.12, there exists a sequence of finite sets (Rn)n∈N
such that (SµRn (ν))n∈N converges under T1 to the convex supremum. Moreover, one
can easily show that R′n =

⋃n
i=1Ri is a nested sequence of finite subsets of T for which

(SµR′n (ν))n∈N converges to SµT (ν) because SµRn (ν) ≤c SµR′n (ν) ≤c SµT (ν) for all n ∈ N
and the convex order is preserved under convergence w.r.t. T1 (see Lemma 3.2).

Proposition 4.19 extends the definitions in Lemma 4.18 and Proposition 4.11 in two
ways: Firstly, it allows for infinitely, even uncountably, many obstructions. Secondly, the
family µT does not have to be increasing in convex order.

For the remaining part of Section 4.2.2 we will always assume that there exists some
θ ∈M1(R) with µt ≤c,+ θ for all t ∈ T . If T has a maximal element and µT is a peacock
this property is automatically satisfied. The following lemma collects some important
consequences of Proposition 4.19:

Lemma 4.20. Let ν ≤c,+ µT .

(i) For all S ⊂ S′ ⊂ T we have SµS (ν) ≤c SµS′ (ν).

(ii) If (Sn)n∈N is a sequence of subsets of T such that (SµSn (ν))n∈N converges to SµT (ν)

under T1, the same holds for any sequence (S′n)n∈N of subsets of T with Sn ⊂ S′n
for all n ∈ N.

(iii) Let (Sn)n∈N be a nested sequence of sets with T =
⋃
n∈N Sn. Then (SµSn (ν))n∈N

converges to SµT (ν) under T1.

(iv) It holds SµT (ν) = Csup {SµTu (ν) : u ∈ T}.
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(v) For all t ∈ T it holds SµTt (ν) ≤+ µt.

Proof. For the case of finite subsets S, S′, Sn, S′n of T , we have already shown items (i)
and (ii) in the proof of Proposition 4.19. The items (i)–(v) are simple consequences of
these two properties together with Proposition 4.19 and Lemma 3.2.

Proposition 4.19 does not require that T admits a maximal element. However, if such
a maximal element exists, then we can recover an analogue of (4.2):

Proposition 4.21. Let ν ≤c,+ µT . For all u ∈ T ,

SµTu (ν) = Cinf {ηu : (ηt)t∈Tu with ν ≤c ηs ≤c ηt ≤+ µt for all s ≤ t in Tu} (4.3)

and the infimum is attained by the family (ηt)t∈Tu = (SµTt (ν))t∈Tu .

Proof. Set ηt = SµTt (ν) for all t ∈ T . We know that ν ≤c SµTt (ν). Lemma 4.20 (i) shows
that SµTs (ν) ≤c SµTt (ν) for all s ≤ t and we have SµTt (ν) ≤+ µt by Lemma 4.20 (v). Thus,
SµTu (ν) has to be, in convex order, greater than or equal to the convex infimum on the
right-hand side of (4.3) for all u ∈ T .

Let u ∈ T and take a sequence (Rn)n∈N of finite subsets of Tu given by Proposi-
tion 4.19 such that (SµRn (ν))n∈N converges to SµTu (ν). Lemma 4.20 (ii) yields that for
R′n = Rn ∪ {u} the sequence of corresponding shadows converges to SµTu (ν) as well.
Any family (η′t)t∈Tu with η′ ≤c η′s ≤c η′t ≤+ µt for all s ≤ t in Tu satisfies

SµR′n (ν) = Cinf
{
η̃u | ∃(η̃t)t∈R′n : ν ≤c η̃s ≤c η̃t ≤+ µt for all s ≤ t in R′n

}
≤c η′u

where the equality is due to Lemma 4.18. Passing to the limit under T1, shows that
SµTu (ν) is smaller in convex order than the right-hand side of (4.3) by Lemma 3.2.

The following lemma generalizes Lemma 4.15 to obstructed shadows.

Lemma 4.22. Let ν, ν′ ≤c,+ µT .

(i) If ν ≤c ν′, then SµT (ν) ≤c SµT (ν′).

(ii) If ν ≤+ ν′, then SµT (ν) ≤+ SµT (ν′).

(iii) If ν ≤c,s ν′, then SµT (ν) ≤c,s SµT (ν′).

Moreover, for any peacock µ′T we have

(iv) if µt ≤+ µ′t for all t ∈ T , then ν ≤c,+ µ′T and Sµ′T (ν) ≤c SµT (ν).

Proof. Item (i)-(iii): By Proposition 4.19 and Lemma 4.20 (ii), we can find a sequence
of nested finite sets (Rn)n∈N such that both (SµRn (ν))n∈N converges weakly to SµT (ν)

and (SµRn (ν′))n∈N converges weakly to SµT (ν′). In any of the three cases we get
the desired relation between (SµRn (ν))n∈N and (SµRn (ν′))n∈N by inductively applying
Lemma 4.15. Since all of the three order relations are preserved under convergence in
T1 by Lemma 3.2, we have shown the claim.

Item (iv) is an immediate consequence of Proposition 4.21 and Lemma 4.20 (iv).

Lemma 4.23. Let ν ≤c,+ µT and α > 0. Then αν ≤c,+ αµT and SαµT (αν) = αSµT (ν), i.e.
the convex supremum is positively 1-homogeneous.

Proof. For all α > 0 and all η, η′ ∈M1(R) it holds η ≤c η′ if and only if αη ≤c αη′.

Proposition 4.24. Let ν1, ν2 ∈ M1(R) with ν = ν1 + ν2 ≤c,+ µT . It holds ν1 ≤c,+ µT ,
ν2 ≤c,+ (µt − SµTt (ν1))t∈T and

SµT (ν1 + ν2) = SµT (ν1) + S(µt−S
µTt (ν1))t∈T (ν2).
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Proof. First assume that T is finite. In this case the claim follows from applying
Lemma 4.14 (ii) inductively |T | times.

Now suppose that T has a maximal element, i.e. T = Tu for some u ∈ T . Lemma 4.22
(ii) implies that (SµTt (ν)− SµTt (ν1))t∈Tu is a well-defined family inM1(R). We will show
that this sequence is increasing in convex order and greater than or equal to ν2. To this
end, let s, t ∈ Tu with s ≤ t and let (Rn)n∈N be a sequence of finite sets such that all
of the four sequences (Sµ(Rn)s (ν))n∈N, (Sµ(Rn)s (ν1))n∈N, (Sµ(Rn)t (ν))n∈N and Sµ(Rn)t (ν1)

converge to SµTs (ν), SµTs (ν1), SµTt (ν) and SµTt (ν1) respectively. Again, this sequence
can be constructed by using Proposition 4.19 in conjunction with Lemma 4.20 (ii). For
all n ∈ N we obtain by the initial considerations for finite index sets

Sµ(Rn)s (ν)− Sµ(Rn)s (ν1) = S(µr−S
µ(Rn)r (ν1))r∈(Rn)s (ν2)

≤c S(µr−S
µ(Rn)r (ν1))r∈(Rn)t (ν2) = Sµ(Rn)t (ν)− Sµ(Rn)t (ν1).

Letting n tend to infinity, this proves that (SµTt (ν)−SµTt (ν1))t∈Tu is increasing in convex
order and shows ν2 ≤c,+ (SµTt (ν)−SµTt (ν1))t∈Tu . Since additionally SµTt (ν)−SµTt (ν1) ≤+

µt − SµTt (ν1) for all t ∈ Tu, Proposition 4.21 yields

S(µt−S
µTt (ν1))t∈Tu (ν2) ≤c SµTu (ν)− SµTu (ν1).

Similarly, we can apply Proposition 4.21 to see

SµTu (ν) ≤c SµTu (ν1) + S(µt−S
µTt (ν1))t∈Tu (ν2).

and therefore both sides are equal.
In the general case, by Lemma 4.20 (iv) it holds

SµT (ν) = Csup
{
SµTu (ν1) + S(µt−S

µTt (ν1))t∈Tu (ν2) : u ∈ T
}

= Csup {SµTu (ν1) : u ∈ T}+ Csup
{
S(µt−S

µTt (ν1))t∈Tu (ν2) : u ∈ T
}

= SµT (ν1) + S(µt−S
µTt (ν1))t∈T (ν2)

where the second equality follows from Lemma 3.11 (iii) because both summands are
increasing in convex order as u increases (see Lemma 4.20 (i) and Lemma 4.22 (iv)).

Remark 4.25. In the previous proof we have shown that (SµTt (ν) − SµTt (ν1))t∈T is
increasing in convex order with ν2 ≤c,+ (SµTt (ν) − SµTt (ν1))t∈T . If ν1 + ν2 ≤c µs ≤c µt
for all s ≤ t in T , since SµTt (ν) = µt, this implies that (µt − SµTt (ν1))t∈T is increasing in
convex order with ν2 ≤c (µt − SµTt (ν1))t∈T .

4.3 Non self-improvable peacocks

After parametrizations and shadows, non self-improvable peacocks are the last
conceptual ingredient that we need for the proof of Theorem 1.5. Recall that (T,≤) is an
abstract totally ordered set with minimal element 0 ∈ T and that we use the notation
Tr = {s ∈ T : s ≤ r}.
Definition 4.26. A peacock (µt)t∈T is called non self-improvable (NSI) if for all peacocks
(ηt)t∈T with η0 = µ0 and ηt ≤+ 2µt for all t ∈ T , it holds µt ≤c ηt.

The following lemma explains the term “non self-improvable”. Indeed, Item (ii) in
Lemma 4.27 shows that an NSI peacock is minimal in convex order for an operation that
aims at reducing the peacock (µt)t∈T in convex order at every t ∈ T by rearranging the
mass constrained to be a submeasure of 2µt at every t ∈ T . In this sense NSI peacocks
cannot be “self-improved”.
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Lemma 4.27. Let (µt)t∈T be a peacock. The following are equivalent:

(i) (µt)t∈T is NSI.

(ii) For all t ∈ T it holds S(2µs)s∈Tt (µ0) = µt.

(iii) (µt)t∈T is an extreme point of the convex set

Kµ0 = {(ηt)t∈T | (ηt)t∈T is a peacock with η0 = µ0} .

Proof. (i)⇒ (iii): Assume that (µt)t∈T is NSI and (ηt)t∈T and (η′t)t∈T are peacocks with
η0 = µ0 = η′0 and µt = 1

2ηt + 1
2η
′
t for all t ∈ T . Then both inequalities ηt ≤+ 2µt and

η′t ≤+ 2µt hold for all t ∈ T . Hence, µt ≤c ηt and µt ≤c η′t by the NSI property. Combining
these two inequalities with η′t = 2µt − ηt, yields µt ≤c ηt ≤c µt for all t ∈ T , i.e µt = ηt.
Hence, (µt)t∈T is an extreme point of Kµ0

.
(iii)⇒ (ii): If (µt)t∈T is an extreme point of Kµ0

, applying first Lemma 4.23 with α = 2

and then Proposition 4.24 with ν1 = ν2 = µ0, we can rewrite µt as

µt = S(µt)s∈Tt (µ0) =
1

2
S(2µt)s∈Tt (2µ0) =

1

2
S(2µs)s∈Tt (µ0) +

1

2

(
2µt − S(2µs)s∈Tt (µ0)

)
for all t ∈ T . Both (S(2µt)t∈T (µ0))t∈T and (2µt − S(2µt)t∈T (µ0))t∈T are elements of Kµ0

(see Remark 4.25) and thus extremality yields

S(2µs)s∈Tt (µ0) = 2µt − S(2µs)s∈Tt (µ0)

for all t ∈ T and hence (µt)t∈T satisfies (ii).
(ii) ⇒ (i): Suppose (µt)t∈T satisfies (ii) and (ηt)t∈T is a peacock with η0 = µ0 and

ηt ≤+ 2µt for all t ∈ T . Then µt = S(2µs)s∈Tt (µ0) ≤c ηt for all t ∈ T by Proposition 4.21
and hence (µt)t∈T is NSI.

The key feature of non self-improvable peacocks is that there is only one martingale
measure associated with such peacocks, see Proposition 4.29 below. Even better this
martingale measure is necessarily Markov. On the downside, the NSI property is not
closed, as we show in Example 8.3.

Lemma 4.28. If (µt)t∈T is a peacock that is NSI, then under any π ∈ MT ((µt)t∈T ) the
canonical process is a Markov process.

Proof. Assume there exists π ∈ MT ((µt)t∈T ) for which the canonical process is not a
Markov process (in the sense of Definition 3.13 (ii)), i.e. there exist r < u and a Borel set
A ⊂ R such that Eπ[1A|Fr] is not π-a.e. equal to Eπ[1A|Xr]. Since Fr is the product σ-
algebra generated by the family (σ(Xs))s≤r, there exist n ∈ N, 0 ≤ r1 < . . . < rn ≤ r < u

in T such that

π[Xu ∈ A |Xr1 , . . . , Xrn , Xr] 6= π[Xu ∈ A |Xr]. (4.4)

For t ≥ r, let kt be a regular version of π[Xt ∈ · |Xr1 , . . . , Xrn , Xr] and k′t be a regular
version of π[Xt ∈ · |Xr] which exist because Rn+2 and R2 are Polish spaces. The
inequality in (4.4) implies that there exists a convex function ϕ s.t. the Borel-set{

x ∈ R{r1,...,rn,r} :

∫
R

ϕ(y) dku(x, dy) 6=
∫
R

ϕ(y) dk′u(xr, dy)

}
has positive mass under π|{r1,...,rn,r}. Suppose there exists ε > 0 such that the Borel set

D =

{
x ∈ R{r1,...,rn,r} :

∫
R

ϕ(y) dku(x, dy) ≥
∫
R

ϕ(y) dk′u(xr, dy) + ε

}
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has positive mass under π|{r1,...,rn,r}. We set

ηt =

{
µt t < r∫
Dc
kt(x, ·) dπ|{r1,...,rn,r}(x) +

∫
D
k′t(xr, ·) dπ|{r1,...,rn,r}(x) t ≥ r

for all t ∈ T . Then η0 = µ0, ηt ≤+ 2µt for all t ∈ T and ηs ≤c ηt for all s < t ≤ r. For all
r ≤ s < t and any convex function ψ it holds∫

ψ dηt = Eπ [Eπ[ψ(Xt)|Xr1 , . . . , Xrn , Xr] · 1D + Eπ[ψ(Xt)|Xr] · 1Dc ]

≥ Eπ [Eπ[ψ(Xs)|Xr1 , . . . , Xrn , Xr] · 1D + Eπ[ψ(Xs)|Xr] · 1Dc ] =

∫
ψ dηs

and thus (ηt)t∈T is a peacock. Then, since we have for u > r∫
R

ϕdηu ≤
∫
R

ϕdµu − ε · π|{r1,...,rn,r}[D] <

∫
R

ϕdµu,

we get a contradiction to (µt)t∈T being NSI. If such an ε > 0 does not exist, then there
has to exist an ε > 0 such that the Borel set

D′ =

{
x ∈ RTr :

∫
R

ϕ(y) dk′u(x, dy) ≥
∫
R

ϕ(y) dku(xr, dy) + ε

}
has positive mass under π|{r1,...,rn,r}. We define η′ with reversed roles of kt and k′t and
obtain a contradiction as above.

The Markov property of a martingale measure associated with a NSI peacock allows
for a short proof of the crucial uniqueness property.

Proposition 4.29. If (µt)t∈T is a peacock that is NSI, then MT (µT ) consists of only one
martingale measure and the canonical process is Markov under this measure.

Proof. Let π, π′ ∈ MT (µT ) and let ks,t (resp. k′s,t) be regular versions of π[Xt ∈ · |Xs]

(resp. π′[Xt ∈ · |Xs]) for all 0 ≤ s < t ≤ 1. These exist because R2 is a Polish space.
Assume that π 6= π′. Lemma 4.28 yields that both π and π′ are Markov processes and
thus there must exist 0 < r < u < 1 such that kr,u(x, ·) 6= k′r,u(x, ·) for all x in a Borel set
with positive µr-mass. Suppose there exists a convex function ϕ and ε > 0 such that the
Borel set

D =

{
x ∈ R :

∫
R

ϕdkr,u(x, ·) ≥
∫
R

ϕdk′r,u(x, ·) + ε

}
has positive mass under µr. We set

ηt =

{
µt t < r∫
Dc
kr,t(x, ·) dµr +

∫
D
k′r,t(x, ·) dµr t ≥ r

for all t ∈ T . Then η0 = µ0, (ηt)t∈T ∈ PT and ηt ≤+ 2µt. Therefore∫
R

ϕdηu ≤
∫
R

ϕdµu − ε · µr[D] <

∫
R

ϕdµu

is a contradiction to (µt)t∈T being NSI. If there exist no convex function and ε > 0 such
that D has postive mass under µr, there exists a convex function ϕ and ε > 0 such that

D′ =

{
x ∈ RTr :

∫
R

ϕ(y) dk′r,u(x, dy) ≥
∫
R

ϕ(y) dkr,u(xr, dy) + ε

}
has positive mass under µr. We define η′ by reversing roles of kr,t and k′r,t and obtain a
contradiction as above.
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Remark 4.30. Suppose that T = {0, 1}. Then the NSI property is closely related to the
concept of Kellerer dilations (cf. [41]) that we explain in the following: For any closed
set F ⊂ R the Kellerer dilation is a kernel PF defined for every x ∈ R ∩ [minF,maxF ] by

PF (x, ·) =

{
x−x−
x+−x− δx+ + x+−x

x+−x− δx− x 6∈ F
δx x ∈ F

where x+ = min(F ∩ [x,∞)) and x− = max(F ∩ (−∞, x]). Kellerer showed in [41,
Satz 25] that for any µ ∈ P1(R) with supp(µ) ⊂ [minF,maxF ] there is only one mar-
tingale measure with marginals µ(dx) and µPF :=

∫
PF (x, dy)µ(dx) and it is given by

µ(dx)PF (x, dy). In particular, as a consequence of Lemma 4.27 and [14, Lemma 2.8]
a peacock (µ0, µ1) is NSI if and only if µ1 = µ0Psupp(µ1). Then the law of the unique
martingale is µ(dx)Psupp(µ1)(x, dy).

In Corollary 8.2, we will use this connection to recover [46, Theorem 8.3].

5 Shadow martingales indexed by a countable set

In this section we prove Theorem 5.15 that is an analogue of Theorem 1.5 in the
case of a countable index set T ⊂ [0,∞) with minimal element 0 and that attains also a
maximal element, i.e. supT ∈ T . The proof follows the outline explained in Steps 1–3
in Subsection 1.3. In Subsection 5.1, we show that martingale parametrizations are
almost everywhere differentiable. The existence part of Theorem 5.15 is covered in
Subsection 5.2. In Subsection 5.3, we will introduce an auxiliary optimization problem
over peacocks and establish a monotonicity principle for this optimization problem that
will allow us in Subsection 5.4 to deduce that any optimizer is necessarily NSI. Finally,
in Subsection 5.5, we show that the family of right derivatives of shadow martingales is
a solution to our auxiliary optimization problem. This allows us to conclude.

5.1 Right-derivatives of martingale parametrizations

Recall that T is at most countable. In this subsection we show that in the current
setup any martingale parametrization is λ-a.e. right-differentiable. Recall that PT is the
set of all peacocks indexed by T (cf. Definition 3.14) and MT is the set of all martingale
measures on RT (cf. Definition 3.13).

Lemma 5.1. The spaces PT and MT are Polish.

Proof. Sine T is at most countable, by Lemma 3.2, PT is a closed subset of the Polish
space P1(R)T and thus Polish itself (cf. [39, Exercise 3.3]). In the same way, the closed
subspace MT is Polish once we have shown that P1(RT ) is a Polish space, which can
be seen as follows: the Wasserstein metric on the set P1(RT ) induced by the metric
d(x, y) =

∑
n∈N 2−n min{|xf(n) − yf(n)|, 1} on RT for some surjective f : N → T is a

complete separable metric that, moreover, induces the topology on P1(RT ) that we
defined in Section 3.1.

Lemma 5.2. Let π ∈ P1(RT ) and (πα)α∈[0,1] a parametrization of π. The curve α 7→ πα

is λ-a.e. right-differentiable, i.e. for λ-a.e. a ∈ [0, 1) the right-derivative

π̂a = lim
h↓0

πa+h − πa

h
(5.1)

exists as a limit in P1(RT ) under T1.
More precisely, by choosing π̂a constant on the λ null set where the limit in (5.1)

does not exist, (π̂a)a∈[0,1] is a disintegration of the corresponding coupling of λ and π in
Remark 4.2 w.r.t. λ. In particular, a 7→ π̂a is a measurable map from [0, 1] to P1(RT ).
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If π ∈ MT and (πα)α∈[0,1] is a martingale parametrization of π, then the right derivative
π̂a is an element of MT for λ-a.e. a.

Proof. Since (πα)α∈[0,1] is a parametrization of π, π
a+h−πa
h is an element of P1(RT ) for

all a ∈ [0, 1) and h ∈ (0, 1 − a]. Let ξ be the coupling of λ and π on [0, 1] × RT defined
in Remark 4.2 and let (ξx)x∈[0,1] be a version of the disintegration of ξ w.r.t. λ (we can
disintegrate the measure ξ because both [0, 1] and RT are Polish spaces, cf. Lemma 5.1).

Recall that the topology T1 on P1(RT ) is generated by the convergence of the integrals
of all functions in G0 ∪ G1 where

G0 = {g ◦ (Xt1 , . . . , Xtn) : n ≥ 1, t1, . . . , tn ∈ T, g ∈ Cb(Rn)} and

G1 = {|Xt| : t ∈ T} .

For all h > 0 and f ∈ G0 ∪ G1 we have∫
RT
f d

(
πa+h − πa

h

)
=

1

h

∫ a+h

a

(∫
RT
f dξx

)
dλ(x) (5.2)

and since x 7→
∫
R
f dξx is measurable and in L1(λ), the Lebesgue differentiation theorem

yields that the integral converges for λ-a.e. a to
∫
RT
f dξa as h→ 0.

We claim that one can choose this λ null set independent of f . Indeed, the set

Ac = {g ◦ (Xt1 , . . . , Xtn) : n ≥ 1, t1, . . . , tn ∈ T, g ∈ Cc(Rn)} ⊂ G0

is separable (w.r.t. the supremum norm on C(RT )) because T is countable and Cc(Rn) is
separable for all n ∈ N. Let X be a countable dense subset of Ac. Then there exists a λ
null set L ⊂ [0, 1] such that (5.2) converges to

∫
RT

f dξa as h→ 0 for all f ∈ X ∪ G1 and
a 6∈ L (G1 is countable). Using the triangle inequality, it follows that this convergence
holds for all f ∈ Ac ∪ G1 and a 6∈ L. Moreover, since ξa is a probability measure for λ-a.e.
a, we conclude that (5.2) converges as h→ 0 for all f ∈ G0 ∪G1 and λ-a.e a because weak
and vague convergence coincides for probability measures on a Polish space.

Thus, we have shown that
(
πa+h−πa

h

)
h>0

converges under T1 in P1(RT ) to ξa as h ↓ 0

for all a outside the λ null set L. Since (ξa)a∈[0,1] is a disintegration, the map a 7→ ξa is
measurable.

Furthermore, if (πα)α∈[0,1] is a martingale parametrization, notice that for all a ∈ [0, 1)

and h ∈ (0, 1 − a] the quotient πa+h−πa
h is a martingale measure and this property is

preserved under convergence w.r.t. T1.

Corollary 5.3. Let π and ρ be in P1(RT ), (πα)α∈[0,1] a parametrization of π and (ρα)α∈[0,1]

a parametrization of ρ. If the right-derivatives (π̂a)a∈[0,1] and (ρ̂a)a∈[0,1] coincide for λ-a.e.
a, then πα = ρα for all α ∈ [0, 1].

Proof. This is a direct consequence of Remark 4.2 and Lemma 5.2.

5.2 Existence of shadow martingales

In order to show the existence of a martingale parametrization (πα)α∈[0,1] that satisfies

πα(Xt ∈ ·) = STt(να) (5.3)

for all t ∈ T and α ∈ [0, 1], we will construct an appropriate family of martingale measures
(π̂a)a∈[0,1] such that a 7→ π̂a is a measurable function and πα =

∫ α
0
π̂a da satisfies (5.3) for

all t ∈ T and α ∈ [0, 1], i.e. we construct the right-derivatives of α 7→ πα. To this end, it is
necessary and sufficient that the marginal distribution of π̂a at time t coincides with the
right-derivatives of α 7→ STt(να) for λ-a.e. a.

Recall that T is a countable subset of [0,∞) with 0 ∈ T and supT ∈ T .
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Shadow martingales

Lemma 5.4. Let (να)α∈[0,1] be a parametrization of µ0. There exists a Borel set A ⊂ [0, 1]

with λ(A) = 1 such that for every a ∈ A the following holds:

(i) For all t ∈ T , the curve α 7→ SµTt (να) is right-differentiable at a (in the sense of
Lemma 5.2) and we denote this right derivative by η̂at .

(ii) The family (η̂at )t∈T is a peacock with initial value η̂a0 = ν̂a. Here, ν̂a is the right-
derivative of α 7→ να at a.

Moreover, setting η̂at = δ0 for all t ∈ T and a 6∈ A, a 7→ (η̂at )t∈T is a measurable map from
[0, 1] to PT and, for all α ∈ [0, 1] and t ∈ T , it holds

SµTt (να) =

∫ α

0

η̂at da.

Proof. It is not difficult to see that (SµTt (να))α∈[0,1] is a parametrization of µt. Hence,
for all t ∈ T Lemma 5.2 yields that there exists a Borel set At ⊂ [0, 1] with λ(At) = 1 such
that the map α 7→ SµTt (να) is right-differentiable for all a ∈ At. We set A =

⋂
t∈T At and

denote the right derivatives by η̂at for all a ∈ A and t ∈ T . Then, item (i) holds.
Moreover, Proposition 4.24 in conjunction with Lemma 4.23 implies that

η̂at = lim
h↓0
S

1
h (µs−SµTs (νa))s∈Tt (

νa+h − νa

h
)

for all a ∈ A and t ∈ T . Clearly, for all a ∈ A it holds η̂a0 = ν̂a and we obtain

S
1
h (µs−SµTs (νa))s∈Tt (

νa+h − νa

h
) ≤c S

1
h (µs−SµTs (νa))s∈Tu (

νa+h − νa

h
)

for all t ≤ u in T and h > 0. Lemma 3.2 shows that the convex order is preserved under
convergence in T1, Item (ii) follows.

Finally, note that Lemma 5.2 implies that for all t ∈ T , a 7→ η̂at is a measurable map
from [0, 1] to R and (η̂at )a∈[0,1] is a disintegration of the coupling ξt between λ and µt w.r.t.
λ that corresponds to the parametrization (SµTt (να))α∈[0,1] in the sense of Remark 4.2
(setting η̂at = δ0 for all a 6∈ A). Hence, a 7→ (η̂at )t∈T is a measurable map from [0, 1] to PT
and, for all α ∈ [0, 1] and t ∈ T , it holds∫ α

0

η̂at da = ξt([0, α]) = SµTt (να).

Lemma 5.5. There exists a measurable map PT → MT such that the image of (µt)t∈T is
an element of MT ((µt)t∈T ).

Proof. By Lemma 5.1, PT and MT are Polish spaces. Let Φ : MT 3 π 7→ (Lawπ(Xt))t∈T ∈
PT . It is not difficult to see that Φ is continuous (thus measurable) and Proposi-
tion 3.16 yields that Φ is a surjective map. Since T is countable with supT ∈ T , the set
Φ−1({(µt)t∈T }) = MT ((µt)t∈T ) is compact for all (µt)t∈T ∈ PT by [12, Lemma 2.1]. The
measurable selection theorem of Dellacherie [18] shows that there exists a measurable
right-inverse Φ−1.

With respect to Lemma 5.5 we would like to emphasize an impressive result by
Lowther [43]. For continuous peacocks with connected supports the measurable map of
Lemma 5.5 can be chosen to be continuous. For these peacocks, Lowther’s map is the
unique continuous map.

Now we are able to prove the existence part of Theorem 1.5 for the countable index
set T :
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Proposition 5.6. Let (να)α∈[0,1] be a parametrization of µ0. There exists a martingale
measure π ∈ MT ((µt)t∈T ) and a martingale parametrization (πα)α∈[0,1] of π such that

πα(Xt ∈ ·) = SµTt (να)

for all α ∈ [0, 1] and t ∈ T .

Proof. Lemma 5.4 yields that there exists A ⊂ [0, 1] with λ(A) = 1 and a measurable map
a 7→ (η̂at )t∈T from [0, 1] to PT such that (η̂at )t∈T is the right-derivative of α 7→ SµTt (να) at
a for all a ∈ A and t ∈ T . Thus, Lemma 5.5 implies that there exists a measurable map
a 7→ π̂a from [0, 1] to MT such that π̂a ∈ MT ((η̂at )t∈T ) for all a ∈ [0, 1]. We set πα =

∫ α
0
π̂a da.

It is easy to check that (πα)α∈[0,1] is a well-defined martingale parametrization of the
martingale measure π = π1 w.r.t. (να)α∈[0,1]. Moreover, we have

πα(Xt ∈ ·) =

∫ α

0

π̂a(Xt ∈ ·) da =

∫ a

0

η̂at da = SµTt (να) (5.4)

for all α ∈ [0, 1] and t ∈ T . In particular, (5.4) implies for α = 1 that π is a solution to the
peacock problem w.r.t. (µt)t∈T .

Remark 5.7. Note that the existence of a shadow martingale does not require the
parametrization to be ≤c,s-convex.

5.3 An auxiliary optimization problem

Recall that we assume T to be at most countable. In this subsection, we will introduce
an auxiliary optimization problem over families of peacocks. The main result is a mono-
tonicity principle, i.e. a necessary pointwise optimality condition, similar to c-cyclical
monotonicity in classical optimal transport, see e.g. [49], or monotonicity principles in
stochastic variants of the transport problem, e.g. [14, 6]. Our monotonicity principle is
similar in spirit to the one recently proved for the weak transport problem [4, 20, 5, 3].

For a given peacock (µt)t∈T ∈ PT and a family of probability measures (ν̃a)a∈[0,1] such
that a 7→ ν̃a is a measurable map from [0, 1] to P1(R), we set

A =

{
(θa)a∈[0,1] |

θa ∈ PT , a 7→ θa measurable,

θa0 = ν̃a,
∫ 1

0
θat da = µt

}
.

Let c : [0, 1]× PT → [0,∞) be a Borel measurable cost function that is linear and l.s.c. in
the second component. (Note that starting from the next subsection we additionally ask
(ν̃a)a∈[0,1] to be increasing in the ≤c,s-order.) We are interested in properties of solutions
to the optimization problem

VA := inf
(θa)a∈[0,1]∈A

∫ 1

0

c(a, θa) da. (5.5)

The following monotonicity principle will be essential in the next section.

Proposition 5.8. Assume VA <∞. If (θa)a∈[0,1] is optimal for (5.5), then there exists a
measurable set A ⊂ [0, 1] with λ(A) = 1 such that for all a < a′ in A we have

c(a, θa) + c(a′, θa
′
) ≤ c(a, θ′) + c(a′, θ′′)

for any two peacocks (θ′t)t∈T , (θ′′t )t∈T that satisfy θ′ + θ′′ = θa + θa
′
, θa0 = θ′0 and θa

′

0 = θ′′0 .

Proof. This proof follows closely the proof of [4, Proposition 4.1]. Recall that T is at
most countable such that PT is a Polish space (cf. Lemma 5.1) and thus

B =

{
(a, a′, θ′, θ′′) ∈ [0, 1]2 × PT

2 :
θ′ + θ′′ = θa + θa

′
, θ′0 = ν̃a, θ′′0 = ν̃a

′
,

c(a, θa) + c(a′, θa
′
) > c(a, θ′) + c(a′, θ′′)

}
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is an analytic set.3 Likewise the projection of B onto [0, 1]2, denoted by B, is analytic.
Furthermore Lusin’s theorem [39, Theorem 21.20] states that any analytic set is univer-
sally measurable and thus the mass of an analytic set and the integral of an analytically
measurable function under any Borel measure are well-defined. We will show that
ξ(B) = 0 for all couplings ξ of λ and λ. Then [9, Proposition 2.1] (for analytic sets) yields
that there exists a λ null set N with B ⊂ (N × [0, 1]) ∪ ([0, 1]×N) and the claim follows
by choosing A = N c.

Suppose there exists a coupling ξ of λ and λ with ξ(B) > 0. Then the symmetrized
coupling ξ′ = 1

2 (ξ + s#ξ) where s : (a, a′) 7→ (a′, a) is again a coupling of λ and λ with
ξ′(B) > 0. By the Jankov–von Neumann uniformization theorem (see [39, Theorem 18.1])
there exists an analytically measurable map

Φ̃ : B → P2
T such that (a, a′, Φ̃1(a, a′), Φ̃2(a, a′)) ∈ B

for all (a, a′) ∈ B. We extend Φ̃ to an analytically measurable map Φ : [0, 1]2 → PT by
setting

Φ(a, a′) =

{
Φ̃(a, a′) (a, a′) ∈ B
(θa, θa

′
) (a, a′) 6∈ B

.

Denote the first (resp. second) component of Φ by Φ1 (resp. Φ2). Define

κ̃at =

∫ 1

0

Φ1(a, a′)t dξ′a(a′), κ̌a
′

t =

∫ 1

0

Φ2(a, a′)t dξ′a′(a)

for all t ∈ T where (ξ′a)a∈[0,1] is the disintegration of ξ′ w.r.t. λ (Recall that ξ′ is sym-
metrized and thus the disintegrations w.r.t. the first and the second marginal distribution
coincide). For a ∈ [0, 1] put κat = 1

2 (κ̃at + κ̌at ). Then for all a ∈ [0, 1] the family (κat )t∈T ′ is
a peacock with κa0 = ν̃a. Furthermore, by definition of B,∫ 1

0

κat da =

∫
[0,1]2

(
Φ1(a, a′)t + Φ2(a, a′)t

2

)
dξ′(a, a′)

=

∫
[0,1]2

(
θat + θa

′

t

2

)
dξ′(a, a′) =

∫ 1

0

θat da = µt

for all t ∈ T and thus (κa)a∈[0,1] is an element of A, i.e. a competitor of (θa)a∈[0,1] in the
optimization problem (5.5). Since c is linear and l.s.c. in the second component and
ξ′(B) > 0, it follows that∫ 1

0

c(a, κa) da =
1

2

∫ 1

0

c(a, κ̃a) da+
1

2

∫ 1

0

c(a′, κ̌a
′
) da′

≤
∫

[0,1]2

c(a,Φ1(a, a′)) + c(a′,Φ2(a, a′))

2
dξ′(a, a′)

<

∫
[0,1]2

c(a, θa) + c(a′, θa
′
)

2
dξ′(a, a′) =

∫ 1

0

c(a, θa) da.

This contradicts the fact that (θa)a∈[0,1] is optimal.

Remark 5.9. Of course, the same proof works if c is only convex in the second component
instead of being linear.

3Recall that a subset of a Polish space is called analytic if it is the image of a continuous function defined on
another Polish space. The countable intersection of analytic sets and the preimage of an analytic set under a
Borel measurable map are analytic. Since all Borel sets are analytic, we get that B is indeed an analytic set.
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5.4 NSI property for simultaneous optimizers

As a last preparation for the proof of the uniqueness part of Theorem 5.15 in Sec-
tion 5.5 we will show how the NSI property is closely connected to optimizers of (5.5).
For t ∈ T we set

ct(a, θ) = (1− a)

∫
R

x+
√

1 + x2 dθt.

Clearly, ct is an admissible cost function for (5.5) in Subsection 5.3. Throughout this
section, we fix some family (ν̃a)a∈[0,1] of probability measures on R that is increasing in
the ≤c,s-order as input data for the optimization problem (5.5).

The crucial observation, proved in Proposition 5.13, is that, if a family (θa)a∈[0,1] of
peacocks minimizes simultaneously the optimization problem (5.5) with cost function ct
for all t ∈ T , then θa is NSI for λ-almost every a.

Lemma 5.10. Let (θt)t∈T and (θ′t)t∈T be two peacocks with θ0 ≤c,s θ′0. There exist two
peacocks (θ̃t)t∈T and (θ̃′t)t∈T with

(i) θ̃0 = θ0, θ̃′0 = θ′0,

(ii) θt + θ′t = θ̃t + θ̃′t for all t ∈ T and

(iii) θ̃t ≤c,s θt and θ̃t ≤c,s θ′t for all t ∈ T .

Proof. Set θ̃t = S(θs+θ
′
s)s∈Tt (θ0) and θ̃′t = θt + θ′t− θ̃t for all t ∈ T . Both (θ̃t)t∈T and (θ̃′t)t∈T

are peacocks by Remark 4.25. They clearly satisfy properties (i) and (ii). Furthermore,
for all t ∈ T it holds θ̃t ≤c SθTt (θ0) = θt by Lemma 4.22 (iv) and

θ̃t ≤c,s S(θs+θ
′
s)s∈Tt (θ′0) ≤c Sθ

′
Tt (θ′0) = θ′t

by Lemma 4.22 (iii) and (iv).

Property (ii) and (iii) together imply that we also have θt ≤c,s θ̃′t and θ′t ≤c,s θ̃′t for all
t ∈ T . Thus, we have sandwiched θ and θ′ between θ̃ and θ̃′ in convex-stochastic order.

Lemma 5.11. If x, x′, y, y′ ∈ R satisfy x+ x′ = y + y′ and x < y, then

(1− a)x+ (1− a′)x′ < (1− a)y + (1− a′)y′

for all a < a′ in [0, 1].

Proof. The inequality (1 − a)x + (1 − a′)x′ < (1 − a)y + (1 − a′)y′ holds if and only if
(a′ − a)(y − x) > 0 because y′ − x′ = x− y.

Lemma 5.12. Let (θa)a∈[0,1] be a minimizer of (5.5) with finite cost VA w.r.t. ct simulta-
neously for all t ∈ T . Then there exists a Borel set A ⊂ [0, 1] with λ(A) = 1 such that for
all a < a′ in A it holds

2θat − S(2θas )s∈Tt (θ0) ≤c,s S(2θa
′
s )s∈Tt (θ0), for all t ∈ T. (5.6)

The main idea of the proof is to show that whenever (5.6) is not satisfied for some
t ∈ T , the pair ((a, θa), (a′, θa

′
)) violates the monotonicity principle in Proposition 5.8 for

ct. However, since the convex-stochastic order is not a total order relation onM1(R),
the negation of (5.6) does not imply that the reversed order relation is true but the
two measures might just be not comparable in convex-stochastic order. Thus, we use
Lemma 5.10 to construct a new pair of competitors that are comparable and bring the
essential improvement (cf. (5.8)).
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Proof. Recall that T is a countable set. For every t ∈ T , there exists by Proposition 5.8 a
Borel set At ⊂ [0, 1] with λ(At) = 1 such that for all a < a′ in At we have

ct(a, θ
a) + ct(a

′, θa
′
) ≤ ct(a, θ′) + ct(a

′, θ′′) (5.7)

where (θ′t)t∈T and (θ′′t )t∈T are any two peacocks with θ′ + θ′′ = θa + θa
′
, θa0 = θ′0 and

θa
′

0 = θ′′0 . Put A =
⋂
t∈T At and note that λ(A) = 1. For all a ∈ A and t ∈ T we define

θa−t := S(2θas )s∈Tt (θa0) and θa+
t := 2θat − θa−t .

We want to show that θa+
t ≤c,s θa

′−
t for all t ∈ T and all a < a′ in A. Suppose this is not

the case for some u ∈ T and a < a′ in A. Since θa+ = θa0 = ν̃a ≤c,s ν̃a
′

= θa
′

0 = θa
′−

because the familiy (ν̃a)a∈[0,1] is monotonously increasing w.r.t. ≤c,s, we may apply

Lemma 5.10 to the peacocks θa+ and θa
′−. Hence, there exist two peacocks θ̃ and θ̃′ with

θ̃0 = θa+
0 = θa0 = ν̃a, θ̃′0 = θa

′−
0 = θa

′

0 = ν̃a
′
, θ̃ + θ̃′ = θa+ + θa

′−, and

θ̃t ≤c,s θa+
t and θ̃t ≤c,s θa

′−
t

for all t ∈ T . The inequality θ̃u ≤c,s θa+
u cannot be an equality because this would imply

that θa+
u = θ̃u ≤c,s θa

′−
u , which we supposed to be false. Hence, it holds

cu(a, θ̃) < cu(a, θa+) (5.8)

because x 7→ x+
√

1 + x2 is strictly increasing and strictly convex. Next, we use (θ̃, θ̃′) to
construct a competitor (θ′, θ′′) for (θa, θa

′
) in the sense of Proposition 5.8. We set

θ′ =
1

2
θa− +

1

2
θ̃ and θ′′ =

1

2
θ̃′ +

1

2
θa
′+.

The pair (θ′, θ′′) of peacocks is indeed a competitor since θ′ + θ′′ = θa + θa
′
, θ′0 = θa0 and

θ′′0 = θa
′

0 . Moreover, for t = u it holds

cu(a, θ′) + cu(a′, θ′′) =
1

2

(
cu(a, θa−) + cu(a, θ̃) + cu(a′, θ̃′) + cu(a′, θa

′+)
)

<
1

2

(
cu(a, θa−) + cu(a, θa+) + cu(a′, θa

′−) + cu(a′, θa
′+)
)

= cu(a, θa) + cu(a′, θa
′
)

by the linearity of cu in the second component and Lemma 5.11 in conjunction with (5.8).
This is a contradiction of (5.7).

Proposition 5.13. Let (θa)a∈[0,1] be a simultaneous minimizer of (5.5) with finite cost
VA with respect to ct for all t ∈ T . Then (θat )t∈T is NSI for a.e. a ∈ [0, 1].

Proof. By Lemma 5.12 there exists a Borel set A ⊂ [0, 1] with λ(A) = 1 such that for all
a < a′ in A and t ∈ T it holds

2θat − S(2θas )s∈Tt (θa0) ≤c,s S(2θa
′
s )s∈Tt (θa0). (5.9)

Moreover, by Proposition 4.24 and Lemma 4.22 (ii) it holds

S(2θas )s∈Tt (θa0) ≤c,s 2θat − S(2θas )s∈Tt (θa0) (5.10)

for all a ∈ [0, 1] and t ∈ T . Hence, the map a 7→ S(2θas )s∈Tt (θa0) is increasing on A in
convex-stochastic order for all t ∈ T . If θa is not NSI for some a ∈ A, there exists
at least one t ∈ T for which (5.10) is not an equality (see Lemma 4.27) and thus the
map a 7→ S(2θas )s∈Tt (θa0) has a discontinuity at a because of (5.9). But since the map is
increasing in convex-stochastic order, Corollary 3.7 yields that this can only happen for
countably many a ∈ A for a given t ∈ T . The set T is countable, and hence we obtain
that θa is NSI for λ-a.e. a.
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Remark 5.14. Referring back to §1.2, the last proposition establishes the decomposition
of a peacock into NSI peacocks, cf. (1.5) under the assumption that there is a suitable
cost function c such that for a given parametrization (να)α∈[0,1] there is an optimizer
(with finite value) to (5.5). For ≤c,s-convex parametrizations this assumption will be
established in the next subsection.

5.5 Uniqueness of the shadow martingale

Theorem 5.15. Let T ⊂ [0,∞) be a countable index set with 0 ∈ T and supT ∈ T

and let (να)α∈[0,1] be a parametrization of µ0 that is ≤c,s-convex. There exists a unique
pair (π, (πα)α∈[0,1]) where the martingale measure π ∈ MT ((µt)t∈T ) solves the peacock
problem w.r.t. (µt)t∈T , (πα)α∈[0,1] is a martingale parametrization of π w.r.t. (να)α∈[0,1]

and for all α in [0, 1] and t in T ,

πα(Xt ∈ ·) = SµTt (να). (5.11)

Moreover, there exists a Borel set A ⊂ [0, 1] with λ(A) = 1 such that for all a ∈ A the
map α 7→ πα is right-differentiable at a and the marginals of the right-derivative π̂a at a
form a NSI peacock. In particular, π̂a is a Markov martingale measure uniquely defined
by its marginal distributions.

Proof. We have already proven the existence of a martingale measure π and a corre-
sponding martingale parametrization (πα)α∈[0,1] that satisfies (5.11) in Proposition 5.6.
Hence, it remains to prove the uniqueness of the family (πα)α∈[0,1].

Let (ρα)α∈[0,1] be a martingale parametrization that satisfies (5.11). Lemma 5.2
yields that α 7→ ρα is a.e. right-differentiable and the right-derivatives (ρ̂a)a∈[0,1] are a
family in MT . These right-derivatives determine (ρα)α∈[0,1] uniquely (see Corollary 5.3)
and their marginal distributions (Lawρ̂a(Xt))t∈T are determined by (5.11). Hence, the
marginal distributions of ρ̂a coincide with those of π̂a which are denoted by (η̂at )t∈T ∈ PT
(cf. Lemma 5.4). Thus, if (η̂at )t∈T is NSI for λ-a.e. a ∈ [0, 1], Proposition 4.29 implies
that π̂a = ρ̂a for λ-a.e. a ∈ [0, 1] and therefore we obtain πα = ρα for all α ∈ [0, 1] by
Corollary 5.3. Moreover, this would imply that π̂a is Markov for λ-a.e. a ∈ [0, 1] proving
the theorem.

Hence, we need to show that (η̂at )t∈T is a NSI peacock for λ-a.e. a. Since the
parametrization (να)α∈[0,1] is ≤c,s-convex, the familiy (ν̂a)a∈[0,1] of right-derivatives is
monotonously increasing w.r.t. ≤c,s and hence by Proposition 5.13, it is sufficient to
show that ((η̂at )t∈T )a∈[0,1] is a solution to the optimization problem (5.5) w.r.t. ct and
(ν̃a)a∈[0,1] := (ν̂a)a∈[0,1] simultaneously for all t ∈ T . In the current setup we then have

A =

{
(θa)a∈[0,1] |

θa ∈ PT , a 7→ θa measurable,

θa0 = ν̂a,
∫ 1

0
θat da = µt

}
.

It is easy to see that (η̂at )t∈T ∈ A and
∫ α

0
η̂at da = SµTt (να) for all t ∈ T and α ∈ [0, 1]. By

the minimality of shadows (cf. Proposition 4.21), any competitor (θ̃a)a∈[0,1] ∈ A satisfies∫ α
0
θ̃at da ≤c

∫ α
0
η̂at da. Hence, it follows∫ 1

0

ct(a, θ̃
a) da =

∫ 1

0

(∫ 1

a

∫
R

x+
√

1 + x2

2
dθ̃at dα

)
da

=

∫ 1

0

(∫
R

x+
√

1 + x2

2
d

(∫ α

0

θ̃at da

))
dα

≥
∫ 1

0

(∫
R

x+
√

1 + x2

2
d

(∫ α

0

η̂at da

))
dα =

∫ 1

0

ct(a, η̂
a) da
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for all t ∈ T . This proves the claim.

Remark 5.16. Let (Ωa)a∈[0,1] be uncountably many copies of RT and set

Ω = [0, 1]×
∏

a∈[0,1]

Ωa.

We equip Ω with the product σ-algebra and denote by P the product measure on Ω

generated by λ on [0, 1] and π̂a on Ωa for all a ∈ [0, 1] (on the Lebesgue null set where
the right-derivative π̂a are not defined we choose the Dirac mass of the null-path). It is
easy to see that the random variables

U(ω0, (ωa)a∈[0,1]) = ω0 and Ma(ω0, (ωa)a∈[0,1]) = ωa, a ∈ [0, 1],

satisfy the assertions of Theorem 1.5.

Remark 5.17. We mentioned before that the ≤c,s-convexity of the parametrization is
crucial for our proof of the uniqueness of the shadow martingale (Theorem 5.15). Note
that the ≤c,s-convexity is not mentioned in subsections prior to 5.4. In the proof of
Theorem 5.15 we only use the ≤c,s-convexity to justify the application of Proposition 5.13
(“Optimality implies NSI” for a family of peacocks (θa)a∈[0,1]). Since for almost every
a ∈ [0, 1] the “derivative peacock” (η̂at )t∈T is NSI, Proposition 4.29 shows that the
associated martingale is uniquely determined.

The proof of Proposition 5.13 and the whole strategy of Subsection 5.4 boils down to
the following observation: If the family (θa)a∈[0,1] is a simultaneous minimizer of (5.5)
with respect to the cost functions ct for all t ∈ T , we have

S(2θas )s∈Tt (θa0) ≤c,s 2θat − S(2θas )s∈Tt (θa0) ≤c,s S(2θbs)s∈Tt (θb0) (5.12)

for all t and for λ-a.e. a < b in [0, 1]. Whereas the left inequality is a direct consequence
of the defining properties of the shadow, the right inequality is a highly non-trivial
statement for which we carefully study the monotonicity principle associated to (5.5).
For details we refer to the proof of Lemma 5.12. So far we cannot hope that (5.12) or
even the weaker statement

S(2θas )s∈Tt (θa0) ≤c,s S(2θbs)s∈Tt (θb0)

is satisfied for λ-a.e. a < b if the map a 7→ θa0 is not monotonously increasing w.r.t. ≤c,s.
In the setting of Theorem 5.15 we have θa0 = ν̂a where (ν̂a)a∈[0,1] is the family of right-
derivatives of the parametrization (να)α∈[0,1] and (ν̂a)a∈[0,1] is monotonously increasing
w.r.t. ≤c,s if and only if (να)α∈[0,1] is ≤c,s-convex.

Of course, there might exists a way to show that we have

S(2θas )s∈Tt (θa0) = 2θat − S(2θas )s∈Tt (θa0)

–i.e the NSI property for (θat )t∈T – for λ-a.e. a ∈ [0, 1] without relying on (5.12). However,
for infinite T and without continuity of µS 7→ SµS (ν) (see Subsection 8.1 and Example 8.3)
we don’t see another possible line of reasoning so far.

6 Càdlàg shadow martingales indexed by a continuous time set

In this section we show how the results of the previous section can be lifted to the
setting of a continuous time index set T ⊂ [0,∞) with minimal element 0 ∈ T under the
additional assumption that the given peacock (µt)t∈T is right-continuous, i.e. the map
t 7→ µt is a right-continuous map from T to P1(R) (under T1).
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The key observation is that in the current setup martingale measures π (similarly for
martingale parametrizations) are uniquely determined by the restriction to a well chosen
countable index set S, i.e. there exists a unique martingale measure π extending π|S to
the index set T , cf. Lemma 6.5. This will be established in Section 6.1. In Subsection 6.2
we will show that also the obstructed shadow only depends on µS for some countable
family S if µT is a peacock. Consequently, also the NSI property only depends on µS by
Lemma 4.27. These results will allow us to provide a proof of Theorem 6.12, a variant of
Theorem 1.5 in the case of a continous time index set T and a right-continuous peacock
µT in Subsection 6.3.

6.1 Continuous time martingale measures

We fix a subset T ⊂ [0,∞) with 0 ∈ T and we equip T with the inherited standard
topology. Recall that a modification of the canonical process (Xt)t∈T under π ∈ P1(RT )

is a process X̃ : RT → R such that π(X̃t = Xt) = 1 for all t ∈ T . Note that Lawπ(X) =

Lawπ(X̃) = π and, if T is countable, we get X̃ = X π-a.e.

Definition 6.1. (i) We call a peacock (µt)t∈T right-continuous, if t 7→ µt is right-
continuous from T to P1(R) w.r.t. T1. We denote by Prc

T ⊂ PT the set of these
peacocks.

(ii) We call a martingale measure π ∈ MT a càdlàg martingale measure, if there exists
a modification (X̃t)t∈T of the canonical process under π such that t 7→ X̃t(ω) is a
càdlàg function for all ω ∈ RT . We denote the set of all càdlàg martingale measures
by Mrc

T .

(iii) We call a martingale parametrization (πα)α∈[0,1] of a càdlàg martingale measure
π ∈ Mrc

T càdlàg, if 1
απ

α ∈ Mrc
T for all α ∈ (0, 1].

Remark 6.2. (i) Lemma 3.3 shows that a peacock is right-continuous (w.r.t. T1) if
and only if t 7→ µt is right-continuous w.r.t. T0 because for all t ∈ T and tn ↓ t the
measures µt and (µtn)n∈N are bounded from above in convex order by µt1 .

(ii) Let π ∈ Mrc
T and (X̃t)t∈T be a modification of the canonical process (Xt)t∈T under π.

Then (X̃t)t∈T is an (F̃t)t∈T -martingale under π where F̃t = σ({X̃s : s ∈ [0, t] ∩ T})
because π(X̃t = Xt) = 1 for all t ∈ T .

We equip both Prc
T and Mrc

T with the subspace topology inherited from the product
topology on (P1(R))T and T1 on MT . Moreover, we use the notation Mrc

T ((µt)t∈T ) for
càdlàg martingale measures associated with a peacock (µt)t∈T . Note that the right-
continuity of the peacock corresponds to the càdlàg property of the martingale measure:

Lemma 6.3. Let (µt)t∈T ∈ PT and π ∈ MT be associated with (µt)t∈T .

(i) If π is a càdlàg martingale measure, then (µt)t∈[0,1] ∈ Prc
T .

(ii) If (µt)t∈T is a right-continuous peacock, then π ∈ Mrc
T .

Proof. This is a consequence of Remark 6.2 and of standard results on modifications for
continuous martingales, see e.g. [47, Theorem 2.8].

Lemma 6.4. There exists a countable set S ⊂ T that is right-dense in T , i.e. for all t ∈ T
there exists a sequence (sn)n∈N in {s ∈ S : s ≥ t} that converges to t. Similarly, there
exists a countable left-dense set and the union of both is a countable subset of T that is
both right- and left-dense.

Proof. Let S1 = {t ∈ T | ∃ ε > 0, T ∩ (t, t + ε) = ∅} be the set of points that are “right-
isolated” in T and S2 be a countable dense subset of T . Since S1 is countable so is
S := S1 ∪S2. Moreover, it is not difficult to check that any t ∈ T is the limit of a sequence
in S ∩ [t,∞). Thus, S is a countable right-dense subset of T .
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The following Lemmas 6.5–6.7 link càdlàg martingale measures and càdlàg martingale
parametrizations to their restrictions to a suitable right-dense set:

Lemma 6.5. Let S be a countable right-dense subset of T .

(i) If π, ρ ∈ Mrc
T satisfy π|S = ρ|S , then π = ρ.

(ii) For all π′ ∈ Mrc
S , there exists π ∈ Mrc

T such that π|S = π′ (uniquely determined by
(i)).

Proof. Item (i): Let n ∈ N, t1, . . . , tn ∈ T and ϕ ∈ Cb(R
n). We can find sequences

(sik)k∈N in S, 1 ≤ i ≤ n, such that sik ↘ ti for all i ∈ {1, . . . , n}. Since there exist càdlàg
modifications of the canonical process under π and ρ and π|S = ρ|S , we obtain that∫
RT

ϕ(Xt1 , . . . , Xtn) dπ =
∫
RT

ϕ(Xt1 , . . . , Xtn) dρ.

Item (ii): Since π′ ∈ Mrc
S , there exists a modification (X̃s)s∈S of the canonical process

(Xs)s∈S on RS under π′ such that any path s 7→ Xs(ω) is càdlàg. Furthermore, also the
limits lims↑t,s∈S X̃s and lims↓t,s∈S X̃s for t ∈ T \ S exist (see [12, Proposition 1]). We
define

RS 3 ω 7→ Yt(ω) =

{
X̃t(ω) t ∈ S
lims↓t X̃s(ω) t 6∈ S.

(6.1)

The family (Yt)t∈T is a well-defined process on the probability space (RS ,FS∞, π′) where
FS∞ denotes the σ-algebra FS∞ =

∨
s∈S FSs . Here, for definitess, we denote the canonical

filtration on RS by (FSs )s∈S . Moreover, Y is a martingale w.r.t. the right-continuous

filtration (F+

t )t∈T on RT given by F+

t =
⋂
s>t,s∈S FSs for all t ∈ T that are not the

maximal element and F+

t∗ = FSt∗ if there exists a maximal element t∗ ∈ T . Set π =

Lawπ′(Y ) ∈ P1(RT ). Then π is a martingale measure because Y is a martingale under π′.
By the càdlàg property of Y , the marginal distributions of the canonical process on RT

under π are right-continuous. Hence, π ∈ Mrc
T by Lemma 6.3. By construction, it holds

π|S = π′.

Lemma 6.6. Assume T has a maximal element t∗ and (πn)n∈N is a sequence in Mrc
T .

(i) Let π ∈ Mrc
T and S be a countable right-dense subset of T . If (πn|S)n∈N converges

to π|S in Mrc
S (under T1) and (Lawπn(Xt))n∈N converges to Lawπ(Xt) in P1(R) for

all t ∈ T , then (πn)n∈N converges to π in Mrc
T .

(ii) If the sequence of right-continuous peacocks ((Lawπn(Xt))t∈T )n∈N is convergent
in Prc

T with limit (µt)t∈T , then there exists a convergent subsequence of (πn)n∈N in
Mrc
T with limit π ∈ Mrc

T ((µt)t∈T ).

Proof. Let S′ ⊂ T with t∗ ∈ S′ and suppose that A is a compact subset of P1(R) under
T1. A slight modification of [12, Lemma 1] shows that the set

{ρ ∈ MS′ | Lawρ(Xt∗) ∈ A} (6.2)

is a compact subset of MS′ (under T1).
Item (i): By the definition of the topology T1 on P(RT ), the sequence (πn)n∈N con-

verges to π under T1 if and only if (πn|S∪R)n∈N converges to π|S∪R in Mrc
S∪R under T1 for

all finite R ⊂ T . Thus, it is sufficient to show that for any finite subset R ⊂ T , any
subsequence of (πn|S∪R)n∈N has a subsequence that converges to π|S∪R under T1.

Let R ⊂ T finite and note that S contains t∗. Let (πnk|S∪R)k∈N be an arbitrary sub-

sequence of (πn|S∪R)n∈N. Since (Lawπn(Xt∗))n∈N converges to Lawπ(Xt∗) under T1, the
set A1 := {Lawπn(Xt∗) : n ∈ N} ∪ {Lawπ(Xt∗)} ⊂ P1(R) is compact w.r.t. T1. Hence,
the set in (6.2) with A := A1 and S′ := S ∪ R is a compact subset of MS∪R under T1.
Consequently, (πnk|S∪R)k∈N has itself a convergent subsequence with limit ρ∗ ∈ MS∪R. By
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assumption, the marginal distributions of ρ∗ have to coincide with the right-continuous
marginal distributions of π|S∪R, and thus ρ∗ ∈ Mrc

S∪R by Lemma 6.3 (ii). Since (πn|S)n∈N is
convergent to π|S , it holds ρ∗|S = π|S and therefore Lemma 6.5 (i) yields ρ∗ = π|S∪R.

Item (ii): Let S be a countable right-dense subset of T that includes t∗. Since
(Lawπn(Xt∗))n∈N converges to µt∗ under T1, the setA2 := {Lawπn(Xt∗) : n ∈ N}∪{µt∗} ⊂
P1(R) is compact w.r.t. T1. Hence, the set in (6.2) with A := A2 and S′ := S is a compact
subset of MS under T1. Therefore, there exists a convergent subsequence (πnk |S)k∈N
with limit πS ∈ MS . The marginal distributions of πS are (µt)t∈S . Since (µt)t∈T is a
right-continuous peacock we can extend πS to some π ∈ Mrc

T ((µt)t∈T ) with π|S = πS by
Lemma 6.5 (ii). Item (i) yields that (πnk)k∈N converges to π in Mrc

T .

Lemma 6.7. Let T ⊂ [0,∞) and S be a countable right-dense subset of T .

(i) If (πα)α∈[0,1] is a martingale parametrization of the càdlàg martingale measure π,
then (πα|S)α∈[0,1] is a càdlàg martingale parametrization of π|S .

(ii) Let (π̃α)α∈[0,1] be a càdlàg martingale parametrization of π̃ ∈ Mrc
S and π ∈ Mrc

T the
unique extension of π̃ given by Lemma 6.5, i.e. π|S = π̃. There exists a unique càdlàg
martingale parametrization (πα)α∈[0,1] of π such that πα|S = π̃α for all α ∈ [0, 1].

(iii) Let (πα)α∈[0,1] be a martingale parametrization of π ∈ Mrc
T . If α 7→ πα|S is right-

differentiable at a ∈ [0, 1) (in the sense of Lemma 5.2) and there exists (ηt)t∈T ∈ Prc
T

such that the law of Xt under 1
h (πa+h − πa) converges under T1 to ηt for all t ∈ T ,

then the map α 7→ πα is right-differentiable at a, i.e.

π̂a = lim
h↓0

πa+h − πa

h

exists as a limit in P1(RT ) under T1. Moreover, the right-derivative of α 7→ πα at
a is an element of Mrc

T ((ηt)t∈T ) and its restriction to S is the right-derivative of
α 7→ πα|S at a.

Proof. Item (i): It is straightforward to check that (πα|S)α∈[0,1] is a (càdlàg) martingale
parametrization of π|S ∈ Mrc

S .
Item (ii): For all α ∈ [0, 1] let 1

απ
α ∈ Mrc

T be the unique extension of 1
α π̃

α given by
Lemma 6.5 (ii). Then πα(RT ) = α and π1 = π. Finally, πα ≤+ πβ follows by considering
nonnegative cylinder functions (because they generate the σ-algebra on RT ).

Item (iii): Recall that the martingale property of a sequence in P1(RT ) is preserved
under convergence in T1. The claim follows from Lemma 6.6 (i).

6.2 Shadows obstructed by peacocks and the NSI property

In this section we consider shadows in the special – and for us most important – case
in which (µt)t∈T is a peacock. A particular consequence of this assumption, which is not
true without the peacock assumption, is that the shadow is uniquely determined by a
countable subset of obstructions, i.e. by marginal constraints (µt)t∈S for a countable set
S ⊂ T . By combining with Lemma 4.27 we see that the NSI property is determined by a
well chosen countable subset of obstructions.

Lemma 6.8. Let ν ≤c,+ µT and s ∈ T . In the topology T1 we have the following:

(i) If t 7→ µt is left-continuous at s, then t 7→ SµTt (ν) is left-continuous at s.

(ii) If t 7→ µt is right-continuous at s, then t 7→ SµTt (ν) is right-continuous at s.

Recall that since µT is a peacock, left- and right-continuity of t 7→ µt is independent
from the choice of T1 or T0 (cf. Remark 6.2 (i)).
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Proof. Item (i): Let (tn)n∈N be a sequence that converges to s from below. We define the
family (ηt)t∈Ts inM1(R) by

ηt =

{
SµTt (ν) t < s

limt↑s SµTt (ν) t = s
.

The limit limt↑s SµTt (ν) exists by Lemma 3.11 (ii) in conjunction with Lemma 4.20 (i).
Clearly, ν ≤c ηt ≤c ηu for all t ≤ u in Ts and ηt ≤+ µt for all t < s in T . Moreover, since
ηs = limn→∞ ηtn and ηtn ≤+ µtn by Lemma 4.20 (v), we obtain ηs ≤+ µs from Lemma 3.2.
The claim follows by Proposition 4.21.

Item (ii): Let (tn)n∈N be a sequence that converges to s from above. It holds
SµTtn (ν) = SµTs,tn (SµTs (ν)) for all n ∈ N where Ts,tn = {t ∈ T : s < t ≤ tn}.
Proposition 4.19 states that there exists a sequence of finite sets (Rk)k∈N such that
(SµRk (SµTs (ν)))k∈N converges to SµTs,tn (SµTs (ν)) = SµTtn (ν) and a well-chosen tele-
scopic application of Lemma 4.12 to (SµRk (SµTs (ν)))k∈N in conjunction with Lemma 3.2
implies

U(SµRk (SµTs (ν)))− U(SµTs (ν)) ≤ U(µmaxRk)− U(µs) ≤ U(µtn)− U(µs).

Letting k tend to infinity yields U(SµTtn (ν)) − U(SµTs (ν)) ≤ U(µtn) − U(µs) and since
(µt)t∈T is right-continuous, by Lemma 3.6 (ii)we obtain

0 ≤ lim
n→∞

U(SµTtn (ν))− U(SµTt (ν)) ≤ lim
n→∞

U(µtn)− U(µt) = 0.

If (µt)t∈T is a peacock, Corollary 3.7 yields that the map t 7→ µt is continuous outside
of a set S ⊂ T that is (at most) countable and thus also t 7→ SµTt (ν) is continuous on
T \ S.

Proposition 4.19 states that any generalized obstructed shadow SµT (ν) can be ap-
proximated by a sequence of finitely obstructed shadows (SµRn (ν))n∈N. The continuity
of t 7→ SµTt (ν) on T \ S leads to a huge degree of freedom when choosing this family of
nested finite sets (Rn)n∈N:

Lemma 6.9. Let (Rn)n∈N be a nested sequence of finite subsets of T . If the union
S =

⋃
n∈NRn is both right- and left-dense in T and contains all time points where t 7→ µt

is not continuous, then (Sµ(Rn)t (ν))n∈N converges to SµTt (ν) under T1 for all t ∈ T and
ν ≤c,+ µT .

Proof. Fix t ∈ T . The sequence (Sµ(Rn)t (ν))n∈N is increasing in convex order as n tends
to infinity and is bounded in convex-positive order by µt. Hence, Lemma 3.11 (ii) yields
that this sequence is converging inM1(R) under T1. We denote the limit by ηt and set
[t]n := max(Rn)t. Lemma 4.20 (v) implies that Sµ(Rn)t (ν) ≤+ µ[t]n and since S is both
right- and left-dense in T , ([t]n)n∈N converges to t from below. If t ∈ S, then [t]n = t for
n large enough, and, if t 6∈ S, then (µ[t]n)n∈N converges to µt under T1. Hence, in both
cases Lemma 3.2 implies that ηt ≤+ µt. By Lemma 3.2, the convex-order is preserved
under convergence in T1 and thus it holds ν ≤c ηs ≤c ηt ≤+ µt for all s ≤ t in T . Fix
u ∈ T . Any other family (η′t)t∈T which satisfies the previous ordering relations for all
s ≤ t in Tu, satisfies them in particular for all s ≤ t in (Rn)u. Thus, Proposition 4.21
applied to (Rn)u yields Sµ(Rn)u (ν) ≤c η′[u]n

and therefore

ηu = lim
n→∞

Sµ(Rn)u (ν) ≤c Csup{η′[u]n
: n ∈ N} ≤c η′u.

As a consequence of Proposition 4.21 applied to the index set Tu we get for all u ∈ T

SµTu (ν) = ηu = lim
n→∞

Sµ(Rn)u (ν).
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Corollary 6.10. There exists a countable right- and left-dense set S ⊂ T such that
SµSt (ν) = SµTt (ν) for all t ∈ T and for all ν ≤+ µ0. In fact, S can be any countable right-
and left-dense subset of T which contains all discontinuity points of the map t 7→ µt.

Proof. Pick by Corollary 3.7 a countable right- and left-dense subset S ⊂ T such that t 7→
µt is continuous on T \ S. Since S is countable, there exists a nested sequence (Rn)n∈N
such that

⋃
n∈NRn = S. Let t be in T . Lemma 6.9 yields SµTt (ν) = limn→∞ Sµ(Rn)t (ν) for

all ν ≤+ µ0 and Lemma 4.20 (iii) implies that (Sµ(Rn)t (ν))n∈N converges to SµSt (ν).

Corollary 6.11. Let (µt)t∈T be a peacock and S be a countable left- and right-dense
subset S ⊂ T ⊂ [0,∞) including 0 and all time points where t 7→ µt is not continuous.
Then (µt)t∈T is NSI if and only if (µt)t∈S is NSI.

Proof. This is an easy consequence of Corollary 6.10, Lemma 6.8 and Lemma 4.27
(characterization of NSI property via generalized obstructed shadows).

6.3 Existence and uniqueness of right-continuous shadow martingales

In this subsection, we prove the following right-continuous version of Theorem 1.5
(cf. Remark 5.16):

Theorem 6.12. Let T ⊂ [0,∞) with 0 ∈ T , (µt)t∈T be a right-continuous peacock and
(να)α∈[0,1] a ≤c,s-convex parametrization of µ0. There exists a unique pair (π, (πα)α∈[0,1])

where π ∈ Mrc
T ((µt)t∈T ) solves the peacock problem w.r.t. (µt)t∈T , (πα)α∈[0,1] is a càdlàg

martingale parametrization of π w.r.t. (να)α∈[0,1] and for all (α, t) ∈ [0, 1]× T ,

πα(Xt ∈ ·) = Sµ[0,t](να). (6.3)

Moreover, there exists a Borel set A ⊂ [0, 1] with λ(A) = 1 such that for all a ∈ A the
map α 7→ πα is right-differentiable at a and the marginals of the right-derivative π̂a at a
form a NSI peacock. In particular, π̂a is a Markov martingale measure uniquely defined
by its marginal distributions.

Proof. For STEPS 1–4 we assume that T admits a maximal element, i.e. t∗ := supT ∈ T ,
and we fix a countable left- and right-dense subset S of T that contains both 0 and t∗,
and all time points where t 7→ µt is not continuous (cf. Corollary 3.7 and Lemma 6.4)

STEP 1: We show that there exists π ∈ Mrc
T ((µt)t∈T ) and a martingale parametrization

(πα)α∈[0,1] of π w.r.t. (να)α∈[0,1] that satisfies (6.3). Since S is a countable set and t∗ ∈ S,
Theorem 5.15 implies that there exists π̃ ∈ MS((µt)t∈S) and a martingale parametrization
(π̃α)α∈[0,1] of π̃ w.r.t. (να)α∈[0,1] that satisfies

π̃α(Xt ∈ ·) = SµSt (να) (6.4)

for all t ∈ S and α ∈ [0, 1]. The peacock (µt)t∈S is right-continuous, thus Lemma 6.8
implies that the map t 7→ SµSt (να) is right-continuous for every α ∈ [0, 1]. Therefore,
by Lemma 6.3 (ii) applied to π̃ and 1

α π̃
α for every α ∈ (0, 1), we have both π̃ ∈ Mrc

S

and (π̃α)α∈[0,1] is a càdlàg martingale parametrization. We can uniquely extend π̃ to
π ∈ Mrc

T ((µt)t∈T ) by Lemma 6.5 (ii) and Lemma 6.7 (ii) shows that we can extend the
parametrization (π̃α)α∈[0,1] to a martingale parametrization (πα)α∈[0,1] of π. The set S
contains all discontinuities of the map t 7→ µt on T and hence Corollary 6.10 yields for
all t ∈ S and α ∈ [0, 1] the equality

πα(Xt ∈ ·) = π̃α(Xt ∈ ·)
(6.4)
= SµSt (να) = Sµ[0,t](να). (6.5)

Since both t 7→ πα(Xt ∈ ·) and t 7→ SµTt (να) are right-continuous functions from T to
M1(R) w.r.t. T1 (see Lemma 6.3 (i) and Lemma 6.8), we deduce that πα satisfies (6.3) for
all t ∈ T and α ∈ [0, 1].
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STEP 2: We show that π and (πα)α∈[0,1] are uniquely determined. Let ρ ∈ Mrc
T ((µt)t∈T )

and (ρα)α∈[0,1] be a càdlàg martingale parametrization of ρ w.r.t. (να)α∈[0,1] that satisfies

ρα(Xt ∈ ·) = Sµ[0,t](να) (6.6)

for all t ∈ T and α ∈ [0, 1]. Lemma 6.7 (i) yields that the restrictions (ρα|S)α∈[0,1] are a
martingale parametrization of ρ|S . Furthermore, we obtain ρα(Xt ∈ ·) = Sµ[0,t](να) =

SµSt (να) for all t ∈ S and α ∈ [0, 1] by Corollary 6.10. The uniqueness part of Theo-
rem 5.15 implies that ρ|S and π|S coincide and hence π = ρ by Lemma 6.5 (i).

STEP 3: We show that there exists a Borel set A ⊂ [0, 1] with λ(A) = 1 such that
α 7→ πα is right-differentiable at a for all a ∈ A. Theorem 5.15 yields that there exists
a Borel set A ⊂ [0, 1] with λ(A) = 1 such that for all a ∈ A the curve α 7→ πα|S is
right-differentiable at a. Hence, by Lemma 6.7 (iii) it suffices to show that the family of
marginal distributions of 1

h (πa+h − πa) converges in Prc
T to a right-continuous peacock

for all a ∈ A to show that α 7→ πα is right-differentiable for all a ∈ A.
To this end, fix a ∈ A and note that the distribution of Xt under 1

h (πa+h − πa) is given
by

ζah,t := S
1
h (µs−SµTs (νa))s∈Tt (

νa+h − νa

h
) = S

1
h (µs−SµSs (νa))s∈St (

νa+h − νa

h
) (6.7)

due to Corollary 6.10. Since α 7→ πα|S is right-differentiable at a, the limit η̂at := limh↓0 ζ
a
h,t

under T1 exists for all t ∈ S. Moreover, Lemma 4.20 (i) implies that ζah,u is decreasing in
convex-order for u ↓ t and thus η̂at ≤c η̂au for all t ≤ u in S by Lemma 3.2. In particular,
Lemma 3.11 (i) shows that for all t ∈ T the limit limu↓t,u∈S ζ

a
h,u exists. Since ζah,u is

decreasing in convex-stochastic order for both u ↓ t and h ↓ 0 (by Lemma 4.20 (i) and
Lemma 4.22 (iii) in conjunction with Lemma 4.22 (iv)), we may interchange the limits
and obtain for t ∈ T by Lemma 6.8

lim
u↓t,u∈S

η̂au = lim
u↓t,u∈S

lim
h↓0

ζah,u = lim
h↓0

lim
u↓t

ζah,u = lim
h↓0

ζah,t =: η̂at .

Thus, the marginal distributions of (Xt)t∈S under 1
h (πa+h − πa) converge in Prc

T to a
right-continuous peacock.

STEP 4: We show that for all a ∈ A the marginal distributions of (Xt)t∈T under the
right-derivatives of α 7→ πα at a are a NSI peacock. By Lemma 6.7 (iii), the restriction of
the right-derivative of α 7→ πα at a ∈ A to S is the right-derivative of α 7→ πα|S at a ∈ A.
Since the marginal distributions of the latter are NSI by Theorem 5.15, Corollary 6.11
implies that the marginals of the right-derivative of α 7→ πα at a are NSI as well.

STEP 5: We remove the assumption that supT ∈ T . If T does not admit a maximal
element, there exists a sequence (t∗n)n∈N in T approaching supT ∈ [0,∞]. For every
n ∈ N, we have shown that there exists a unique shadow martingale and a unique
càdlàg martingale parametrization w.r.t. (να)α∈[0,1] corresponding to the right-continuous
peacock (µt)t∈Tt∗n . Since these measures are consistent for different n, they define
a unique shadow martingale and a unique càdlàg martingale parametrization w.r.t.
(να)α∈[0,1] corresponding to the right-continuous peacock (µt)t∈T .

7 Shadow martingales indexed by a totally ordered set

In this section, we prove Theorem 7.3 which includes Theorem 1.5 as a special case.
The key observation is that the martingale property implies that this abstract setting can
be embedded into the right-continuous setup of Section 6 in such a way that the structure
and main properties of the obstructed shadows can be lifted from the continuous time
case to the abstract setup.
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7.1 Embedding into the continous time setup

Let (T,≤) be a totally ordered set with minimal element 0 ∈ T and (µt)t∈T a peacock.
We define the map E : T → [0,∞) as

E(t) =

∫
R

√
1 + x2 dµt(x)−

∫
R

√
1 + x2 dµ0(x)

for all t ∈ T and set T̃ = E(T ). Note that E(0) = 0 and hence 0 ∈ T̃ . Since (µt)t∈T is a
peacock, E is increasing, E(t) ≤ E(t′) implies µt ≤c µt′ , and E(t) = E(t′) is equivalent to
µt = µt′ . Moreover, E(tn)→ E(t) yields that (µtn)n∈N converges to µt under T1 (cf. [12,
Section 2.2]). However, E is in general neither strictly increasing nor invertible.

Lemma 7.1. We define the family (µ̃u)u∈T̃ by

µ̃u = µt , where t ∈ E−1({u}).

For all u ∈ T̃ , the measure µ̃u is well-defined. Moreover, we have:

(i) The family (µ̃u)u∈T̃ is a peacock with µ̃E(t) = µt for all t ∈ T .

(ii) The map u 7→ µ̃u is continuous from T̃ to P1(R) w.r.t. T1.

(iii) For all t ∈ T and ν ∈M1(R) with ν ≤+ µ0 = µ̃0, it holds SµTt (ν) = S µ̃T̃E(t) (ν).

Proof. Item (i): Since E is monotonously increasing, the claim follows immediately.
Item (ii): For u ∈ T̃ and a sequence (un)n∈N that converges to u we obtain

lim
n→∞

∫
R

√
1 + x2 dµ̃un =

∫
R

√
1 + x2 dµ0 + lim

n→∞
un

=

∫
R

√
1 + x2 dµ0 + u =

∫
R

√
1 + x2 dµ̃u.

Thus, u 7→ µ̃u is continuous.
Item (iii): Let (η̃u)u∈T̃ be a family inM1(R) with ν ≤c η̃u ≤c η̃u′ ≤+ µu′ for all u ≤ u′

in T̃ . We set ηt := η̃E(t) for all t ∈ T . Since E is increasing, it holds ν ≤c ηt ≤c ηt′ for all
t ≤ t′ in T and furthermore we have ηt′ = η̃E(t′) ≤+ µ̃E(t′) = µt′ by (ii).

Conversely, let (ηt)t∈T be a family with ν ≤c ηt ≤c ηt′ ≤+ µt′ for all t ≤ t′ in T . We set
η̃u := ηt for any t ∈ E−1({u}) for all u ∈ T̃ . Since E is increasing, we get ν ≤c η̃u ≤c η̃u′
for all u ≤ u′ in T̃ . Moreover, there exists t′ ∈ T with E(t′) = u′, and similar as in (ii) it
holds η̃E(t′) = ηu′ . Thus, η̃u′ = η̃E(t′) = ηt′ ≤+ µt′ = µ̃E(t′) = µ̃u′ . Then, Proposition 4.21

implies that SµTt (ν) = S µ̃T̃E(t) (ν) for all t ∈ T .

Lemma 7.2. Let E∗ :M1(RT̃ )→M1(RT ) be the map π̃ 7→ E∗(π̃) where E∗(π̃) is uniquely
determined by

E∗(π̃)(Yt1 ∈ B1, . . . , Ytn ∈ Bn) := π̃(XE(t1) ∈ B1, . . . , XE(tn) ∈ Bn)

for all n ∈ N, t1, . . . , tn ∈ T and Borel sets B1, . . . , Bn where Y and X denote the
canonical process on RT̃ and RT .

(i) If (π̃α)α∈[0,1] is a martingale parametrization of π̃ ∈ MT̃ , then (E∗(π̃α))α∈[0,1] is a
martingale parametrization of E∗(π̃) ∈ MT .

(ii) The map E∗ is sequentially continuous, i.e. if (π̃n)n∈N converges to π̃ under T1, then
(E∗(π̃n))n∈N converges to E∗(π̃) under T1.

(iii) It holds {π′ : π′ ≤+ π, π ∈ MT ((µt)t∈T )} ⊂ Im(E∗).
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Proof. Item (i) and item (ii) are direct consequences of the previous definitions. For
item (iii): Let π ∈ MT ((µt)t∈T ) and π′ ≤+ π. For any t, t′ ∈ T with E(t) = E(t′) it holds
µt = µt′ . Thus, since π is a martingale measure, we have π(Xt 6= Xt′) = 0 and therefore

also π′(Xt 6= Xt′) = 0. Hence, we can uniquely define the measure π̃′ ∈M1(RT̃ ) by

π̃′(XE(t1) ∈ B1, . . . , XE(tn) ∈ Bn) := π′(Yt1 ∈ B1, . . . , Ytn ∈ Bn)

for all n ∈ N, t1, . . . , tn ∈ T and Borel sets B1, . . . , Bn where X and Y denote the
canonical processes on RT̃ and RT , respectively. Clearly, E∗(π̃′) = π.

7.2 Existence and uniqueness of shadow couplings

Theorem 7.3. Let T be a totally ordered set with minT =: 0 ∈ T and (να)α∈[0,1] a
≤c,s-convex parametrization of µ0. There exists a unique pair (π, (πα)α∈[0,1]) where
the martingale measure π ∈ MT ((µt)t∈T ) solves the peacock problem w.r.t. (µt)t∈T ,
(πα)α∈[0,1] is a martingale parametrization of π w.r.t. (να)α∈[0,1] and for all α ∈ [0, 1] and
t ∈ T ,

πα(Xt ∈ ·) = SµTt (να). (7.1)

Moreover, there exists a Borel set A ⊂ [0, 1] with λ(A) = 1 such that for all a ∈ A the
map α 7→ πα is right-differentiable at a and the marginals of the right-derivative π̂a at a
form a NSI peacock. In particular, π̂a is a Markov martingale measure uniquely defined
by its marginal distributions.

Observe that Theorem 7.3 encompasses Theorem 1.5 since [0,∞) is a totally or-
dered set with minimal element. The stochastic formulation in the last paragraph of
Theorem 1.5 follows as in Remark 5.16.

Proof. We prove the claim by reducing to the right-continuous setting in Theorem 6.12.
STEP 1: We show that there exists a π ∈ MT ((µt)t∈T ) and a martingale parametrization

(πα)α∈[0,1] of π w.r.t. (να)α∈[0,1] such that (7.1) is satisfied. Let (µ̃u)u∈T̃ be the right-
continuous peacock associated with (µt)t∈T in Lemma 7.1. By Theorem 6.12, there exists
a unique π̃ ∈ Mrc

T̃
((µ̃u)u∈T̃ ) and a unique càdlàg martingale parametrization (π̃α)α∈[0,1]

of π̃ that satisfies π̃α(Xu ∈ ·) = S µ̃T̃u (να) for all u ∈ T̃ and α ∈ [0, 1]. Set π = E∗(π̃)

and πα = E∗(π̃α) for all α ∈ [0, 1] where the map E∗ is defined as in Lemma 7.2. Then
π ∈ MT ((µt)t∈T ) and (πα)α∈[0,1] is a martingale parametrization of π with

πα(Xt ∈ ·) = π̃α(XE(t) ∈ ·) = S µ̃T̃E(t) (να) = SµTt (να)

for all t ∈ T and α ∈ [0, 1] by Lemma 7.1.
STEP 2: We show that (πα)α∈[0,1] (and therefore also π = π1) is uniquely determined

by (7.1). Let ρ ∈ MT ((µt)t∈T ) and let (ρα)α∈[0,1] be a martingale parametrization of ρ
w.r.t. (να)α∈[0,1] with

ρα(Xt ∈ ·) = SµTt (να) (7.2)

for all α ∈ [0, 1] and t ≥ 0. Let ρ̃α ∈ (E∗)−1(ρα) and t ∈ T with E(t) = u. We have

ρ̃α(Xu ∈ ·) = ρα(XE(t) ∈ ·) = SµT̃E(t) (να) = S µ̃T̃u (να)

for all α ∈ [0, 1] and u ∈ T̃ using (7.2) and Lemma 7.1. The uniqueness part of Theo-
rem 6.12 yields that π̃α = ρ̃α and hence πα = ρα for all α ∈ [0, 1].

STEP 3: We show that there exists a Borel set A ⊂ [0, 1] with λ(A) = 1 such that for
all a ∈ A the map α 7→ πα is right-differentiable at a and the marginals of the right-
derivative π̂a at a are a NSI peacock. By Theorem 6.12, there exists a Borel set A ⊂ [0, 1]

with λ(A) = 1 such that for all a ∈ A the map α 7→ π̃α is right-differentiable at a with
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right-derivative ˆ̃πa and the marginals of the right-derivative ˆ̃πa at a are a NSI peacock.
Note that

πa+h − πa

h
= E∗

(
π̃a+h − π̃a

h

)
and thus the sequential continuity proven in Lemma 7.2 implies that at all a ∈ A the

map α 7→ πα is right-differentiable with right-derivative E∗
(

ˆ̃πa
)

. Since the marginal

distributions of the right-derivative ˆ̃πa are a NSI peacock, the same is true for E∗
(

ˆ̃πa
)

by Lemma 7.1 in conjunction with Lemma 4.27.

7.3 Proof of Corollary 1.1

Let (T,≤) be a totally ordered set with minimal element 0 ∈ T and (µt)t∈T a peacock.

Lemma 7.4. Let (να)α∈[0,1] a parametrization of µ0 and let π be the shadow martingale
w.r.t. (µt)t∈T and (να)α∈[0,1]. Moreover, we denote by (πα)α∈[0,1] the corresponding
parametrization of π and by π̂a the right-derivative of α 7→ πα at a ∈ [0, 1] (if it exists). If
there exists a measurable function q : R→ [0, 1] such that

q#µ0 = λ and π̂q(x)(q(X0) = q(x)) = 1 for µ0-a.e x ∈ R,

then for all n ∈ N, t1 ≤ . . . ≤ tn ∈ T , A ∈ B(Rn) and σ-fields G ⊂
∨
t∈T Ft we have π-a.s.

Eπ [1A(Xt1 , . . . , Xtn)|X0,G] = Eπ̂q(X0) [1A(Xt1 , . . . , Xtn)|X0,G] .

Proof. Let n ∈ N, t1 ≤ . . . ≤ tn ∈ T , A ∈ B(Rn) and fix a σ-algebra G ⊂ σ
(⋃

t∈T Ft
)
.

Moreover, we set Y := 1A(Xt1 , . . . , Xtn). For all B ∈ σ(σ(X0) ∪ G) we obtain

Eπ [Eπ [Y |X0,G] · 1B ] = Eπ [Y · 1B ] =

∫
R

Eπ̂q(x) [Y · 1B ] dµ0

=

∫
R

Eπ̂q(x) [Eπ̂q(x) [Y |X0,G] · 1B ] dµ0 =

∫
R

Eπ̂q(x) [Eπ̂q(X0) [Y |X0,G] · 1B ] dµ0

= Eπ [Eπ̂q(X0) [Y |X0,G] · 1B ] .

Hence, we have Eπ [Y |X0,G] = Eπ̂q(X0) [Y |X0,G] π-a.e.

Corollary 7.5. Let (µt)t∈T be a peacock and let (Iα)α∈[0,1] be a nested family of intervals
that satisfies

(i) µ0(Iα) = α for any α ∈ [0, 1),

(ii) sup Iα < +∞ and ∂Iα ∩ ∂Iβ = ∅ for all α 6= β in [0, 1] and for which

(iii) α 7→
∫
Iα
y dµ0(y) is a convex function.

there exists unique π ∈ MT ((µt)t≥0) such that for all ρ ∈ MT ((µt)t≥0) we have

Lawπ(Xt|X0 ∈ Iα) ≤c Lawρ(Xt|X0 ∈ Iα)

for all α ∈ [0, 1] and t ≥ 0. Moreover, (X0, Xt)t≥0 is a Markov process under π.

Clearly, this covers the case T = [0,∞) as stated in Corollary 1.1.

Proof. Lemma 4.5 shows that (να)α∈[0,1] with να = µ0|Iα is a ≤c,s-convex parametrization
of µ0. Theorem 7.3 states that there exists a unique shadow martingale π w.r.t. (µt)t∈T
and (να)α∈[0,1]. The martingale measure π is a solution to the peacock problem w.r.t.
(µt)t∈T and Remark 4.8 yields

αLawπ(Xt|X0 ∈ Iα) = πα(Xt ∈ ·) = SµTt (µ0|Iα)
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for all α ∈ [0, 1]. Thus, π is the unique solution to the peacock problem with

Lawπ(Xt|X0 ∈ Iα) ≤c Lawρ(Xt|X0 ∈ Iα)

for any other ρ ∈ MT ((µt)t∈T ).
It remains to show that (X0, Xt)t∈T is a Markov process under π. Observe that

properties (i)-(iii) of the family (Iα)α∈[0,1] imply that the pseudo-quantile map q : R→ [0, 1]

defined as
x 7→ q(x) := sup{α ∈ [0, 1] : x 6∈ Iα}

meets the requirements of Lemma 7.4 (W.l.o.g. we assume I1 = R). Note that the map q
is Borel measurable because there exists x0 ∈ R such that x0 ∈ Iα for all α > 0 and q is
monotone on (−∞, x0] and [x0,+∞). Thus, for all Borel sets B ⊂ R2, we have π-a.e.{

Eπ [1B(X0, Xt)|X0,Fs] = Eπ̂q(X0) [1B(X0, Xt)|X0,Fs]
Eπ [1B(X0, Xt)|X0, Xs] = Eπ̂q(X0) [1B(X0, Xt)|X0, Xs]

. (7.3)

By Theorem 7.3, there exists A ⊂ [0, 1] with λ(A) = 1 such that for all a ∈ A the
right derivatives π̂a of α 7→ πα exist and (Xt)t∈T is a Markov process under π̂a. Hence,
(X0, Xt) is a Markov process under π̂a and the claim follows with (7.3).

8 Examples and counterexamples

The purpose of this section is twofold. On the one hand we show in Section 8.1
that certain continuity properties of the obstructed shadow valid for finite index sets
T = {0, . . . , n} do not hold in general. In fact, this is one of the reasons why we had to
develop new tools. On the other hand, we show explicit examples of shadow martingales.
One particular class of examples allowing for very explicit representations is the class of
non-obstructed peacocks introduced in Section 8.2. In Section 8.3, we give a couple of
concrete examples (non-obstructed and obstructed).

8.1 Continuity of the shadow

In Section 6.2 we showed that the map t 7→ SµTt (ν) is left- resp. right-continuous
whenever the peacock µT is left- or right-continuous. However, we didn’t discuss any
continuity properties of the shadow as a function of ν and µT defined on M1(R) and
PT respectively. For the simple shadow (see Proposition 4.11), Juillet showed in [36,
Theorem 2.30] that

W1

(
Sµ(ν),Sµ

′
(ν′)

)
≤ W1(ν, ν′) + 2W1(µ, µ′) (8.1)

for all ν, ν′ ∈M1(R), ν ≤c,+ µ and ν′ ≤c,+ µ′ where the Wasserstein distance extends to
finite non-probability measures through the dual Kantorovich equivalent definition ofW1

(cf. [36, Section 1]).
Similarly, an inductive application of (8.1) in Lemma 4.18 implies that for finite T the

map µT 7→ SµT (ν) is continuous w.r.t. pointwise convergence of µT (If µT is a peacock,
then this is exactly the topology on PT ). We want to highlight a few implications of
this continuity for the class of NSI peacocks in the case of a finite index set T (where
Tt = {s ≤ t : s ∈ T} as previously):

Proposition 8.1. Let T be finite with minimal element 0.

(i) The set of NSI peacocks is a closed subset of P1(R)T .
(ii) Given an arbitrary peacock (ηt)t∈T , the peacock (µt)t∈T with

µt := lim
n→∞

(S(nηs)s∈Tt (η0))n∈N

for all t ∈ T is NSI.
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(iii) Let (µt)t∈T be a peacock, (να)α∈[0,1] some parametrization of µ0 and (πα)α∈[0,1] the
martingale parametrization of a shadow martingale π w.r.t. (µt)t∈T and (να)α∈[0,1].
If the right-derivative π̂a exists, the family of marginal distributions is NSI.

Proof. (i) Let (µnT )n∈N be a sequence of NSI peacocks that converge in P1(R)T to a
family of probability measures µT . Lemma 3.2(ii) yields that µT is again a peacock.
Moreover, for all t ∈ T we know that (µnt )n∈N converges to µt and (2µnt )n∈N
converges to 2µt under T1. Hence, we obtain by using the stability inequality (8.1)
at most |T | times that

S(2µs)s∈Tt (µ0) = lim
n→N

S(2µns )s∈Tt (µn0 ) = lim
n→N

µnt = µt

for all t ∈ T where the limits are w.r.t. T1. The second equality is a consequence of
Lemma 4.27 and we also deduce from Lemma 4.27 that µT is NSI.

(ii) For all t ∈ T the sequence (S(nηs)s∈Tt (η0))n∈N is monotonously decreasing w.r.t.
≤c and bounded from below by η0. Hence, there exists a limit µt under T1. We
deduce from Lemma 3.2(ii) that µT is a peacock. Directly from the definition of the
shadow we see that µ0 = η0. Moreover, for all t ∈ T we obtain by using the stability
inequality (8.1) at most |T | times that

S(2µs)s∈Tt (µ0) = lim
n→∞

S(2S(nηr)r∈Ts (η0))s∈Tt (µ0)

= lim
n→∞

S(2S(nηr)r∈Ts (η0))s∈Tt (η0)

= lim
n→∞

S(2nηs)s∈Tt (η0) = µt

where the limits are w.r.t. T1. Here the third equality is true for all n ∈ N. Indeed,
first observe that for every s

2S(nηr)r∈Ts (η0) ≤+ 2nηs.

This implies that we have

S(2S(nηr)r∈Ts (η0))s∈Tt (η0) ≥c S(2nηs)s∈Tt (η0). (8.2)

Moreover, we have

η0 ≤c S(2nηs)s∈Tt (η0) ≤+ S(2nηs)s∈Tt (2η0) = 2S(nηs)s∈Tt (η0)

so that S(2nηs)s∈Tt (η0) is a candidate for S(2S(nηr)r∈Ts (η0))s∈Tt (η0) in the sense of
Proposition 4.21 which therefore yields the opposite inequality to (8.2) and hence
third equality above. Lemma 4.27 yields that µT is NSI.

(iii) We first assume that (να)α∈[0,1] is the sunset parametrization of µ0 and the right-
derivative of α 7→ πα exists at a ∈ [0, 1). For all t ∈ T , we have using Lemma 4.23
and Proposition 4.24

π̂a(Xt ∈ · ) = lim
h↓0

1

h

(
πa+h(Xt ∈ · )− πa(Xt ∈ · )

)
= lim

h↓0

1

h

[
S(µs)s∈Tt ((a+ h)µ0)− S(µs)s∈Tt (aµ0)

]
= lim

h↓0
S(h−1[µs−SµTs (aµ0)])s∈T (µ0).
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Hence, since (µt−S(µs)s∈Tt (aµ0))t∈T is a peacock (see Remark 4.25), (ii) implies that
the marginal distributions under π̂a are a NSI peacock. For any other parametriza-
tion we obtain with the same argument

π̂a(Xt ∈ · ) = lim
h↓0
S(h−1[µs−SµTs (νa)])s∈T

(
νa+h − νa

h

)
.

By inequatilty (8.1) we can replace νa+h−νa
h by its limit ν̂a and conclude by (ii).

Armed with Proposition 8.1 and independently from Theorem 7.3 we can give a short
proof of the uniqueness of shadow martingales for a finite set T . Moreover, appealing to
the connection of one step NSI peacocks and Kellerer dilations explained in Remark 4.30
it follows that shadow martingales can be disintegrated into binomial martingales whose
law is by definition a concatenation of Kellerer dilations (cf. [46, Proposition 8.5]). In the
special case of the left-curtain parametrization, we recover [46, Theorem 8.3] by Nutz,
Stebegg, and Tan.

Corollary 8.2. Let T = {0, 1, . . . , n} be finite, (µt)t∈T be a peacock, and (να)α∈[0,1] be
any parametrization of µ0. There exists a unique shadow martingale π w.r.t. (µt)t∈T and
a unique martingale parametrization (πα)α∈[0,1] of π w.r.t. (να)α∈[0,1] such that α 7→ πα is
right-differentiable at λ-a.e. a ∈ [0, 1] and the right-derivative π̂a, whenever it exists, is
a binomial martingale measure. If moreover µ0({x}) = 0 for all x ∈ R, the left-curtain
shadow martingale is binomial.

Proof. By Proposition 5.6 there exists a shadow martingale π w.r.t. (µt)t∈T and (να)α∈[0,1].
Denote by (πα)α∈[0,1] the corresponding martingale parametrization (recall that Proposi-
tion 5.6 does not require that (να)α∈[0,1] is ≤c,s-convex).

By Lemma 5.2 there exists a Borel set A ⊂ [0, 1] with λ(A) = 1 such that α 7→ πα is
right-differentiable for all a ∈ A. For each a ∈ A, we denote by (ηa)t∈T the marginal
distributions of the right-derivative π̂a. Proposition 8.1 (iii) yields that (ηat )t∈T is NSI for
all a ∈ A and the associated martingale is unique.

For each a ∈ A, by Definition 4.26 we have that the one-step peacocks (ηai , η
a
i+1) are

NSI for 0 ≤ i ≤ n − 1. Thus, Remark 4.30 yields that π̂a is a binomial martingale. In
particular, π̂a is uniquely determined by its marginals and therefore π and (πα)α∈[0,1] are
uniquely determined by their marginals. If µ0({x}) = 0 for all x ∈ R and (να)α∈[0,1] is the
left-curtain parametrization, we obtain by Lemma 7.4 that Lawπ(X|X0) = π̂q(X0), π-a.s.
where q = F−1

µ0
is the quantile function of µ0. The claim follows from the first part.

Let us go back to the case of an infinite index set T . As Example 8.3 below shows,
the continuity of µS 7→ SµS (ν) fails in general. Moreover, neither of the items (i)-(iii) of
Proposition 8.1 are true any more as Examples 8.3 and 8.4 show.

We would like to stress that the lack of item (ii) (and hence (iii)) of Proposition 8.1
is the main point separating the case of finite index sets from the one of a countably
infinite index set T . As a particular consequence, we could not rely on argumentations
from [14] and [46] to show uniqueness of shadow martingales but had to develop a new
approach.

In Examples 8.3 and 8.4 we consider T = [0, 1], or the countable index set T =

[0, 1] ∩Q.

Example 8.3 (Discontinuity of the shadow, NSI is not closed). Define (µnt )t∈[0,1] by

µnt =


δ0 t ∈

[
0, n−1

n

)
δ−1+δ1

2 t ∈
[
n−1
n , 1

)
1
2δ0 + 1

4 (δ−2 + δ2) t = 1
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for t ∈ [0, 1] and n ∈ N. For all t ∈ [0, 1] the sequence (µnt )n∈N converges inM1(R) to

µt =

{
δ0 t < 1
1
2δ0 + 1

4 (δ−2 + δ2) t = 1
.

But for ν = 1
2δ0, we have limn→∞ Sµ

n
[0,1](ν) = 1

4δ0 + 1
8 (δ−2 + δ2) 6= 1

2δ0 = Sµ[0,1](ν).

Thus, the map µ̃[0,1] 7→ S µ̃[0,1](ν) is not (sequentially) continuous. Moreover, any
element of the sequence (µnt )t∈[0,1] is NSI but the limit (µt)t∈[0,1] is not NSI by Lemma 4.27.
Hence the subset of NSI peacocks in P[0,1] is not closed.

Example 8.4 (Right-derivatives are not NSI). Let (µt)t∈[0,1] be defined by

µt =

{
(1− t

2 )δ0 + t
4 (δ−1 + δ1) t < 1

3
4δ0 + 1

8 (δ−2 + δ2) t = 1

for t ∈ [0, 1] and let να = αµ0 = αδ0 be the sunset parametrization of µ0. Moreover, let π
be the shadow martingale w.r.t. (µt)t∈[0,1] and (να)α∈[0,1] and (πα)α∈[0,1] the corresponding

martingale parametrization. For all h > 0 (small enough) and a ∈ [0, 1), it holds νa+h−νa
h =

µ0 = δ0. Thus, the right-derivative of α 7→ να exists for all a ∈ [0, 1) and equals µ0.
Actually, it is not difficult to show that the right-derivatives π̂a of α 7→ πα exist for all
a ∈ [0, 1). However, the marginal distributions of π̂

1
2 are

π̂
1
2 (Xt ∈ · ) = lim

n→∞
S(n(µs−SµTs ( 1

2µ0)))s∈Tt (µ0) =

{
δ0 t < 1
1
2δ0 + 1

4 (δ−2 + δ2) t = 1.
(8.3)

Observe that (µs − SµTs ( 1
2µ0)))s≥0 is a peacock by Remark 4.25. Moreover, Lemma 4.27

implies that the family of measures on the right-hand side of (8.3) is not an NSI peacock.
Hence, items (ii) and (iii) of Proposition 8.1 are not satisfied.

NSI implies uniqueness of the martingale associated to the marginals. Note that
even without NSI in the present example the martingale for parameter a = 1/2 is also
unique. However, by splitting the Dirac mass δ0 in the definition of µt and replacing it
for instance by 1

2 (δ−1/10 + δ1/10) we see that the resulting peacock can be represented
by several different martingales. This phenomena does not occur for T finite, recall (iii)
in Proposition 8.1.

8.2 Non-obstructed shadows

We fix a totally ordered set (T,≤) with minimal element 0 ∈ T . In this section, we
consider the special case that the additional obstructions in the shadow between µ0 and
µt imposed by the marginals (µs)s∈Tt are not binding, i.e. SµTt (ν) = Sµt(ν) for all t ∈ T .
The associated shadow martingales allow for rather explicit representations as will be
shown in Proposition 8.8 and illustrated in Examples 8.9–8.11.

Definition 8.5. Let (µt)t∈T be a family in P1(R) and ν ≤c,+ µT . We say that the shadow
of ν in (µt)t∈T is non-obstructed if for all t ∈ T we have SµTt (ν) = Sµt(ν).

Lemma 8.6. Let (µt)t∈T be a family in P1(R) and ν ≤c,+ µT . The shadow of ν in (µt)t∈T
is non-obstructed if for all s ≤ t in T one of the following equivalent conditions is
satisfied:

(i) Sµs(ν) ≤c Sµt(ν) or (ii) Sµt(ν) = Sµt(Sµs(ν)) .

Proof. For fixed s ≤ t in T , the equivalence of (i) and (ii) is straightforward. If (i) is
satisfied for all s ≤ t, applying Proposition 4.21 to (Sµs(ν))s∈Tt finishes the proof.
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We are interested in pairs of peacocks (µt)t∈T and ≤c,s-convex parametrization
(να)α∈[0,1] of µ0 for which the shadow of να in (µt)t∈T is non-obstructed, for all α ∈
[0, 1]. For an example available in the literature, one can consider the middle-curtain
parametrization in combination with peacocks increasing in diatomic convex order,
see [35] and [14, Section 3.1.3]. Setting x the barycenter of µ0, this condition can be
formulated by Sµs(αδx) ≤c Sµt(αδx) for all 0 ≤ s ≤ t and α ∈ [0, 1]. One can easily check
that it precisely corresponds to peacocks for which the middle-curtain parametrization
has non-obstructed shadows. Note that in [35] a non-Markov generalization of Kellerer’s
Theorem 3.16 is given for peacocks in P(R) increasing in diatomic convex order that are
indexed by a partially ordered set.

The following lemma describes a class of peacocks non-obstructed by parametriza-
tions of “interval type”:

Lemma 8.7. Let (µt)t∈T be a peacock such that there exists a nested family of closed
intervals (It)t∈T with

(i) supp(µt) ⊂ It for all t ∈ T and
(ii) µt|Is ≤+ µs|Is for all s ≤ t in T .

If additionally µt({x}) = 0 for all x ∈ R and t ∈ T , then, for any closed interval I ⊂ R,
the shadow of ν = µ0|I in (µt)t∈T is non-obstructed.

Proof. Let s ≤ t in T and I ⊂ R be an interval. W.l.o.g. we may assume I ⊂ Is. Property
(ii) yields that (µs|I − µt|I) ∈M1(R) and thus by Proposition 4.14 (ii)

Sµt(µs|I) = µt|I + Sµt|Ic (µs|I − µt|I) = µt|I + µt|Ic∩J = µt|J (8.4)

for some closed interval J with I ⊂ J ⊂ It. Such an interval J exists because
supp(µs|I − µt|I) is contained in the interval I and supp(µt|Ic) belongs to the closure of
the complement of I (see Lemma 4.13 (ii)). Applying (8.4) twice yields both Sµt(ν) = µt|J
and Sµt(Sµs(ν)) = µt|J′ for two intervals J and J ′. However, since both measures
are in convex order greater than ν, they have the same mass and barycenter by
Lemma 3.1 (i) and hence µt|J = µt|J′ . Thus, we have proven that Sµs(ν) ≤c Sµt(ν)

because Sµs(ν) ≤c Sµt(Sµs(ν)) by default. The claim follows by Lemma 8.6.

Note that the condition in Lemma 8.7 is conceptually very similar to the Dispersion
Assumption introduced by Hobson and Norgilas in [31]. Recall that T is a totally ordered
set with minimal element 0.

Proposition 8.8. Let (µt)t∈T be a peacock and (να)α∈[0,1] a ≤c,s-convex parametrization
of µ0. Let π ∈ MT ((µt)t∈T ) be the corresponding shadow martingale and (π̂a)a∈[0,1] the
family of right-derivatives. For all x ∈ R and a ∈ [0, 1], we define the maps Cx,a+ , Cx,a− :

[0, 1]→ R as

Cx,a+ (t) = inf {[x,+∞) ∩ supp(µt − Sµt(νa))} and

Cx,a− (t) = sup {(−∞, x] ∩ supp(µt − Sµt(νa))} .

If the shadow of να in (µt)t∈T is non-obstructed for all α ∈ [0, 1], then under π̂a the
process (Xt)t∈T is a Markov process with

Xt ∈ {CX0,a
+ (t), CX0,a

− (t)} π̂a-a.e. (8.5)

Moreover, if there exists a measurable function q : R → [0, 1] as in Lemma 7.4, then
(X0, Xt)t∈T is a Markov process under π that jumps between the two curves

C̃x+(t) = inf
{

[x,+∞) ∩ supp(µt − Sµt(νq(x)))
}

and

C̃x−(t) = sup
{

(−∞, x] ∩ supp(µt − Sµt(νq(x)))
}
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depending on the initial value X0 = x.

Proof. Theorem 6.12 yields that there exists a Borel set A ⊂ [0, 1] with λ(A) = 1 such
that for all a ∈ A the right-derivative π̂a of α 7→ πα at a exists and is Markov.

Since the shadow is non-obstructed, the marginal distributions of π̂ satisfy

π̂a(Xt ∈ ·) = lim
h↓0
S 1
h (µt−Sµt (νa))(

νa+h − νa

h
).

Note that this is the simple shadow. Since α 7→ να is right-differentiable everywhere
with derivative ν̂a, we can apply [14, Lemma 2.8] (in conjunction with Lemma 3.3) for
simple shadows, to obtain π̂a(Xt ∈ ·) = ν̂aPt,a where Pt,a denotes the Kellerer dilation
onto the set supp(µt−Sµt(νa)) (see Remark 4.30). There is only one martingale coupling
between a measure and its Kellerer projection onto a set F and it is given by the Kellerer
dilation kernel. Hence, (8.5) holds a.e.

In the second case, we know that (X0, Xt)t∈T is a Markov process under the unique
shadow martingale measure π (cf. Corollary 7.5) and moreover by Lemma 7.4

π
(
Xt ∈

{
C̃X0

+ , C̃X0
−

})
= Eπ

[
π
(
Xt ∈

{
C̃X0

+ , C̃X0
−

}
| X0

)]
= Eπ

[
π̂q(X0)

(
Xt ∈

{
C̃X0

+ , C̃X0
−

}
| X0

)]
= Eπ

[
π̂q(X0)

(
Xt ∈

{
C
X0,q(X0)
+ , C

X0,q(X0)
−

}
| X0

)]
= 1.

8.3 Examples of shadow martingales

In this section we present four examples of shadow martingales. For the first three
examples we can apply Proposition 8.8 from the previous subsection. Indeed, using
Lemma 8.6 it is easy to check that in these cases the shadow w.r.t. the given peacock
and parametrization is non-obstructed. Alternatively, in Example 8.9 and Example 8.10
one could argue via Lemma 8.7 to see that the shadow is non-obstructed. Moreover,
in these two examples the second part of Proposition 8.8 is applicable (cf. the proof of
Corollary 7.5).

Example 8.9. Let (µt)t≥0 be the marginal distributions of a standard Brownian motion
started at t = 1, i.e. µt is the Gaussian distribution on R with mean 0 and variance 1 + t,
and let (ναmc)α∈[0,1] be the middle-curtain parametrization of µ0.

Let πmc be the shadow martingale w.r.t. (µt)t≥0 and (ναmc)α∈[0,1]. The end of Proposi-
tion 8.8 shows that the canonical process (Xt)t≥0 is a martingale jumping between the
two curves

CX0
− : t 7→ −|X0| ·

√
1 + t and CX0

+ : t 7→ |X0| ·
√

1 + t. (8.6)

Since Lawπmc(X0) = µ0 is fixed, (8.6) characterizes πmc uniquely.
We can describe πmc in purely stochastic terms: If N is a standard Gaussian dis-

tributed random variable, the distribution of the unique càdlàg martingale (Yt)t≥0 that
satisfies

Yt ∈

{
{N} t = 0

{−|N | ·
√

1 + t, |N | ·
√

1 + t} t > 0

for all t ≥ 0 is precisely the shadow martingale measure πmc.

Note that in the previous example (Xt)t≥0 is a Markov process under πlc. In general,
only the process (X0, Xt)t≥0 is a Markov process under the shadow martingale measure
by Corollary 1.1 and not the canonical process (Xt)t≥0 itself. But since in Example 8.9
we have {Cx−(t), Cx+(t) : t ≥ 0} ∩ {Cy−(t), Cy+(t) : t ≥ 0} = ∅ for all x 6= y (cf. Figure 3), one
can reconstruct |X0| from Xt and thus (Xt)t∈[0,1] is Markov.
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Figure 3: On the left is a sketch of Cx+ (blue) and Cx− (red) in Example 8.9. On the right is
a sketch of two typical trajectories under the corresponding shadow martingale measure
πmc.

Example 8.10. Let (µt)t≥0 be defined as µt = Unif [−1−t,1+t] for all t ≥ 0 and let
(ναlc)α∈[0,1] be the left-curtain parametrization of µ0.

Let πlc be the shadow martingale w.r.t. (µt)t≥0 and (ναlc)α∈[0,1]. The second part of
Proposition 8.8 shows that the canonical process (Xt)t≥0 is a martingale that jumps
between the two curves

CX0
− : t 7→ (−1)− X0 + 1

2
· t and CX0

+ : t 7→ X0 +
X0 + 1

2
· t. (8.7)

Since Lawπlc(X0) = µ0 is fixed, (8.7) characterizes πlc uniquely.
We can describe πlc in purely stochastic terms: If U is a uniformly random variable

on [−1, 1], the distribution of the unique càdlàg martingale (Yt)t≥0 that satisfies

Yt ∈

{
{U} t = 0{
−1− U+1

2 · t, U + U+1
2 · t

}
t > 0

for all t ≥ 0 is precisely the shadow martingale measure πlc.

As mentioned in Section 2, Henry-Labordère, Tan and Touzi [25] and Juillet [37]
constructed solutions to the peacock problem close but different from πlc. Their principle
of construction is also to consider the left-curtain parametrization of µ0, use partitions
and left-curtain couplings. However, the simple Markov concatanation is used in place
of the generalized obstructed shadows. Concretely, in the setting of Example 8.10, their
solution exists and has the following behaviour: Let (µt)t≥0 be as in Example 8.10. There
exists a unique limit-curtain measure π ∈ Mrc

[0,∞)((µt)t≥0). Under π the canonical process
consists of trajectories piecewise non-decreasing with jumps down at random times
to the bottom −f(t) of the interval. (cf. [37, Theorem B]) This solution to the peacock
problem behaves notably differently from the shadow martingale (cf. Figure 4).

For Example 8.9 and Example 8.10 we could apply the second part of Proposition 8.8
that corresponds to Corollary 1.1 because the parametrization of the initial marginal
was given by a restriction of µ0 to intervals of R. Any shadow martingale w.r.t. a sunrise
parametrization does not belong to this class. Therefore, in the following example
we need to rely on the notion of martingale parametrization to describe the shadow
martingale.

Example 8.11. Let (µt)t≥0 be defined as µt = Unif [−et,et] for all t ≥ 0 and let (ναsun)α∈[0,1]

be the sunset parametrization of µ0.
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Figure 4: On the left is a sketch of Cx+ (blue) and Cx− (red) in Example 8.10. On the
right is a sketch of two typical trajectories under the corresponding shadow martingale
measure πlc.

Let πsun be the shadow martingale w.r.t. (µt)t≥0 and (ναsun)α∈[0,1] and (π̂asun)a∈[0,1] the
right-derivatives of the corresponding martingale parametrization. Proposition 8.8 shows
that under π̂asun the canonical process (Xt)t≥0 is a martingale that jumps between the
two curves

CX0,a
− : t 7→

{
X0 t ≤ − ln(a)

−aet t > − ln(a)
and CX0,a

+ : t 7→

{
X0 t ≤ − ln(a)

aet t > − ln(a)
(8.8)

Since Lawπ̂asun
(X0) = ν̂asun = µ0 is fixed, (8.8) characterizes π̂asun and thereby the shadow

martingale πsun uniquely.
We can describe πsun in purely stochastic terms: If T is an exponentially distributed

random variable with parameter 1 and U an independent uniformly distributed random
variable on [−1, 1], the distribution of the unique càdlàg martingale (Yt)t≥0 that satisfies

Yt ∈

{
{U} t < T

{−et−T , et−T } t ≥ T

for all t ≥ 0 is precisely the shadow martingale measure πsun.

This example shows that martingale parametrizations and their right-derivatives
are essential to describe our solution to the peacock problem. The behaviour of the
canonical process under every right-derivative π̂a is easy to understand and the shadow
martingale is a simple mixture of these measures (see Figure 5).

Example 8.11 was more involved than Example 8.9 and Example 8.10 because the
parametrization was not given by restrictions to intervals. However, this example still
belongs to the special class of non-obstructed peacocks. The last example does not
belong to this class.

Example 8.12. Let (Sn)n∈N be the symmetric simple random walk on Z, i.e. S0 = 0 and
Sn :=

∑n
i=1Di for n ≥ 1 where (Di)i≥1 is a sequence of i.i.d. random variables uniformly

distributed on {−1, 1}. Let the family (µn)n∈N be defined as

µn :=
1

2
Law (Sn) +

1

2
Law (3Sn)

for all n ∈ N and let (ναsun)α∈[0,1] be the sunset parametrization of µ0 = δ0, i.e. ναsun = αµ0.
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Figure 5: Left: Sketch of Cx,a+ (blue) and Cx,a− (t) (red) for a = 1
2 and x ∈ {−1 + 2i

5 : 0 ≤
i ≤ 5}; Right: two typical trajectories under the shadow martingale measure πsun in
Example 8.11 for a random a.

By Theorem 7.3 there exists a unique shadow martingale πsun w.r.t. (µn)n∈N and
(ναsun)α∈[0,1]. Let (π̂a)a∈[0,1] be the family of right-derivatives of the corresponding martin-
gale parametrization. For a < 1

2 , π̂a is the distribution of (Sn)n∈N and for a ≥ 1
2 , π̂a is the

distribution of (3Sn)n∈N.

We can describe πsun in purely stochastic terms: If U is a uniformly distributed
random variable on [0, 1] independent from the simple symmetric random walk (Sn)n∈N,
the distribution of the martingale (Yn)n∈N defined by

Yn =

{
Sn if U < 1

2

3Sn if U ≥ 1
2

for all n ∈ N is precisely the shadow martingale measure πsun.

It is easy to see that the shadow of the sunset parametrization in the peacock
(µn)n∈N defined as in Example 8.12 is not non-obstructed, compare to Figure 2. Hence,
Proposition 8.8 does not apply and in fact under π̂a the canonical process (Xt)t∈N does
not jump between only two curves.

9 The left-curtain shadow martingale

Let (T,≤) be a totally ordered set with minimal element 0 ∈ T and (µt)t∈T a peacock
with µ0({x}) = 0 for all x ∈ R. Moreover, let (ναlc)α∈[0,1] be the left-curtain parametrization
of µ0, i.e. ναlc = µ0|(−∞,α] for all α ∈ [0, 1] because µ0 is atomless (see Lemma 4.5). In this
section, we give an alternative characterization of the shadow martingale measure w.r.t.
(µt)t∈T and the left-curtain parametrization (ναlc)α∈[0,1] of µ0 in terms of continuous time
martingale optimal transport.

More precisely, we prove Theorem 9.4 which is the rigorous version of Theorem 1.6,
i.e. we show that the shadow martingale is the unique solution to the continuous time
martingale optimal transport problem

inf {Eρ[c(X0, Xt)] : ρ ∈ MT (µT )} (9.1)

simultaneously for all t ∈ T and for a specific class of cost functions c.
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9.1 Optimality

In the following we denote partial derivatives with the indices of the coordinates, e.g.
we write ∂122c for ∂x∂2

yc.

Definition 9.1. A function c : R2 → R is said to be a martingale Spence-Mirrlees (MSM)
cost function if for every x < x′ in R the increment function

∆x,x′c : y 7→ c(x′, y)− c(x, y)

is strictly concave.

We will principally work with MSM cost functions c that are in C1,2(R2) and satisfy
the sufficient condition ∂122c < 0. Typical examples are cost functions of the form
c(x, y) = h(y − x) where h′ is strictly convex, e.g. c(x, y) = (y − x)3, and cost functions
of the form c(x, y) = ϕ(x)ψ(y) where ϕ is strictly decreasing and ψ is strictly convex,
e.g. c(x, y) = −x/y for (x, y) ∈ R × (0,∞). The cost function c(x, y) = exp(y − x) is
in the intersection of the subclasses and c(x, y) =

√
a(x) + b(x)y2 is a MSM function

outside these two subclasses where a, b are non-negative functions for which both a/
√
b

and b/
√
a are decreasing. The class of MSM cost functions was introduced in [26] by

Henry-Labordère and Touzi and is similar to (but should not be mixed up with) the
‘non-twisted’ condition ∂12c < 0 in classical optimal transport.

We will show that the left-curtain shadow martingale is the unique simultaneous
optimizer of (9.1). Note that the case of finite T has been worked out with different
methods by Beiglböck and Juillet [14], Nutz, Stebegg and Tan [46] and Beiglböck, Cox,
Huesmann [7]. In fact, the following lemma is very similar to [46, Lemma 7.14].

Lemma 9.2. Let c ∈ C1,2(R2). For all M,N ∈ N and (x, y) ∈ (−∞,M ] × (−∞, N ] we
have

c(x, y) = c(M,y)− (∆x,Mc)(N)− (y −N)(∆x,Mc)
′(N)

+

∫ M

−∞

∫ N

−∞
1(−∞,u](x)(v − y)+ · (−∂122c(u, v)) dudv.

Proof. Let M,N ∈ N and f ∈ C2(R). By partial integration, for y ∈ (−∞, N ] it holds

−f(y) = −f(N) +

∫ N

y

f ′(v) dv = −f(N) + [(v − y)f ′(v)]Ny −
∫ N

y

(v − y)f ′′(v) dv

= −f(N) + (N − y)f ′(N)−
∫ N

−∞
(v − y)+f ′′(v) dv.

The claim follows by applying this to f = ∆x,Mc with x ≤M and rewriting

(∆x,Mc)
′′(v) =

∫ M

−∞
1(−∞,u](x)∂122c(u, v) du.

Lemma 9.2 shows that – up to some boundary terms – the interaction of x and y

given by c is basically described by the functions of the form (x, y) 7→ 1(−∞,u](x)(v − y)+.
These, however, are closely connected with the left-curtain shadow martingale.

Lemma 9.3. For all (u, v) ∈ R2 we define the function cu,v as

cu,v : (x, y) ∈ R2 7→ 1(−∞,u](x)(v − y)+ ∈ [0,∞). (9.2)

Moreover, let (µt)t∈T be a peacock and πlc the shadow coupling w.r.t. (µt)t∈T and the
left-curtain parametrization (ναlc)α∈[0,1] of µ0. Let π ∈ MT ((µt)t∈T ).
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(i) For every t ∈ T and (u, v) ∈ R2 we have

Eπ [cu,v(X0, Xt)] ≥ Eπlc [cu,v(X0, Xt)] .

(ii) Fix t ∈ T . If for all (u, v) in a dense set of R2 we have,

Eπ [cu,v(X0, Xt)] = Eπlc [cu,v(X0, Xt)] ,

then (X0, Xt) have the same law under π and πlc.

(iii) Assume µ0 is atomless. If for every t ∈ T and all (u, v) in a dense set of R2 we have

Eπ [cu,v(X0, Xt)] = Eπlc [cu,v(X0, Xt)] ,

then π is the shadow martingale πlc.

Proof. Item (i): By definition of πlc and Proposition 4.21, for all (u, t) ∈ R× T we have

πlc(X0 ≤ u,Xt ∈ · ) = SµTt ((µ0)(−∞,u]) ≤c π(X0 ≤ u,Xt ∈ · ).

Since y 7→ (v − y)+ is a convex function for all v ∈ R we get the desired inequality.
Item (ii): Let f1, f2 : R2 → R be defined as

f1(u, v) := Eπ [cu,v(X0, Xt)] and f2(u, v) := Eπlc [cu,v(X0, Xt)] .

Since f1(u, ·) and f2(u, ·) are the potential functions of πlc(X0 ≤ u,Xt ∈ · ) and π(X0 ≤
u,Xt ∈ · ) and potential functions are convex, u1 and u2 are continuous in v. Moreover,
for all (u, v) ∈ R2 and i ∈ {1, 2}, dominated convergence yields limun↓u fi(un, v) = fi(u, v)

because µt has a finite first moment. Hence, since f1 and f2 coincide on a dense set,
they are equal everywhere. In particular, by Lemma 3.5 we obtain for all u ∈ R

πlc(X0 ≤ u,Xt ∈ · ) = π(X0 ≤ u,Xt ∈ · ).

Item (iii): Since µ0({x}) = 0 for all x ∈ R, for all α ∈ [0, 1] there exists qα ∈ R with
ναlc = (µ0)|(−∞,qα]. Hence, (πα)α∈[0,1] with πα := αLawπ(X|X0 ≤ qα) is a parametrization
of π w.r.t. (ναlc)α∈[0,1] and by (ii) (and Lemma 4.8) we have

πα(Xt ∈ · ) = αLawπlc(X|X0 ≤ qα) = SµTt (ναlc)

for all α ∈ [0, 1] and t ∈ T . By uniqueness of the shadow martingale, π = πlc.

Theorem 9.4. Let (µt)t∈T be a peacock and c : R2 → R a MSM cost function. Suppose
that

(i) c ∈ C1,2(R2) with ∂122c < 0 and

(ii) for all t ∈ T there exists ϕ1 ∈ L1(µ0) and ψ1 ∈ L1(µt) such that for all (x, y) ∈ R2

we have |c(x, y)| ≤ ϕ1(x) + ψ1(y).

Moreover, we assume that at least one of the two following assumptions is satisfied:

(iii-a) For all t ∈ T there exists ϕ2 ∈ L1(µ0) and ψ2 ∈ L1(µt) such that for all (x, y) ∈ R2

we have |∂2c(x, 0)y| ≤ ϕ2(x) + ψ2(y) or

(iii-b) there exists M ∈ N such that supp(µ0) ⊂ (−∞, M̄ ].

Under these assumptions the shadow martingale πlc w.r.t. (µt)t∈T and the left-curtain
parametrization (ναlc)α∈[0,1] of µ0 satisfies

Eπlc [c(X0, Xt)] = inf {Eρ[c(X0, Xt)] : ρ ∈ MT ((µt)t∈T )}

simultaneously for all t ∈ T .
If µ0 is atomless, πlc is the unique element of MT ((µt)t∈T ) with this property.
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We first concentrate on the central argument of the proof and postpone the proofs of
two technical results Lemma 9.7 and Lemma 9.8 to the next subsection.

Proof. Fix t ∈ T and for πlc a competitor π ∈ MT ((µt)t∈T ). For all m,M,N ∈ N and
(x, y) ∈ R2 we define

Am,M,N := [−m,M ]× (−∞, N ] and

RM,N : (x, y) ∈ R2 7→ c(M,y)− [∆x,Mc(N) + (∆x,Mc)
′(N) · (y −N)]

where we recall that ∆x,Mc denotes the increment function y 7→ c(M,y) − c(x, y). In
the following we use the notation Eπ−πlc [g(X)] for Eπ[g(X)] − Eπlc [g(X)]. By (i) and
Lemma 9.2, we know that for all m,M,N ∈ R and (x, y) ∈ Am,M,N we have

c(x, y) = RM,N (x, y) +

∫ M

−∞

∫ N

−∞
cu,v(x, y)(−∂122c(u, v)) dudv (9.3)

where cu,v(x, y) = 1(−∞,u](x)(v − y)+ as in (9.2). On the one hand, by assumption (ii)
c(X0, Xt) is integrable w.r.t. π and πlc, and dominated convergence yields

Eπ−πlc [c(X0, Xt)] = lim
M→∞

lim
m→∞

lim
N→∞

Eπ−πlc

[
1Am,M,N (X0, Xt)c(X0, Xt)

]
.

On the other hand, for all m,M,N ∈ N the random variable 1m,M,N (X0, Xt)RM,N (X0, Xt)

is integrable w.r.t. π and πlc because the function x 7→ ∂2c(x,N) is continuous on [−m,M ]

and µt has a finite first moment. We show in Lemma 9.7 that under assumptions (i) and
(ii) the following successive limits exist and satisfy

lim
m→∞

lim
N→∞

Eπ−πlc

[
1Am,M,N (X0, Xt)Rm,M,N (X0, Xt)

]
= Eπ−πlc

[
1(−∞,M ](X0)c(M,Xt)

]
.

Since assumption (iii-a) or assumption (iii-b) is satisfied, by Lemma 9.8 we have

lim
M→∞

Eπ−πlc

[
1(−∞,M ](X0)c(M,Xt)

]
= 0.

Hence, taking the expectation in (9.3), by Fubini’s theorem we have

Eπ−πlc [c(X0, Xt)] = lim
M→∞

lim
m→∞

lim
N→∞

∫ M

m

∫ N

−∞
Eπ−πlc [cu,v(X0, Xt)] (−∂122c(u, v)) dudv.

Since ∂122c < 0 by assumption (i) and Eπ−πlc [cu,v(X0, Xt)] ≥ 0 by Lemma 9.3 (i), by
monotone convergence we obtain

Eπ−πlc [c(X0, Xt)] =

∫ ∞
−∞

∫ ∞
−∞

Eπ−πlc [cu,v(X0, Xt)] (−∂122c(u, v)) dudv.

The claim follows with Lemma 9.3 (i) and Lemma 9.3 (iii).

Remark 9.5. In the following cases the assumptions of Theorem 9.4 are satisfied:

(i) The cost function c : (x, y) 7→ tanh(−x)
√

1 + y2 satisfies (i), (ii) and (iii-a) for every
peacock and every t ∈ T .

(ii) Let c(x, y) := (y − x)3 and suppose µt has a finite third moment for all t ∈ T . Then
we can satisfy assumptions (ii) and (iii-a) with the same functions x 7→ 4|x|3 and
y 7→ 4|y3|.

(iii) Let ϕ ∈ C1(R) with ϕ′ > 0, ψ ∈ C2(R) with ψ′′ < 0, c(x, y) := ϕ(x)ψ(y) and suppose
there exist 1

p + 1
q = 1 such that for all t ∈ T ϕ ∈ Lp(µ0) and ψ ∈ Lq(µt) and either µt

has finite q-th moment for all t ∈ T or there exists M ∈ N with supp(µ0) ⊂ (−∞,M ].
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Remark 9.6. As mentioned before, Theorem 9.4 for a finite index set T is proven in [46]
and [6]. For a general index set T , picking a suitable sequence of nested finite subsets
(Rn)n of T , it is possible to show that the sequence of shadow martingales w.r.t. (µt)t∈Rn
and (ναlc)α∈[0,1] converges to the unique shadow martingale w.r.t. (µt)t∈T and (ναlc)α∈[0,1].
In particular, the unique optimizer of the finite time martingale optimal transport problem
provided by [46] converge to the unique optimizer of the corresponding continuous-time
martingale optimal transport problem.

9.2 Pending proofs

Recall the notation Am,M,N , RM,N and Eπ−πlc from the proof of Theorem 9.4. Given a
MSM cost function c, for all x < x′ in R and N ∈ N we denote by LNx,x′ the tangent of the
concave increment function ∆x,x′c at N , i.e. LNx,x′(y) := (∆x,x′c)(N)+(∆x,x′c)

′(N)(y−N)

for all y ∈ R.

Lemma 9.7. Let (µt)t∈T be a peacock and c : R2 → R a MSM cost function. Under the
assumptions (i) and (ii) of Theorem 9.4, for all t ∈ T and M ∈ N the following successive
limit exists and satisfies

lim
m→∞

lim
N→∞

Eπ−πlc

[
1Am,M,N (X0, Xt)RM,N (X0, Xt)

]
= Eπ−πlc

[
1(−∞,M ](X0)c(M,Xt)

]
.

Proof. Fix π ∈ MT ((µt)t∈T ) and t ∈ T .
STEP 1: For all m,M,N ∈ N and x ∈ [−m,M ], the tangent function LNm,M of c is an

affine function. Hence, the martingale property yields that

Eπ
[
1[−m,M ](X0) (c(M,Xt)−RM,N (X0, Xt))

]
= Eπ

[
1[−m,M ](X0)LNX0,M (Xt)

]
= Eπ

[
1[−m,M ](X0)LNX0,M (X0)

]
is independent of π ∈ MT ((µt)t∈T ). Thus,

Eπ−πlc

[
1[−m,M ](X0)RM,N (X0, Xt)

]
= Eπ−πlc

[
1[−m,M ](X0)c(M,Xt)

]
.

STEP 2: Fix M ∈ N and x ∈ [−m,M ]. For all N ∈ N we define Bm,M,N = [−m,M ]×
(N,∞) so that 1[−m,M ](x) = 1Am,M,N (x, y) + 1Bm,M,N (x, y) for all y ∈ R. The function

y 7→ c(M,y)−RN,M (x, y) = LNx,M (y)

is the tangent of the concave function ∆x,Mc at the position N . By concavity, for every
y ∈ (N,+∞) (where we recall N ≥ 0) we have ∆x,Mc(y) ≤ LNx,M (y) ≤ L0

x,M (y). Hence,

1Bm,M,N (X0, Xt)|RM,N (X0, Xt)|
≤ |c(M,Xt)|+ |∆X0,Mc(Xt)|+ 1[−m,M ](X0)|L0

X0,M (Xt)|.

Note that the right-hand side is independent of N and integrable with respect to π

and πlc.
STEP 3: With the majorant from Step 2, the dominated convergence theorem yields

lim
N→∞

Eπ−πlc

[
1Bm,M,N (X0, Xt)Rm,M,N (X0, Xt)

]
= 0.

Therefore, we have

lim
N→∞

Eπ−πlc

[
1Am,M,N (X0, Xt)RM,N (X0, Xt)

]
= lim

N→∞

(
Eπ−πlc

[
1[−m,M ](X0)RM,N (X0, Xt)

]
− Eπ−πlc

[
1Bm,M,N (X0, Xt)RM,N (X0, Xt)

])
= Eπ−πlc

[
1[−m,M ](X0)c(M,Xt)

]
.

STEP 4: For all M ∈ N assumption (ii) ensures that 1(−∞,M ](X0)c(M,Xt) is integrable
w.r.t. π and πlc. Hence, the claim follows with dominated convergence.
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Lemma 9.8. Let (µt)t∈T be a peacock and c : R2 → R a MSM cost function that satisfies
assumptions (i) and (ii) of Theorem 9.4. If additionally assumption (iii-a) or assumption
(iii-b) of Theorem 9.4 are satisfied, for all t ∈ T we have

lim
M→∞

Eπ−πlc

[
1(−∞,M ](X0)c(M,Xt)

]
= 0.

Proof. Fix π ∈ MT ((µt)t∈T ) and t ∈ T .
If assumption (iii-b) is satisfied, 1(−∞,M ] = 1 π-a.e. Hence, for all M ≥M we have

Eπ−πlc

[
1(−∞,M ](X0)c(M,Xt)

]
= Eπ−πlc [c(M,Xt)] = 0

and the claim follows.
Now suppose assumption (iii-a) is satisfied. In this case, w.l.o.g. we can assume that

c(0, y) = c(x, 0) = ∂2c(x, 0) = 0, for all (x, y) ∈ R2. (9.4)

Otherwise, we replace c with c̃ defined as

c̃(x, y) := ∆0,xc(y)− (∆0,xc)(0)− (∆0,xc)
′(0)y

= c(x, y)− c(0, y)− (∆0,xc)(0)− (∆0,xc)
′(0)y.

Indeed, c̃ satisfies assumptions (i), (ii), and (iii-a) or (iii-b) (depending on c) and c̃(0, y) =

c̃(x, 0) = ∂2c̃(x, 0) = 0 for all (x, y) ∈ R2. Moreover, by the martingale property we have

lim
M→∞

Eπ−πlc

[
1(−∞,M ](X0) (c̃(M,Xt)− c(M,Xt))

]
= lim

M→∞
Eπ−πlc

[
1(−∞,M ](X0)

(
c(0, Xt) + L0

0,M (X0)
)]

= lim
M→∞

Eπ−πlc [c(0, Xt)] = 0.

Hence the limit of Eπ−πlc

[
1(−∞,M ](X0)c(M,Xt)

]
exists and vanishes as M tends to

infinity if and only if the limit of Eπ−πlc

[
1(−∞,M ](X0)c̃(M,Xt)

]
exists and vanishes as

M →∞.
For all 0 ≤ x ≤ x′, the MSM property and (9.4) yield that ∆x,x′c is a concave function

with (∆x,x′c)(0) = (∆x,x′c)
′(0) = 0 and thus ∆x,x′c ≤ 0. Hence, for all 0 ≤ M ≤ M ′ and

(x, y) ∈ R2 we obtain

1(M,∞)(x)∆M,xc(y) = 1(M,M ′](x)∆M,xc(y) + 1(M ′,∞)(x)∆M,xc(y)

≤1(M ′,∞)(x)∆M,xc(y) = 1(M ′,∞)(x) (∆M,M ′c(y) + ∆M ′,xc(y)) ≤ 1(M ′,∞)(x)∆M ′,xc(y).

Since for all (x, y) ∈ R2 the sequence 1(M,∞)(x)∆M,xc(y) converges to 0 as M tends to
infinity, monotone convergence applied separately for π and πlc yields

lim
M→∞

Eπ−πlc

[
1(M,∞)(X0)∆M,X0

c(Xt)
]

= 0.

Finally, we can conclude

lim
M→∞

Eπ−πlc

[
1(−∞,M ](X0)c(M,Xt)

]
= lim

M→∞

(
Eπ−πlc [c(M,Xt)]− Eπ−πlc

[
1(M,∞)(X0)c(M,Xt)

])
= − lim

M→∞
Eπ−πlc

[
1(M,∞)(X0)c(M,Xt)

]
= lim

M→∞
Eπ−πlc

[
1(M,∞)(X0)∆M,X0

c(Xt)
]
− lim
M→∞

Eπ−πlc

[
1(M,∞)(X0)c(X0, Xt)

]
= 0

using dominated convergence in the last equality employing assumption (ii).
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