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A full discretization of the rough fractional linear heat
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Abstract

We study a full discretization scheme for the stochastic linear heat equation{
∂t = ∆ + Ḃ , t ∈ [0, 1], x ∈ R,

0 = 0 ,

when Ḃ is a very rough space-time fractional noise.
The discretization procedure is divised into three steps: (i) regularization of the

noise through a mollifying-type approach; (ii) discretization of the (smoothened) noise
as a finite sum of Gaussian variables over rectangles in [0, 1]×R; (iii) discretization
of the heat operator on the (non-compact) domain [0, 1]×R, along the principles of
Galerkin finite elements method.

We establish the convergence of the resulting approximation to , which, in such a
specific rough framework, can only hold in a space of distributions. We also provide
some partial simulations of the algorithm.
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1 Introduction and main result

1.1 Introduction

The main objective of this study is to provide a full discretization scheme for the
solution of the stochastic heat equation{

∂t = ∆ + Ḃ , t ∈ [0, 1], x ∈ R,
0 = 0 ,

(1.1)

where Ḃ is a stochastic space-time noise, defined on a complete probability space
(Ω,F ,P). In fact, the specificity of our analysis will lie in the consideration of a rough
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A full discretization of the rough fractional linear heat equation

fractional noise. Namely, given a fractional sheet {Bt,x, (t, x) ∈ R2} of Hurst indexes
H0, H1 ∈ (0, 1) (see Definition 2.1 for details), we set

Ḃ :=
∂2B

∂t∂x
, (1.2)

where the derivatives are understood in the sense of distributions.
Due to its great flexibility, the fractional noise model has now been widely recognized

as one of the most relevant alternatives to the standard white noise situation, whether
for finite-dimensional systems or in SPDE settings. The fractional setting is also known
to provide a convenient framework to study the influence of the noise roughness on the
dynamics. In brief, when letting the parameters H0, H1 progressively decrease from 1

to 0, the regularity of Ḃ decreases as well, and the analysis becomes more and more
intricate.

In this context, let us recall that the space-time white noise setting precisely corre-
sponds to the case where H0 = H1 = 1

2 . In this specific situation, the approximation
issue for the stochastic heat model (1.1) or its extensions (whether with a multiplicative
noise, or a non-linear drift) has been the source of a huge amount of papers since the
late nineties and the pioneering works by Gyöngy, Nualart and others (see for instance
[12, 13, 14, 15], or [1] and its bibliography). A few fractional situations (that is, situa-
tions where (H0, H1) 6= ( 1

2 ,
1
2 )) have also been recently considered in the approximation

literature: let us quote for instance [2] for a white-in-time fractional-in-space noise (that
is, H0 = 1

2 , H1 6= 1
2 ), or [29] for a fractional-in-time white-in-space noise (more precisely,

H0 >
1
2 and H1 = 1

2 ).
Our objective in the present study is to go beyond all these previous studies and

consider a space-time fractional noise of overall lower regularity. Indeed, we will here
focus on the case of a fractional noise Ḃ with indexes H0, H1 satisfying the condition

0 < 2H0 +H1 < 1 . (1.3)

Our essential motivation for considering such a rough situation is actually easy to
formulate: one can indeed show that as soon as 2H0 +H1 < 1, the solution of (1.1) is
no longer a function in space, but only a general distribution (see Proposition 2.2 for
details). Accordingly, the associated approximation issue cannot be examined through
function norms either, and negative-order Sobolev topologies must come into the picture.
This strongly contrasts with most of the existing statements in the white-noise literature
(typically, convergence is therein established using the L2-norm in space), and we
thus consider our handling of negative-order Sobolev norms in the analysis as a new
contribution in the understanding of the stochastic linear heat problem.

In this regard, the assumption (1.3), leading to a distributional-valued , can be
compared with the behaviour of the corresponding two-dimensional heat equation driven
by a space-time white noise (that is, the equation on [0, 1] ×R2 or [0, 1] × T2). Indeed,
it turns out that the solution of such two-dimensional white-noise equation cannot be
treated as a process with values in L2(R2), but only as a process with values in the
Sobolev space H−ε(R2) for any ε > 0 (see for instance [5, 6]). The consideration of
a rough fractional noise thus allows us to face a similar challenge, but in the one-
dimensional setting, for which discretization methods are naturally more convenient to
set up.

Another important motivation behind our interest for the linear solution lies in the
central role played by this process in many recent developments about the pathwise
approach to general stochastic PDEs. For instance, in the study of the celebrated
white-noise-driven Φ4-model

∂tΦ = ∆Φ− Φ3 + ξ, t ∈ [0, T ], x ∈ Td, d ∈ {2, 3}, (1.4)
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the corresponding linear solution (i.e., ∂t = ∆ +ξ) can be regarded as some first-order
approximation of Φ, and the analysis then consists in the control of the more regular
path Ψ := Φ− (see [6] for details when d = 2, [16, Section 9.2], [17, Section 6] when
d = 3, and let us also stress the fundamental role of in the renormalization procedures
associated with such singular models). Similar phenomena have recently been exhibited
in the fractional situation for the quadratic counterpart of (1.4) (see [24] for d = 2, and
[27] for d ≥ 1), and the strategy happens to be equally fruitful in wave and Schrödinger
settings (see e.g. [8, 9] and [10], respectively).

With these various works in mind, we consider the present investigations about the
discretization (and possibly the simulation) of as an important first step toward the
discretization of more general singular stochastic PDEs.

Before we present our approximation strategy, let us emphasize the following three
major difficulties raised by the model.

(i) First, it is well-known that the flexibility of fractional noises (i.e., the fact that one can
control the overall roughness of the noise through the parameters H0, H1) comes at a
cost: indeed, as soon as Hi 6= 1

2 , sophisticated fractional kernels must be involved in the
analysis of any construction related to the field, which rules out the drastic simplifications
offered by Itô-type isometry properties. These additional technicalities can be observed
right from the proof of Proposition 2.2, that is right from the interpretation phase of the
model, and they will also have a major impact on the subsequent steps.

(ii) In the rough regime (1.3), and as we mentioned earlier, the solution is no longer a
well-defined Gaussian process on [0, 1]×R, and it can only be handled as a distribution
in space (see Section 2 for more details). We are thus forced to deal with negative-order
Sobolev norms (represented by fractional weights in the Fourier mode) throughout the
study, which naturally adds another level of technicality to our computations.

(iii) As it can be seen from (1.1), we intend to handle the equation on the whole Euclidean
space R, which, as far as we know, is not the most common setting in the approximation
literature (bounded domains appear to be much more frequently considered). In fact,
our objective in this regard is to make a first possible step toward some of the most
recent developments on parabolic models driven by fractional noises, and which are
all concerned with equations on the non-compact domain [0, T ]×Rd (see for instance
[3, 4, 7, 18, 20, 21]). Let us also point out that the definition of a space-time fractional
noise on the Euclidean space is quite obvious (along (1.2)), whereas there is no consensus
about the definition of such an object on a torus.

Of course, the consideration of a non-compact space domain is not costless either.
As a particular consequence, our discretization scheme for (1.1) shall appeal to a finite
grid growing to R (see details in Section (1.2)), which requires a careful control of the
approximation process on the growing boundary (see for instance the bound derived
from the Galerkin approximation of the heat operator in Proposition 4.2). Besides, due
to the asymptotic behaviour of the fractional sheet, convergence estimates for and its
approximation can only be analyzed by means of weighted topologies in space, which
eventually echoes in the statement of our main result (Theorem 1.3), as can be seen
from the involvement of the arbitrary cut-off function ρ in our final bound (1.20).

Thus, even though the overall linear dynamics of (1.1) may look quite basic at first
sight, we think that the above-described features (i)-(ii)-(iii) turn the analysis and
discretization of the problem into a highly non-trivial question, and to the best of our
knowledge, there exists no previous approximation study taking those specificities into
account.

Let us now briefly describe the successive steps that will punctuate our discretization
procedure.

(1) Interpretation of the solution through a smoothening procedure. The high
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roughness of the noise Ḃ under consideration (as induced by Assumption (1.3)) immedi-
ately gives rise to a first basic question before one can think about discretization, namely:
how to interpret the solution of (1.1) in this setting? If Ḃ were to be more regular, then
this solution would be explicitly given by the space-time convolution = G ∗ Ḃ, where G
stands for the heat kernel

Gt(x) :=
1√
4πt

exp
(
− x2

4t

)
1{t>0} , t ∈ [0, T ], x ∈ R .

Unfortunately, when switching to the rough regime, the meaning of the convolution of Ḃ
with the singular kernel G is no longer clear.

In order to reach such an interpretation, we will rely on a standard regularization
procedure, and thus follow the strategy used in most recent pathwise approaches to
SPDEs (regularity structures, paracontrolled calculus). In other words, starting from a
smooth approximation Bn of B, we intend to define as the (potential) limit, in a suitable
Sobolev space, of the sequence G ∗ ∂t∂xBn of approximated solutions.

For further reference, let us specify right now our choice for the approximation of B
(we will comment further on this choice in Section 2, see Remark 2.4 and Remark 2.5):
namely, for every parameter κ > 0, we consider the sequence (Bκ,n)n≥1 defined for every
n ≥ 1 as

Bκ,nt (x) = cH0cH1

∫
|ξ|≤22κn

∫
|η|≤2κn

Ŵ (dξ, dη)
eıξt − 1

|ξ|H0+ 1
2

eıηx − 1

|η|H1+ 1
2

, (1.5)

where Ŵ stands for the Fourier transform of a space-time white noise, and

cHi =
1

2

(∫ ∞
0

dξ
1− cos ξ

|ξ|2Hi+1

)−1/2

, i = 0, 1.

It is easy to check that for every fixed n ≥ 1, the process Bκ,n is (a.s.) smooth on R2,
due to the “frequency” cut-off {|ξ| ≤ 22κn, |η| ≤ 2κn} in the representation (1.5). Besides,
using standard results about the harmonizable representation of fractional sheets (see
e.g. [26]), it can be shown that Bκ,n converges (a.s.) to a fractional sheet B of Hurst
indexes H0, H1.

With this approximation in hand, we will prove (Proposition 2.2) the existence of a
threshold value αd,H ≥ 0 such that for every α > αd,H , the sequence (

κ,n
)n≥1 of classical

solutions to {
∂t

κ,n
= ∆

κ,n
+ ∂t∂xB

κ,n , t ∈ [0, 1], x ∈ R,
κ,n
0 = 0 ,

(1.6)

converges in the scale C([0, T ],W−α,p) for every p ≥ 1, where the notationW−α,p refers
to the fractional Bessel-potential space in R (see (2.3)). Along the above considerations,
we henceforth define as the limit of this sequence.
(2) Discretization of the noise. We can now turn to the discretization procedure itself
(note indeed that the previous smoothened solution

κ,n
is clearly not sufficient in this

regard). In fact, our general objective can be loosely summed up as follows: find a way
to approximate the solution through a discrete iterative algorithm involving (a finite
number of) Gaussian increments.

At a basic level, this challenge somehow corresponds to the search for an extension,
in the heat setting, of the discretization methods used for the elementary linear standard
differential equation

dΨt = Ḃt , Ψ0 = 0 , (1.7)

where B is a standard one-parameter fractional Brownian motion. The solution of (1.7)
is of course given by the process B itself, but when it comes to discretization, the
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standard linear interpolation of Ψ can be regarded as the result of a two-step scheme:
(i) discretize the noise Ḃ through increments of B

Ḃn := n

n−1∑
i=0

(Bti+1 −Bti)1[ti,ti+1) , ti :=
i

n
;

(ii) define Ψn as the convolution of Ḃn with the Heaviside kernel 1R+
, i.e. set, for

t ∈ [ti, ti+1),

Ψn
t :=

∫ t

0

ds Ḃns = Bti + n(t− ti)(Bti+1
−Bti) , (1.8)

which indeed leads us to an aproximation of Ψ based on a Gaussian vector

(X0, . . . , Xn−1) := (Bt1 −B0, Bt2 −Bt1 , . . . , Btn −Btn−1) .

Let us transpose the above steps in the present heat situation, and more precisely
to the equation (1.6) (as a reminiscence of our interpretation of as the limit of

κ,n
).

Accordingly, we first discretize the noise in (1.6) by means of rectangular increments of
Bκ,n along the (growing) dyadic grid

ti :=
i

2n
(i = 0, . . . , 2n), xj :=

j

2n
(j = −22n, . . . , 22n) , (1.9)

that is we consider the approximation of ∂t∂xBκ,n on [0, 1]×R given by

∂t∂xB̃
κ,n :=

2n−1∑
i=0

22n−1∑
j=−22n

(22n�ni,jB
κ,n) 1�nij

, (1.10)

where 1�nij
(s, x) := 1[ti,ti+1)(s)1[xj ,xj+1)(x), and for every two-parameter path b : [0, 1]×

R→ R,
�ni,jb := bti+1

(xj+1)− bti+1
(xj)− bti(xj+1) + bti(xj) . (1.11)

Then, following the one-parameter pattern in (1.8), we define the approximation ˜κ,n as
the solution related to ∂t∂xB̃κ,n, that is as the (well-defined) convolution

˜κ,n
t (x) := (G ∗ ∂t∂xB̃κ,n)t(x) . (1.12)

Just as in (1.8), and for every (t, x) ∈ [0, T ]×R, the value of ˜κ,nt (x) can thus be expressed
as a combination of the values of the Gaussian vector

{�ni,jBκ,n, i = 0, . . . , 2n − 1, j = −22n, . . . , 22n − 1} .

This natural noise-discretization step will be fully justified in Section 3: we will therein
prove that, at least if the “frequency” parameter κ in (1.5) is small enough, i.e. if the
ratio between the smoothening speed (2κn) and the discretization speed (2n) is small

enough, then the sequence (̃
κ,n

)n≥1 does converge to the actual solution , as n→∞.
(3) Space-time discretization of the heat operator. Let us go back to the interpre-

tation of the process ˜κ,n in (1.12) as the solution of the heat equation{
∂t
˜κ,n = ∆˜κ,n + ∂t∂xB̃

κ,n , t ∈ [0, 1], x ∈ R,˜κ,n
0 = 0 ,

(1.13)

and note that, for every fixed n ≥ 1, ∂t∂xB̃κ,n now stands for a (random) bounded
function on [0, 1]×R, as it can immediately be seen from (1.10).
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In order to achieve our full-discretization objective, we still need to propose an
approximation scheme for the heat dynamics. In fact, when dealing with a well-defined
perturbation function (such as ∂t∂xB̃κ,n, for fixed n ≥ 1), space-time discretizations of
the heat operator can be derived from standard (deterministic) finite element methods,
which ultimately generate basic linear iterative systems (see e.g. [22, 28]).

Our purpose in the third (and final) step of the study will thus be to carefully examine
how these deterministic methods can be applied in our setting, and above all how the
resulting approximation of (1.13) can be controlled in terms of the perturbation ∂t∂xB̃κ,n

(seen as an element of L∞([0, 1]×R)). To implement this strategy, we will focus on the
combination of a – space – Galerkin-type projection and a – time – implicit Euler scheme,
a standard choice in the heat-approximation literature (see Section 4 for a complete
description).

Of course, the involvement of the L∞-norm of ∂t∂xB̃κ,n in the corresponding esti-
mates can only come at a price as far as n is concerned (recall that ∂t∂xB̃κ,n is only
expected to be uniformly bounded in n as a negative-order distribution). In light of
our controls (see Proposition 4.6), a possible way to counterbalance this n-loss will
consist in the application of the Galerkin procedure on a finer grid than the one used
to discretize B̃κ,n. Let us slightly anticipate the next section and point out that this
balancing phenomenon can be easily observed on the description (1.18) of our discretiza-
tion scheme, by comparing the (2−4n, 2−2n) space-time mesh in (1.14)–(1.18) with the
(2−n, 2−n) discretization mesh used for Bκ,n in (1.15) (see also Remark 1.1).

1.2 Main discretization scheme

Let us now be more explicit about the algorithm resulting from the three above-
described discretization steps, and also about our calibration of it (as far as grids are
concerned). We recall first that for all κ > 0 and n ≥ 0, the notation Bκ,n refers to the
smoothened version of B defined by (1.5), and at the core of our interpretation of
(along Proposition 2.2).

From now on, we consider the parabolic-type grid (note the change of scaling with
respect to (1.9))

ti = tni :=
i

24n
, i = 0, . . . , 24n, xj = xnj :=

j

22n
, j ∈ Z . (1.14)

Given i = 0, . . . , 24n, we will denote by ĩ the (only) integer such that ĩ
2n ≤ ti <

ĩ+1
2n . In the

same way, given j ∈ Z, we denote by
≈
j the (only) integer such that

≈
j

2n ≤ xj <
≈
j+1
2n .

With this notation, the noise increments δBκ,n involved in the scheme are defined as
follows: for all i = 0, . . . , 24n and j ∈ Z,

δBκ,nij := 1
{xj>

≈
j

2n }
�n
ĩ,
≈
j
Bκ,n + 1

{xj=
≈
j

2n }

[
1

2
�n
ĩ,
≈
j−1

Bκ,n +
1

2
�n
ĩ,
≈
j
Bκ,n

]
, (1.15)

where we recall that the notation � for the rectangular increments has been introduced
in (1.11).

Finally, we introduce the set of functions Φnj : R → R (j ∈ Z) defined along the
formula

Φnj (x) :=


22n(x− xj−1) if x ∈ [xj−1, xj ]

22n(xj+1 − x) if x ∈ [xj , xj+1]

0 otherwise ,

(1.16)

and consider the related mass, resp. stiffness, matrix

Mn := (〈Φnj ,Φnk 〉)−23n+1+1≤j,k≤23n+1−1, resp. An := (〈∇Φnj ,∇Φnk 〉)−23n+1+1≤j,k≤23n+1−1.
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We are now in a position to describe our approximation process. Namely, for all
i = 0, . . . , 24n and x ∈ R, we set

¯κ,n
ti (x) :=

23n+1−1∑
j=−23n+1+1

j̄
tiΦ

n
j (x) , (1.17)

where the points
j̄
ti (i = 0, . . . , 24n, j = −23n+1 + 1, . . . , 23n+1 − 1) are given by the

iteration procedure [
24nMn +An

]¯
ti+1

= 24nMn
¯
ti + δBκ,ni. (1.18)

with ¯
ti :=

(
j̄
ti

)
−23n+1+1≤j≤23n+1−1

and δBκ,ni. :=
(
δBκ,nij

)
−23n+1+1≤j≤23n+1−1

.

Remark 1.1. Observe that following (1.15) (and recalling the notation ĩ,
≈
j), the above

scheme only involves the rectangular increments of Bκ,n over the sub-grid ( i
2n ,

j
2n )i,j of

(ti, xj)i,j .

Remark 1.2. The above specific calibration of the scheme (i.e. the choice of the specific
grid (ti, xj) in (1.14)) is naturally derived from the subsequent theoretical convergence
results. Note however that we do not expect this calibration to be optimal. In other
words, the convergence property in the forthcoming Theorem 1.3 certainly remains true
for coarser grids t′i = i

2λn
, x′j = j

2βn
, with 1 ≤ λ < 4 and 1 ≤ β < 2 (possibly depending

on (H0, H1)). See Proposition 4.6 and the related Remarks 4.8 and 4.9 for further details
about this choice of calibration.

1.3 Main convergence statement

Let us present the main theoretical result of the paper, proving suitability of the
discretization scheme (1.17)–(1.18).

Theorem 1.3. Fix (H0, H1) ∈ (0, 1)2 such that 0 < 2H0 +H1 < 1, and set

α0 := 1− (2H0 +H1) > 0 . (1.19)

Then, for every α > α0, and for every smooth compactly-supported function ρ : R→ [0, 1],
there exist a deterministic constant ν = ν((H0, H1), α) > 0, as well as a random constant
C = C(ρ, (H0, H1), α) > 0, such that for all 0 < κ ≤ α0

5 and n ≥ 1, one has almost surely

sup
i=0,...,24n

∥∥ρ · {¯κ,nti − ti

}∥∥
H−α(R)

≤ C 2−nν . (1.20)

The above result stems from the combination of the estimates obtained in Proposi-
tion 2.2 (noise smoothening), Proposition 3.1 (noise discretization) and Proposition 4.6
(space-time discretization of the heat operator). The retriction on κ, namely 0 < κ ≤ α0

5 ,
can be seen as a consequence of some balance strategy between the noise-smoothening
step (B 7→ Bκ,n) and the noise-discretization step (∂t∂xBκ,n 7→ ∂t∂xB̃

κ,n), as it will be
detailed in Section 3.

Let us complete the statement of Theorem 1.3 with a few additional remarks.

Remark 1.4. The involvement of a (arbitrary) space cut-off function ρ in (1.20) must be
understood as a way to express “local convergence” in the space H−α(R) of negative-
order distributions. Observe indeed that if α = 0, that is if one considers H−α(R) =

L2(R), then by taking ρ : R→ [0, 1] equal to 1 on any given compact set K ⊂ R, one has
of course ‖f‖L2(K) ≤ ‖ρ · f‖L2(R) for any f ∈ L2

loc(R), and accordingly estimates such
as (1.20) would entail L2-convergence on compact sets. Note also that the convergence
results and its proof would certainly remain true for a more general class of weights ρ
on R, with support possibly non compact (e.g., for a Gaussian weight ρ(x) := e−x

2

).
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Remark 1.5. Some possible explicit value for ν can be derived from the statements of
Proposition 2.2, Proposition 3.1 and Proposition 4.6. For instance, with the notation α0

introduced in (1.19), we can take

ν := min

(
2α0H0

5
,
α0H1

5
,
α0(α− α0)

5
, 1− α0,

α0

5

)
.

In any case, we do not expect the subsequent analysis to provide us with an “optimal”
speed of convergence for the proposed scheme (1.18) (say for fixed α > α0 in the
left-hand side of (1.20)), due to our consideration of a deterministic strategy and a L2(R)-
norm in the space-time heat discretization step (see Proposition 4.6 and the related
Remark 4.9 for further details).

Remark 1.6. As we evoked it earlier, our results can somehow be seen as an extension
of the results in [2, 29] to the rough regime (1.3). The overall discretization method used
in [2, 29] is indeed (partially) similar to ours, even if the latter references are concerned
with more regular situations, where solutions can be treated as well-defined functions.

Besides, in both [2] and [29], the fact that one of the parameters Hi is assumed to be
1
2 allows the authors to rely on some Itô-type isometry property (see [2, Theorem 2.1]
and [29, Equation (2.13)]), which is not a tool at our disposal in the present space-time
fractional setting.

Let us complete this brief comparison by mentioning the fact that both works [2] and
[29] focus on the equation on a torus. The latter framework slightly deviates from the
unbounded situation prevailing in the standard “fractional SPDE” literature (see e.g.
[18, 20, 21]), which motivated our additional efforts to handle the problem on the whole
Euclidean space.

The rest of the paper is organized as follows. In Section 2, we examine the noise-
smoothening procedure toward a proper definition of . Then, in Section 3, we initiate the
discretization scheme through the transition from ∂t∂xB

κ,n to ∂t∂xB̃κ,n. The theoretical
analysis is completed in Section 4, with the space-time discretization of the heat operator.
Finally, we have provided, in Section 5, a few results and comments about the (partial)
simulation of the algorithm (1.17)–(1.18).

From a technical point of view, the subsequent analysis relies on the combination
of fractional calculus with (relatively) standard discretization techniques. For peda-
gogical purposes, we have endeavored to provide many details at every step of these
investigations, which hopefully can make the study accessible to a large audience.

2 Definition of the solution

For the sake of completeness, let us first recall the definition of the fractional sheet,
that is the field at the core of this study.

Definition 2.1. On a complete probability space (Ω,F,P), we call a fractional sheet of
Hurst indexesH0, H1 ∈ (0, 1) on [0, 1]×R any centered Gaussian field B : Ω×([0, 1]×R)→
R with covariance function given by the formula: for all s, t ∈ [0, 1] and x, y ∈ R,

E
[
Bs(x)Bt(y)

]
= RH0

(s, t)RH1
(x, y) , where RH(a, b) :=

1

2

{
|a|2H + |b|2H − |a− b|2H

}
.

When H0 = H1 = 1
2 , the above definition of the fractional sheet is known to coincide

with the one of a standard Brownian field. In any case, that is for every (H0, H1) ∈ (0, 1)2,
it can be shown that B is not a differentiable field, and accordingly the definition of
the noise Ḃ in (1.2) can only be understood as a general distribution. Owing to this
lack of regularity, the interpretation of as the convolution of Ḃ with the (singular)
heat kernel G is clearly not a trivial issue, and we propose to address this question
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through a regularization procedure. Thus, for all fixed κ > 0 and n ≥ 0, we consider the
smooth approximation Bκ,n of B provided by (1.5). Using the so-called harmonizable
representation of B, i.e.

Bt(x) = cH0cH1

∫
R

∫
R

Ŵ (dξ, dη)
eıξt − 1

|ξ|H0+ 1
2

eıηx − 1

|η|H1+ 1
2

, (2.1)

it can indeed be shown that for every κ > 0, one has almost surely

Bκ,n
n→∞−→ B in C([0, 1]×R;R) .

Our objective now is to study the convergence of the sequence of (classical) solutions
associated with (Bκ,n)n≥1, that is the sequence of well-defined processes

κ,n
t (x) := (G ∗ ∂t∂xBκ,n)t(x) . (2.2)

To do so, we will appeal to the following scale of fractional Sobolev spaces.

Notation. For all s ∈ R and 1 ≤ p <∞, let the notationWs,p refer the Bessel-potential

Ws,p =Ws,p(R) :=
{
f ∈ S ′(R) : ‖f |Ws,p(Rd)‖ = ‖F−1({1 + |.|2} s2Ff)|Lp(R)‖ <∞

}
.

(2.3)
Also we will consider the spaces

Hs :=Ws,2, for every s ∈ R . (2.4)

Using the above notation, the result at the basis of our interpretation of (1.1) can be
stated as follows.

Proposition 2.2. Fix (H0, H1) ∈ (0, 1)2 such that 0 < 2H0 +H1 < 1, and set

α0 := 1−
(
2H0 +H1

)
> 0 . (2.5)

Then the following assertions hold true:
(i) For all κ > 0 and t > 0,

E
[∥∥ κ,n

t

∥∥2

L2([0,1])

]
n→∞−→ ∞ . (2.6)

(ii) For every κ > 0 and for every cut-off function ρ ∈ C∞c (R) (i.e., smooth and compactly-
supported), the sequence (ρ · κ,n

)n≥0 converges in the space
L2p(Ω; C([0, 1];W−α,2p(R))), for all α > α0 and p ≥ 1. Moreover, the limit, that we
denote by ρ · , does not depend on κ.
(iii) For all α > α0, κ > 0, p ≥ 1, n ≥ 1 and ς > 0 such that

0 < ς < min
(
2H0, H1, α− α0

)
, (2.7)

one has almost surely

sup
t∈[0,1]

∥∥ρ · κ,nt − ρ · t
∥∥
H−α(R)

. 2−ςκn, (2.8)

where the (random) proportional constant does not depend on n.

The proof of Proposition 2.2 will be developed in Sections 2.1, 2.2 and 2.3 below.
Note that even if the result of item (i) will not serve us as such in the sequel, it

emphasizes the fact that the object at the center of this work could not be handled
as a function in space (at least not a function in L2

loc(R)), which is certainly the main
specificity of our setting.
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Besides, observe that the convergence result in item (ii) actually gives birth to a
family of processes{

ρ · ∈ L2p(Ω; C([0, 1];W−α,2p(R))), ρ ∈ C∞c (R)
}
.

For the sake of completeness, we can then patch together those local solutions into
a single distribution . The details of this canonical procedure can be found in [10,
Section 2.5], and we will only sum up the result in the following Proposition-Definition
(to simplify the presentation, we fix p ≥ 2 and α > α0, and we denote by F([0, 1];D′(R))

the set of distributional-valued functions on [0, 1]).

Proposition-Definition 2.3. Let P stand for the set of sequences σ = (σk)k≥1, where,
for each k ≥ 1, σk : R→ R is a smooth function such that

σk(x) =

{
1 if |x| ≤ k ,
0 if |x| ≥ k + 1 .

Then, for every σ ∈ P, there exists a subspace Ω(σ) ⊂ Ω of full measure 1 and an element

(σ)
: Ω(σ) → F([0, 1];D′(R))

such that the following assertions hold true:
(i) For any (space) cut-off function ρ ∈ C∞c (R) and for any κ > 0, one has, on Ω(σ),

ρ · κ,n →
n→∞

ρ · (σ)
in C([0, 1];W−α,p(Rd)) .

(ii) If σ, γ ∈ P, then one has
(σ)

=
(γ)

on Ω(σ) ∩ Ω(γ).

Owing to these two properties, we define as :=
(σ)

for some fixed (arbitrary)
sequence σ ∈ P, and we call this random element in F([0, 1];D′(R)) the mild solution
of (1.1).

Thanks to the above result, we are now endowed with a globally defined solution ,
which locally coincides with the limits exhibited in Proposition 2.2. This being said, in
our subsequent investigations, we will only focus on local convergence to , as it can be
seen from our main estimate (1.20).

Before we turn to the proof of Proposition 2.2, let us complete the statement with
two remarks.

Remark 2.4. The consideration of the “Fourier-type” approximation Bκ,n of B is quite
natural in our fractional Sobolev setting, and it will indeed readily provide us with a
convenient covariance formula for the process

κ,n
(see Proposition 2.6).

Another usual choice for the approximation of B is the one derived from a mollifying
procedure, that is one takes Bϕ,κ,n := ϕκ,n ∗ B, where ϕκ,n(s, x) := 23κnϕ(22κns, 2κnx),
for some mollifier ϕ : R2 → R. In fact, our approximation Bκ,n can somehow be regarded
as a particular case of this general mollifying procedure. Indeed, starting from the
representation (2.1) of B, one can write (at least formally)

(∂t∂xB
ϕ,κ,n)(t, x) = (ϕκ,n ∗ ∂t∂xB)(t, x)

= cH0
cH1

∫∫
dsdy ϕκ,n(s, y)

∫∫
Ŵ (dξ, dη) (−ξη)

eıξ(t−s)

|ξ|H0+ 1
2

eıη(x−y)

|η|H1+ 1
2

= cH0
cH1

∫∫
Ŵ (dξ, dη) ϕ̂κ,n(ξ, η)(−ξη)

eıξt

|ξ|H0+ 1
2

eıηx

|η|H1+ 1
2

= cH0
cH1

∫∫
Ŵ (dξ, dη) ϕ̂(2−2κnξ, 2−κnη)(−ξη)

eıξt

|ξ|H0+ 1
2

eıηx

|η|H1+ 1
2

,
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and thus, picking ϕ such that ϕ̂(ξ, η) = 1{|ξ|≤1}1{|η|≤1}, one recovers the approximation
∂t∂xB

κ,n of the noise. We think that, at the price of a few technical modifications, it is
certainly possible to extend the whole subsequent analysis to a more general class of
mollifying approximations Bϕ,κ,n.

Remark 2.5. The above construction procedure of the solution , based on the specific
approximation Bκ,n of B, has already been implemented in [8, 9] for the fractional wave
equation, and in [10] for the Schrödinger fractional equation. To be more specific, in
the three references [8, 9, 10], the authors’ analysis only relies on the consideration of
B1,n, i.e. Bκ,n with κ = 1. Letting κ vary (in Section 3) will here give us the possibility to
maintain a certain balance within the two-step transformation process of the noise (see
Remark 3.2).

2.1 Preliminary considerations

Observe first that the approximated noise ∂t∂xB
κ,n derived from the representa-

tion (1.5) could be equivalently defined as the centered (real) Gaussian field with covari-
ance given by the formula: for all κ, κ′ > 0, n,m ≥ 1, s, t ≥ 0 and x, y ∈ Rd,

E
[
(∂t∂xB

κ,n)s(x)(∂t∂xB
κ′,m)t(y)

]
= c2H

∫
(ξ,η)∈Dκ,n∩Dκ′,m

dξ

|ξ|2H0−1

dη

|η|2H1−1
eıξ(s−t)eıη(x−y)

where cH := cH0
cH1

and where we have set, for all κ > 0 and n ≥ 1,

Dκ,n := {(ξ, η) ∈ R2 : |ξ| ≤ 22κn, |η| ≤ 2κn} . (2.9)

Based on this expression, we can readily compute

E
[
κ,n
s (x)

κ′,m
t (y)

]
=

∫ s

0

du

∫
R

dz

∫ t

0

dv

∫
R

dwGs−u(x− z)Gt−v(y − w)E
[
(∂t∂xB

κ,n)u(z)(∂t∂xB
κ′,m)v(w)

]
= c2H

∫
(ξ,η)∈Dκ,n∩Dκ′,m

dξ

|ξ|2H0−1

dη

|η|2H1−1∫ s

0

du

∫
R

dz

∫ t

0

dv

∫
R

dwGs−u(x− z)Gt−v(y − w)eıξ(u−v)eıη(z−w)

= c2H

∫
(ξ,η)∈Dκ,n∩Dκ′,m

dξ

|ξ|2H0−1

dη

|η|2H1−1
eıη(x−y)

[ ∫ s

0

du eıξ(s−u)

∫
R

dz e−ıηzGu(z)

][ ∫ t

0

dv e−ıξ(t−v)

∫
R

dw eıηwGv(w)

]
,

(2.10)

which leads us to the following assertion.

Proposition 2.6. The family of random variables{ κ,n
s (x), κ > 0, n ≥ 1, s ≥ 0, x ∈ R

}
defines a centered (real) Gaussian field with covariance given by the formula: for all
κ, κ′ > 0, n,m ≥ 1, s, t ≥ 0 and x, y ∈ Rd,

E
[
κ,n
s (x)

κ′,m
t (y)

]
= c2H

∫
(ξ,η)∈Dκ,n∩Dκ′,m

dξ

|ξ|2H0−1

dη

|η|2H1−1
γs(ξ, |η|)γt(ξ, |η|) eıη(x−y) ,

(2.11)
where the notation Dκ,n has been introduced in (2.9), and where the quantity γt(ξ, r) is
defined for all t ≥ 0, ξ ∈ R and r > 0 by

γt(ξ, r) :=

∫ t

0

ds eıξ(t−s)Ĝs(r) = eıξt
∫ t

0

e−s{r
2+ıξ}ds . (2.12)
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Notation 2.7. For any function f on R+ and for all times 0 ≤ s ≤ t, we set fs,t := ft− fs.
The following elementary bound on γs,t will turn out to be the key estimate in the

proof of Proposition 2.2.

Lemma 2.8. Fix 0 < H < 1. Then for all η ∈ R, ε ∈ (0, H) and 0 ≤ s ≤ t ≤ 1, one has∫
R

dξ
|γs,t(ξ, |η|)|2

|ξ|2H−1
.

|t− s|ε

1 + |η|4(H−ε) . (2.13)

Proof. By the definition (2.12) of γt(ξ, |η|), one has

γs,t(ξ, |η|) =
{
eıξt − eıξs

}∫ t

0

dr e−r(|η|
2+ıξ) + eıξs

∫ t

s

dr e−r(|η|
2+ıξ) ,

from which we immediately deduce, for all ε1, ε2, λ ∈ [0, 1],

∣∣γs,t(ξ, |η|)∣∣ . |t− s|ε1 |ξ|ε1||η|2 + ıξ|λ
+

|t− s|ε2
||η|2 + ıξ|1−ε2

. (2.14)

Based on this estimate, we have on the one hand, for any ε ∈ (0, H),∫
R

dξ
|γs,t(ξ, |η|)|2

|ξ|2H−1
. |t− s|2ε

[ ∫
|ξ|≤1

dξ

|ξ|2H−1
+

∫
|ξ|≥1

dξ

|ξ|1+2(H−ε)

]
. |t− s|2ε . (2.15)

On the other hand, thanks to (2.14), one has for all |η| ≥ 1 and ε ∈ (0, H/2),∫
R

dξ
|γs,t(ξ, |η|)|2

|ξ|2H−1

. |t− s|2ε
[

1

|η|4−4ε

∫
|ξ|≤1

dξ

|ξ|2H−1
+

1

|η|4(H−2ε)

∫
|ξ|≥1

dξ

|ξ|2H−1|ξ|2(1−H+ε)

]
.
|t− s|2ε

|η|4(H−2ε)
.

(2.16)

Combining (2.15) and (2.16) clearly yields (2.13).

The following – independent – technical lemma, borrowed from [10, Lemma 2.6], will
also prove useful in the estimates of the next section.

Lemma 2.9. Let ρ : R→ R be a test function and fix σ ∈ R. Then, for every p ≥ 1 and
for all η1, . . . , ηp ∈ Rd, it holds that∣∣∣∣ ∫

R

dx

p∏
i=1

∫
R2

dλidλ̃i

{1 + |λi|2}
σ
2 {1 + |λ̃i|2}

σ
2

eı〈x,λi−λ̃i〉ρ̂(λi − ηi)ρ̂(λ̃i − ηi)
∣∣∣∣ . p∏

i=1

1

{1 + |ηi|2}σ
,

where the proportional constant only depends on ρ and σ.

Remark 2.10. The above preliminary material, as well as the subsequent proof, can be
seen as the “heat” counterpart of the analysis carried out in [8, Section 2] for the wave
model, and in [10, Section 2.1] for the Schrödinger case.

2.2 Proof of Proposition 2.2, item (i)

Using the covariance formula (2.11), we can immediately write the second moment
under consideration as

E
[∥∥ κ,n

t

∥∥2

L2([0,1])

]
=

∫ 1

0

dxE
[∣∣ κ,n

t (x)
∣∣2] = c2H

∫
(ξ,η)∈Dκ,n

dξ dη

|ξ|2H0−1|η|2H1−1

∣∣γt(ξ, |η|)∣∣2 .
EJP 27 (2022), paper 122.

Page 12/41
https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP839
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A full discretization of the rough fractional linear heat equation

Using elementary changes of variable, we obtain that∫
(ξ,η)∈Dκ,n

dξ dη

|ξ|2H0−1|η|2H1−1

∣∣γt(ξ, |η|)∣∣2
= 22κn(3−(2H0+H1))

∫
|ξ|≤1,|η|≤1

dξ dη

|ξ|2H0−1|η|2H1−1

∣∣γt(22κnξ, 2κn|η|)
∣∣2

≥ c1 22κn(3−(2H0+H1))

∫
1
2≤|ξ|≤1, 12≤|η|≤1

dξdη
∣∣γt(22κnξ, 2κn|η|)

∣∣2
for some constant c1 > 0. Then observe that for all 1

2 < |ξ| ≤ 1 and 1
2 < |η| < 1,

∣∣γt(22κnξ, 2κn|η|)
∣∣2 = 2−4κn

∣∣1− e−22κnt(|η|2+ıξ)
∣∣2∣∣|η|2 + ıξ

∣∣2 ≥ c2 2−4κn
∣∣1− e−22κnt(|η|2+ıξ)

∣∣2
for some constant c2 > 0. Thus we have shown the existence of a constant c3 > 0 such
that

E
[∥∥ κ,n

t

∥∥2

L2([0,1])

]
≥ c3 22κn(1−(2H0+H1))

∫
1
2≤|ξ|≤1, 12≤|η|≤1

dξdη
∣∣1− e−22κnt(|η|2+ıξ)

∣∣2.
Finally, since t > 0, we can use the dominated convergence theorem to assert that∫

1
2≤|ξ|≤1, 12≤|η|≤1

dξdη
∣∣1− e−22κnt(|η|2+ıξ)

∣∣2 n→∞−→ 1,

which, due to the condition 2H0 +H1 < 1, leads us to the desired divergence statement
in (2.6).

2.3 Proof of Proposition 2.2, items (ii) and (iii)

Following the statement of the proposition, we fix α > α0, where α0 is the quantity
defined by (2.5). Besides, recall that the notation fs,t for time increments has been
introduced in Notation 2.7.

Step 1: A moment estimate. We show that for all p ≥ 1, 1 ≤ n ≤ m, 0 < κ ≤ κ′,
0 ≤ s ≤ t ≤ 1 and ς > 0 satisfying (2.7), we can find ε > 0 small enough such that∫

R

dxE

[∣∣∣F−1
(
{1 + |.|2}−α2 F

(
ρ ·
[ κ′,m
s,t −

κ,n
s,t

]))
(x)
∣∣∣2p] . 2−2nκςp|t− s|2εp , (2.17)

where the proportional constant only depends on p, α and ρ.
One can first notice that the random variable under consideration is clearly Gaussian,

and so, for every p ≥ 1, one has

E

[∣∣∣F−1
(
{1 + |.|2}−α2 F

(
ρ ·
[ κ′,m
s,t −

κ,n
s,t

]))
(x)
∣∣∣2p]

≤ cp
(
E

[∣∣∣F−1
(
{1 + |.|2}−α2 F

(
ρ ·
[ κ′,m
s,t −

κ,n
s,t

]))
(x)
∣∣∣2])p , (2.18)

where the constant cp only depends on p. Let us then write

F−1
(
{1 + |.|2}−α2 F

(
ρ ·
[ κ′,m
s,t −

κ,n
s,t

]))
(x)

=

∫
R

dλ eıxλ{1 + |λ|2}−α2 F
(
ρ ·
[ κ′,m
s,t −

κ,n
s,t

])
(λ)

=

∫
R

dλ {1 + |λ|2}−α2 eıxλ
(∫

R

dβ ρ̂(λ− β)F
([ κ′,m

s,t −
κ,n
s,t

])
(β)

)
,
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and hence

E

[∣∣∣F−1
(
{1 + |.|2}−α2 F

(
ρ ·
[ κ′,m
s,t −

κ,n
s,t

]))
(x)
∣∣∣2]

=

∫
R2

dλdλ̃

{1 + |λ|2}α2 {1 + |λ̃|2}α2
eıx(λ−λ̃)

∫
R2

dβdβ̃ ρ̂(λ− β)ρ̂(λ̃− β̃)Qκ,κ
′

n,m;s,t(β, β̃) , (2.19)

where we have set

Qκ,κ
′

n,m;s,t(β, β̃) := E
[
F
([ κ′,m

s,t −
κ,n
s,t

])
(β)F

([ κ′,m
s,t −

κ,n
s,t

])
(β̃)
]
.

Based on the covariance formula (2.11), one has now

E
[[ κ′,m

s,t (y)− κ,n
s,t (y)

][ κ′,m
s,t (ỹ)− κ,n

s,t (ỹ)
]]

= c2H

∫
(ξ,η)∈Dκ′,m\Dκ,n

dξ

|ξ|2H0−1

dη

|η|2H1−1
|γs,t(ξ, |η|)|2eıηye−ıηỹ ,

which allows us to recast the above quantity into

Qκ,κ
′

n,m;s,t(β, β̃) = c2H

∫
(ξ,η)∈Dκ′,m\Dκ,n

dξ

|ξ|2H0−1

dη

|η|2H1−1
|γs,t(ξ, |η|)|2δβ=ηδβ̃=η . (2.20)

Thanks to (2.18), (2.19) and (2.20), we get that∫
R

E

[∣∣∣F−1
(
{1 + |.|2}−α2 F

(
ρ ·
[ κ′,m
s,t −

κ,n
s,t

]))
(x)
∣∣∣2p] dx

.
∫
R

dx

(∫
(ξ,η)∈Dκ′,m\Dκ,n

dξ

|ξ|2H0−1

dη

|η|2H1−1
|γs,t(ξ, |η|)|2∫

R2

dλdλ̃

{1 + |λ|2}α2 {1 + |λ̃|2}α2
eıx(λ−λ̃) ρ̂(λ− η)ρ̂(λ̃− η)

)p
.

(∫
(ξ,η)∈Dκ′,m\Dκ,n

dξ

|ξ|2H0−1

dη

|η|2H1−1
{1 + |η|2}−α|γs,t(ξ, |η|)|2 dξdη

)p
,

where the last inequality is a consequence of Lemma 2.9.
Observe now that 1Dκ′,m\Dκ,n ≤ 1{(ξ,η)∈R2: |ξ|≥22κn} + 1{(ξ,η)∈R2: |η|≥2κn}, and thus(∫

(ξ,η)∈Dκ′,m\Dκ,n

dξ

|ξ|2H0−1

dη

|η|2H1−1
{1 + |η|2}−α|γs,t(ξ, |η|)|2 dξdη

)p

.

(∫
|ξ|≥22κn

dξ

|ξ|2H0−1

∫
R

dη

|η|2H1−1
{1 + |η|2}−α|γs,t(ξ, |η|)|2 dξdη

)p

+

(∫
R

dξ

|ξ|2H0−1

∫
|η|≥2κn

dη

|η|2H1−1
{1 + |η|2}−α|γs,t(ξ, |η|)|2 dξdη

)p
=: (Iκ,n(s, t))p + (IIκ,n(s, t))p . (2.21)

Let us estimate the quantity Iκ,n(s, t) first. To do so, pick ς > 0 satisfying (2.7), which
yields

Iκ,n(s, t) ≤ 2−2nκς

∫
R2

dξ

|ξ|2(H0− ς2 )−1

dη

|η|2H1−1
{1 + |η|2}−α|γs,t(ξ, |η|)|2

. 2−2nκς

∫ ∞
0

dr

r2H1−1{1 + r2}α

(∫
R

dξ
|γs,t(ξ, r)|2

|ξ|2(H0− ς2 )−1

)
.
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A full discretization of the rough fractional linear heat equation

We are here in a position to apply Lemma 2.8 with H := H0 − ς
2 , which entails that for all

0 < ε < H0 − ς
2 ,

Iκ,n(s, t) . 2−2nκς |t− s|ε
∫ ∞

0

dr

r2H1−1{1 + r2}α
1

1 + r4(H0− ς2−ε)

. 2−2nκς |t− s|ε
(∫ 1

0

dr

r2H1−1
+

∫ ∞
1

1

r2(α−α0−ς)+1−4ε
dr

)
. (2.22)

Owing to Assumption (2.7), we can pick ε > 0 small enough such that α − α0 − ς > 2ε,
and for this choice, it is readily checked that the integrals in brackets in (2.22) are both
finite. We have thus established that

Iκ,n(s, t) . 2−2nκς |t− s|ε .

The estimation of IIκ,n(s, t) can then be done along similar arguments. Namely, one
has, for all 0 < ε < H0,

IIκ,n(s, t) ≤ 2−2nκς

∫
R2

dξ

|ξ|2H0−1

dη

|η|2(H1−ς)−1
{1 + |η|2}−α|γs,t(ξ, |η|)|2

. 2−2nκς

∫ ∞
0

dr

r2(H1−ς)−1{1 + r2}α

(∫
R

dξ
|γs,t(ξ, r)|2

|ξ|2H0−1

)
. 2−2nκς |t− s|ε

∫ ∞
0

dr

r2(H1−ς)−1{1 + r2}α
1

1 + r4(H0−ε)

. 2−2nκς |t− s|ε
(∫ 1

0

dr

r2(H1−ς)−1
+

∫ ∞
1

1

r2(α−α0−ς)+1−4ε
dr

)
.

Again, we can pick ε > 0 so that α− α0 − ς > 2ε, which leads us to

IIκ,n(s, t) . 2−2nκς |t− s|ε .

Going back to (2.21), we obtain the expected estimate (2.17).

Step 2: Conclusion. Estimate (2.17) can be equivalently formulated as

E
[∥∥ρ · [ κ′,ms,t −

κ,n
s,t

]∥∥2p

W−α,2p

]
. 2−2nκςp|t− s|2εp , (2.23)

for all p ≥ 1, 1 ≤ n ≤ m, 0 < κ ≤ κ′, 0 ≤ s ≤ t ≤ 1, ς > 0 satisfying (2.7), and ε > 0 small
enough. In particular, it holds that

E
[∥∥ρ · [ κ,ms,t − κ,n

s,t

]∥∥2p

W−α,2p

]
. 2−2nκςp|t− s|2εp , (2.24)

and
E
[∥∥ρ · [ κ′,ns,t −

κ,n
s,t

]∥∥2p

W−α,2p

]
. 2−2nκςp|t− s|2εp . (2.25)

By picking p ≥ 1 large enough in (2.24), we get, by the Kolmogorov criterion, that
ρ ·
[ κ,m − κ,n] ∈ C([0, 1];W−α,2p(Rd)) almost surely. We can then apply the classical

Garsia-Rodemich-Rumsey estimate and assert that a.s, for all p ≥ 1, ε′ > 0, 0 ≤ t ≤ 1,
one has ∥∥ρ · [ κ,mt − κ,n

t

]∥∥2p

W−α,2p .
∫

[0,1]2

∥∥ρ · [ κ,mu,v − κ,n
u,v

]∥∥2p

W−α,2p

|u− v|2ε′p+2
dudv ,

for some (deterministic) proportional constant that only depends on ε′ and p.
As a consequence, using (2.23) again, we obtain that for any 0 < ε′ < ε,

E
[∥∥ρ · [ κ,m − κ,n]∥∥2p

C([0,1];W−α,2p)

]
. 2−2nκςp

∫
[0,1]2

dudv

|u− v|−2(ε−ε′)p+2
. 2−2nκςp ,
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A full discretization of the rough fractional linear heat equation

for any p ≥ p0, where p0 ≥ 1 is such that −2(ε− ε′)p0 + 2 < 1.
Note that for 1 ≤ p ≤ p0, one has, since ρ is compactly-supported,

E
[∥∥ρ · [ κ,m − κ,n]∥∥2p

C([0,1];W−α,2p)

] 1
2p

. E
[∥∥ρ · [ κ,m − κ,n]∥∥2p0

C([0,1];W−α,2p0 )

] 1
2p0

,

and so we can conclude that for any p ≥ 1,∥∥ρ · [ κ,m − κ,n]∥∥
L2p(Ω;C([0,1];W−α,2p))

. 2−nκς . (2.26)

In particular, (ρ · κ,n)n≥1 is a Cauchy sequence in L2p(Ω; C([0, 1];W−α,2p(Rd))), and thus
it converges in this space. Let us (temporarily) denote by ρ · κ the limit of this sequence,
for fixed κ > 0.

The fact that ρ · κ actually does not depend on κ can be readily deduced from (2.25).
Indeed, if 0 < κ ≤ κ′, one has, for all t ∈ [0, 1] and n ≥ 1,

E
[∥∥ρ · κ′t − ρ · κt ∥∥2p

W−α,2p

]
. E

[∥∥ρ · κ′t − ρ · κ′,nt

∥∥2p

W−α,2p

]
+ E

[∥∥ρ · κ′,nt − ρ · κ,nt
∥∥2p

W−α,2p

]
+ E

[∥∥ρ · κ,nt − ρ · κt
∥∥2p

W−α,2p

]
,

and it is clear that those three quantities tend to 0 as n tends to∞. Therefore, we can
henceforth write ρ · instead of ρ · κ.

The bound (2.8) can finally be derived from an application of the Borel-Cantelli lemma.
Indeed, by letting m tend to infinity in (2.26) (for fixed n ≥ 1 and p = 2), we get that

E
[∥∥ρ · κ,n − ρ · ∥∥2

C([0,1];H−α)

]
. 2−2nκς ,

and accordingly, for all 0 < ς̃ < ς and n ≥ 1,

P
(∥∥ρ · κ,n − ρ · ∥∥C([0,1];H−α)

> 2−nκς̃
)
. 2−2nκ(ς−ς̃) .

3 Noise discretization

Let us now initiate our discretization procedure, starting with the treatment of the
noise. To be more specific, and as we announced it in the introduction, we are here
interested in the discretization of the smoothened version ∂t∂xBκ,n of Ḃ, at the basis of
our interpretation of (along (2.2) and Proposition 2.2).

For this section (and this section only), we will rely on the time-space grid introduced
in (1.9), that is we set

ti = tni :=
i

2n
(i = 0, . . . , 2n − 1), xj = xnj :=

j

2n
(j = −22n, . . . , 22n − 1) .

Note in particular that the set of points (xnj )n≥1,-22n≤j≤22n-1 is dense in R. With this grid

in hand, we now define the discretized noise ∂t∂xB̃κ,n as

(∂t∂xB̃
κ,n)(t, x) :=

{
22n�ni,jB

κ,n if t ∈ [ti, ti+1) and x ∈ [xj , xj+1),

0 otherwise,
(3.1)

where we recall the notation �ni,jb := bti+1,xj+1
− bti+1,xj − bti,xj+1

+ bti,xj for any two-
parameter path b.

Observe that the so-defined approximation ∂t∂xB̃κ,n indeed corresponds to the space-
time derivative of some (piecewise) smooth approximation B̃κ,n of B: consider for
instance the continuous sheet given for all t ∈ [ti, ti+1) and x ∈ [xj , xj+1) by

B̃κ,nt,x := Bκ,nti,xj + 2n(t− ti)(Bκ,nti+1,xj −B
κ,n
ti,xj )

+ 2n(x− xj)(Bκ,nti,xj+1
−Bκ,nti,xj ) + 22n(t− ti)(x− xj)�ni,jBκ,n . (3.2)
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The corresponding approximation of can then be written, for every (t, x) ∈ [0, 1]×R,
as ˜κ,n

t (x) := (G ∗ ∂t∂xB̃κ,n)t(x) = 22n
2n−1∑
i=0

22n−1∑
j=−22n

Gni,j(t, x)�ni,jB
κ,n , (3.3)

where we have set

Gni,j(t, x) :=

(∫ ti+1

ti

ds

∫ xj+1

xj

dy Gt−s(x− y)

)
.

Our main control regarding the above noise-discretization procedure can now be
stated as follows (we recall that the notation

κ,n
refers to the solution associated with

∂t∂xB
κ,n, i.e. to the process considered in Proposition 2.2).

Proposition 3.1. Fix (H0, H1) ∈ (0, 1)2 such that 2H0 +H1 < 1, and let α0 > 0 be defined
as in (2.5).

Then, for all α > α0, 0 < κ ≤ α0

5 , 0 < ς ≤ min(1− 5κ, α0− 4κ), p ≥ 1 and for every test
function ρ : R→ R (i.e., smooth and compactly-supported), one has almost surely

sup
t∈[0,1]

∥∥ρ · { κ,n
t −˜κ,nt }∥∥

H−α(R)
. 2−ςn, (3.4)

where the proportional constant does not depend on n.

Remark 3.2. The restriction on the “frequency” parameter κ, that is the condition
0 < κ ≤ α0

5 , can be interpreted as the result of some interesting competition phe-
nomenon between the 2κn-approximation scaling in step 1 (see (1.5)) and the size of the
discretization grid in the present step 2. From a technical point of view, this competition
can be observed through the chain of estimates (3.9), (3.10) and (3.11) in the proof of
Proposition 3.1. At this point, it is not completely clear to us whether some finer esti-
mates or the use of alternative Besov topologies could lead to a less stringent condition
on κ, or even to the extension of the estimate (3.4) to any κ > 0. Also, we do not know
whether a similar bound could be established when replacing the approximation Bκ,n

with the original sheet B in the right-hand side of (3.1) (this would morally corresponds
to taking κ =∞).

Remark 3.3. Let us briefly go back to the basic comparison sketched out in the in-
troduction between the one-parameter process Ψn (defined by (1.8)) and the above

approximation process ˜κ,n. Along this analogy, the result of Proposition 3.4 (morally)
corresponds to the parabolic counterpart of the convergence of Ψn to B. Now recall
that a natural strategy to show that Ψn → B in the Sobolev scale Hγ (or more generally
Wγ,p) consists in the use of the continuous embedding (see e.g. [25]): for all γ ∈ (0, 1)

and ε > 0 small enough,
Sγ+ε,p ⊂ Wγ,p

where Sα,p (α ∈ (0, 1)) refers to the so-called Slobodeckij space

Sα,p :=
{
f :

∫∫
dsdt

|ft − fs|p

|t− s|1+αp
<∞

}
.

In this way, the convergence of Ψn to B inWγ,p (for γ < H) can be easily derived from
the well-known (pathwise) Hölder regularity of B.

Unfortunately, due to the negative-order Sobolev regularity of the solution process
(as seen in Proposition 2.2), such a simplification through an embedding strategy does
not seem available in the present rough heat situation, and thus computations cannot be
reduced to a pathwise control of spatial increments.
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3.1 Proof of Proposition 3.1

We rely on a similar two-step strategy as in the proof of Proposition 2.2.

Step 1: A moment estimate. The first (and main) objective is to establish the following
bound:

∫
R

dx

(
E
[∣∣∣F−1

(
{1 + |.|2}−α2 F

(
ρ ·
[̃ κ,n
s,t −

κ,n
s,t

]))
(x)
∣∣∣2])p . 2−2nςp|t− s|2εp , (3.5)

for all p ≥ 1 and κ, ς, ε > 0 small enough, and where the proportional constant does not
depend on n.

With the notation introduced in (3.3) and with representation (1.5) in mind, one has
(at least formally)

˜κ,n
s,t = 22n

2n−1∑
i=0

22n−1∑
j=−22n

Gni,j(t, x)�ni,jB
κ,n

= −cH
∫
{|ξ|≤22κn,|η|≤2κn}

Ŵ (dξ, dη)
ξ

|ξ|H0+ 1
2

η

|η|H1+ 1
2

2n−1∑
i=0

22n−1∑
j=−22n

Gni,j(s, t; y)

(
22n

∫ ti+1

ti

du

∫ xj+1

xj

dz eıξueıηz
)

where we have set cH := cH0
cH1

and Gni,j(s, t; y) := Gni,j(t, y)−Gni,j(s, y).

As a result, the difference
κ,n
s,t −˜κ,ns,t can now be (formally) recast into

˜κ,n
s,t (y)− κ,n

s,t (y) = −cH
∫
{|ξ|≤22κn,|η|≤2κn}

Ŵ (dξ, dη)
ξ

|ξ|H0+ 1
2

η

|η|H1+ 1
2

Xns,t(y; ξ, η)

with

Xns,t(y; ξ, η)

:=

[ 2n−1∑
i=0

22n−1∑
j=−22n

Gni,j(s, t; y)

(
22n

∫ ti+1

ti

du

∫ xj+1

xj

dz eıξueıηz
)]
− eıηyγs,t(ξ, |η|) .

This easily leads us to the following identity (proved along the same lines as in (2.10))

E
[[̃ κ,n

s,t −
κ,n
s,t

]
(y)
[̃ κ,n
s,t −

κ,n
s,t

]
(ỹ)
]

= c2H

∫
{|ξ|≤22κn,|η|≤2κn}

dξdη

|ξ|2H0−1|η|2H1−1
Xns,t(y; ξ, η)Xns,t(ỹ; ξ, η).

Thus, setting

J X,n
s,t (ξ, η, λ) :=

∫
R

dy ρ(y)e−ıλyXns,t(y; ξ, η) ,
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one has

E
[∣∣∣F−1

(
{1 + |.|2}−α2 F

(
ρ ·
[̃ κ,n
s,t −

κ,n
s,t

]))
(x)
∣∣∣2]

=

∫
R

dλ

∫
R

dλ̃ eıx(λ−λ̃) 1

{1 + |λ|2}α2
1

{1 + |λ̃|2}α2∫
R

dy ρ(y)e−ıλy
∫
R

dỹ ρ(ỹ)eıλ̃ỹ E
[[̃ κ,n

s,t −
κ,n
s,t

]
(y)
[̃ κ,n
s,t −

κ,n
s,t

]
(ỹ)
]

=

∫
{|ξ|≤22κn,|η|≤2κn}

dξdη

|ξ|2H0−1|η|2H1−1

∫
R

dλ

∫
R

dλ̃ eıx(λ−λ̃) 1

{1 + |λ|2}α2
1

{1 + |λ̃|2}α2

J X,n
s,t (ξ, η, λ)J X,n

s,t (ξ, η, λ̃)

=

∫
{|ξ|≤22κn,|η|≤2κn}

dξdη

|ξ|2H0−1|η|2H1−1

∫
R

dλ

∫
R

dλ̃ eıx(λ−λ̃) 1

{1 + |η + λ|2}α2
1

{1 + |η + λ̃|2}α2

J X,n
s,t (ξ, η, η + λ)J X,n

s,t (ξ, η, η + λ̃) .

Based on the latter expression, we get∫
R

dx

(
E
[∣∣∣F−1

(
{1 + |.|2}−α2 F

(
ρ ·
[̃ κ,n
s,t −

κ,n
s,t

]))
(x)
∣∣∣2])p

=

p−1∏
i=1

∫
{|ξi|≤22κn,|ηi|≤2κn}

dξidηi
|ξi|2H0−1|ηi|2H1−1∫

R

dλi
{1 + |ηi + λi|2}

α
2
J X,n
s,t (ξi, ηi, ηi + λi)

∫
R

dλ̃i

{1 + |ηi + λ̃i|2}
α
2

J X,n
s,t (ξi, ηi, ηi + λ̃i)∫

{|ξp|≤22κn,|ηp|≤2κn}

dξpdηp
|ξp|2H0−1|ηp|2H1−1

∫
R

dλp
{1 + |ηp + λp|2}

α
2
J X,n
s,t (ξp, ηp, ηp + λp)

1

{1 + |ηp+(λp−λ̃p−1+λp−1−. . .+ λ1)|2}α2
J X,n
s,t (ξp, ηp, ηp+(λp−λ̃p−1+λp−1−. . .+ λ1))

≤
( p−1∏
i=1

∫
{|ξi|≤22κn,|ηi|≤2κn}

dξidηi
|ξi|2H0−1|ηi|2H1−1∫

R

dλi
{1 + |ηi + λi|2}

α
2

∣∣J X,n
s,t (ξi, ηi, ηi + λi)

∣∣ ∫
R

dλ̃i

{1 + |ηi + λ̃i|2}
α
2

∣∣J X,n
s,t (ξi, ηi, ηi + λ̃i)

∣∣)(∫
{|ξp|≤22κn,|ηp|≤2κn}

dξpdηp
|ξp|2H0−1|ηp|2H1−1

∫
R

dλp
{1 + |ηp + λp|2}α

∣∣J X,n
s,t (ξp, ηp, ηp + λp)

∣∣2) ,
(3.6)

where the latter inequality is deduced from the Cauchy-Schwarz inequality (applied to
the λp variable).

We are now in a position to introduce our main technical estimate toward (3.5) (for
the sake of clarity, we have postponed the proof of this result to Section 3.2):

Proposition 3.4. With the above notation, one has, for all (ξ, η) ∈ R2 and 0 < ε <

min( 1
4 ,

α
2 ),∫
R

dλ

{1 + |η + λ|2}α2
∣∣J X,n
s,t (ξ, η, η + λ)

∣∣ . |t− s|ε[2−n|ξ|+ 2−n + 2−nα0 |η|
]

(3.7)

and ∫
R

dλ

{1 + |η + λ|2}α
∣∣J X,n
s,t (ξ, η, η + λ)

∣∣2 . |t− s|2ε[2−n|ξ|+ 2−n + 2−nα0 |η|
]2
. (3.8)
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Injecting (3.7) and (3.8) into (3.6), we obtain that∫
R

dx

(
E
[∣∣∣F−1

(
{1 + |.|2}−α2 F

(
ρ ·
[̃ κ,n
s,t −

κ,n
s,t

]))
(x)
∣∣∣2])p

. |t− s|2εp
(∫
{|ξ|≤22κn,|η|≤2κn}

dξdη

|ξ|2H0−1|η|2H1−1

∣∣∣2−n|ξ|+ 2−n + 2−nα0 |η|
∣∣∣2)p

. 2−2nςp|t− s|2εp·(∫
{|ξ|≤22κn,|η|≤2κn}

dξdη

|ξ|2H0−1|η|2H1−1

∣∣∣2−n(1−ς)|ξ|+ 2−n(1−ς) + 2−n(α0−ς)|η|
∣∣∣2)p . (3.9)

Now picking ς such that 0 < ς ≤ min(1 − 5κ, α0 − 4κ), one has, for any (ξ, η) such that
|ξ| ≤ 22κn and |η| ≤ 2κn,

max
(
2−n(1−ς)|ξ|2|η|, 2−n(1−ς)|ξ||η|, 2−n(α0−ς)|ξ||η|2

)
. max

(
2−n(1−ς−5κ), 2−n(1−ς−3κ), 2−n(α0−ς−4κ)

)
. 1 ,

and so ∣∣∣2−n(1−ς)|ξ|+ 2−n(1−ς) + 2−n(α0−ς)|η|
∣∣∣ . 1

1 + |ξ|
1

1 + |η|
, (3.10)

which entails that

sup
n≥0

∫
{|ξ|≤22κn,|η|≤2κn}

dξdη

|ξ|2H0−1|η|2H1−1

∣∣∣2−n(1−ς)|ξ|+ 2−n(1−ς) + 2−n(α0−ς)|η|
∣∣∣2

.

(∫
R

dξ

|ξ|2H0−1{1 + |ξ|2}

)(∫
R

dη

|η|2H1−1{1 + |η|2}

)
< ∞ . (3.11)

Going back to (3.9), this immediately provides us with the final estimate, namely: for all
p ≥ 1, 0 < ς ≤ min(1− 5κ, α0 − 4κ) and ε > 0 small enough,∫

R

dx

(
E
[∣∣∣F−1

(
{1 + |.|2}−α2 F

(
ρ ·
[̃ κ,n
s,t −

κ,n
s,t

]))
(x)
∣∣∣2])p . 2−2nςp|t− s|2εp , (3.12)

for some proportional constant that does not depend on n.

Step 2: Conclusion. The arguments to conclude are essentially the same as those of the
proof of Proposition 2.2 (Step 2 ). First, one has, for every p ≥ 1,

E
[∥∥ρ · [̃ κ,ns,t − κ,n

s,t

]∥∥2p

W−α,2p

]
=

∫
R

dxE
[∣∣∣F−1

(
{1 + |.|2}−α2 F

(
ρ ·
[̃ κ,n
s,t −

κ,n
s,t

]))
(x)
∣∣∣2p]

.
∫
R

dx

(
E
[∣∣∣F−1

(
{1 + |.|2}−α2 F

(
ρ ·
[̃ κ,n
s,t −

κ,n
s,t

]))
(x)
∣∣∣2])p ,

where the latter inequality is derived from Gaussian hypercontractivity property.
Thus, thanks to (3.12), we get that for all p ≥ 1, 0 < ς ≤ min(1−5κ, α0−4κ) and ε > 0

small enough,

E
[∥∥ρ · [̃ κ,ns,t − κ,n

s,t

]∥∥2p

W−α,2p

]
. 2−2nςp|t− s|2εp .

We can here apply the Garsia-Rodemich-Rumsey estimate and assert that for ε̃ > 0,

E
[∥∥ρ · [̃ κ,n − κ,n]∥∥2p

C([0,1];W−α,2p)

] 1
2p

. 2−nς
(∫

[0,1]2

dudv

|u− v|2−2p(ε−ε̃)

) 1
2p

.

The almost sure bound (3.4) can then be deduced from the same Borel-Cantelli argument
as in the proof of Proposition 2.2, and this completes the proof of Proposition 3.1.
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3.2 Proof of Proposition 3.4

Let us first recast J X,n
s,t (ξ, η, η + λ) as

J X,n
s,t (ξ, η, η + λ)

=

[ 2n−1∑
i=0

22n−1∑
j=−22n

(∫
R

dy ρ(y)e−ı(η+λ)yGni,j(s, t; y)

)(
22n

∫ ti+1

ti

du

∫ xj+1

xj

dz eıξueıηz
)]

− ρ̂(λ)γs,t(ξ, |η|) .

Then, since

Gni,j(s, t; y) =

∫ ti+1

ti

dr

∫ xj+1

xj

dw
{
Gt−r(y − w)−Gs−r(y − w)

}
=

∫ ti+1

ti

dr

∫ xj+1

xj

dw

∫
R

dβ
{
Ĝt−r(β)− Ĝs−r(β)

}
eıβ(y−w) ,

one can write, for all i, j,(∫
R

dy ρ(y)e−ı(η+λ)yGni,j(s, t; y)

)(
22n

∫ ti+1

ti

du

∫ xj+1

xj

dz eıξueıηz
)

= 22n

∫
R

dy ρ(y)e−ıy(η+λ)

∫ ti+1

ti

dr

∫ xj+1

xj

dw

∫
R

dβ
{
Ĝt−r(β)− Ĝs−r(β)

}
eıβ(y−w)

∫ ti+1

ti

eıξu du

∫ xj+1

xj

eıηz dz

=

∫
R

dβ

[ ∫
R

dy ρ(y)e−ıy(η+λ−β)

][
2n
∫ ti+1

ti

dr
{
Ĝt−r(β)− Ĝs−r(β)

}∫ ti+1

ti

eıξu du

]
[
2n
∫ xj+1

xj

dw

∫ xj+1

xj

dz e−ıβweıηz
]

=

∫
R

dβ

[ ∫
R

dy ρ(y)e−ıy(λ−β)

][
2n
∫ ti+1

ti

dr
{
Ĝt−r(η + β)− Ĝs−r(η + β)

}∫ ti+1

ti

eıξu du

]
[
2n
∫ xj+1

xj

dw

∫ xj+1

xj

dz e−ı(η+β)weıηz
]

and so

2n−1∑
i=0

22n−1∑
j=−22n

(∫
R

dy ρ(y)e−ı(η+λ)yGni,j(s, t; y)

)(
22n

∫ ti+1

ti

du

∫ xj+1

xj

dz eıξueıηz
)

=

∫
R

dβ ρ̂(λ− β)γns,t(ξ, η + β)δn(η, η + β)

with

γnt (ξ, β) :=

∫ t

0

dr Ĝt−r(β)

( 2n−1∑
i=0

1{ti<r<ti+1}2
n

∫ ti+1

ti

eıξu du

)
(3.13)

and

δn(η, β) :=

∫
R

dw e−ıwβ
( 22n−1∑
j=−22n

1{xj<w<xj+1}2
n

∫ xj+1

xj

dz eıηz
)
. (3.14)

We have thus derived the representation

J X,n
s,t (ξ, η, η + λ) =

[ ∫
R

dβ ρ̂(λ− β)γns,t(ξ, η + β)δn(η, η + β)

]
− ρ̂(λ)γs,t(ξ, |η|) , (3.15)

which will help us to prove the following intermediate estimate:
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Lemma 3.5. For all (ξ, η, λ) ∈ R3, ` ≥ 1, σ1, σ2, σ3 ∈ [0, 1] and 0 < ε < 1
4 , it holds that

|J X,n
s,t (ξ, η, η + λ)|

.
∣∣ρ̂(λ)

∣∣|t− s|σ1{1 + |η|2σ1}2−nσ2 |ξ|σ2 +
|t− s|ε

1 + |λ|

[
2−n` + 2−n|η|+ 2−nσ3 |η||λ|σ3

]
, (3.16)

where the proportional constant does not depend on n, ξ, η, λ.

Before we prove this technical lemma, let us see how it allows us to derive the
estimates in Proposition 3.4. In fact, applying (3.16) with ` = 1, σ1 = ε, σ2 = 1 and
σ3 = α0, we deduce that for every 0 < ε < 1

4 ,∫
R

dλ

{1 + |η + λ|2}α2
∣∣J X,n
s,t (ξ, η, η + λ)

∣∣ . |t− s|ε{1 + |η|2ε}2−n|ξ|
∫
R

dλ

∣∣ρ̂(λ)
∣∣

{1 + |η + λ|2}α2

+ |t− s|ε
[
2−n + 2−n|η|+ 2−nα0 |η|

] ∫
R

dλ

{1 + |η + λ|α}{1 + |λ|1−α0}
.

(3.17)

At this point, one easily checks that for every β > 0,∫
R

dλ

∣∣ρ̂(λ)
∣∣

{1 + |η + λ|2} β2
.

1

1 + |η|β
. (3.18)

Also, since 0 < α0 < min(1, α), it is not hard to see that

sup
η∈R

∫
R

dλ

{1 + |η + λ|α}{1 + |λ|1−α0}
< ∞ ,

and therefore (3.17) leads us to∫
R

dλ

{1 + |η + λ|2}α2
∣∣J X,n
s,t (ξ, η, η + λ)

∣∣ . |t− s|ε[2−n|ξ|1 + |η|2ε

1 + |η|α
+ 2−n + 2−nα0 |η|

]
which, if 0 < ε < min( 1

4 ,
α
2 ), immediately yields (3.7).

We can then derive (3.8) with similar arguments. Namely, applying again (3.16) with
` = 1, σ1 = ε, σ2 = 1 and σ3 = α0, we get first that for every 0 < ε < 1

4 ,∫
R

dλ

{1 + |η + λ|2}α
∣∣J X,n
s,t (ξ, η, η + λ)

∣∣2 . |t− s|2ε[{1 + |η|2ε}2−n|ξ|
]2 ∫

R

dλ

∣∣ρ̂(λ)
∣∣2

{1 + |η + λ|2}α

+ |t− s|2ε
[
2−n + 2−n|η|+ 2−nα0 |η|

]2 ∫
R

dλ

{1 + |η + λ|2α}{1 + |λ|2(1−α0)}
.

(3.19)

For the same elementary reasons as in (3.18) (write
∣∣ρ̂(λ)

∣∣2 =
∣∣(ρ̂ ∗ ρ)(λ)

∣∣), one has∫
R

dλ

∣∣ρ̂(λ)
∣∣2

{1 + |η + λ|2}α
.

1

1 + |η|2α
,

and again, since 0 < α0 < min(1, α), it is easy to check that

sup
η∈R

∫
R

dλ

{1 + |η + λ|2α}{1 + |λ|2(1−α0)}
< ∞ .

Therefore, we end up with∫
R

dλ

{1 + |η + λ|2}α
∣∣J X,n
s,t (ξ, η, η + λ)

∣∣2 . |t− s|2ε[2−n|ξ|1 + |η|2ε

1 + |η|α
+ 2−n + 2−nα0 |η|

]2
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and by picking 0 < ε < min( 1
4 ,

α
2 ), we obtain (3.8), which achieves the proof of Proposi-

tion 3.4.
Thus, it only remains us to provide the details behind Lemma 3.5.

Proof of Lemma 3.5. Going back to the definition (3.14) of δn, one has

δn(η, η + β) =

∫
R

dw e−ıwβ
( 22n−1∑
j=−22n

1{xj<w<xj+1}2
n

∫ xj+1

xj

dz eıη(z−w)

)

=

∫
R

dw e−ıwβ
( 22n−1∑
j=−22n

1{xj<w<xj+1}2
n

∫ xj+1

xj

dz {eıη(z−w) − 1}
)

+

∫
R

dw e−ıwβ1{|w|≤2n}

so that, according to (3.15), we can write

J X,n
s,t (ξ, η, η + λ)

=

[ ∫
R

dw

(∫
R

dβ e−ıwβ ρ̂(λ− β)γns,t(ξ, η + β)

)
( 22n−1∑
j=−22n

1{xj<w<xj+1}2
n

∫ xj+1

xj

dz {eıη(z−w) − 1}
)]

+

∫
R

dw 1{|w|≤2n}

∫
R

dβ e−ıwβ ρ̂(λ− β)γns,t(ξ, η + β)− ρ̂(λ)γs,t(ξ, |η|)

=

[ ∫
R

dw

(∫
R

dβ e−ıwβ ρ̂(λ− β)γns,t(ξ, η + β)

)
( 22n−1∑
j=−22n

1{xj<w<xj+1}2
n

∫ xj+1

xj

dz {eıη(z−w) − 1}
)]

+

[
−
∫
|w|≥2n

dw

∫
R

dβ e−ıwβ ρ̂(λ− β)γns,t(ξ, η + β)

]
+

[
ρ̂(λ)γns,t(ξ, η)− ρ̂(λ)γs,t(ξ, |η|)

]
=: Ins,t(ξ, η, λ) + IIns,t(ξ, η, λ) + IIIns,t(ξ, η, λ) . (3.20)

Let us estimate these three quantities separately.
Treatment of Ins,t(ξ, η, λ). We have∫

R

dβ e−ıwβ ρ̂(λ− β)γns,t(ξ, η + β) = e−ıλw
∫
R

dβ eıwβ ρ̂(β)γns,t(ξ, η + λ− β)

= e−ıλwfns,t(w; ξ, η, λ) , (3.21)

with

fns,t(w; ξ, η, λ) :=

[
ρ ∗ F−1

(
γns,t(ξ, η + λ− .)

)]
(w) . (3.22)

Using the additional notation

hn,j(w; η) := 2n
∫ xj+1

xj

dz
{
eıη(z−w) − 1

}
,

we can rewrite Ins,t(ξ, η, λ) as

Ins,t(ξ, η, λ) =

22n−1∑
j=−22n

∫ xj+1

xj

dw e−ıλwfns,t(w; ξ, η, λ)hn,j(w; η) .
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On the one hand, it is clear that |hn,j(w; η)| ≤ 2−n|η| for any w ∈ [xj , xj+1], which
immediately yields ∣∣Ins,t(ξ, η, λ)

∣∣ ≤ 2−n|η|
∥∥fns,t(.; ξ, η, λ)

∥∥
L1 . (3.23)

On the other hand, one has for every j,∫ xj+1

xj

dw e−ıλwfns,t(w; ξ, η, λ)hn,j(w; η)

=
−1

ıλ

[
e−ıλxj+1fns,t(xj+1; ξ, η, λ)hn,j(xj+1; η)− e−ıλxjfns,t(xj ; ξ, η, λ)hn,j(xj ; η)

−
∫ xj+1

xj

dw e−ıλw(∂wf
n
s,t)(w; ξ, η, λ)hn,j(w; η)

−
∫ xj+1

xj

dw e−ıλwfns,t(w; ξ, η, λ)(∂wh
n,j)(w; η)

]
=
−1

ıλ

[
In,js,t + IIn,js,t + IIIn,js,t

]
, (3.24)

with
In,js,t :=

{
e−ıλxj+1fns,t(xj+1; ξ, η, λ)− e−ıλxjfns,t(xj ; ξ, η, λ)

}
hn,j(xj+1; η) ,

IIn,js,t := −
∫ xj+1

xj

dw e−ıλw(∂wf
n
s,t)(w; ξ, η, λ)hn,j(w; η) ,

IIIn,js,t :=

∫ xj+1

xj

dw
{
e−ıλxjfns,t(xj ; ξ, η, λ)− e−ıλwfns,t(w; ξ, η, λ)

}
(∂wh

n,j)(w; η) .

First, since hn,j(xj+1; η) = 2n
∫ 2−n

0
dz
{
e−ıηz − 1

}
does not depend on j, we get that

∣∣∣∣ 22n−1∑
j=−22n

In,js,t

∣∣∣∣
=

∣∣∣∣(2n
∫ 2−n

0

dz
{
e−ıηz − 1

}){
e−ıλ2nfns,t(2

n; ξ, η, λ)− eıλ2nfns,t(−2n; ξ, η, λ)
}∣∣∣∣

. 2−n|η|
∥∥fns,t(.; ξ, η, λ)

∥∥
L∞

. (3.25)

Then ∣∣∣∣ 22n−1∑
j=−22n

IIn,js,t

∣∣∣∣ . 2−n|η|
22n∑

j=−22n

∫ xj+1

xj

dw
∣∣(∂wfns,t)(w; ξ, η, λ)

∣∣
. 2−n|η|

∥∥(∂wf
n
s,t)(.; ξ, η, λ)

∥∥
L1 . (3.26)

Finally, since |(∂whn,j)(w; η)| =
∣∣(−ıη)2n

∫ xj+1

xj
dz eıη(z−w)

∣∣ ≤ |η|, we have for any

σ ∈ [0, 1]

|IIIn,js,t |

≤ |η|
∫ xj+1

xj

dw
[∣∣fns,t(xj ; ξ, η, λ)− fns,t(w; ξ, η, λ)

∣∣+
∣∣e−ıλxj − e−ıλw∣∣∣∣fns,t(w; ξ, η, λ)

∣∣]
≤ |η|

[ ∫ xj+1

xj

dw

∫ w

xj

dv
∣∣(∂wfns,t)(v; ξ, η, λ)

∣∣+ |λ|σ2−nσ
∫ xj+1

xj

dw
∣∣fns,t(w; ξ, η, λ)

∣∣]
≤ |η|

[
2−n

∫ xj+1

xj

dv
∣∣(∂wfns,t)(v; ξ, η, λ)

∣∣+ |λ|σ2−nσ
∫ xj+1

xj

dw
∣∣fns,t(w; ξ, η, λ)

∣∣] ,
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which immediately entails∣∣∣∣ 22n−1∑
j=−22n

IIIn,js,t

∣∣∣∣ ≤ [2−n|η|∥∥(∂wfns,t)(.; ξ, η, λ)
∥∥
L1 + 2−nσ|η||λ|σ

∥∥fns,t(.; ξ, η, λ)
∥∥
L1

]
. (3.27)

Injecting (3.25)–(3.26)–(3.27) into (3.24), and then combining the result with (3.23),
we obtain that∣∣Ins,t(ξ, η, λ)

∣∣ . 1

1 + |λ|

[
2−n|η|+ 2−nσ|η||λ|σ

]
[∥∥fns,t(.; ξ, η, λ)

∥∥
L∞

+
∥∥fns,t(.; ξ, η, λ)

∥∥
L1 +

∥∥(∂wfns,t)(.; ξ, η, λ)
∥∥
L1

]
. (3.28)

In order to go further, note that by the definition of fns,t, and since ρ ∈ C∞c (R), one has∥∥fns,t(.; ξ, η, λ)
∥∥
L∞

+
∥∥fns,t(.; ξ, η, λ)

∥∥
L1+

∥∥(∂wfns,t)(.; ξ, η, λ)
∥∥
L1 .

∥∥∥F−1
(
γns,t(ξ, η+λ−.)

)∥∥∥
L1
.

(3.29)
Then observe that

F−1
(
γns,t(ξ, η + λ− .)

)
(w)

= eıw(λ+η)

∫ t

0

dr
{
Gt−r(w)−Gs−r(w)

}[ 2n−1∑
i=0

1{tni <r<tni+1}2
n

∫ ti+1

ti

du eıξu
]
, (3.30)

and so, for any 0 < ε < 1
4 ,∥∥∥F−1

(
γns,t(ξ, η + λ− .)

)∥∥∥
L1
≤
∫
R

dw

∫ t

0

dr
∣∣Gt−r(w)−Gs−r(w)

∣∣ . |t− s|ε . (3.31)

Injecting (3.29)–(3.31) into (3.28), we get that for any σ ∈ [0, 1] and 0 < ε < 1
4 ,∣∣Ins,t(ξ, η, λ)

∣∣ . |t− s|ε
1 + |λ|

[
2−n|η|+ 2−nσ|η||λ|σ

]
, (3.32)

for some proportional constant that does not depend on ξ, η, λ.
Treatment of IIns,t(ξ, η, λ). Following (3.21), we can write

IIns,t(ξ, η, λ) = −
∫
|w|≥2n

dw e−ıλwfns,t(w; ξ, η, λ)

with fns,t defined by (3.22), and so∣∣IIns,t(ξ, η, λ)
∣∣ =

∣∣∣∣ ∫
|w|≥2n

dw e−ıλwfns,t(w; ξ, η, λ)

∣∣∣∣
. min

(∫
|w|≥2n

dw
∣∣fns,t(w; ξ, η, λ)

∣∣,
1

|λ|

{
sup
|w|≥2n

∣∣fns,t(w; ξ, η, λ)
∣∣+

∫
|w|≥2n

dw
∣∣(∂wfns,t)(w; ξ, η, λ)

∣∣}) .

(3.33)

Remember that fns,t = ρ ∗ F−1
(
γns,t(ξ, η + λ− .)

)
, and so, since supp ρ ⊂ [−A,A] for some

A > 0, it is readily checked that∫
|w|≥2n

dw
∣∣fns,t(w; ξ, η, λ)

∣∣+ sup
|w|≥2n

∣∣fns,t(w; ξ, η, λ)
∣∣+

∫
|w|≥2n

dw
∣∣(∂wfns,t)(w; ξ, η, λ)

∣∣
.
∫
|w|≥2n−A

dw
∣∣∣F−1

(
γns,t(ξ, η + λ− .)

)
(w)
∣∣∣ . ∫

|w|≥2n−1

dw
∣∣∣F−1

(
γns,t(ξ, η + λ− .)

)
(w)
∣∣∣ ,

(3.34)
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for any n large enough. Then, using the representation (3.30), we deduce that for all
` ≥ 1 and 0 < ε < 1

4 ,∫
|w|≥2n−1

dw
∣∣∣F−1

(
γns,t(ξ, η + λ− .)

)
(w)
∣∣∣

≤
∫
|w|≥2n−1

dw

∫ t

0

dr
∣∣Gt−r(w)−Gs−r(w)

∣∣ . 2−n`|t− s|ε . (3.35)

Combining (3.34)–(3.35) with (3.33), we obtain that∣∣IIns,t(ξ, η, λ)
∣∣ . |t− s|ε

1 + |λ|
2−n` , (3.36)

for all ` ≥ 1 and 0 < ε < 1
4 .

Treatment of IIIns,t(ξ, η, λ). We need to control the difference γns,t(ξ, η)− γs,t(ξ, |η|). In
fact, with expression (2.12) in mind, one has

γns,t(ξ, η)

=

∫ t

0

dr
{
Ĝt−r(η)− Ĝs−r(η)

}
eıξr
[ 2n−1∑
i=0

1{ti<r<ti+1}2
n

∫ ti+1

ti

du eıξ(u−r)
]

= γs,t(ξ, |η|)

+

∫ t

0

dr
{
Ĝt−r(η)− Ĝs−r(η)

}
eıξr
[ 2n−1∑
i=0

1{ti<r<ti+1}2
n

∫ ti+1

ti

du
{
eıξ(u−r) − 1

}]
.

Now it is clear that for any σ1, σ2 ∈ [0, 1],∣∣∣∣ ∫ t

0

dr
{
Ĝt−r(η)− Ĝs−r(η)

}
eıξr
[ 2n−1∑
i=0

1{ti<r<ti+1}2
n

∫ ti+1

ti

du
{
eıξ(u−r) − 1

}]∣∣∣∣
. 2−nσ1 |ξ|σ1

[ ∫ s

0

dr
∣∣e−(t−r)|η|2 − e−(s−r)|η|2 ∣∣+

∫ t

s

dr e−(t−r)|η|2
]

. 2−nσ1 |ξ|σ1 |t− s|σ2{1 + |η|2σ2} .

Therefore, we can conclude that∣∣IIIns,t(ξ, η, λ)
∣∣ . ∣∣ρ̂(λ)

∣∣2−nσ1 |ξ|σ1 |t− s|σ2{1 + |η|2σ2} . (3.37)

Injecting (3.32), (3.36) and (3.37) into (3.20), we finally get the desired estimate (3.16).

4 Space-time discretization of the heat operator

At this point of the analysis, we are endowed with the approximation ˜κ,n of the
solution, derived from the discretization ∂t∂xB̃

κ,n of the noise (see (3.1)). Otherwise

stated, for all fixed κ > 0 and n ≥ 1, ˜κ,n corresponds to the classical solution of the
standard heat equation{

∂t
κ,n

= ∆
κ,n

+ ∂t∂xB̃
κ,n , t ∈ [0, 1], x ∈ R,

κ,n
0 = 0 .

(4.1)

This section is devoted to the third and final step of our discretization procedure,
namely the space-time discretization of the heat operator in (4.1), for fixed κ > 0, n ≥ 1

(which implies that ∂t∂xB̃κ,n is here regarded as a well-defined bounded function).
To this end, we will rely on a Galerkin-type approximation strategy. Let us start with

a general description of the method and an associated estimate (Section 4.1), which we
will then apply to our stochastic problem (Section 4.2).
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4.1 Description of the algorithm and a general estimate

For every mesh size h > 0, we consider the basis of functions (Φhj )j∈Z given by

Φhj (x) :=


1
h (x− xj−1) if x ∈ [xj−1, xj ]
1
h (xj+1 − x) if x ∈ [xj , xj+1]

0 otherwise ,

(4.2)

where the subdivision points (xj)j∈Z are here merely defined as xj := jh. Also, we set

S(h,L) := Span
(
Φhj , −N + 1 ≤ j ≤ N − 1

)
. (4.3)

For all h, L > 0 such that N := L
h ∈ N, and for all m ≥ 1, let us now introduce the

Galerkin approximation operator G(h,L)
m associated with the basis Φh := (Φhj )j∈Z, the

domain ΩL := [−L,L] and the uniform subdivision Dm := {ti = tmi := i
2m , i = 0, . . . , 2m}

of [0, 1].

Namely, for every u ∈ H1,2
loc ([0, 1] × R), we define ū := G(h,L)

m (u) as the sequence of
functions (ūti)i=0,...,2m characterized by the three conditions: (i) ū0 ≡ 0; (ii) ūti ∈ S(h,L);
(iii) for all i = 1, . . . , 2m and ϕ ∈ S(h,L),

2m〈ūti − ūti−1 , ϕ〉+ 〈∇ūti ,∇ϕ〉 = 2m
∫ ti

ti−1

ds
[
〈(∂tu)s, ϕ〉+ 〈∇us,∇ϕ〉

]
. (4.4)

Denoting the mass, resp. stiffness, matrix by

Mh,L :=
(
〈Φhj ,Φhk〉

)
−N+1≤j,k≤N−1

, resp. Ah,L :=
(
〈∇Φhj ,∇Φhk〉

)
−N+1≤j,k≤N−1

, (4.5)

one can easily rephrase (4.4) as follows: if ūti(x) =
∑N−1
j=−N+1 ūjtiΦ

h
j (x), then

2mMh,L(ūti − ūti−1) +Ah,Lūti = 2m
∫ ti

ti−1

ds 〈(∂tu)s −∆us,Φ
h〉 , (4.6)

where ūti := (ūjti)−N+1≤j≤N−1 and for every function f ∈ L2
loc(R),

〈f,Φh〉 := (〈f,Φhj 〉)−N+1≤j≤N−1.

Formula (4.6) thus offers a convenient way to compute the matrix ū := (ūti)i=0,...,2m ,
and accordingly to compute ū.

Remark 4.1. To be more specific in the terminology, the above-defined operation G(h,L)
m

corresponds in fact to the combination of a (space) Galerkin projection and a (time)
implicit Euler scheme.

Let us now state the important estimate (for the difference u − G(h,L)
m (u)) that will

serve us in this third discretization step of our problem.

Proposition 4.2. Fix a smooth compactly-supported function ρ : R → [0, 1]. Then, for
all u ∈ H1,2

loc ([0, 1]×R) such that u0 = 0, all h, L > 0 such that N := L
h ∈ N, all m ≥ 1 and

ε > 0, it holds that

sup
i=1,...,2m

∥∥ρ · {uti − G(h,L)
m (u)ti

}∥∥
L2(R)

.

[
2−m(1−ε) ess sup

t∈[0,1]

‖(∂tu)t‖L2(R) + 2mεh2 ess sup
t∈[0,1]

‖∆ut‖L2(R)

]
+ sup
t∈[0,1]

sup
x∈∂ΩL

{
|ut(x)|+ L1/2

∣∣(∂tu)t(x)
∣∣} , (4.7)

for some proportional constant that does not depend on h, L and m.
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The above estimate corresponds to a generalization – to arbitrary functions u in the
space H1,2

loc ([0, 1]×R) – of a well-known control for functions u vanishing on the boundary
(see for instance [22, Theorem 8.2]).

For the sake of clarity, we have postponed the proof of this (purely deterministic)
property to Section A.2 of the appendix, and we will rather focus here on its application
to our stochastic problem.

4.2 Application to the stochastic problem

We now intend to apply the result of Proposition 4.2 to our problem (4.1), that is to

u = ˜κ,n = G ∗ ∂t∂xB̃κ,n. For this application to be relevant, we naturally need, first, to
find suitable bounds on the terms involved in the right-hand side of (4.7). This is the
purpose of the next three lemmas.

Lemma 4.3. Let f ∈ L∞([0, 1]×R) be a function of the form

fs(x) =

K−1∑
k=−K

aks 1[xk,xk+1)(x),

for some K ≥ 1, some coefficients ak ∈ L∞([0, 1]) and some points x−K ≤ . . . ≤ xK .
Setting

M :=
(

sup
k=−K,...,K−1

|xk+1 − xk|
)−1

and assuming that M ≥ 1, one has for every ε > 0

sup
t∈[0,1]

∥∥∂t(G ∗ f)t
∥∥
L2(R)

+ sup
t∈[0,1]

∥∥∆(G ∗ f)t
∥∥
L2(R)

.
K

M
1
2−ε

ess sup
t∈[0,1]

‖ft‖L∞(R) , (4.8)

where the proportional constant does not depend on K and M .

Proof. Using the Plancherel theorem, we can write∥∥∆(G ∗ f)t
∥∥2

L2(R)
= c

∫
R

dξ |ξ|4
∣∣F((G ∗ f)t

)
(ξ)
∣∣2

= c

∫
R

dξ |ξ|4
∣∣∣∣ ∫ t

0

ds e−ξ
2(t−s)(Ffs)(ξ)∣∣∣∣2

.
∫
R

dξ |ξ|ε
(∫ t

0

ds

(t− s)1− ε4

∣∣(Ffs)(ξ)∣∣)2

.

Then one has, for every λ ∈ [0, 1],

∣∣(Ffs)(ξ)∣∣ =

∣∣∣∣ K−1∑
k=−K

aks

∫ xk+1

xk

dx e−ıxξ
∣∣∣∣

≤
K−1∑
k=−K

|aks |
∣∣∣∣ ∫ xk+1

xk

dx e−ıxξ
∣∣∣∣λ∣∣∣∣ ∫ xk+1

xk

dx e−ıxξ
∣∣∣∣1−λ

.
1

Mλ|ξ|1−λ
K−1∑
k=−K

|aks | ,

and so∥∥∆(G ∗ f)t
∥∥2

L2(R)
.

(
K ess sup

t∈[0,1]

‖ft‖L∞(R)

)2[
1

M2

∫
|ξ|≤1

dξ |ξ|ε +
1

M1−2ε

∫
|ξ|≥1

dξ

|ξ|1+ε

]
,
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which gives the desired bound for supt∈[0,1]

∥∥∆(G ∗ f)t
∥∥
L2(R)

.

As for ∂t(G ∗ f)t, recall that ∂t(G ∗ f)t = ∆(G ∗ f)t + ft, and

sup
t∈[0,1]

‖ft‖L2 ≤
(

2K

M

)1/2

ess sup
t∈[0,1]

‖ft‖L∞(R) .
K

M
1
2−ε

ess sup
t∈[0,1]

‖ft‖L∞(R).

Lemma 4.4. Let f ∈ L∞([0, 1] × R) be a function such that
⋃
t∈[0,1] supp ft ⊂ [−2n, 2n],

for some n ≥ 1. Then for all β > 0 and L > 2n, it holds that

sup
t∈[0,1]

sup
x∈∂ΩL

{
|(G∗f)t(x)|+L1/2

∣∣(∂t(G∗f))t(x)
∣∣} . L1/2

|L− 2n|β
(

ess sup
t∈[0,1]

‖ft‖L∞(R)

)
, (4.9)

where the proportional constant does not depend on n and L.

Proof. For x ∈ {−L,L}, and for all ε ∈ (0, 1), β > 0, one has

∣∣(∂t(G ∗ f))t(x)
∣∣ . ∫ t

0

ds

∫ 2n

−2n
dy |ft−s(y)|e−

(x−y)2
4s

[
1

s
3
2

+
(x− y)2

s
5
2

]

.
(

ess sup
t∈[0,1]

‖ft‖L∞(R)

)∫ t

0

ds

s
3
2−

β
2

∫ 2n

−2n
dy

e−ε
(x−y)2

4s

|x− y|β

.
1

|L− 2n|β
(

ess sup
t∈[0,1]

‖ft‖L∞(R)

)∫ t

0

ds

s
3
2−

β
2

∫
R

dy e−ε
(x−y)2

4s

.
1

|L− 2n|β
(

ess sup
t∈[0,1]

‖ft‖L∞(R)

)∫ t

0

ds

s1− β2
.

The quantity |(G ∗ f)t(x)| can then be estimated along similar arguments.

Based on the estimates (4.7) and (4.8)–(4.9), it remains us to exhibit a bound for the
supremum norm of the approximated fractional noise.

Lemma 4.5. Fix (H0, H1) ∈ (0, 1)2 and for all κ > 0, n ≥ 1, let ∂t∂xB̃κ,n be the approxi-
mated fractional noise given by (3.1). Then almost surely, and for every ε > 0, it holds
that

sup
t∈[0,1]

∥∥(∂t∂xB̃
κ,n)t

∥∥
L∞(R)

. 2n(2−H0−H1+ε) , (4.10)

for some (random) proportional constant that does not depend on κ and n.

Proof. It is essentially a direct consequence of the (almost sure) regularity of the space-
time fractional sheet. To be more specific, observe that for all (s, x), (t, y) ∈ [0, 1] × R,
and for every p ≥ 1,

E
[∣∣Bκ,nt (y)−Bκ,ns (y)−Bκ,nt (x) +Bκ,ns (x)

∣∣2p]
. E

[∣∣Bκ,nt (y)−Bκ,ns (y)−Bκ,nt (x) +Bκ,ns (x)
∣∣2]p

. E

[∣∣∣∣ ∫
|ξ|≤22κn

∫
|η|≤2κn

Ŵ (dξ, dη)
eıξt − eıξs

|ξ|H0+ 1
2

eıηy − eıηx

|η|H1+ 1
2

∣∣∣∣2]p
.

(∫
R

∫
R

dξdη
|eıξt − eıξs|2

|ξ|2H0+1

|eıηy − eıηx|2

|η|2H1+1

)p
.

(∫
R

∫
R

dξdη
|eıξ(t−s) − 1|2

|ξ|2H0+1

|eıη(y−x) − 1|2

|η|2H1+1

)p
. |t− s|2H0p|y − x|2H1p ,
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where the proportional constants do not depend on (s, x), (t, y), κ and n. Therefore, we
can apply for instance [19, Theorem 3.1] to assert that almost surely, and for all n ≥ 1,
i, j ∈ Z, ε > 0, ∣∣�ni,jBκ,n∣∣ . 2−n(H0+H1−ε) ,

for some (random) proportional constant that does not depend on n and i, j. The claimed
estimate (4.10) is then an immediate consequence of the definition (3.1) of ∂t∂xB̃κ,n.

With the representation

(∂t∂xB̃
κ,n)s(x) =

22n−1∑
`=−22n

( 2n−1∑
k=0

22n(�nk,`B
κ,n)1[ k2n ,

k+1
2n [(s)

)
1[ `2n ,

`+1
2n [(x) (4.11)

in mind, we can inject the estimates of Lemma 4.3, Lemma 4.4 and Lemma 4.5 into the
result of Proposition 4.2, which gives successively (for (h, L) such that L

h ∈ N)

sup
i=0,...,2m

∥∥ρ · {˜κ,nti − G(h,L)
m

(̃ κ,n)
ti

}∥∥
L2(R)

. 2−m(1−ε) sup
t∈[0,1]

‖(∂t˜κ,n)t‖L2(R) + 2mεh2 sup
t∈[0,1]

‖∆˜κ,nt ‖L2(R)

+ sup
t∈[0,1]

sup
x∈∂ΩL

{
|̃
κ,n

t (x)|+ L1/2
∣∣(∂t˜κ,n)t(x)

∣∣}
.

[
2−m(1−ε)2n( 3

2 +ε) + 2mεh22n( 3
2 +ε) +

L1/2

|L− 2n|β

]
· sup
t∈[0,1]

‖(∂t∂xB̃κ,n)t‖L∞(R)

.

[
2−m(1−ε)2n( 3

2 +ε) + 2mεh22n( 3
2 +ε) +

L1/2

|L− 2n|β

]
· 2n(2−H0−H1+ε) , (4.12)

which corresponds to the main estimate of this section.

Proposition 4.6. Fix (H0, H1) ∈ (0, 1)2 and for all κ > 0, n ≥ 1, let ˜κ,n be the solution
to the equation (4.1), driven by the approximated fractional noise ∂t∂xB̃κ,n. Also, fix a
smooth compactly-supported function ρ : R→ [0, 1].

Then for all h > 0, L > 2n such that L
h ∈ N, for all κ > 0, n ≥ 1, m ≥ 1, and for all

β > 0, ε ∈ (0, 1), one has almost surely

sup
i=0,...,2m

∥∥ρ · {˜κ,nti − G(h,L)
m

(̃ κ,n)
ti

}∥∥
L2(R)

. 2−m(1−ε)2n( 7
2−H0−H1+ε) + 2mεh22n( 7

2−H0−H1+ε) +
L1/2

|L− 2n|β
2n(2−H0−H1+ε) , (4.13)

where the proportional constant does not depend on κ, n, h, L and m.
In particular, if ¯κ,n stands for the approximation defined by (1.17), then for every

(H0, H1) ∈ (0, 1)2, one has almost surely

sup
i=0,...,2m

∥∥ρ · {˜κ,nti − ¯κ,n
ti

}∥∥
L2(R)

. 2−
n
2 , (4.14)

where the proportional constant does not depend on κ and n.

Remark 4.7. The estimate (4.13) emphasizes a standard feature of the finite-element
method (when applied in a parabolic setting), namely the fact that the time mesh size
(i.e. 2−m) must somehow be considered at the same level as the square of the spatial
mesh size (i.e. h2) in the discretization procedure.
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Proof of Proposition 4.6. The estimate (4.13) corresponds to (4.12). As for (4.14), it

suffices to observe that ¯κ,n is nothing but G(h,L)
m

(̃ κ,n)
for the specific calibration h :=

2−2n, L := 2n+1 and m := 4n (which yields the rate 2−
n
2 in (4.14)). This identification

can be immediately deduced from the comparison between (4.1)–(4.6) and (1.16)–(1.18),
combined with the identity

24n

∫ ti+1

ti

ds 〈(∂t∂xB̃κ,n)s,Φ
n
j 〉 = δBκ,nij , (4.15)

where δBκ,nij is the quantity defined by (1.15).
The proof of (4.15) follows from straightforward computations. Using the convention

ĩ,
≈
j introduced in Section 1.2, and with expression (4.11) in mind, one can write, for

every j = −N + 1, . . . , N − 1,∫ ti+1

ti

ds 〈(∂t∂xB̃κ,n)s,Φ
n
j 〉

=

22n−1∑
`=−22n

2n−1∑
k=0

22n(�nk,`B
κ,n)

∫ ti+1

ti

ds1[ k2n ,
k+1
2n [(s)

∫ xj+1

xj−1

dx1[ `2n ,
`+1
2n [(x)Φnj (x)

= 2−2n
22n−1∑
`=−22n

�n
ĩ,`
Bκ,n[

1
{xj>

≈
j

2n }

∫ xj+1

xj−1

dx1[ `2n ,
`+1
2n [(x)Φnj (x) + 1

{xj=
≈
j

2n }

∫ xj+1

xj−1

dx1[ `2n ,
`+1
2n [(x)Φnj (x)

]
.

(4.16)

Now

22n−1∑
`=−22n

�n
ĩ,`
Bκ,n1

{xj>
≈
j

2n }

∫ xj+1

xj−1

dx1[ `2n ,
`+1
2n [(x)Φnj (x)

= 1
{xj>

≈
j

2n }
�n
ĩ,
≈
j
Bκ,n

∫ xj+1

xj−1

dxΦnj (x)

= 1
{xj>

≈
j

2n }
2−2n�n

ĩ,
≈
j
Bκ,n ,

while

22n−1∑
`=−22n

�n
ĩ,`
Bκ,n1

{xj=
≈
j

2n }

∫ xj+1

xj−1

dx1[ `2n ,
`+1
2n [(x)Φnj (x)

= 1
{xj=

≈
j

2n }

[
�n
ĩ,
≈
j−1

Bκ,n
∫ xj

xj−1

dxΦnj (x) +�n
ĩ,
≈
j
Bκ,n

∫ xj+1

xj

dxΦnj (x)

]
= 1

{xj=
≈
j

2n }
2−2n

[
1

2
�n
ĩ,
≈
j−1

Bκ,n +
1

2
�n
ĩ,
≈
j
Bκ,n

]
.

Going back to (4.16), we have obtained that∫ ti+1

ti

ds 〈(∂t∂xB̃κ,n)s,Φ
n
j 〉

= 1
{xj>

≈
j

2n }
2−4n�n

ĩ,
≈
j
Bκ,n + 1

{xj=
≈
j

2n }
2−4n

[
1

2
�n
ĩ,
≈
j−1

Bκ,n +
1

2
�n
ĩ,
≈
j
Bκ,n

]
,

which precisely corresponds to (4.15).
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Let us conclude this theoretical analysis with two remarks about our calibration
choice (h, L,m) in (4.14) (and therefore in the scheme of Section 1.2, leading to the
definition of ¯κ,n).

Remark 4.8. Observe that in light of (4.13), the calibration (h, L,m) := (2−2n, 2n+1, 4n)

ensures the convergence of the scheme for all possible values of (H0, H1) ∈ (0, 1)2,
which, for the sake of clarity, motivated our choice in the scheme proposed in Section 1.2.
However, for fixed (H0, H1), one could naturally choose more optimal values for (h, L,m),
which would possibly reduce the number of computations in the associated system (1.18).

Remark 4.9. Due to our use of a Galerkin-type approximation procedure (and Galerkin-
type bounding arguments), the estimate result in Proposition 4.6 is stated in terms of
L2(R)-topology in space, in contrast with the weaker H−α(R)-norm used in Proposi-
tion 2.2 and Proposition 3.1, and which is more natural in this rough setting (remember
that the solution is a path with values in H−α(R)). By considering the H−α(R)-norm
in the left-hand side of (4.13), it might be possible to improve the latter estimate with
respect to the parameters h, m or n (without changing the topology in our main con-
trol (1.20)). In turn, this could allow us to relax the current (h, L,m)-calibration of the
scheme in Section 1.2. Nevertheless, at this point, it is not clear to us how one could
adapt the successive arguments of Section 4 in order to – sharply – take negative-order
Sobolev norms into account.

5 Numerical results and possible improvements

We devote this last section to a few details and comments related to the numerical
implementation of the algorithm (1.17)–(1.18).

5.1 Simulation of the scheme

As described in Section 1.2, the simulation of our discretized process
κ,n

boils
down to the computation of the values

j
ti , along the iterative formula (1.18). As far as

randomness is concerned, we are thus left with the implementation of the quantities

δBκ,nij , i = 0, . . . , 24n, j = −N + 1, . . . , N − 1 , N := 23n+1. (5.1)

To this end, let us briefly recall that any Gaussian sheet can be easily simulated
through its mean and covariance formulas. To be more specific, let us fix t1 < . . . < tp,
x1 < . . . < xq, p, q ≥ 1, and consider a centered Gaussian field {Xt(x), t, x ∈ R} with
covariance given by

E[Xs(x)Xt(y)] = C0(s, t)C1(x, y) .

Then define the matrices C0, C1 along the formulas

C0(i, i
′) := C0(ti, ti′), C1(j, j

′) := C1(xj , xj′),

and consider auxiliary symmetric matrices D0, D1 such that D0
2 = C0 and D1

2 = C1
(in the subsequent implementations, D0, D1 are computed with the help of the sqrtm
function). Now, if W stands for a random matrix in Mp×q(R) with independent and
N (0, 1)-distributed entries, we set

X := D0 ∗ W ∗ D1, (5.2)
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so that, for all 1 ≤ i, i′ ≤ p and 1 ≤ j, j′ ≤ q,

E
[
X(i, j)X(i′, j′)

]
=

p∑
k,k′=1

q∑
`,`′=1

D0(i, k)D0(i
′, k′)D1(`, j)D0(`

′, j′)E
[
W(k, `)W(k′, `′)

]
=

p∑
k=1

D0(i, k)D0(k, i
′)

q∑
`=1

D1(j, `)D0(`, j
′) = C0(i, i

′)C1(j, j
′) = E

[
Xti(xj)Xti′ (xj′)

]
.

With this general strategy in mind, let us go back to our approximation Bκ,n of the
fractional sheet B, for fixed Hurst indexes H0, H1 ∈ (0, 1). According to the representa-
tion (1.5), Bκ,n corresponds indeed to a centered Gaussian field with covariance of the
form

E
[
Bκ,ns (x)Bκ,nt (y)

]
= Cκ,n0 (s, t)Cκ,n1 (x, y), (5.3)

with

Cκ,n0 (s, t) := c2H0

∫
|ξ|≤22κn

dξ
(eiξt − 1)(e−iξs − 1)

|ξ|2H0+1
,

Cκ,n1 (x, y) := c2H1

∫
|η|≤2κn

dη
(eiηx − 1)(e−iηy − 1)

|η|2H1+1
.

Note that the latter integrals can be more conveniently expanded as

Cκ,n0 (s, t) =c2H0

∫
|ξ|≤22κn

dξ
cos(ξ(t− s))− cos(ξt)− cos(ξs) + 1

|ξ|2H0+1

=c2H0
21−4H0κn

∫ 1

0

dξ
cos(22κnξ(t− s))− cos(22κnξt)− cos(22κnξs) + 1

|ξ|2H0+1
,

with a similar expression for Cκ,n1 (x, y), which in turn allows us to approximate Cκ,n0 , Cκ,n1

through a standard Riemann-sum procedure, i.e. as

Cκ,n0 (s, t) ≈ c2H0

21−4H0κn

M0

M0∑
m=1

cos(22κn m
M0

(t− s))− cos(22κn m
M0
t)− cos(22κn m

M0
s) + 1

| mM0
|2H0+1

,

Cκ,n1 (x, y) ≈ c2H1

21−2H1κn

M1

M1∑
m=1

cos(2κn m
M1

(x− y))− cos(2κn m
M1
x)− cos(2κn m

M1
y) + 1

| mM1
|2H1+1

,

with M0,M1 large enough.
As a consequence of decomposition (5.3), the values of Bκ,ni

2n
( j

2n ) can now be eas-

ily simulated through the above-described method, i.e. using (5.2), which immedialy
provides us with the set of increments

�ni,jB
κ,n, i = 0, . . . , 2n, j = −22n, . . . , 22n, (5.4)

involved in the scheme. Observe that, following (1.15), each quantity δBκ,ni,j in (1.18) is in

fact computed from the pair (�n
ĩ,
≈
j
Bκ,n,�n

ĩ,
≈
j−1

Bκ,n), where ĩ := bi2−3nc and
≈
j := bj2−nc.

Once endowed with the (renormalized) quantities β(j, i) := 3
22n+1 δB

κ,n
i,j , the simulation

of (1.18) merely relies on the consideration of the two matrices

A1 :=



4 − 5
4 0 · · · 0

− 5
4 4

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . 4 − 5
4

0 · · · 0 − 5
4 4


and A2 :=



1 1
4 0 · · · 0

1
4 1

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . 1 1
4

0 · · · 0 1
4 1


.
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Figure 1: H0 = H1 = 1
4

Namely, setting φ(j, i) :=
j
ti , formula (1.18) can be more efficiently recast into the

iterative scheme

A1φ(·, 1) = β(·, 1), A1φ(·, i+ 1) = A2φ(·, i) + β(·, i) for all i > 1, (5.5)

the implementation of which becomes an easy task (see for instance Figure 1 for a
simulation with n = 3, κ = 1, M0 = 10000, M1 = 1000 and H0 = H1 = 1

4 ).

Remark 5.1. We cannot hide the fact that, due to our consideration of a grid with
extremely fine mesh (namely 2−4n in time, 2−3n+1 in space) and growing support (in
space), the simulation of the above scheme soon reveals to be highly demanding as n
increases, and we have actually not been able to implement the algorithm for n ≥ 4.
As a consequence of this computational restriction, the process Bκ,n, with κ > 0 small
enough (following the result of Theorem 1.3) and 1 ≤ n ≤ 3, can only be seen as a coarse
approximation of B, which explains the relative smoothness of the simulated sheets in
Figure 1.

5.2 Open issues

Let us conclude the study with two natural open questions raised by the above
simulation procedure, and which could motivate possible future improvements of our
theoretical results.

Replacing Bκ,n with B. As we emphasized it in Remark 3.2, our restriction on the
parameter κ (in Bκ,n) plays an important technical role in the proof of the convergence
property (3.4), but we cannot firmly assert that the result of Theorem 1.3 (or some
similar convergence statement toward ) would fail for larger values of κ > 0, or even
for κ =∞, which corresponds to replacing Bκ,n with B in the algorithm.

Figure 2 corresponds to a simulation of such a modified scheme (where κ = ∞,
H0 = H1 = 1

4 and n = 3), and thus the resulting sheet might represent a more faithful
approximation of .

Grid synchronization. Another natural question arising from our scheme is to know
whether the convergence in Theorem 1.3 (or some similar property) would hold if one
discretized the noise and the heat operator over the same grid (say ti = i

2n , xj = j
2n ).

Recall that the strong discrepancy between the “Galerkin grid” in (5.1) and the “noise
grid” in (5.4) is – at least partially – due to our treatment of Bκ,n as a L∞-function
throughout Section 4. As we mentioned in Remark 4.9, we expect some more direct
analysis in H−α to provide sharper estimates with respect to the stochastic perturbation,
which in turn could allow us to – at least partially – fill the gap between the two grids.
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Figure 2: H0 = H1 = 1
4

Figure 3: H0 = H1 = 1
4

In this setting, Figure 3 (where n = 5, H0 = H1 = 1
4 ) accounts for the simulation

of the corresponding “synchronized” scheme over the common grid ti = i
2n , xj = j

2n .
We have also provided a simulation of this scheme in a more regular situation for
which 2H0 + H1 > 1 (see Figure 4, where H0 = H1 = 3

4 and n = 5): the two figures 3
and 4 thus offer a clear contrast between the regular “functional” case, and the rough
“distributional” regime.

A Galerkin estimates

The ultimate goal of this section is to provide the details behind the estimate of
Proposition 4.2. As we mentioned in Section 4.1, the latter result can in fact be regarded
as a generalization of a well-known control for functions vanishing on the boundary
(see for instance [22, Theorem 8.2], or [23, Chapter 3] and [28, Chapter 1] for similar
bounds).

For the reader’s convenience, we propose to briefly review the main preliminary steps
toward such Galerkin estimates (Section A.1), before we turn to the extension itself (Sec-
tion A.2). We will also seize this opportunity to insist on the dependence/independence of
each intermediate bound with respect to the length L of the domain under consideration,
as this question happens to be crucial in our unbounded setting (in contrast with the
situation in [22, 23, 28]).
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Figure 4: H0 = H1 = 3
4

A.1 Preliminary considerations

We go back here to the setting and notation introduced in Section 4.1. In particular,
S(h,L) is the space defined in (4.3), whileMh,L, resp. Ah,L, stands for the mass, resp.
stiffness, matrix defined in (4.5).

It is easy to check thatMh,L is a symmetric positive definite matrix, and accordingly
it can be decomposed as Mh,L = E∗h,LEh,L, for some lower triangular matrix Eh,L =((
Eh,L

)
jk

)
−N+1≤j,k≤N−1

with positive diagonal entries.
With these matrices in hand, we can rely on the following representation result for

the elements derived from identities such as (4.4).

Lemma A.1. Fix (h, L) such that N := L
h ∈ N. Let θti ∈ S(h,L) (i = 0, . . . , 2m) be such

that θ0 = 0 and for all i = 1, . . . , 2m, ϕ ∈ S(h,L),

2m〈θti − θti−1
, ϕ〉+ 〈∇θti ,∇ϕ〉 = 2m〈fi, ϕ〉 ,

for some functions fi ∈ L2
loc(R).

Then, if θti(x) =
∑N−1
j=−N+1 θθθ

j
tiΦ

h
j (x), the vector θθθti = (θθθjti)−N+1≤j≤N−1 is explicitly

given by

θθθti = E−1
h,L

i∑
k=1

[
(I+2−mMh,L)−1

]i−k+1
(E∗h,L)−1〈fk,Φh〉 , where Mh,L := (E−1

h,L)∗Ah,LE−1
h,L .

(A.1)

Let us recall a few important bounds related to the matrices Eh,L,Mh,L. To this
end, for all vectors u = (uj)−N+1≤j≤N−1,v = (vj)−N+1≤j≤N−1, and for every matrix
M = (Mjk)−N+1≤j,k≤N−1, we set

〈u,v〉2 :=

N−1∑
j=−N+1

ujvj , ‖v‖22 := 〈v,v〉2 , ‖M‖2;2 := sup
v 6=0

‖Mv‖2
‖v‖2

.

Lemma A.2. Fix the pair (h, L) in such a way that N := L
h ∈ N.

(i) If v :=
∑N−1
j=−N+1 vj Φhj for some real-valued vector (vj), then one has

h

3
‖v‖22 ≤ ‖v‖2L2(R) ≤ h‖v‖

2
2. (A.2)

(ii) It holds that ∥∥E−1
h,L

∥∥2

2;2
≤ 3

h
. (A.3)
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(iii) The matrixMh,L introduced in (A.1) is positive, and so, for every h > 0, one has

sup
L>0: Lh∈N

sup
`≥0

∥∥[(I + 2−mMh,L)−1
]`∥∥

2;2
≤ 1 . (A.4)

(iv) For all vectors vt1 , . . . ,vt2m , all i = 1, . . . , 2m and ε > 0, it holds that

sup
L>0: Lh∈N

∥∥∥∥ i−1∑
k=1

[[
(I + 2−mMh,L)−1

]k − [(I + 2−mMh,L)−1
]k+1

]
vti−k

∥∥∥∥
2

. 2mε sup
k=1,...,2m

‖vtk‖2 , (A.5)

where the proportional constant does not depend on h and i.

Let us finally evoke an intermediate result for functions vanishing on the boundary
{−L,L} of ΩL. For every w ∈ H1

0 (ΩL), we recall that the Ritz projection R(h,L)(w) of w
is defined as the orthogonal projection of w on S(h,L) with respect to the product

〈〈w1, w2〉〉 := 〈∇w1,∇w2〉 .

Then we define the operator R
(h,L)
m along the formula: for all u ∈ L∞([0, 1];H1

0 (ΩL)) with
u0 = 0,

R(h,L)
m (u)0 := 0 and R(h,L)

m (u)ti := 2m
∫ ti

ti−1

dsR(h,L)(us) for i = 1, . . . , 2m . (A.6)

The following related control (the proof of which can be derived for instance from
[28, Theorem 1.1]) turns out to be a central ingredient toward the subsequent Galerkin
estimates.

Lemma A.3. Fix h, L > 0 such that N := L
h ∈ N. For all u ∈ H(1,2)([0, 1] × ΩL) ∩

L∞([0, 1];H1
0 (ΩL) ∩H2(ΩL)) with u0 = 0, i = 1, . . . , 2m and ϕ ∈ S(h,L), it holds that

〈∇(R(h,L)
m (u)ti),∇ϕ〉 = 2m

∫ ti

ti−1

ds 〈∇us,∇ϕ〉 (A.7)

and

sup
i=1,...,2m

∥∥uti −R(h,L)
m (u)ti

∥∥ . 2−m ess sup
t∈[0,1]

‖(∂su)t‖+ h2 ess sup
t∈[0,1]

‖∆ut‖ , (A.8)

where the proportional constant does not depend on h, L and m.

A.2 Proof of Proposition 4.2

We now have the tools in hand to estimate the difference between u and its Galerkin
approximation G(h,L)

m (u) (as defined in (4.1)).
For the sake of clarity, let us first consider the situation where u vanishes on the

boundary {−L,L} of ΩL. In this case, a possible estimate for u−G(h,L)
m (u) goes as follows.

Lemma A.4. For all h, L > 0 such that N := L
h ∈ N, all u ∈ H(1,2)([0, 1] × ΩL) ∩

L∞([0, 1];H1
0 (ΩL) ∩H2(ΩL)) with u0 = 0, all m ≥ 1 and ε > 0, one has

sup
i=1,...,2m

∥∥uti − G(h,L)
m (u)ti

∥∥
L2(ΩL)

. 2−m(1−ε) ess sup
t∈[0,1]

‖(∂tu)t‖L2(ΩL) + 2mεh2 ess sup
t∈[0,1]

‖∆ut‖L2(ΩL) , (A.9)

where the proportional constant does not depend on h, L and m.
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Proof. For every i = 0, . . . , 2m, let us decompose the difference uti − G
(h,L)
m (u)ti as

uti − G(h,L)
m (u)ti =

[
uti −R(h,L)

m (u)ti
]

+
[
R(h,L)
m (u)ti − G(h,L)

m (u)ti
]

=: (γ(h,L)
m )ti + (θ(h,L)

m )ti , (A.10)

where R
(h,L)
m is the operator introduced in (A.6). Thanks to (A.8), we already know that

sup
i=1,...,2m

∥∥(γ(h,L)
m )ti

∥∥
L2(ΩL)

. 2−m ess sup
t∈[0,1]

‖(∂su)t‖+ h2 ess sup
t∈[0,1]

‖∆ut‖ , (A.11)

for some proportional constant that does not depend on h, L and m.
Let us now turn to the estimate for (θ

(h,L)
m )ti (i = 1, . . . , 2m), and to alleviate the

notation, let us write from now on γ, θ,R,G instead of γ(h,L)
m , θ

(h,L)
m ,R

(h,L)
m ,G(h,L)

m , respec-
tively.

Given ϕ ∈ S(h,L), observe that for every i = 1, . . . , 2m,

2m〈θti − θti−1
, ϕ〉+ 〈∇θti ,∇ϕ〉

=
[
2m〈R(u)ti −R(u)ti−1

, ϕ〉+ 〈∇(R(v)ti),∇ϕ〉
]

−
[
2m〈G(u)ti − G(u)ti−1 , ϕ〉+ 〈∇(G(u)ti),∇ϕ〉

]
=
[
2m〈R(u)ti −R(u)ti−1 , ϕ〉+ 〈∇(R(u)ti),∇ϕ〉

]
− 2m

∫ ti

ti−1

ds
[
〈(∂tu)s, ϕ〉 − 〈∇us,∇ϕ〉

]
= 2m

[
〈R(u)ti −R(u)ti−1 , ϕ〉 − 〈uti − uti−1 , ϕ〉

]
+

[
〈∇(R(u)ti),∇ϕ〉 − 2m

∫ ti

ti−1

ds 〈∇us,∇ϕ〉
]

and so, using identity (A.7), we end up with the relation

2m〈θti − θti−1
, ϕ〉+ 〈∇θti ,∇ϕ〉 = −2m〈γti − γti−1

, ϕ〉 . (A.12)

Now recall that for every i = 1, . . . , 2m, θti ∈ S(h,L), and therefore this element can
be expanded θti(x) =

∑N−1
j=−N+1 θθθ

j
tiΦ

h
j (x) for some vector (θθθjti)−N+1≤j≤N−1. With this

notation in hand, and since θ0 = 0, we can apply Lemma A.1 to the relation (A.12) and
assert that for every i = 1, . . . , 2m,

θθθti = −E−1
h,L

i∑
k=1

[
(I + 2−mMh,L)−1

]i−k+1
(E∗h,L)−1〈γtk − γtk−1

,Φh〉

= −E−1
h,L

[
(I + 2−mMh,L)−1

]
(E∗h,L)−1〈γti ,Φh〉

+ E−1
h,L

i−1∑
k=1

{[
(I + 2−mMh,L)−1

]i−k − [(I + 2−mMh,L)−1
]i−k+1}

(E∗h,L)−1〈γtk ,Φh〉 ,

where the second identity is derived from a discrete integration by parts, and the fact
that γ0 = 0.

Using (A.3) and (A.4), we can first assert that∥∥E−1
h,L

[
(I + 2−mMh,L)−1

]
(E∗h,L)−1〈γti ,Φh〉

∥∥
2
.

1

h

∥∥〈γtk ,Φh〉∥∥2
,

Then, using (A.3) and (A.5), one gets for every ε > 0,∥∥∥∥E−1
h,L

i−1∑
k=1

{[
(I + 2−mMh,L)−1

]i−k − [(I + 2−mMh,L)−1
]i−k+1}

(E∗h,L)−1〈γtk ,Φh〉
∥∥∥∥

2

.
2mε

h1/2
sup

k=1,...,2m

∥∥(E∗h,L)−1〈γtk ,Φh〉
∥∥

2
.

2mε

h
sup

k=1,...,2m

∥∥〈γtk ,Φh〉∥∥2
.
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Therefore, we obtain that

‖θθθti‖2 .
2mε

h
sup

k=1,...,2m

∥∥〈γtk ,Φh〉∥∥2
.

It is now readily checked that

∥∥〈γtk ,Φh〉∥∥2

2
=

N−1∑
j=−N+1

∣∣∣∣ ∫ xj+1

xj−1

dx γtk(x)Φhj (x)

∣∣∣∣2 . h ‖γtk‖2L2(ΩL)

for proportional constants independent of h and L, and so, using (A.2),

‖θti‖L2(R) ≤ h1/2‖θθθti‖2 . 2mε sup
k=1,...,2m

‖γtk‖L2(ΩL) . (A.13)

Going back to the decomposition (A.10), the desired estimate (A.9) follows from the
combination of (A.11) and (A.13).

We are finally in a position to prove Proposition 4.2, by extending the previous
estimate to situations where u does not necessarily vanish on the boundary.

Proof of Proposition 4.2. First, let us introduce a function uL ∈ H1,2
loc ([0, 1]×R) such that

uLs (−L) = uLs (L) = 0 and ∆uLs = ∆us. To be more specific, we take

uLs (x) := us(x)− 1

2L
(us(L)− us(−L))x− 1

2
(us(−L) + us(L)) . (A.14)

Also, in the sequel, we always consider L large enough so that supp ρ ⊂ ΩL. Then one
has

sup
i=1,...,2m

∥∥ρ · {uti − G(h,L)
m (u)ti

}∥∥
L2(R)

≤ sup
i=1,...,2m

∥∥uLti − G(h,L)
m (uL)ti

∥∥
L2(ΩL)

+ sup
t∈[0,1]

∥∥ρ · {ut − uLt }∥∥L2(R)

+ sup
i=1,...,2m

∥∥G(h,L)
m (u− uL)ti

∥∥
L2(ΩL)

, (A.15)

and we can estimate each of these three quantities separately.
To handle the first quantity, observe that the function uL satisfies the conditions of

Lemma A.4, and therefore, thanks to this result, one has for every ε > 0 and every L > 0

large enough

sup
i=1,...,2m

∥∥uLti − G(h,L)
m (uL)ti

∥∥
L2(ΩL)

. 2−m(1−ε) ess sup
t∈[0,1]

‖(∂tuL)t‖L2(ΩL) + 2mεh2 ess sup
t∈[0,1]

‖∆uLt ‖L2(ΩL)

.

[
2−m(1−ε) ess sup

t∈[0,1]

‖(∂tu)t‖L2(R) + 2mεh2 ess sup
t∈[0,1]

‖∆ut‖L2(R)

]
+ sup
t∈[0,1]

sup
x∈∂ΩL

L1/2
∣∣(∂tu)t(x)

∣∣ , (A.16)

where the proportional constants do not depend on h, L and m.
For the second quantity in (A.15), and with the explicit expression (A.14) in mind, it

is clear that
sup
t∈[0,T ]

∥∥ρ · {ut − uLt }∥∥L2(R)
. sup
t∈[0,T ]

sup
x∈∂ΩL

|ut(x)| , (A.17)

where the proportional constant only depends on ρ.
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As for the third quantity in (A.15), one has, owing to (4.4) and Lemma A.1:

G(h,L)
m (u− uL)ti =

N−1∑
j=−N+1

δδδjtiΦ
h
j ,

with

δδδti = E−1
h,L

i∑
k=1

[
(I + 2−mMh,L)−1

]i−k+1
(E∗h,L)−1

∫ tk

tk−1

ds 〈∂t(u− uL)s,Φ
h〉 ,

where we have used the fact that 〈∇(us − uLs ),∇ϕ〉 = 0 for all s ∈ [0, 1] and ϕ ∈ S(h,L).
Using (A.2), (A.3) and (A.4), we deduce that∥∥G(h,L)

m (u− uL)ti
∥∥
L2(ΩL)

≤ h1/2‖δδδti‖2 .
1

h1/2
sup
s∈[0,1]

‖〈∂t(u− uL)s,Φ
h〉‖2 . (A.18)

Then we can observe that

‖〈∂t(u− uL)s,Φ
h〉‖22 .

∣∣∣∣ 1

2L

{
(∂su)s(L)− (∂su)s(−L)

}∣∣∣∣2 N−1∑
j=−N+1

∣∣∣∣ ∫
R

dxxΦhj (x)

∣∣∣∣2

+

∣∣∣∣12{(∂su)s(L) + (∂su)s(−L)
}∣∣∣∣2 N−1∑

j=−N+1

∣∣∣∣ ∫
R

dxΦhj (x)

∣∣∣∣2

.

(
sup
x∈∂ΩL

∣∣(∂su)s(x)
∣∣2) N−1∑

j=−N+1

(∫
R

dx |Φhj (x)|
)2

. h2N sup
x∈∂ΩL

∣∣(∂su)s(x)
∣∣2 .

Now remember that Nh = L, and therefore, going back to (A.18), we deduce

sup
i=1,...,2m

∥∥G(h,L)
m (u− uL)ti

∥∥
L2(ΩL)

. sup
s∈[0,1]

sup
x∈∂ΩL

L1/2
∣∣(∂su)s(x)

∣∣ . (A.19)
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