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Susceptible–infected epidemics on evolving graphs*
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Abstract

The evoSIR model is a modification of the usual SIR process on a graph G in which
S−I connections are broken at rate ρ and the S connects to a randomly chosen vertex.
The evoSI model is the same as evoSIR but recovery is impossible. In [14] the critical
value for evoSIR was computed and simulations showed that when G is an Erdős-Rényi
graph with mean degree 5, the system has a discontinuous phase transition, i.e., as
the infection rate λ decreases to λc, the fraction of individuals infected during the
epidemic does not converge to 0. In this paper we study evoSI dynamics on graphs
generated by the configuration model. We show that there is a quantity ∆ determined
by the first three moments of the degree distribution, so that the phase transition is
discontinuous if ∆ > 0 and continuous if ∆ < 0.
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1 Introduction

In the SIR model, individuals are in one of three states: S = susceptible, I = infected,
R = removed (cannot be infected). Often this epidemic takes place in a homogeneously
mixing population. However, here, we have a graph G that gives the social structure
of the population; vertices represent individuals and edges connections between them.
S − I edges become I − I at rate λ, i.e., after a time with an exponential(λ) distribution.
An individual remains infected for an amount of time T which can be either deterministic
or random with a pre-specified distribution. Once individuals leave the infected state,
they enter the removed state. In addition, we will allow the graph to evolve: S − I edges
are broken at rate ρ and the susceptible individual connects to an individual chosen
uniformly at random from the graph. This process is called evoSIR where ‘evo’ stands
for ‘evolving’. We will also consider the simpler SI epidemic in which infecteds never
recover, and its evolving version evoSI, as well as some other variations on this theme.
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SI epidemics on evolving graphs

We will use the term final epidemic size or final size of the epidemic to refer to the
number of vertices that are eventually removed in SIR epidemics or eventually infected
in SI epidemics. We say a large epidemic (or large outbreak) occurs if the epidemic
infects more than εn individuals (n is the size of the total population) for some ε > 0

independent of n. The critical value is the smallest infection rate such that a large
outbreak occurs with probability bounded away from 0 as n→∞.

As the main contribution of this paper, we show that, if the underlying graph G is
sampled from the configuration model CM(n,D) (defined in Model 2 in Section 1.2),
then there is an explicit quantity ∆ given in (1.4.1) (determined by the first threentm

moments of D) such that the following holds for the evoSI model on G:

• If ∆ > 0, then the fraction of infected vertices (conditionally on a large outbreak)
doesn’t converge to 0 as λ approaches the critical value λc. In other words, there
is a discontinuous phase transition.

• If ∆ < 0, then the phase transition is continuous for λ near λc.

See Theorem 1.7 for a precise statement.
The introduction is organized into seven subsections. Sections 1.1–1.3 are devoted to

a review of previous work. The main results of the paper (Theorem 1.6 and Theorem 1.7)
are presented in Section 1.4. Sections 1.5–1.7 sketch the proof of Theorem 1.7.

1.1 DOMath [14]

evoSIR was stiudied by three Duke undergraduates in the summer and fall of 2018
(Yufeng Jiang, Remy Kassem, and Grayson York) under the direction of Matthew Junge
and Rick Durrett. They considered two possibilities for the infection time: the Markovian
case in which infections last for an exponential time with mean 1, and the case in which
each infection lasts for exactly time 1. Here we restrict out attention to their results
for the second case, which is simpler due to its connection with independent bond
percolation. In any SIR model each edge will be S − I (or I − S) only once. When
that happens, in the fixed infection time case without rewiring, the infection will be
transferred to the other end with probability

τf = P(T ≤ 1) = 1− e−λ, (1.1.1)

and the transfers for different edges are independent. Here the ‘f ’ in the superscript is
for “fixed time.” Due to the last observation, we can delete edges with probability e−λ

and the connected components of the resulting graph will give the epidemic sizes when
one member of the cluster is infected.

In [14] G was an Erdős-Rényi(n, µ/n) random graph in which there are n vertices
and each pair is independently connected with probability µ/n. The following result is
well-known.

Theorem 1.1. Consider the SIR process on Erdős-Rényi(n, µ/n) with fixed infection time.
The reduced graph after deletion of edges as described above is Erdős-Rényi(n, µτf/n).
So, if we start with one infected and the rest of the population susceptible, a large
outbreak occurs with positive probability if and only if µτf > 1. If z0 is the fixed point
smaller than 1 of the generating function

G0(z) = exp(−µτf (1− z)), (1.1.2)

then 1 − z0 gives both the limiting probability that an infected individual will start a
large epidemic, and the fraction of individuals who will become infected when a large
epidemic occurs.
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SI epidemics on evolving graphs

Things become more complicated when we introduce rewiring of S − I edges at rate
ρ. To be able to use the ideas in the proof of Theorem 1.1, [14] introduced the delSIR
model in which edges are deleted instead of rewired. In the evo (or del) version of the
model, in order for the infection to be transmitted along an edge, infection must come
before any rewiring (or deletion) and before time 1. To compute this probability, note
that (i) the probability that infection occurs before rewiring is λ/(λ + ρ) and (ii) the
minimum of two independent exponentials with rates λ and ρ is an exponential with rate
λ+ ρ, so the transmission probability is

τfr =
λ

λ+ ρ
(1− e−(λ+ρ)). (1.1.3)

Here the ‘r’ subscript is for “rewire.” By a standard coupling argument one can show
that evoSI dominates delSI.

Lemma 1.2. For fixed parameters, there exists a coupling of evoSI and delSI so that
there are no fewer infections in the delSI model than in evoSI. Same is true if we replace
SI by SIR.

The next result, Theorem 1 in [14], shows that evoSIR has the same critical value as
delSIR, and in the subcritical case the expected cluster sizes are the same.

Theorem 1.3. The critical value λc for a large epidemic in fixed infection time delSIR
or evoSIR epidemic with rewiring is given by the solution of µτfr (λ) = 1. Moreover, if
λ < λc, then the ratio of the expected epidemic size in delSIR to the size in evoSIR
converges to 1 as the number of vertices goes to∞.

The formula for the critical value is easily seen to be correct for the delSIR since, by
the reasoning above, there is a large epidemic if and only if the reduced graph in which
edges are retained with probability τfr has a giant component. From Lemma 1.2 one can
see that the delSIR model has a larger (≥) critical value than evoSIR. Thus, one only has
to prove the reverse inequality. Intuitively, the equality of the two critical values holds
because a subcritical delSIR epidemic dies out quickly, so it is unlikely that rewirings
will influence the outcome.

When n is large, the degree distribution, which is Binomial(n − 1, µ/n), is approx-
imately Poisson with mean µ. Due to Poisson thinning, the number of new infections
directly caused by one I in delSIR in an otherwise susceptible population is asymp-
totically Poisson with mean µτfr , and hence has limiting generating function of the
distribution Poisson(µτf )

G1(z) = exp(−µτfr (1− z)). (1.1.4)

The following result, Theorem 2 in [14], identifies the probability of a large outbreak.

Theorem 1.4. If z0 < 1 is the fixed point of G1(z), then 1− z0 gives the probability of a
large delSIR or evoSIR outbreak.

In the case of the delSIR model, 1 − z0 is the fraction of individuals infected in a
large epidemic. It is easy to see that this proportion goes to 0 at the critical value
µc = 1/τfr = 1. The next simulation suggests that this is not true in the case of evoSIR.

1.2 Britton et al. [3, 16]

As the authors of [14] were finishing up the writing of their paper, they learned of
two papers by Britton and collaborators that study epidemics on evolving graphs with
exponential infection times. [3] studies a one parameter family of models (SIR-ω) that
interpolates between delSIR and evoSIR. To facilitate later referencing we attach labels
to the next two descriptions.
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SI epidemics on evolving graphs

Model 1. SIR-ω epidemic. In this model, an infected individual infects each neighbor
at rate λ, and recovers at rate γ. A susceptible individual drops its connection to an
infected individual at rate ω. The edge is rewired with probability α and dropped with
probability 1− α. Since evoSIR (α = 1) and delSIR (α = 0) have the same critical values
and survival probability it follows that this holds for all 0 ≤ α ≤ 1 since by a coupling
argument the final epidemic size of the case 0 < α < 1 can be sandwiched between
delSIR and evoSIR.

These epidemics take place on graphs generated by

Model 2. Configuration model. Given a nonnegative integer n and a positive integer
valued random variable D, take n i.i.d. copies D1, . . . , Dn of D. If the sum

∑n
i=1Di is

odd, then we replace Dn by Dn + 1. We then construct a graph G on n vertices as
follows. We attach D1, . . . , Dn half-edges to vertices 1, 2 . . . , n, respectively and then pair
these half-edges uniformly at random to form a graph. We call this random graph the
configuration model on n vertices with degree distribution D and denote it by CM(n,D).
We assume D has finite second moment so that the resulting graph will be a simple
graph with nonvanishing probability as n → ∞. See Theorem 3.1.2 in [7]. We refer
readers to [22, Chapter 7], [24, Chapters 4 and 7] and [23, Chapter 2] for more details
on the configuration model.

Remark 1.5. Throughout the paper, unless otherwise specified, we always consider
the annealed probability measure with respect to the configuration model. In other
words the randomness is taken over both the degrees D1, . . . , Dn and the construction
of CM(n,D) based on the degrees.

Britton, Juher, and Saldana [3] studied the initial phase of the epidemic starting with
one infected at vertex x (chosen uniformly at random from all vertices) using a branching
process approximation. Let Znm be the number of vertices at distance m from x in the
graph CM(n,D). For any fixed k ∈ N, {Znm, 0 ≤ m ≤ k} converges to the following
two-phase branching process {Zm, 0 ≤ m ≤ k}. The number of children in the first
generation has the distribution D while subsequent generations have the distribution
D∗ − 1 where D∗ is the size-biased degree distribution

P(D∗ = j) =
jpj
m1

, j ≥ 0.

Here pj = P(D = j) and m1 = E(D) is the mean of D. Later we will also use mi := E(Di)

to denote the i-th moment of D for i ≥ 1. This follows from the construction of the
configuration model: x connects to other vertices with probability proportional to their
degrees so individuals in generations m ≥ 1 have the D∗ − 1 children instead of D. The
‘-1’ is because one edge is used in making the connection from x. Before moving on to
epidemics on the configuration model, we note that if

G(z) =

∞∑
k=0

pkz
k, (1.2.1)

then the generating function of D∗ − 1 is

Ĝ(z) =

∞∑
j−1

jpj
m1

zj−1 =
G′(z)

G′(1)
. (1.2.2)

In the SIR-ω model, the probability that an infection will cross an S − I edge is

τ =
λ

λ+ γ + ω
.
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Thus we get another two-phase branching process Z̄m defined as follows. Z̄0 = 1, Z̄1 =

Binomial(D, τ) and future generations have offspring distrbution Binomial(D∗ − 1, τ).
One can see from this description that the limiting branching process Z̄m will have
positive survival probability if

1 < τE(D∗ − 1) = τ

(
m2

m1
− 1

)
=

(m2 −m1)τ

m1
.

Correspondingly, there will be a large epidemic in the SIR-ω model if

R0 =
λ

λ+ γ + ω
· m2 −m1

m1
> 1. (1.2.3)

This follows from results on percolation in random graphs (see [9] and [12]). Thus for
fixed values of γ and ω

λc = (γ + ω)
m1

m2 − 2m1
. (1.2.4)

When γ = 0 and ω = ρ which is the SI-ω model in our notation,

λc =
ρm1

m2 − 2m1
. (1.2.5)

The critical values of delSI and evoSI only depends on the ratio ρ/λ, so it is natural to
define a parameter (this α is different from the α used in the definition of SIR-ω model)

α = ρm1/λ (1.2.6)

that has αc = m2 − 2m1. We will only consider the del and evo endpoints of the one
parameter family of models SIR-ω, so after the discussion of previous work is completed,
there should be no confusion between our α and theirs.

Work of Leung, Ball, Sirl, and Britton [16] demonstrated the paradoxical fact that
individual preventative measures may lead to a larger final size of the epidemic. They
proved this rigorously for SI epidemics on the configuration model with two degrees and
conducted simulation studies for many social networks. Note that in Figure 2 (taken from
Figure 1 of [16]) the final size increases with the rewirng rate when the rewiring rate is
small. This simulation does not suggest that the phase transition was discontinuous.

On the other hand, Figure 3 from [14] gives a similar simulation that clearly shows
the discontinuity.

1.3 Ball and Britton [2]

Ball and Britton [2] analyzed the evoSIR and evoSI epidemics on Erdős-Rényi graphs.
Their construction uses properties that are special to that case. See [2, Section 2.3] for
details and also [4, 21] for earlier examples of the use of this construction. They solved
the case of the SI-ω model on Erdős-Rényi graphs completely, but for the SIR-ω model
there is a gap between the necessary and sufficient condition for a discontinuous phase
transition. See (1.3.3) and the comment after it.

To prove results about the epidemics on an Erdős-Rényi random graph with mean
degree µ they first consider a tree in which each vertex has a Poisson(µ) number of
descendants and develop a branching process approximation for the SIR-ω epidemic in
which infections (births) cross an edge with probability λ/(λ + γ + ω). Let I(t) be the
total number of infected individuals, IE(t) be the number of infectious edges, and T (t) be
the total progeny in the branching process on the tree. Let In(t), InE(t) and Tn(t) be the
corresponding quantities for an Erdős-Rényi(n, µ/n) random graph on n vertices where
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Figure 1: Simulation of the fixed time evoSIR on an Erdős-Rényi graph with µ = 5, ρ = 4

and λ varying. λc ≈ 1.0084 in agreement with Theorem 1.3. The bottom curve is the final
size of the delSIR epidemic with the same parameters. The dashed line above it is an
approximation derived in [14] that turned out to be inaccurate. The top curve comes
from simulating evoSIR.

Figure 2: Social distancing can lead to an increase in the final epidemic size in the
configuration model. The x-axis indicates the rewiring rate. The horizontal line is the
final size when ω = 0.

initially a randomly chosen vertex is infected. They show in their Theorem 2.1 that if
tn = inf{t : T (t) ≥ log n} then the two systems can be defined on the same space so that

sup
0≤t≤tn

|(In(t), InE(t), Tn(t))− (I(t), IE(t), T (t))| P−→ 0

as n→∞.

Let Sn(t) be the number of susceptibles at time t and Wn(t) be the number of
susceptible-susceptible edges created by rewiring by time t and let

Xn(t) = (Sn(t), In(t), InE(t),Wn(t)).
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Figure 3: Simulation of a continuous time Erdős-Rényi graph with µ = 5, γ = 1, λ = 1

and ρ varying. Note that ρc ≈ 3, the value predicted by (1.2.4). The lowest line is the
final size of delSIR which is continuous. The dotted and dashed lines are approximations
derived in [14] that turned out to be inaccurate. The top curve comes from simulating
evoSIR.

Let x(t) = (s(t), i(t), iE(t), w(t)) be the solution of the ODE

ds

dt
= −λiE ,

di

dt
= −γi+ λiE , (1.3.1)

diE
dt

= −λiE + λµiEs− λ
i2E
2

+ 2λiE
w

s
− ωiE(1− α+ α(1− i)),

dw

dt
= wαiEs− 2λiE

w

s
.

Here α is the probability that an edge is rewired as in the definition of SIR-ω model.
Theorem 2.2 in [2], which is proved using results of Darling and Norris [5], shows that
for any t0 > 0

sup
0≤t≤t0

|Xn(t)/n− x(t)| P−→ 0

as n→∞, provided that In(t)/n→ i(0) > 0. It is interesting to note, see their Section 3,
that the ODE in (1.3.1) is closely related to the “pair approximation” for SIR-ω model.

To explain the phrase in quotes, we note that “mean-field equations” come from
pretending that the states of site are independent; the pair approximation from assuming
it is a Markov chain. In practice, this approach means that probabilities involving three
sites are reduced to probabilities involving 1 and 2 sites using a conditional independence
property. For the details of the computation see Chapter 7 in [1].

Letting Tn = n−Sn(∞) (which is the final size of the epidemic) they make Conjecture
2.1 that one can interchange two limits n→∞ and t→∞ to conclude

Tn/n→ 1− s(∞).

To formulate a result that is independent of the validity of the conjecture they let

xε(t) = (sε(t), iε(t), iE(t), wε(t))
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be the solution to the ODE when

xε(0) = (1− ε, ε, L−1ε, 0) where L =
λ

λ(µ− 1)− ω
.

Letting τSIR = 1− limε↓0 s
ε(∞), their Theorem 2.3 states that

lim
λ↓λc

τSIR

{
= 0 if γ > ω(2α− 1) or µ < 2ωα/[ω(2α− 1)− γ],

> 0 if γ < ω(2α− 1) and µ > 2ωα/[ω(2α− 1)− γ].
(1.3.2)

When α = 1, ω = ρ and γ = 1 then we have a discontinuous phase transition if

ρ > 1 and µ >
2ρ

ρ− 1
.

For the case of the delSIR model (α = 0, ω = ρ and γ = 1) studied in [14], the
transition is always continuous. This follows from Theorem 2.3 since 1 > −ρ. From the
last calculation we see that the phase transition is always continuous if α < 1/2.

In the case of the SI-ω model they show (see Theorem 2.6 of [2]) that if µ > 1 and ω
and α are held fixed then the phase transition is discontinuous if and only if α > 1/3 and
µ > 3α/(3α− 1). When α = 1 this is µ > 3/2 which is the condition in Example 1.10 in
Section 1.4.

Theorem 2.4 in [2] gives results for the epidemic starting from a single infected
individual. If we let τ1

SIR be the limiting fraction of final epidemic size conditionally on a
large outbreak then

lim
λ↓λc

τ1
SIR

{
= 0 if γ > ω(3α− 1) or µ < 3ωα/[ω(3α− 1)− γ],

> 0 if γ < ω(2α− 1) and µ > 2ωα/[ω(2α− 1)− γ].
(1.3.3)

See their paper for a precise statement. Remark 2.4 in [2] states the conjecture that the
3’s in the first condition should be 2’s.

For SI-ω model they compute the fraction of final epidemic size τ1
SI

lim
λ↓λc

τ1
SI := τ0(µ, α).

To give the value of τ0(µ, α), we need some notations. For µ > 1 and α ∈ [0, 1] let

θ(µ, α) =
2α(µ− 1)

µ+ α(µ− 1)
and f0(x) = log(1− x) +

x

1− θ(µ, α)
,

then τ0(µ, α) is the largest solution in [0, 1) of f0(x) = 0.
Ball and Britton also made connections of their paper with our paper (as well as an

earlier version of this paper) in [2, Section 4]. In particular, they showed in their Figure
5 that in the case µ = 2 their predicted final size τ0(2, 1) agrees with simulation results
well.

1.4 Statement of our main results

From now on the reader can forget about the meaning of notations used by Ball
and Britton. We fix ρ, the rewiring rate, and vary λ. We let α = ρm1/λ. In view of the
definition of ∆ in (1.4.1), the natural assumption is E(D3) < ∞. Some of our results
can be proved under this assumption, while some need something a little stronger.
Specifically, we need finite fifth moment to prove (1.4.2). To simplify things we assume
E(D5) <∞ throughout.
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Theorem 1.6. Assume E(D5) < ∞. Consider the delSI model and evoSI model on
CM(n,D). (i) the critical values of delSI and evoSI are the same, i.e.,

αc = m2 − 2m1; equivalently, λc =
ρm1

m2 − 2m1
.

(ii) When α < αc, which is the supercritical case, the probability of a large epidemic is the
same in the two models, which is equal to the survival probability q(λ) of the two-stage
branching process Z̄m defined in Section 1.2 (with the τ there equal to λ/(λ+ ρ) in our
notation).

The proof of Theorem 1.6 that we give in Section 2 is very similar to one for Theo-
rem 1.3 given in [14] for Erdős-Rényi random graphs. Here the fact that we have only
E(D5) < ∞ rather than exponential upper bounds on P(D ≥ k) changes some of the
estimates.

Here and in what follows, formulas are sometimes easier to evaluate if we use the
“factorial moments” µk = E[D(D − 1) · · · (D − k + 1)], since these can be computed from
the k-th derivative of the generating function. To translate between the two notations:

µ1 = m1, µ2 = m2 −m1, µ3 = m3 − 3m2 + 2m1.

In particular αc = m2 − 2m1 = µ2 − µ1.
Our next result gives an almost sufficient and necessary condition for the discontin-

uous phase transition of evoSI. We use the word ‘almost’ since the case ∆ = 0 is not
treated here.

Theorem 1.7. Assume E(D5) <∞. Consider the evoSI epidemic on the configuration
model CM(n,D) with one uniformly randomly chosen vertex initially infected. Let

∆ = −µ3

µ1
+ 3(µ2 − µ1). (1.4.1)

Let I∞ be the final epidemic size. If ∆ > 0, then there is a discontinuous phase transition.
For some ε0 > 0 and some δ0 > 0,

lim
η→0

lim inf
n→∞

P1(I∞/n > ε0|I∞/n > η) = 1 for all αc − δ0 < α < αc. (1.4.2)

If ∆ < 0, then there a continuous phase transition. For any ε > 0, there exists some
δ > 0, so that

lim
n→∞

P1(I∞/n > ε) = 0 for αc − δ < α < αc. (1.4.3)

To see what this result says we consider some examples.

Example 1.8. Random r-regular graph, r ≥ 3. Here nr must be even. If we choose
the degree distribution P(D = r) = 1, and condition the graph to be simple, i.e., no
self-loops or parallel edges then the result is a random regular graph. The case r = 2

is excluded because in that case the graph consists of a number of circles. The critical
value is αc = m2 − 2m1 = r2 − 2r > 0 when r > 2. For k ≤ r,

µk = r(r − 1) · · · (r − k + 1),

so

∆ = −(r − 1)(r − 2) + 3(r(r − 1)− r)
= −(r − 1)(r − 2) + 3r(r − 2) = (r − 2)(2r + 1) > 0,

and the phase transition is discontinuous for all r ≥ 3.
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Example 1.9. Geometric(p). The factorial moments are µ1 = 1/p, µ2 = 2(1 − p)/p2,
and µ3 = 6(1 − p)2/p3. αc = µ2 − µ1 = (2 − 3p)/p2, so we need to take p < 2/3 to have
αc > 0.

∆ = −6(1− p)2

p2
+ 3

(
2(1− p)
p2

− 1

p

)
= − 6

p2
+

12

p
− 6 +

6

p2
− 6

p
− 3

p
=

3

p
− 6,

so the phase transition is discontinuous if p < 1/2.

Our last example concerns the configuration model generated from Poisson distribu-
tion:

Example 1.10. Poisson(µ). The factorial moments µk = µk, so the critical value
αc = µ2 − µ1 = µ2 − µ, which is positive if µ > 1. This condition is natural since if µ < 1

then there is no giant component in the graph and a large epidemic is impossible.

∆ = −µ2 + 3(µ2 − µ) = 2µ2 − 3µ2,

so the phase transition for evoSI is discontinuous if µ > 3/2, which is the result given in
[2].

Remark 1.11. We believe that the result of Example 1.10 holds for Erdős-Rényi(n, µ/n).
To prove this rigorously, one first has to prove a quenched version of Theorem 1.7 (i.e.,
showing that (1.4.2) and (1.4.3) hold with high probability over any degree sequence
D1, . . . , Dn (that are not necessarily i.i.d.) such that the k-th factorial moment of the
empirical distribution converges to µk for any k ≥ 0). We believe that this can be shown
using the same ideas in the proof of Theorem 1.7. Then one can transfer results for the
configuration model to Erdős-Rényi(n, µ/n) using [22, Theorems 7.18 and 7.19], which
says that conditionally on having the same degrees, the random graphs generated from
these two models have the same distribution.

As a notational note, in this paper we will use C,C1, C2, · · · to denote various constants
whose specific values might change from line to line. Occasionally when we have an
important constant we will number it by the formula it first appeared in, e.g., C2.3.2

below.

1.5 Sketch of Proof of Theorem 1.7

The proof of Theorem 1.7 is done by constructing auxiliary models that are up-
per/lower bounds for evoSI. We introduce a process which we call avoSI (avo is short for
avoiding infection) in Section 3.1 and prove that the final set of infected sites in avoSI
stochastically dominates evoSI. We also construct a lower bounding process which we
call AB-avoSI in Section 4.1, where we prove that the final set of infected sites in evoSI
stochastically dominates AB-avoSI. The AB in the name comes from the two counters
associated with half-edges that prevent transmission of infections along S − I edges
created by I − I rewirings.

The starting point to analyze evoSI via avoSI and AB-avoSI is the following Lemma 1.12.
Let q(λ) be the survival probability for the two-phase branching process {Z̄m,m ≥ 0}
introduced in Section 1.2. Recall that the individual in the first generation has offspring
distribution Binormial(D,λ/(λ+ ρ)) while later generations have offspring distribution
Binormial(D∗ − 1, λ/(λ+ ρ)) where D∗ is the size-biased version of D,

P(D∗ = j) =
jP(D = j)

E(D)
, j ≥ 0.
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Lemma 1.12. AvoSI, evoSI, AB-avoSI and delSI have the same critical value λc and in
the supercritical regime λ > λc the probability of a large outbreak is equal to q(λ) in all
four models.

Proof. Results in Section 3.1 and 4.1 imply that

avoSI � evoSI � AB-avoSI � delSI

where epidemic1 � epidemic2 means that the two epidemics can be constructed on the
same space so that the final epidemic size in epidemic1 is greater than or equal to that of
epidemic2. In fact, we will prove this chain of comparisons in Lemmas 3.2, 4.1 and 4.2,
respectively. It remains to show that avoSI and delSI has the same critical value and
probability of a large outbreak. This is proved in Lemma 3.3.

Below we will use λc and αc = ρλc/m1 to denote the critical value. Recall the
definition of the generating function G in (1.2.1). Consider a function f defined by

f(w) = log

(
m1w

G′(w) + α(1− w)G(w)

)
+
α

2
(w − 1)2. (1.5.1)

Theorem 1.13. Assume E(D5) <∞. Consider the avoSI epidemic on the configuration
model CM(n,D) with one uniformly randomly chosen vertex initially infected. Suppose
α < αc so that we are in the supercritical regime. Let Ĩ∞ be the final epidemic size. Set

σ = sup{w : 0 < w < 1, f(w) = 0} with sup(∅) = 0, (1.5.2)

ν = 1− exp
(
−α

2
(σ − 1)2

)
G(σ). (1.5.3)

If we suppose
(?) either σ = 0 or 0 < σ < 1 and there is a δ > 0 so that f < 0 on (σ − δ, σ),
then for any ε > 0,

lim
n→∞

P(Ĩ∞/n < ν + ε) = lim
η→0

lim inf
n→∞

P(Ĩ∞/n > ν − ε|Ĩ∞/n > η) = 1.

Though ν does not give the correct final size of the evoSI epidemic, the formula for
f(w) is accurate enough for w near 1 to identify when the phase transition is continuous.

Theorem 1.14. Consider the avoSI epidemic on the configuration model CM(n,D) and
let Ĩ∞ be the final epidemic size. Set

∆ = −µ3

µ1
+ 3(µ2 − µ1). (1.5.4)

If ∆ < 0, then there a continuous phase transition. For any ε > 0, there exists some
δ > 0, so that

lim
n→∞

P(Ĩ∞/n > ε) = 0 for αc − δ < α < αc. (1.5.5)

We can show that ∆ > 0 implies that there is a discontinuous phase transition in
avoSI, but that result does not help us prove Theorem 1.7. To get Theorem 1.14 from
Theorem 1.13 we compute, see Section 3.6, that

f ′(1) = −
(
m2 − 2m1

m1
− ρ

λ

)
which is < 0 for α < αc,

f ′(1) = 0, f ′′(1) = ∆ when α = αc.

(1.5.6)

When ∆ > 0, as w decreases from 1 the curve of f turns up, and σ stays bounded
away from 0. When ∆ < 0, the curve of f turns down, and σ converges to 1 as α→ αc.
See Figure 4.
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Figure 4: The behavior of f(w) near 1 with respect to different α′s for the Erdős-Rényi
graph. In the top graph µ = 1.4, which has ∆ < 0. αc = µ2 − µ = .56. Notice that
as α increases to 0.56 the intersection with the x axis tends to 1, so the transition is
continuous. In the bottom graph µ = 3, which has ∆ > 0. αc = µ2 − µ = 6. Notice that
when α ≤ αc, f(w) > 0 for w ∈ [0.9, 1), so σ is bounded away from 1.

Theorem 1.15. Consider the AB-evoSI epidemic on the configuration model CM(n,D).
Let Ǐ∞ be the final epidemic size. Let ∆ be the quantity defined in (1.5.4). If ∆ > 0 then
there is a discontinuous phase transition. For some ε0 > 0 and some δ0 > 0,

lim
η→0

lim inf
n→∞

P1(Ǐ∞/n > ε0|Ǐ∞/n > η) = 1 for all αc − δ0 < α < αc. (1.5.7)

Theorem 1.7 follows from Theorem 1.14 and Theorem 1.15.
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Proof of Theorem 1.7. Lemma 1.12 implies that

lim
η→0

lim inf
n→∞

P(Ǐ∞/n > η) = lim
η→0

lim inf
n→∞

P(Ǐ∞/n > η). (1.5.8)

Equations (1.5.8), (1.5.7) and the fact evoSI � AB-avoSI (proved in Lemma 4.1) imply
that

lim
η→0

lim inf
n→∞

P(I∞/n > ε0|I∞/n > η) ≥ lim
η→0

lim inf
n→∞

P(Ǐ∞/n > ε0|Ǐ∞/n > η) = 1,

for αc− δ0 < α < αc. This is exactly (1.4.2). Equation (1.4.3) follows from (1.5.5) and the
fact that avoSI � evoSI.

1.6 Sketch of Proof of Theorem 1.13

To begin to explain the ideas behind the analysis of epidemics on evolving graphs we
need to recall some history. Volz [27] was the first to derive a limiting ODE system for
an SIR epidemic on a (static) graph generated by the configuration model. Miller [18]
later simplified the derivation to produce a single ODE. The results of Volz and Miller
were based on heuristic computations, but later their conclusion was made rigorous by
Decreusfond et al [6] assuming E(D5) <∞.

Janson, Lukzak, and Windridge [13] proved the result under more natural assump-
tions. They studied the epidemic on the graph by revealing its edges dynamically while
the epidemic spreads. Recall that the configuration is constructed using half-edges. The
authors in [13] call a half-edge free if it has not yet been paired with another half-edge.
They call a half-edge susceptible, infected or removed according to the state of its vertex.
To modify their construction to include rewiring we add the third bullet below. Hereafter
we use“randomly chosen” and “at random” to mean that the distribution of the choice is
uniform over the set of possibilities.

• Each free infected half-edge chooses a free half-edge at rate λ. Together the pair
forms an edge and is removed from the collection of half-edges. If the pairing
is with a susceptible half-edge then its vertex becomes infected and all its edges
become infected half-edges.

• Infected vertices recover and enter the removed state at rate 1.

• Each infected half-edge gets removed from the vertex that it is attached to at rate
ρ and immediately becomes re-attached to a randomly chosen vertex.

To analyze the avoSI model we follow the approach in Janson, Luczak, and Windridge
[13] and construct the graph as we run the infection process. The construction of this
process and its coupling to evoSI are described in Section 3.1. Initially the graph consists
of half-edges connected to vertices, as in the configuration model construction before
the half-edges are paired. Let X̃t be the total number of half-edges at time t and let X̃I,t

be the number of half-edges that are attached to infected vertices and let S̃t,k be the

number of susceptible vertices with k half-edges at time t. The evolution of S̃t,k in avoSI
is given by, see (3.2.1),

dS̃t,k = −

(
λX̃I,t

kS̃t,k

X̃t − 1

)
dt+

(
1{k≥1}ρX̃I,t

S̃t,k−1

n

)
dt−

(
ρX̃I,t

S̃t,k
n

)
dt+ dM̃t,k,

where M̃t,k is a martingale and we have returned to using λ as the infection rate and ρ
as the rewiring rate.

Following [13] we time-change the process by multiplying the original transition rates
by (X̃t − 1)/(λX̃I,t). Let Xt be the number of half-edges at time t in the time changed
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process, and let XS,t be the number of half-edges that are attached to susceptible
vertices. Using St,k for the time-changed process the new dynamics are, see (3.2.3),

d

(
St,k
n

)
= −

(
k
St,k
n

)
dt+

(
1(k≥1)

ρ

λ

Xt − 1

n

St,k−1

n

)
dt

−
(
ρ

λ

Xt − 1

n

St,k
n

)
dt+ d

(
M t,k

n

)
. (1.6.1)

Note that, thanks to the time change, the number of infected half-edges XI,t no longer
appears in the equation. Let γn be the first time there are no infected half-edges. Let
w(t) = exp(−t) and m1 = E(D). The key to the proof of Theorem 1.13 is to show

sup
0≤t≤γn

∣∣∣∣Xt

n
−m1w(t)2

∣∣∣∣ P−→ 0,

sup
0≤t≤γn

∣∣∣∣∑∞k=0 St,k
n

− F0(w(t))

∣∣∣∣ P−→ 0, (1.6.2)

sup
0≤t≤γn

∣∣∣∣∑∞k=0 kSt,k
n

− F1(w(t))

∣∣∣∣ P−→ 0,

where

F0(w) = exp(−(α/2)(w − 1)2)G(w),

F1(w) = exp(−(α/2)(w − 1)2)w(G′(w) + α(1− w)G(w)). (1.6.3)

From the results above, we see that

Xt

XS,t

P−→ m1w

exp(−(α/2)(w − 1)2) · (G′(w) + α(1− w)G(w))
. (1.6.4)

The logarithm of the right-hand side is f(w). Under assumption (?),

σ = sup{w : 0 < w < 1, f(w) = 0}

gives the time z = − log(σ) at which the infection dies out in the time-changed process
and ν defined in (1.5.3) gives the fraction of sites which have been infected.

There are four steps in the proof of (1.6.2):

• In Section 3.2 we show that for each fixed k ∈ N, {St,k/n, t ≥ 0}n≥1 is a tight
sequence of processes.

• In Section 3.3 we show that any subsequential limit satisfies a system of differential
equations (3.3.4) that has a unique solution s̄t,k, so St,k/n→ s̄t,k.

• Section 3.4 we deal with the technicality of showing that the limit of
∑∞
k=0 kS̄t,k/n

is the sum of the limits
∑∞
k=0 ks̄t,k.

• In Section 3.5 we complete the proof by establishing the formulas for σ and ν.

1.7 Sketch of Proof of Theorem 1.15

In the AB-avoSI model, each half-edge i has two indices A(i, t) and B(i, t).

• The infection index A(i, t) = 0 if i has not been infected by time t. If i first become
an infected half-edge at time s, then we set A(i, t) = s for all t ≥ s.

• The rewiring index B(i, t) = 0 if i has not been rewired by time t. If i gets rewired at
time s, then we update the value of B(i, s) to be s, regardless of whether i has been
rewired before or not. B(i, ·) remains constant between consecutive rewirings.
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Suppose an infected half-edge i pairs with a susceptible half-edge j at tine t, then (in
the AB-avoSI model) i will transmit an infection to j if and only if A(i, t) > B(j, t). See
Section 4.1 for more details about the AB-avoSI model and its relationship to evoSI. Let
Št,k be the number of susceptible vertices with k half-edges at time t and set

Gi,j = {I(i, t) = 1, A(i, t) ≤ B(j, t)}.

Here I(i, t) is an indicator function such that I(i, t) = 1 if half-edge i is an infected
half-edge at time t (see the first paragraph of Section 4.2 for the definitions of the
notations I(i, t), S(i, t), S(i, k, t), D(j, t) appearing below). As in the avoSI model we make
a time-change by multiplying the original transition rates by (X̌t − 1)/(λX̌I,t). Using a
hat to denote the quantities after the time-change in the AB-avoSI model, we have that,
for all k ≥ 0,

dŜt,k = −kŜt,k dt+ 1{k≥1}
ρ

λ

Ŝt,k−1

n
(X̂t − 1) dt− ρ

λ

Ŝt,k
n

(X̂t − 1) dt

+
1

X̂I,t

 X̂0∑
i,j=1

1Gi,j1{S(j,k+1,t)=1}

 dt+ dM̂t,k,

where M̂t,k is a martingale. See equation (4.2.2). This system of equations is not solvable
but we can expand in powers of t to study the time-changed system for small t. If we
let X̂t, X̂I,t, Ŝt be the number of half-edges, the number of infected half-edges and the
number of susceptible vertices, respectively, then we have

X̂I,t = X̂I,0 +

∫ t

0

(
−2(X̂u − 1) +

∞∑
k=0

k2Ŝu,k −
ρ

λ

Ŝu
n

(X̂u − 1)

)
du+ M̂t

− 1

X̂I,t

 X̂0∑
i,j=1

1Gi,j (D(j, t)− 1)1{S(j,t)=1}

 dt,

(1.7.1)

where M̂t is a martingale. See equation (4.3.12). Define

E(t) =
1

X̂I,t

 X̂0∑
i,j=1

1Gi,jD(j, t)1{S(j,t)=1}

 . (1.7.2)

By expanding Ŝt,k around t = 0 up to the second order, we get, for any ε > 0, λ close to
λc and t0 close to 0,

lim
n→∞

P

(
X̂I,t ≥

(
ρm1

2λ2
c

(λ− λc)t+
m1∆

4
t2 − ε

)
n

−
∫ t

0

E(u)du,∀0 ≤ t ≤ γn ∧ t0
)

= 1.

(1.7.3)

See (4.3.3) of Lemma 4.4. Here the ∆ is the same as the one in (1.4.1), i.e.,

∆ = −µ3

µ1
+ 3(µ2 − µ1).

Remark 1.16. In the case of avoSI, we have that, for n large,

XI,t = Xt −XS,t = XS,t

(
Xt

XS,t

− 1

)
∼ XS,t(f(exp(−t))− 1)
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with f defined in (1.5.1). By expanding f up to the second order and using (1.5.6) along
with the fact that exp(−t) = 1− t+ t2/2 + o(t2), we get

XI,t ∼ nm1(−f ′(1)(t− t2/2) + f ′′(1)t2/2 + o(t2))

≥ nm1

(
ρ(λ− λc)t/(2λ2

c) + (∆t2)/4
) (1.7.4)

for small t and λ close to λc. In the case of AB-avoSI, see (4.5.12), we have,

n

(
ρm1(λ− λc)

4λ2
c

t+
m1∆

8
t2 − ε2 − ε6

)
as a lower bound when t > ε (the ε2 and ε6 here are some small numbers depending on ε).
The two expansions do not match but both linear terms vanish at λc and the quadratic
terms have the same sign so this is good enough.

The proof of Theorem 1.15 is organized into five steps:

• In Section 4.1 we define the AB-avoSI process and prove that evoSI stochastically
dominates AB-avoSI.

• In Section 4.2 we derive basic moment estimates for various quantities that will
prepare us for later proofs. See Lemma 4.3.

• In Section 4.3 we give rough upper and lower bounds for Ît and X̂I,t involving
the integral of E(t). See Lemma 4.4. We also give an easy upper bound for E(t)

in (4.3.25).
• In Section 4.4 we decompose E(t) into two parts (see (4.4.1)) and give refined

bounds for each part. See Lemmas 4.5 and 4.6.
• In Section 4.5 we combine our estimates to complete the proof.

2 Proof of Theorem 1.6

2.1 Coupling of evoSI and delSI

We first prove Lemma 1.2 before proving Theorem 1.6. We define three sequences of
random variables, which will serve as the joint randomness to couple evoSI and delSI:

• Let Te,`, ` ≥ 1 be independent exponential random variables with mean 1/λ.
• Let Re,`, ` ≥ 1 be independent exponential random variables with mean 1/ρ.
• Let Ue,`, ` ≥ 1 be independent random variables chosen uniformly at random from

all vertices.

Construction of evoSI. We define three sets of edges in evoSI at time t:

• Active edges, denoted by Eat , are the edges at time t that connect an infected vertex
and a susceptible vertex.

• Uninfected edges, denoted by E0
t , connect two susceptible vertices.

• Inactive edges, denoted by E it , have both ends infected. Once an edge becomes
inactive it remains inactive forever.

The three sets form a partition of all edges.
The three set-valued processes just defined are right-continuous pure jump processes.

At time 0 we randomly choose a vertex u0 to be infected. Ea0 consists of the edges with
one endpoint at u0. E0

0 is the collection of all edges in the graph minus the set Ea0 . E i0 = ∅.
We will consider the corresponding sets for delSI, but they will be denoted by Dt to avoid
confusion.

For each undirected edge e, let τee,` be the `-th time the edge becomes active (the
superscript ‘e’ is short for evo). To make it easier to describe the dynamics, suppose that
at time τee,` we have e = {xe,`, ye,`} with xe,` infected and ye,` susceptible.
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• Let Te,`, ` ≥ 1 be the time between τe,` and the infection of ye,` by xe,`.

• Let Re,`, ` ≥ 1 be the time between τe,` and the time when ye,` breaks its connection
to xe,` and rewires.

• Let Ue,` be the vertex that ye,` connects to at time τee,` +Re,` (if rewiring occurs).

Initial step. To simplify writing formulas, let

Se,` = min{Te,`, Re,`}. (2.1.1)

At time 0, a randomly chosen vertex u0 is infected. For a vertex x, let N 0(x, t),N a(x, t)

and N i(x, t) be the collection of uninfected, active and inactive edges that are connected
to x at time t, respectively. At time 0 the edges N 0(u0, 0) = {e0,1, . . . , e0,k} are added
to the list of active edges, where k is the degree of u0. We have Ea0 = {e0,1, . . . , e0,k}.
Suppose e0,j connects u0 and yj . At time

Je1 = min
1≤j≤k

Se0,j ,1

the first event occurs. (J is for jump and e stands for evo.) Let i be the index that
achieves the minimum.

(i) If Re0,i,1 < Te0,i,1, then at time Je1 vertex yi breaks its connection with u0 and rewires
to Ue0,i,1. If Ue0,i,1 is susceptible at time Je1 , we move the edge e0,i to E0

Je1
. On the initial

step this will hold unless Ue0,i,1 = u0 in which case nothing has changed.

(ii) If Tei,1 < Rei,1 then at time Je1 vertex yi becomes infected by u0. We move e0,i to E iJe1 .

We add edges in N 0(yi, J
e
1−) to EaJe1 .

Induction step. For any active edges e present at time t, let Le(e, t) = sup{` : τee,` ≤ t}
and let

V e(e, t) = τee,Le(e,t) + Se,Le(e,t)

be the time of the next event (infection or rewiring) to affect edge e. Again, the
superscripts ‘e’ in Le(e, t) and V e(e, t) imply that these quantities are for the evoSI model.
Suppose we have constructed the process up to time Jem for some m ∈ N. If there are no
active edges present at time Jem, the construction is done. Otherwise, let

Jem+1 = min
e∈Ea

Jem

V e(e, Jem).

Let em be the edge that achieves the minimum of V e(e, Jem), let x(em) be the infected
endpoint of em and y(em) be the susceptible endpoint of em. To simplify notation let
Lm = Le(em, J

e
m).

(i) If Rem,Lm < Tem,Lm , then at time Jem+1 vertex y(em) breaks its connection with x(em)

and rewires to Uem,Lm . If Uen,Ln is susceptible at time Jem+1, then em is moved to E0
Jen+1

.
Otherwise it remains active.

(ii) If Ten,Ln < Ren,Ln , then at time Jem+1 the vertex y(en) is infected by x(em) and em is
moved to E iJn+1

. Further,

• all edges e′ in N 0(y(em), Jem+1−) are moved to EaJem+1
. Since y(em) has just become

infected, the other end of e′ must be susceptible at time Jem+1.

• all edges e′′ in N a(y(em), Jem+1−) are moved to E iJem+1
. Since y(em) has just become

infected, (a) the other end of e′′ must be infected at time Jem+1, and (b) e′′ cannot
have been inactive earlier.
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Figure 5: Change of the status of different edges after y(em) becomes infected by x(em).
Black dots mark infected sites.

Construction of delSI. There is no rewiring in delSI, each edge will become active

at most once. Thus for each undirected edge e we only need two exponential random
variables Te,1 and Re,1, defined in the beginning of Section 2.1. This allows us to couple
evoSI and delSI. Also, we use D0

t ,Dat and Dit to represent the set of uninfected, active
and inactive edges in delSI, respectively.

Initial step. At time 0, a randomly chosen vertex u0 is infected. The edges N 0(u0, 0) =

{e0,1, . . . , e0,k} are added to the list of active edges. We have Da0 = {e0,1, . . . , e0,k}.
Suppose ej connects u0 and yj . At time

Jd1 = min
1≤j≤k

Se0,j ,1

the first event occurs. The superscript ‘d’ stands for delSI and Se,1 = min{Te,1, Re,1}, as
defined in (2.1.1). Let i be the index that achieves the minimum.

(i) If Re0,i,1 < Te0,i,1, then at time Ja1 the edge e0,i is removed from the graph (and hence
also from the set Da

Jd1
).

(ii) Te0,i,1 < Re0,i,1 then at time Ja1 vertex yi is infected by xi. We move e0,i to Di
Jd1

. We

add N 0(xi, J
d
1−) to Da

Jd1
.

Induction step. For any active edge e at time t, let τde,1 be the first time that e becomes
active in the delSI process. We also let

V d(e, t) = τde,1 + Se,1,

be the time of the next event (infection or rewiring) to affect edge e. Suppose we have
constructed the process up to time Jdm. If there are no active edges present at time Jdm,
the construction is done. Otherwise, we let

Jdm+1 = min
e∈Da

Jdm

V (e, Jdm).

Let em be the edge that achieves the minimum of V d(e, Jdm), let x(em) be the infected
endpoint of em and y(em) be the susceptible endpoint of e.

(i) If Rem,1 < Tem,1, then at time Jdm+1 the edge em is deleted from the graph (and hence
also from the set Da

Jdm+1
).

(ii) If Ten,1 < Ren,1, then at time Jdm+1 the vertex y(em) is infected by x(em). We move em
to Di

Jdm+1
.
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• We move all edges e′ in N 0
y(em),Jdm+1−

to Da
Jdm+1

. Since y(em) has just become

infected, the other end of e′ must be susceptible at time Jdm+1

• We move all edges e′′ in N a
y(em),Jdm+1−

to Di
Jdm+1

. Since y(em) has just become

infected, (i) the other end of e′′ must be infected at time Jdm+1, and (ii) e′′ cannot
have been inactive earlier.

We now prove by induction that avoSI dominates evoSI.

Lemma 2.1. All vertices infected in delSI are also infected in evoSI and are infected
earlier in avoSI than evoSI.

Proof. The induction hypothesis holds for the first vertex since u0 is infected at time 0
in both evoSI and delSI. Suppose the induction holds up to the k-st infected vertex in
delSI. Assume at time t, y becomes the (k+ 1)-st infected vertex in delSI and y is infected
by vertex x through edge e. We see from the construction of delSI that this implies
Te,1 < Re,1. Suppose x was infected at time s < t in delSI. The induction hypothesis
implies that x has also been infected in evoSI at a time s′ ≤ s. There are two possible
cases for y in evoSI:

• y has already become infected by time s′ + Te,1.

• y was still susceptible right before s′ + Te,1. In this case, y will be infected at time
s′ + Te,1 ≤ s+ Te,1 = t.

In either case x has been infected by time t in evoSI. This completes the induction step
and thus proves Lemma 1.2.

2.2 The infected sites in delSI

In the introduction we have noted that delSI is equivalent to independent bond
percolation. That is, we keep each edge independently with probability λ/(λ+ ρ) and
find the component containing the initially infected vertex (say, vertex 1). To compute
the size of the delSI epidemic starting from vertex 1, we apply a standard algorithm, see
e.g., [17], for computing the size of the component containing 1 in the reduced graph in
which edges have independently been deleted with probability ρ/(λ + ρ). We call this
the exploration process of delSI. At step 0 the active set A0 = {1}, the unexplored set
U0 = {2, . . . n}, and the removed set R0 = ∅. Here removed means these sites are no
longer needed in the computation. In the SI model sites never enter the removed state,
Let ηi,j = ηj,i = 1 if there is an edge connecting i and j in the reduced graph. If ηi,j = 1

an infection at i is transmitted to j. At step t if At 6= ∅ we pick an it ∈ At and update the
sets as follows.

Rt+1 = Rt ∪ {it},
At+1 = (At − {it}) ∪ {y ∈ Ut : ηit,y = 1},
Ut+1 = Ut − {y ∈ Ut : ηit,y = 1}.

When At = ∅ we have found the cluster containing 1 in the reduced graph, which will be
the final set of infected sites in the SI model. The exploration process of the configuration
model can be similarly defined (just without deletion of edges) and we let Jt be the set
of active sites at step t in this exploration. We set Rt = |Rt+1| = t+ 1, At = |At+1| and
Jt = |Jt+1|. We make a time shift so that At and Jt can be coupled with two random
walks with i.i.d. increments (see Lemma 2.2 below).

We now study the exploration process of the configuration model itself as well as the
delSI process on such graph. Let ψ0 have generating function G defined in (1.2.1) and ζ0
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have a Binomial(D,λ/(λ+ ρ)) distribution whose generating function is denoted by Gρ.
The two generating functions are related by

Gρ(z) = G

(
λ

λ+ ρ
z +

ρ

λ+ ρ

)
.

Recall the definition of the generating function Ĝ in (1.2.2). We can similarly define
Ĝρ. Let {χi, i ≥ 1} and {ξi, i ≥ 1} be independent random variables with generating
functions Ĝ and Ĝρ, respectively. Define two random walks (for integer-valued t):

W0 = ψ0 Wt = W0 +

t∑
r=1

(χr − 1); S0 = ζ0 St = S0 +

t∑
r=1

(ξr − 1). (2.2.1)

Let τW0 = inf{t ≥ 0 : Wt = 0} and set W̄t = Wt∧τW0 . We define S̄t in a similar way.

Lemma 2.2. We can couple {Jt, 0 ≤ t ≤ n1/3 log n} and {W̄t, 0 ≤ t ≤ n1/3 log n} so that

lim
n→∞

P
(

(Jt)
n1/3 logn
t=0 = (W̄t)

n1/3 logn
t=0

)
= 1. (2.2.2)

Similarly, there exists a coupling of {At, 0 ≤ t ≤ n1/3 log n} and {S̄t, 0 ≤ t ≤ n1/3 log n} so
that

lim
n→∞

P
(

(At)
n1/3 logn
t=0 = (S̄t)

n1/3 logn
t=0

)
= 1. (2.2.3)

Note that W̄t and S̄t can be viewed as the exploration processes of two-phase branch-
ing process Zm and Z̄m (both are defined in Section 1.2), respectively. The proof of
Lemma 2.2 is deferred to the end of this section. For the rest of this section we will
always work on the event

{At = S̄t, 0 ≤ t ≤ n1/3 log n} ∩ {Jt = W̄t, 0 ≤ t ≤ n1/3 log n}

and hence assume that At and Jt have independent increments until they hit 0.

2.3 Proof of Theorem 1.6(i)

The formula for the critical value of delSI follows from standard results on percolation
in random graphs. Note that in delSI each edge is kept with probability λ/(λ+ ρ). Using
[12, Theorem 3.9] we see that

λc(delSI) =
ρm1

m2 − 2m1
.

Equivalently, we have

αc(delSI) =
ρm1

λc(delSI)
= m2 − 2m1.

Recall that Lemma 1.2 shows that the final set of infected individuals in delSI is contained
in the analogous set for evoSI with the same parameters so

λc(evoSI) ≤ λc(delSI).

To prove that the two are equal we will show that if λ < λc(delSI) then evoSI dies out,
i.e., infects only a vanishing portion of the total population as n→∞.

To compare the two evolutions, we will first run the delSI epidemic to completion.
Once this is done we will randomly rewire the edges deleted in delSI. If the rewiring
creates a new infection in evoSI, then we have to continue to run the process. If not,
then the infected sites in the two processes are the same. Let R be the set of sites that
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are eventually infected in delSI, and let R′ be the set of eventually infected sites in evoSI.
Let R′ = |R′| and R = |R|.

To get started we use a result of Janson [11] about graphs with specified degree
distributions. He works in the set-up introduced by Molloy-Reed [19, 20] where the
degree sequence dni , 1 ≤ i ≤ n is specified and one assumes only that limiting moments
exist as well some other technical assumptions that are satisfied in our case (for a more
recent example see [13]):

1

n

n∑
i=1

dni → µ,
1

n

n∑
i=1

dni (dni − 1)→ θ. (2.3.1)

The next result is Theorem 1.1 in [11]. The µ and θ in this theorem have the same
meaning as (2.3.1). The “whp” below is short for with high probability, and means that
the probability the inequality holds tends to 1 as n → ∞. Let Dn = dnu0

where u0 is
randomly chosen from {1, 2, . . . , n}.
Theorem 2.3. Suppose µ > 0, θ > 1, and P(Dn ≥ k) ≤ Ck1−γ for some γ > 3 and C <∞.
Then there is a constant C2.3.2 which depends on C so that the largest component C1 has

|C1| ≤ C2.3.2n
1/(γ−1) whp. (2.3.2)

Theorem 2.3 can also be applied to the setting where the degrees are random
rather than deterministic. We have assumed that in the original graph ED5 < ∞, so
P(D ≥ k) ≤ k−3E(D3) and we have

P(Dn ≥ k) =
1

n

n∑
i=1

P(Di ≥ k) = P(D1 ≥ k) ≤ k−3E(D3) ≤ Ck−3.

It follows that
|C1| ≤ C2.3.2n

1/3 whp. (2.3.3)

Let Nd be the number of deleted edges in the exploration process of delSI. One
vertex is removed from the construction on each step, so whp the number of steps
is ≤ r0 := C2.3.2n

1/3. Note that r0 � n1/3 log n so we can assume Jt has independent
increments by Lemma 2.2. It follows that

Nd ≤ r0 + W̄r0 ≤ r0 + ψ0 +

r0∑
r=1

χr.

where we recall that the χi are independent with the distribution D∗ − 1. The inequality
comes from the fact that we are counting all the edges even if they are not deleted.
Since E(D3) <∞, we have

Var (χi) ≤ E(χ2
i ) = E[(D∗ − 1)2] ≤ E[(D∗)2] =

E(D3)

E(D)
<∞

and Var (ψ0) ≤ Eψ2
0 = ED2 <∞. Let 1/3 < a < 1/2. Using Chebyshev’s inequality

P(Nd ≥ r0Eχ1 + Eψ0 + r0 + na) ≤ (r0Eχ
2
1 + Eψ2

0)/n2a ≤ Cn1/3−2a. (2.3.4)

A similar argument shows that

P(Ar0 +Rr0 ≥ r0Eξ1 + Eζ0 + r0 + na) ≤ (r0Eξ
2
1 + Eζ2

0 )/n2a ≤ Cn1/3−2a. (2.3.5)

Since a > 1/3, when n is large we can upper bound r0Eχ1 + Eψ0 + r0 + na and r0Eξ1 +

Eζ0 + r0 + na by 2na.
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At step r0 we use random variables independent of delSI to randomly rewire the
deleted edges. Let Y be the number of edges deleted up to time r0 that rewire to the set
Ar0+1 ∪Rr0+1. By construction

Y = Binomial(Nd, (Ar0 +Rr0)/n).

Using (2.3.4), (2.3.5) and r0 ≤ C2.3.2n
1/3 we see that on a set with probability ≥ 1 −

Cn−(2a−1/3)

Y � Binomial(2na, 2na−1) ≡ Ȳ ,

where ≡ indicates that the last equality defines Ȳ . From this we get

P(Y ≥ 1) ≤ P(Ȳ ≥ 1) ≤ E(Ȳ ) =
4n2a

n
→ 0, (2.3.6)

since a < 1/2. Since {Y = 0} ⊂ {R = R′}, this shows P(R = R′) → 1 as n → ∞ and
completes the proof of (i). To prepare for the proof of (ii) note that the conclusion (the
set of infected sites coincide in delSI and evoSI) holds as long as the number of steps is
smaller than Cn1/3 even if the epidemic is supercritical.

2.4 Proof of Theorem 1.6(ii)

We need the following ingredient in the proof.

Lemma 2.4. There is a γ > 0 so that

P(0 < Alogn < γ log n|A0 > 0) ≤ C

log n
.

Proof of Lemma 2.4. On the event {Alogn > 0} we have Alogn = Slogn, which is, by
definition,

ζ0 +

logn∑
r=1

ξr.

Hence if we take γ = E(ξ1)/2 then we have

P(0 < Alogn < γ log n|A0 > 0) ≤ P

(
logn∑
r=1

ξr ≤
E(ξ1) log n

2

)

≤ P

(∣∣∣∣∣
logn∑
r=1

ξr − E(ξ1) log n

∣∣∣∣∣ ≥ E(ξ1) log n

2

)

≤ 4Var (ξ1) log n

(E(ξ1))2 log2 n
≤ C

log n
.

Let Bd and Be be the events that there is a large epidemic in delSI and evoSI
respectively. We now use Lemma 2.4 to show the difference between the probabilities of
these two events vanishes asymptotically.

Lemma 2.5. Suppose λ > λc(delSI). As n→∞, P(Be)− P(Bd)→ 0.

Proof of Lemma 2.5. ClearlyP(Bd) ≤ P(Be). Let St be the random walk defined in (2.2.1).
To prove Lemma 2.5 we need the following lemma. Now we return to the proof of
Lemma 2.5. Let F0 = {Alogn = 0}, F1 = {0 < Alogn < γ log n} and F2 = {Alogn ≥ γ log n}.
Decomposing Bd into three parts and using Lemma 2.4:

P(Bd) =

2∑
i=0

P(Bd | Fi)P (Fi).

We note that
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• P(Bd|F0) = 0 by the definition of F0.

• P(F1) converges to 0 by Lemma 2.4.

• P(Bd|F2) converges to 1 by the same argument as the proof of Theorem 2.9(c) in
[13] (see page 750-752 in [13]).

Therefore we have P(Bd)− P(F2)→ 0. As for P(Be), we note that by the remark at the
end of the proof of (i) one has P(Alogn = A′logn)→ 1 where A′logn is the number of active

sites in evoSI at step log n. Using the decomposition P(Be) =
∑2
i=0P(Be ∩F ′i ) where the

event F ′i is defined in a similar way to Fi with Alogn replaced by A′logn, we see

• P(Be ∩ F ′1) ≤ P(F ′1) ≤ P(F1) + o(1) = o(1).

• P(Be ∩ F ′0) = o(1) by definition of Be.

• P(Be ∩ F ′2) = P(F ′2) + o(1) = P(F2) + o(1).

It follows that P(Be) − P(F2) → 0. This implies that P(Be) − P(Bd) → 0. It remains to
compute the limit of P(F2). Since P(F1) = o(1), we have

P(F2) = P(F2 ∪ F1) + o(1) = P(Alogn > 0) + o(1). (2.4.1)

This completes the proof of Lemma 2.5.

To compute the limit of P(Alogn > 0), note that due to Lemma 2.2, At can be
coupled with the exploration process of the two-phase branching process Z̄m defined in
Section 1.2. Therefore we have (recall that q(λ) is the survival probability of Z̄m)

P(Alogn > 0) = P(Z̄m > 0,∀m) + o(1) = q(λ) + o(1).

By (2.4.1) we see that P(F2) → q(λ) as well. This implies that both P(Be) and P(Bd)

converge to q(λ) as n → ∞ and completes the proof of Theorem 1.6(ii). Note that
using the fact that delSI is equivalent to independent bond percolation, the statement
P(Bd) → q(λ) also follows from standard results on percolation in random graphs.
See, e.g., [12, Theorem 3.9]. It remains to prove Lemma 2.2 to complete the proof of
Theorem 1.6.

Proof of Lemma 2.2. We only prove equation (2.2.2) since the other one follows from
(2.2.2) and the fact that delSI is equivalent to percolation with edge retaining probability
λ/(λ+ ρ). The proof consists of two steps. First, we define an empirical version of Wt.
Let D1, . . . , Dn be i.i.d. random variables sampled from the distribution of D. Given a
sample of D1, . . . , Dn, let ψn0 be sampled from the (random) distribution

Pn(ψn0 = k) =
1

n
|{1 ≤ i ≤ n : Di = k}| , ∀k ≥ 0,

which is the sample empirical distribution. Let χnr , r ≥ 1 have the distribution

Pn(χnr = k) =
1

D1 + . . .+Dn
(k + 1) |{1 ≤ i ≤ n : Di = k + 1}| ∀k ≥ 0.

Define

Wn
t = ψn0 +

t∑
r=1

(χnr − 1), t ∈ N.

In other words, Wn
t is a random walk in the random environment given by D1, . . . , Dn.

We define W̄n
t to be Wn

t∧τ ′ where τ ′ is the first time Wn
t hits zero. Note that the condition

E(D5) <∞ implies that max1≤i≤nDi = o(n1/4 log n) whp for any ε > 0. Indeed we have

P

(
max

1≤i≤n
Di > n1/4 log n

)
≤ nP(D1 > n1/4 log n) ≤ n · n−1 log−4 nE(D4) ≤ C log−4 n.

(2.4.2)
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Consequently, for n large enough, whp√
n

max1≤i≤nDi
> n3/8/ log n.

Using Lemma 2.12 in [23], we see that (recall that Jt is the exploration process of the
configuration model starting from a uniformly randomly chosen vertex)

• Jt can be coupled with W̄n
t with high probability up to time n3/8/ log n.

• Whp the subgraph obtained by exploring the neighborhoods of n3/8/ log n vertices
is a tree.

Using n1/3 log n� n3/8/ log n,

lim
n→∞

P
(
Jt = W̄n

t , 0 ≤ t ≤ n1/3 log n
)

= 1. (2.4.3)

To prove (2.2.2) it remains to show that one can couple Wn
t and Wt up to step n1/3 log n.

To this end, we use the characterization of total variation distance in terms of optimal
coupling. It is well known that for any two random variables X and Y ,

dTV(X,Y ) = inf
all couplings of X,Y

P(X 6= Y ).

See [26, Theorem 1.14] for instance. Using Dn to denote the degree sequenceD1, . . . , Dn,
it suffices to show that

dDn

TV((ψn0 , {χnr , 1 ≤ r ≤ n1/3 log n}), (ψ0, {χr, 1 ≤ r ≤ n1/3 log n})) P−→ 0. (2.4.4)

Here the superscript Dn indicates that we are considering the quenched law of ψn0 and
ξn0 . Since conditionally on Dn, ψn0 and χnr , r ≥ 1 are all independent,

dDn

TV((ψn0 , {χnr , 1 ≤ r ≤ n1/3 log n}), (ψ0, {χr, 1 ≤ r ≤ n1/3 log n}))

≤dDn

TV(ψn0 , ψ0) +

n1/3 logn∑
r=1

dDn

TV(χnr , χr)

≤dDn

TV(ψn0 , ψ0) + (log n)n1/3dDn

TV(χn1 , χ1).

(2.4.5)

We need the following lemma to control Dn. Recall that we let pk = P(D = k) and
m1 = E(D). Also recall that we assume E(D5) <∞.

Lemma 2.6. For any ε > 0,

P

(∣∣∣∣∣
n∑
i=1

Di − nm1

∣∣∣∣∣ > n1/2+ε

)
≤ Cn−2ε. (2.4.6)

Let Nk be the cardinality of the set {i : Di = k}. We have

P
(
|Nk − npk| > nε(npk)1/2

)
≤ n−2ε. (2.4.7)

Proof of Lemma 2.6. Both (2.4.6) and (2.4.7) follow from Markov’s inequality. For (2.4.6)
we note that

P

(∣∣∣∣∣
n∑
i=1

Di − nm1

∣∣∣∣∣ > n1/2+ε

)
≤ nVar(D1)

n1+2ε
≤ Cn−2ε.

For the second inequality, we note that E(1{D1=k} − pk)2 = pk(1 − pk) ≤ pk. It follows
that

E(Nk − npk)2 = E

(
n∑
i=1

(
1{Di=k} − pk

))2

= nE(1{D1=k} − pk)2 ≤ npk.
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Therefore

P
(
|Nk − npk| > nε(npk)1/2

)
≤ E(Nk − npk)2

n2ε(npk)
≤ n−2ε. (2.4.8)

Let ε1 = 1/100, ε2 = 1/8 + 1/100. Consider the event

Ωn =

{
max

1≤i≤n
Di ≤ n1/4 log n,

∣∣∣∣∣
n∑
i=1

Di − nm1

∣∣∣∣∣ ≤ n1/2+ε1

}
∩
{
|Nk − npk| ≤ nε2(npk)1/2 for 1 ≤ k ≤ n1/4 log n

}
.

(2.4.9)

Lemma 2.6 and equation (2.4.2) imply that P(Ωn) → 1 by the union bound. We now
control dDn

TV(χn1 , χ1) on Ωn. For k ≥ n1/4 log n, we have Pn(χn1 = k) = 0 on Ωn almost
surely. We also have

∑
k≥n1/4 lognP(χ1 = k) ≤ n−1E(D4) ≤ Cn−1. Hence we have∑

k≥n1/4 logn

|Pn(χn1 = k)− P(χ1 = k)| ≤ Cn−1. (2.4.10)

For 0 ≤ k ≤ n1/4 log n, using the definition of Ωn we get, for n large,

|Pn(χn1 = k)− P(χ1 = k)| =
∣∣∣∣ (k + 1)Nk+1∑n

i=1Di
− (k + 1)pk+1

m1

∣∣∣∣
≤
∣∣∣∣ (k + 1)Nk+1∑n

i=1Di
− n(k + 1)pk+1∑n

i=1Di

∣∣∣∣+

∣∣∣∣n(k + 1)pk+1∑n
i=1Di

− (k + 1)pk+1

m1

∣∣∣∣
≤ (k + 1)nε2(npk)1/2

m1n/2
+

(k + 1)pk+1 |nm1 −
∑n
i=1Di|

nm1

∑n
i=1Di

≤Cnε2n−1/2(k + 1)−1 + C(k + 1)pk+1n
−1/2+ε1 ,

(2.4.11)

where we have used the fact that pk ≤ Ck−4 since E(D4) <∞ in the last step. Summing
the last line of (2.4.11) over k from 0 to n1/4 log n and using the facts

n∑
k=1

k−1 ∼ log n,

∞∑
k=0

(k + 1)pk+1 = E(D) <∞,

we get, on Ωn,

n1/4 logn∑
k=0

|Pn(χn1 = k)− P(χ1 = k)| ≤ Cnε2n−1/2 log n+ Cn−1/2+ε1 . (2.4.12)

Inserting the values of ε1 = 1/100, ε2 = 1/8 + 1/100,

n1/4 logn∑
k=0

|Pn(χn1 = k)− P(χ1 = k)| ≤ Cn1/100 log n(n1/8−1/2 + n−1/2). (2.4.13)

Combining (2.4.10) and (2.4.13),

dDn

TV(χn1 , χ1) =
1

2

∑
k≥0

|Pn(χn1 = k)− P(χ1 = k)| ≤ Cn−73/200 log n. (2.4.14)

One can similarly show that Cn−73/200 log n also serves as an upper bound for dDn

TV(ψn0 , ψ0).
Thus on Ωn

dDn

TV(ψn0 , ψ0) + (log n)n1/3dDn

TV(χn1 , χ1) ≤ Cn−73/200+1/3 log2 n,

which converges to 0 as n → ∞. This together with (2.4.5) implies (2.4.4) and thus
completes the proof of Lemma 2.2.
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3 Upper bound on evoSI

3.1 avoSI

As mentioned in the introduction, in this we will construct a model that serves as an
upper bound for evoSI. We first introduce a model C-evoSI where ‘C’ stands for ‘coupled’
which means we couple the structure of the graph with the epidemic. The ‘avo’ stands
for avoiding infection.

The C-avoSI process is constructed as follows. First recall that in the construction
of the configuration model each vertex is assigned a random number of half-edges
initially. In the beginning all half-edges attached to the n vertices are unpaired. The
half-edges attached to infected nodes are called infected half-edges and those attached
to susceptible nodes are susceptible half-edges. Recall that“randomly chosen” and “at
random” mean that the distribution of the choice is uniform over the set of possibilities.

• At rate λ each infected half-edge pairs with a randomly chosen half-edge in the
pool of all half-edges excluding itself. If the vertex y associated with that half-edge
is susceptible then it becomes infected. Note that if vertex y changes from state S
to I then all half-edges attached to y become infected half-edges.

• Each infected half-edge gets removed from the vertex that it is attached to at rate
ρ and immediately becomes re-attached to a randomly chosen vertex in the pool of
all vertices.

For the purpose of comparisons it is convenient to give a reformulation of C-avoSI
where the graph has been constructed before the epidemic. We call this process avoSI.
To describe this process we define the notion of ‘stable edge’. We say that an edge
between two vertices x and y is stable if one of the following conditions hold:

• Both x and y are in state S.

• Either x or y has sent an infection to the other one through this edge.

We say that an edge is unstable if both conditions fail. Note that an S − I pair is
necessarily unstable since the vertex in state I has not sent an infection to the vertex in
state S. We define the avoSI process as follows:

• Each infected vertex sends infections to its neighbors at rate λ. If the neighbor has
already been infected then nothing changes. Once a vertex receives an infection, it
stays infected forever.

• A vertex in state S will break its connection with a vertex in state I at rate ρ

and rewire to another randomly chosen vertex. The events for different S − I
connections are independent.

• For every unstable I − I edge, each of the two I ′s will rewire at rate ρ to another
uniformly chosen vertex. (This also explains why we call such edges ‘unstable’,
since they may evolve.)

Lemma 3.1. The C-avoSI process and avoSI process running on a configuration model
have the same law in terms of the evolution of the set of infected vertices.

Proof of Lemma 3.1. It suffices to construct a graph G that has the law of the configura-
tion model such that the set of infected vertices in C-avoSI evolves in the same way as
that of the avoSI with initial underlying graph being G. Given an outcome of C-avoSI,
the graph G can be constructed as follows. Let H be the collection of vertices and
half-edges.

• We assign a unique label to each half-edge in C-avoSI and correspondingly label
the half-edges in H.
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• Whenever two half-edges combine into one edge in C-evoSI process we pair the
two half-edges with the same labels in H. It is clear that the pairings of half-edges
are done at random. We pair the remaining half-edges at random after there is no
infected half-edge in the system. This forms the graph G. Since the pairings of all
half-edges are at random, we deduce that G itself has the law of CM(n,D).

• Whenever a pairing occurs in C-avoSI, an infected vertex has sent an infection to
one of its neighbors(s) in avoSI.

• Whenever an infected half-edge h attached to x rewires to another vertex y in the
C-avoSI, the corresponding edge e in avoSI, which contains h as one of its two
half-edges, breaks from x and reconnects to vertex y.

The process we construct on G has the same law as avoSI. Indeed, an infected
half-edge can be rewired in C-avoSI if and only if it has not been paired. This exactly
corresponds to the notion of ‘unstable’ that we used in the construction of avoSI process.
Hence Lemma 3.1 follows.

From now on we will not distinguish between the C-avoSI and the avoSI since they
are equivalent. The avoSI process stochastically dominates the evoSI process, as shown
in the lemma below.

Lemma 3.2. The final size of infected vertices in avoSI stochastically dominates that in
evoSI.

We couple the evoSI and avoSI as follows. The evoSI is constructed in the same
manner as we did in the comparison of evoSI and delSI. See Section 2.1. We will use the
variables Te,`, Re,`, Ue,`, ` ≥ 1 (defined at the beginning of Section 2.1) in the construction
of avoSI to couple evoSI and avoSI.

Construction of avoSI. For avoSI we need four sets to partition the set of all edges.
We use A to avoid confusion with the sets used in the construction of evoSI (not to be
confused with the At used in Section 2).

• Active edges with one end infected at time t, denoted by Aa,1t , are the edges at
time t that connect an infected vertex and a susceptible vertex.

• Active edges with both ends infected , denoted by Aa,2t , are the unstable edges at
time t that connect two infected vertices.

• Uninfected edges, denoted by A0
t , connect two susceptible vertices.

• Inactive edges, denoted by Ait, consist of stable infected edges. Once an edge
becomes inactive it remains inactive forever.

We set At = Aa,1t ∪ Aa,2t . The four sets form a partition of all edges. They are
right-continuous pure jump processes. At time 0 we randomly choose a vertex u0 to be
infected. Aa,10 consists of the edges with one endpoint at u0. A0

0 is the collection of all
edges in the graph minus the set Aa,10 . Ai0 = Aa,20 = ∅.

For each undirected edge e, we let random variables Te,`, Re,`, Ue,` be the same as
those used in the construction of evoSI. We set Se,` = min{Te,`, Re,`}. We also let V ′e,`
be independent uniform random variables that take values in the two endpoints of e.
To make it easier to describe the dynamics, suppose that at time τae,` (the `-th time e
becomes active in avoSI) we have e = {xe,`, ye,`} with xe,` infected and ye,` susceptible.

The difference between evoSI and avoSI in terms of these clocks is as follows. For
any edge e connecting x and y, once one endpoint xe,` becomes infected, the clocks Te,`
and Re,` start running. If the other endpoint ye,` also becomes infected through other
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edges at (relative) time we,` < Se,` (here ‘relative’ means we only count the time after
the infection of x), then we replace the clocks Te,` and Re,` by

T ′e,` =
Te,` − we,`

2
and R′e,` =

Re,` − we,`
2

since the rates are now twice as fast.
To see that this construction give the correct dynamics of avoSI. We note that

conditionally on Te,`, Re,` > we,`, (Te,` − we,`)/2 and (Re,` − we,`)/2 are independent
exponential random variables with parameters 2λ and 2ρ, respectively. This corresponds
to an unstable I − I pair where each of the two I ′s attempt to send infection to the other
I at rate λ and rewire from the other I at rate ρ. The variable V ′e,` corresponds to the
vertex with small rewiring time.

If Te,` > Re,` then T ′e,` > R′e,` and vice versa. Using this and the fact that the uniform
variable Ue,` is the same in evoSI and avoSI we get the following proposition:

Proposition 1. If edge e is rewired in evoSI, then e must be rewired to the same vertex
in avoSI (as long as either endpoint of e becomes infected in avoSI). Also, the time it
take to e to be rewired in evoSI is not smaller than the time in avoSI.

We now formally construct the avoSI process by induction.

Initial step. At time 0, a randomly chosen vertex u0 is infected. Let

N 0(x, t), N a,1(x, t), N a,2(x, t), N i(x, t)

be the sets of edges connected to x that belong to the sets A0
t ,A

a,1
t ,Aa,1t and Ait, respec-

tively. At time 0 all edges in {e0,1, . . . , e0,k} are added to the list of active edges so that
Aa,10 = {e0,1, . . . , e0,k}. Suppose ej connects u0 and yj . At time

Ja1 = min
1≤j≤k

Se0,j ,1

the first event occurs. (The superscript ‘a’ indicates the avoSI model.) Let i be the index
that achieves the minimum.

(i) If Re0,i,1 < Te0,i,1, then at time Ja1 vertex yi breaks its connection with u0 and rewires
to Ue0,i,1. If Ue0,i,1 is susceptible at time Ja1 , we move the edge e0,i to A0

Ja1
. On the initial

step this will hold unless Ue0,i,1 = u0 in which case nothing has changed.

(ii) If Te0,i,1 < Re0,i,1 then at time Ja1 vertex yi becomes infected by u0. We move e0,i to
AiJa1 . We move edges in N 0(yi, J

a
1−) to AaJa1 .

Induction step. For any active edge e at time t, let La(e, t) = sup{` : τae,` ≤ t} and set

V a(e, t) =

{
τe,La(e,t) + Se,La(e,t) if e ∈ Aa,1t ,
τae,La(e,t)+I(x

∗,y∗)+Se,La(e,t)

2 if e ∈ Aa,2t ,

where I(x∗, y∗) is the first time that both x∗ = x(e, L(e, t)) and y∗ = y(e, La(e, t)) become
active vertices and the second line comes from the computation

τae,L(e,t) + (I(x∗, y∗)− τae,La(e,t)) +
Se,La(e,t) − (I(x∗, y∗)− τae,La(e,t))

2

=
τae,La(e,t) + I(x∗, y∗) + Se,La(e,t)

2
.

Then V a(e, t) is the time of the next event (infection or rewiring) to affect edge e. Suppose
we have constructed the process up to time Jm. If there are no active edges present at
time Jm, the construction is done. Otherwise, we let

Jam+1 = min
e∈AaJm

V a(e, Jam).
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Let em be the edge that achieves the minimum of V a(e, Jam). If em only has one endpoint
infected at time Jam then we let x(em) be the infected endpoint of em and y(em) be the
susceptible endpoint of em. To simplify notation let Lm = L(em, J

a
m).

(i) If Rem,Lm < Tem,Lm and em ∈ Aa,1Jam , then at time Jam+1 vertex y(em) breaks its connec-
tion with x(em) and rewires to Uem,Lm . If Uem,Lm is susceptible at time Jam+1, then em is

moved to A0
Jam+1

. Otherwise it remains in Aa,1Jam+1
.

(ii) If Rem,Lm < Tem,Lm and em ∈ Aa,2Jam , then at time Jam+1 vertex V ′em,Lm breaks its
connection with the other end of em and rewires to Uem,Lm . If Uem,Lm is susceptible at
time Jam+1, then em is moved to Aa,1Jam+1

. Otherwise em stays in the set Aa,2Jam+1

(iii) If Tem,Lm < Rem,Lm and em ∈ Aa,1Jam , then at time Jam+1 the vertex y(em) is infected by

x(em) and em is moved to AiJam+1
.

• All edges e′ in N 0
y(em),Jam+1−

are moved to Aa,1Jam+1
. Since y(em) has just become

infected, the other end of e′ must be susceptible at time Jam+1.

• All edges e′′ in N a,1
y(em),Jam+1−

are moved to Aa,2Jam+1
. Since y(em) has just become

infected, (i) the other end of e′′ must be infected at time Jam+1, and (ii) e′′ cannot
have been inactive earlier.

(iv) If Tem,Lm < Rem,Lm and em ∈ Aa,2Jam , then at time Jam+1, em is moved to AiJam+1
. There

are no changes for other edges.
The avoSI process stops when there are no active edges.

Proof of Lemma 3.2. We now prove by induction that all vertices infected in evoSI are
also infected in avoSI and actually they are infected earlier in avoSI than evoSI.

The induction hypothesis holds for the first vertex since initially u0 is infected in both
evoSI and avoSI. Suppose the induction holds up to the k-th infected vertex in evoSI.
Assume at time t, y becomes the (k + 1)-th infected vertex in evoSI. We assume that y is
infected by vertex x through edge e. Note that e has possibly gone through a series of
rewirings before connecting vertex y. We assume that e connects vertices x` and y` after
the (`− 1)-th rewiring. We also assume when x infects y through e, e has been rewired r
times. This implies that

Te,` > Re,` for 1 ≤ ` ≤ r and Te,r+1 < Re,r+1. (3.1.1)

We let m(x) = inf{i : x ∈ {xk, yk} for all i ≤ k ≤ r + 1}. We now divide the analysis into
two cases: m = 1 and 1 < m ≤ r + 1.

Case 1. m = 1 so that y = yk for all 1 ≤ k ≤ r + 1. If we assume that y has not been
infected by time t, then x1, . . . xr must have been infected at the time that the rewiring
occurred and xr+1 = x infected y at time t in evoSI. By the induction hypothesis we see
that x1, . . . , xr+1 are also infected in avoSI. By Proposition 1 and (3.1.1), e breaks its
connection with x1 and reconnects to x2, then to x3 and after r rewirings to xr+1. If y is
already infected before xr+1 sends an infection to it than we are done. Otherwise since
Te,`+1 < Re,`+1 we see that xr+1 will send an infection to y in avoSI as well. In any case
we have proved that x will also be infected in avoSI and is infected earlier. For a picture
see Figure 6.

Case 2. If m > 1, then again by Proposition 1, the induction hypothesis and (3.1.1)
we see that in the avoSI picture, e will be rewired at least r times and y becomes an
endpoint of e exactly after m− 1 rewirings. After this point we can repeat the analysis in
the case of m = 1 to deduce that x is also infected no later than t in avoSI. For a picture
see Figure 7.
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Figure 6: Illustration of the case m = 1. If y is infected before time t in avoSI then the
induction step holds true. If not, then since x1, . . . , xr+1 are the rewirings in evoSI, they
are also infected in avoSI and the rewiring occurs as does the infection of x by xr+1.
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Figure 7: Illustration of the case m > 1. We assume that at the time of the rewiring
x1, y1 and x2 are infected. Since one flips coins to determine the end that rewires, the
sequence of of edges (x′k, y

′
k) in avoSI is different from the edges in evoSI. However,

thanks to the use of Ue,` to determine the new endpoint, the second rewiring brings
the edge to y, and there is a correspondence between the vertices in the two processes
indicated by the drawing.

We now show that avoSI and delSI actually have the same critical value (and thus
also have the same critical value as evoSI by Theorem 1.6).

Lemma 3.3. Theorem 1.6 still holds if we replace evoSI by avoSI.

Proof. As we will see, Lemma 3.3 follows by repeating the proof of Theorem 1.6. Since
avoSI stochastically dominates evoSI (in terms of final epidemic size) and evoSI domi-
nates delSI, avoSI must also dominate delSI. We claim that if we run avoSI on a tree and
no edge is rewired to vertices that are infected up to time t, then there are no unstable
I − I pairs up to time t. This immediately implies that the evolution of the avoSI process
is equal to that of the evoSI process starting from the same initially infected vertex up
to time t. To prove the claim, suppose there is an unstable I − I pair connecting vertex
x and y, then there must be two infection paths that lead to the infections of x and y.
Here an infection path for x is just a sequence of vertices u0 → u1 → · · · → x where the
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former vertex in the chain infects the latter. Since the edge between x and y is unstable,
we see that if we consider the union of the two infection paths together with the edge
(x, y) then we get a cycle of infected vertices. This contradicts with the assumption that
the original graph is a tree and no edges are rewired to vertices infected by t (so that
rewirings will not help create any cycle of infected vertices).

As we mentioned in the proof of Lemma 2.2, by Lemma 2.12 in [23], whp the subgraph
obtained by exploring the neighborhoods of n3/8/ log n vertices of any fixed vertex is a
tree. The proof of Theorem 1.6(i) implies that with high probability no edge is rewired
to infected vertices up to step O(n1/3) (i..e, up to the exploration of the neighborhoods
of O(n1/3) vertices). Hence the condition of the above claim is satisfied. Using the
conclusion of the claim we see that whp we can couple the avoSI process and evoSI
process such that they coincide up to step O(n1/3). Therefore the proof of Theorem 1.6
also applies to the comparison of avoSI and delSI and hence Lemma 3.3 follows.

3.2 Tightness of {St,k/n, t ≥ 0}n≥1

We first consider S̃t,k, the number of susceptible vertices with k half-edges at time
t in the original avoSI process (i.e., without the time change). We have the following
equation

dS̃t,k = −

(
λX̃I,t

kS̃t,k

X̃t − 1

)
dt+

(
1{k≥1}ρX̃I,t

S̃t,k−1

n

)
dt−

(
ρX̃I,t

S̃t,k
n

)
dt+dM̃t,k. (3.2.1)

To explain the terms

1. At rate λX̃I,t infections occur. The infected half-edge attaches to a susceptible

vertex with k half-edges, which we call an Sk, with probability kS̃k,t/(X̃t − 1). The
−1 in the denominator is because the half-edge will not connect to itself.

2. At rate ρX̃I,t rewirings occur. If k ≥ 1, the half-edge gets attached to an Sk−1 with

probability (k − 1)S̃k−1,t/(X̃t − 1), promoting it to an Sk.

3. If the rewired half-edge gets attached to an Sk, which occurs with probability
kS̃k,t/(X̃t − 1), it is promoted to an Sk+1 and an Sk is lost.

4. If Zt is a Markov chain with generator L then Dynkin’s formula implies

f(Zt)−
∫ t

0

Lf(Zs) ds is a martingale.

See Chapter 4, Proposition 1.7 in [8]. Fortunately, we do not need an explicit
formula for the martingale. All that is important is that when f(Zt) = S̃t,k, M̃·,k has
jumps equal to ±1.

The equation for St,k can be then obtained by multiplying the first three terms in the
right hand side of (3.2.1) by the time change, leading to

dSt,k =−
(
λXI,t

Xt − 1

λXI,t

kSt,k

Xt − 1

)
dt+

(
1{k≥1}ρXI,t

Xt − 1

λXI,t

St,k−1

n

)
dt

−
(
ρXI,t

Xt − 1

λXI,t

St,k
n

)
dt+ dM t,k. (3.2.2)

Here M t,k is a time-changed version of the previous martingale so it is also a margingale
with jumps ±1.
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Canceling common factors and dividing both sides of (3.2.2) by n we get

d

(
St,k
n

)
= −

(
k
St,k
n

)
dt+

(
1(k≥1)

ρ

λ

Xt − 1

n

St,k−1

n

)
dt

−
(
ρ

λ

Xt − 1

n

St,k
n

)
dt+ d

(
M t,k

n

)
. (3.2.3)

We now show that for all fixed k ≥ 0 and T > 0,

sup
0≤t≤T∧γn

∣∣M t,k

∣∣ /n P−→ 0. (3.2.4)

To do this we note that the expected value of quadratic variation of M t∧γn,k evaluated at

time T , which is also equal to E(M
2

T∧γn,k), is bounded above by the expectation of total
number of jumps in the whole avoSI process, which is equal to

E

X0/2 +

X0∑
j=1

Nj

 .

Here we have a factor of 2 in the denominator because each pairing event takes two half-
edges and Nj is the number of times that half-edge j gets transferred to another vertex.
Note that an infected half-edge gets rewired before being paired with probability at most
ρ/(λ+ ρ) and susceptible half-edge cannot get rewired unless the vertex it is attached
to becomes infected. Thus, Nj is stochastically dominated by a Geometric(ρ/(λ + ρ))
distributed random variable, so that for all j, E(Nj) ≤ C for some constant C. Therefore
by L2 maximal inequality applied to the submartingale

∣∣M t∧γn,k
∣∣, we obtain that

E

(
sup

0≤t≤T∧γn
M

2

t,k

)
≤ 4E(M

2

T∧γn,k) ≤ Cn, (3.2.5)

where C is a constant whose value is unimportant.
Since S0,k/n ≤ 1, we know {S0,k/n}n≥1 is a tight sequence of random variables. To

establish tightness of {St,k/n, t ≥ 0}n≥1 we need to show for any fixed ε, δ > 0, there is a
θ > 0 and integer n0 so that for n ≥ n0

P

(
sup

|t1−t2|≤θ,t1,t2≤T

∣∣St1∧γn,k − St2∧γn,k∣∣ /n ≥ δ
)
≤ ε. (3.2.6)

Assuming (3.2.6) for the moment, we see that {St∧γn,k/n, t ≥ 0}, as an element of D,
the space of right continuous paths with left limits, satisfies condition (ii) of Proposition
3.26 in [10]. Consequently, {St∧γn,k/n, t ≥ 0}n≥1 is a tight sequence. It remains to
prove (3.2.6). We note that there exists a constant C so that

P(X0/n > C) ≤ ε/3, (3.2.7)

since E(X0) = E(
∑n
i=1Di) = nm1. Hence using St,k−1 + St,k ≤ n and Xt ≤ X0

with (3.2.3)

P

(
sup

|t1−t2|≤θ,t1,t2≤T

∣∣St1∧γn,k − St2∧γn,k∣∣ /n ≥ δ
)

≤P
(
kθ >

δ

4

)
+ 2P

(
ρ

λ

X0

n
θ ≥ δ

4

)
+ P

(
2 sup

0≤t≤T∧γn

∣∣M t,k/n
∣∣ ≥ δ

4

)
.

Using (3.2.7) and (3.2.5), we see that if we pick θ small and n large then the last line
is ≤ ε. This proves (3.2.6) and thus completes the proof of tightness of the sequence
{St∧γn,k/n, t ≥ 0}n≥1.
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3.3 Convergence of {St,k/n, t ≥ 0}n≥1

Note that the evolution for Xt has the same transition rates as the time-changed SIR
dynamics defined in [13] so their equation (3.4) also holds true in avoSI, which gives for
any fixed T ,

sup
0≤t≤T∧γn

∣∣∣∣Xt

n
−m1 exp(−2t)

∣∣∣∣ P−→ 0. (3.3.1)

In order to upgrade sup0≤t≤T∧γn to sup0≤t≤γn , we note that for any ε > 0, we can pick
a sufficiently large T so that m1 exp(−2T ) < ε. Then by the monotonically decreasing
property of Xt,

P

(
γn > T, sup

T<t≤γn

∣∣∣∣Xt

n
−m1 exp(−2t)

∣∣∣∣ > 3ε

)
≤ P(γn > T,XT /n > 2ε) (3.3.2)

≤P
(

sup
0≤t≤T∧γn

∣∣∣∣Xt

n
−m1 exp(−2t)

∣∣∣∣ > ε

)
≤ ε,

for n large enough. Thus we deduce

P

(
sup

0≤t≤γn

∣∣∣∣Xt

n
−m1 exp(−2t)

∣∣∣∣ > ε

)
≤ 2ε

for n sufficiently large, which proves the first equation of (1.6.2).
By the tightness of {St∧γn,k/n, t ≥ 0}n≥1, we see for any subsequence of St,k/n we

can extract a further subsequence that converges in distribution to a process st,k with
continuous sample path. By the Skorokhod representation theorem we can assume the
convergence is actually in the almost sure sense and we can also assume that Xt/n

converges a.s. to m1 exp(−2t). Having established tightness, a standard argument
implies that we can show the convergence of St,k/n by establishing that the limit st,k is
independent of the subsequence. First consider the case k = 0. The first two terms on
the right-hand side of (3.2.3) are 0, so using (3.2.4) and first equation of (1.6.2) we see
that any subsequential limit st,0 has to satisfy the equation

st,0 = −ρ
λ
m1

∫ t

0

exp(−2z)sz,0 dz. (3.3.3)

Since z → exp(−2z) is Lipschitz continuous this equation has a unique solution.
Repeating this process for k ≥ 1 we see that any subsequential limit st,k of St,k/n

satisfies the differential equation

s′t,k = −kst,k − α exp(−2t)st,k + 1{k≥1}α exp(−2t)st,k−1, (3.3.4)

where α = ρm1/λ. This system of equations can be solved explicitly. First we rewrite the
equations as

s′t,k + [k + α exp(−2t)]st,k = 1(k≥1)α exp(−2t)st,k−1.

Define

gt,k = exp (kt+ (α/2)(1− exp(−2t))) st,k, (3.3.5)

then

g′t,0 = α exp(−2t)gt,0 + exp((α/2)(1− exp(−2t))s′t,0

= α exp(−2t) exp((α/2)(1− exp(−2t)))st,0

+ exp(α/2)(1− exp(−2t))[−α exp(−2t)]st,0 = 0.
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Let Ak,t = exp(kt+ (α/2)(1− exp(−2t))). An almost identical calculation for k ≥ 1 gives

g′t,k = [k + α exp(−2t)]gt,k +Ak,ts
′
t,k

= [k + α exp(−2t)]At,kst,k

+At,k{[−k − α exp(−2t)]st,k + α exp(−2t)st,k−1},

so we have
g′t,k = At,kα exp(−2t)st,k−1 = α exp(−t)gt,k−1.

Making the change of variable s = α(1− exp(−t)) and letting hs,k = gt,k, we see that
hs,0 is constant in s and

h′s,k = hs,k−1, k ≥ 1,

from which we see hs,k is a polynomial of degree k in s and for all ` ≤ k the `-th derivative
of hs,k at s = 0 equals h0,k−`. From this we obtain that for all k,

hs,k =

k∑
`=0

h0,k−`

l!
s`.

The initial conditions are g0,k = h0,k = s0,k = pk = P(D = k). It follows that

hs,k =

k∑
`=0

pk−`s
`

`!
, (3.3.6)

and hence using definitions of s, g, and h

gt,k = hs,k =

k∑
`=0

pk−`
`!

(α(1− w))k, (3.3.7)

st,k = exp
(
−α

2
(1− w2)

)
wk

k∑
`=0

pk−`
`!

(α(1− w))`, (3.3.8)

where w = w(t) = exp(−t).

3.4 Summing the st,k

We pause to record the following fact which we will use later. From the explicit
expression for st,k in (3.3.8), dropping the factor exp(−α(1 − w2)/2) ≤ 1 and writing
k = (k − `) + `,

sup
t≥0

∑
k≥K

kst,k ≤ sup
0≤w≤1

∑
k≥K

k∑
`=0

(k − `)pk−`
`!

(α(1− w))`wk,

+ sup
0≤w≤1

∑
k≥K

k∑
`=1

`pk−`
`!

(α(1− w))`wk. (3.4.1)

The ` = 0 term in the first sum is bounded by∑
k≥K

kpk.

The remainder of the two sums is bounded by

sup
w
wK(1− w)

 ∑
k≥`,`≥1

(
α`(k − `)pk−`

`!
+
α``pk−`

`!

) . (3.4.2)
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Interchanging the order of summation in the double sum and letting m = k − `, the
double sum in (3.4.2) is bounded by

∞∑
`=1

` · α
`

`!

( ∞∑
m=0

(mpm + pm)

)
≤ Cα,D.

Combining our calculations leads to

lim sup
K→∞

sup
t≥0

∑
k≥K

kst,k ≤ C lim sup
K→∞

∑
k≥K

kpk + sup
w
wK(1− w)

 = 0. (3.4.3)

We can use this bound to show that
∑∞
k=0 St,k/n converges to

∑∞
k=0 st,k as well as∑∞

k=0 kSt,k/n converges to
∑∞
k=0 kst,k. Since the proofs are similar, we only prove the

second result. We fix a large number K and observe that
∑
k≥K kSt,k satisfies the

equation

d

∑
k≥K

kSt,k

 =−

∑
k≥K

k2St,k

 dt+ ρXI,t
Xt − 1

λXI,t

KSt,K−1

n
dt

+
∑
k≥K

ρXI,t
Xt − 1

λXI,t

St,k
n
dt+ dM̂t,K . (3.4.4)

Here M̂t,K is a martingale that satisfies

∑
t>0

(M̂t,k − M̂t−,k)2 ≤ 3

n∑
`=1

Q2
` , (3.4.5)

where Q` is the number of half-edges that vertex ` has before it becomes infected. This
follows from the observation that there are two sources for the jump of

∑
k≥K kSt,k:

• A susceptible vertex ` with at least K half-edges gets infected. Then
∑
k≥K kSt,k

drops by the number of half-edges of vertex `, which is Q`. Each vertex can
contribute to this type of jumps at most once.

• A half-edge of an infected vertex gets transferred to a susceptible vertex of degree
at least K − 1. Then

∑
k≥K kSt,k increases by either ≤ K (if the vertex gaining a

half-edge had K − 1 half-edges before) or 1 (if the vertex gainning a half-edge had
at least K half-edges before). Vertex ` can contribute at most Q` times to jumps of
size 1 and at most once to jumps of size K.

Initially vertex ` has D` half-edges. As time grows the half-edges of other vertices
might be transferred to vertex `, the number of which is dominated by

V = Binomial(W, 1/n) where W =

n∑
m=1

Dm. (3.4.6)

Thus we have

E[Q2
` ] ≤ E[(D` + V )2] ≤ 2ED2 + 2EV 2. (3.4.7)

Conditioning on the value of W we have

EV 2 = (1/n)(1− 1/n)EW + E(W/n)2 ≤ C. (3.4.8)
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It follows from (3.4.5) and (3.4.8) that

E

(
sup

0≤t≤T∧γn

∣∣∣M̂t,k

∣∣∣2) ≤ 4E(M̂2
T∧γn,k) ≤ Cn. (3.4.9)

Writing (3.4.4) as an integral equation and dropping the negative term
−(
∑
k≥K k

2St,k) we see

∑
k≥K

kSz∧γn,k ≤
∑
k≥K

kS0,k +
ρ

λ
K

∫ z

0

Xu∧γn
n

Su∧γn,K−1du

+
ρ

λ

∫ z

0

Xu∧γn
n

∑
k≥K

Su∧γn,k + M̂z∧γn,k.

Take sup0≤z≤t on both sides we have

sup
0≤z≤t∧γn

∑
k≥K

kSz,k ≤
∑
k≥K

kS0,k +
ρ

λ
K

∫ t

0

sup
0≤u≤z∧γn

Xu

n
Su,K−1dz

+
ρ

λ

∫ t

0

sup
0≤u≤z∧γn

Xu

n

∑
k≥K

Su,kdz + sup
0≤z≤t∧γn

M̂z,k.

(3.4.10)

Dividing both sides of (3.4.10) by n, taking the square and using (a + b + c + d)2 ≤
4(a2 + b2 + c2 + d2) we have

(
sup

0≤z≤t∧γn

∑
k≥K kSz,k

n

)2

≤ 4

∑
k≥K

kS0,k

n

2

+ 4
(ρ
λ
K
)2

t

∫ t

0

(
sup

0≤u≤z∧γn

Xu

n
Su,K−1

)2

dz

+4
(ρ
λ

)2

t

∫ t

0

 sup
0≤u≤z∧γn

Xu

n

∑
k≥K

Su,k

2

dz + 4

(
sup

0≤z≤t∧γn
M̂z,k

)2

,

(3.4.11)

where we have also used the Cauchy-Schwarz inequality to conclude that for any function
g = g(u), (∫ t

0

[
sup

0≤u≤z∧γn
g(u)

]
dz

)2

≤ t
∫ t

0

[
sup

0≤u≤z∧γn
g2(u)

]
dz.

If we use Ê to denote the conditional expectation with respect to the σ-algebra
generated by X0, then for any ε > 0, using equation (3.4.9) we can find a constant
(depending on ε) C3.4.12 > 0 so that

P

(
Ê

(
sup

0≤z≤t∧γn
M̂2
z,k

)
> C3.4.12n

)
≤ ε. (3.4.12)

We then take another constant C3.4.13 such that

P(X0/n > C3.4.13) ≤ ε. (3.4.13)

Taking the conditional expectation of (3.4.11) with respect to X0 we see on the event

Ω0 = {X0/n ≤ C3.4.13} ∩
{
Ê( sup

0≤z≤t∧γn
M̂2
z,k) ≤ C3.4.12n

}

EJP 27 (2022), paper 110.
Page 36/66

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP828
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


SI epidemics on evolving graphs

which has probability ≥ 1− 2ε, there exists a constant C3.4.14 such that

Ê

(
sup

0≤z≤t∧γn

∑
k≥K kSz,k

n

)2

≤ C3.4.14t

∫ t

0

Ê

( sup
0≤u≤z∧γn

∑
k≥K kSu,k

n

)2
 dz

+ C3.4.14

K2tÊ

[(
sup

0≤z≤t∧γn

Sz,K−1

n

)2
]

+
1

n
+ Ê


∑
k≥K

kS0,K

n

2

 .

(3.4.14)

If we let

φ(t) = Ê

(
sup

0≤z≤t∧γn

∑
k≥K kSz,k

n

)2

,

and B equals the second line in (3.4.14), then for 0 ≤ t ≤ T we have

φ(t) ≤ C3.4.14T

∫ t

0

φ(s) ds+B.

Gronwall’s inequality gives

if φ(t) ≤ α(t) +

∫ t

0

β(s)φ(s) ds, then φ(t) ≤ α(t) exp

(∫ t

0

β(s) ds

)
, (3.4.15)

provided that β(t) ≥ 0 and α(t) is nondecreasing. So applying (3.4.15) we have

φ(t) ≤ B exp(C3.4.14T
2)

on Ω0, that is,

Ê

(
sup

0≤t≤T∧γn

∑
k≥K kSt,k

n

)2

≤ C3.4.14 exp(C3.4.14T
2)

K2tÊ

(
sup

0≤t≤T∧γn

St,K−1

n

)2

+
1

n
+ Ê

∑
k≥K

kS0,k

n

2
 .

(3.4.16)

To control the first term on the right we use the convergence of St,K−1/n to st,K−1 in
probability as well as the bounded convergence theorem (since St,K−1/n ≤ 1) to obtain
that

lim sup
n→∞

E

(
sup

0≤t≤T∧γn

St,K−1

n

)2

≤
(

sup
0≤t≤T

st,K−1

)2

. (3.4.17)

Using (3.4.17) and (3.4.3), if we first pick a large K, then for all n sufficiently large all
three terms on right hand side of (3.4.16) smaller than ε2/3 with probability at least 1− ε,
which in turn implies that there is a set Ω1 with P(Ω1) ≥ 1− 3ε, so that on Ω1

Ê

(
sup

0≤t≤T∧γn

∑
k≥K kSt,k

n

)2

≤ ε2.

It follows that

E

(
1Ω1

Ê

(
sup

0≤t≤T∧γn

∑
k≥K kSt,k

n

)2
)

= E

(
1Ω1

sup
0≤t≤T∧γn

∑
k≥K kSt,k

n

)2

≤ ε2.
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Using P(Ω1) ≥ 1 − 3ε and the Chebyshev’s inequality, we see that with probability
≥ 1− 4ε,

sup
0≤t≤T∧γn

∑
k≥K kSt,k

n
≤ ε.

Fixing t and ε and using the triangle inequality, we get

sup
0≤t≤T∧γn

∣∣∣∣∣∣
∑
k≥0 kSt,k

n
−
∑
k≥0

kst,k

∣∣∣∣∣∣ ≤ sup
0≤t≤T∧γn

∣∣∣∣∣
∑K
k=0 kSt,k
n

−
K∑
k=0

kst,k

∣∣∣∣∣
+ sup

0≤t≤T∧γn

∑
k≥K kSt,k

n
+ sup

0≤t≤T

∑
k≥K

kst,k.

(3.4.18)

By first choosing K large enough and then n large enough we can make both the first
and second terms on the right hand side of (3.4.18) smaller than ε with probability at
least 1− 4ε. The third term can also be made smaller than ε using (3.4.3).

Since ε is arbitrary we see that

sup
0≤t≤T∧γn

∣∣∣∣∣
∑∞
k=0 kSt,k
n

−
∞∑
k=0

kst,k

∣∣∣∣∣ P−→ 0.

To find
∑∞
k=0 st,k and

∑∞
k=0 kst,k, recall that we set w = w(t) = exp(−t) and G(w) =

E(wD). The limit of the fraction of susceptible nodes st satisfies

st =

∞∑
k=0

st,k = exp(−(α/2)(1− w2))
∑
r,`≥0

pr
`!

(α(1− w))`wr+`

= exp(−(α/2)(1− w)2)G(w).

(3.4.19)

The limit of (scaled) number of susceptible half-edges satisfies

xS,t =

∞∑
k=0

kst,k = exp(−α
2

(1− w2))
∑
r,`≥0

(r + `)
pr
`!

(α(1− w))`wr+`.

The double sum equals

w
∑
r≥0

rprw
r−1

∑
`≥0

(α(1− w)w)`

`!
+ αw(1− w)

∑
r≥0

prw
r
∑
`≥1

(α(1− w)w)`−1

(`− 1)!
,

so we have

xS,t = exp
(
−(α/2)(1− w)2

)
w(G′(w) + α(1− w)G(w)). (3.4.20)

Extension to time γn. We have proved the second and third statements of (1.6.2) with
0 ≤ t ≤ γn replaced by 0 ≤ t ≤ T ∧ γn for any fixed T . To upgrade this to 0 ≤ t ≤ γn, note
that

∑∞
k=0 kSt,k ≤ Xt. Picking a large T satisfying (m1 + α) exp(−T ) ≤ ε and re-using

equation (3.3.2) we obtain that

P

(
γn > T, sup

T≤t≤γn

∣∣∣∣∑∞k=0 kSt,k
n

− exp
(
−α

2
(w − 1)2

)
w(G′(w) + α(1− w)G(w))

∣∣∣∣ ≥ 3ε

)
≤P

(
γn > T, sup

T≤t≤γn

∞∑
k=0

kSt,k/n > 2ε

)
≤ P(γn > T,XT /n > 2ε) ≤ ε. (3.4.21)
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This proves the third equation of (1.6.2). The proof of the second equation in (1.6.2)
is slightly more complicated. Again we fix a large T such that (m1 + α) exp(−T ) ≤ ε and∣∣∣exp(−α/2)G(0)− exp

(
−α/2 (exp(−T )− 1)

2
)
G(exp(−T ))

∣∣∣ ≤ ε. (3.4.22)

Equation (3.4.22) and the fact that exp
(
−α/2 (exp(−t)− 1)

2
)
G(exp(−t)) is decreasing

in t imply that

sup
t,t′>T

∣∣∣exp
(
−α/2 (exp(−t)− 1)

2
)
G(exp(−t)) (3.4.23)

− exp
(
−α/2 (exp(−t′)− 1)

2
)
G(exp(−t′))

∣∣∣ ≤ ε.
We first estimate the term ST,0 for large T . Using the weaker version (i.e., with
sup0≤t≤T∧γn) of the second equation of (1.6.2) we see that for n large enough,

P
(
γn > T,

∣∣∣ST,0/n− exp
(
−α/2 (exp(−T )− 1)

2
)
G(exp(−T ))

∣∣∣ > ε
)
≤ ε. (3.4.24)

On the event {γn > T}, supT≤t≤γn
∣∣St,0 − ST,0∣∣ can be bounded by XT , since in order

to lose a susceptible vertex of degree 0 there must be a half-edge transferred to it. It
follows that

P

(
γn > T, sup

T≤t≤γn

∣∣St,0 − ST,0∣∣ /n > 2ε

)
≤ P

(
γn > T,XT /n > 2ε

)
≤ ε. (3.4.25)

Combining equations (3.4.24), (3.4.25) and (3.4.23) we see that

P

(
γn > T, sup

T<t≤γn

∣∣∣St,0/n− exp
(
−α/2 (exp(−t)− 1)

2
)
G(exp(−t))

∣∣∣ > 4ε

)
≤ 3ε.

(3.4.26)
Using

∑
k≥1 St,k ≤

∑∞
k=0 kSt,k and equation (3.4.21) we see that

P

γn > T, sup
T≤t≤γn

∑
k≥1

St,k/n > 2ε

 ≤ ε. (3.4.27)

It follows from (3.4.27) and (3.4.26) that

P

(
γn > T, sup

T<t≤γn

∣∣∣∣∣
∞∑
k=0

St,k/n− aS exp
(
−α/2(w(t)− 1)2

)
G(w(t))

∣∣∣∣∣ > 6ε

)
≤ 4ε,

which proves the second equation of (1.6.2) and concludes the proof of (1.6.2).

3.5 Proof of Theorem 1.13

Recall for all t ≤ γn we have Xt ≥ XS,t and at γn we have Xt = XS,t since γn is the
time that we run out of infected half-edges and the dynamics stop. Note that by the
definition of f in (1.5.1) we have

exp(f(w)) =
xt
xS,t

.

We can rewrite f as

f(w) = log(m1) + log(w)− log(G′(w) + α(1− w)G(w)) +
α

2
(w − 1)2.
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Taking the derivative we have

f ′(w) =
1

w
− G′′(w)− αG(w) + α(1− w)G′(w)

G′(w) + α(1− w)G(w)
+ α(w − 1). (3.5.1)

To evaluate f ′(1), recall that G(1) = 1, G′(1) = m1 and G′′(1) = E[D(D − 1)] = m2 −m1.
The terms with 1− w vanish at w = 1. Using α = ρm1/λ from (1.2.6), it follows that

f ′(1) = 1− m2 −m1 − ρm1/λ

m1
= −

(
m2 − 2m1

m1
− ρ

λ

)
.

Theorem 1.6 tells us that in the supercritical case, we have λ > (ρm1)/(m2−2m1), and
hence f ′(1) < 0, which implies that f is positive on (1− δ, 1) for some δ > 0. Theorem 1.6
also shows that when η > 0 is small,

lim
n→∞

P(I∞/n > η) = q(λ) > 0, (3.5.2)

where q(λ) is the survival probability of the two-phase branching process Z̄m (defined in
Section 1.2). Let tη < δ be some small number depending on η such that

1− exp
(
−α

2
(exp(−tη)− 1)2

)
G(exp(−tη)) < η/4. (3.5.3)

Conditionally on I∞/n > η for some small η, the second equation of (1.6.2) implies
that with high probability γn is also bounded from below by tη (depending on η), since
otherwise we would have

lim sup
n→∞

P(γn < tη, Iγn/n > η)

≤ lim sup
n→∞

P
(
γn < tη, Sγn/n > exp

(
−α

2
(exp(−γn)− 1)2

)
G(exp(−γn))− η/4, Iγn/n > η

)
≤ lim sup

n→∞
P
(
Sγn/n > exp

(
−α

2
(exp(−tη)− 1)2

)
G(exp(−tη))− η/4, Iγn/n > η

)
= 0,

where the last equality is due to (3.5.3) and the fact that Sγn + Iγn = n. We have also
used the definition of γn so that I∞ = Iγn since no more vertices can be infected after
γn.

Recalling the definition of the σ in statement of Theorem 1.13 we see that for any
ε > 0,

inf
tη<t<− log(σ+ε)

xt
xS,t

> 1,

which implies that for some ε′ > 0 and all tη < t < − log(σ + ε),

xt − xS,t > ε′. (3.5.4)

The first and third equations of (1.6.2) and (3.5.4) imply that

lim sup
n→∞

P (tη < γn < − log(σ + ε))

≤ lim sup
n→∞

P
(
tη < γn < − log(σ + ε), (Xγn −XS,γn)/n > ε′/2

)
= 0,

where we have used the fact that Xγn = XS,γn . Since we have already shown condition-
ally on I∞/n > η whp γn > tη, we see that

lim
n→∞

P(γn > − log(σ + ε)|I∞/n > η) = 1.
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Using the monotonically decreasing property of St =
∑∞
k=0 St,k and the second

equation of (1.6.2), we see that conditionally on I∞/n > η, for any ε > 0 whp

Sγn/n ≤ exp
(
−α

2
(σ + ε− 1)2

)
G(σ + ε) + ε.

Hence for any ε > 0,
lim
n→∞

P(I∞/n > ν − ε|I∞/n > η) = 1,

where ν = 1− exp(−α/2(σ − 1)2)G(σ).
For the other direction, (?) implies that we can pick δ′ > 0 so that f(w) < 0 on

(σ− δ′, σ). (1.6.2) thus implies with high probability γn cannot be larger than − log(σ− δ′)
since otherwise we would have X− log(σ−δ′) < XS,− log(σ−δ′), which is impossible. Since
δ′ can be taken arbitrarily small we conclude that for any ε > 0

lim
n→∞

P(I∞/n < ν + ε) = 1.

3.6 Proof of Theorem 1.14

From (3.5.1) we see that as λ→ λc we have f ′(1)→ 0. The second derivative of f is
given by

f ′′(w) = − 1

w2
− G′′′ + α(1− w)G′′ − 2αG′

G′ + α(1− w)G
+

(
G′′ − αG+ α(1− w)G′

G′ + α(1− w)G

)2

+ α.

Recall µk denotes the factorial moment E[D(D − 1) · · · (D − k + 1)]. We have assumed
that E(D5) <∞ so

G′′′(1) = E[D(D − 1)(D − 2)] = µ3 <∞.

Since the terms with 1 − w vanish at w = 1, inserting the values of G(1), G′(1), G′′(1)

and G′′′(1) we get

f ′′(1) = −1− G′′′(1)− 2αG′(1)

G′(1)
+

(
G′′(1)− αG(1)

G′(1)

)2

+ α

= −1− µ3

m1
+ 2α+

(
m2 −m1 − α

m1

)2

+ α.

Theorem 1.6 tells us that αc = m2 − 2m1 so

−1 +

(
m2 −m1 − αc

m1

)2

= 0.

From this, we see that at αc

f ′′(1) =
−µ3 + 3m1m2 − 6m2

1

m1
.

Using µ1 = m1, µ2 = m2 −m1 this can be written as

f ′′(1) = −µ3

µ1
+ 3(µ2 − µ1) ≡ ∆. (3.6.1)

By Theorem 1.13 it suffices to prove that in the case ∆ < 0, σ converges to 1 as
λ → λc. Equation (3.6.1) and the assumption ∆ < 0 imply that for λ close to λc, in
a (non-shrinking) neighborhood of 1, f ′′(w) has to be bounded from above by some
negative constant. Since f ′(1) converges to 0 as λ→ λc we conclude that for any fixed
w < 1 and all λ sufficiently close to λc one can find ŵ ∈ (w, 1) so that f(ŵ) < 0. Using
the definition of σ we see σ > ŵ > w. Letting w → 1, we see that σ has to converge to 0
as λ→ λc and thus ν converges to 0. Hence we have a continuous phase transition.
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4 Lower bound on evoSI

4.1 AB-avoSI

Roughly speaking, the avoSI process serves as an upper bound because certain I − I
pairs can rewire, which may leads to additional infections. To get a lower bound, we need
to find a way to ensure rewired I − I edges will not transmit infections. This motivates
the AB-avoSI process defined as follows. For each half-edge h we give it two indices:

• The infection index A(h, t) = 0 if h has not been infected by time t. If i first becomes
an infected half-edge at time s, then we set A(h, t) = s for all t ≥ s.

• The rewiring index B(h, t) = 0 if the half-edge h has not rewired by time t. If h gets
rewired at time s, then we update the value of B(h, s) to be s, no matter whether h
has been rewired before or not. In other words, if we let τm(h) be the time when h
is rewired for the m-th time (possibly ∞) with τ0(h) = 0, then B(h, t) = τn(h) for
τm(h) ≤ t < τm+1(h).

We define the C-AB-avoSI process as follows. As in Section 3.1, C is for coupled.

• At rate λ each infected half-edge h1 pairs with a randomly chosen half-edge.
Suppose h1 gets paired with half-edge h2 at time t. If h2 is susceptible and
B(h2, t) < A(h1, t) then the vertex associated with half-edge h2 becomes infected.
Otherwise h1 will not pass infection to the vertex associated with h2. The reader
will see the reason for this condition in the proof of Lemma 4.1. Note that if vertex
y associated with h2 changes from state S to I then all half-edges attached to y
become infected.

• Each infected half-edge gets removed from the vertex that it is attached to at rate
ρ and immediately becomes re-attached to a randomly chosen vertex.

Similarly to the relation between C-avoSI and avoSI, one can also define the AB-avoSI
such that the C-AB-avoSI has the same law as the AB-avoSI on the configuration model.
The construction of the graph G for AB-avoSI follows the same route of avoSI (see the
proof of Lemma 3.1). Given the graph G, we view each (full) edge as being composed
of two half-edges and assign the two indices A(·, t) and B(·, t) as defined above to every
half-edge. The evolution of AB-avoSI is then similar to avoSI, except that each time when
infected vertex x tries to infect ssuceptible vertex y through edge e, we will compare
A(h1, t) and B(h2, t), where h1 is the half-edge of e with one end at x and h2 is the other
half-edge of e with one end at y. If A(h1, t) > B(h2, t) then the infection will pass through.
Otherwise the infection will not pass through, which means x has made an attempt but y
remains uninfected. No matter whether the infection passes through or not, we let this
S − I edge be deemed stable and it will not get rewired later on. Also from this point
on, x will never pass infection to y through e. As a comparison, S − I edges in avoSI are
always unstable and are subject to potential rewiring.

One can show that evoSI stochastically dominates AB-avoSI.

Lemma 4.1. There exists a coupling of avoSI and evoSI such that if a vertex is infected
in AB-avoSI then it is also infected in evoSI.

Proof of Lemma 4.1. Following the proof of Lemma 3.2, we see it suffices to show I − I
rewirings will not create additional infections in AB-avoSI. Assume at some time t1 an
edge e between two infected vertices x and y is broken from y and reconnects to z. For
a picture see Figure 8.

We would like to show that after time t1 no infections can pass through e to create
additional infected vertices. Denote the half-edge attached to x by h1 and the other
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Figure 8: In the transition from the first drawing to the second, x rewires its connection
from y to z. Note that h1 and h2 are the two half-edges comprising the edge e, which is
not drawn in the figure. Vertex x cannot pass an infection to z throught h1 and h2 since
B(h2, t) > A(h1, t).

half-edge by h2. Since x and y must be infected before time t1, we see that, according to
the definition of the infection index, for all t ≥ t1,

A(h1, t) < t1, A(h2, t) < t1. (4.1.1)

We next consider the rewiring index. Since the half-edge h2 is rewired at time t1, using
the definition of rewiring index we see that for all t ≥ t1,

B(h2, t) ≥ t1. (4.1.2)

Combining (4.1.1) and (4.1.2) we see that

B(h2, t) > A(h1.t).

This implies that infections cannot pass from the vertex associated to h1 to the vertex
associated to h2. Now we consider the other direction, i.e., from h2 to h1. Note that x
has already been infected. There are two possible cases:

• If h1 stays with x forever then the vertex associated with h1 is always infected after
time t1 (and hence there is no additional infected vertex).

• If h1 is rewired to some other vertex x′ at time t2 > t1 then for all t > t2,

B(h1, t) ≥ t2 > t1 > A(h2, t),

which implies that after time t2 infections cannot go from the vertex associated
with h2 to the vertex associated with h1.

In both cases there will be no additional infected vertices stemming from the rewiring of
e. Thus we have completed the proof of Lemma 4.1.

We end this section by showing AB-avoSI dominates delSI. This is used in the proof
Lemma 1.12.

Lemma 4.2. There exists a coupling of AB-evoSI and delSI such that if a vertex is
infected in AB-evoSI then it is also infected in delSI.

Proof. This can be proved in a similar way to the proof of Lemma 1.2. We construct
AB-avoSI using the variables {Te,`, Re,`, V ′e,`, ` ≥ 1} as we did in the proof of Lemma 3.2
except that for AB-avoSI certain infections may not pass through depending on the
relative size of infection index and rewiring index. We also construct delSI using Te,1 and
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Re,1 as we did in the proof of Lemma 1.2. We can then prove Lemma 4.2 by repeating
the induction argument used in the proof of Lemma 1.2. Note that if edge e is initially
present between x and y and Te,1 < Re,1 then either end of e can be infected by the
other end because the rewiring indices for both half-edges of e are equal to 0 at the time
of infection. Therefore we don’t need to worry about infections not being transmitted
successfully in AB-evoSI.

4.2 Moment bounds

Let X̌t and X̌I,t be the number of total half-edges and infected half-edges in the
AB-avoSI process. As in the analysis of avoSI, we multiply the original transition rates
by (X̌t − 1)/(λX̌I,t). We will use a hat to denote the quantities after the time change.

The evolution equation for X̂t has the same form as avoSI and hence the first equation
of (1.6.2) also holds for AB-avoSI. Now we consider the evolution of the number of
susceptible half-edges X̂S,t. We need a bit more notation to describe this. For half-edge
i, we let I(i, t) = 1 if i is an infected half-edge at time t (which also means it hasn’t been
paired) and I(i, t) = 0 otherwise. We can define S(i, t) similarly. We also let S(i, k, t) = 1

if i is attached to a susceptible vertex with k half-edges at time t. Finally, we let v(j, t) be
the vertex that half-edge j is attached to at time t and D(j, t) be the number of half-edges
attached to v(j, t) at time t.

We first write down the equation for Ŝt,k. To reduce the size of formulas we let

Gi,j = {I(i, t) = 1, A(i, t) ≤ B(j, t)}. (4.2.1)

Reasoning as in the derivation of (3.2.3) gives

dŜt,k = −kŜt,k dt+ 1{k≥1}
ρ

λ

Ŝt,k−1

n
(X̂t − 1) dt− ρ

λ

Ŝt,k
n

(X̂t − 1) dt

+
1

X̂I,t

 X0∑
i,j=1

1Gi,j1{S(j,k+1,t)=1}

 dt+ dM̂t,k,

(4.2.2)

where M̂t,k is a martingale. Summing (4.2.2) over k from 0 to ∞ and noting that the
second and third term cancel, we get

dŜt = −X̂S,t dt+
1

X̂I,t

 X̂0∑
i,j=1

1Gi,j1{S(j,t)=1}

 dt+ dM1,t. (4.2.3)

Multiplying both sides of (4.2.2) by k and summing over k, we get

dX̂S,t = −
∞∑
k=0

k2Ŝt,kdt+
ρ

λ

Ŝt
n

(X̂t − 1)dt

+
1

X̂I,t

 X̂0∑
i,j=1

1Gi,j (D(j, t)− 1)1{S(j,t)=1}

 dt+ dM2,t

(4.2.4)

for some martingale term M2,t.
Analogously, if we multiply both sides of (4.2.2) by k2, k3 and k4, respectively, then

we get

d

( ∞∑
k=0

k2Ŝt,k

)
= −

∞∑
k=0

k3Ŝt,kdt+ 2
ρ

λ

X̂S,t

n
(X̂t − 1) +

ρ

λ

Ŝt
n

(X̂t − 1)

+
1

X̂I,t

 X̂0∑
i,j=1

1Gi,j (D(j, t)− 1)21{S(j,t)=1}

 dt+ dM3,t,

(4.2.5)
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d

( ∞∑
k=0

k3Ŝt,k

)
= −

∞∑
k=0

k4Ŝt,kdt+ 3
ρ

λ

∑∞
k=0 k

2Ŝt,k
n

(X̂t − 1) + 3
ρ

λ

X̂S,t

n
(X̂t − 1)

+
ρ

λ

Ŝt
n

(X̂t − 1) +
1

X̂I,t

 X0∑
i,j=1

1Gi,j (D(j, t)− 1)31{S(j,t)=1}

 dt+ dM4,t,

(4.2.6)

and

d

( ∞∑
k=0

k4Ŝt,k

)
= −

∞∑
k=0

k5Ŝt,kdt+ 4
ρ

λ

∑∞
k=0 k

3Ŝt,k
n

(X̂t − 1) + 6
ρ

λ

∑∞
k=0 k

2Ŝt,k
n

(X̂t − 1)

+ 4
ρ

λ

X̂S,t

n
(X̂t − 1) +

ρ

λ

Ŝt
n

(X̂t − 1)

+
1

X̂I,t

 X0∑
i,j=1

1Gi,j (D(j, t)− 1)41{S(j,t)=1}

 dt+ dM5,t.

(4.2.7)

The main result of this section is the following lemma.

Lemma 4.3. There exists two constants C4.2.9, C4.2.10 > 0, such that for every ε > 0 whp
we have

5∑
j=1

(
sup

0≤t≤γn∧1
|Mj,t|

)
≤ n5/6, (4.2.8)

sup
0≤t≤γn∧1

∞∑
k=0

(k + 1)4Ŝt,k ≤ C4.2.9n, (4.2.9)

X̂0∑
j=1

D(j, t)21{S(j,t)=1,B(j,t)>0} ≤ n(C4.2.10t+ ε), for all 0 ≤ t ≤ γn ∧ 1 (4.2.10)

Proof of Lemma 4.3. We first prove equation (4.2.8). The proof is based on analyzing the
quadratic variation of M1,t, . . . ,M5,t. Since the proofs for the five quantities are similar

we only give the details for M5,t, the martingale associated with
∑∞
k=0 k

4Ŝt,k. Let Qx be
the number of half-edges that vertex x originally has plus the half-edges that has been
rewired to vertex x before x becomes infected. Let Dx(t) be the number of half-edges
that x has at time t. We necessarily have Dx(t) ≤ Qx as long as x is susceptible at time t.
Note that the jumps of

∑∞
k=0 k

4Ŝt,k have the following three sources.

• An infected half-edge pairs with a susceptible half-edge attached to a vertex x

with Dx(t) half-edges and passes the infection to x. This decreases
∑∞
k=0 k

4Ŝt,k by
Dx(t)4. Such type of jumps can occur at most once for each susceptible vertex.

• An infected half-edge pairs with a susceptible half-edge attached to a vertex x with
Dx(t) half-edges but does not pass the infection. This decreases

∑∞
k=0 k

4Ŝt,k by

Dx(t)4 − (Dx(t)− 1)4 ≤ 15Q3
x.

Such type of jumps can occur at most Qx times for vertex x.

• An infected half-edge is rewired to a susceptible vertex x with Dx(t) half-edges.
This gives an increase of

(Dx(t) + 1)4 −Dx(t)4 ≤ 15Q3
x

to
∑∞
k=0 k

4Ŝt,k. Such type of jumps can happen at most Qx times for vertex x.
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It follows from the above analysis that the quadratic variation of M5,t is bounded by

n∑
x=1

(Q4
x)2 +

n∑
x=1

15(Q3
x)2Qx +

n∑
x=1

15(Q3
x)2Qx ≤ C4.2.11

n∑
x=1

Q8
x. (4.2.11)

Using the Burkholder-Davis-Gundy inequality (see, e.g., [15, Theorem 7.34] with
p = 5/4),

E

[
sup

0≤t≤γn∧1
|M5,t|5/4

]
≤ C4.2.12E

( n∑
x=1

Q8
x

)5/8
 . (4.2.12)

To bound the right-hand side we need the following well-known fact: for any p ≥ 1 and
positive numbers a1, . . . , am, (

m∑
i=1

api

)1/p

≤
m∑
i=1

ai. (4.2.13)

In words the Lp norm under the counting measure decreases as p increases. This is
easily seen to be true by noting that

m∑
i=1

ai(∑m
j=1 a

p
j

)1/p =

m∑
i=1

(
api∑m
j=1 a

p
j

)1/p

≥
m∑
i=1

api∑m
j=1 a

p
j

= 1,

since
api∑m
j=1 a

p
j

∈ [0, 1] and 1/p ≤ 1.

Applying (4.2.13) with p = 8/5 and ai = Q8
i gives that(

n∑
x=1

Q8
x

)5/8

≤
n∑
x=1

Q5
x. (4.2.14)

As we argued in the proof of (3.4.7), if V = Binomial(X̂0, 1/n), then Qx is dominated
by Dx+V . To bound the fifth moment of the sum we note that if Y and Z are nonnegative
random variables,

E(Y + Z)5 ≤ E(2 max{Y, Z})5 ≤ 32[EY 5 + EZ5]. (4.2.15)

We claim that the 5-th moment of Binomial(m, p) is bounded by

mp+ · · ·+ (mp)5.

To see this, let Y1, . . . , Ym be i.i.d. Bernoulli variable with mean p.

E

( m∑
i=1

Yi

)5
 =

∑
i1,...,i5

E(Yi1 · · ·Yi5) =
∑

i1,...,i5

p# of distinct elements among i1,...,i5 . (4.2.16)

Note that the number of ordered tuples (i1, . . . , i5) such that there are ` distinct elements
among them is bounded by m`. We conclude that

E

( m∑
i=1

Yi

)5
 ≤ 5∑

`=1

m`p`, (4.2.17)
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which verifies the claim. Using this claim we have that

E(V 5) ≤
5∑
`=1

E(X̂`
0)

n`
≤ C 4.2.18, (4.2.18)

so that by (4.2.15),

n∑
x=1

E(Q5
x) ≤ 32

n∑
i=1

(E(D5
i ) + E(V 5)) ≤ C4.2.19n. (4.2.19)

Equations (4.2.12), (4.2.14) and (4.2.19) imply that

P

(
sup

0≤t≤γn∧1
|M5,t| > n5/6

)
= P

(
sup

0≤t≤γn∧1
|M5,t|5/4 > (n5/6)5/4

)
≤ Cn

n25/24
→ 0.

(4.2.20)
Using the reasoning that led to (4.2.11), we can deduce the same bounds (with different
constants) for M1,t,M2,t,M3,t,M4,t and hence equation (4.2.8) follows by using Markov’s
inequality.

To prove equation (4.2.9), define the event Ωn to be{∣∣∣∣∣
∞∑
k=0

kiŜ0,k − n
∞∑
k=0

kipk

∣∣∣∣∣ ≤ n, sup
0≤t≤γn∧1

|Mi,t| ≤ n, for i = 1, 2, 3, 4

}
. (4.2.21)

The assumption that E(D5) <∞ and equation (4.2.8) imply that P(Ωn)→ 1 as n→∞.
By the definition of Gi,j in (4.2.1),

1

X̂I,t

 X̂0∑
i,j=1

1Gi,j (D(j, t)− 1)21{S(j,t)=1}

≤ 1

X̂I,t

 X̂0∑
i,j=1

1{I(i,t)=1}(D(j, t)− 1)21{S(j,t)=1}

,
which is bounded by

X̂0∑
j=1

D(j, t)21{S(j,t)=1} =

n∑
r=1

X̂0∑
j=1

1{v(j,t)=r}1{r is susceptible at t}Dr(t)
2

=

n∑
r=1

1{r is susceptible at t}Dr(t)
3 =

∞∑
k=0

k3Ŝt,k.

(4.2.22)

Here Dr(t) is the number of half-edges that vertex r has at time t. Using (4.2.5)
and (4.2.22) we obtain that

∞∑
k=0

k2Ŝt,k −
∞∑
k=0

k2Ŝ0,k ≤
∫ t

0

(
2
ρ

λ

X̂S,u

n
(X̂u − 1) +

ρ

λ

Ŝu
n

(X̂u − 1)

)
dt+M3,t. (4.2.23)

On the event Ωn, we have that
∑∞
k=0 k

2Ŝ0,k ≤ (m2 + 1)n, X̂S,u ≤ X̂0 ≤ (m1 + 1)n and
M3,t ≤ n. Therefore, using (4.2.23) we see that, there exsits a constant C4.2.24 such that

∞∑
k=0

k2Ŝt,k ≤ (m2 + 1)n+

∫ t

0

(
2ρ

λ
(m1 + 1)2n+

ρ

λ
(m1 + 1)n

)
du+ n ≤ C4.2.24n (4.2.24)

for all 0 ≤ t ≤ γn ∧ 1. Analogously to the proof of (4.2.22), we can show

1

X̂I,t

 X̂0∑
i,j=1

1Gi,j (D(j, t)− 1)31{S(j,t)=1}

 ≤ ∞∑
k=0

k4Ŝt,k. (4.2.25)
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Using (4.2.25) and (4.2.6),

∞∑
k=0

k3Ŝt,k −
∞∑
k=0

k3Ŝ0,k ≤
∫ t

0

(
3
ρ

λ

∑∞
k=0 k

2Ŝu,k
n

(X̂u − 1)

+ 3
ρ

λ

X̂S,u

n
(X̂u − 1) +

ρ

λ

Ŝu
n

(X̂u − 1)

)
du+M4,t.

On the event Ωn, using (4.2.24), we see that, for all 0 ≤ t ≤ γn ∧ 1,

∞∑
k=0

k3Ŝt,k ≤(m1 + 1)n+ n+

∫ t

0

(
3ρ

λ
C4.2.24(m1 + 1)n+

3ρ

λ
(m1 + 1)2n+

ρ

λ
(m1 + 1)n

)
du ≤ C4.2.26n,

(4.2.26)

for some constant C4.2.26 > 0. Proceeding in a similar fashion and using (4.2.7) we can
show that on Ωn there exists a constant C4.2.27 > 0, such that whp for all 0 ≤ t ≤ γn ∧ 1,

∞∑
k=0

k4Ŝt,k ≤ C4.2.27n. (4.2.27)

Equation (4.2.9) follows from (4.2.27) and the fact that P(Ωn)→ 1 since

∞∑
k=0

(k + 1)4Ŝt,k ≤ 16

∞∑
k=0

(k4 + 1)Ŝt,k ≤ 16

∞∑
k=0

k4Ŝt,k + 16

∞∑
k=0

St,k ≤ 16

∞∑
k=0

k4Ŝt,k + 16n.

We now turn to the proof of equation (4.2.10). Set

H(t) =

X̂0∑
j=1

(D(j, t)− 1)21{S(j,t)=1,B(j,t)>0}.

Note that H(0) = 0. Using Dynkin’s formula,

H(t) =

∫ t

0

h(s) ds+M6,t,

where M6,t is a martingale associated with H(t) and h(t) is the rate of change of H(t). We
now control h(t) and M6,t by analyzing the jumps of H(t) (H(t) is a pure jump process).
Note that there are three types of jumps:

• An infected half-edge pairs with a half-edge attached to susceptible vertex x and
makes x infected. This does not increase H(t) and thus makes a non-positive
contribution to h(t). The absolute value of the jump size of H(t) is bounded by
Dx(t)3 where Dx(t) is the number of half-edges that x has at time t. For each vertex
x such jumps can happen at most once.

• An infected half-edge pairs with a half-edge attached to susceptible vertex x but
x stays susceptible after the pairing. This does not increase H(t) and thus makes
a non-positive contribution to h(t). The absolute value of the jump size of H(t) is
bounded above by

Dx(t)2 +
∣∣(Dx(t)− 1)2 − (Dx(x)− 2)2

∣∣Dx(t) ≤ 3(Dx(t) + 1)2.

To see this, note that the loss of a half-edge j attached to x makes a twofold
contribution to H(t). First, j is no longer a half-edge so H(t) has to decrease
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by (D(j, t) − 1)2 = (Dx(t) − 1)2. Second, the for each of the remaining Dx(t) − 1

half-edges attached to x, its contribution to H(t) changes from (Dx(t) − 1)2 to
(Dx(t)− 2)2.

For each vertex x such type of jumps can occur at most Qx times.

• An infected half-edge is rewired to a susceptible vertex x. This increases H(t) by
at most

D2
x(t) +

∣∣(Dx(t)2 − (Dx(t)− 1)2)
∣∣Dx(t) ≤ 3(Dx(t) + 1)2 ≤ 3(Qx + 1)2.

The rate that x receives a rewired half-edge is equal to

X̂0

λX̂I,t

ρX̂I,t
1

n
=
ρX̂0

λn
≤ (m1 + 1)ρ

λ

on the event Ωn (defined in (4.2.21)). Here the factor of 1/n comes from Poisson
thinning since each half-edge is a rewired to a uniformly chosen vertex indepen-
dently. For each vertex x such type of jumps can occur at most Qx times.

Therefore on Ωn we have

h(t) ≤ (m1 + 1)ρ

λ

n∑
x=1

3(Dx(t) + 1)21{x is susceptible at t} ≤
(m1 + 1)ρ

λ

∞∑
k=0

3(k + 1)4Ŝt,k.

Equation (4.2.9) shows that with high probability
∑∞
k=0(k + 1)4Ŝt,k ≤ C4.2.9n. Since Ωn

also holds with high probability, we deduce that

lim
n→∞

P

(∫ t

0

h(s)ds ≤ C 4.2.28nt, ∀0 ≤ t ≤ γn
)

= 1. (4.2.28)

The above analysis of the jumps of H(t) also implies that the quadratic variation of M6,t

is bounded by

(Q3
x)2 + (3(Qx + 1)2)2Qx + (3(Qx + 1)2)2Qx ≤ 20(Qx + 1)6.

We now bound the 2/3-th moment of the quadratic variation. Applying (4.2.13) with
p = 3/2 and ai = (Qi + 1)6 gives that(

n∑
i=1

(Qi + 1)6

)2/3

≤
n∑
i=1

(Qi + 1)4.

Using this and the Burkholder-Davis-Gundy inequality ([15, Theorem 7.34] with p = 4/3),

E

[
sup

0≤t≤γn∧1
|M6,t|4/3

]
≤ C ′E

( n∑
i=1

(Qi + 1)6

)2/3
 ≤ C ′E( n∑

i=1

(Qi + 1)4

)
≤ Cn.

This implies that

P

(
sup

0≤t≤γn∧1
|M6,t| > n4/5

)
= P

(
sup

0≤t≤γn∧1
|M6,t|4/3 > n4/5∗4/3

)
≤ Cn

n16/15
→ 0. (4.2.29)

Equation (4.2.10) follows from equations (4.2.28) and (4.2.29).
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4.3 Rough upper and lower bounds for X̂I,t and Ît

Define

E(t) =
1

X̂I,t

 X̂0∑
i,j=1

1Gi,jD(j, t)1{S(j,t)=1}

 (4.3.1)

where Gi,j = {I(i, t) = 1, A(i, t) ≤ B(j, t)} was defined in (4.2.1).

Lemma 4.4. There exists two constants λ0, t0 ∈ (0, 1), such that for all λ < λc+λ0, t < t0
and ε > 0, the following four inequalities hold whp for 0 ≤ t ≤ γn ∧ t0:

X̂I,t ≤
(

2ρm1

λ2
c

(λ− λc)t+m1∆t2 + ε

)
n, (4.3.2)

X̂I,t ≥
(
ρm1

2λ2
c

(λ− λc)t+
m1∆

4
t2 − ε

)
n−

∫ t

0

E(u) du, (4.3.3)

Ît ≤ (2m1t+ ε)n, (4.3.4)

Ît ≥
(
m1t

2
− ε
)
n−

∫ t

0

E(u) du. (4.3.5)

Proof of Lemma 4.4. We first prove equation (4.3.2). Using Lemma 4.3 we see that there
exist a constant C such that whp the absolute value of the right hand sides of (4.2.4)–
(4.2.6) are all upper bounded by Cn for t ≤ γn ∧ 1. Denote this event by G1(n). We have
P(G1(n))→ 1 as n→∞. Denote the event{∣∣∣∣∣

∞∑
k=0

kiŜ0,k − n
∞∑
k=0

kipk

∣∣∣∣∣ ≤ εn, for i = 1, 2, 3

}

by G2(n). We have P(G2(n))→ 1 as n→∞ since E(D3) <∞. Therefore we get

lim
n→∞

P(G1(n) ∩G2(n)) = 1,

which implies that whp for all 0 ≤ t ≤ γn ∧ 1, we have∣∣∣∣∣
∞∑
k=0

k3St,k − n
∞∑
k=0

k3pk

∣∣∣∣∣+

∣∣∣∣∣X̂S,t − n
∞∑
k=0

kpk

∣∣∣∣∣ ≤ 4n(Ct+ ε). (4.3.6)

The definition of E(t) in (4.3.1) implies that

E(t) ≤
X̂0∑
j=1

D(j, t)1{S(j,t)=1,B(j,t)>0}.

Therefore by (4.2.10) we see that whp for all t ≤ γn ∧ 1,

E(t) ≤ n(Ct+ ε). (4.3.7)

Now it follows from the integral form of (4.2.3), (4.3.6) and (4.3.7) that whp∣∣∣Ŝt − n (1−m1t)
∣∣∣ ≤ n(Ct2 + ε). (4.3.8)

Similarly to the proof of (4.3.8), whp for all 0 ≤ t ≤ γn ∧ 1∣∣∣∣∣
∞∑
k=0

k2St,k − n

( ∞∑
k=0

k2dk +

(
−
∞∑
k=0

k3pk + 2
ρ

λ
m2

1 +
ρ

λ
m1

)
t

)∣∣∣∣∣ ≤ n(Ct2 + ε). (4.3.9)
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The evolution equation for X̂t in AB-avoSI has the same form as avoSI, i.e.,

X̂t − X̂0 = −
∫ t

0

2(X̂u − 1)du+M0,t. (4.3.10)

Hence, as in the case of avoSI, equation (3.4) in [13] holds for AB-avoSI, which implies

sup
0≤t≤γn∧1

∣∣∣∣∣X̂t

n
−m1 exp(−2t)

∣∣∣∣∣ P−→ 0. (4.3.11)

Combining (4.2.4) and (4.3.10) and using X̂I,t = X̂t − X̂S,t, we get

X̂I,t = X̂I,0 +

∫ t

0

(
−2(X̂u − 1) +

∞∑
k=0

k2Ŝu,k −
ρ

λ

Ŝu
n

(X̂u − 1)

)
du+ (M0,t −M2,t)

− 1

X̂I,t

∫ t

0

 X0∑
i,j=1

1Gi,j (D(j, u)− 1)1{S(j,u)=1}

 du.

(4.3.12)

Dropping the term in the second line of (4.3.12) and bounding

sup
0≤t≤γn∧1

∣∣∣X̂I,0 +M0,t −M2,t

∣∣∣
by εn (which holds with high probability by (4.2.8)),

X̂I,t ≤ εn+

∫ t

0

(
−2(X̂u − 1) +

∞∑
k=0

k2Ŝu,k −
ρ

λ

Ŝu
n

(X̂u − 1)

)
du. (4.3.13)

Using (4.3.11), (4.3.8) and (4.3.9) to approximate X̂t, Ŝt and
∑∞
k=0 k

2Ŝt,k up to the first
order, respectively, we obtain that whp,

X̂t − X̂S,t ≤n
∫ t

0

(
−2m1 exp(−2u) +

∞∑
k=0

k2pk +

(
−
∞∑
k=0

k3pk + 2
ρ

λ
m2

1 +
ρ

λ
m1

)
u

−ρ
λ

(1−m1u)m1 exp(−2u) + Cu2
)
du+ 2nε.

(4.3.14)

We would like to expand the integrand of (4.3.14) in powers of u. Since ρ/λc = (m2 −
2m1)/m1, the constant term is

− 2m1 +m2 −
ρ

λ
m1 = m1

(
ρ

λc
− ρ

λ

)
=
m1ρ

λ2
c

(λ− λc) +O((λ− λc)2). (4.3.15)

for λ > λc. Therefore for λ sufficiently close to λc we have

− 2m1 +m2 −
ρ

λ
m1 ≤

2m1ρ

λ2
c

(λ− λc). (4.3.16)

Note that e−2u = 1− 2u+ 2u2 + . . ., so the coefficient in front of u is

4m1 +
(
−m3 +

ρ

λ
2m2

1 +
ρ

λ
m1

)
+
ρ

λ
m2

1 +
ρ

λ
2m1 = 4m1 −m3 +

ρ

λ
(3m2

1 + 3m1). (4.3.17)

At λ = λc, this coefficient is equal to

4m1 −m3 + (3 + 3m1)(m2 − 2m1) = −m3 + 3m2 − 2m1 + 3m2m1 − 6m2
1. (4.3.18)
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We claim that the quantity in (4.3.18) is exactly equal to m1∆. Indeed, from the definition
of ∆ we see that

∆ = −µ3

µ1
+ 3(µ2 − µ1) = −m3 − 3m2 + 2m1

m1
+ 3(m2 − 2m1)

so that
m1∆ = −m3 + 3m2 − 2m1 + 3m2m1 − 6m2

1.

Using (4.3.17) with the equations that follow, we see that for λ close to λc we have

4m1 −m3 + 2
ρ

λ
m2

1 +
ρ

λ
m1 +

ρ

λ
m1(m1 + 2) ≤ 3m1∆

2
. (4.3.19)

Using (4.3.16) and (4.3.19) in (4.3.14), we see that for some constant C ′ > 0 and all
t ≤ m1∆/(2C ′),

X̂I,t ≤ n
(∫ t

0

(
2ρ

λ2
c

(λ− λc) +
3m1∆

2
u+ C ′u2

)
du+ 2ε

)
≤
(

2ρ

λ2
c

(λ− λc)t+
3m1∆

4
t2 +

C ′t3

3
+ 2ε

)
n

≤
(

2ρ

λ2
c

(λ− λc)t+m1∆t2 + 2ε

)
n.

(4.3.20)

This proves (4.3.2) since ε is arbitrary.
The proof of (4.3.3) is parallel to the proof of (4.3.2), except that we now replace

the second line of (4.3.12) by E(u) (defined in (4.3.1)). We can do this because

1

X̂I,t

 X̂0∑
i,j=1

1Gi,j (D(j, t)− 1)1{S(j,t)=1}

 ≤ E(t),

which is true by the definition of E(t) in (4.3.1).
Since Ît = n− Ŝt, equation (4.2.3) implies

dÎt = X̂S,t dt−
1

X̂I,t

 X̂0∑
i,j=1

1Gi,j1{S(j,t)=1}

 dt− dM1,t. (4.3.21)

Using Î0 = 1 and the inequality

1

X̂I,t

 X̂0∑
i,j=1

1Gi,j1{S(j,t)=1}

 ≤ E(t),

which follows from the fact that D(j, t) ≥ 1, we see that∣∣∣∣Ît − (1 +

∫ t

0

X̂S,udu

)∣∣∣∣ ≤ ∫ t

0

E(u)du+ |M1,t| .

The rest of proofs for (4.3.4) and (4.3.5) are parallel to (4.3.2) and (4.3.3). We
omit further details.

Let

L(t) =

X̂0∑
j=1

D(j, t)1{S(j,t)=1,B(j,t)>0}. (4.3.22)
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Since
∑X̂0

i=1 1{I(i,t)=1} = X̂I,t we have

E(t) =
1

X̂I,t

 X̂0∑
i,j=1

1{I(i,t)=1}D(j, t)1{S(j,t)=1}1{A(i,t)≤B(j,t)}


≤ 1

X̂I,t

 X̂0∑
i,j=1

1{I(i,t)=1}D(j, t)1{S(j,t)=1}1{B(j,t)>0}

 = L(t).

(4.3.23)

The definition of L(t) and the fact D(j, t) ≤ D(j, t)2 imply that

L(t) ≤
X̂0∑
j=1

D(j, t)21{S(j,t)=1,B(j,t)>0}.

Using the fact D(j, t) ≤ D(j, t)2 again, (4.2.10) implies that

lim
n→∞

P(L(t) ≤ n(C4.2.10t+ ε),∀0 ≤ t ≤ γn ∧ 1) = 1. (4.3.24)

Combining (4.3.23) and (4.3.24) we see that for some constant C4.3.25 > 0,

lim
n→∞

P

(∫ t

0

E(u)du ≤ (C 4.3.25t
2 + ε)n, ∀0 ≤ t ≤ γn ∧ t0

)
= 1. (4.3.25)

The bound provided in (4.3.25) is not enough for our purpose (though we will also use it
in the proof of Theorem 1.15). We will prove refined bounded in the next section.

4.4 More refined bounds

Equation (4.3.3) implies that we can get a lower bound for X̂I,t if we can upper bound

the term
∫ t

0
E(u)du. To this end, we let b be some number in (0, 1) to be determined. We

can decompose E(t) into two parts:

E1(t) :=
1

X̂I,t

 X̂0∑
i,j=1

1{I(i,t)=1}D(j, t)1{S(j,t)=1}1{A(i,t)<bt}

 ,

E2(t) =
1

X̂I,t

 X̂0∑
i,j=1

1{I(i,t)=1}D(j, t)1{S(j,t)=1}1{B(j,t)>bt}

 .

(4.4.1)

Since Gi,j = {I(i, t) = 1, A(i, t) ≤ B(j, t)}, we have that E(t) ≤ E1(t) +E2(t). Now we set

X(I, b, t) :=

X0∑
i=1

1{A(i,t)≤bt,I(i,t)=1} ≤ X̂I,t,

L(b, t) :=

X0∑
j=1

D(j, t)1{S(j,t)=1,B(j,t)>bt} ≤ L(t).

(4.4.2)

Recalling the definition of L(t) in (4.3.22), we see that

E1(t) =
X(I, b, t)

X̂I,t

L(t), E2(t) = L(b, t). (4.4.3)

In the next two lemmas we give bounds on L(b, t) and X(I, b, t).
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Lemma 4.5. There exists a constant C4.4.4 so that for any fixed b ∈ (0, 1) and any ε > 0,
whp for all 0 ≤ t ≤ γn ∧ 1,

L(b, t) ≤ n(C4.4.4(1− b)1/2t+ ε). (4.4.4)

Proof. Using the Cauchy-Schwartz inequality,

L(b, t) =

X̂0∑
j=1

D(j, t)1{S(j,t)=1,B(j,t)>bt}

≤

 X̂0∑
j=1

D(j, t)21{S(j,t)=1,B(j,t)>0}

1/2 X̂0∑
j=1

1{bt≤B(j,t)≤t}

1/2

.

(4.4.5)

The first term in the second line of (4.4.5) has already been controlled by equation (4.2.10),
i.e.,

lim
n→∞

P

 X̂0∑
j=1

D(j, t)21{S(j,t)=1,B(j,t)>0} ≤ n(C4.2.10t+ ε),∀0 ≤ t ≤ γn ∧ 1

 = 1. (4.4.6)

Let N(t) be the number of rewiring events that occur by time t. Then we have

X̂0∑
j=1

1{bt≤B(j,t)≤t} ≤ N(t)−N(bt). (4.4.7)

Now we write down the evolution equation for N(t)

N(t) =

∫ t

0

q(u) du+M7,t,

where

q(t) = ρX̂I,t
X̂t − 1

λX̂I,t

≤ ρX̂0

λ
(4.4.8)

and M7,t is some martingale. The assumption E(D5) <∞ implies that the event Ω∗n =

{X̂0 ≤ 2m1n} has probability tending to 1 as n→∞. On Ω∗n, using (4.4.8) we have

q(t) ≤ 2m1ρn/λ.

It follows that
lim
n→∞

P(q(t) ≤ 2m1ρn/λ, ∀t ≥ 0) = 1. (4.4.9)

Note that N(t) is a pure jump process with jump size equal to 1. It follows that the
expected value of quadratic variation of M7,t up to time 1 is upper bounded by

E

(
sup
t>0

q(t)

)
≤ ρ

λ
E(X̂0) ≤ m1ρ

λ
.

This implies that for any ε > 0,

lim
n→∞

P

(
sup

0≤t≤γn∧1
|M7,t| ≤ εn

)
= 1. (4.4.10)

From the definition of N(t), we see that for t ≤ 1,

|N(t)−N(bt)| =
∣∣∣∣∫ t

bt

q(u)du +M7,t −M7,bt

∣∣∣∣ ≤ ∣∣∣∣∫ t

bt

q(u)du

∣∣∣∣+ 2 sup
0≤t≤γn∧1

|M7,t| .
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Thus by (4.4.9) and (4.4.10),

lim
n→∞

P(|N(t)−N(bt)| ≤ Cn((1− b)t+ ε),∀0 ≤ t ≤ γn) = 1. (4.4.11)

Combining (4.4.7) and (4.4.11),

lim
n→∞

P

 X̂0∑
j=1

1{bt≤B(j,t)≤t} ≤ Cn((1− b)t+ ε)

 = 1. (4.4.12)

Equation (4.4.4) now follows from (4.4.5), (4.4.6) and (4.4.12).

Let t0 and λ0 be the two constants given in the statement of Lemma 4.4. Based on
the calculations that led to (4.4.54) we let

U(t) =C4.4.54

[
exp

(
−C 4.4.51(1− b)

λ− λc + t

)
(λ− λc)t+ (1− b)t

+ exp

(
−C 4.4.51(1− b)

λ− λc + t

)
t2 + (λ− λc)t2 + t3

]
+ C4.4.52

√
ε.

(4.4.13)

Lemma 4.6. For any λ < λc + λ0, whp for all 0 ≤ t ≤ t0 ∧ γn we have

X(I, b, t) ≤ U(t)n. (4.4.14)

Proof. We define the events Hk(i, t), 1 ≤ k ≤ 4 for 1 ≤ i ≤ X̂0 (i is any half-edge) as
follows.

H1(i, t) = {I(i, bt) = 1, i didn’t get rewired or paired in [bt, t]},
H2(i, t) = {I(i, bt) = 1, i got rewired to an infected vertex at its first rewiring in [bt, t]},
H3(i, t) = {I(i, bt) = 1, i got rewired to a susceptible vertex at its first rewiring in [bt, t]

and that vertx later became infected in [bt, t]},
H4(i, t) = {0 < A(i, t) ≤ bt, S(i, bt) = 1, v(i, bt) got infected in [bt, t]}.

We claim that

{A(i, t) ≤ bt, I(i, t) = 1} ⊂ ∪4
k=1Hk(i, t).

Indeed, either I(i, bt) = 1 or S(i, bt) = 1 must hold. The case of S(i, bt) = 1 corresponds
to H4(i, t). On the other hand, if I(i, bt) = 1 and I(i, t) = 1, then there are three possible
cases: i didn’t get rewired in [bt, t], i was rewired to an infected vertex or i was rewired
to a susceptible vertex which later became infected. The first case case corresponds to
H1(i, t) while the second and third case are covered in H2(i, t) and H3(i, t), respectively.

Let Hk(t) be the number of half-edges i for which Hk(i, t) occurs. It follows from the
claim and the definition of X(I, b, t) that

X(I, b, t) ≤
4∑
k=1

Hk(t). (4.4.15)

We first estimate H1(t). The rate for a half-edge to be paired at time u is (X̂u −
1)/(λX̂I,u). Hence conditionally on X̂I,s, bt ≤ s ≤ t, H1(t) is stochastically dominated by
a

Binomial

(
X̂I,bt, exp

(
−
∫ t

bt

X̂u

λX̂I,u

du

))
.
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random variable. Here we have a binomial distribution because the Poisson clocks on
different infected half-edges are independent of each other. Let C4.4.16 = max{2ρm1/λ

2
c ,

m1∆, 1}. Then the event

L1(n) ={X̂I,t ≤ C4.4.16n((λ− λc)t+ t2 + ε),

X̂t ≥ nm1 exp(−2t)/2,∀0 ≤ t ≤ γn ∧ t0} (4.4.16)

has probability tending to 1 as n → ∞ by (4.3.2) of Lemma 4.4 and (4.3.11). On the
event L1(n), we have that∫ t

bt

X̂u

X̂I,u

du ≥
∫ t

bt

m1 exp(−2u)/2

C4.4.16((λ− λc)u+ u2 + ε)
du ≥ C4.4.17e

−2t(1− b)t
(λ− λc)t+ t2 + ε

. (4.4.17)

Thus on L1(n), H1(t) is stochastically dominated by

W0(t) := Binomial

(
C4.4.16n((λ− λc)t+ t2 + ε), exp

(
−C4.4.17e

−2t(1− b)t
(λ− λc)t+ t2 + ε)

))
. (4.4.18)

For
√
ε ≤ t ≤ t0, we have

(1− b)t
(λ− λc)t+ t2 + ε

≥ (1− b)t
2((λ− λc)t+ t2)

=
1− b

2(λ− λc + t)
.

Hence W0(t) is stochastically dominated by

W1(t) := Binomial

(
C4.4.16n((λ− λc)t+ t2 + ε), exp

(
−C4.4.17e

−2t(1− b)
2(λ− λc + t)

))
(4.4.19)

for
√
ε ≤ t ≤ t0. Define

U0(t) = C4.4.16((λ− λc)t+ t2 + ε) exp

(
−C4.4.17e

−2t(1− b)
2(λ− λc + t)

)
. (4.4.20)

For t >
√
ε, there exists a constant C4.4.21 = C4.4.21(λ0, t0, ε) depending on λ0, t0 and ε

such that
U0(t) ≥ C4.4.21. (4.4.21)

We need a large deviations bound for sums of Bernoulli random variables.

Lemma 4.7. Consider n i.i.d. Bernoulli random variables Y1, . . . , Yn. Let µ =
∑n
k=1E(Yi).

Then we have

P

(
n∑
k=1

Yk ≥ 3µ

)
≤ exp(−µ). (4.4.22)

Proof of Lemma 4.7. By [25, Theorem 2.3.1], we have

P

(
n∑
k=1

Yk ≥ 3µ

)
≤ exp(−µ)

(
eµ

3µ

)3µ

≤ exp(−µ).

Using Lemma 4.7, we have, for t ≥
√
ε,

P (W1(t) > 3U0(t)n) ≤ exp(−U0(t)n) ≤ exp(−C4.4.21n). (4.4.23)

Using the definition of L1(n) in (4.4.16) and the fact that for
√
ε ≤ t ≤ t0, W1(t) dominates

W0(t) which in turn dominates H1(t) (see (4.4.18)), we get

P ({H1(t) > 3U0(t)n} ∩ L1(n)) ≤ exp(−C4.4.21(λ0, t0, ε)n). (4.4.24)
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For 0 ≤ t ≤
√
ε, on the event L1(n),

X̂I,t ≤ C4.4.16n((λ− λc)t+ t2 + ε) ≤ C4.4.16n((λ− λc)
√
ε+ ε+ ε) ≤ C4.4.25n

√
ε. (4.4.25)

for sufficiently small ε. Since H1(t) ≤ X̂I,bt (by the definition of H1(t)),

H1(t) ≤ C4.4.25n
√
ε for t ≤

√
ε.

Thus if we define
U1(t) = U0(t) + C4.4.25

√
ε, (4.4.26)

then we have
P ({H1(t) > 3U1(t)n} ∩ L1(n)) ≤ exp(−C4.4.21n) (4.4.27)

for all 0 ≤ t ≤ t0. Setting t`0 = t0`/n
3/2, 0 ≤ ` ≤ n3/2, we get

P
((
∪n

3/2−1
`=0 {H1(t`0) > 3U1(t`0)n}

)
∩ L1(n)

)
≤ n3/2 exp(−C4.4.21n). (4.4.28)

Denote the oscillation of H1(t) in [t`0, t
`+1
0 ] by ω(H1(t), t`0, t

`+1
0 ). Here, the oscillation of

any function (deterministic or random) g(t) in an interval [a, b] is defined to be

sup
a≤t1≤t2≤b

|g(t1)− g(t2)| .

Consider the event that there is at most six pairings (i.e., a half-edge pairs with another
half-edge) and rewirings (i.e., a half-edge is rewired to another vertex) occurring in
[bt`0, bt

`+1
0 ] ∪ [t`0, t

`+1
0 ] and denote it by Ω`. On Ω` we have

ω(H1(t), t`0, t
`+1
0 ) ≤ 6 max

1≤i≤n
Qi, (4.4.29)

where Qi is the number of half-edges that vertex i has before it becomes infected.
By (4.4.29), Markov’s inequality and (4.2.19) (together with Q5

i ≥ Q4
i ) we have

P({ω(H1(t), t`0, t
`+1
0 ) ≥ εn} ∩ Ω`) ≤ P

(
6 max

1≤i≤n
Qi ≥ εn

)
≤

64E(
∑n
i=1Q

4
i )

ε4n4
≤ C

ε4n3
.

(4.4.30)
Now we control the probability of (Ω`)c. Note that the rate for a rewiring or pairing to
occur is equal to (ρX̂I,t + λX̂I,t)(X̂t − 1)/(λX̂I,t) which is bounded by (λ+ ρ)X̂0/λ. On

the event Ω∗n := {X̂0 ≤ 2m1n} (which holds with high probability) this quantity is upper
bounded by 2(ρ+ λ)m1n/λ. Using this we get

P((Ω`)c) ∩ Ω∗n) ≤ C(n · n−3/2)6 ≤ Cn−3. (4.4.31)

Combining (4.4.30) and (4.4.31) we get

P({ω(H1(t), t`0, t
`+1
0 ) > εn} ∩ Ω∗n) ≤ C

ε4n3
. (4.4.32)

By the union bound for probabilities,

P
((
∪n

3/2−1
`=0 {w(H1(t), t`0, t

`+1
0 ) > εn}

)
∩ Ω∗n

)
≤ C

ε4n3/2
. (4.4.33)

Combining (4.4.28), (4.4.33) and the facts P(L1(n))→ 1,P(Ω∗n)→ 1, we get

lim
n→∞

P
((
∩n

3/2−1
`=0 {w(H1(t), t`0, t

`+1
0 ) ≤ εn}

)
∩
(
∩n

3/2−1
`=1 {H1(t`0) ≤ 3U1(t`0)n}

))
= 1.

(4.4.34)
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On the event(
∩n

3/2−1
`=0 {w(H1(t), t`0, t

`+1
0 ) ≤ εn}

)
∩
(
∩n

3/2

`=1 {H1(t`0) ≤ 3U1(t`0)n}
)
,

we necessarily have H1(t) ≤ 3U1(t)n+ εn ≤ 4U1(t)n for all 0 ≤ t ≤ t0 ∧ γn. Hence we get

lim
n→∞

P(H1(t) ≤ 4U1(t)n, ∀0 ≤ t ≤ t0 ∧ γn) = 1. (4.4.35)

Now we turn to the control of H2(t). We set the event

L2(n) := {Ît ≤ (2m1t+ ε)n,∀0 ≤ t ≤ γn ∧ t0}.

By equation (4.3.4) we have
lim
n→∞

P(L2(n)) = 1. (4.4.36)

On L2(n), H2(t) is stochastically dominated by

W2(t) := Binomial(C4.4.37n((λ− λc)t+ t2 + ε), C ′4.4.37(t+ ε)). (4.4.37)

for some constants C4.4.37 and C ′4.4.37. Now we define

U2(t) = C4.4.37((λ− λc)t+ t2 + ε)C ′4.4.37(t+ ε) + C4.4.25

√
ε. (4.4.38)

Following the proof of (4.4.35), one can derive analogous inequalities to (4.4.27) and
(4.4.33) for H2(t). Combining these two inequalities we obtain that

lim
n→∞

P(H2(t) ≤ 4U2(t),∀0 ≤ t ≤ t0 ∧ γn) = 1. (4.4.39)

We omit further details.

It remains to control H3(t) and H4(t). For any vertex x, let R(x) be the indicator
function of the event that vertex x has received at least one rewired edge when x

first becomes infected and let Qx be the number of half-edges that x has just before it
becomes infected. Let R(x, t) be the indicator of the event that x has received at least
one rewired half-edge by time t. Then we have, by the definitions of H3(t) and H4(t),

H3(t) +H4(t) ≤
n∑
x=1

R(x, t)Qx1{x was infected in [bt,t]}. (4.4.40)

Denote the right hand side of (4.4.40) by N(bt, t), then we can decompose N(bt, t) into a
drift part and a martingale part for any fixed t:

N(bt, t) =

∫ t

bt

h̄t(u) du+M8,t. (4.4.41)

Let Dx(u) be the number of half-edges of vertex x at time u and D(j, u) the number of
half-edges that v(j, u) has at time u (recall that v(j, u) is the vertex that half-edge j is
attached to at time u). The process N(bt, u), bt ≤ u ≤ t has a positive jump whenever
a susceptible vertex with at least one rewired half-edge gets infected. The probability
that x is infected (given an infection event occurs) is equal to Dx(u)/(X̂u − 1) and the
contribution to N(bt, t) is equal to R(x, u)Dx(u). Thus h̄t(u) satisfies

h̄t(u) ≤ λX̂I,u
X̂u − 1

λX̂I,u

·
∑n
x=1R(x, u)D2

x(u)1{x is susceptible at time u}

X̂u − 1

≤
X̂0∑
j=1

D(j, u)21{S(j,t)=1,B(j,t)>0},

(4.4.42)
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where the second inequality follows from changing the order of summation:

n∑
v=1

D2
x(u)1{x is susceptible at time u}R(x, u)

≤
n∑
x=1

D2
x(u)1{x is susceptible at time u}

X̂0∑
j=1

1{v(j,u)=x,B(j,u)>0}

=

X̂0∑
j=1

n∑
x=1

1{v(j,u)=x}D(j, u)21{S(j,u)=1,B(j,u)>0}

=

X̂0∑
j=1

D(j, u)21{S(j,u)=1,B(j,u)>0}.

(4.4.43)

In the first step of (4.4.43) we used the definition of R(x, u) so that

R(x, u) ≤
X̂0∑
j=1

1{v(j,u)=x,B(j,u)>0}.

We denote the event

L3(n) =


X0∑
j=1

D(j, t)21{S(j,t)=1,B(j,t)>0} ≤ n(C4.2.10t+ ε),∀0 ≤ t ≤ γn ∧ 1

 .

Then by (4.2.10) we have P(L3(n))→ 1 as n→∞. On L3(n), using (4.4.42) and setting
C4.4.44 = C4.2.10, we see that for all 0 ≤ t ≤ t0,

h̄t(u) ≤ n(C4.4.44t+ ε),∀bt ≤ u ≤ t. (4.4.44)

The definition of N(bt, t) as the right hand side of (4.4.40) implies that we can upper
bound the quadratic variation of M8,t by

∑n
i=1Q

2
i where Qi is the number of half-edges

that vertex i has before it becomes infected. Using this and the Burkholder-Davis-Gundy
inequality we have

E
(
M4

8,t

)
≤ CE

( n∑
i=1

Q2
i

)2
 ≤ CE(n n∑

i=1

Q4
i

)
≤ C ′n2. (4.4.45)

The second inequality in (4.4.45) is due to the Cauchy-Schwartz inequality(
n∑
i=1

(Q2
i )

2

)(
n∑
i=1

12

)
≥

(
n∑
i=1

Q2
i

)2

,

and the third inequality follows from (4.2.19). Using (4.4.45) we have

P(|M8,t| ≥ εn) ≤
E(M4

8,t)

ε4n4
≤ C

ε4n2
. (4.4.46)

Now using (4.4.40), (4.4.41), (4.4.44) and (4.4.46), we get, for any 0 ≤ t ≤ t0,

P(L3(n) ∩ {H3(t) +H4(t) ≥ (1− b)t(C4.4.44t+ ε)n+ εn}) ≤ C

ε4n2
. (4.4.47)

Define
U3(t) = (1− b)t(C4.4.44t+ ε) + ε. (4.4.48)
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Now we can repeat the proof of (4.4.35) (i.e., divide [0, t0] into n3/2 intervals and use a
union bound) to get

lim
n→∞

P(H3(t) +H4(t) ≤ 2U3(t)n, ∀0 ≤ t ≤ t0 ∧ γn) = 1. (4.4.49)

Combining (4.4.35), (4.4.39) and (4.4.49), we have that with high probability

X(I, b, t) ≤ 5(U1(t) + U2(t) + U3(t))n.

Using (4.4.20), (4.4.26), (4.4.38), and (4.4.48), the right-hand side is

5

[
C4.4.16((λ− λc)t+ t2 + ε) exp

(
−C4.4.17e

−2t(1− b)
2(λ− λc + t)

)
+ (C4.4.37(λ− λc)t+ t2 + ε)C ′4.4.37(t+ ε) + 2C4.4.25

√
ε (4.4.50)

+ (1− b)t(C4.4.44t+ ε) + ε

]
n.

To make the computation easier to write we note that when t ≤ t0 ≤ 1,

exp

(
−C4.4.17e

−2t(1− b)
2(λ− λc + t)

)
≤ exp

(
−C 4.4.51(1− b)

λ− λc + t

)
:= F. (4.4.51)

Expanding the terms in 4.4.50 and putting the terms with ε or
√
ε together, we bound

(4.4.50) by

5

[
C4.4.16((λ− λc)t+ t2)F + (C ′4.4.37(λ− λc)t+ t2)C ′4.4.37t

+ C4.4.44(1− b)t
]
n+ C4.4.52

√
εn.

(4.4.52)

We also used the fact that ε ≤
√
ε in (4.4.52). Sorting the terms by powers of t we get

5

[
C4.4.16F (λ− λc)t+ C 4.4.44(1− b)t (4.4.53)

+ C4.4.16Ft
2 + C4.4.37C

′
4.4.37[(λ− λc)t2 + t3]

]
n+ C4.4.52

√
εn.

Simplifying constants we have

X(I, b, t) ≤C4.4.54

[
exp

(
−C 4.4.51(1− b)

λ− λc + t

)
(λ− λc)t (4.4.54)

+ exp

(
−C 4.4.51(1− b)

λ− λc + t

)
t2 + (λ− λc)t2 + (1− b)t2 + t3

]
n+ C4.4.52

√
εn,

which completes the proof of Lemma 4.6.

4.5 Completing the proof of Theorem 1.15

Proof of Theorem 1.15. We set γn = inf{t > 0 : X̂I,t = 0}. We now condition on a large

outbreak so that Î∞ > ηn for some fixed η > 0. By (4.3.4), we see that, conditionally on
Î∞ > ηn, with high probability γn > ε for some ε > 0. That is,

lim
n→∞

P(γn > ε|Î∞/n > η) = 1. (4.5.1)

Let t0 and λ0 be given by the statement of Lemma 4.4. We let λ1 < λ0, t1 < t0 be two
constants (independent of ε) and ε1, ε2, ε3, ε4, ε5, ε6 be some small numbers (depending on
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ε) to be determined. Recall the definition of U(t) in (4.4.13). We set C4.4.52
√
ε in (4.4.13)

to be ε4. In other words,

U(t) = C4.4.54

(
exp

(
−C 4.4.51(1− b)

λ− λc + t

)
(λ− λc)t+(

exp

(
−C 4.4.51(1− b)

λ− λc + t

)
+ (λ− λc) + (1− b)

)
t2 + t3

)
+ ε4,

(4.5.2)

Previous results imply that the following inequalities hold whp on 0 ≤ t ≤ γn ∧ t0. The
numbers on the left give the formula numbers for these statements.

(4.3.3) X̂I,t ≥
(
ρm1(λ− λc)

2λ2
c

t+
m1∆

4
t2 − ε2

)
n−

∫ t

0

E(u)du.

(4.3.5) Ît ≥
(
m1t

2
− ε5

)
n−

∫ t

0

E(u) du.

(4.3.25)

∫ t

0

E(u)du ≤ (C4.3.25t
2 + ε1)n.

(4.3.24) L(t) ≤ n(C4.2.10t+ ε1).

(4.4.4) L(b, t) ≤ n(C4.4.4(1− b)1/2t+ ε3).

(4.4.14) X(I, b, t) ≤ U(t)n.

Let Ωn be the event that all of the last six formulas together with the event {γn > ε}
hold. Combining (4.5.1) and the fact that lim infn→∞P(Î∞/n > η) > 0 (since λ > λc),

lim
n→∞

P(Ωn|Î∞/n > η) = 1. (4.5.3)

Now we define

τ = inf

{
ε ≤ t ≤ t0 ∧ γn :

∫ t

0

E(u) du >

(
ρm1(λ− λc)

4λ2
c

t+
m1∆

8
t2 + ε6

)
n

}
, (4.5.4)

where inf ∅ here is set to be t0 ∧ γn. We want to select the parameters λ1 and t1 so that
whenever λ− λc < λ1 and the outcome is in Ωn, we have

t1 ≤τ < γn, (4.5.5)

Ît1 ≥
(
m1t1

2
− ε5

)
n−

∫ t1

0

E(u)du >
m1t1

8
n. (4.5.6)

This implies

Î∞
n

>
m1t1

8
,

which proves (1.5.7), as desired. We now divide the proof of (4.5.5) and (4.5.6) into five
steps:

• In Step 1, we choose appropriate ε1, ε2 and ε6 to ensure γn > τ > ε.

• In Step 2, we show that, under conditions (4.5.19) and (4.5.20) below, there exists
a constant t1 such that τ ≥ t1.

• In Step 3, we show that (4.5.19) and (4.5.20) can be satisfies by choosing appropri-
ate values of the parameters involved. The first three steps combined give (4.5.5).

• In Step 4, we prove (4.5.6).

• Finally, we summarize the choices of the parameters.
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Step 1. We first show that τ > ε. Using (4.3.25),∫ ε

0

E(u) du ≤ (C4.3.25ε
2 + ε1)n, (4.5.7)

We set

ε1 = C4.3.25ε
2, (4.5.8)

and

ε2 = ε6 =
ρm1(λ− λc)

16λ2
c

ε. (4.5.9)

We now require

C4.3.25ε
2 + ε1 = 2C4.3.25ε

2 ≤ ε6
2

=
ρm1(λ− λc)

32λ2
c

ε, (4.5.10)

which holds true if 2C4.3.25ε
2 ≤ ρm1(λ− λc)ε/32λ2

c or equivalently,

ε <
ρm1(λ− λc)
64C4.3.25λ2

c

. (4.5.11)

We now prove τ > ε. Indeed, using (4.5.7)-(4.5.10),∫ ε

0

E(u)du ≤ ρm1(λ− λc)
32λ2

c

εn <

(
ρm1(λ− λc)

2λ2
c

t+
m1∆

4
t2 − ε2

)
n.

This proves τ > ε by the definition of τ .
Now we show that γn > τ . If γn > t0 then this is trivial. So we assume that γn ≤ t0.

Equation (4.3.3) and the definition of τ in (4.5.4) imply that, for ε < t ≤ τ ,

X̂I,t ≥
(
ρm1(λ− λc)

2λ2
c

t+
m1∆

4
t2 − ε2

)
n−

∫ t

0

E(u)du

≥
(
ρm1(λ− λc)

2λ2
c

t+
m1∆

4
t2 − ε2

)
n−

(
ρm1(λ− λc)

4λ2
c

t+
m1∆

8
t2 + ε6

)
n

≥
(
ρm1(λ− λc)

4λ2
c

t+
m1∆

8
t2 − ε2 − ε6

)
n.

(4.5.12)

Note that when t > ε,

ρm1(λ− λc)
4λ2

c

t+
m1∆

8
t2 − ε2 − ε6 >

ρm1(λ− λc)
4λ2

c

ε+
m1∆

8
ε2 − ε2 − ε6 > 0,

due to (4.5.9). This proves γn > τ .

Step 2. We turn now to the second requirement that τ ≥ t1 for some appropriately
chosen constant t1. We will show this by contradiction. Assume τ < t1 which is also
smaller than t0. Since we have already proved γn > τ > ε in Step 1, it follows that∫ τ

0

E(u)du =

(
ρm1(λ− λc)

4λ2
c

τ +
m1∆

8
τ2 + ε6

)
n. (4.5.13)

We split the integral
∫ τ

0
E(u) du into two parts:

∫ ε
0
E(u) du and

∫ τ
ε
E(u) du. This first part

has already been controlled in (4.5.7) and (4.5.10). For the second part
∫ τ
ε
E(u)du, (4.4.3)

implies that

E(t) ≤ E1(t) + E2(t) =
X(I, b, t)

X̂I,t

L(t) + L(b, t). (4.5.14)
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For ε < t < τ , using (4.4.15) and (4.5.12), we get

X(I, b, t)

X̂I,t

≤ U(t)n(
ρm1(λ−λc)

4λ2
c

t+ m1∆
8 t2 − ε2 − ε6

)
n
. (4.5.15)

Using (4.5.9) and t > ε, we see(
ρm1(λ− λc)

4λ2
c

t+
m1∆

8
t2 − ε2 − ε6

)
n ≥ max

{
ρm1(λ− λc)

8λ2
c

tn,
m1∆

8
t2n, ε2n

}
.

Hence using (4.5.2) and (4.5.15) we get

X(I, b, t)

X̂I,t

≤
C4.4.54 exp

(
−C 4.4.51(1−b)

λ−λc+t

)
(λ− λc)t

ρm1(λ−λc)
8λ2
c

t

+
C4.4.54

(
exp

(
−C 4.4.51(1−b)

λ−λc+t

)
+ (λ− λc) + (1− b) + t

)
t2

m1∆
8 t2

+
ε4
ε2

≤ exp

(
−C 4.4.51(1− b)

λ− λc + t

)(
8C4.4.54λ

2
c

ρm1
+

8C4.4.54

m1∆

)
+

8C4.4.54

m1∆
((λ− λc) + (1− b) + t) +

ε4
ε2
.

(4.5.16)

Let V (λ, t) denote the quantity on the last two lines of (4.5.16). V (λ, t) is increasing with
respect to both λ and t. Therefore for λ ≤ λc + λ1 and t ≤ t0, which we have supposed is
< 1, V (λ, t) is bounded above by its value at (λc + λ1, t1)

V ∗ := exp

(
−C 4.4.51(1− b)

λ1 + t0

)(
8C4.4.54λ

2
c

ρm1
+

8C4.4.54

m1∆

)
+

8C4.4.54

m1∆
((λ− λc) + (1− b) + t1) +

ε4
ε2
.

(4.5.17)

Using (4.5.14), (4.5.17), (4.3.24), and (4.4.4) we see that∫ τ

ε

E(u) du ≤
∫ τ

ε

X(I, b, u)

X̂I,u

L(u) du+

∫ τ

ε

L(b, u) du

≤
∫ τ

ε

V ∗(C4.2.10u+ ε1)ndu+

∫ τ

ε

n(C4.4.4(1− b)1/2u+ ε3) du

≤
(
V ∗C4.2.10

τ2

2
+ V ∗ε1τ + C4.4.4(1− b)1/2 τ

2

2
+ ε3τ

)
n.

(4.5.18)

We want to choose our parameters so that

V ∗C4.2.10 + C4.4.4(1− b)1/2

2
≤ m1∆

16
, (4.5.19)

V ∗ε1 + ε3 ≤
ε6
2
. (4.5.20)

Indeed, if (4.5.19) and (4.5.20) hold, then by (4.5.7), (4.5.10) and (4.5.18) we have∫ τ

0

E(u)du =

∫ ε

0

E(u) du+

∫ τ

ε

E(u) du ≤
(
ε6
2

+
m1∆

16
τ2 +

ε6
2

)
n, (4.5.21)

which is smaller than (
ρm1(λ− λc)

4λ2
c

τ +
m1∆

8
τ2 + ε6

)
n.
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This contradicts with (4.5.13) and proves τ ≥ t1 on Ωn.

Step 3. (4.5.19) will hold if

V ∗ ≤ m1∆

32C4.2.10
and (1− b)1/2 ≤ m1∆

32C4.4.4
.

We have ε1 ≤ ε6/2 by (4.5.10), so (4.5.20) will hold if

V ∗ ≤ 1/4 and ε3 =
ε6
4
.

To make sure (4.5.19) and (4.5.20) are satisfied, it suffices to have

V ∗ ≤ K := min

{
m1∆

32C4.2.10
,

1

4

}
, (1− b)1/2 ≤ m1∆

32C4.4.4
, ε3 =

ε6
4C4.4.4

. (4.5.22)

Using the definition of V (λ, t) in (4.5.17), (4.5.22) can be satisfied if we first choose b
sufficiently close to 1 such that

8C4.4.54

m1∆
(1− b) ≤ K

8
, (4.5.23)

then choose λ1, t1 and ε4 such that

exp

(
−C 4.4.51(1− b)

λ1 + t1

)(
bC4.4.54λ

2
c

ρm1
+

8C4.4.54

m1∆

)
+

8C4.4.54

m1∆
(λ− λc) +

8C4.4.54

m1∆
t1 <

K

8
,

(4.5.24)
and finally take

ε4 =
ε2
8
K. (4.5.25)

Step 4. It remains to take care of (4.5.6). Using (4.3.5) and (4.3.25), we have

Ît1 ≥
(
m1t1

2
− ε5

)
n−

∫ t1

0

E(u)du ≥
(
m1t1

2
− ε5 − C4.3.25t

2
1 − ε1

)
n. (4.5.26)

Recall that we set ε1 = C4.3.25ε
2 in (4.5.8). Thus we have

Ît1 ≥
(
m1t1

2
− ε5 − C 4.3.25t

2
1 − C4.3.25ε

2

)
n, (4.5.27)

which is bigger than nm1t1/8 if

t1 ≤
m1

16C4.3.25
, ε5 =

m1t1
16

, ε <

(
m1t1

16C4.3.25

)1/2

. (4.5.28)

Summary we can first choose b close to 1, then tale λ1 and t1 sufficiently small such
that (4.5.24) holds true and

t1 ≤ min

{
m1

16C4.3.25
, t0

}
.

Then we let ε be smaller than

min

{
ρm1(λ− λc)
64C4.3.25λ2

c

,

(
m1t1

16C4.4.54

)1/2
}
.

Finally we determine ε1, . . . , ε6 using (4.5.9), (4.5.8), (4.5.22), (4.5.25) and (4.5.28).

ε2 = ε6 =
ρm1(λ− λc)

16λ2
c

ε, ε1 = C4.3.25ε
2, ε3 =

ε6
4
,

ε4 =
ε2
8

min

{
m1∆

32C4.2.10
,

1

4

}
, ε5 =

m1t0
16

.
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