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The effect of avoiding known infected neighbors on
the persistence of a recurring infection process*
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Abstract

We study a generalization of the classical contact process (SIS epidemic model) on
a directed graph G. Our model is a continuous-time interacting particle system in
which at every time, each vertex is either healthy or infected, and each oriented edge
is either active or inactive. Infected vertices become healthy at rate 1 and pass the
infection along each active outgoing edge at rate λ. At rate α, healthy individuals
deactivate each incoming edge from their infected neighbors, and an inactive edge
becomes active again as soon as its tail vertex becomes healthy. When α = 0, this
model is the same as the classical contact process on a static graph. We study the
persistence time of this epidemic model on the lattice Z, the n-cycle Zn, and the
n-star graph. We show that on Z, for every α > 0, there is a phase transition in λ

between almost sure extinction and positive probability of indefinite survival; on Zn

we show that there is a phase transition between poly-logarithmic and exponential
survival time as the size of the graph increases. On the star graph, we show that the
survival time is n∆+o(1) for an explicit function ∆(α, λ) whenever α > 0 and λ > 0. In
the cases of Z and Zn, our results qualitatively match what has been shown for the
classical contact process, while in the case of the star graph, the classical contact
process exhibits exponential survival for all λ > 0, which is qualitatively different
from our result. This model presents a challenge because, unlike the classical contact
process, it has not been shown to be monotonic in the infection parameter λ or the
initial infected set.
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The contact process with avoidance behavior

1 Introduction

The contact process is a stochastic model for an epidemic process on a graph, G,
which has received a lot of recent attention [1, 3, 4, 5, 13, 19, 20, 23]. The classical
contact process has a single parameter, λ, which controls the infection rate across each
edge of G. At any time, the vertices of G can be either infected or healthy. Each healthy
vertex becomes infected at rate λ times the number of infected neighbors that it has,
while infected vertices become healthy at rate 1. Much is known about this model,
especially when G = Zd, and when G is a finite random graph (see below for more
background). In this paper, we study the contact process with avoidance, in which,
in addition to the classical dynamics, each healthy individual attempts to temporarily
deactivate each of the edges that it shares with its infected neighbors at rate α. A
deactivated edge becomes active again when the infected neighbor becomes healthy.
This avoidance behavior is intended to model the tendency of healthy individuals to try
and avoid visibly infected individuals in a population.

The main ingredients in many proofs about the classical contact process, and many
of its variants that have been studied, are duality and additivity. For rigorous definitions
and proofs in the case of the classical contact process, see [18]. Informally, duality refers
to the existence of a time-reversal process that is Markov; the classical contact process
is self-dual. Additivity says that if xAt is the infected set of vertices at time t with initially
infected set A, then for every A,B ⊆ V , there exists a coupling between xAt , x

B
t and

xA∪Bt such that xA∪Bt = xAt ∪ xBt for all t ≥ 0. The contact process with avoidance is
not known to possess these properties (we suspect it does not), and this is a notable
technical challenge in deriving rigorous results about this process.

Our main results indicate that this model exhibits a phase transition similar to the
classical contact process on Z and on the cycle Zn := Z/nZ, but with a critical infection
parameter that grows linearly in α. However, it exhibits drastically different behavior on
the star graph with n leaves, where the classical contact process survives exponentially
long for any λ > 0, while the contact process with avoidance survives only polynomially
long (for every λ, α > 0; the case α = 0 corresponds to the classical contact process).
We note that rigorous results for interacting particle systems that coevolve with the
underlying topology, such as the CPA, are still scarce in the literature. We discuss notable
examples in Section 1.3.

1.1 Main results

Let G = (V,E) be a graph with vertex set V and directed edge set E. Now we
formally define the contact process with avoidance (CPA) (Xt)t≥0 on the graph G, where
Xt = (xt, et) takes values in {0, 1}V × {0, 1}E. The state of vertex i ∈ V at time t is given
by xt(i) ∈ {0, 1}, where 0 indicates that i is susceptible (healthy) and 1 indicates that
i is infected at time t. The state of the directed edge (i, j) ∈ E at time t is given by
et(i, j) ∈ {0, 1}, where 0 indicates that (i, j) is inactive (blocked) and 1 indicates that (i, j)

is active (open) at time t. Given the parameters λ, α ≥ 0 governing the per edge infection
and deactivation rates, the process (Xt)t≥0 evolves according to the following update
rules.

1. For each i ∈ V, xt(i) goes from 0→ 1 at rate λ
∑
j∈V xt(j)et(j, i)1{(j, i) ∈ E}.

2. For each i ∈ V, xt(i) goes from 1→ 0 at rate 1.

3. For each (i, j) ∈ E, et(i, j) goes from 1→ 0 at rate α if xt(j) = 0 and xt(i) = 1, and
at rate 0 otherwise.

4. For each (i, j) ∈ E, et(i, j) goes from 0→ 1 when xt(i) = 0.
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The contact process with avoidance behavior

We denote the law of the process (Xt) starting with initial condition X0 by PX0 . We abuse
notation and identify xt ∈ {0, 1}V with the set of infected vertices {i ∈ V : xt(i) = 1}, and
write |xt| to denote the cardinality of this set.

Consider the one dimensional lattice G = (V,E) where V = Z and E = {(i, j) :

|i − j| = 1}. Define X to be the collection of initial configurations X0 = (x0, e0) that
satisfy the following conditions:

• |x0| <∞,

• there exists i ∈ Z such that x0(i) = 1 and e0(i, i− 1) + e0(i, i+ 1) > 0,

• for each i ∈ Z and j = i± 1, if e0(i, j) = 0, then x0(i) = 1, and

• there does not exist i ∈ Z such that e0(i, i+ 1) = e0(i+ 1, i) = 0.

The first condition is imposed so the CPA cannot trivially persist for all time by starting
with infinitely many infected vertices. The second condition guarantees that there is some
infected vertex initially that can spread the infection to one of its neighbors with positive
probability – for initial configurations that do not satisfy this condition, the infection
cannot persist. The third condition guarantees that each inactive edge corresponds to
an infected vertex that is being avoided by its neighbor – inactive edges oriented toward
healthy vertices would instantly become active anyhow. The last condition rules out a
local configuration in which two neighboring vertices are avoiding one another. This
configuration cannot be produced by the dynamics if it is not present initially, and even
then the configuration is transient. To see why, note that for the edge (i, i+ 1) to become
inactive at time t, the vertex i must be healthy and i+ 1 must be infected at time t, but
edge (i + 1, i) can only remain inactive at time t if vertex i is infected. We therefore
restrict the initial configuration, which also simplifies the proof that the infection persists
for large λ.

For each fixed α > 0, we are unable to prove that the process is monotone in λ or
in the initial configuration, so we define several critical values for λ as follows. For a
collection of events {At}t∈[0,∞), we say that At occurs unboundedly often (u.o.) if At
occurs for an unbounded collection of times t ∈ [0,∞). That is, {At u.o.} = {ω : {t ≥ 0 :

ω ∈ At} is unbounded}. Now we define the critical values

λ−α := inf{λ : PX0 (|xt| ≥ 1 ∀t > 0) > 0 for some X0 ∈X },
λ+
α,w := sup{λ : PX0 (|xt| ≥ 1 ∀t > 0) = 0 ∀X0 ∈X },
λ+
α := sup{λ : PX0 (xt(0) = 1 u.o.) = 0 ∀X0 ∈X }. (1.1)

When {|xt| ≥ 1 ∀t > 0} occurs we say the process survives weakly, when {xt(0) = 1 u.o.}
occurs we say the process survives strongly, and when {|xt| = 0 for some t > 0} occurs
we say the process dies out. The w in the subscript of λ+

α,w stands for “weak survival”.
Clearly λ−α ≤ λ+

α,w, and since {xt(0) = 1 u.o.} ⊆ {|xt| ≥ 1 ∀t > 0}, it follows that
λ+
α,w ≤ λ+

α . The definitions are such that if λ < λ−α , then the process dies out almost
surely; if λ > λ+

α,w, then the process survives weakly with positive probability; and if
λ > λ+

α , then the process survives strongly with positive probability.
When α = 0, the classical contact process on Zd either dies out or survives strongly

[18], and by monotonicity all three critical values are equal: λ−0 = λ+
0,w = λ+

0 . However,
[21] showed that on trees, the contact process may die out, survive weakly but not
strongly or survive strongly, depending on λ and the tree structure. A natural open
question for the CPA is whether λ−α = λ+

α,w = λ+
α , so that there is a single critical value

λα separating extinction and strong survival for the contact process with avoidance on
Zd.

We now state our main results.
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The contact process with avoidance behavior

Theorem 1.1. Let G = (V,E), where V = Z and E = {(i, j) : |i − j| = 1}. There are
finite universal constants a1, a2 > 0 large enough for which 1 + α ≤ λ−α ≤ λ+

α ≤ a1 + a2α

for all α > 0.

Theorem 1.1 says there is a phase transition (in λ) between almost sure extinction
and positive probability of strong survival of the infection on Z. Moreover, both the
upper and lower critical values are linear in α. Next we focus on the CPA on the n-cycle
Zn.

Remark 1.2. Conservative choices for a1 and a2 are a1 = 51642 and a2 = 51617. These
values are obtained by taking p = 0.025 and computing a1, a2 in equation (3.7). The
choice of p is made to ensure that the inequalities in equation (3.6) are satisfied. See the
proof of Theorem 1.1(upper bound) in Section 3. We did not attempt to optimize these
values of a1 and a2, as the goal of our argument is to provide an upper bound for λ+

α

which is linear in α.

Theorem 1.3. Let G = (V,E), where V = Zn and E = {(i, j) : |i − j| = 1 mod n}. Let
τ = inf{t : |xt| = 0} be the time to extinction. Then there are finite universal constants
a1, a2 > 0 large enough and constants C = C(λ, α), γ = γ(λ, α) > 0 that depend on λ and
α for which the following holds. Starting from the initial configuration X0, which is given
by x0(i) = 1 ∀i ∈ V and e0(i, j) = 1 ∀(i, j) ∈ E,

(a) PX0
(
τ > C(log n)2

)
→ 0 as n→∞ for any α > 0 and λ < 1 + α,

(b) PX0 (τ ≤ eγn)→ 0 as n→∞ for any α > 0 and λ > a1 + a2α.

Remark 1.4. The universal constants a1 and a2 can be chosen large enough so that both
assertions of Theorem 1.1 and 1.3 hold. In particular, the choices of a1 and a2 mentioned
in Remark 1.2 satisfy both theorems.

Theorem 1.3 says there is a phase transition in the order of the limiting survival time
on Zn, and the upper and lower critical values are linear in α. Finally, we consider the
CPA on star graphs and find dramatically different behavior.

Theorem 1.5. LetG = (V,E) whereV = {0, 1, . . . , n−1} and E = {(0, j) : j 6= 0}∪{(j, 0) :

j 6= 0}, and initial condition X0 such that x0(i) = 1 ∀i ∈ V and e0(i, j) = 1 ∀(i, j) ∈ E.
Let τstar = inf{t : |xt| = 0} be the extinction time of the infection, and define

∆ = 2
[
(λ+ α+ 1)−

√
(λ+ α+ 1)2 − 4α

]−1

.

Then there exists N such that

lim
K→∞

inf
n≥N

P

(
1

K

(
n

log(n)4

)∆

≤ τstar ≤ Kn∆

)
= 1.

Theorem 1.5 says the survival time on the star graph is of polynomial order in n and
the exponent depends on λ and α.

1.2 Graphical construction

One popular technique for analyzing contact process models is the Harris construc-
tion, which we define here and use throughout the paper. Consider each edge and each
vertex on its time axis, and define events using Poisson processes as follows. Figure 1
gives a graphical example of the Harris construction.

1. Define a Poisson process with intensity λ on each directional edge. Then the
waiting time starting from time s until the next arrival along the edge (j, k) is
I(s; j, k) ∼ Exp(λ). These arrivals can be thought of as vertex j attempting to infect
vertex k, and the infection only occurs if xt−(j) = 1, xt−(k) = 0, and et−(j, k) = 1

just before time t = s+ I(s; j, k).
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The contact process with avoidance behavior

• •
◦

◦
×

• ◦
• infected vertex

◦ recovery dot

infection arrow

avoidance cross×
inactive edge

Figure 1: The Harris construction

2. Define a Poisson process with intensity 1 on each vertex. Then the waiting time
starting from time s until the next arrival is r(s; j) ∼ Exp(1). These arrivals can
be thought of as vertex j “attempting” to recover, with a recover only occuring if
x(j) = 1 at time s+ r(s; j)−.

3. Define a Poisson process with intensity α on each directed edge (j, k). Then the
waiting time starting from time s until the next arrival is b(s; j, k) ∼ Exp(α). These
arrivals can be thought of as vertex k “attempting” to avoid vertex j, and the
avoidance only occurs if x(j) = 1, x(k) = 0, and e(j, k) = 1 at time s+ b(s; j, k)−.

For the classical contact process, the Harris construction provides a coupling of all
initial states, which preserves the partial ordering of containment. This monotonicity (or
attractiveness) is used to derive many of the known results. The CPA does not appear to
possess this kind of monotonicity. Although we do not have a proof of this claim, certainly
the Harris construction fails to preserve the partial order on vertex states. An example
of the non-monotonicty of the CPA with respect to the set of infected vertices in the
Harris construction is shown in Figure 2. Although the initial infected set is larger in the
bottom figure, the final infected set is smaller. Nonetheless, this graphical construction
of the CPA will be useful in our proofs.

1.3 Background and related results

It is well-known that the classical contact process on Z has a critical value λc > 0,
such that when λ > λc the infection survives forever with positive probability on Z (and
has survival time eΘ(n) on Zn), and when λ < λc the infection dies almost surely on Z
(and survives for O(log n) time on Zn). For more on the classical contact process on Z
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The contact process with avoidance behavior

◦ ◦

◦

×
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• • ◦

◦ ◦

◦

×
• ◦ •
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Figure 2: The contact process with avoidance is not monotonic in the Harris construction.
The event times are the same in each realization, but the additional initially infected
vertex in the right realization leads to fewer infected vertices at time t.

and Zn, see Liggett [18]. In contrast, on the star graph and on random graphs having
power law degree distributions the limiting survival time is exponential for all λ > 0, and
the metastable densities have been derived for a number of models [1, 3, 4, 5, 20].

Our model bears resemblance to the adaptive SIS model proposed by Gross, D’Lima,
and Blasius [11], wherein edges between susceptible and infected individuals are
‘rewired’, rather than deactivated. This model has been of considerable interest in
the physics literature [10, 25]. Study of this model and its variants has to date been
restricted to mean field approximations, moment closures, and simulation results.

Guo, Trajanovsky, van de Bovenkamp, Wang, and Mieghem [12] study a variant of the
adaptive SIS model in [11] more closely related to our contact process with avoidance
in which healthy-infected neighbor pairs deactivate the two-way edge between them at
rate α, and when both vertices are healthy, reactivate the edge at rate ξ. They study
this model on the complete graph and derive an epidemic threshold using differential
equation approximations. Szabó-Solticzky, Berthouze, Kiss and Simon [24] study another
variant of the adaptive SIS model where SI edges are deleted at rate α and SS edges are
created at rate ξ by independent processes, and study the existence of stable oscillations
for this model.

The SIR epidemic, in which infected vertices are removed from the graph upon
recovery, has also been studied on evolving graphs. Jacobsen, Burch, Tien, and Rempala
[15] study a model in which infected vertices are able to activate and deactivate their
edges using ODE and pair approximation. Jiang, Kassem, York, Junge, and Durrett [16]
study the evoSIR model, in which SI edges rewire at some rate α, and find a critical
infection rate λc above which there is positive probability a large epidemic occurs.
The long term behavior of the SIR epidemic on evolving graphs tends to be easier to
understand than that of the SIS epidemic because in the former case each vertex can
become infected at most once.

Remenik [22] proposed an ecologically inspired contact process model, in which sites
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The contact process with avoidance behavior

of Z may become uninhabitable, thereby blocking passage and eliminating infection.
His model differs from ours in that the appearance of an uninhabitable site does not
depend on the state of neighboring vertices, and the lifetime of uninhabitable sites can be
controlled independently of the other process dynamics. This model is monotonic in its
parameters when each is viewed individually (although changing multiple together can
create incomparable processes), and he proves phase transitions in both the infection
rate and decay rate of uninhabitable sites. Jacob and Mörters [14] consider a contact
process on evolving scale free networks, and prove that λc > 0 on the evolving graph for
certain power-law degree distributions (and sufficiently fast rewiring dynamics) where
λc = 0 on the static graph. However, in their model, vertices rewire independently of the
state of the graph, and so given the current edges, the future edges are independent
of the vertices. This is not true for the contact process with avoidance. Foxall [9]
considers an SEIS model on Z, in which infected vertices have an incubation period prior
to becoming infectious. He claims this model is also not likely to be attractive, and he
proceeds to prove existence of a phase transition. However, edges in this model do not
evolve. Durrett and Neuhauser [6] study the SIRS epidemic, in which infected vertices
enter a removed state for some time after recovery, during which they do not interact at
all with other vertices. This model is not monotonic in the usual sense, but their results
are limited to the case of Z2 and rely on isoperimetric properties specific to this lattice.

One can also consider similar models with other modes of avoidance. In particular,
two other models seem most natural to us in this regard. First, one could consider
a model in which infected vertices rather than healthy vertices do the avoiding. This
reflects situations in which infected individuals are quarantined to prevent the spread of
infection. In this case, an infected node deactivates all edges from itself when it avoids
and remains avoiding until it recovers. Another possibility is a model with undirected
edges where a healthy vertex avoids an infected vertex by deactivating the bidirectional
edge between the two and remains avoiding until the next time both vertices are healthy.
In the case of the star graph, we believe that similar results hold for both these alternative
models. Applying the heuristic argument we give in section 5 suggests the survival time
should still be polynomial in n, but with a different power depending on the choice of
model. On Z and Zn however, our upper bound proof techniques do not appear to work
for these alternative models.

The proof of Theorem 1.3 only requires the existence in G of a self-avoiding path of
length Ω(n) to conclude exponential survival in n of the CPA. This implies the existence
of a supercritical regime on any graph satisfying this condition. Recent work [13, 2] has
shown that the classical contact process has a subcritical regime only on finite graphs
whose degree distributions have exponential tails. These results provide insight into
many useful classes of graphs, including power law random graphs and Galton-Watson
trees. However, the proofs of exponential survival for all λ > 0 in the subexponential
tails case uses the behavior of the contact process on star graphs as a key ingredient.
Because the contact process with avoidance exhibits qualitatively different behavior
on stars, whether there exist graphs whose degree distributions have subexponential
tails for which the contact process with avoidance has a subcritical regime is an open
question. In particular, the cases of power law random graphs and Galton-Watson trees
are of interest.

To further explore the phase transition on Z and Zn we simulated the CPA model for
a range of values of λ and α on Zn with n = 500 vertices. Simulation results appear to
indicate that the model is stochastically ordered in λ for fixed α, in which case a single
λα would exist. It also appears that λα is linear in α with a slope between 1.9 and 2.1.
Figure 3 shows a survival heatmap for various combinations of λ and α. We performed
30 iterations of each combination of λ and α, and the greyscale intensity indicates the
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The contact process with avoidance behavior

Figure 3: Shading indicates the proportion of 30 simulations of the CPA on Z10000

that survived for at least 10000 units of time for parameter values α ∈ {1, 2, 3, 4} × λ ∈
{1.5, 1.6, . . . , 9.6, 9.7}. White indicates 0 and black indicates 1.

proportion of iterations that survived. When α = 0 the simulation identifies that the
critical value, which is known to be approximately 1.65 [18], is between 1.5 and 1.7.
Simulations with large λ and α are expensive, and so we did not simulate as extensively
in that case. However, when λ = 191.5 and α = 100 the process appears to die out, while
for λ = 211.7 and α = 100 the process appears to survive, which is consistent with a
slope between 1.9 and 2.1.

The remainder of the paper is devoted to proving our three main theorems.

2 Lower bound for λ−
α on Z

Recall the definition of λ−α in equation (1.1), and the definition in the preceding
paragraph of X , the collection of allowable initial configurations.

Lemma 2.1. Fix α > 0. Then λ−α ≥ 1 + α.

Proof. Consider (Xt)t≥0 with initial configuration X0 ∈ X , so that |x0| < ∞. Since
|x0| < ∞, x0 must have leftmost and rightmost infected vertices whose locations we
will denote by l0 and r0. Let (lt)t≥0 and (rt)t≥0 track the locations of the leftmost and
rightmost infected vertices in Xt (with the convention that lt =∞ and rt = −∞ if xt ≡ 0).
We now define an embedded discrete time process (Ls)s∈Z+ of (lt)t≥0 as follows. A step
in the chain Ls occurs when either

1. Vertex Ls infects vertex Ls − 1, in which case Ls+1 = Ls − 1, or

2. Vertex Ls recovers, in which case Ls+1 = lt+ where lt+ is the new leftmost infected
vertex at time t immediately after vertex Ls recovers.
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Now observe that Ls+1 < Ls will hold only if Ls attempts to infect Ls−1 before either Ls
recovers or Ls−1 avoids Ls. So then for λ < 1 + α

P (Ls+1 < Ls) < 1/2

By symmetry we can construct an analogous discrete time process Rs starting from r0

such that
P (Rs+1 > Rs) < 1/2

As long as Xt persists we are assured Ls ≤ Rs. We thus observe that by the first
time Rs < Ls the process Xt must have reached its absorbing state. By our choice of
λ < 1 + α,Ls and Rs are dominated by random walks with positive and negative drifts
respectively and L0 ≤ R0 and so with probability 1 they will eventually cross and Xt will
have died out.

3 Upper bound for λ+
α on Z

For the classical contact process the supercritical regime can be proved by com-
parison with an oriented percolation process. The idea is to divide up spacetime into
nonoverlapping boxes and declare a box “good” if the infection can successfully pass
through on the time axis. The boxes can then be thought of as sites in an oriented site
percolation model, which is known to survive strongly when the occupation probability is
sufficiently large [8]. If the oriented percolation model is supercritical, then the infection
survives strongly by propagating through the good regions with positive probability.

In the case of the classical contact process we know from monotonicity that “goodness”
of regions is positively correlated. Thus, if we can show that a region is good with
probability at least 1 − p for some p > 0 using only events in the part of the Harris
construction contained in that region, we can then dominate an oriented site percolation
with occupancy probability 1− p. However, the contact process with avoidance is not
monotonic in the Harris construction, and so we must deal with the dependence among
regions in a different way. We do this by finding a uniform bound on the probability that
a given region is good regardless of what happens on its spacetime boundary and show
this probability can be made arbitrarily close to 1. In this section, we formalize and
prove this assertion.

We begin by defining our regions. Let τ = τ(α) > 0 be a fixed timescale, which will be
chosen later (see (3.7) for the specific definition). For each k ∈ Z and integer ` ≥ 0 such
that k + ` is even, define the spacetime region Rk,` = {i : 2k ≤ i ≤ 2k + 3} × {(i, j) : 2k ≤
i, j ≤ 2k+ 3} × [`τ, (`+ 1)τ), which is a subset of Z×E×R+. Note that each block, Rk,`,
contains 4 vertices and the edges between them over a time interval of length τ . We will
consider waiting times to events using the Harris construction defined in Section 1.

We now define some notation to use for diagrams of states of vertices and edges
among {0, 1, 2, 3}. Let • denote an infected vertex, let ◦ denote a healthy (susceptible)
vertex, and let ? denote a vertex that is either healthy or infected. Let→× denote a blocked
right-pointing edge, that is, et(i, i + 1) = 0, so the vertex i + 1 is avoiding the infected
vertex i. Similarly, let ←× denote a blocked left-pointing edge, and let ⇔ indicate that
both the left- and right-pointing edges are active (open). Let − indicate any of the three
possible states for the pair of edges between i and i+ 1. Note that under our dynamics,
we can never have et(i, i+1) = et(i+1, i) = 0 or et(i, j) = xt(i) = 0 for j = i±1. For k ∈ Z,
let Yk := {2k, 2k + 1, 2k + 2, 2k + 3} × {(i, j) : i, j ∈ {2k, 2k + 1, 2k + 2, 2k + 3}, |i− j| = 1}.
Define the following collections of configurations in terms of their restrictions to Yk.

1. Let Ak2,L denote the set of all configurations whose restriction to Yk has the form

• ⇔ • ←× ?−?.
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2. Let Ak2,R denote the set of all configurations whose restriction to Yk has the form

• ⇔ • →× • −?.

3. Let Ak2,O denote the set of all configurations whose restriction to Yk has the form

• ⇔ • ⇔?−?

4. Let Ak2,∗ denote the union of the sets defined in 1-3 and their reflections across the
middle edge.

5. Let Ak3,L denote the set of all configurations whose restriction to Yk has the form

• ⇔ • ⇔ • ←× ?.

6. Let Ak3,R denote the set of all configurations whose restriction to Yk has the form

• ⇔ • ⇔ • →× •.
7. Let Ak3,O denote the set of all configurations whose restriction to Yk has the form

• ⇔ • ⇔ • ⇔?.

8. Let Ak3,∗ denote the union of the sets defined in 5-7 and their reflections across the
middle edge.

9. Let Ak4 denote the set of all configurations whose restriction to Yk has the form

• ⇔ • ⇔ • ⇔ •.

We call the region Rk,` good if starting from any of the configurations in Ak2,∗ at time `τ
we reach one of the configurations in Ak4 at time (`+ 1)τ . For brevity, we drop the super-
script 0 from the notation A0

2,L (resp. A0
2,R, . . . , A

0
4), and write A2,L (resp. A2,R, . . . , A4)

instead. The following lemmas identify a sequence of events in the region R0,0 such that
starting from any initial configuration in A2,∗ at time 0 we reach A4 at time τ regardless
of what happens on the external spacetime boundary of R0,0, and that for fixed α > 0

this probability of the sequence of events mentioned above can be made arbitrarily close
to 1 with appropriate choices of τ and λ. See (3.7) for the specific definition of τ and
a lower bound for λ for which the above holds. Thus, we will obtain a uniform lower
bound, which is arbitrarily close to 1, for the probability that R0,0 is good regardless
of what happens on its space-time boundary. The same assertion holds for all regions
Rk,`, k ∈ Z, ` ≥ 0 using analogous argument.

Definition 3.1. We say that an event E is internal to Rk,` if it depends only on the Harris
construction marks within Rk,`.

Lemma 3.2. Fix α > 0 and p ∈ (0, 1), and suppose λ ≥ (72/p) log(72/p) · (1 + α). There
is an event E internal to R0,0 such that, starting from any initial state X0 ∈ A2,∗, on the
event E the process hits a state in A3,∗ by time log(72/p) + 1, and P (E) ≥ 1− p.

Proof. Let t = t1 + t2 + t3, where

t1 = log(72/p), and t2 = t3 =
p

72(1 + α)
.

Note that t < log(72/p) + 1. By symmetry, it suffices to consider the scenario where
the left two vertices are infected initially. In that scenario, the initial configuration can
belong to A2,O, A2,L, or A2,R. We consider the three corresponding cases separately. In
all cases, we identify an event which (a) is internal to R0,0, (b) ensures that Xt reaches a
state in A3∗ by time t, and (c) has probability ≥ 1− p/6. This would complete the proof
of the lemma using the union bound, as there are six cases in total.

Recall that I(t; i, j), r(t; i) and b(t; i, j) denote the waiting times after time t until the
next infection arrow at (i, j), recovery dot at i, and avoidance mark at (i, j), respectively;
see Section 1.2.
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Figure 4: A scenario which will make the region Rk,` good.

1. A2,O : Suppose the initial configuration is X0 ∈ A2,O. We reach A3,∗ by time t if
vertex 1 attempts to infect vertex 2 before time t, and this infection event occurs
before vertex 0 recovers, vertex 1 recovers, or the edge (1, 2) becomes inactive.
Letting E1 denote this event,

PX0 (Ec1) ≤ P (I(0; 0, 1) > t) + P (I(0; 0, 1) > min(r(0; 0), r(0; 1), b(0; 1, 2)))

= e−λt +
2 + α

λ+ 2 + α

<
p

6
, (3.1)

since λt > log(12/p) and λ > 12(2 + 2α)/p.

2. A2,L : Suppose the initial configuration is X0 ∈ A2,L. We reach A3,∗ by time
t = t1 + t2 + t3 if vertex 1 recovers before time t1, vertex 0 is infected when this
recovery occurs, vertex 0 attempts to infect vertex 1 within time t2 of vertex 1’s
recovery, this infection occurs before vertex 0 recovers or the edge (0,1) becomes
inactive, vertex 1 attempts to infect vertex 2 within time t3 of vertex 1’s reinfection,
and this infection occurs before either vertex 0 or 1 recovers (again) or the edge
(1, 2) attempts to become inactive again. Let E2 denote this event. Let s1 = r(0; 1)

be the first time vertex 1 recovers and s2 = s1 + I(s1; 0, 1) be the first time after s1

that vertex 0 attempts to infect vertex 1. We have

PX0 (Ec2)

≤ P (r(0; 1) > t1)

+ P (vertex 0 is healthy when vertex 1 first recovers, r(0; 1) ≤ t1)

+ P (I(s1; 0, 1) > t2) + P (I(s1; 0, 1) > min(r(s1; 0), b(s1; 0, 1)))

+ P (I(s2; 1, 2) > t3) + P (I(s2; 1, 2) > min(r(s2; 0), r(s2; 1), b(s2; 1, 2)))

= e−t1 + P (vertex 0 is healthy when vertex 1 first recovers, r(0; 1) ≤ t1)

+ e−λt2 +
1 + α

λ+ 1 + α
+ e−λt3 +

2 + α

λ+ 2 + α
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Figure 5: A sequence of events leading from A2,R to A3,∗

≤ p/72 + P (vertex 0 is healthy when vertex 1 first recovers, r(0; 1) ≤ t1)

+ p/72 +
1 + α

λ
+ p/72 +

2 + α

λ

= p/12 + P (vertex 0 is healthy when vertex 1 first recovers, r(0; 1) ≤ t1) , (3.2)

since t1 = log(72/p), λt2 = λt3 ≥ log(72/p), and λ ≥ 24(3 + 2α)/p. Vertex 0 is
infected when vertex 1 recovers at time r(0; 1) ≤ t1 if for a fixed k vertex 0 recovers
at most k times by time t1, and for the first k recoveries of vertex 0 (up to time t1),
vertex 1 successfully reinfects vertex 0 before vertex 1 recovers or the edge (1, 0)

becomes inactive, and r(0; 1) ≤ t1. The number of recovery marks at vertex 0 by
time t1 has Poisson(t1) distribution. Let r0 = 0 and r` = r`−1 + r(r`−1, 0) for ` ≥ 1

denote the time of the `-th recovery mark at vertex 0 in the Harris construction.
Choose k = b3t1c such that if X ∼ Poisson(t1), then P (X > k) ≤ e−t1 = p/72 by a
standard Chernoff bound. So

P (vertex 0 is healthy when vertex 1 recovers, r(0; 1) ≤ t1)

≤ P (X > k) +

k−1∑
`=0

P (I(r`; 1, 0) > min(r(r`; 0), b(r`; 1, 0))

≤ p/72 + k · 1 + α

1 + α+ λ

≤ p/72 + k · 1 + α

λ

≤ p/72 + p/18 < p/12, (3.3)

since λ ≥ 18k(1 + α)/p. Hence, we have

PX0 (Ec2) ≤ p/6.
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3. A2,R : Suppose the initial configuration is X0 ∈ A2,R. In this case we know vertex 2
must be infected since the edge (1,2) is inactive. We reach A3,∗ by time t1 + t2 < t

if vertex 2 recovers before time t1, vertices 0 and 1 are infected when this recovery
occurs, vertex 1 attempts to infect vertex 2 within t2 time units of vertex 2’s
recovery, and this infection occurs before either vertex 0 or vertex 1 recovers or
the edge (1, 2) becomes inactive. Let s1 = r(0; 2) be the time that vertex 2 first
recovers. Similar to (3.2), we have

PX0 (T3,∗ > t)

≤ P (r(0; 3) > t1)

+ P (vertex 0 or 1 is healthy when 2 recovers, r(0; 2) ≤ t1)

+ P (I(s1; 1, 2) > t2) + P (I(s1; 1, 1) > min(r(s1; 0), r(s1; 1), b(s1; 1, 2)))

= e−t1 + P (vertex 0 or 1 is healthy when 2 recovers, r(0; 2) ≤ t1) + e−λt2

+
2 + α

2 + α+ λ

≤ p/72 + P (vertex 0 or 1 is healthy when 2 recovers, r(0; 2) ≤ t1) + p/72

+
2 + α

λ

≤ p/18 + P (vertex 0 or 1 is healthy when 2 recovers, r(0; 2) ≤ t1) , (3.4)

since t1 = log(72/p), λt2 ≥ log(72/p), and λ ≥ 36(2 + α)/p. Vertices 0 and 1
are infected when vertex 2 recovers at time r(0; 2) ≤ t1 if for fixed k vertex 0
recovers at most k times, and vertex 1 recovers at most k times, and for the first
k recoveries of vertex 0, vertex 1 successfully reinfects vertex 0 before vertex 1
recovers or the edge (1,0) becomes inactive, and for the first k recoveries of vertex
1, vertex 0 successfully reinfects vertex 1 before vertex 0 recovers or the edge (0,1)
becomes inactive, and r(0; 2) ≤ t1. The numbers of recovery marks at vertices 0

and 1 by time t1 are independent Poisson(t1) random variables. Define the times
(r0
` , ` ≥ 0) (resp. (r1

` , ` ≥ 0)) of the recoveries at vertex 0 (resp. 1) as follows. r0
0 = 0,

r0
` = r0

`−1 + r(r0
`−1; 0) for ` ≥ 1, r1

0 = 0, and r1
` = r1

`−1 + r(r1
`−1; 1) for ` ≥ 1. Choose

k = b3t1c such that if X ∼ Poisson(t1), then P (X > k) ≤ e−t1 = p/72 as mentioned
before. So

P (0 or 1 is healthy when 2 recovers, r(0; 2) ≤ t1)

≤ 2P (X > k) +

k−1∑
`=0

P
(
I(r0

` ; 1, 0) > min(r(r0
` ; 1), b(r0

` ; 1, 0))
)

+

k−1∑
`=0

P
(
I(r1

` ; 0, 1) > min(r(r1
` ; 0), b(r1

` ; 0, 1))
)

≤ p/36 + 2k
1 + α

1 + α+ λ
≤ p/36 + 2k(1 + α)/λ ≤ p/9, (3.5)

since λ ≥ 24k(1 + α)/p. So we have

PX0 (Ec3) ≤ p/6.

Finally, if all three of the events described above, E1 ∩ E2 ∩ E3, occur, then for each
initial configuration X0 ∈ A2∗ with the left two vertices infected, a configuration in
A3∗ is reached by time t. Moreover, PX0 (E1 ∩ E2 ∩ E3) ≥ 1 − p/2. By symmetry, the
same assertion holds for each initial configuration X0 ∈ A2∗ with the right two vertices
infected. This completes the proof of the lemma using union bound.
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Lemma 3.3. Fix α > 0 and p ∈ (0, 1), and suppose λ ≥ (162/p) log(72/p) · (1 + α). There
is an event E internal to R0,0 such that, starting from any initial state X0 ∈ A3,∗, on the
event E the process hits a state in A4 by time log(72/p) + 1, and P (E) ≥ 1− p.

Proof. The proof of this lemma follows the same arguments as the proof of the previous
lemma by examining the cases in of starting in A3,O, A3,L, and A3,R. Because there are
more vertices and edges, the rates of potential recoveries and edge deactivations are
greater, so the value of λ must be taken a bit larger.

Lemmas 3.2 and 3.3 show that for fixed α > 0 and p ∈ (0, 1), if λ ≥ (162/p) log(72/p) ·
(1 + α), then we can reach A4 starting from any configuration in A2,∗ by time τ̂ :=

2 log(72/p) + 2 using only internal marks in the Harris construction with probability at
least 1− 2p. However, for the region Rk,` to be good, we must have a time τ so that we
are in state A4 at time τ . The following lemmas show that we can make this occur for a
suitable choice of τ > τ̂ with large probability.

Lemma 3.4. Let B3 denote the set of states for which exactly three of the vertices in
{0, 1, 2, 3} are infected and all of the edges in {(i, j) : i, j ∈ {0, 1, 2, 3}} are active. For
α > 0 and p ∈ (0, 1), let τ̂ := 2 log(72/p) + 2 and λ∗1 = 24τ̂(3 + 2α)/p. There is an event E,
which is internal to R0,0 and satisfies P (E) ≥ 1− p for all λ ≥ λ∗1, such that the following
holds on the event E. Starting from any initial state X0 ∈ A4, the process Xs stays within
A4 ∪B3 during time [0, τ̂ ].

Proof. Starting from A4, the process Xs stays within A4∪B3 during time [0, τ̂ ] if whenever
a vertex in {0, 1, 2, 3} recovers either it becomes reinfected (via one of the edges in
{(i, j) : i, j ∈ {0, 1, 2, 3}}) before any of the other vertices recover or any of its edges
become inactive or there are no more avoidances or recoveries before time τ̂ . The
number of recoveries of each vertex during [0, τ̂ ] has Poisson(τ̂ ) distribution independent
of other events. Now, if X ∼ Poisson(τ̂ ), then

P (X > 3τ̂) ≤ e−τ̂ ≤ p/8.

For i ∈ {0, 1, 2, 3}, define ri0 = 0 and ri` = ri`−1 + r(ri`−1; i) for ` ≥ 1 to be the times of the
recovery marks at i. Based on these random times and letting k = b3τ̂c, define

E′ :=
⋂

i∈{0,··· ,3}

{
rik+1 > τ̂

} ⋂
j∈{0,··· ,3},m∈{0,··· ,k}{

min
h:|j−h|=1

{I(rjm;h, j)} ≤ min

{
min

h∈{0,...,3}\{j}
{r(rjm;h)}, min

h:|j−h|=1
{b(rjm;h, j)}

}}
.

Then, using union bound,

P ((E′)c) ≤ 4P (X > k) +

3∑
j=0

k∑
m=0

P

(
min

h:|j−h|=1
{I(rjm;h, j)} > min

{
min

h∈{0,...,3}\{j}
{r(rjm;h)}, min

h:|j−h|=1
{b(rjm;h, j)}

})
≤ 4(p/8) +

3∑
j=0

k∑
m=0

3 + 2α

3 + 2α+ λ
≤ p/2 + 4k

3 + 2α

3 + 2α+ λ∗1
≤ p,

E′ is not internal to R0,0 because minh:|j−1|=1{I(rjk, h, j)} and
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min
{

minh∈{0,...,3}\{j}{r(rjm;h)},minh:|j−h|=1{b(rjm;h, j)}
}

may be greater than τ̂ . But
note that

E′ =
⋂

i∈{0,··· ,3}

{
rik+1 > τ̂

} ⋂
j∈{0,··· ,3},m∈{0.··· ,k}{

min
h:|j−h|=1

{I(rjm;h, j)} ≤ min

{
min

h∈{0,...,3}\{j}
{r(rjm;h)}, min

h:|j−h|=1
{b(rjm;h, j)}

}}
=

⋂
i∈{0,··· ,3}

{
rik+1 > τ̂

} ⋂
j∈{0,··· ,3},m∈{0.··· ,k}{{

min
h:|j−h|=1

{I(rjm;h, j)} ≤ min

{
min

h∈{0,...,3}\{j}
{r(rjm;h)}, min

h:|j−h|=1
{b(rjm;h, j)}

}}
∩
{

min

{
min

h∈{0,...,3}\{j}
{r(rjm;h)}, min

h:|j−h|=1
{b(rjm;h, j)}

}
≤ τ̂

}
∪
{

min
h:|j−h|=1

{I(rjm;h, j)} ≤ min

{
min

h∈{0,...,3}\{j}
{r(rjm;h)}, min

h:|j−h|=1
{b(rjm;h, j)}

}}
∩
{

min

{
min

h∈{0,...,3}\{j}
{r(rjm;h)}, min

h:|j−h|=1
{b(rjm;h, j)}

}
> τ̂

}}
⊆

⋂
i∈{0,··· ,3}

{
rik+1 > τ̂

} ⋂
j∈{0,··· ,3},m∈{0.··· ,k}{{

min
h:|j−h|=1

{I(rjm;h, j)} ≤ min

{
min

h∈{0,...,3}\{j}
{r(rjm;h)}, min

h:|j−h|=1
{b(rjm;h, j)}

}}
∩
{

min

{
min

h∈{0,...,3}\{j}
{r(rjm;h)}, min

h:|j−h|=1
{b(rjm;h, j)}

}
≤ τ̂

}
∪
{

min

{
min

h∈{0,...,3}\{j}
{r(rjm;h)}, min

h:|j−h|=1
{b(rjm;h, j)}

}
> τ̂

}}
=: E

where the event E is internal to R0,0. E is the event that during time [0, τ̂ ] whenever
a vertex in {0, 1, 2, 3} recovers either it becomes reinfected (via one of the edges in
{(i, j) : i, j ∈ {0, 1, 2, 3}}) before any of the other vertices recover or any of its edges
become inactive or there are no more avoidances or recoveries before time τ̂ , and on
the event E starting from any initial state X0 ∈ A4, the process Xs stays within A4 ∪B3

during time [0, τ̂ ]. Since E′ ⊆ E, we have P (E) ≥ P (E′) ≥ 1−p, completing the proof.

Lemma 3.5. Let B3 be the set of configurations defined in Lemma 3.4. Fix α > 0, p ∈
(0, 1), and let τ̌ := p/12 and λ∗2 := max{(12/p) log(3/p), 6α/p}. There is an event E, which
is internal to R0,0 and satisfies P (E) ≥ 1− p for all λ ≥ λ∗2, such that on the event E, if
initially X0 ∈ A4 ∪B3, then Xτ̌ ∈ A4.

Proof. It is easy to see that Xτ̌ ∈ A4 if the following conditions (a), (b1), and (b2) hold.

(a) None of the vertices in {0, . . . , 3} attempts to recover before time τ̌ ,

(b) If X0 ∈ B3, then

(b1) a neighbor of the initially uninfected vertex attempts to infect it before time τ̌ ,
and

(b2) this infection occurs before any edge attached to the uninfected vertex become
inactive.

EJP 27 (2022), paper 109.
Page 15/40

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP836
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The contact process with avoidance behavior

The total number of attempted recoveries of all 4 vertices before time τ̌ follows a
Poisson(4τ̌ ) distribution. Let X ∼ Poisson(4τ̌ ). Then

P (X > 0) ≤ E(X) = 4τ̌ = p/3.

If we call the (possibly) uninfected vertex k, then

PX0 (Xτ̌ /∈ A4) ≤ P (X > 0) + P

(
min

j:|j−k|=1
I(0; j, k) > τ̌

)
+ P

(
min

j:|j−k|=1
I(0; j, k) > min

j:|j−k|=1
b(0; j, k)

)
≤ p/3 + e−λτ̌ +

2α

2α+ λ
≤ p/3 + e−λ

∗
2 τ̌ +

2α

2α+ λ∗2
≤ p/3 + p/3 + p/3 = p,

as λ ≥ λ∗2. This completes the proof.

Proof of Theorem 1.1 (Upper bound). Fix α > 0, and choose p ∈ (0, 1) small enough such
that

1− 4p > psc, (3.6)

where psc is the critical probability for oriented site percolation on Z2 on Z2. It follows
from the rigorous upper bound psc <

8
9 from [8] that p = 0.025 satisfies (3.6). Having

chosen p, let λ∗1 = λ∗1(α, p) (resp. λ∗2 = λ∗2(α, p)) and τ̂ = τ̂(p) (resp. τ̌ = τ̌(p)) be the
numbers defined in Lemma 3.4 (resp. 3.5). Clearly, λ∗1 = b1(p) + b2(p) · α and λ∗2 =

max{c1(p), c2(p) · α}, where b1 = (2 log(72/p) + 2)(72/p), b2 = (2 log(72/p) + 2)(48/p), c1 =

(12/p) log(3/p), c2 = 6/p. Define

τ := τ̂ + τ̌ and λ∗(α) := a1 + a2α, where

a1 := max {b1, c1, (162/p) log(72/p)} and a2 := max {b2, c2, (162/p) log(72/p)} . (3.7)

Also, let E be the intersection of the internal events defined in Lemmas 3.2-3.5. Clearly,
P (E) ≥ 1− 4p for all λ ≥ λ∗(α). Combining Lemmas 3.2–3.5 we see that the following
sequence of events (a)-(c) occur on the event E. (a) Starting from any configuration in
A2,∗ Xt reaches A4 before time τ̂ , (b) Xt reaches B3 ∪A4 at time τ̂ , and (c) Xτ ∈ A4.

Lemmas 3.2-3.5 identify a sequence of events that ensures a region Rk,` is good
regardless of what happens on the external spacetime boundary of Rk,` and shows that
the probability of this sequence is at least 1 − 4p for any choice of λ ≥ λ∗ and the
specific choice of τ . Thus, if we choose such λ and τ , the good regions stochastically
dominate an oriented site percolation with occupancy probability 1− 4p > psc for each
site independently. Then applying the result for the oriented site percolation in [8] we
get the desired upper bound.

Remark 3.6. If we only wanted to prove weak survival, then it would be sufficient to
define overlapping regions of 3 vertices and follow the infection in a single direction,
applying the results of [17] to the resulting dependent percolation. Because the regions
are now smaller, this would yield some improvement to the constants in the proof.
However, it is not obvious how to obtain strong survival from this construction, and
the constants will still be relatively large, so we do not feel the improvement is very
meaningful.

4 Extension to Zn

We now consider the contact process with avoidance on Zn. We can adapt the argu-
ments developed in previous two sections and combine them with some known results
about oriented percolation to show a phase transition on Zn and prove Theorem 1.3.
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4.1 Subcritical proof: λ < 1 + α

The proof of the subcritical regime on Zn is again notably complicated by the fact that
the CPA is not an attractive particle system. The basic strategy is to break Zn into regions
and establish that with high probability many regions will be cleared of the infection
quickly and stay clear of the infection for a long time. However, as was the case on Z,
the dependence among regions is complex and substantial work is needed to establish
bounding processes that allow us to treat the regions as if they were independent. The
following lemmas allow us to do this.

Lemma 4.1. Let R be a region of consecutive vertices {1, . . . , k} and all edges pointing
those vertices. Let ω and ω′ be two realizations of the graphical construction such that ω
and ω′ agree on R. If there are no symbols on the edges (0, 1) and (k + 1, k) in the time
interval [0, t], then the states of the vertices 1 and k (the boundary vertices of R) are the
same in both ω and ω′ up to time t.

Proof. We first show that if we know the state of a vertex v and all edges pointing toward
v at time 0, the locations of all recovery dots in the graphical construction on v from time
0 to t, the locations of all infection arrows and avoidance crosses on the edges pointing
to v from time 0 to t, and the states of vertices v − 1 and v + 1 from time 0 to t and
additionally that the number of all such recovery dots, infection arrows, and avoidance
crosses is finite and no pair of symbols occur at the same time, we can determine the
state of v at any time t′ ∈ [0, t].

Start from time 0 in the graphical construction and continue forward in time until
we encounter a symbol in the graphical construction on either v or one of the edges
pointing toward v or we observe a change in state of either v − 1 or v + 1. There are four
possibilities.

1. We encounter a recovery dot on v. In this case, set the state of v to healthy.

2. We encounter an infection arrow on an edge (w, v) pointing to v. In this case, set
the state of v to infected if the vertex w is infected and the edge (w, v) is active.

3. We encounter an avoidance cross on an edge (w, v) pointing to v. In this case, set
the edge (w, v) to inactive if w in infected and v is healthy.

4. We observe a change in state in a vertex w where w is either v − 1 or v + 1. In this
case, set the edge (w, v) to active if w changed from infected to healthy.

We can update states at first occurrence in time of any of these four possibilities since
we know the initial states of v and the edges pointing to it at time 0 and the states of
v− 1 and v+ 1 for all t′ ∈ [0, t]. After the we can then proceed by induction. After the kth
occurrence, the states of v − 1, v, v + 1, and the edges pointing to v remain unchanged
until the k + 1st occurrence, and we can update these states at the k + 1st occurrence.
We continue in this way until we have exhausted all occurrences up to time t′, at which
point the current state of v will be its state at time t′.

We now apply this same strategy to a region of containing a collection of vertices. To
determine the states of all vertices in R up to time t, we need to know

1. the initial states of all vertices vi in R and all edges pointing toward all vi in R,

2. the locations of all recovery dots in the graphical construction on the vi in R up to
time t,

3. the locations of all infection arrows and avoidance crosses on the edges pointing
toward all vi in R up to time t, and

4. the states of vertices outside R that neighbor vertices in R through time t, so in
this case the states of vertices 0 and k + 1 through time t.
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Items 1, 2 and 3 are assumed to be the same in both ω and ω′. Item 4 may differ, but we
only use the information in 4 when we observe an infection arrow or avoidance cross
on either of the edges (0, 1) or (k + 1, k). Since we have assumed no such marks exist in
either ω or ω′ up to time t, we in fact do not need 4. Therefore, the states of the vertices
in 1 and k are the same in both ω and ω′ up to time t.

Consider the CPA on Zn starting from all vertices infected and suppose λ < 1 + α.
We divide Zn into regions as follows. Let C∗,K > 0 be constants to be chosen later. The
ith region consists of the vertices {(3C∗ + 2K)(i− 1) log n, . . . , (3C∗ + 2K)i log n− 1}, all
edges among these vertices, and in addition the edges ((3C∗+ 2K)(i− 1) log n− 1, (3C∗+

2K)(i − 1) log n) and ((3C∗ + 2K)i log n, 3(3C∗ + 2K)i log n − 1). Note that each region
contains N := (3C∗+2K) log n consecutive vertices. Of course N will generally not be an
integer, and our convention will be to interpret this as the floor bNc, but as rounding will
not affect the estimates below, we omit the floor from our notation. Any vertices left over
after dividing n byN will not be part of any region, and these extra vertices will number at
mostN . We will further divide each region into two buffers and an interior. The left buffer
consists of the vertices {(3C∗+ 2K)(i−1) log n, . . . , (3C∗+ 2K)(i−1) log n+ 2K log n−1}
and all edges oriented towards these vertices, and the right buffer consists of the vertices
{(3C∗+2K)i log n−2K log n+1, . . . , (3C∗+2K)i log n} and edges oriented towards these
vertices.

We will further divide the interior of the region i into left, center, and right subregions
consisting of C∗ log n vertices each, so the left subregion of region i contains the vertices
{(3C∗ + 2K)(i− 1) log n+ 2K log n, . . . , (3C∗ + 2K)(i− 1) log n+ (C∗ + 2K) log n− 1}, the
center subregion contains vertices {(3C∗ + 2K)(i− 1) log n+ (C∗ + 2K) log n, . . . , (3C∗ +

2K)(i− 1) log n+ (2C∗+ 2K) log n− 1}, and the right subregion contains vertices {(3C∗+

2K)(i− 1) log n+ (2C∗ + 2K) log n, . . . , (3C∗ + 2K)(i− 1) log n+ (3C∗ + 2K) log n− 1}.
Definition 4.2. Let the spacetime region Ri consist of the vertices and edges of the ith
region through time C log n, where C will be chosen later depending on α, λ, and C∗. We
call region Ri broken if it contains no infected vertices in the center subregion at time
C log n.

Our goal is to identify an event internal to Ri such that when that event occurs, Ri is
broken.

Our first step is to demonstrate an event in the graphical construction of the buffers
such that when the event occurs, the interior of Ri is independent of everything that
occurs outside Ri from time 0 to C log n. Informally, the idea is as follows. Information
passes along edges when either a vertex infects its neighbor or a vertex avoids its
neighbor. We can identify events that potentially pass information by looking at the
symbols in the graphical construction. If a symbol exists on an edge between two vertices
at some time t, there is the possibility that information is passed at this time. However,
in the immediate sense this can only happen with neighboring vertices. If in a particular
spacetime region there is no path of symbols between a pair of vertices, they cannot
influence each other’s states.

Lemma 4.3. Number the vertices in Ri by {1, . . . , N}. Let Bi be the event that there is
no increasing sequence of times t1 < . . . < tK logn ≤ C log n such that there is a symbol
on the collections of edges {(0, 1), (N + 1, N)}, . . . {(K log n,K log n+ 1), (N −K log n−
2,K log n − 1)} at times t1, . . . , tK logn respectively. Fix an initial condition X0 and let
ω, ω′ ∈ Bi be two different realizations of the graphical construction such that ω and ω′

are the same on Ri during the time interval [0, C log n]. Then the states of all vertices in
the interior of Ri are the same for both ω and ω′ from time 0 to C log n.

Proof. Let t1 be the first time there is a difference in the state of either vertex 1 or vertex
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N in the dynamics following the instructions in ω versus ω′. Lemma 4.1 states that t1
is at least the first time there is an infection arrow or avoidance cross on either of the
edges (0, 1) or (N + 1, N). Now proceed by induction. Suppose tm is the first time there
is a difference in the state of either vertex m or vertex N −m+ 1 in ω and ω′. We identify
the first time tm+1 at which there could potentially be a difference in the state of either
vertex m+ 1 or vertex N −m. Because ω and ω′ agree on the subregion of Ri consisting
of the vertices {m+ 1, . . . , N −m} up to time C log n and by the definition of tm the states
of vertices m and N −m− 1 agree up to time tm, Lemma 4.1 states we must have tm+1 ≥
min(C log n, tm). If tm < C log n, then Lemma 4.1 states that tm+1 ≥ min(C log n, tm + t∗m)

where t∗m is the first time after tm that there is an infection arrow or avoidance cross on
either of the edges (m,m+ 1) or (N −m+ 1, N −m). Suppose now that tK logn ≤ C log n.
Then our induction argument implies that there are symbols on the collections of
edges {(0, 1), (N + 1, N)}, . . . {(K log n,K log n+ 1), (N −K log n− 2,K log n− 1)} at time
t1 < . . . < tK logn ≤ C log n, which contradicts our assumption that ω, ω′ ∈ Bi.

We next show that the probability of the event Bi can be made as large as needed.

Lemma 4.4. Fix ε ∈ (0, 1) and choose K = 1
ε (C + 1)(2λ+ 2α). Then P (Bi) ≥ 1− ε.

Proof. The possible symbols that can appear along an edge are an infection arrow and
an avoidance cross. In the graphical construction, these symbols appear in each of
our collections of two edges combined rate 2λ + 2α, and they appear independently
on each edge and so independently on each of our collections of two edges. Since
our process is memoryless, starting from any point in time, the time until a symbol
appears on each collection of edges is Xi ∼ Exp(2λ+ 2α). The fastest sequences of times
t1 < . . . < tK logn ≤ C log n requires us to encounter a symbol on the first collection, then
encounter a symbol on the second collection after the time we encountered a symbol on
the first collection, and so on. Thus tK logn =

∑K logn
i=1 Xi. Since the Xi are independent,

we have tK logn =
∑K logn
i=1 Xi ∼ Gamma(K log n, 2λ+ 2α). Then if we choose

K =
1

ε
(C + 1)(2λ+ 2α)

and apply Chebyshev’s inequality,

P (tK logn > C log n) ≥ P

(
tK logn −

1

ε
(C + 1) log n > −

√
1

ε

√
1

ε
(C + 1) log n

)

≥ P

(
|tK logn −

1

ε
(C + 1) log n| <

√
1

ε

√
1

ε
(C + 1) log n

)
≥ 1− ε.

This finishes the proof.

Our next step is to show that starting from all vertices infected, the indicators of
the events that the ith region is broken for 1 ≤ i < n/((3C∗ + 2K) log n) stochastically
dominate a collection of independent Bernoulli(p) random variables for some p > 0 (not
depending on n). To this end, we will use the following lemma, which identifies an event
internal to Ri that implies Ri is broken.

Lemma 4.5. The event Bi ∩ {Ri is broken} is internal to Ri.

Proof. Let ω and ω′ be two realizations of the graphical construction such that ω ∈
Bi ∩ {Ri is broken} and ω and ω′ are the same on Ri from time 0 to C log n. Because the
event Bi depends only on symbols appearing on edges in Ri from time 0 to C log n and
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ω and ω′ have the same such symbols, ω′ ∈ Bi. We then apply Lemma 4.3 to conclude
that the states of all vertices in the interior of Ri are the same for both ω and ω′ from
time 0 to C log n. Since the event {Ri is broken} is determined by the states of the
vertices in the interior of Ri from time 0 to C log n and these are the same for ω and ω′,
ω′ ∈ {Ri is broken}. Thus ω′ ∈ Bi ∩ {Ri is broken} and so Bi ∩ {Ri is broken} is internal
to Ri.

We now bound from below the probability that Ri is broken. We define the gap-edge
process (analogous to the process described in Section 2) in the interior of Ri as follows.
Suppose the middle vertex of the interior of Ri (a designated vertex closest to the
midpoint of the region) is healthy at time 1. Define the left gap-edge process, lg(t) ≤ 0,
to track the displacement from the middle vertex to its closest infected neighbor to the
left in the interior of Ri at time t ≥ 1, with the conventions that lg(t) = −∞ if there are
no such infected neighbors in Ri and lg(t) “hits” 0 if the middle vertex of the interior
of Ri is reinfected from the left. The states −∞ and 0 act as absorbing states for lg(t).
Likewise, define the right gap-edge process, rg(t), to track the displacement from the
middle vertex to its closest infected neighbor to the right in interior of Ri at time t ≥ 1,
with the convention that rg(t) =∞ if no such vertex exists. We make use of the standard
couplings of these processes with biased random walks to prove the following lemma.

Lemma 4.6. For each region Ri, i = 1, . . . , nN , we have

P(Ri is broken) ≥ 1

4
e−2λ(1− e−1)

(
1− λ

2(1 + α)

)2

=: 2p. (4.1)

Proof. We define the following events.

1. The middle vertex of the center subregion of the interior Ri is healthy at time 1.
Call this event Ai1.

2. If Ai1 occurs, at time 1, consider the left and right gap-edge processes around the
middle vertex during time [1, C log n]. These edge processes both leave the interior
of Ri before infecting the middle vertex (hitting 0) and before time C log n. Call
this event Ai2.

3. Let 0 ≤ t1 < t2 < · · · < tk ≤ C log n be all the times at which there are infection
arrows along the leftmost edge in the interior of Ri, ((3C∗ + 2K)(i − 1) log n +

2K log n − 1, (3C∗ + 2K)(i − 1) log n + 2K log n), up to time C log n. We say that
an uninterrupted path of infection exists in the left subregion of the interior
of Ri during time [0, C log n] if there exists j ≤ k such that, starting at time
tj with all edges active and all vertices healthy except for a single infection at
(3C∗ + 2K)(i− 1) log n+ 2K log n− 1, in the graphical construction restricted to Ri
the vertex (3C∗ + 2K)(i − 1) log n + (C∗ + 2K) log n gets infected by time C log n.
Call the complementary event (that no uninterrupted path of infection exists) Ai3.

4. Analogously define an uninterrupted path of infection in the right subregion of the
interior of Ri, and let Ai4 be the event that no such path exists.

If Ai1 ∩ Ai2 occurs, the left and right gap-edge processes will leave the interior of
Ri at random times τl, τr ≤ C log n and before reinfecting the middle vertex. If τl ≤ τr,
then at time τl all vertices to the left of the middle vertex in the interior of Ri are
healthy and all edges (with possible exception of the leftmost edge) to the left of the
middle vertex in the interior of Ri are active. Therefore, if Ai3 also occurs, the vertex
(3C∗ + 2K)(i− 1) log n+ (C∗ + 2K) log n cannot be reinfected during time interval [τl, τr],
and at time τr all vertices in the middle and right subregions of the interior of Ri are
healthy and all edges (except possibly the rightmost edge) in the middle and right
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subregions of the interior of Ri are active. Therefore, if Ai4 also occurs, then no vertices
in the middle subregion of the interior of Ri will be infected at time C log n. The case
τl > τr is similar, and we have

4⋂
j=1

Aij ⊂ {Ri is broken}. (4.2)

We next bound the probability of the event ∩4
j=1Aij . For Ai1 to occur, it is sufficient

for the middle vertex to recover at some time in [0, 1] and have no incoming infection
arrows during [0, 1]. Thus,

P(Ai1) ≥ e−2λ(1− e−1). (4.3)

Next we bound from below the probability of Ai2 given Ai1. On the event Ai1, consider
the left gap-edge process, lg(t). Observe that lg(t) increases (by 1) only if the rightmost
infected vertex to the left of the middle infects its neighbor to the right before either
recovering or being avoided by its neighbor to the right (deactivation of the edge);
otherwise lg(t) will decrease by at least 1. Note that when lg(t) jumps to the left, the
size of the jump may not be 1, but until lg(t) ∈ {−∞, 0}, we have that lg(t) takes steps
to the right with probability at most λ

λ+1+α < 1
2 and otherwise steps left. Therefore,

the sequence of locations of lg(t) after successive jumps (the embedded discrete-time
“chain”, which is not Markov) is stochastically dominated by a simple random walk that
steps left with probability

ξ =
1 + α

1 + α+ λ
> 1/2,

right with probability 1− ξ, and starts at −1. (One can explicitly couple these stochastic
processes until lg(t) hits either −∞ or 0, after which the random walk process can be
extended independently for all time.)

By a standard Gambler’s Ruin analysis, the dominating random walk process never
returns to 0 with probability 1− λ

1+α > 0. Moreover, the location of the random walk after
3

2ξ−1C
∗ log n steps is dominated by 3

2ξ−1C
∗ log n − 2X where X ∼ Bin( 3

2ξ−1C
∗ log n, ξ).

Since E( 3
2ξ−1C

∗ log n− 2X) = 3
2ξ−1C

∗ log n(1− 2ξ) = −3C∗ log n and Var( 3
2ξ−1C

∗ log n−
2X) = 4 3

2ξ−1C
∗ log nξ(1 − ξ) ≤ 3

2ξ−1C
∗ log n, Chebychev’s inequality implies that the

probability that the random walk has not crossed −2C∗ log n after 3
2ξ−1C

∗ log n steps is

at most 3
(2ξ−1)C∗ logn . Next, observe that lg(t) makes jumps at least as frequently as the

arrivals of recovery dots, and by independently generating recovery dots at rate 1 after
lg(t) is absorbed (to emulate additional jumps), the number of jumps made by lg(t) by
time C log n stochastically dominates Poisson(C log n). Therefore, letting

C =
6

2ξ − 1
C∗,

the number of jumps made by time C log n exceeds 3
2ξ−1C

∗ log n with probability at least

1− 2(2ξ−1)
3C∗ logn by Chebychev’s inequality. Thus, lg(t) hits −∞ by time C log n with probability

at least 1− λ
1+α −

3
(2ξ−1)C∗ logn −

2(2ξ−1)
3C∗ logn . An analogous argument shows rg(t) hits∞ by

time C log n with at least the same probability, and does so independently. We conclude
that for large n,

P(Ai2|Ai1) ≥
(

1− λ

2(1 + α)

)2

. (4.4)

To see thatAi3 occurs with high probability first observe that k, the number of infection
arrows along ((3C∗ + 2K)(i− 1) log n+ 2K log n− 1, (3C∗ + 2K)(i− 1) log n+ 2K log n),
which is the edge into the left subregion of the interior Ri, during time interval [0, C log n]
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is Poisson(λC log n) distributed, and therefore k ≤ 2λC log n with probability at least
1 − 1

λC logn . For each 1 ≤ j ≤ 2λC log n, at the time tj of the jth infection arrow this
edge, we begin tracking an infection process in the graphical construction and with
only (3C∗ + 2K)(i− 1) log n+ 2K log n− 1, which is the left neighbor of the interior of Ri,
infected at time tj . (Note that for different j, these processes may “overlap” in their use
of the symbols in the graphical construction, but this dependence will not matter.)

Consider the jth such process, started at time tj . As in the previous argument,
the sequence of locations of the rightmost infected vertex in Ri after each jump in its
location is stochastically dominated by a simple random walk that moves left by 1 with
probability ξ > 1/2 and right by 1 with probability 1 − ξ. By the Gambler’s Ruin, it
follows that this random walk, when started from 3(3C∗+ 2K)(i− 1) log n+ 2K log n, hits
(3C∗+2K)(i−1) log n+(2K+C∗) log n before hitting (3C∗+2K)(i−1) log n+2K log n−1

with probability at most (
λ

1 + α

)C∗ logn

= n−C
∗ log((1+α)/λ).

If the random walk hits (3C∗+2K)(i−1) log n+2K log n−1 before hitting (3C∗+2K)(i−
1) log n+ (2K + C∗) log n, then the infection processes started at time tj never reaches
the middle subregion of Ri. Therefore, the probability that any of the first 2λC log n such
infection attempts ever reaches the middle subregion of Ri is at most

2λC(log n)n−C
∗ log((1+α)/λ),

so for large n,

P(Ai3) ≥ 1− 2

λC log n
. (4.5)

The same (symmetric) argument implies

P(Ai4) ≥ 1− 2

λC log n
. (4.6)

Combining equations (4.2)–(4.6), we have for all large n,

P
(
∩4
j=1Aij

)
≥ 1

2
e−2λ(1− e−1)

(
1− λ

2(1 + α)

)2

. (4.7)

Since P (Ri is broken) ≥ P
(
∩4
j=1Aij

)
, this finished the proof of Lemma 4.6.

We are now ready to prove the first part of Theorem 1.3.

Proof of Theorem 1.3 for λ < 1 + α. Choosing ε = p in Lemma 4.4 and combining with
Lemma 4.6, we have

P({Ri is broken} ∩ Bi) ≥ p. (4.8)

Now, let i1 < · · · < iM be all of the random indices such that {Ri` is broken} ∩ Bi`
occurs for 1 ≤ ` ≤M , and let v1, . . . , vM be the middle vertices (in the middle subregions)
of each Ri` . By Lemma 4.5 and (4.8), the collection of indicators of broken regions
dominates a collection of independent Bernoulli(p) random variables, of which there
are fewer than n. The longest run of 0’s in fewer than n independent Bernoulli(p) trials
arranged in a cycle is smaller than 4

log((1−p)−1) log n with probability at least 1− n−1. So

with probability at least 1− n−1 we have

dist(v1, vM ) ∨max
`

dist(v`, v`+1) ≤ 5

log((1− p)−1)
log n · (3C∗ log n), (4.9)
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where dist is the shortest path distance on Zn, and the 5 in the numerator accounts for
vertices that are not in any region (between vM and v1).

We now sketch an argument, which is very similar to the arguments above, to show
that for a large enough C ′ > 0, during the time interval [C log n,C log n + C ′(log n)2],
each interval of vertices between v` and v`+1 will fully recover without ever interacting
with neighboring intervals. This will complete the proof of the subcritical result.

For ` = 1, . . .M − 1, in the interval between v` and v`+1 (and between vM and v1)
there are no infected vertices within 1

2C
∗ log n of v` or v`+1 at time C log n. Starting at

time C log n, the sequence of distances from v` to the leftmost infected vertex in [v`, v`+1]

after each jump in its location dominates a random walk that moves to the right with
probability ξ > 1/2 (with the convention that the distance is∞ if there are no infected
vertices in the interval, and we ignore infections coming from outside the interval, but
as we will see, there are none). Choosing

C∗ =
4

log((1 + α)/λ)
,

it follows that the probability that the leftmost infected vertex in this interval ever
reaches v` is at most (

λ

1 + α

)(C∗/2) logn

= n−2.

Likewise, the probability that the rightmost infected vertex in this interval ever reaches
v`+1 is at most n−2, so the probability that there exists an ` such that v` is ever reinfected
is at most 2n−1 (and on the complementary event, we are justified in ignoring potential
infections between neighboring intervals).

The leftmost infected vertex between v` and v`+1 attempts to jump at rate at least
1 (extending the ‘jump’ process, as before, beyond the first time that either there
are no infected vertices in the interval or v` gets infected), so the number of jumps
during the time interval [C log n,C log n + C ′(log n)2] dominates a Poisson(C ′(log n)2)

distribution. Therefore, by a standard lower tail estimate for the Poisson distribution,
the probability that the number of attempted (potential) jumps by the leftmost infected
vertex is less than 1

2C
′(log n)2 is at most e−(logn2) ≤ n−2 for C ′ and n sufficiently large.

After 1
2C
′(log n)2 jumps, the displacement of a simple random walk that moves right

with probability ξ is 2Y − 1
2C
′(log n)2 where Y ∼ Bin( 1

2C
′(log n)2, ξ), and by a Chernoff

bound, 2Y − 1
2C
′(log n)2 exceeds 1

4 (2ξ − 1)C ′(log n)2 with probability at least 1 − n−2.
The displacement of the leftmost infected vertex after 1

2C
′(log n)2 jumps exceeds this,

so on the event in (4.9), if C ′ ≥ 60C∗

(2ξ−1) log((1−p)−1) , then the leftmost infected vertex will
exceed v`+1, which implies the interval between v` and v`+1 is fully recovered. Finally,
by a union bound, the probability that one of the M ≤ n intervals has not cleared the
infection by time C log n+ C ′(log n)2 is at most Mn−2 → 0 as n→∞.

4.2 Supercritical proof (large λ)

To prove the upper bound, we will use our result from section 3 that the contact
process with avoidance can stochastically dominate an oriented site percolation with
probability of occupancy p for any chosen p < 1 so long as λ is chosen to be sufficiently
large, along with some facts about oriented percolation. We begin by briefly describ-
ing the models, introducing some notation, and stating some results about oriented
percolation that we need.

Oriented percolation is defined on the sites {(x, t) ∈ Z×N : x = (t mod 2) mod 2}
where (x, t) and (y, s) are neighbors when |x− y| = 1 and |t− s| = 1. x can be thought of
as space and t as time. In site percolation each site is either occupied with probability
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ps or unoccupied with probability 1 − ps independently, and two sites are connected
if they are neighbors and both are occupied. In bond percolation, bonds between
neighboring sites are active with probability pb and inactive with probability 1 − pb
independently, and two sites are connected if there is an active bond between them.
Define SAn = {(x, t); t = n and there is a connected path from some (y, s) ∈ A to (x, t)}
for site percolation and BAn analogously for bond percolation. We write {A → ∞} to
mean that there is an infinite oriented path starting from the set A. We denote the
critical value for oriented site percolation by psc where psc is the unique value such that
P ({A→∞}) > 0 if and only if ps > psc for site percolation and define pbc in the same way
for bond percolation. We now state some results.

Proposition 4.7. For any A, pb, for all ps ≥ pb(2− pb), BAn ⊂
stoch.

SAn for every n.

This follows from a straightforward coupling argument. See [18] for details.

Proposition 4.8 ([8]). For any set D, P ({D →∞}c) ≤ Ce−γ|D| for some constants
C, γ > 0.

In words, the probability that an oriented site percolation dies is exponentially small
in the size of the starting set. As [26] notes, the following is a corollary of Theorem 1 of
[7].

Proposition 4.9. Suppose pb > pbc. Then for any p∗ < pb and any finite set D of
consecutive sites at time n, P

(
|B2Z
n ∩D| < p∗|D|

)
≤ Ce−γ|D| for some constants C, γ > 0.

The result is stated for bond percolation but using Proposition 4.7 we can also apply
it to site percolation. Choose pb > pbc and then ps > pb(2 − pb). Then for any p∗ < pb,
Propositions 4.7 and 4.9 together give that P

(
|S2Z
n ∩D| < p∗|D|

)
≤ Ce−γ|D| for the

constants C, γ > 0 in Proposition 4.9.
The previous result concerns oriented percolation on the infinite lattice 2Z where

each site or bond initially has some probability p of being occupied/active. However, in
our comparison percolation the active sites are determined at the start of each cycle.
We can remedy this technical difficulty by showing that for appropriately chosen D

and any k ∈ Zn we have with high probability S2Z
n ∩D = S

{k}
n conditional on the event

Fk = {{k} → ∞}. To that end we require the following result.

Proposition 4.10 ([8]). Define the right edge rn = supx{(x, t) : x is occupied and t = n}
of a supercritical oriented site percolation starting from {k} such that Fk occurs. Then
there exists a = a(ps) ∈ (0, 1) such that P (rn ≤ k + an) ≤ Ce−γn for some constants
C, γ > 0

By symmetry an analogous result holds for the left edge ln. Also note that oriented
percolation is translation invariant so without loss of generality we can take k = 0.

Suppose p > pbc(2−pbc). Then if we take the setD in Proposition 4.9 to be {−an, . . . , an}
then

P
(
|S2Z
n ∩D| ≤ p∗2an|F0

)
≤ Ce−γ2an.

Now note that P (rn ≤ an|F0) ≤ Ce−γn and P (ln ≥ −an|F0) ≤ Ce−γn, so conditional on
F0 with probability 1− Ce−γn any 0 6= x ∈ S2Z

0 for which there is a path from x to some
y ∈ D must intersect one of the edges of the percolation starting from {0} in which case
we have

S2Z
n ∩D|F0 = S{0}n ∩D|F0

and so

P
(
|S{0}n ∩D| ≤ p∗2an|F0

)
≤ Ce−γ2an

We are now ready to commence the proof of the exponential survival regime. Note
that while the values of the constants C and γ change from line to line, the values
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themselves are uninteresting, and we only define finitely many different constants and
so can take minima and maxima as needed.

Proof of Theorem 1.3 for λ > a1 + a2α. Recall that we chose a1 and a2 by setting p =

0.025 and using equation (3.7). Thus for λ > a1 + a2α, the block construction associated
with the CPA stochastically dominates an oriented site percolation with occupancy
probability 1 − 4p > psc, so we consider that process starting from all sites occupied.
Divide Zn into two halves {0, . . . n/2 − 1} and {n/2 . . . n}. If we ignore for the moment
the second half and consider only the first half, then by Proposition 4.8 a percolation on
Z starting from the vertices {0, . . . n/2− 1} occupied survives forever on (and thus also
until time n/4) with probability at least 1− Ce−γn/2 since the starting set has size n/2.
Using translation invariance we can conclude from this that P (F0) ≥ 1− Ce−γn/2. Up
until time n/4 the oriented percolation on Zn started from the vertices {0, . . . n/2− 1}
occupied can be coupled with the oriented percolation on Z starting from the vertices
{0, . . . n/2− 1} occupied because the former has not yet had a chance to wrap back on
itself.

Now suppose the percolation from the first half survives until time n/4 (which it does
if F0 occurs) and thus has had an opportunity to spread across the second half, but not
to wrap back on itself. Choose ε < p/3. It follows from the rigorous upper bounds pbc ≤ 2

3

from [18] that our choice of p = 0.0025 satisfies 1 − 4p > pbc(2 − pbc) so we may apply
Propositions 4.7, 4.9, and 4.10 to see that

P
(
|A{0,...n/2−1}
n/2 | < 2εn

)
≤ P

(
|A{0,...n/2−1}
n/2 | < 2εn|F0

)
+ P (F c0 ) ≤ Ce−γn.

If we then have at least 2εn occupied sites on Zn, we must be able to take one half of
Zn that has at least εn occupied sites, and we can repeat the process, again starting
from a set with size O(n). Call each time through these steps a cycle. By a union bound
on the probability of failure at each step, the probability of a successful cycle is at
least 1 − Ce−γn. Thus, τ stochastically dominates a geometric random variable with
success probability 1− Ce−γn, and so there exist C, γ > 0 such that P (τ ≤ Ceγn)→ 0 as
n→∞.

5 Results for the star graph

The goal of this section is to prove Theorem 1.5. On the star graph it is possible
to reformulate the CPA model by only assigning states to the center and the leaves
and not individual edges, since the oriented edges (i, j) and (j, i) cannot both be in the
avoiding state at the same time. We do this as follows. The center takes on values in
{0, 1} meaning healthy and infected as before. Leaves take on states in {0, 1} × {A,D}
where 0 and 1 denote healthy and infected (vertex) states, and A and D denote active
and inactive (edge) states. Active leaves can both receive and transmit the infection,
while inactive leaves can do neither. Depending on the state of the center, the system
follows different dynamics.

Definition 5.1. When the center is infected (one-phase)

1. 0A→ 1A at rate λ (Center infects leaf)

2. 1A→ 0A at rate 1. (Leaf recovers)

3. 0A→ 0D at rate α (Leaf avoids center)

4. 1D → 0A at rate 1. (Leaf that had been avoided by the center in a previous
zero-phase recovers)

5. The center goes from 1→ 0 at rate 1.
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When the center is healthy (zero-phase)

1. At the time of the center’s recovery set all 0D to 0A (Leaves stop avoiding the
center)

2. 1A→ 0A at rate 1. (Leaf recovers)

3. 1A→ 1D at rate α (Center avoids leaf)

4. The center goes from 0→ 1 at rate mλ where m is the current number of 1A leaves.

The system is perhaps most easily understood by referring to Figure 6. To see that
these dynamics are equivalent to the dynamics of the CPA model on the star graph,
consider the following transitions. A 0A→ 0D transition occurs when the directed edge
from the center to a leaf becomes deactivated while the center is infected. All 0D return
to 0A when the center recovers since all inactive edges from the center to leaves become
active again at this time. A 1A→ 1D transition occurs when the edge from an infected
leaf to the healthy center becomes deactivated. The subsequent 1D → 0D occurs when
an infected leaf whose edge to the center is inactive recovers, which both moves the leaf
to state 0 and reactivates the edge.

The center plays a special role in the dynamics of the star graph, and so to understand
the process dynamics on the star graph we consider in turn the dynamics when the
center is infected (which we will call the one-phase,) the dynamics when the center is
healthy (which we will call the zero-phase), and the change in the number of infected
leaves between consecutive one-phases.

When the center is infected, the set of possible states of each of the other nodes is
S = {1A, 0A, 0D, 1D}. Let Xt denote the state of a typical leaf node at time t assuming
the center is held in the infected state through time t, and let

Vi,j(t) = P (Xt = j|X0 = i) for i, j ∈ S and V = ((Vi,j))i,j∈S .

Then using standard arguments for continuous time Markov chains it is easy to see that

V′(t) = V(t)A, where A =

1A

0A

0D

1D


−1 1 0 0

λ −(λ+ α) α 0

0 0 0 0

0 1 0 −1

 .
Note that 0D is an absorbing state for this 4-state Markov chain. In order to find the

eigenvalues of A note that

det(A− γI) = γ(−1− γ)(αγ + α+ λγ + γ2 + γ)

So the eigenvalues are 0,−γ1,−γ2 and −1, where

γ1 =
1

2
[(λ+ α+ 1)−

√
(λ+ α+ 1)2 − 4α], γ2 =

1

2
[(λ+ α+ 1) +

√
(λ+ α+ 1)2 − 4α].

Simple algebra shows that

γ1 + γ2 = λ+ α+ 1 and γ1γ2 = α and

γ2 − γ1 = [λ2 + (α− 1)2 + 2λ(α− 1)]1/2 and 0 ≤ γ1 ≤ 1 ≤ γ2 ≤ 1 + λ+ α. (5.1)

We note that this differs from the case of the classical contact process, in which the
corresponding matrix A with α = 0 has rank 2 and eigenvalues 0, 0,−1, and −(1 + λ).

From the description of the process and the generator matrix, we can make a heuristic
argument for why the survival time on the star is like n∆ where ∆ = 1/γ1. Essentially,
the process dies when we observe a long one-phase during which all the leaves start
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Figure 6: Star graph dynamics
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avoiding the center, absorbing in the 0D state. Suppose we start at the beginning of
a one-phase. Then this one-phase lasts for time T where T ∼ Exp(1). At time T , we
expect the number of leaves that have not yet been absorbed in the 0D state to be about
ne−γ1T , which is less than 1 when T > (1/γ1) log n. Since T is an Exp(1) random variable,
P (T > (1/γ1) log n) = n−1/γ1 so we should need about n1/γ1 one-phases to observe a
one-phase long enough for the process to die, and each one-phase-zero-phase cycle lasts
on average for O(1) time, suggesting a survival time of n∆. Of course, there are many
details that need to be verified, and the remainder of this section is devoted to making
this heuristic argument rigorous.

The right eigenvectors for the eigenvalues of A are the columns of the matrix

B =


1 ζ ζ 0

1 1− γ1 1− γ2 0

1 0 0 0

1 1 1 1

 ,
where ζ = (1−γ1)(γ2−1)

λ .
So AB = BD, where D = Diag(0,−γ1,−γ2,−1). Let W(t) = V(t)B, so

W′(t) = V′(t)B = V(t)AB = V(t)BD = W(t)D.

Since D is diagonal, we have W(t) = W(0) exp(Dt). Hence, using the fact that V(0) = I

V(t) = B exp(Dt)B−1.

Lemma 5.2. If u(t) := V1A,1A(t) and v(t) := V0A,1A(t), then

1. u(·) is decreasing, u(0) = 1 and u(t) ↓ 0 as t→∞ exponentially fast in t.,
2. v(0) = 0, v(·) is increasing (resp. decreasing) for t ≤ (resp. ≥) (log γ2− log γ1)/(γ2−

γ1) and v(t)→ 0 as t→∞ exponentially fast in t,
3. v(t) ≤ u(t) for all t ≥ 0,
4. the map η 7→ f(η) :=

∫∞
0

(ηu(t) + (1− η)v(t))e−t dt− η is monotonically decreasing,
and f(η) ≥ 0 (resp. ≤ 0) for η ≤ (resp. ≥) λ/(λ+ α+ 2)

Proof. By computation we see that

u(t) :=
(1− γ1)e−γ2t − (1− γ2)e−γ1t

γ2 − γ1
=

γ2 − 1

γ2 − γ1
e−γ1t +

1− γ1

γ2 − γ1
e−γ2t

v(t) :=

(
(1− γ1)(γ2 − 1)

ζ(γ2 − γ1)

)
(e−γ1t − e−γ2t) =

(
λ

γ2 − γ1

)
(e−γ1t − e−γ2t).

1. From the properties of γ1 and γ2 in (5.1) it is clear that γ1, γ2 > 0 and the coefficients
of e−γ1t and e−γ2t in u(t) are both positive.

2. We observe (a) 0 < γ1 < γ2, (b) v(t) is a multiple of e−γ1t − e−γ2t, and (c) v′(t)
vanishes at t = (log γ2 − log γ1)/(γ2 − γ1).

3. From the properties of γ1 and γ2 in (5.1)

v(t) ≤ λ

γ2 − γ1
e−γ1t ≤ γ2 − 1

γ2 − γ1
e−γ1t ≤ u(t)∀t ≥ 0.

4. Since
∫∞

0
e−(1+a)t dt = (1 + a)−1 for any a > 0,

f(η) =
1

γ2 − γ1

[
η

(
γ2 − 1

1 + γ1
+

1− γ1

1 + γ2

)
+ (1− η)

(
λ

1 + γ1
− λ

1 + γ2

)]
− η

=
1

(1 + γ1)(1 + γ2)
[η(γ2 + γ1) + (1− η)λ]− η

f ′(η) =
γ1 + γ2 − λ

(1 + γ1)(1 + γ2)
− 1.
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Since γ1 + γ2 = λ+ α+ 1 and γ1γ2 = α, it is easy to see that f ′(η) < 0 and

f(η) = 0⇔ η =
λ

(1 + γ1)(1 + γ2)− (α+ 1)
=

λ

λ+ α+ 1
.

Note that in the case of the classical contact process, 1. and 2. above do not hold,
and u(t) and v(t) do not converge to 0. It is the addition of avoidance allows the leaves
to eventually avoid the center, after which they can no longer become infected during
the current one-phase. This is the key difference driving the differing survival behaviors
of the classical contact process and the CPA process on the star graph.

Next we will focus on the evolution of the number of nodes in different states of S.
Note that at the beginning of each one-phase there is no node with state 0D and all nodes
with state 0D at the end of each one-phase change their state to 0A at the beginning of
the next zero-phase. Since the total number of nodes is n (the size of the star graph), it
suffices to keep track of the number of nodes in states 1A and 1D at the beginning of the
one-phases.

When there are m nodes in state 1A any time during a zero-phase, the rate at which
the center gets infected is λm. Also the rates at which nodes change their states to 0A
and 1D are m and αm respectively. Therefore, the time to the next event is exponentially
distributed with mean 1/(λ + α + 1)m, and the probability that the next event is the
center becoming infected (before any nodes change their states) is

λ̂ =
λ

1 + α+ λ
, (5.2)

which does not depend on m. So if N is the number of 1A nodes lost during a zero-phase,
then N has shifted Geometric distribution with success probability λ̂.

P (N = k) = (1− λ̂)kλ̂, k ≥ 0. (5.3)

Each of those nodes that changes its state from 1A becomes 1D or 0A with probability
α/(1 + α) and 1/(1 + α) respectively. So the number of 1D nodes added during a 0-phase
conditioned on N is Binomial with parameters N and α/(1 + α). Unconditionally its
distribution is shifted Geometric with success probability λ/(λ + α). Also if {Ti}i≥0

denote the sequence of the above event times, then T0 = 0 and Ti+1 − Ti has exponential
distribution with mean 1/(λ + α + 1)(m − i). If a node changes its state from 1A to
1D at time Ti, then it stays 1D till the end of the current 0-phase with probability
exp(−(TN+1 − Ti)), where N is the number of nodes lost from 1A.

On the other hand, if T is the duration of a 1-phase, then during this phase a node
with state 1D does not change its state with probability e−T . Some of the 1D nodes
that change to 0A nodes could then also change to 1A nodes before the end of the 1
state. If we let {σi}i≥0 denote the times when 1D nodes change to 0A where σ0 = 0, then

the number of 1D nodes that change to 1A is
∑L−L̃
i=1 Ber (v(T − σi)). Similarly using the

{Ti}i≥0 defined previously the number of 1A nodes that change to 1D and stay 1D until

the end of a 0-phase is
∑N
i=1 Ber

(
α

1+α (TN+1 − Ti)
)

Using the above argument and the notation u(t) and v(t) as in Lemma 5.2, we see
that the transition in the number of 1A and 1D states at the beginning of two consecutive
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phase 1 states of the system can be described as follows. K

L

 during 1-phase−−−−−−−−−→


K̃ = Bin(K,u(T )) + Bin(n−K − L, v(T ))

+
∑L−L̃
i=1 Ber (v(T − σi))

L̃ = Bin(L, e−T )

 ,

(
K̃

L̃

)
during 0-phase−−−−−−−−−→

 (
K̃ −N

)+

Bin(L̃, exp(−TN+1)) +
∑N
i=1 Ber

(
α

1+α (TN+1 − Ti)
)
 ,

where T ∼ Exp(1), N ∼ Geom(λ̂), T0 = 0 and (Ti+1 − Ti) ∼ Exp((λ + α + 1)(K̃ − i)).
Conditionally on T,N , {σi}i≥0 and {Ti}i≥0 all Binomial and Bernoulli random variables
are independent.

In order to analyze the above Markov chain, let (Ki, Li) be the number of 1A and 1D
nodes at the beginning of the i-th one-phase. We would like to be able to ignore the 1D

nodes and analyze Ki assuming that Li = 0 for all i. To do this we first need to introduce
some new processes.

If we assume transitions to 1D do not occur (so Li = 0 for all i), then we obtain a
new Markov chain {Zi}∞i=0, where Zi is the number of 1A nodes at the start of the ith

one-phase. The sequence {Zi}∞i=0 is defined by Z0 = n and for i ≥ 0,

Zi+1 = (Xi + Yi −Ni)+, (5.4)

where

Xi ∼ Bin(Zi, u(Ti)), Yi ∼ Bin(n− Zi, v(Ti)),

Ti ∼ Exp(1) and Ni ∼ shifted Geometric(λ̂) (as in (5.3)),

where the coin flips involved in the Binomial expressions above are assumed to be
conditionally independent of everything else given Zi and Ti, and {Ti : i ≥ 0} and
{Ni : i ≥ 0} are assumed to be i.i.d. sequences, independent of each other.

In order to justify studying the dynamics of Zi rather than (Ki, Li), we will show that
there exists a good event G with probability going to 1 as n→∞ on which there exists a
coupling such that

Z∗i ≤ Ki ≤ Zi (5.5)

where Z∗i = Zi−C∗ · (log n)3 for all i and C∗ > 0 is a constant, which will be chosen later
to depend on α and λ.

In comparing Zi and (Ki, Li) we encounter two possible problems. First, we must
establish that 1D vertices cannot accumulate in (Ki, Li). Second, even if the number of
1D vertices is bounded above, there may still be a significant flow of vertices from state
1A to 1D to 0A, so we must establish that this drain of 1A vertices does not cause Zi and
Ki to drift too far apart. The good event G will ensure that neither of these happen.

To define G we first define another process {Wi}∞i=0. Let C > 0 be a constant, and let
W0 = n− C(log n)2 and

Wi+1 = (XW
i + YWi −NW

i )+, (5.6)

where

XW
i ∼ Bin(Wi − C(log n)2, u(Ti)),

YWi ∼ Bin(n− C(log n)2 − (Wi − C(log n)2), v(Ti)),

Ti ∼ Exp(1),

and NW
i ∼ shifted Geometric(λ̂) (as in (5.3)).
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In essence {Wi}∞i=0 has C(log n)2 vertices removed that can be thought of as being fixed
as 1D and at the beginning of each one-phase C(log n)2 vertices are converted directly
from state 1A to 0A.

Lemma 5.3. Let λ, α, γ > 0. Then for any ε > 0, there exist N > 0 such that

1. P
(

maxi=1,...nγ (Li) > (12γ + 1) (λ+α)(γ+1)
α (log n)2

)
< ε.

2. Let C be the constant in the definition of the process {Wi}, and let Ri,k be the
number of the C(log n)2 vertices that were converted from 1A to 0A at the start of
the ith one-phase that have not been reinfected by the start of the kth one-phase.
Then

P

(
max

k=1...nγ

k∑
i=1

Ri,k ≥
( 2γ

log( 1+α+λ
1+λ )

+ 1
)
C(log n)3

)
< ε for all n ≥ N .

Proof. In the process (Ki, Li), we first observe that if Ji is the number of newly added
1D nodes during the i-th zero-phase, then Ji is stochastically dominated by a geo-
metric distribution on {0, 1, . . .} with success probability α

α+λ . Let A be the event

{maxi=1,...,nγ Ji ≤ (λ+α)(γ+1)
α log n}. Then

P (Ac) ≤ nγ λ

λ+ α

(
1

n

) (λ+α)(γ+1)
α · α

λ+α

= o(1). (5.7)

For the process Wi, the number of 1A nodes newly converted to 0A at the start of the ith
one-phase, Ri,i, is deterministically C(log n)2.

For the process (Ki, Li), if we ignore the conversion of 1D nodes to 0A nodes during
zero-phases, then after the kth one-phase, the number of remaining 1D nodes from Ji
is Ji,k ∼ Bin(Ji, exp[−

∑k
`=i+1 T`]), where T`’s are iid Exp(1) random variables. We now

have
k∑
i=1

Ji,k � Lk. (5.8)

In the case of Ri,k, a vertex that converted to 0A at the start of the ith one-phase becomes
reinfected in a given future one-phase if the center attempts to infect it before either the
center recovers or the vertex avoids the center. We can observe the probability that a
vertex converted to 0A at the start of the ith one-phase becomes reinfected during the
lth one-phase is λ

1+α+λ .

Observe
∑k
`=i+1 T` ∼ Gamma(k − i, 1), and so P

(∑k
`=i+1 T` < (k − i)/2

)
≤ e−(k−i)/6.

Let B(k, k′) be the event
{∑k

`=i+1 T` ≥
1
2 (k − i) for all 1 ≤ i ≤ k − k′

}
. Then for 0 ≤ k′ <

k, we have

P (B(k, k′)c) ≤ (k − k′)e−k
′/6, (5.9)

and P (B(k, k′)c) = 0 if k′ ≥ k.
If we let Xi ∼ Bin( (λ+α)(γ+1)

α log(n), e−(k−i)/2), then

Ji,k1B(k,k′)∩A � Xi for all i ≤ k − k′ and k ≤ nγ , (5.10)

Let D(k, k′) be the event
{
Ji,k1B(k,k′)∩A = 0 for all 1 ≤ i ≤ k − k′

}
. Then

P (D(k, k′)c) ≤ P (Xi > 0 for some 1 ≤ i ≤ k − k′)

≤ (k − k′)(1− (1− e−k
′/2)

(λ+α)(γ+1)
α logn). (5.11)
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Observe that for each 1 ≤ k ≤ nγ ,

{A ∩ B(k, k′) ∩ D(k, k′)} ⊆

{
k∑
i=1

Ji,k ≤
(λ+ α)(γ + 1)

α
(log n)k′

}
. (5.12)

To obtain part 1 of the Lemma, we choose k′ = (12γ+1) log n, so that the probabilities
in (5.7), (5.9) and (5.11) are sufficiently small:

nγ(
1

n
)

(λ+α)(γ+1)
α

α
λ+α = o(1),

nγe−(12γ+1) logn/6 = o(n−γ),

and nγ(1− (1− e−(12γ+1) logn)
(λ+α)(γ+1)

α logn) = o(n−γ). (5.13)

Then by (5.8) and (5.13),

P

(
max

i=1,...nγ
Li > (12γ + 1)

(λ+ α)(γ + 1)

α
(log n)2

)
≤ P

(
nγ⋃
k=1

{A ∩ B(k, k′) ∩ D(k, k′)}c
)

≤ P (Ac) +

nγ∑
k=1

[P (B(k, k′)c) + P (D(k, k′)c)]

= o(1). (5.14)

We now obtain part 2 of the Lemma by an analogous argument. Let U(k, k′) be the
event {Ri,k = 0 for all 1 ≤ i ≤ k − k′}. First, note that for any 1 ≤ i ≤ k − k′ we have

P (Ri,k > 0) ≤ C(log n)2
( 1 + α

1 + α+ λ

)k′
. (5.15)

From this we see

P (U(k, k′)c) ≤ (k − k′)C(log n)2
( 1 + α

1 + α+ λ

)k′
, (5.16)

so we can choose k′ = ( 2γ

log( 1+α+λ
1+λ )

+ 1) log n so that the probability in (5.16) is sufficiently

small:
nγ∑
k=1

(k − k′)C(log n)2
( 1 + α

1 + α+ λ

)k′
= o(1). (5.17)

Finally, we observe

P

(
max

k=1...nγ

k∑
i=1

Ri,k ≥
( 2γ

log( 1+α+λ
1+λ )

+ 1
)
C(log n)3

)
≤

nγ∑
k=1

P (U(k, k′)c) = o(1).

This completes the proof of the lemma.

Lemma 5.4. Fix ε, γ > 0, let G be the event{
k∑
i=1

Rik ≤ C∗(log n)3 ∀k ≤ nγ
}
∩
{

max
i=1,...nγ

(Li) ≤ C(log n)2

}
where C = (12γ + 1) (λ+α)(γ+1)

α in the definition of {Wi} and C∗ = ( 2γ

log( 1+α+λ
1+λ )

+ 1)C in

the definition of {Z∗i }, and let τ∗ = inf{i ≥ 0 : Z∗i = 0}. Then for all sufficiently large n,
we have P (G) > 1− ε. In addition

Z∗i 1G � Ki1G for 0 ≤ i ≤ τ∗, and

Ki1G � Zi1G for 0 ≤ i ≤ τ . (5.18)
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Proof. Lemma 5.3 implies P (G) > 1− ε.
We first describe a coupling between Wi1G and Zi1G that holds for 0 ≤ i ≤ τW . Begin

by expanding the probability space in the usual way so that we can track the states of
individual vertices. Next, note that Wi1G and Zi1G are embedded discrete time processes
of Zt1G and Wt1G where Zt follows the process dynamics in Definition 5.1 except that
it ignores transitions to the 1D state and Wt follows the same process dynamics, also
ignores transitions to the 1D state, and converts C(log n)2 randomly chosen 1A vertices
to 0A vertices instantaneously at the start of each one-phase. We describe a coupling for
Zt1G and Wt1G during the one-phase as follows:

1. At the start of each one-phase, pair every 1A vertex in Wt1G with a 1A vertex in
Zt1G and as many 0A vertices in Zt1G with 0A vertices in Wt1G as possible. Paired
vertices share all random variables that determine their possible state changes,
and unpaired vertices evolve independently according to their marginals.

2. During a one-phase, whenever an unpaired 0A vertex in Wt1G becomes infected,
pair it with an unpaired 1A vertex in Zt1G. Whenever an unpaired 1-state (infected)
vertex in Zt1G recovers, pair it with an unpaired 0A vertex in Wt1G if one exists.

3. During the zero-phase, instead couple the embedded discrete time processes Wi1G
and Zi1G by drawing a single Ni to determine the number of 1A vertices that
recover and distributing those recoveries uniformly at random among the available
1A vertices in each process.

First observe that we have Wt1G ≤ Zt1G which implies Wi1G ≤ Zi1G. Now note
that in this coupling any vertices that are healthy in Wi1G but infected in Zi1G must be
vertices in the Wi process that were converted from 1A to 0A at the start of a one-phase
and have never since been reinfected. Thus when G occurs, Zi −Wi ≤ C∗(log n)3, and so
Zi1G −Wi1G is bounded above by C∗(log n)3, and so Z∗i 1G ≤Wi1G for all 0 ≤ i ≤ τ∗. We
also note that Zτ∗1G ≤ C∗(log n)3

Now define τ := inf{i ≥ 0 : Zi = 0}, and observe that Ki � Zi for 0 ≤ i ≤ τ .
Furthermore, for 0 ≤ i ≤ τ∗ we can couple Ki1G and Wi1G using the same coupling as for
Wi1G and Zi1G with the added stipulation that 1D vertices in Ki1G behave independently
according to their marginals. When G occurs, the number of vertices that are not 1A

in Ki because they are 1D is less than the number of removed vertices in Wi and the
number of 1A vertices that change to 0A by first passing through the 1D state in Ki is
less the number 1A vertices that Wi converts to 0A at the start of each one-phase. Thus
in this coupling we have

Z∗i 1G ≤Wi1G ≤ Ki1G for 0 ≤ i ≤ τ∗ (5.19)

and so we conclude

Z∗i 1G � Ki1G for 0 ≤ i ≤ τ∗, (5.20)

and

Ki1G � Zi1G for 0 ≤ i ≤ τ. (5.21)

Since Zi and Z∗i differ by at most C∗(log n)3, we can now derive upper and lower
bounds on τ , which, when combined with this coupling, will yield upper and lower
bounds on τstar.

We first consider the upper bound on τ . For this we need the following lemma about
the transition probabilities of Zi. The intuition is as follows: if a one-phase lasts for a
long time, then the properties of u(t) and v(t) in Lemma 5.2 allow us to bound from
below the probability that the entire process dies before the next one-phase.
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Lemma 5.5. For k, l ≥ 1 if p(k, l) := P (Zi+1 = l|Zi = k), then for any η ∈ (0, 1] if C1 =

eλ̂(α− γ1)/(γ2 − γ1), then p(ηn, 0) ≥ (1 + o(1))(C1n)−1/γ1 .

Proof. From the definition of the Markov chain {Zi}t≤τ it is easy to see that

p(k, l) := E TEX,Y |TP (N = X + Y − l|T,X, Y )

= E TEX,Y |T λ̂(1− λ̂)X+Y−l1X+Y≥l,

p(k, 0) :=
∑
l≤0

E TEX,Y |TP (N = X + Y − l|T,X, Y )

=
∑
l≤0

E TEX,Y |T λ̂(1− λ̂)X+Y−l.

So, using the fact that

E
[
sBin(k,p)

]
= (1− p(1− s))k for s ∈ [0, 1], (5.22)

and writing k = ηn,

p(ηn, 0) = E T

[
1− λ̂u(T )

]ηn [
1− λ̂v(T )

](1−η)n

=

∫ ∞
0

[
(1− λ̂u(t))η(1− λ̂v(t))1−η

]n
e−t dt.

To bound the above integral from below, let

tε =
1

γ1
log

1

ε
be so that exp(−γ1tε) = ε.

From property 1. and 3. of Lemma 5.2,

p(ηn, 0) ≥
∫ ∞
tε

(1− λ̂u(t))ne−t dt ≥ (1− λ̂u(tε))
n exp(−tε) = (1− c1ε− c2εγ2/γ1)nε1/γ1 ,

where c1 = λ̂(γ2 − 1)/(γ2 − γ1) and c2 = λ̂(1 − γ1)/(γ2 − γ1). Since γ2 > γ1, we ignore
εγ2/γ1 term and choose ε to maximize (1 − c1ε)nε1/γ1 . In order to do that, we set the
derivative of the log[(1− c1ε)nε1/γ1 ] with respect to ε to 0 to have

n
c1

1− c1ε
=

1

γ1ε
, which gives ε = (c1 + c1γ1n)−1.

Plugging this value of ε,

p(ηn, 0) ≥
[
1− (1 + γ1n)−1 − c2(c1 + c1γ1n)−γ2/γ1

]n
(c1 + c1γ1n)−1/γ1

= (c1eγ1n)−1/γ1(1 + o(1)). (5.23)

We can now prove the upper bound for τ .

Proposition 5.6. For the Markov chain {Zi} suppose τ = inf{t ≥ 0 : Zi = 0}. Fix ε > 0.
Then there exist constants N and C depending on λ and α such that for all n ≥ N ,

P
(
τ ≤ Cn1/γ1

)
> 1− ε.
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Proof. Fix η0 ∈ (0, λ̂) and let C1 be the constant in Lemma 5.5. From part 1 of Lemma 5.5,
τ is stochastically dominated by a Geometric random variable with success probability
(1 + o(1))(C1n)−1/γ1 . Hence, for k ≥ 1,

P
(
τ > k(C1n)1/γ1

)
≤
[
1− (1 + o(1))(C1n)−1/γ1

]k(C1n)1/γ1

≤ e−(1+o(1))k.

Now choose N so that the o(1) term in the exponent is smaller than 1 for all n ≥ N .

Choosing k sufficiently large, and setting C = kC
1/γ1
1 completes the proof.

Next we consider the lower bound on τ . Lemma 5.7 complements Lemma 5.5 by
providing a matching-order upper bound on the probability of the infection dying during
a one-phase. Lemma 5.8 will imply that the infection is exponentially unlikely (in the
number of infected leaves) to die out in the zero-phase.

Lemma 5.7. For k, l ≥ 1 if p(k, l) := P (Zi+1 = l|Zi = k) and p(k,≤ l) :=
∑
l′≤l p(k, l

′),
then for any ε, η0 > 0 satisfying

2ε

λ̂
log

1

1− λ̂
≤ η0 < λ̂,

there is a constant C2 = (1/λ̂η0) log(1/(1− λ̂)) > 0 such that

p(ηn,≤ εn) ≤ 3(C2ε)
1/γ1 for any η ≥ η0.

Proof. Suppose sε is such that

η0 exp(−γ1sε) =
2ε

λ̂
log

1

1− λ̂
. (5.24)

Then sε ∈ (0,∞) by our hypothesis about η0.
Now, it can be checked that the coefficient of e−γ2t in ηu(t)+(1−η)v(t) is negative for

η < λ/(λ+ 1− γ1). Hence, the coefficient of e−γ2t in η0u(t) + (1− η0)v(t) is negative, as
η0 < λ/(λ+α+ 1). So using the inequality γ2 > γ1, we get η0u(t) + (1− η0)v(t) > η0e

−γ1t.
Combining this with (5.24) and the fact that η 7→ ηu(t) + (1− η)v(t) is increasing in η (by
property 1. of Lemma 5.2),

ηu(t) + (1− η)v(t) ≥ 2ε

λ̂
log

1

1− λ̂
for any η ≥ η0 and t ≤ sε. (5.25)

Now note that

p(ηn,≤ εn) = E TEX,Y |T (1− λ̂)(X+Y−εn)+ =

∫ ∞
0

e−tEX,Y |T=t(1− λ̂)(X+Y−εn)+ dt.

Let A be the event {X + Y ≥ εn}. Then the quantity inside the expectation equals
(1− λ̂)X+Y−εn + 1Ac . Then, splitting the integral in the last display into two parts based
on whether t < sε or not and using the fact that the integrand is atmost 1, we get

p(ηn, εn) ≤
∫ sε

0

e−tEX,Y |T=t[(1− λ̂)X+Y−εn + 1Ac ] dt+ exp(−sε).

Using Markov inequality

EX,Y |T=t1Ac ≤ EX,Y |T=t(1− λ̂)X+Y−εn.

Also using (5.22) and the inequality 1− x ≤ e−x,

EX,Y |T=t(1− λ̂)X+Y−εn ≤ (1− λ̂)−εn exp
[
−λ̂n(ηu(t) + (1− η)v(t)

]
.
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Combining the last three displays and using (5.25),

p(ηn, εn) ≤ 2

∫ sε

0

e−t(1− λ̂)−εn exp
[
−λ̂n(ηu(t) + (1− η)v(t))

]
dt+ exp(−sε)

≤ 2

∫ sε

0

e−t(1− λ̂)εn dt+ exp(−sε)

≤ 2(1− λ̂)εn + exp(−sε).

From (5.24), exp(−sε) = (cε)1/γ1 for an appropriate constant c. This proves the assertion.

Lemma 5.8. Suppose η0 ∈ (0, λ̂) and τ̃ := inf{t ≥ 0 : n−1Zi 6∈ (0, η0)}. Then there is a
ϑ > 0 such that Ut := exp(−ϑZt∧τ̃ ) is a supermartingale.

Proof. Suppose Z0 = ηn for some η ∈ (0, η0). Define

ϕη(ϑ) := [E (exp(−ϑZ1)|Z0 = ηn)]
1/n − e−ϑη.

Clearly ϕη(0) = 0 and ϕη ∈ C1[0,∞) for any η > 0. We will show

(a) ϕ′η0(0) < 0 and (b) ϕ′η(0) is an increasing function of η. (5.26)

Using continuity of ϕ′η0 (a) will imply that there exists ϑ > 0 such that ϕ′η0(β) < 0 for all
β ∈ [0, ϑ]. Also using the mean value theorem, ϕη(ϑ) = ϕ′η(β0)ϑ for some β0 ∈ [0, ϑ]. Then
(b) will imply ϕ′η(β0) ≤ ϕ′η0(β0) < 0 for η ≤ η0, which in turn implies ϕη(ϑ) < 0 for η ≤ η0.

In order to show (5.26) we will find an expression for ϕη(ϑ). Clearly,

ϕη(ϑ) =
[
E TEX,Y |TEN |X,Y,T exp(−ϑ(X + Y −N)+)

]1/n − e−ϑη,
where T ∼ Exp(1), given T = t X ∼ Bin(ηn, u(t)), Y ∼ Bin((1 − η)n, v(t)) and N is as
in (5.3). Now

EN |X,Y,T exp(−ϑ(X + Y −N)+)

= EN |X,Y,T [exp(−ϑ(X + Y −N))1{N<X+Y }] + EN |X,Y,T1{N≥X+Y }

= e−ϑ(X+Y )
X+Y−1∑
j=0

λ̂[eϑ(1− λ̂)]j + (1− λ̂)X+Y

=
λ̂

1− eϑ(1− λ̂)

[
e−ϑ(X+Y ) − (1− λ̂)X+Y

]
+ (1− λ̂)X+Y . (5.27)

Therefore, using (5.22)

ϕη(ϑ) =

(∫ ∞
0

e−t

[
λ̂

1− eϑ(1− λ̂)

(
χ(η, e−ϑ, t)− χ(η, 1− λ̂, t)

)
+ χ(η, 1− λ̂, t)

]
dt

)1/n

− e−ϑη,

where
χ(η, s, t) :=

[
(1− (1− s)u(t))η(1− (1− s)v(t))1−η]n .

Since χ(η, 1, t) = 1,

ϕ′η(0) =
1

n

∫ ∞
0

e−t

(
1− λ̂
λ̂

[1− χ(η, 1− λ̂, t)] +
d

dϑ
χ(η, e−ϑ, t)

∣∣∣∣
ϑ=0

)
dt+ η.
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The first integrand is an increasing function of η, as u(t) > v(t) by property 3. of
Lemma 5.2. On the other hand, the second integrand is n(−ηu(t) − (1 − η)v(t)), and
hence (b) of (5.26) holds by property 4. of Lemma 5.2. Also the first integrand is at most
1, so

ϕ′η0(0) ≤ 1

n
−
∫ ∞

0

e−t(η0u(t) + (1− η0)v(t)) dt+ η < 0

using property 4. of Lemma 5.2 and the fact that η0 < λ̂. This proves (a) of (5.26) and
proof of the lemma is complete.

We can now prove the lower bound on τ .

Proposition 5.9. For the Markov chain {Zi} suppose τ = inf{t ≥ 0 : Zi = 0}. Fix ε > 0.
Then there exist N,Ko such that for all n ≥ n,

P

(
1

K0

(
n

log(n)4

)1/γ1

≤ τ

)
> 1− ε

Proof. Let C2 and ϑ be the constants in Lemmas 5.7 and 5.8. Divide the interval [0, n]

into three parts

I1 := [0, (γ1ϑ)−1C(log n)4), I2 := [(γ1ϑ)−1C(log n)4, η0n], I3 := (η0n, n]

and note that so long as Zi is in I2 or I3 then the process Z∗i defined in lemma 5.4
is greater than 0. Using ε = C log(n)4/(γ1ϑn) in Lemma 5.7, it is easy to see that the
number of times Zi avoids jumping from I3 to I1 stochastically dominates a Geometric
random variable with success probability C(log(n)4/n)1/γ1 for some constant C > 0.

Also, if Z0 ∈ I2, then applying the optional stopping theorem for the stopping time

τ̃ := inf{t ≥ 0 : Zi 6∈ (0, η0n)}, and supermartingale Ut := exp(−ϑZt), 0 ≤ t ≤ τ̃ ,

we see that if q := P (Zτ̃ = 0), then

q ≤ EUτ̃ ≤ U0 ≤ n−1/γ1 .

So, the number of times Zi jumps from I2 to I3 stochastically dominates a Geometric
random variable with success probability n−1/γ1 . Combining these two observations, τ
stochastically dominates sum of two Geometric random variables with success probability
C(log(n)4/n)1/γ1 . Hence

P
(
τ < K−1(n/ log(n)4)1/γ1

)
≤ 2
(

1−
[
1− C

(
log(n)4/n

)1/γ1])(n/ log(n)4)1/γ1/(2K)

≤ C/K → 0 (5.28)

as K →∞.

We now are ready to finish the proof of Theorem 1.5.

Proof of Theorem 1.5. Propositions 5.6 and 5.9 give bounds on τ and so it remains to
compare τ and τstar.

Let τK = inf{t ≥ 0 : Kt = 0} for the Markov chain (Ki, Li) (without assuming Li = 0

for all i). From Lemmas 5.3 and 5.4, the good event G has probability at least 1 − ε,
Z∗i 1G � Ki1G � Zi1G for 0 ≤ i ≤ τ∗, and Ki � Zi for 0 ≤ i ≤ τ . Furthermore, from
Proposition (5.9), we see that Z∗i > 0 so long as Zi is not in the interval I1. From this,
we observe that the same holds for Ki and that we do not reach τ∗ until Zi jumps to
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the interval I1, and so it is sufficient for the coupling to hold until time τ∗ for the lower
bound. Thus we can conclude

P

(
1

K0

(
n

log(n)4

)1/γ1

≤ τK ≤ K0(C1n)1/γ1

)

≥ P

({
1

K0

(
n

log(n)4

)1/γ1

≤ τ ≤ K0(C1n)1/γ1

}⋂
{Gc}

)

≥ 1− P

({
1

K0

(
n

log(n)4

)1/γ1

≤ τ ≤ K0(C1n)1/γ1

}c)
− P (Gc)

> 1− 2ε. (5.29)

However, τK counts the number of one-phases until the infection dies, and so we
must bound the total amount of time this takes. The length of a one-phase is an Exp(1)

random variable and does not depend on the states of the vertices other than the center,
so clearly

∑τK
i=1Xi � τstar where the Xi are iid Exp(1) random variables gives a lower

bound on the time to extinction. The distribution of the length of a zero-phase depends
on the number of 1A nodes present at the start of the zero-phase. However, the length
of a zero-phase is dominated by an Exp(min(λ, 1)) random variable for any configuration.
τK gives the number of zero-phases before the process dies, and let Z be the length of
the last zero-phase. Then τstar �

∑τK
i=1(Xi + Yi) where the Xi are as before and the Yi

are iid Exp(min(λ, 1)) random variables gives an upper bound.

Using large deviation bounds for all m we have

P

(
m∑
i=1

Xi ≤ m/2

)
≤ e−m/6,

P

(
m∑
i=1

Xi + Yi ≥ 2m(1 +
1

min(λ, 1)
)

)
≤ 2e−m/

6
min(λ,1) .

So then to get a lower bound we observe

P (τstar ≥ τK/2) ≥ P

(
τK∑
i=1

Xi ≥ τK/2

)

≥ P

(
{τK ≥M}

⋂
{
τK∑
i=1

Xi ≥ τK/2}

)

≥ P

(
{τK ≥M}

⋂
{
m∑
i=1

Xi ≥ m/2 ∀m ≥M}

)

≥ 1− P (τK < M)−
∞∑

m=M

P

(
m∑
i=1

Xi ≥ m/2

)

= 1− P (τK < M)− e(1−M)/6

e1/6 − 1
(5.30)

Choosing M = 1
K0

( n
log(n)4 )1/γ1 and using (5.29), we conclude that there exists N such

that for all n ≥ N
P (τstar ≥ τK/2) ≥ 1− 2ε, (5.31)

giving a lower bound on the survival time in terms of the number of cycles
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To get an upper bound we observe

P

(
τstar ≤ 2(1 +

1

min(λ, 1)
)τK

)
≥ P

(
τK∑
i=1

Xi + Yi ≤ 2(1 +
1

min(λ, 1)
)τK

)

≥ P

(
{τK ≥M}

⋂
{
τK∑
i=1

Xi + Yi ≤ 2(1 +
1

min(λ, 1)
)τK}

)

≥ P

(
{τK ≥M}

⋂
{
m∑
i=1

Xi + Yi ≤ 2(1 +
1

min(λ, 1)
)m ∀m ≥M}

)

≥ 1− P (τK < M)−
∞∑
j=M

P

(
m∑
i=1

Xi + Yi ≤ 2(1 +
1

min(λ, 1)
)m

)

= 1− P (τK < M) +
e(1−M)/ 6

min(λ,1)

e1/(min(λ,1)) − 1
(5.32)

Again choosing M = 1
K0

( n
log(n)4 )1/γ1 and using (5.29), we conclude that there exists

N such that for all n ≥ N

P

(
τstar ≤ 2(1 +

1

min(λ, 1)
)τK

)
≥ 1− 2ε, (5.33)

giving an upper bound on the survival time in terms of the number of cycles.
Combining our comparison of τ and τK with our comparison of τK and τstar, we

conclude for any λ, α > 0 and any ε > 0, there exist C,K, and N depending on λ and α
such that for all n ≥ N ,

P

(
1

K
(

n

log(n)4
)1/γ ≤ τstar ≤ K(Cn)1/γ

)
> 1− ε.
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