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Abstract

Recently there has been significant interest in constructing ordered analogues of
Petrov’s two-parameter extension of Ethier and Kurtz’s infinitely-many-neutral-alleles
diffusion model. One method for constructing these processes goes through taking an
appropriate diffusive limit of Markov chains on integer compositions called ordered
Chinese Restaurant Process up-down chains. The resulting processes are diffusions
whose state space is the set of open subsets of the open unit interval. In this paper
we begin to study nontrivial aspects of the order structure of these diffusions. In
particular, for a certain choice of parameters, we take the diffusive limit of the size
of the first component of ordered Chinese Restaurant Process up-down chains and
describe the generator of the limiting process. We then relate this to the size of the
leftmost maximal open subset of the open-set valued diffusions. This is challenging
because the function taking an open set to the size of its leftmost maximal open
subset is discontinuous. Our methods are based on establishing intertwining relations
between the processes we study.
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1 Introduction

The construction and analysis of ordered analogues of Petrov’s [15] two-parameter
extension of Ethier and Kurtz’s [3] infinitely-many-neutral-alleles diffusion model has
recently attracted significant interest in the literature [7, 8, 20, 21, 23]. Recall that for
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The leftmost column of ordered Chinese restaurant process up-down chains

0 ≤ α < 1 and θ > −α, [15] constructed a Feller diffusion on the closure of the Kingman
simplex

∇∞ =

x = (x1, x2, . . . ) : x1 ≥ x2 ≥ · · · ≥ 0,
∑
i≥1

xi ≤ 1


whose generator acts on the unital algebra generated by φm(x) =

∑
i≥1 x

m
i , m ≥ 2 by

G(α,θ) =

∞∑
i=1

xi
∂2

∂x2i
−
∞∑

i,j=1

xixj
∂2

∂xi∂xj
−
∞∑
i=1

(θxi + α)
∂

∂xi
.

We will call a diffusion with generator G(α,θ) an EKP(α, θ) diffusion. In [20], for each
θ ≥ 0, 0 ≤ α < 1, and α + θ > 0, we constructed a Feller diffusion X(α,θ) whose state
space U is the set of open subsets of (0, 1) such that the ranked sequence of lengths of
maximal open intervals in X(α,θ) is an EKP(α, θ) diffusion. This was done by considering
the scaling limit of integer composition-valued up-down chains associated to the ordered
Chinese Restaurant Process.

While many interesting properties of X(α,θ) can be obtained from the corresponding
properties for EKP(α, θ) diffusions, properties that depend on the order structure cannot
be. In this paper we begin to study nontrivial aspects of the order structure of these diffu-
sions. Motivated by [6, Theorem 2 and Theorem 19] and [5, Theorem 5], which consider
similar properties in closely related tree-valued processes, we consider the evolution
of the leftmost maximal open interval of X(α,0) in running in its (α, 0)-Poisson-Dirichlet
interval partition stationarity distribution. Recall that the (α, 0)-Poisson-Dirichlet interval
partition is the distribution of {t ∈ (0, 1) : V1−t > 0} where Vt is a (2− 2α)-dimensional
Bessel process started from 0. We prove the following result.

Theorem 1.1. Define ξ : U → [0, 1] by ξ(u) = inf{s > 0 : s ∈ [0, 1]\u}. If X(α,0) is running
in its (α, 0)-Poisson-Dirichlet interval partition stationarity distribution, then ξ(X(α,0)) is
a Feller process§. Moreover, the generator of its semigroup L : D ⊆ C[0, 1]→ C[0, 1] is
given by

Lf(x) = x(1− x)f ′′(x)− αf ′(x)

for x ∈ (0, 1), where the domain D of L consists of functions f satisfying

(D1) f ∈ C2(0, 1) and x(1− x)f ′′(x)− αf ′(x) extends continuously to [0, 1],

(D2)
∫ 1

0
(f(x)− f(0))x−α−1(1− x)α−1 dx = 0, and

(D3) f ′(x)(1− x)α → 0 as x→ 1.

We consider only the (α, 0) case because the known stationary distribution of X(α,θ) is
an (α, θ)-Poisson-Dirichlet interval partition and, except in the (α, 0) case, with probability
1 interval partitions with these distributions do not have leftmost maximal open intervals.
We remark that our theorem statement could be slightly simpler if we knew that X(α,θ)

had a unique stationary distribution, but this is currently an open problem.
Our proof is based on taking the scaling limit of the leftmost coordinate in an up-down

chain on compositions based on the ordered Chinese Restaurant Process, which are the
same chains that were used in [20] to construct X(α,0).

Definition 1.2. For n ≥ 1, a composition of n is a tuple σ = (σ1, ..., σk) of positive
integers that sum to n. The composition of n = 0 is the empty tuple, which we denote by
∅. We write |σ| = n and `(σ) = k when σ is a composition of n with k components. We
denote the set of all compositions of n by Cn and their union by C = ∪n≥0 Cn.

§Recall that a Feller process is a Markov process on a (locally) compact state-space E with a transition
semigroup that is a strongly continuous semigroup on C0(E).
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The leftmost column of ordered Chinese restaurant process up-down chains

Figure 1: The diagram corresponding to the composition τ = (2, 3, 1, 1, 2, 2).

Each composition has a corresponding diagram of boxes: the diagram corresponding
to σ has |σ| boxes arranged into `(σ) columns so that the ith column contains σi boxes.
See Figure 1 for an example.

An up-down chain on Cn is a Markov chain whose steps can be factored into two parts:
1) an up-step from Cn to Cn+1 according to a kernel p↑ followed by 2) a down-step from
Cn+1 to Cn according to a kernel p↓. The probability Tn(σ, σ′) of transitioning from σ to
σ′ can then be written as

Tn(σ, σ′) =
∑

τ∈Cn+1

p↑(σ, τ)p↓(τ, σ′). (1.1)

Up-down chains on compositions, and more generally, on graded sets, have been studied
in a variety of contexts [2, 6, 9, 10, 11, 15, 16], often in connection with their nice
algebraic and combinatorial properties.

In the up-down chains we considered, the up-step kernel p↑(α,θ) is given by an (α, θ)-
ordered Chinese Restaurant Process growth step [18]. In the Chinese Restaurant Process
analogy, we view the initial composition τ = (τ1, . . . , τk) ∈ Cn as an ordered list of the
number of customers at k occupied tables in a restaurant, so that τi is the number of
customers at the ith table on the list. An up-step from τ then corresponds to the entrance
of a new customer to the restaurant who chooses a table to sit at according to the
following rules:

• The new customer joins table i with probability (τi − α)/(n+ θ), resulting in a step
from τ to (τ1, . . . , τi−1, τi + 1, τi+1, . . . , τk).

• The new customer starts a new table directly after the table i with probability
α/(n+ θ), resulting in a step from τ to (τ1, . . . , τi−1, τi, 1, τi+1, . . . , τk).

• The new customer starts a new table at the start of the list with probability θ/(n+θ),
resulting in a step from τ to (1, τ1, τ2 . . . , τk).

A pictorial description of the up-step is given in Figure 2. We note that, for consistency
with [7, 8], this up-step is the left-to-right reversal of the growth step in [18].

The down-step kernel p↓ we consider can also be thought of in terms of the restau-
rant analogy. As before, we view the initial composition τ ∈ Cn+1 as describing the
arrangement of customers in the restaurant. A down-step from τ then corresponds to a
uniformly random customer being chosen to leave the restaurant. Hence,

• the seated customer is chosen from table i with probability τi/(n+ 1), resulting in
a step from τ to {

(τ1, . . . , τi−1, τi − 1, τi+1, . . . , τk), if τi > 1,

(τ1, . . . , τi−1, τi+1, . . . , τk), if τi = 1.
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θ α α α

3− α

2− α

1− α
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Figure 2: Left. An (α, θ) up-step from σ = (2, 3, 1, 4) inserts a box into a position above
with probability proportional to the respective weight. Right. A down-step from σ

reduces a column by one box with probability proportional to its size.

A pictorial description of the down-step is given in Figure 2. Note that, in contrast to
the up-step, the down-step does not depend on (α, θ).

Let (X
(α,θ)
n (k))k≥0 be a Markov chain on Cn with transition kernel T (α,θ)

n defined as
in Equation (1.1) using the p↑(α,θ) and p↓ just described. A Poissonized version of this

chain was considered in [21, 23]. It can be shown that X(α,θ)
n is an aperiodic, irreducible

chain. We denote its unique stationary distribution by M (α,θ)
n and note that this is the

left-to-right reversal of the (α, θ)-regenerative composition structures introduced in [12].
The projection φ(σ) = σ1 for σ 6= ∅ gives rise to the leftmost column processes,

defined by Y (α,θ)
n = φ(X

(α,θ)
n ). Let ν(α,θ)n = M

(α,θ)
n ◦ φ−1, the distribution of the leftmost

column when the up-down chain is in stationarity. The following result, interesting in its
own right, is a key step in our proof of Theorem 1.1.

Theorem 1.3. For n ≥ 1, let µn be a distribution on {1, . . . , n}. Then, for all n, the

up-down chain X
(α,0)
n can be initialized so that Y (α,θ)

n is a Markov chain with initial
distribution µn. Moreover, for any such sequence of initial conditions for X

(α,0)
n , if the

sequence {n−1Y (α,0)
n (0)}n≥1 has a limiting distribution µ, then we have the convergence(

n−1Y (α,0)
n (bn2tc)

)
t≥0

=⇒ (F (t))t≥0

in the Skorokhod space D([0,∞), [0, 1]), where F is a Feller process with generator L (as
in Theorem 1.1) and initial distribution µ.

While there are many ways to prove a result like Theorem 1.3, we take an approach
based on the algebraic properties of the ordered Chinese Restaurant Process up-down
chains. In particular, our proof is based on the following surprising intertwining result.
For a positive integer i and composition σ, we use the notation (i, σ) as a shorthand for
the composition (i, σ1, σ2, . . . , σ`(σ)).

Theorem 1.4. For n ≥ 1, let Λn be the transition kernel from {1, . . . , n} to Cn given by

Λn(i, (i, σ)) = M
(α,α)
n−i (σ),

and let Kn be the transition kernel from [0, 1] to {1, . . . , n} given by

Kn(x, i) =

(
n

i

)
xi(1− x)n−i + ν(α,α)n (i)(1− x)n.
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If the initial distribution of X
(α,0)
n is of the form µΛn for some distribution µ on

{1, . . . , n}, then the process Y (α,0)
n is Markovian. In this case, the following intertwining

relations hold:

(i) ΛnT
(α,0)
n = Q

(α,0)
n Λn, where Q(α,0)

n is the transition kernel of Y (α,0)
n , and

(ii) Kne
tn(n+1)(Q(α,0)

n −1) = UtKn for t ≥ 0, where Ut is the semigroup generated by the
operator L defined in Theorem 1.1 and 1 denotes the identity operator.

This paper is organized as follows. In Section 2, we show that the (α, 0) leftmost
column process is intertwined with its corresponding up-down chain and describe its
transition kernel explicitly. This establishes part of Theorem 1.4. In Section 3, we
state a condition under which the convergence of Markov processes can be obtained
from some commutation relations involving generators. In Section 4, we analyze the
generator of the limiting process. In Section 5, we show that our generators satisfy
the commutation relations appearing in the result of Section 3. In Section 6, we verify
the convergence condition appearing in the result in Section 3. In Section 7, we
provide general conditions under which commutation relations involving generators
lead to the corresponding relations for their semigroups. Finally in Section 8, we prove
Theorems 1.1, 1.3, and 1.4.

The following will be used throughout this paper. For a compact topological space X,
we denote by C(X) the space of continuous functions from X to R equipped with the
supremum norm. Finite topological spaces will always be equipped with the discrete
topology. Any sum or product over an empty index set will be regarded as a zero or
one, respectively. The set of positive integers {1, ..., k} will be denoted by [k]. The falling
factorial will be denoted using factorial exponents – that is, x↓b = x(x− 1) · . . . · (x− b+ 1)

for a real number x and nonnegative integer b, and 0↓0 = 1 by convention. The rising
factorial will be denoted by (x)b = x(x+ 1) · · · (x+ b− 1). We denote the gamma function
by Γ(x). Multinomial coefficients will be denoted using the shorthand

(
|σ|
σ

)
=


(

|σ|
σ1, ..., σ`(σ)

)
, σ 6= ∅,

1, σ = ∅.

2 The leftmost column process

Our study of the leftmost column process will be mainly focused on the θ = 0 case.
However, it will be useful to study the distribution of the (α, α) leftmost column process
when the up-down chain is in stationarity. As we will see, this distribution has a role in
the evolution of the (α, 0) process.

Proposition 2.1. The stationary distribution of X(α,α)
n is given by

M (α,α)
n (σ) =

(
n

σ

)
1

(α)n

`(σ)∏
j=1

α (1− α)σj−1, σ ∈ Cn, n ≥ 0.

Moreover, the following consistency conditions hold:

M (α,α)
n = M

(α,α)
n−1 p↑(α,α) = M

(α,α)
n+1 p↓, n ≥ 1. (2.1)

Proof. The stationary distribution of X(α,θ)
n is identified in [20, Theorem 1.1] and the

formula in the special case α = θ follows from [12, Formula 48]. The consistency
conditions follows from [18, Proposition 6].
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Proposition 2.2. If X(α,α)
n has distribution M (α,α)

n , then Y (α,α)
n has distribution

ν(α,α)n (i) =

(
n

i

)
α (1− α)i−1
(n− i+ α)i

1(1 ≤ i ≤ n), i ≥ 0, n ≥ 1.

Proof. Let 1 ≤ i ≤ n and σ ∈ Cn−i. It can be verified that

M (α,α)
n (i, σ) = ν(α,α)n (i)M

(α,α)
n−i (σ). (2.2)

Summing over σ concludes the proof.

Let n ≥ i ≥ 1 and σ ∈ Cn−i. Consider taking an (α, 0) up-step from (i, σ) followed by
a down-step. Let U be the event in which this up-step stacks a box on the first column
of (i, σ), and let D be the event in which the down-step removes a box from the first

column of a composition. Then, ri,i+1 = P(U ∩Dc), ri,i−1 = P(U c ∩D), r(1)i,i = P(U c ∩Dc),

r
(2)
i,i = P(U ∩D), and ri,i = r

(1)
i,i + r

(2)
i,i do not depend on σ. Indeed, we have the formulas

ri,i−1 = i(n−i+α)
n(n+1) , r

(1)
i,i = (n−i+1)(n−i+α)

n(n+1) ,

ri,i+1 = (i−α)(n−i)
n(n+1) , r

(2)
i,i = (i−α)(i+1)

n(n+1) .
(2.3)

We use these formulas to define r0,−1, r0,1, r(1)0,0, r(2)0,0, and r0,0 = r
(1)
0,0 + r

(2)
0,0. Moreover,

we extend ri,j to be zero for all other integer arguments i and j.
The following is a useful identity relating the transition kernels of the (α, 0) and (α, α)

chains.

Proposition 2.3. For n ≥ 1 and (i, σ), (j, σ′) ∈ Cn, we have the identity

T (α,0)
n

(
(i, σ), (j, σ′)

)
= ri,jp

↑
(α,α)(σ, σ

′)1(j = i− 1) + ri,jp
↓(σ, σ′)1(j = i+ 1)

+ (r
(1)
i,i T

(α,α)
n−i (σ, σ′) + r

(2)
i,i 1(σ = σ′))1(j = i)

+ r1,0p
↑
(α,α)(σ, (j, σ

′))1(i = 1).

Proof. Given a composition τ = (τ1, τ2, . . . , τ`(τ)), let τ `2 = (τ2, τ3, . . . , τ`(τ)) be the com-
position obtained by removing the first column of τ . Fix (i, σ) and (j, σ′) in Cn. Let C↑

be the composition obtained by performing an (α, 0) up-step from (i, σ) and C↓ be the
composition obtained by performing a down-step from C↑. As before, let U be the event
in which the up-step adds to the first column of a composition and D be the event in
which the down-step removes from the first column of a composition. Then, we have that

U =
{
C↑ = (i+ 1, σ)

}
, U c = {C↑1 = i}, Dc ⊆ {C↓1 = C↑1},

and

D ⊆
{
C↑1 > 1, C↓ =

(
C↑1 − 1, (C↑)`2

)}
∪
{
C↑1 = 1, C↓ = (C↑)`2

}
.

To obtain the identity, we note that

T (α,0)
n ((i, σ), (j, σ′)) = P{C↓ = (j, σ′)},

and rewrite this probability by conditioning on the above sets. Of particular importance
will be the following observations:

(i) Conditionally given U c, (C↑)`2 has distribution p↑(α,α)(σ, · ) and is independent of D.

(ii) Conditionally given Dc and (C↑)`2, (C↓)`2 has distribution p↓
(
(C↑)`2, ·

)
.
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ααα

σ`(σ) − αi− α

σ2 − α

α

σ1 − α
. . .

α

i

σ

. . .

i

. . .

σ

. . .

σ`(σ) − α

σ2 − α

σ1 − α

ααααα

i

. . .

σ

. . .

σ`(σ) − α

σ2 − α

σ1 − α

ααααα

Figure 3: Top. An (α, 0) up-step from (i, σ) describes C↑. Bottom-Left. A modified up-step
describes C↑ conditionally given U c. Bottom-Right. A column of size i and an (α, α)

up-step from σ describe C↑1 and (C↑)`2, respectively, conditionally given U c.

These facts can be established as follows:

(i) Recall that C↑ is the result of an (α, 0) up-step from (i, σ), which increases a compo-
nent i, σ1, . . . , σ`(σ) by 1 with probability proportional to i− α, σ1 − α, . . . , σ`(σ) − α,
respectively, or inserts a component of value 1 after a given component with proba-
bility proportional to α. When we condition on U c, C↑ is the result of an up-step
that uses the above rule but excludes the possibility of increasing the component i.
The value of (C↑)`2 resulting from this modified up-step is described in the table
below.

weight ** type of up-step resulting value of (C↑)`2
σj − α increase the component σj in (i, σ) (σ1, . . . , σj−1, σj+1, σj+1, . . . , σ`(σ))

α insert a 1 in (i, σ) after σj (σ1, . . . , σj , 1, σj+1, . . . , σ`(σ))

α insert a 1 in (i, σ) after i/before σ1 (1, σ)

Meanwhile, an (α, α) up-step from σ results in the composition described below.

**each type of up-step occurs with probability proportional to the respective weight
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weight type of up-step resulting composition
σj − α increase the component σj in σ (σ1, . . . , σj−1, σj + 1, σj+1, . . . , σ`(σ))

α insert a 1 in σ after σj (σ1, . . . , σj , 1, σj+1, . . . , σ`(σ))

α insert a 1 in σ before σ1 (1, σ)

A direct comparison establishes the first claim. See also Figure 3. For the second
claim, observe that the occurrence of D depends on (C↑)`2 only through its size,
which is constant on U c.

(ii) This fact can be proven similarly. A modified down-step from C↑ (that does not
remove from the first column) will describe C↓ conditionally given Dc, and the
resulting value of (C↓)`2 will be described by the composition resulting from a
down-step from (C↑)`2.

We also make use of the fact that the events {C↑ = (n+ 1− |ρ|, ρ)} and
{

(C↑)`2 = ρ
}

are identical, since the size of C↑ is known to be n+ 1.

Our first conditional probability is given by

P(C↓ = (j, σ′)|U,D) = P(C↓ = (j, σ′)|C↑ = (i+ 1, σ), D)

= P((i, σ) = (j, σ′)|C↑ = (i+ 1, σ), D)

= 1((j, σ′) = (i, σ)).

Next, we will condition on U ∩Dc. Notice that this is a null set when i = n. When
i < n, we have

P(C↓ = (j, σ′)|U,Dc) = P(C↑1 = j, (C↓)`2 = σ′|C↑ = (i+ 1, σ), Dc)

= 1(j = i+ 1)P((C↓)`2 = σ′|(C↑)`2 = σ,Dc)

= 1(j = i+ 1)p↓(σ, σ′).

Conditioning on U c ∩D will require two cases. For i > 1, we have

P(C↓ = (j, σ′)|U c, D) = P(C↓ = (j, σ′)|C↑1 = i,D)

= P((i− 1, (C↑)`2) = (j, σ′)|C↑1 = i,D)

= 1(j = i− 1)P((C↑)`2 = σ′|U c, D)

= 1(j = i− 1)P((C↑)`2 = σ′|U c)

= 1(j = i− 1) p↑(α,α)(σ, σ
′),

and for i = 1, we have

P(C↓ = (j, σ′)|U c, D) = P(C↓ = (j, σ′)|C↑1 = 1, D)

= P((C↑)`2 = (j, σ′)|U c, D)

= P((C↑)`2 = (j, σ′)|U c)

= p↑(α,α)(σ, (j, σ
′)).
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Finally, we condition on U c ∩Dc. We have that

P
(
C↓ = (j, σ′)|U c, Dc

)
= P

(
C↑1 = j, (C↓)`2 = σ′|C↑1 = i,Dc

)
= 1(j = i)P

(
(C↓)`2 = σ′|U c, Dc

)
= 1(j = i)

∑
τ∈Cn+1−i

P
(
(C↑)`2 =τ |U c, Dc

)
P
(
(C↓)`2 = σ′|C↑ = (i, τ), Dc

)
= 1(j = i)

∑
τ∈Cn+1−i

P
(
(C↑)`2 = τ |U c

)
P
(
(C↓)`2 = σ′|(C↑)`2 = τ,Dc

)
= 1(j = i)

∑
τ∈Cn+1−i

p↑(α,α)(σ, τ)p↓(τ, σ′)

= 1(j = i)T
(α,α)
n−i (σ, σ′).

Collecting the terms above with the appropriate terms in (2.3) establishes the result.

Let n ≥ 1. We define a transition kernel Λn from [n] to Cn by

Λn(i, (i, σ)) = M
(α,α)
n−i (σ),

and a transition kernel Φn from Cn to [n] by

Φn(σ, i) = 1(σ1 = i).

Proposition 2.4. For n ≥ 1, the transition kernel Q(α,0)
n = ΛnT

(α,0)
n Φn satisfies

ΛnT
(α,0)
n = Q(α,0)

n Λn. (2.4)

Consequently, if the initial distribution of X(α,0)
n is of the form µΛn, then Y (α,0)

n is a
time-homogeneous Markov chain with transition kernel Q(α,0)

n . Moreover, the transition
kernel Q(α,0)

n is given explicitly by

Q(α,0)
n (i, j) = ri,j + r1,0ν

(α,α)
n (j)1(i = 1).

Proof. Let Cn be the kernel on [n] defined by the right side of the above equation. Fix
i, j ∈ [n] and σ′ ∈ Cn−j . Using Proposition 2.3 and the identities (2.1) and (2.2), we
compute

(ΛnT
(α,0)
n )(i, (j, σ′))

=
∑

σ∈Cn−i

Λn(i, (i, σ))T (α,0)
n ((i, σ), (j, σ′))

= ri,j
∑

σ∈Cn−i

M
(α,α)
n−i (σ)

(
p↑(α,α)(σ, σ

′)1(j = i− 1) + p↓(σ, σ′)1(j = i+ 1)
)

+ 1(j = i)
∑

σ∈Cn−i

M
(α,α)
n−i (σ)

(
T

(α,α)
n−i (σ, σ′)r

(1)
i,i + 1(σ = σ′)r

(2)
i,i

)
+ r1,01(i = 1)

∑
σ∈Cn−i

M
(α,α)
n−i (σ)p↑(α,α)(σ, (j, σ

′))

= ri,j

(
M

(α,α)
n−j (σ′)1(j = i− 1) +M

(α,α)
n−j (σ′)1(j = i+ 1)

)
+ 1(j = i)

(
M

(α,α)
n−j (σ′)r

(1)
i,i +M

(α,α)
n−j (σ′)r

(2)
i,i

)
+ r1,01(i = 1)M (α,α)

n (j, σ′)

= ri,jM
(α,α)
n−j (σ′) + r1,01(i = 1)ν(α,α)n (j)M

(α,α)
n−j (σ′)

= Cn(i, j)Λn(j, (j, σ′))

= (CnΛn)(i, (j, σ′)).
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The final equality follows from the fact that Λn(j, · ) is supported on {σ ∈ Cn : σ1 = j}.
This establishes the identity ΛnT

(α,0)
n = CnΛn. Observing that ΛnΦn is the identity kernel

on [n], we find that

Q(α,0)
n = ΛnT

(α,0)
n Φn = CnΛnΦn = Cn,

from which we obtain (2.4) and the explicit description of Q(α,0)
n . The final claim follows

from applying Theorem 2 in [22].

3 Convergence from commutation relations

In this section, we provide a condition under which commutation relations between
operators implies the convergence of those operators in an appropriate sense. In the
interest of generality, we first state this condition in the setting of Banach spaces, but we
then reformulate it in the context of Markov processes to suit our purposes. The general
setting is as follows.

Let V, V1, V2, . . . be Banach spaces and π1, π2, . . . be uniformly bounded linear oper-
ators with πn : V → Vn. These spaces will be equipped with the following mode of
convergence.

Definition 3.1. A sequence {fn}n≥1 with fn ∈ Vn converges to an element f ∈ V (and
we write fn → f ) if

‖fn − πnf‖ −−−−→
n→∞

0,

where for convenience, we denote every norm by the same symbol ‖ · ‖.
Proposition 3.2. For n ≥ 1, let Ln : Dn ⊂ V → Vn and An : Vn → Vn be linear operators
in addition to A : D ⊂ V → D. Suppose that for every f ∈ D,

(i) AnLnf = LnAf for large n, and

(ii) (Ln − πn)f −→ 0 as n→∞ (the sequence need only be defined for large n).

Then for f ∈ D, the sequence fn = Lnf (defined for large n) satisfies

fn −→ f and Anfn −→ Af.

Proof. Let f ∈ D and n be large enough so that (i) holds. In particular, we can define
fn = Lnf . Writing

‖fn − πnf‖ = ‖Lnf − πnf‖,

it is clear that fn → f . Writing

‖Anfn − πnAf‖ = ‖AnLnf − πnAf‖
= ‖LnAf − πnAf‖
= ‖(Ln − πn)Af‖

and noting that Af ∈ D, we obtain the other convergence.

In the probabilistic context, the above result has some additional consequences.

Theorem 3.3. Let E be a compact, separable metric space, A be the generator of the
Feller semigroup S(t) on C(E), and D be a core for A that is invariant under A. For
each n ≥ 1, let En be a finite set endowed with the discrete topology, Zn be a Markov
chain on En, γn : En → E be any function, and Ln : Dn ⊂ C(E) → C(En) be a linear
operator. Denote the transition operator of Zn by Sn and the projection f 7→ f ◦ γn by
πn : C(E)→ C(En). Let {δn}n≥1 and {εn}n≥1 be positive sequences converging to zero
such that ε−1n δn → 1. Suppose that for f ∈ D, the following statements hold:
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(a) δ−1n (Sn − 1)Lnf = LnAf for large n, and

(b) (Ln − πn)f −→ 0 as n→∞ (the sequence need only be defined for large n).

Then,

(i) the discrete semigroups {1, Sn, S2
n, ...}n≥1 converge to {S(t)}t≥0 in the following

sense: for all f ∈ C(E) and t ≥ 0,

Sbt/εncn πnf −−−−→
n→∞

S(t)f

(ii) the above convergence is uniform in t on bounded intervals, and

(iii) if A is conservative and the distributions of γn(Zn(0)) converge, say to µ, then we
have the convergence of paths

γn(Znbt/εnc) =⇒ F (t)

in the Skorokhod space D([0,∞), E), where F (t) is a Feller process with initial
distribution µ and generator A.

Proof. This is a combination of Proposition 3.2 and standard convergence results. In
particular, for f ∈ D, we can define the sequence fn = Lnf for large n and obtain the
convergence

fn −→ f and δ−1n (Sn − 1)fn −→ Af.

Recalling that ε−1n δn → 1, we then obtain the convergence ε−1n (Sn − 1)fn → Af .
Applying Chapter 1 Theorem 6.5 in [4] then yields the convergence of semigroups in (i)
and (ii). Applying Chapter 4 Theorem 2.12 in [4] yields the path convergence in (iii).

4 The limiting generator

In this section, we introduce the generator of a Feller process on [0, 1] that will
be identified as the limiting process. We describe this generator both on a core of
polynomials and on its full domain. However, the core description is sufficient for the
analysis that will follow.

Let P denote the space of polynomials on [0, 1] equipped with the supremum norm.
We will study the operator B : P → P and the functional η : P → R given by

(Bf)(x) = x(1− x)f ′′(x)− αf ′(x), x ∈ [0, 1],

and

η(f) :=

∫ 1

0

(f(x)− f(0))x−α−1(1− x)α−1 dx

=

∫ 1

0

f ′(x)x−α(1− x)αα−1 dx. (4.1)

Letting N = {0, 1, 2, . . .}, we define a family of polynomials {hn}n∈N\{1} by

hn(x) =

n∑
s=0

xs(−1)n−s
(n− 1)s

s!

(s− α)n−s
(n− s)!

, x ∈ [0, 1].

Note that h0 ≡ 1 and hn has degree n. Moreover, these polynomials are related to the
Jacobi polynomials P (a,b)

n and the shifted Jacobi polynomials J (a,b)
n [19, 24] by the identity

hn(x) = J (α−1,−α−1)
n (x) = P (α−1,−α−1)

n (2x− 1), x ∈ [0, 1].
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Proposition 4.1. Let H = ker η and ωn = −n(n − 1) for n ∈ N \ {1}. The following
statements hold:

(i) Bhn = ωnhn for all n ∈ N \ {1},

(ii) the family {hn}n∈N\{1} is a Hamel†† basis for H and

(iii) H is a dense subspace of C[0, 1].

Proof. The claim in (i) can be obtained from the classical theory of Jacobi polynomials
(e.g. (4.1.3), (4.21.2), and (4.21.4) in [24]).

Noting that hn has degree n shows that the family {hn}n∈N\{1} is linearly independent.
Since h0 ≡ 1, it clearly lies in H. To see that the other hn also lie in H, we use (i) to
identify them as elements in the range of B and observe that this range lies in H. Indeed,
this can be verified using (4.1): for f ∈ P, we have that

η(Bf) =

∫ 1

0

(x(1− x)f ′′(x)− αf ′(x) + αf ′(0))x−α−1(1− x)α−1 dx

=

∫ 1

0

f ′′(x)x−α(1− x)α dx− α
∫ 1

0

(f ′(x)− f ′(0))x−α−1(1− x)α−1 dx

= αη(f ′)− αη(f ′)

= 0.

To obtain equality from the containment span{hn}n∈N\{1} ⊂ H, we observe that the
former space is a maximal subspace of P (it has codimension one) while the latter is a
proper subspace of P.

The claim in (iii) will follow from showing that η is not continuous (see Chapter 3
Theorem 2 in [1]). To see that this holds, notice that the functions fj(x) = (1− x)j , j ≥ 1,
have norm 1 but their images under η are unbounded:

η(fj) = −
∫ 1

0

jx−α(1− x)j−1+αα−1 dx

= −Γ(1− α)Γ(j + α)

αΓ(j)
.

Proposition 4.2. The operator B|H is closable and its closure, B|H, is the generator of
a Feller semigroup on C[0, 1].

Proof. We show that B|H satisfies the conditions of the Hille-Yosida Theorem. For λ > 0,
Proposition 4.1(i)-(ii) show that the range of λ − B|H is exactly H. Proposition 4.1(iii)
then tells us that this range, as well as the domain of B|H, is dense in C[0, 1].

To establish the positive-maximum principle, suppose that f ∈ H has a nonnegative
maximum at y ∈ [0, 1]. If y 6= 0, the tools of differential calculus show that (B

∣∣
H
f)(y) ≤ 0,

as desired. When y = 0, consider the element F ∈ L1[0, 1] given by

F (x) = (f(x)− f(0))x−α−1(1− x)α−1

††Recall that a Hamel basis for a vector space V is a subset K ⊂ V such that every element of V can
be written uniquely as a finite linear combination of elements of K. In particular, although H is infinite
dimensional, we are only considering finite linear combinations of elements of {hn}n∈N\{1}.
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almost everywhere. Since f(x) ≤ f(0) on [0, 1], the norm of F is given by

‖F‖1 =

∫ 1

0

|f(x)− f(0)|x−α−1(1− x)α−1 dx

= −
∫ 1

0

(f(x)− f(0))x−α−1(1− x)α−1 dx

= −η(f).

Recalling that f ∈ H = ker η, it follows that F = 0 almost everywhere. Together with
the continuity of f , this implies that f ≡ f(0), and consequently, (B

∣∣
H
f)(y) ≤ 0.

The final result in this section is the explicit description of the generator B|H and its
domain Dom(B|H).

To begin, we define an operator L̂ : C[0, 1] ∩ C2(0, 1)→ C(0, 1) by

L̂f(x) = x(1− x)f ′′(x)− αf ′(x).

We will write L̂f ∈ C[0, 1] whenever L̂f can be continuously extended to [0, 1]. Recall-
ing the definition of L and D from Theorem 1.1, we see that L is the restriction of L̂ to
D. We also define functions m : (0, 1]→ R and s : (0, 1]→ R by

m(x) =

∫ x

1

t−1−α(1− t)α−1 dt = −α−1x−α(1− x)α

and

s(x) =

∫ x

1

tα(1− t)−α dt.

Note that L̂ admits the factorization

L̂f =
1

m′

(
f ′

s′

)′
,

from which we obtain the formula

f(x)− f(c) =
f ′(c)

s′(c)
(s(x)− s(c)) +

∫ x

c

∫ y

c

L̂f(z)m′(z)dz s′(y)dy, x, c ∈ (0, 1). (4.2)

Another identity that will be useful is∫ y

1

m′(z)dz s′(y) = m(y) s′(y) = −α−1, y ∈ (0, 1). (4.3)

Proposition 4.3. The identity B|H = L holds, where L is as defined in Theorem 1.1.

Proof. We begin by showing that the following holds:

f(x)− f(1) =

∫ x

1

∫ y

1

Lf(z)m′(z)dz s′(y)dy, f ∈ D, x ∈ [0, 1]. (4.4)

To do this, we will take limits in (4.2). First we take the limit c→ 1. The term f ′(c)
s′(c)

converges to zero due to (D3) (see Theorem 1.1). The limit of the integral is handled by
the dominated convergence theorem – a suitable bound follows from the boundedness of
Lf and (4.3). This establishes the formula for x ∈ (0, 1). Taking now the limit x→ 0 (the
dominated convergence theorem can be applied as before) establishes the x = 0 case.
The x = 1 case is trivial.
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Now we show that Dom(B|H) ⊂ D. Fixing f ∈ Dom(B|H), there exists a sequence
{fn}n≥1 of functions in H such that

fn −→ f and Bfn −→ B|Hf. (4.5)

Noting that fn ∈ D for all n, we can apply (4.4). In this case, the identity Bfn = Lfn
yields

fn(x)− fn(1) =

∫ x

1

∫ y

1

Bfn(z)m′(z)dz s′(y)dy, x ∈ [0, 1]. (4.6)

Using (4.5) and the dominated convergence theorem, we can take the limit n→∞ above.
A suitable bound follows from the boundedness of the sequence {Bfn} and (4.3). We
obtain

f(x)− f(1) =

∫ x

1

∫ y

1

B|Hf(z)m′(z)dz s′(y)dy, x ∈ [0, 1]. (4.7)

Together with the fact that B|Hf ∈ C(0, 1), m ∈ C1(0, 1) and s ∈ C2(0, 1), this expression
implies that f ∈ C2(0, 1). Differentiating the expression yields the identity

B|Hf =
1

m′

(
f ′

s′

)′
= L̂f on (0, 1). (4.8)

This shows that f satisfies (D1). To obtain (D2), we recall that∫ 1

0

(fn(x)− fn(0))x−α−1(1− x)α−1 dx = 0

for all n and extend this to f by taking the limit n → ∞. Once again, we apply the
dominated convergence theorem. A preliminary bound can be obtained from (4.3) and
(4.6):

∣∣x−1(fn(x)− fn(0))
∣∣ = x−1

∣∣∣∣∫ x

0

∫ y

1

Bfn(z)m′(z)dz s′(y)dy

∣∣∣∣
≤ x−1‖Bfn‖

∫ x

0

∫ 1

y

m′(z)dz s′(y)dy

= ‖Bfn‖α−1.

The boundedness of the sequence {Bfn} then provides a suitable bound.

To obtain (D3), we differentiate (4.7) and compute∣∣∣∣f ′(x)

s′(x)

∣∣∣∣ =

∣∣∣∣∫ x

1

B|Hf(z)m′(z)dz

∣∣∣∣
≤ ‖B|Hf‖

∫ 1

x

m′(z)dz

= ‖B|Hf‖(−m(x))

−−−→
x→1

0.

We have shown that Dom(B|H) ⊂ D and B|H = L on Dom(B|H) (see (4.8)). Therefore,
it only remains to show that Dom(B|H) = D. From Lemma 19.12 in [13], it suffices to
show that L satisfies the positive maximum principle. To this end, suppose that f ∈ D
has a nonnegative maximum at y ∈ [0, 1]. If y 6= 1, then the desired inequality can be
obtained as in Proposition 4.2. If y = 1, we use (D1), L’Hôpital’s rule, (D3), and (4.3) to
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establish the existence of limits

Lf(1) = lim
x→1
Lf(x)

= lim
x→1

1

m′(x)

(
f ′

s′

)′ (
x
)

= lim
x→1

1

m(x)

f ′(x)

s′(x)

= lim
x→1
−αf ′(x)

= lim
x→1
−α f(x)− f(1)

x− 1

= −αf ′(1).

Noticing that f ′(1) ≥ 0 concludes the proof.

5 Generator relations

In this section, we show that our generators satisfy the commutation relations
appearing in Theorem 3.3. Here, we rely on an alternative description of the limiting
generator in terms of Bernstein polynomials.

For k ≥ 0, let Pk be the subspace of P consisting of polynomials with degree at most
k. Similarly, define

Hk = H ∩ Pk, k ≥ 0.

Recall the Bernstein polynomials

bi,k(x) =

(
k

i

)
xi(1− x)k−i, i ∈ Z, k ≥ 0.

Note that bi,k ≡ 0 whenever i < 0 or i > k. For each k ≥ 0, the collection {bi,k}ki=0

forms a basis of Pk and a partition of unity – that is,
∑k
i=0 bi,k ≡ 1. We also have the

relations

b′i,k = k(bi−1,k−1 − bi,k−1), (5.1)

bi,k = k+1−i
k+1 bi,k+1 + i+1

k+1 bi+1,k+1, (5.2)

and
x(1− x) bi,k = (i+1)(k+1−i)

(k+1)(k+2) bi+1,k+2, (5.3)

which hold whenever the relevant quantities are defined.
For n ≥ 1, we define a transition kernel from [0, 1] to [n] by

Kn(x, i) = bi,n(x) + ν(α,α)n (i)b0,n(x).

Proposition 5.1. Let n ≥ 1. As an operator from C([n]) to C[0, 1], Kn is injective and

Hn =

{
n∑
j=0

cjbj,n : c0, . . . , cn ∈ R, c0 =

n∑
j=1

ν(α,α)n (j)cj

}
(5.4)

= range Kn. (5.5)

Proof. Let n ≥ 1. From the independence of the Bernstein polynomials and the identity

range Kn = span
{
bi,n(x) + ν(α,α)n (i)b0,n(x)

}n
i=1

,
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it follows that the range of Kn is an n-dimensional space. As a result, Kn is injective.
Observing that the right hand side of (5.4) has dimension at most n and contains the
range of Kn, it follows that these two spaces are equal. Since Hn also has dimension n
(see Proposition 4.1(ii)), it only remains to show that the range of Kn is contained in Hn.
The containment in Pn is clear. For the containment in H, we simply compute, for i ∈ [n],

η(bi,n(x) + ν(α,α)n (i)b0,n(x))

=

(
n

i

)∫ 1

0

xi−α−1(1− x)n−i+α−1 dx− nα−1ν(α,α)n (i)

∫ 1

0

x−α(1− x)n−1+α dx

=

(
n

i

)
Γ(i− α)Γ(n− i+ α)

Γ(n)
− nα−1ν(α,α)n (i)

Γ(1− α)Γ(n+ α)

Γ(n+ 1)

= 0.

Proposition 5.2. The action of B on the Bernstein polynomials is given by

Bbi,n = n(n+ 1)

n∑
k=0

(rk,i − 1(k = i)) bk,n, 0 ≤ i ≤ n.

Proof. Let n ≥ 2 and 0 ≤ i ≤ n. Applying (5.1) twice, we see that

b′′i,n = n(b′i−1,n−1 − b′i,n−1)

= n(n− 1)(bi−2,n−2 − 2bi−1,n−2 + bi,n−2).

Applying now (5.3), we have that

x(1− x)b′′i,n(x)

= n(n− 1)
(

(i−1)(n+1−i)
(n−1)n bi−1,n(x)− 2i(n−i)

(n−1)n bi,n(x) + (i+1)(n−1−i)
(n−1)n bi+1,n(x)

)
= (i− 1)(n+ 1− i) bi−1,n(x)− 2i(n− i) bi,n(x) + (i+ 1)(n− 1− i) bi+1,n(x)

(5.6)

Using (5.1) and (5.2), we find that

b′i,n = n(bi−1,n−1 − bi,n−1)

= n
(
n+1−i
n bi−1,n + i

n bi,n −
n−i
n bi,n − i+1

n bi+1,n

)
= (n+ 1− i) bi−1,n + (2i− n) bi,n − (i+ 1) bi+1,n.

(5.7)

As a result,

Bbi,n = (i− 1− α)(n+ 1− i) bi−1,n − (α(2i− n) + 2i(n− i)) bi,n
+ (i+ 1)(n− 1− i+ α) bi+1,n

= n(n+ 1) (ri−1,i bi−1,n + (ri,i − 1) bi,n + ri+1,i bi+1,n)

= n(n+ 1)

i+1∑
k=i−1

(rk,i − 1(k = i)) bk,n.

Recalling that rk,i − 1(k = i) is zero unless i − 1 ≤ k ≤ i + 1 and bk,n ≡ 0 unless
0 ≤ k ≤ n, we can change the lower and upper limits of the sum to 0 and n, respectively.
This establishes the n ≥ 2 case. When n = 1, we observe that (5.7) still holds and the
first and last quantities of (5.6) are still equal. When n = 0, the claim is trivial.

Proposition 5.3. For n ≥ 1, the following relation holds on C([n]):

BKn = Kn n(n+ 1)(Q(α,0)
n − 1).
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Proof. Let n ≥ 1 and i ∈ [n]. Define ei : [n] → R by ei = 1(i = ·). From Proposition 5.2,
we have that

n−1(n+ 1)−1BKnei

= n−1(n+ 1)−1B(bi,n + b0,nν
(α,α)
n (i))

=

n∑
k=0

(rk,i − 1(k = i) + ν(α,α)n (i)(rk,0 − 1(k = 0))) bk,n

= (r0,i + ν(α,α)n (i)(r0,0 − 1)) b0,n +

n∑
k=1

(rk,i − 1(k = i) + ν(α,α)n (i)r1,01(k = 1)) bk,n.

On the other hand, Proposition 2.4 gives us that

Kn(Q(α,0)
n − 1)ei =

n∑
k=1

(bk,n + b0,nν
(α,α)
n (k))((Q(α,0)

n − 1)ei)(k)

=

n∑
k=1

(bk,n + b0,nν
(α,α)
n (k))(Q(α,0)

n − 1)(k, i)

=

n∑
k=1

(bk,n + b0,nν
(α,α)
n (k))(rk,i − 1(i = k) + ν(α,α)n (i)r1,01(k = 1)).

To show that the two expressions are equal, it will suffice to show that the coefficients
of bk,n are the same in each. For k ≥ 1, this is immediate. For k = 0, we observe that
each of the above functions lies in Hn (see Proposition 4.1 and (5.5)) and apply (5.4).

6 The convergence argument

In this section, we verify the convergence condition appearing in Theorem 3.3. We
rely on a description of the inverse of the transition operator Kn in terms of a variant of
the Bernstein polynomials.

These variants fall into the class of degenerate Bernstein polynomials [14] and are
given by

b∗i,k,n(x) =

(
k

i

)
(nx)↓i(n− nx)↓(k−i)

n↓k
, 0 ≤ i ≤ k ≤ n.

Proposition 6.1. For k ≥ i ≥ 0, we have the expansions

bi,k =

n∑
j=0

b∗i,k,n
(
j
n

)
bj,n, n ≥ k.

Proof. The expansions of a Bernstein polynomial in the Bernstein bases are given in
Equation (2) in [19]. Let us verify that the coefficients in those expansions match the
coefficients in the above expansions. Fix n ≥ k ≥ i ≥ 0. The coefficient of bj,n in the
above expansion is given by

b∗i,k,n

(
j

n

)
=

(
k

i

)
j↓i(n− j)↓(k−i)

n↓k
.

When j < i or j > n − k + i, it is clear that this coefficient is zero. If instead
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i ≤ j ≤ n− k + i, this coefficient is reduces to(
k

i

)
j↓i(n− j)↓(k−i)

n↓k
=

(
k

i

) j!
(j−i)!

(n−j)!
(n−j−k+i)!
n!

(n−k)!

=

(
k

i

) (n−k)!
(j−i)!(n−j−k+i)!

n!
j!(n−j)!

=

(
k

i

)(n−k
j−i
)(

n
j

) .

In either case, this coefficient agrees with the coefficient in [19].

Let ιn : [n] → [0, 1] be defined by j 7→ j
n and ρn : C[0, 1] → C[n] be the associated

projection, f 7→ f ◦ ιn.

Proposition 6.2. For n ≥ k ≥ i ≥ 1, we have the identity

Knρn(b∗i,k,n + ν
(α,α)
k (i)b∗0,k,n) = bi,k + ν

(α,α)
k (i)b0,k.

Proof. It follows from definition that

Knρn(b∗i,k,n + ν
(α,α)
k (i)b∗0,k,n) =

n∑
j=1

(bj,n + ν(α,α)n (j)b0,n)
(
b∗i,k,n

(
j
n

)
+ ν

(α,α)
k (i)b∗0,k,n

(
j
n

))
.

Meanwhile, Proposition 6.1 gives us the expansion

bi,k + ν
(α,α)
k (i)b0,k =

n∑
j=0

(
b∗i,k,n

(
j
n

)
+ ν

(α,α)
k (i)b∗0,k,n

(
j
n

))
bj,n.

Upon comparison, we find that the coefficient of bj,n is the same in both expressions
whenever j ≥ 1. Since both functions lie in Hn, the coefficients of b0,n must agree as
well (see (5.4)). As a result, the two functions are equal.

Proposition 6.3. For k ≥ i ≥ 0, we have the convergence

b∗i,k,n −−−−→
n→∞

bi,k.

Proof. We write

b∗i,k,n(x) =

(
k

i

)
1

n↓k

i−1∏
r=0

(nx− r)
k−i−1∏
s=0

(n− nx− s)

=

(
k

i

)
nk

n↓k

i−1∏
r=0

(
x− r

n

) k−i−1∏
s=0

(
1− x− s

n

)
,

and handle each factor separately. The constants nk

n↓k
converge to 1 and each factor in a

product converges to either u(x) = x or v(x) = 1− x.

Proposition 6.4. Let f ∈ H and fix m ≥ 1 such that f ∈ Hm. Then we have the
convergence

(K−1n − ρn)f
n≥m−−−−→
n→∞

0

in the sense of Definition 3.1.
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Proof. It suffices to consider the case when f = bi,k + ν
(α,α)
k (i)b0,k for some i and k

satisfying 1 ≤ i ≤ k. Defining fn = b∗i,k,n + ν
(α,α)
k (i)b∗0,k,n for n ≥ 1, it follows from

Proposition 6.2 that

(K−1n − ρn)f = ρn(fn − f).

Since the ρn are uniformly bounded, the result follows from Proposition 6.3.

7 Semigroup relations from generator relations

In this section, we provide general conditions under which commutation relations
involving generators lead to the corresponding relations for their semigroups.

Theorem 7.1. Let A and B be the generators of the Feller semigroups Vt and Wt,
respectively, and let E and F denote their respective domains. Suppose that there is a
subspace E ⊂ E , a linear operator L : E → F , and a set I ⊂ (0,∞) such that

(i) L is bounded,

(ii) I is unbounded,

(iii) E ⊂ (λ−A)E for λ ∈ I, and

(iv) LA = BL on E.

Then LVt = WtL on E for each t ≥ 0.

Proof. Fix λ ∈ I and let RAλ and RBλ be the resolvent operators corresponding to A and
B respectively. It follows from (iii) that E is invariant under RAλ . Combining this with
(iv), we obtain the following relation on E:

RBλ L = RBλ L(λ−A)RAλ

= RBλ (λ−B)LRAλ

= LRAλ .

It then follows easily that

Lλ(λRAλ − I) = λ(λRBλ − I)L on E,

or equivalently, LAλ = BλL on E, where Aλ and Bλ are the Yosida approximations of
A and B respectively. Noting that E is invariant under Aλ, this extends to nonnegative
integers k:

LAkλ = BkλL on E.

Applying now (i), we have for f ∈ E and t ≥ 0 the identity

LetAλf = L

∞∑
k=0

tk

k!
(Akλf)

=

∞∑
k=0

tk

k!
(LAkλf)

=

∞∑
k=0

tk

k!
(BkλLf)

= etBλLf.

Letting λ become arbitrarily large (see (ii)) yields LVtf = WtLf . This establishes the
result on E. The extension to E follows from the boundedness of L.
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Corollary 7.2. Let A and B be the generators of the Feller semigroups Vt and Wt,
respectively, and let E and F denote their respective domains. Suppose that there is a
subspace E ⊂ E , a linear operator L : E →F , and a filtration of E by finite dimensional
spaces {Ek}k≥1 such that

(i) AEk ⊂ Ek for all k, and

(ii) LA = BL on E.

Then LVt = WtL on E for each t ≥ 0.

Proof. Let k ≥ 1. It follows from (i) that Ek is invariant under the injective operators
{λ−A}λ>0. Together with the fact that Ek is finite-dimensional, this implies that

(λ−A)Ek = Ek, λ > 0.

Letting Lk : Ek → F denote the restriction of L to Ek, it follows from (i) and (ii) that

LkA = BLk on Ek.

Since Ek is finite-dimensional, Lk is bounded and Ek = Ek. Applying Theorem 7.1,
we find that LVt = WtL on Ek for each t ≥ 0. Taking a union over k extends the identity
to E.

8 Proofs of main results

Proof of Theorem 1.4. The first claim was proved in Proposition 2.4. For the second
claim, we appeal to Corollary 7.2. We take A = n(n+ 1)(Q

(α,0)
n − 1), B = L, L = Kn, and

E = C([n]) = Ek for all k. The containment AEk ⊂ Ek holds trivially and the identity
LA = BL was established in Proposition 5.3. Applying Corollary 7.2, we obtain the
desired identity in terms of transition operators, which implies the same relation in
terms of transition kernels.

Proof of Theorem 1.3. The claim about the existence of initial distributions for X
(α,0)
n

follows from Theorem 1.4. The second claim follows from applying Theorem 3.3 with
E = [0, 1], A = L, D = H, En = [n], Zn = Y

(α,θ)
n , γn(j) = j

n , Dn = Hn, Ln = K−1n , δ−1n =

n(n+1), and ε−1n = n2. To verify thatA is the generator of a conservative Feller semigroup
on C[0, 1], D is a core for A, andD is invariant under A, we appeal to Propositions 4.3, 4.2,
and 4.1. Condition (a) can be obtained from the identity in Proposition 5.3 by recalling
that Kn is injective (see Proposition 5.1) and that each f in D = H lies in Dn = Hn for
large n. Condition (b) is exactly the result of Proposition 6.4.

Proof of Theorem 1.1. Define ι : C → U by

ι(σ) =

(
0,
σ1
|σ|

)
∪
(
σ1
|σ|
,
σ1 + σ2
|σ|

)
∪ . . . ∪

( |σ| − σ`(σ)
|σ|

, 1

)
.

From [20, Theorem 1.3], we have that if

ι(X(α,θ)
n (0)) =⇒ X(α,θ)(0),

then (
ι(X(α,θ)

n (bn2tc))
)
t≥0

=⇒
(
X(α,θ)(t)

)
t≥0

,

where bac is the integer part of a and the convergence is in distribution on the Skorokhod
space D([0,∞),U), where the metric on U is given by the Hausdorff distance between
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the complements (complements being taken in [0, 1]). If ξ were continuous, the result
would follow immediately, but ξ is discontinuous. However, it is straightforward to show
that if un → u in U and ξ(un)→ c > 0, then ξ(u) = c.

Assuming now that X
(α,0)
n is running in stationarity, the fact that ι(X(α,0)

n (0)) con-
verges in distribution to an (α, 0) Poisson-Dirichlet interval partition distribution follows

from [18] and the fact that φ(X
(α,0)
n ) is a Markov chain follows from Theorem 1.4.

Observe that (p↑(α,0))
n−1((1), ·) is the stationary distribution of X(α,0)

n and, in the (α, 0)

ordered Chinese Restaurant Process growth step, no new table is ever created at the
start of the list. Thus, for every k, φ(X

(α,0)
n (k)) is distributed like the size of the table

containing 1 in the usual (α, 0) Chinese Restaurant Process after n customers are seated,
see [17]. Consequently, since our chain is stationary, for each t,

1

n
φ(X(α,0)

n (bn2tc)) = ξ(ι(X(α,0)
n (bn2tc))) =d ξ(ι(X

(α,0)
n (0)))⇒W,

where W has a Beta(1− α, α) distribution, see [17].
Therefore, from Theorem 1.3 with F as defined there and F (0) =d W , passing to a

subsequence if necessary, and using the Skorokhod representation theorem, we may
assume that((

ι(X(α,0)
n (bn2tc)), ξ(ι(X(α,0)

n (bn2sc)))
))

t,s≥0

a.s.−→
(

(X(α,0)(t), F (s))
)
t,s≥0

in D([0,∞),U) × D([0,∞), [0, 1]). Fix t ≥ 0. Since Feller processes have no fixed dis-
continuities, F is almost surely continuous at t and, therefore, since convergence in
D([0,∞),U) implies convergence at continuity points,

ξ(ι(X(α,0)
n (bn2tc))) a.s.−→ F (t).

Since F (t) =d W , P(F (t) > 0) = 1 and, since

ι(X(α,0)
n (bn2tc)) a.s.−→ X(α,0)(t),

it follows that F (t) =a.s. ξ(X
(α,0)(t)). Consequently, F (t) is a modification of ξ(X(α,0)(t))

and since F has a Feller semigroup, so does ξ(X(α,0)).
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