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Stochastic partial differential equations describing
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range dispersal
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Abstract

In this paper, we consider a mathematical model for the evolution of neutral genetic
diversity in a spatial continuum including mutations, genetic drift and either short
range or long range dispersal. The model we consider is the spatial Λ-Fleming-Viot
process introduced by Barton, Etheridge and Véber, which describes the state of the
population at any time by a measure on Rd × [0, 1], where Rd is the geographical
space and [0, 1] is the space of genetic types. In both cases (short range and long
range dispersal), we prove a functional central limit theorem for the process as the
population density becomes large and under some space-time rescaling. We then
deduce from these two central limit theorems a formula for the asymptotic probability
of identity of two individuals picked at random from two given spatial locations. In the
case of short range dispersal, we recover the classical Wright-Malécot formula, which
is widely used in demographic inference for spatially structured populations. In the
case of long range dispersal we obtain a new formula which could open the way for a
better appraisal of long range dispersal in inference methods.
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Introduction

Isolation by distance patterns Many populations occupy a geographical area whose
spatial extent is much larger than the typical distance travelled by individuals during
their lifetime. As a result, individuals living close to each other are on average more
related than those living far apart. Genetic similarity between individuals thus decreases
as a function of the geographical distance between them. This is known as isolation
by distance, and the exact speed and shape of this decrease of genetic similarity has
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SPDEs describing neutral genetic diversity

been the subject of many theoretical studies ([Wri43, Wri40, Mal75], followed by [Kim53,
KW64, SF81] and many others).

The quantity that has been most often used to describe this phenomenon is the prob-
ability of identity by descent, which is defined as follows. Given a model describing the
evolution of the genetic composition of a spatially structured population, the probability
of identity by descent is the probability that two individuals sampled from two distinct
locations carry the same genetic material (or allele) at a given locus and that this allele
was inherited from a common ancestor without any mutation between them. If the
dispersion of individuals in the population is very local, this probability is approximately
given by the so-called Wright-Malécot formula, which takes the following form [BDE02].
If x > 0 is the distance between the two sampled individuals, µ is the mutation rate of
individuals and σ2 is the average square distance between an individual and its parent,
then, in a two dimensional space,
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The constant N is called Wright’s neighbourhood size and is defined by

N = 2πσ2N,

where N is proportional to the density of breeding individuals in the population. The
parameter κ depends on the details of the specific model under consideration, and is
chosen so that the value of (1) at x = κ matches the probability of identity by descent
of a pair of individuals sampled close to each other (see [BDE02] for more details). A
formula similar to (1) appears in the correlations between allele frequencies at two
spatial locations [KW64], as expected from the duality relation between genealogical
and forwards-in-time models [BEV13].

The Wright-Malécot formula allows one – if a large enough number of individuals are
sequenced at a sufficient number of loci – to estimate the demographic parameters N
and σ of real populations by fitting (1) to pairwise identity matrices [Rou97, BEKV13].
More sophisticated inference methods have also been recently developed, using long
continuous tracts of shared genetic material (called blocks of identity by descent, or IBD
blocks), and these also rely on the Wright-Malécot formula [RCB17].

In some species, however, individuals can disperse their offspring arbitrarily far
away from their own location, and the average square distance between an offspring
and its parent might be very large, violating one assumption of the Wright-Malécot
formula. Evidence of long range dispersal has been found for example in plant species
[CMS00] and fungi [Bus07] (see also [NPC+03]), but, up to now, no analogue formula
was available for such populations. One of the aims of this paper is to fill this gap.

Modelling evolution in a spatial continuum In this paper, we use a model called
the spatial Λ-Fleming-Viot process (SLFV in short), introduced by N. Barton, A. Etheridge
and A. Véber in [Eth08, BKE10] (see also [BEV13] for a review). This model describes
the genetic composition of a spatially structured population by a measure on Rd × [0, 1],
where Rd is the geographical space and [0, 1] is the space of genetic types. The density
of the population is tightly regulated so that, at any time, the spatial marginal of the
measure is always the Lebesgue measure.
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SPDEs describing neutral genetic diversity

The population then evolves through a sequence of reproduction events, where each
of these events affects a ball drawn according to a Poisson point process. During these
events, a fixed proportion of the individuals in the ball die and are replaced by the
offspring of an individual chosen at random within the same ball. We also include
mutations by assuming that individuals change their type to a new one, chosen uniformly
in [0, 1], at some fixed rate µ > 0. As a result of this construction, if we start the process
from the Lebesgue measure on Rd × [0, 1], two individuals share the same genetic type if
and only if they share a common ancestor which is more recent than the last mutation to
occur in their genealogy.

This way of encoding the genetic composition of a spatially structured population as a
measure on Rd× [0, 1] was already used in several settings, e.g. in [Han90, Eva97, Lia09].
This particular way of including mutations in the SLFV was also introduced in [VW15].
In particular, the SLFV records the size and geographical extent of all the families in the
population, see Remark 1.2 below.

We consider two separate settings: one in which the radius of reproduction events
is fixed, which corresponds to local dispersal, and one in which this radius is drawn
at random according to some heavy-tailed distribution, corresponding to long range
dispersal.

Large population - rare mutations limit We then consider the limit of this process
as both the mutation rate and the fraction of individuals replaced at each reproduction
event converge to zero. We show that, if we rescale time and space properly, the SLFV
converges to the Lebesgue measure on Rd × [0, 1]. In other words, the probability that
any two given individuals are related vanishes. To recover isolation by distance patterns,
we need to look at the fluctuations of the process around its deterministic limit.

We do this by proving a central limit theorem for the SLFV. More precisely, we show
that the rescaled difference between the SLFV and its limit converges to a distribution-
valued Gaussian process, given as the solution to a linear stochastic partial differential
equation onRd×[0, 1]. The coefficients of this SPDE are functions of the parameters of the
SLFV, and more importantly, the driving noise depends on the dispersal assumption. In
the case of a fixed radius of reproduction events (i.e. short range dispersal, Theorem 2.1
below), the driving noise is white in space and time, and has a Fleming-Viot component
at each spatial location. In the case of heavy-tailed radius of reproduction events (long
range dispersal, Theorem 2.3), the driving noise becomes correlated in space and the
strength of these correlations depends on the decay of the radius distribution.

These results extend previous results obtained in [FP17], where rescaling limits
as well as central limit theorems were obtained for the two-types SLFV with natural
selection. The main difficulty in the present paper compared to [FP17] is the fact that,
while the SLFV with selection took values in a space of measurable maps from Rd to
[0, 1], the SLFV with mutations takes values in a space of measurable maps from Rd to
M1([0, 1]), the space of probability measures on [0, 1] (see Section 1.1 below).

The Wright-Malécot formula We are then able to use our results on the asymptotic
fluctuations of the SLFV with mutations around the Lebesgue measure on Rd × [0, 1] to
deduce the asymptotic behaviour of the probability of identity of two individuals sampled
from two different regions. The formula for this probability is obtained by computing the
singular part of the Gaussian process given by the central limit theorem for the SLFV with
mutations. In the case of short range dispersal, we recover the classical Wright-Malécot
formula (1), albeit without the term involving κ. This is because we are considering a
limit where the population density tends to infinity, hence this term becomes negligible
compared to N in our result. In the case of long range dispersal, we obtain with the
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same method a new formula for the probability of identity of two individuals sampled
from the population, as a function of the decay of the radius distribution.

It is worth noting that, in this paper, we never use the genealogical dual of the SLFV,
but we are still able to obtain estimates of the probability of identity of two individuals in
the population. This is important because, in some situations, a proper genealogical dual
may be hard to find, or even non-existent (see for example [BEK21]). Our techniques
might then allow one to recover genealogical information about certain populations even
in the absence of a dual.

Demographic inference We hope that this result will permit new developments in
demographic inference methods in order to better take into account long range dispersal
in natural populations. Current parametric estimation methods could be adapted to
include this effect and estimate the strength of long range dispersal as an additional
parameter (through the exponent of the fractional Laplacian appearing in the limiting
equations below). A first step in this direction has been made by [SW20], who derived
asymptotic approximations for the probability of identity by descent in a related model
(in discrete space) including long range dispersal, but, contrary to the model studied
here, without long range coalescence. An upcoming paper will focus on the study of a
family of SLFV processes which display a variety of behaviours, including the regime
studied in [SW20].

The paper is laid out as follows. In Section 1, we define the SLFV with mutations. In
Section 2, we state our main results, namely two central limit theorems (one for short
range dispersal and one for long range dispersal) and we give the two corresponding
formulas for the probability of identity. We also state a central limit theorem for the
SLFV with mutations in a slightly more general setting which is of independent interest.
The two central limit theorems are proved in Section 3. We introduce general notations
which allow us to prove the two results at the same time, following a general strategy
which is outlined in Section 3.1. The two formulas for the probability of identity are then
proved in Section 4. Finally, in the Appendix, we recall a few useful results and we show
how to adapt a particular result of [Wal86] to our setting.

1 Definition of the model

Consider a population occupying a continuous geographical space (here Rd) and
where each individual carries a genetic type belonging to [0, 1]. The state of the popula-
tion at time t ≥ 0 can then be represented by a (random) map

ρt : R
d → M1([0, 1]),

where M1([0, 1]) denotes the space of probability measures on [0, 1]. In this way, ρt(x, dk)
is the probability measure corresponding to the distribution of genetic types at x ∈ Rd

at time t ≥ 0. More precisely, for A ⊂ [0, 1],∫
A

ρt(x, dk)

is the probability that an individual sampled uniformly from those present at x ∈ Rd

at time t carries a type belonging to A. The evolution of (ρt, t ≥ 0) is then governed
by births and deaths in the population, along with migration, mutations, and possibly
natural selection. Barton, Etheridge and Véber introduced the spatial Λ-Fleming-Viot
process (SLFV in short) in [BKE10] as a framework to describe the evolution of (ρt, t ≥ 0)

as individuals die and reproduce in the population.
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1.1 The state space of the process

Before giving the formal definition of the SLFV, let us precise its state space and
its topology. In particular, we identify two measurable maps from Rd to M1([0, 1]) if
they coincide up to a set of Lebesgue measure zero. Let Ξ denote the corresponding
quotient space. Then Ξ is in one-to-one correspondence with the set of non-negative
Radon measures on Rd × [0, 1] whose spatial marginal is the Lebesgue measure on Rd

[VW15, Section 2.2] via the relation

m(dx dk) = ρ(x, dk)dx. (1.1)

For ρ ∈ Ξ and φ : Rd × [0, 1] → R, let 〈ρ, φ〉 denote the integral of φ against the measure
ρ.

We equip the space Ξ with the topology of vague convergence and the associated
Borel σ-field (i.e. ρn → ρ ∈ Ξ if and only if 〈ρn, φ〉 → 〈ρ, φ〉 for any φ : Rd × [0, 1] → R that
is continuous and compactly supported). Endowed with this topology, the space Ξ is
both compact and metrisable [VW15, Lemmas 2.1 and 2.2]. More precisely, if (φn, n ≥ 1)

is a sequence of uniformly bounded continuous and compactly supported functions
φn : Rd × [0, 1] → R which separates points in Ξ (in the sense that 〈ρ, φn〉 = 〈ρ′, φn〉 for
all n ≥ 1 if and only if ρ = ρ′), then

d(ρ, ρ′) =

∞∑
n=1

1

2n
|〈ρ, φn〉 − 〈ρ′, φn〉| , ∀ρ, ρ′ ∈ Ξ, (1.2)

defines a metric on Ξ which induces the vague topology.
For φ : Rd × [0, 1] → R and q ≥ 1, define

‖φ‖q =

(∫
Rd

sup
k∈[0,1]

|φ(x, k)|q dx

)1/q

(1.3)

whenever the right hand side is finite, and let Eq be the space of all measurable real-
valued functions φ such that ‖φ‖q < ∞ and sup(x,k)∈Rd×[0,1] |φ(x, k)| < ∞. Also for a

multi-index β ∈ Nd, let ∂βφ denote the partial derivative of φ : Rd × [0, 1] → R with

respect to the space variable, and let |β| =
∑d

i=1 βi. We can (and do in the rest of the
paper) assume that the φn are all smooth and that there exists a constant C1 > 0 such
that, for all n ≥ 1, q ∈ {1, 2} and for any β ∈ Nd with 0 ≤ |β| ≤ 2,

‖∂βφn‖q ≤ C1, (1.4)

(note that, when β = (0, . . . , 0), ∂βφ = φ).

1.2 The SLFV with mutations

Let us now define the SLFV with mutations. Fix u ∈ (0, 1], µ > 0 and suppose that
ν(dr) is a finite measure on (0,∞) satisfying∫ ∞

0

rdν(dr) <∞. (1.5)

Then, starting from an initial state ρ0 ∈ Ξ, the SLFV is defined as follows.

Definition 1.1 (The SLFV with mutations). Let Π be a Poisson random measure on
R+ ×Rd × (0,∞) with intensity measure dt⊗ dx⊗ ν(dr). For each point (t, x, r) ∈ Π, a
reproduction event takes place in the ball of centre x and radius r at time t. At each
reproduction event, we do the following:
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1. choose a location y uniformly in B(x, r) and sample a parental type k0 ∈ [0, 1]

according to the probability distribution ρt−(y, dk),

2. update ρ inside B(x, r) as follows:

∀z ∈ B(x, r), ρt(z, dk) = (1− u)ρt−(z, dk) + uδk0
(dk). (1.6)

Furthermore, for all s ≤ t and x ∈ Rd such that x does not find itself in the region
affected by a reproduction event between times s and t,

ρt(x, dk) = e−µ(t−s)ρs(x, dk) +
(
1− e−µ(t−s)

)
dk, (1.7)

where dk denotes the Lebesgue measure on [0, 1].

In other words, at each reproduction event, a proportion u of the individuals present
in the ball B(x, r) dies and is replaced by the offspring of an individual sampled uniformly
from inside this ball, while each individual, at rate µ, mutates to a new type sampled
uniformly from the interval [0, 1]. Indeed, equation (1.7) says that, informally, between
reproduction events, ρt solves the following

∂tρt(x, dk) = µ(dk − ρt(x, dk)).

The parameter u is called the impact parameter, and µ is called the mutation rate.
The following remark will be crucial for the derivation of the Wright-Malécot formula.

Note that, even though the SLFV is a continuous model in which there are no discrete
units which correspond to “individuals”, this model has an intrinsic genealogical struc-
ture, in the sense that the ancestry of random sample (of types) from the population can
be described by a set of lineages. These lineages form what is called a “dual process”,
and take the form of a system of coalescing random walks on Rd, see [VW15]. When it
finds itself in the region affected by a reproduction event, each lineage then jumps with
probability u to a new location sampled uniformly in this region, and if several lineages
jump during the same reproduction, they coalesce.

This dual corresponds to the intuitive notion of ancestry which is implicit in Def-
inition 1.1. For the model of Definition 1.1, a type sampled from the population at
some location x is determined by sampling a lineage starting at x, which is affected by
mutations at rate µ. The sampled type is then determined either by the type sampled
at the last mutation along the lineage, or by the distribution of ancestral types at the
location of the lineage at time zero if no mutation has affected the lineage. Since the dual
process of the SLFV is not used in the present work, we refer to [BEV10] and [VW15]
for a more rigorous discussion.

Remark 1.2. If we take ρ0(x, dk) = dk for all x ∈ Rd, then, almost surely, at any time,
two types sampled from the population are equal if and only if the corresponding lineages
share a common ancestor at some point in the past and if neither of them has undergone
a mutation since then. The process (ρt, t ≥ 0) can then be seen as tracking the size
and geographical spread of all the “families” in the population, where a family is a
macroscopic fraction of the population sharing the same type, i.e. a portion of the
population of the form f(x)δk0

(dk) with f ≥ 0 such that

〈ρt − fδk0 ,1k=k0〉 = 0.

One may see this as a generalisation of what is called tracer dynamics, as introduced in
[HN08] (see also [DF16]).

Proposition 1.3. There exists a unique Ξ-valued Hunt process (ρt, t ≥ 0) satisfying
Definition 1.1.

This proposition follows directly from Corollary 2.4 in [VW15] where the authors use
a genealogical construction of the SLFV with mutations (see also [EK19, Theorem 4.1]).
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2 Main results

Let us now present our main results. First, we obtain a central limit theorem for the
SLFV with mutations of Definition 1.1 in two different regimes of reproduction events,
each corresponding to a type of intensity measure ν(dr). The first case, called the “fixed
radius case”, corresponds to ν(dr) being a Dirac measure at some fixed value R. In the
second case, called the “stable case”, we choose a measure ν(dr) with a density which
decays like a power of r as r → ∞. In both cases, we rescale the SLFV in such a way that
the measure ρt is very close to the Lebesgue measure on Rd × [0, 1], which we denote by
λ ∈ Ξ, i.e.

λ(x, dk) = dk, ∀x ∈ Rd. (2.1)

Furthermore, we rescale the difference ρt − λ so that it converges to a limiting process
which we characterise as the solution to a stochastic partial differential equation (SPDE).

From these results it then becomes possible to compute the asymptotic behaviour of
the so-called probability of identity by descent, that is the probability that two individuals
sampled from two prescribed locations share a common ancestor which is more recent
than the last mutation to have affected their lineages.

2.1 The central limit theorem for the SLFV with mutations

We are interested in the asymptotic fluctuations of the SLFV with mutations from Def-
inition 1.1 when both the impact parameter u and the mutation rate µ tend to zero. As we
let these two parameters tend to zero, we also rescale space and time, so that the process
is observed at times of the order of 1/µ and over spatial scales of the order of

√
u/µ (or a

different power of this quantity in the stable case), assuming that u/µ→ ∞. We state the
result separately for the fixed radius case and the stable case, since the exact scalings
differ slightly, but we shall provide a single proof covering both results in Section 3.

Let us introduce some basic notations which will be used throughout the paper. Let
S(Rd × [0, 1]) denote the Schwartz space of rapidly decreasing smooth functions on
Rd × [0, 1], whose derivatives of all order are also rapidly decreasing. More precisely,
φ ∈ S(Rd × [0, 1]) if, for any p ≥ 1 and β ∈ Nd,

sup
(x,k)∈Rd×[0,1]

(1 + ‖x‖p) |∂βφ(x, k)| <∞.

Also if φ and ψ are two functions defined on Rd × [0, 1], we set

φ⊗ ψ(x1, k1, x2, k2) = φ(x1, k1)ψ(x2, k2).

Accordingly, let S ′(Rd × [0, 1]) denote the space of tempered distributions and let D(R+,
S ′(Rd × [0, 1])) denote the Skorokhod space of càdlàg distribution-valued processes (see
Chapter 4 in [Wal86]).

2.1.1 The fixed radius case

Fix u ∈ (0, 1], µ > 0 and R > 0. Let (δN , N ≥ 1) be a sequence of positive real numbers
decreasing to zero and set, for N ≥ 1,

uN =
u

N
, µN = δ2N

µ

N
. (2.2)

Further, for N ≥ 1, let (ρNt , t ≥ 0) be the SLFV of Definition 1.1 with impact parameter
uN , mutation rate µN and with ν(dr) = δR(dr), started from ρN0 = λ. Define the rescaled
process (ρN

t , t ≥ 0) by setting, for N ≥ 1,

ρN
t (x, dk) := ρNNt/δ2N

(x/δN , dk) .
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Let∆ denote the Laplace operator acting on the space variable, i.e., for φ : Rd×[0, 1] → R

twice continuously differentiable in the space variable,

∆φ(x, k) =

d∑
i=1

∂2φ

∂x2i
(x, k).

Finally for r > 0, let Vr denote the volume of the d-dimensional ball of radius r. The first
important result of this paper is the following.

Theorem 2.1 (Central limit theorem for the SLFV with mutations - the fixed radius case).
Suppose that δN → 0 and Nδ2−d

N → ∞ as N → ∞ (note that the second condition is
automatically satisfied when d ≥ 2). Then, for all T > 0,

lim
N→∞

E

[
sup

t∈[0,T ]

d(ρN
t , λ)

]
= 0.

Furthermore,

ZN
t = (Nδ2−d

N )1/2
(
ρN
t − λ

)
defines a sequence of distribution-valued processes which converges in distribution in
D(R+,S ′(Rd× [0, 1])) to a process (Zt, t ≥ 0) which is the unique solution of the following
SPDE: dZt =

[
σ2

2
∆Zt − µZt

]
dt+ dW (t),

Z0 = 0,

(2.3)

where σ2 = uVR
2R2

d+2 and (W (t), t ≥ 0) is a Wiener process on Rd × [0, 1] with covariation
measure given by

Q(dx1dk1dx2dk2) = u2V 2
R dx1δx1

(dx2) (dk1δk1
(dk2)− dk1dk2) . (2.4)

In other words, as the impact parameter and the mutation rate tend to zero according
to (2.2), the rescaled SLFV converges to the uniform measure λ and the asymptotic
deviations from this uniform measure are given by the process (Zt, t ≥ 0), where, for all
φ ∈ S(Rd × [0, 1]),

t 7→ 〈Zt, φ〉 −
∫ t

0

〈
Zs,

σ2

2
∆φ− µφ

〉
ds

is a continuous square-integrable martingale with quadratic variation

t 〈Q, φ⊗ φ〉 = t u2V 2
R

∫
Rd×[0,1]

(
φ(x, k)−

∫
[0,1]

φ(x, k′)dk′

)2

dxdk.

Note that the existence of W is stated in Proposition A.1, and the above martingale
problem uniquely characterises the distribution of the process (Zt, t ≥ 0), from [Wal86,
Theorem 5.1].

Theorem 2.1 is proved in Section 3. The proof relies on a semimartingale decomposi-
tion of (〈ZN

t , φ〉, t ≥ 0), and a convergence theorem for sequences of stochastic integrals
with respect to martingale measures.

Remark 2.2. 1. Theorem 2.1 is also true if we replace the measure ν(dr) by any finite
measure on (0,∞) with a compact support. The coefficient σ2 in 2.3 should then
be replaced by

σ2 =
2u

d+ 2

∫ ∞

0

r2Vr ν(dr),
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and the coefficient u2V 2
R in the covariation measure Q should be replaced by

u2
∫ ∞

0

V 2
r ν(dr).

2. Different mutation mechanisms can also be considered. For example one could
assume that, at each reproduction event, some proportion (say µ) of the offspring
chooses a type uniformly in [0, 1], or that all the offspring chooses a different type
with some probability µ. We could also assume that mutants pick a new type
according to a more general probability measure on [0, 1], say π. We would then
need to replace λ by x 7→ π(dk) in the definition of ZN , and the covariation measure
Q should be replaced by

u2V 2
R dx1 δx1

(dx2) (π(dk1) δk1
(dk2)− π(dk1)π(dk2)).

Since the main purpose of this paper is to study the stationary behaviour of the SLFV
with mutations, we have assumed that ρN

0 = λ for all N ≥ 1. In Section 2.3, we state
a more general version of Theorem 2.1 (and of Theorem 2.3 below) where the initial
condition ρN

0 is assumed to converge to some ρ0 ∈ Ξ. In addition, we also consider a
more general mutation mechanism, where the trait distribution at each spatial location
evolves according to a Feller semigroup on [0, 1] between reproduction events (which
amounts to assuming that the trait of each individual evolves according to a Markov
process on [0, 1] during its lifetime).

2.1.2 The stable case

We now want to extend the previous analysis to a situation in which reproduction events
can affect arbitrarily large regions and such that these large scale reproduction events
take place often enough to significantly alter the qualitative behaviour of the SLFV. This
will result in increased correlations between the genetic compositions of different spatial
locations, both through non-local diffusion and correlations in the noise driving the
fluctuations of the limiting process.

First fix α ∈ (0, d ∧ 2) and set

να(dr) :=
1r≥1

rd+α+1
dr.

It is straightforward to check that να satisfies (1.5). Also fix u ∈ (0, 1] and µ > 0 and let
(δN , N ≥ 1) be a sequence of positive numbers decreasing to zero. For N ≥ 1, set

uN =
u

N
, µN = δαN

µ

N
, (2.5)

and let (ρNt , t ≥ 0) be the SLFV of Definition 1.1 with impact parameter uN , mutation
rate µN and with ν = να, started from ρ0 = λ. Define the rescaled SLFV as

ρN
t (x, dk) = ρNNt/δαN

(x/δN , dk) .

Before stating our result, we introduce some notations. First, for x, y ∈ Rd, set

V2,r(x, y) =

∫
Rd

1{‖x−z‖<r,‖y−z‖<r}dz (2.6)

and

Φα(‖x− y‖) =
∫ ∞

‖x−y‖
2

V2,r(x, y)

Vr

dr

rd+α+1
.
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Let Dα be the fractional Laplacian acting on the space variable, i.e. for any φ : Rd ×
[0, 1] → R admitting uniformly bounded spatial derivatives of order at least two (see
[SKM93]),

Dαφ(x, k) =

∫
Rd

Φα(‖x− y‖)(φ(y, k)− φ(x, k)− 1{‖x−y‖≤1}∇φ(x, k) · (y − x))dy. (2.7)

For x, y ∈ Rd, also set

Kα(x, y) =

∫ ∞

‖x−y‖
2

V2,r(x, y)
dr

rd+α+1
=

Cd,α

‖x− y‖α
(2.8)

where Cd,α is a positive constant depending only on d and α.
We now state our second main result.

Theorem 2.3 (Central limit theorem for the SLFV with mutations - the stable case).
Assume that δN → 0 as N → ∞. Then, for all T > 0,

lim
N→∞

E

[
sup

t∈[0,T ]

d(ρN
t , λ)

]
= 0.

Furthermore,

ZN
t =

√
N(ρN

t − λ)

defines a sequence of distribution-valued processes which converges in distribution in
D(R+, S ′(Rd× [0, 1])) to a process (Zt, t ≥ 0) which is the unique solution to the following
SPDE: {

dZt = [uDαZt − µZt] dt+ dW (t)

Z0 = 0,
(2.9)

where (W (t), t ≥ 0) is a Wiener process on Rd × [0, 1] with covariation measure on
(Rd × [0, 1])2 given by

Qα(dx1dk1dx2dk2) = u2Kα(x1, x2)dx1dx2(dk1δk1(dk2)− dk1dk2). (2.10)

The martingale problem associated to (2.9) is the following. For any φ ∈ S(Rd× [0, 1]),

t 7→ 〈Zt, φ〉 −
∫ t

0

〈Zs, uDαφ− µφ〉 ds

is a square integrable continuous martingale with quadratic variation

t 〈Qα, φ⊗ φ〉 = t u2
∫
(Rd)2×[0,1]

(
φ(x1, k)−

∫
[0,1]

φ(x1, k
′)dk′

)

×

(
φ(x2, k)−

∫
[0,1]

φ(x2, k
′)dk′

)
Cd,α

‖x1 − x2‖α
dx1dx2dk.

We recall why there exists such a W in Proposition A.2, and as before, there exists a
unique process (Zt, t ≥ 0) solving (2.9), by [Wal86, Theorem 5.1].

Theorem 2.3 is proved along with Theorem 2.1 in Section 3. The main differences with
Theorem 2.1 are that the Laplacian is replaced with the non-local operator Dα and that
the Gaussian noise driving the fluctuations is now correlated in space, with correlations
decaying as ‖x − y‖−α. These two changes result from the large scale reproduction
events which take place rarely enough that the population retains a signature of isolation
by distance but often enough to induce these strong spatial correlations. The index α is
a convenient measure of the strength of these correlations: the closer it is to zero the
stronger they are and the closer it is to 2 the more localised the correlations become.
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2.2 The Wright-Malécot formula for isolation by distance under short range
and long range dispersal

Despite their apparent complexity and lack of direct reference to ancestry, Theo-
rems 2.1 and 2.3 are deeply linked to previous results on the sharing of recent common
ancestors in a spatially distributed population. These include results on the stepping
stone model [KW64, Saw77] and the SLFV [BEKV13], also see [BDE02]. Indeed, The-
orems 2.1 and 2.3 can be seen as results on the correlations between the genetic
compositions of the population at different spatial locations.

To see this, consider the following. Let φ and ψ be two probability density functions
on Rd. Sample two locations x1, x2 according to φ and ψ, respectively, and sample one
genetic type at each of these locations according to the distribution of types in ρN

t at
some time t ≥ 0. Let PN

t (φ, ψ) be the probability that these two types are the same.
In the vocabulary of population genetics, PN

t (φ, ψ) is the probability of identity in
state of two “individuals” sampled according to φ and ψ. In view of Remark 1.2, this
coincides with the probability of identity by descent, i.e. the probability that the two
sampled lineages share a common ancestor that is more recent than the last time either
lineage experienced a mutation.

This probability can be written more explicitly in terms of the process (ρN
t , t ≥ 0) as

follows. Let 1∆ : [0, 1]2 → R denote the indicator function of the diagonal, i.e.

1∆(k1, k2) = 1k1=k2
.

Then,

PN
t (φ, ψ) = E

[〈
ρN
t ⊗ ρN

t , (φ⊗ ψ)1∆
〉]
, (2.11)

where

(φ⊗ ψ)1∆(x1, k1, x2, k2) = φ(x1)ψ(x2)1k1=k2 .

The following is then a consequence of Theorems 2.1 and 2.3. Let G(α)
t : Rd → R

denote the fundamental solution associated to ∂t −Dα, i.e. such that

∂tG
(α)
t = DαG

(α)
t (2.12)

and ∫
Rd

G
(α)
t (x− y)φ(y)dy −→

t→0
φ(x),

for any twice continuously differentiable φ : Rd → R.

Theorem 2.4 (Wright-Malécot formula for identity by descent). Assume that φ and ψ are
two smooth and compactly supported probability density functions on Rd. Then, under
the conditions of Theorem 2.1,

lim
t→∞

lim
N→∞

Nδ2−d
N PN

t (φ, ψ) =
u2V 2

R

(2πσ2)d/2

∫
(Rd)2

F

(
‖x− y‖

σ

)
φ(x)ψ(y)dxdy, (2.13)

where σ2 = uVR
2R2

d+2 and the function F depends only on d and µ and is given by

F (x) =

(
x√
2µ

)1−d/2

K1−d/2

(√
2µx

)
,
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where Kν denotes the modified Bessel function of the second kind of degree ν [AS64].
On the other hand, under the conditions of Theorem 2.3,

lim
t→∞

lim
N→∞

NPN
t (φ, ψ) = u

∫
(Rd)2

Fd,α

(
(µ/u)

1/α ‖x− y‖
)
φ(x)ψ(y)dxdy, (2.14)

where Fd,α : R+ → R+ is such that, for any x, y ∈ Rd,

Fd,α(‖x− y‖) =
∫ ∞

0

∫
(Rd)2

e−2tG
(α)
t (x− z1)G

(α)
t (y − z2)

Cd,α

‖z1 − z2‖α
dz1dz2dt.

(The fact that the right hand side only depends on ‖x− y‖ can be seen by a change of
variables.)

We prove Theorem 2.4 in Section 4. The convergence (2.13) should be compared
to equations (10) and (15) in [BDE02] (originally due to Malécot [Mal75]) or (1.13) and
(2.22) in [KW64]. This is known in the literature as the Wright-Malécot formula, and is
widely used to infer both the mean-square displacement of individuals in the population
(i.e. σ2) and the effective population density from genetic samples [Rou97]. Figure 1
shows the behaviour of the function F for d ∈ {1, 2, 3}.
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Figure 1: Deacrease of the probability of identity by descent as a function of the distance
between individuals. The graph shows a plot of the function F for d ∈ {1, 2, 3}. We can
see that it decreases much more rapidly for larger values of d than for smaller values.

Remark 2.5. It can be noted that for d ≥ 2, the function F is degenerate at zero, i.e.

lim
x↓0

F (x) = +∞.

This can be surprising since PN
t (φ, ψ) was defined as a probability. This reflects the

fact that the Wright-Malécot formula breaks down if we try to sample two individuals
from exactly the same location. That is why we need to integrate against the probability
density functions φ and ψ (it can be shown from the proof of Theorem 2.4 that the right
hand side of (2.13) is bounded by a constant times ‖φ‖2‖ψ‖2).
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The second part of Theorem 2.4 is a very important step towards developing statistical
inference procedures from genetic data adapted to species undergoing long range
dispersal. Indeed, with this result it could become possible to estimate the parameters u
and α from a sample of genetic markers from different spatial locations in the population.
One hurdle which remains in the way is that we have to find an efficient way to compute
numerically the function Fd,α. This might be done using Fourier transforms, but the

heavy tail of the function G(α)
t (·) makes any rigorous analysis quite daunting.

Remark 2.6. The Wright-Malécot formula has been shown to hold for a wide variety
of spatial models in population genetics [BDE02, BEKV13]. The proof of Theorem 2.4
shows that this formula is directly linked to the limiting behaviour of the fluctuations in
the genetic composition of the population, and that any model which displays the same
asymptotical behaviour as the SLFV in Theorem 2.1 should satisfy the Wright-Malécot
formula.

2.3 The SLFV with general mutation mechanism and in the non-stationary
regime

Theorems 2.1 and 2.3 allowed us to derive the Wright-Malécot formula from the
Gaussian fluctuations of the SLFV of Definition 1.1 (Theorem 2.4). The aim of this section
is to restate Theorems 2.1 and 2.3 with more general assumptions on the mutation
mechanism and on the initial condition of the process. For simplicity, we still assume
that mutations take place during an individual’s lifetime, and not at birth. We shall
suppose that the type of an individual follows a Markov process on [0, 1]. Since there are
no individuals per se in the model, this translates to the following definition.

Definition 2.7 (The SLFV with general mutation mechanism). Suppose that (Ts, s ≥ 0) is
a Feller semigroup acting on bounded measurable real-valued functions defined on [0, 1]

(hence T ∗
s acts on M1([0, 1])). We then define a process (ρt, t ≥ 0) which evolves exactly

as in Definition 1.1, except that, for all s ≤ t and x ∈ Rd such that x does not find itself
in the region affected by a reproduction event between times s and t,

ρt(x, ·) = T ∗
µ(t−s)ρs(x, ·).

Let G denote the generator of the semigroup (Ts, s ≥ 0), whose domain will be
denoted by D(G). We shall consider the same scaling as before, i.e. we assume that

uN =
u

N
, µN = δαN

µ

N
,

where α = 2 in the fixed radius case, and we suppose that (ρNt , t ≥ 0) is the SLFV of
Definition 2.7 with impact parameter uN , mutation rate µN , and with ν = δR in the fixed
radius case, and ν = να in the stable case. Then let

ρN
t (x, dk) := ρNNt/δαN

(x/δN , dk).

Recall the definition of G(α)
t in (2.12) and let G(2)

t : Rd → R be the fundamental solution

associated to ∂t − σ2

2u∆, i.e.

G
(2)
t (x) =

1

(2πt σ2/u)
d/2

exp

(
− ‖x‖2

2t σ2/u

)
, (2.15)

where σ2 is as in Theorem 2.1. Assume that ρN
0 converges weakly to a deterministic

ρ0 ∈ Ξ in probability as N → ∞. We then define p(α) = (p
(α)
t , t ≥ 0) by

p
(α)
t (x, dk) :=

∫
Rd

G
(α)
ut (x− y)(T ∗

µt ρ0)(y, dk) dy. (2.16)

The following generalises Theorems 2.1 and 2.3 to the present setting.
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Theorem 2.8. Let ηN = δ2−d
N in the fixed radius case and ηN = 1 in the stable case, and

assume that NηN → ∞ as N → ∞. Also assume that ρN
0 converges weakly (as a measure

via the correspondence (1.1)) as N → ∞ to a deterministic ρ0 ∈ Ξ in probability. Then,
for all T > 0,

lim
N→∞

E

[
sup

t∈[0,1]

d(ρN
t ,p

(α)
t )

]
= 0. (2.17)

Furthermore, there exists a deterministic sequence (pN , N ≥ 1) of elements of D(R+,Ξ),
which converges (locally uniformly in time) to p(α), such that

ZN
t := (NηN )1/2(ρN

t − pN
t )

converges in distribution in D(R+,S ′(Rd × [0, 1])) to a process (Zt, t ≥ 0). In the fixed
radius case, for any φ ∈ S(Rd × [0, 1]) such that k 7→ φ(x, k) ∈ D(G) for all x ∈ Rd,

t 7→ 〈Zt, φ〉 −
∫ t

0

〈
Zs,

σ2

2
∆φ+ µGφ

〉
ds

is a square-integrable continuous martingale with quadratic variation

(uVR)
2

∫ t

0

∫
Rd×[0,1]

(
φ(x, k)−

∫
[0,1]

φ(x, k′)p(2)
s (x, dk′)

)2

p(2)
s (x, dk)dxds.

In the stable case, on the other hand,

t 7→ 〈Zt, φ〉 −
∫ t

0

〈Zs, uDαφ+ µGφ〉 ds

is a square-integrable continuous martingale with quadratic variation

u2
∫ t

0

∫ ∞

0

〈p(α)
s ,Θr,s〉

dr

r1+d+α
ds, (2.18)

where

Θr,s(x, k) :=
1

Vr

∫
B(x,r)

[∫
B(y,r)

(
φ(z, k)−

∫
[0,1]

φ(z, k′)p(α)
s (z, dk′)

)
dz

]2
dy.

The proof of Theorem 2.8 is almost identical to that of Theorems 2.1 and 2.3. Details
on the specific adaptations which are needed in the proof are given in Section 3.8.

The main differences with Theorems 2.1 and 2.3 are that the deterministic limit of ρN

and the centring term pN are no longer constant. This affects the limiting fluctuations
trough the covariation measure of the limiting driving noise, which now depends on
p(α). Furthermore, the term −µZt has now been replaced by µG∗Zt in the limiting SPDE,
which accounts for the more general mutation mechanism. We note that, for the mutation
mechanism considered in Theorems 2.1 and 2.3,

Gφ(k) =
∫
[0,1]

(φ(k′)− φ(k))dk′.

Hence G∗Zt 6= −Zt, but we see that, if φ(x, k) = ψ(x), then 〈Zt, φ〉 = 0 almost surely, and
it follows that 〈G∗Zt, φ〉 = −〈Zt, φ〉, hence the two equations admit the same solution.

Note that the deterministic limit p(α) has the following interpretation: if (X(α)
t , t ≥ 0)

is a Markov process on Rd with generator uDα in the stable case and σ2

2 ∆ in the fixed
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radius case, and if (Kt, t ≥ 0) is a Markov process on [0, 1] with generator µG, then, for
any smooth and compactly supported φ : Rd × [0, 1] → R,

〈p(α)
t , φ〉 =

∫
Rd×[0,1]

E(x,k)

[
φ(X

(α)
t ,Kt)

]
ρ0(x, dk)dx,

where E(x,k) [·] denotes the expectation with respect to the joint distribution of the pair
of independent processes (X(α),K) started from (x, k).

Remark 2.9. In classical central limit theorems, the centring term is usually equal to
the deterministic limit of the process whose fluctuations we are interested in. Here
we introduce a sequence of centring terms (pN , N ≥ 1) because, while ρN

t − pN
t is of

the order of (NηN )−1/2, the difference pN − p(α) is at least of the order of (δN )γ , where
γ = 2 in the fixed radius case and γ = 2 − α in the stable case (see Proposition 3.12).
It follows that the centring term in the definition of ZN can be replaced by p(α) only
when (NηN )1/2(δN )γ → 0 as N → ∞ and if ρN

0 converges to ρ0 sufficiently quickly (and
uniformly over Rd). The condition on δN translates to N(δN )6−d → 0 in the fixed radius
case and

√
N(δN )2−α → 0 in the stable case. A similar issue arose in [FP17], where a

similar sequence of centring terms had to be defined.

3 Proof of the central limit theorems

The proof of Theorems 2.1, 2.3 and 2.8 is similar in spirit to what was done in [FP17]:
we write 〈ρNt , φ〉 as the sum of a predictable term and a martingale term, and we use
martingale convergence theorems to show tightness and convergence in distribution
of (〈ZN

t , φ〉, t ≥ 0) for any φ ∈ S(Rd × [0, 1]). It is then easy to generalise this to the joint
convergence of (〈ZN

t , φ1〉, . . . , 〈ZN
t , φn〉) and obtain the convergence in distribution of

(ZN
t , t ≥ 0) in D(R+,S ′(Rd × [0, 1])).
In the next subsection, we outline the strategy of the proof of the first two central

limit theorems, stating a semimartingale decomposition of the process (ZN
t , t ≥ 0). This

decomposition is proved in Subsection 3.2. Subsections 3.3 through 3.6 then prepare
several intermediary results needed for the proof. In particular, the convergence of
(ρN

t , t ∈ [0, T ]) to its deterministic limit λ is proved in Subsection 3.5. The two central
limit theorems are then proved in Subsection 3.7, while the small adjustments needed
for the proof of Theorem 2.8 are detailed in Subsection 3.8.

3.1 Outline of the proof

To avoid repetitions, we prove both Theorem 2.1 and 2.3 at the same time, using
general notations. The parameter α will thus be set equal to 2 in the fixed radius case,
in agreement with (2.2) and (2.5). Recall the definition of Eq in Section 1.1. For φ ∈ E1

and r > 0, let φ(·, r) be defined by

φ(x, k, r) :=
1

Vr

∫
B(x,r)

φ(y, k)dy. (3.1)

Then, φ(x, k, r) denotes the average of the average of φ, i.e.

φ(x, k, r) :=
1

V 2
r

∫
B(x,r)

∫
B(y,r)

φ(z, k)dz dy.

We then set, for any φ ∈ E1,

LN,αφ(x, k) := δ−α
N

∫ ∞

0

Vr

(
φ(x, k, δNr)− φ(x, k)

)
να(dr), (3.2)
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where να = δR for α = 2. Note that the operator uLN,α is the generator of a continuous-
time random walk (XN,α

t , t ≥ 0) on Rd which jumps at rate u δ−α
N

∫∞
0
Vr να(dr) from its

current position x to x+ δNR(Y1 + Y2), where R is a random variable with distribution

Vr να(dr)∫∞
0
Vr′ να(dr′)

,

and Y1 and Y2 are two independent uniform random variables on B(0, 1) ⊂ Rd, also
independent from R. In the following, (PN,α

t , t ≥ 0) denotes the strongly continuous
semigroup generated by uLN,α − µ, i.e.

PN,α
t φ(x, k) := e−µtEx

[
φ(XN,α

t , k)
]
, (3.3)

for any φ : Rd× [0, 1] → R bounded and measurable, where Ex [·] denotes the expectation
with respect to the distribution of (XN,α

t , t ≥ 0), started from XN,α
0 = x. As we shall see

below (Lemma 4.1), PN,α
t is a contraction from Eq into itself.

For ρ ∈ Ξ and r > 0, we also define a map [ρ]r : Rd × Rd → M1([0, 1]) as follows,
recalling the definition of V2,r(x1, x2) in (2.6),

[ρ]r(x1, x2, dk) :=


1

V2,r(x1, x2)

∫
B(x1,r)∩B(x2,r)

1
Vr

∫
B(y,r)

ρ(z, dk)dzdy if |x1 − x2| < 2r,

0 otherwise.
(3.4)

If ν is a finite measure on (0,∞) satisfying (1.5) and ρ ∈ Ξ, we define a map Γν(ρ) :

Rd ×Rd → M([0, 1]2) as follows

Γν(ρ)(x1, x2, dk1dk2)

:=

∫ ∞

0

V2,r(x1, x2)
[
[ρ]r(x1, x2, dk1)δk1

(dk2)− ρ(x1, dk1)[ρ]r(x1, x2, dk2)

− [ρ]r(x1, x2, dk1)ρ(x2, dk2) + ρ(x1, dk1)ρ(x2, dk2)
]
ν(dr). (3.5)

When ν = δr, we also write Γν = Γr. Finally, for N ≥ 1, define the measure νNα by∫ ∞

0

f(r)νNα (dr) =

∫ ∞

0

f(δNr)δ
−(α+d)
N να(dr). (3.6)

The following proposition then gives the semimartingale form of the rescaled fluctuations
process ZN . It will be proved in Subsection 3.2.

Proposition 3.1. Define ηN = δ2−d
N in the fixed radius case and ηN = 1 in the stable

case. Then there exists a sequence of worthy martingale measures (MN , N ≥ 1) on
R+ ×Rd × [0, 1] such that, for any φ ∈ E1,

〈ZN
t , φ〉 =

∫ t

0

〈ZN
s , uLN,αφ− µφ〉ds+MN

t (φ) (3.7)

and the predictable variation process ofMN
t (φ) is given by

〈
MN (φ)

〉
t
= u2

∫ t

0

〈ηNΓνN
α (ρN

s ), φ⊗ φ〉ds. (3.8)

Note that the predictable part of 〈ZN
t , φ〉 in (3.7) is linear in ZN . We can use this and

the semigroup defined in (3.3) to write, for φ ∈ E1 [Wal86, Theorem 5.1],

〈ZN
t , φ〉 =

∫
[0,t]×Rd×[0,1]

PN,α
t−s φ(x, k)M

N (ds dx dk), (3.9)
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where the right hand side is defined as a stochastic integral against the martingale
measureMN (see Chapter 2 of [Wal86]). This reduces the convergence of 〈ZN

t , φ〉 to the
convergence of a sequence of stochastic integrals. The main ingredients for this are the
convergence of the sequence of martingale measuresMN and the convergence of the
semigroups (PN,α

t , t ≥ 0) as N → ∞.
After proving Proposition 3.1 in Subsection 3.2, we shall prove that the sequence of

semigroups (PN,α
t , t ≥ 0) converges as N → ∞ to a semigroup (P

(α)
t , t ≥ 0) satisfying

P
(α)
t φ(x, k) := e−µtEx [φ(X

α
t , k)] ,

for any bounded and measurable φ : Rd× [0, 1] → R, where (Xα
t , t ≥ 0) is either Brownian

motion or fractional Brownian motion, according as α = 2 or not. This convergence is
proved for an appropriate norm in Subsection 3.4 (Lemma 3.5).

Using a result adapted from [Wal86] (Theorem 3.7 below), this will allow us to
prove, in Subsection 3.5, that {(〈ZN

t , φ〉, t ≥ 0), N ≥ 1} is tight in D(R+,R) for any
φ ∈ S(Rd × [0, 1]), as well as the convergence of (ρN

t , t ≥ 0) to λ, in probability locally
uniformly in time, as N → ∞.

Finally, we shall see in Subsection 3.6 that the right-hand-side of (3.8) converges to
t 〈Qα, φ⊗ φ〉 as N → ∞, where Q2 := Q is defined in (2.4) and Qα is defined in (2.10) for
α 6= 2. We then deduce from this (in Lemma 3.9) the convergence in distribution of the
sequence of martingale measures (MN , N ≥ 1) to a continuous martingale measureM
such that, for any φ ∈ S(Rd × [0, 1]),

〈M(φ)〉t = t 〈Qα, φ⊗ φ〉.

Using this, (3.9) and the convergence of the semigroups PN,α, we will apply a
result on the convergence of stochastic integrals (recalled in Appendix E) to prove the
convergence in distribution of 〈ZN

t , φ〉 to 〈Zt, φ〉, where

〈Zt, φ〉 :=
∫
[0,t]×Rd×[0,1]

P
(α)
t−sφ(x, k)M(ds dx dk),

for any t ≥ 0 and φ ∈ S(Rd× [0, 1]). This convergence will easily be generalised to vectors
of the form (

〈ZN
t1 , φ1〉, . . . , 〈Z

N
tp , φp〉

)
,

with t1, . . . , tp ∈ R+ and φ1, . . . , φp ∈ S(Rd × [0, 1]). We shall then conclude using the
following theorem, which can be found in [Wal86, Theorem 6.15].

Theorem 3.2. Let (XN , N ≥ 1) be a sequence of processes with sample paths inD([0, T ],
S ′(Rd × [0, 1])). Suppose that

i) for each φ ∈ S(Rd × [0, 1]), {(〈XN
t , φ〉, t ∈ [0, T ]), N ≥ 1} is tight,

ii) for each φ1, . . . , φp in S(Rd × [0, 1]) and t1, . . . , tp ∈ [0, T ], the distribution of

(〈XN
t1 , φ1〉, . . . , 〈X

N
tp , φp〉)

converges weakly on Rp.

Then there exists a process (Xt, t ∈ [0, T ]), with sample paths in D([0, T ],S ′(Rd × [0, 1]))

such that XN converges in distribution to X.

This last step is detailed in Subsection 3.7.
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3.2 The SLFV with mutations as a semimartingale

Before proving Proposition 3.1, let us first state the semimartingale decomposition of
the SLFV with mutations of Definition 1.1, before rescaling space and time. Recall that λ
was defined in (2.1) as the Lebesgue measure on Rd × [0, 1].

Proposition 3.3. Let (ρt, t ≥ 0) be the SLFV with mutations of Definition 1.1 started
from some ρ0 ∈ Ξ. Let (Ft, t ≥ 0) denote its natural filtration. For any φ ∈ E1,

〈ρt, φ〉 − 〈ρ0, φ〉 −
∫ t

0

{
µ〈λ− ρs, φ〉+ u

∫ ∞

0

Vr

〈
ρs, φ(·, r)− φ

〉
ν(dr)

}
ds (3.10)

defines a (mean-zero) square integrable Ft-martingale with predictable variation process

u2
∫ t

0

〈Γν(ρs), φ⊗ φ〉ds.

The different terms appearing in this decomposition each correspond to a distinct
evolutionary force. The term µ〈λ− ρs, φ〉 results from the mutations, the second term
inside the integral in (3.10) is the spatial mixing resulting from the reproduction events
(i.e. the migration term) and the martingale part captures the fluctuations due to genetic
drift, that is to say the randomness due to reproduction in a (locally) finite population.

Proof of Proposition 3.3. From Definition 1.1, we have

lim
δt↓0

1

δt
E [ 〈ρt+δt, φ〉 − 〈ρt, φ〉 | ρt = ρ]

= µ〈λ− ρ, φ〉+
∫
Rd

∫ ∞

0

1

Vr

∫
B(x,r)×[0,1]

〈
u1B(x,r)(δk0 − ρ), φ

〉
ρ(y, dk0)dyν(dr)dx

= µ〈λ− ρ, φ〉+ u

∫ ∞

0

Vr

〈
ρ, φ(·, r)− φ

〉
ν(dr).

It follows (see e.g. [EK86, Proposition 4.1.7]) that (3.10) defines a martingale. To
compute its variation process, write

lim
δt↓0

1

δt
E
[
(〈ρt+δt, φ〉 − 〈ρt, φ〉)2

∣∣∣ ρt = ρ
]

=

∫
Rd

∫ ∞

0

1

Vr

∫
B(x,r)×[0,1]

∫
(Rd×[0,1])2

φ(x1, k1)φ(x2, k2)u
21{‖x1−x‖<r}1{‖x2−x‖<r}

× (δk0
(dk1)− ρ(x1, dk1))(δk0

(dk2)− ρ(x2, dk2))dx1dx2ρ(y, dk0)dyν(dr)dx.

Rearranging the integrals with respect to k0, k1 and k2, this becomes

lim
δt↓0

1

δt
E
[
(〈ρt+δt, φ 〉 − 〈ρt, φ〉)2

∣∣∣ ρt = ρ
]

=

∫
Rd

∫ ∞

0

1

Vr

∫
B(x,r)

∫
(Rd)2

u21{‖x1−x‖<r}1{‖x2−x‖<r}

[∫
[0,1]

φ(x1, k0)φ(x2, k0)ρ(y, dk0)

−
∫
[0,1]

φ(x1, k0)ρ(y, dk0)

∫
[0,1]

φ(x2, k2)ρ(x2, dk2)

−
∫
[0,1]

φ(x1, k1)ρ(x1, dk1)

∫
[0,1]

φ(x2, k0)ρ(y, dk0)

+

∫
[0,1]

φ(x1, k1)ρ(x1, dk1)

∫
[0,1]

φ(x2, k2)ρ(x2, dk2)

]
dx1dx2dyν(dr)dx.
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By the definition of [ρ]r and Γν(ρ) in (3.4) and (3.5), this is

lim
δt↓0

1

δt
E
[
(〈ρt+δt, φ 〉 − 〈ρt, φ〉)2

∣∣∣ ρt = ρ
]
= u2〈Γν(ρ), φ⊗ φ〉.

This concludes the proof of Proposition 3.3.

We now use Proposition 3.3 to prove Proposition 3.1.

Proof of Proposition 3.1. Recall that we have set

ρN
t (x, dk) = ρNNt/δαN

(x/δN , dk)

where α = 2 in the fixed radius case. For φ ∈ E1,

〈ρN
t , φ〉 = 〈ρNNt/δαN

, φN 〉 (3.11)

with

φN (x, k) = δdNφ(δNx, k). (3.12)

Let (MN
t (φ), t ≥ 0) denote the martingale defined by (3.10) in Proposition 3.3, i.e.

MN
t (φ) = 〈ρNt , φ〉 − 〈ρN0 , φ〉

−
∫ t

0

{
µN 〈λ− ρNs , φ〉+ uN

∫ ∞

0

Vr

〈
ρNs , φ(·, r)− φ

〉
να(dr)

}
ds,

where we recall that να = δR for α = 2. Then, by (3.11),

〈ρN
t , φ〉 = 〈ρN0 , φN 〉+MN

Nt/δαN
(φN )

+

∫ Nt/δαN

0

{
µN 〈λ− ρNs , φN 〉+ uN

∫ ∞

0

Vr

〈
ρNs , φN (·, r)− φN

〉
να(dr)

}
ds.

But, by a simple change of variables,

φN (x, k, r) = δdNφ(δNx, k, δNr).

As a result, replacing µN = δαN
µ
N and uN = u

N and changing variables in the time integral,

〈ρN
t , φ〉 = 〈ρN

0 , φ〉+
∫ t

0

{
µ〈λ− ρN

s , φ〉+ u〈ρN
s ,LN,αφ〉

}
ds+MN

Nt/δαN
(φN ) (3.13)

recalling the definition of LN,α in (3.2). Recall also that ZN
t was defined by

ZN
t = (NηN )1/2(ρN

t − λ).

Subtracting 〈λ, φ〉 on both sides of (3.13) and multiplying by (NηN )1/2, we see that ZN

satisfies (3.7) where the martingale measureMN is defined by

MN
t (φ) = (NηN )1/2MN

Nt/δαN
(φN ).

Then, by Proposition 3.3,

〈
MN (φ)

〉
t
= (NηN )u2N

∫ Nt/δαN

0

〈
Γνα(ρNs ), φN ⊗ φN

〉
ds.
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Again, by a change of variables,

〈Γνα(ρNNs/δαN
), φN ⊗ φN 〉 = δαN 〈ΓνN

α (ρN
s ), φ⊗ φ〉

where νNα was defined in (3.6). As a result,

〈
MN (φ)

〉
t
= u2

∫ t

0

〈ηNΓνN
α (ρN

s ), φ⊗ φ〉ds. (3.14)

Together, (3.13) and (3.14) yield (3.7) and (3.8).
We are left with proving thatMN is worthy (see the definition in Chapter 2 of [Wal86]).

To do this, define |Γ|ν (ρ) by

|Γ|ν (ρ)(x1, x2, dk1dk2)

=

∫ ∞

0

V2,r(x1, x2)
[
[ρ]r(x1, x2, dk1)δk1

(dk2) + ρ(x1, dk1)[ρ]r(x1, x2, dk2)

+ [ρ]r(x1, x2, dk1)ρ(x2, dk2) + ρ(x1, dk1)ρ(x2, dk2)
]
ν(dr).

Then the measure

KN (dtdx1dk1dx2dk2) = u2ηN |Γ|ν
N
α (ρN

t−)(x1, x2, dk1dk2)dx1dx2dt (3.15)

is positive definite and symmetric in (x1, k1), (x2, k2). In addition, for anyA,B ⊂ Rd×[0, 1],
(KN ([0, t]×A×B), t ≥ 0) is predictable and for any rectangle Λ ⊂ [0,∞)× (Rd × [0, 1])2,

|QN (Λ)| ≤ KN (Λ), a.s.

where QN is the covariation measure of MN , see (3.14). Thus, KN is a dominating
measure forMN , andMN is a worthy martingale measure. This concludes the proof of
Proposition 3.1.

3.3 Bound on the dominating measures

We now prove the following.

Lemma 3.4. ForN ≥ 1, letKN be the measure defined in (3.15). There exists a constant
C2 > 0 such that, for all N ≥ 1, for all 0 ≤ s ≤ t and for all φ ∈ S(Rd × [0, 1]),

〈KN ,1[s,t]φ⊗ ψ〉 ≤ C2 |t− s| (‖φ‖1 ‖ψ‖1 + ‖φ‖2 ‖ψ‖2) .

Proof of Lemma 3.4. From (3.15),

〈KN ,1[s,t]φ⊗ ψ〉 = u2
∫ t

s

〈ηN |Γ|ν
N
α (ρN

v ), φ⊗ ψ〉dv.

This is bounded by

4u2 |t− s|
∫ ∞

0

∫
(Rd)2

VδNr(x1, x2) sup
k∈[0,1]

|φ(x1, k)| sup
k∈[0,1]

|ψ(x2, k)| dx1dx2ηNδ−(d+α)
N να(dr).

(3.16)

We split the integral over r on [0, 1/δN ] and (1/δN ,∞). In the first integral, we use the
Cauchy-Schwarz inequality and the fact that∫

Rd

V2,r(x1, x2)dx2 = V 2
r ,
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to obtain∫
(Rd)2

VδNr(x1, x2) sup
k∈[0,1]

|φ(x1, k)| sup
k∈[0,1]

|φ(x2, k)| dx1dx2 ≤ V 2
δNr ‖φ‖2 ‖ψ‖2 .

In the second integral, we simply use V2,r(x1, x2) ≤ Vr. As a result, (3.16) is bounded by

4u2 |t− s|

{∫ 1/δN

0

V 2
δNrηNδ

−(d+α)
N να(dr)‖φ‖2 ‖ψ‖2

+

∫ ∞

1/δN

VδNrηNδ
−(d+α)
N να(dr)‖φ‖1 ‖ψ‖1

}
.

In the fixed radius case, clearly the second integral vanishes for N large enough and the
first one is

V 2
δNRδ

2−d
N δ

−(d+2)
N = V 2

R <∞.

In the stable case, ηN = 1 and∫ 1/δN

0

V 2
δNrδ

−(d+α)
N να(dr) =

∫ 1/δN

1

V 2
δNr

dr

r(δNr)α+d

=

∫ 1

δN

V 2
r

dr

r1+α+d

≤
∫ 1

0

V 2
r

dr

r1+α+d
<∞

since d > α. For the second integral,∫ ∞

1/δN

VδNrδ
−(d+α)
N να(dr) =

∫ ∞

1

Vr
dr

r1+α+d
<∞.

The statement of Lemma 3.4 then follows.

3.4 Convergence of the semigroups PN,α

Let us begin this subsection by the following observations. Recall the definition of
LN,α in (3.2). In the fixed radius case, substituting να(dr) = δR(dr) in (3.2),

LN,2φ(x, k) =
VR
δ2N

(
φ(x, k, δNR)− φ(x, k)

)
.

Recalling the notation (3.1) and writing a Taylor expansion inside the spatial average,
we obtain (see Proposition B.1)

‖LN,α φ−D2φ‖q ≤ VRR
4 d

3

3
(δN )2 max

|β|=4
‖∂βφ‖q, (3.17)

for any φ : Rd × [0, 1] → R which admits continuous and ‖ · ‖q-bounded spatial derivatives
of order up to four, where D2 is defined as

D2φ := VR
R2

d+ 2
∆φ, (3.18)
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On the other hand, in the stable case,

LN,αφ(x, k) = δ−α
N

∫ ∞

1

Vr

(
φ(x, k, δNr)− φ(x, k)

) dr

r1+α+d

=

∫ ∞

δN

Vr

(
φ(x, k, r)− φ(x, k)

) dr

r1+α+d

=

∫
Rd

ΦδN
α (‖x− y‖)(φ(y, k)− φ(x, k))dy,

with

Φδ
α(‖x− y‖) =

∫ ∞

δ

V2,r(x, y)

Vr

dr

r1+α+d
.

Hence, from Proposition B.2,

‖LN,αφ−Dαφ‖q ≤ C9(δN )2−α max
|β|=2

‖∂βφ‖q, (3.19)

for any φ : Rd × [0, 1] → R twice continuously differentiable in the space variable and
such that the right hand side is finite.

Moreover, the operator uDα (or uD2 in the fixed radius case), defined on the set
of twice continuously differentiable functions, is the generator of a Markov process
on Rd, denoted by (Xα

t , t ≥ 0), which is Brownian motion in the fixed radius case and

fractional Brownian motion in the stable case. We thus let (P (α)
t , t ≥ 0) denote the

strongly continuous semigroup acting on the space of bounded and measurable functions
on Rd × [0, 1] generated by uDα − µ, i.e.

P
(α)
t φ(x, k) := e−µtEx [φ(X

α
t , k)] ,

for any bounded and measurable φ : Rd × [0, 1] → R and where Ex [·] denotes the
expectation with respect to the distribution of (Xα

t , t ≥ 0) started from Xα
0 = x.

Using this, we now prove the following lemma.

Lemma 3.5 (Convergence of the semigroups PN,α). For any q ≥ 1, φ ∈ Eq and for all
t ≥ 0, N ≥ 1,

‖PN,α
t φ‖q ≤ e−µt‖φ‖q. (3.20)

Furthermore for any multi-index β ∈ Nd and φ ∈ S(Rd × [0, 1]),

‖∂βPN,α
t φ‖q ≤ e−µt‖∂βφ‖q. (3.21)

Finally, there exists a constant C3 > 0 such that for all N ≥ 1 and t ≥ 0,

‖PN,α
t φ− P

(α)
t φ‖q ≤ C3te

−µt(δN )γ max
0≤|β|≤4

‖∂βφ‖q (3.22)

where γ = 2 in the fixed radius case and γ = 2− α in the stable case.

Proof of Lemma 3.5. Recall (3.3) and the definition of (XN,α
t , t ≥ 0). Since the jumps of

XN,α do not depend on its initial position,

Ex

[
φ(XN,α

t , k)
]
= E0

[
φ(x+XN,α

t , k)
]
, (3.23)

and so, by Fubini’s theorem,∫
Rd

Ex

[
φ(XN,α

t , k)
]
dx =

∫
Rd

φ(x, k)dx. (3.24)
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Moreover, for q ≥ 1, using Jensen’s inequality in the second line,

‖PN,α
t φ‖q =

(∫
Rd

sup
k∈[0,1]

∣∣e−µtEx

[
φ(XN,α, k)

]∣∣q dx)1/q

≤ e−µt

(∫
Rd

Ex

[
sup

k∈[0,1]

∣∣∣φ(XN,α
t , k)

∣∣∣q] dx)1/q

.

Then, applying (3.24) with φ(·, k) replaced by supk∈[0,1] |φ(·, k)|
q, we obtain

‖PN,α
t φ‖q ≤ e−µt‖φ‖q.

This proves the first part of the statement of Lemma 3.5. Using (3.23) again, we see that

∂βP
N,α
t φ(x, k) = e−µtEx

[
∂βφ(X

N,α
t , k)

]
= PN,α

t ∂βφ(x, k).

Thus (3.21) follows from (3.20) applied to ∂βφ. To prove (3.22), we note that the above

inequalities also apply to the semigroup P (α)
t , replacing XN,α

t by Xα
t , and we let

ψt = PN,α
t φ− P

(α)
t φ.

Then

∂tψt = (uLN,α − µ)ψt + u(LN,α −Dα)P
(α)
t φ.

Together with ψ0 = 0, this implies

ψt = u

∫ t

0

PN,α
t−s

(
LN,α −Dα

)
P (α)
s φds.

Using (3.20) and the triangle inequality, we obtain

‖ψt‖q ≤ u

∫ t

0

e−µ(t−s)
∥∥∥(LN,α −Dα)P

(α)
s φ

∥∥∥
q
ds.

Using (3.17) in the fixed radius case and (3.19) in the stable case, we see that there
exists a constant C4 > 0 such that

‖ψt‖q ≤ u

∫ t

0

e−µ(t−s)C4(δN )γ max
|β|≤4

∥∥∥∂βP (α)
s φ

∥∥∥
q
ds

where γ = 2 in the fixed radius case and γ = 2−α in the stable case. Finally, using (3.21)
applied to P (α)

s , we obtain

‖ψt‖q ≤ uC4(δN )γ
∫ t

0

e−µ(t−s)e−µs max
|β|≤4

‖∂βφ‖q ds

≤ uC4te
−µt(δN )γ max

|β|≤4
‖∂βφ‖q .

This concludes the proof of Lemma 3.5.
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3.5 Convergence of the rescaled SLFV to a deterministic limit

With the above results, it becomes possible to prove the first part of the two central
limit theorems, i.e. the convergence of (ρN

t , t ∈ [0, T ]) to λ.

Proposition 3.6 (Convergence to the deterministic limit). Under the assumptions of
either Theorem 2.1 or Theorem 2.3, for any T > 0,

lim
N→∞

E

[
sup

t∈[0,T ]

d(ρN
t , λ)

]
= 0.

To prove this, we apply the following result, which is adapted from [Wal86, Theo-
rem 7.13]. We detail its proof in Appendix E.

Theorem 3.7 (Adapted from Theorem 7.13 in [Wal86]). Let (MN , N ≥ 1) be a sequence
of worthy martingale measures on Rd × [0, 1] with dominating measures (KN , N ≥ 1)

such that there exist C2 > 0 and k ≥ 1 with, for any 0 ≤ s ≤ t, φ ∈ S(Rd × [0, 1]) and for
all N ≥ 1,∫

[s,t]×(Rd×[0,1])2
φ(x1, k1)φ(x2, k2)KN (drdx1dk1dx2dk2) ≤ C2 |t− s|

k∑
q=1

‖φ‖2q , (3.25)

almost surely. Let ψN : {(s, t) : 0 ≤ s ≤ t}×Rd× [0, 1] → R be a sequence of deterministic
functions such that:

i) for any 0 ≤ s ≤ t, N ≥ 1, ψN
s,t ∈ S(Rd × [0, 1]),

ii) both t 7→ ψN
s,t and s 7→ ψN

s,t are continuous,

iii) there exist C5 > 0, C6 > 0 and µ > 0 such that, for all N ≥ 1, for all 0 ≤ s ≤ t and
q ∈ [1, k], ∥∥ψN

s,t

∥∥
q
≤ C5e

−µ(t−s) (3.26)

and, for all 0 ≤ s′ ≤ s ≤ t ≤ t′,∥∥ψN
s,t′ − ψN

s,t

∥∥
q
≤ C6 |t′ − t| e−µ(t−s),

∥∥ψN
s′,t − ψN

s,t

∥∥
q
≤ C6 |s′ − s| e−µ(t−s), (3.27)

Then the sequence of real-valued processes (UN
t , t ≥ 0) defined by

UN
t =

∫
[0,t]×Rd×[0,1]

ψN
s,t(x, k)M

N (ds dx dk)

satisfies, for all T > 0, N ≥ 1,

E

[
sup

t∈[0,T ]

∣∣UN
t

∣∣2] ≤ CT C2 k
(
C2

5 + C2
6

)
, (3.28)

where the constant CT only depends on T . In addition, the sequence (UN , N ≥ 1) is
tight in D(R+,R).

Using this, we can prove Proposition 3.6.

Proof of Proposition 3.6. We first check that the assumptions of Theorem 3.7 are satis-
fied with

ψN
s,t = PN,α

t−s φ.
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Clearly, (3.25) (with k = 2) follows from Lemma 3.4. Conditions i and ii are also clearly
satisfied. In addition, (3.26) follows from (3.20) with

C5 = max
q∈{1,2}

‖φ‖q . (3.29)

To prove (3.27), write, for t ≥ 0,

PN,α
t φ− φ =

∫ t

0

PN,α
s (uLN,α − µ)φds.

By the triangle inequality and (3.20),

‖PN,α
t φ− φ‖q ≤

∫ t

0

‖PN,α
s (uLN,α − µ)φ‖qds

≤
∫ t

0

e−µs‖(uLN,α − µ)φ‖qds.

Using Proposition B.1 in the fixed radius case and Proposition B.2 in the stable case,

‖(uLN,α − µ)φ‖q ≤ C max
0≤|β|≤2

‖∂βφ‖q,

for some C > 0. As a result, there exists a constant C7 > 0 such that

‖PN,α
t φ− φ‖q ≤ C7 t max

0≤|β|≤2
‖∂βφ‖q.

Then, for 0 ≤ s ≤ t ≤ t′,

‖ψN
s,t′ − ψN

s,t‖q = ‖PN,α
t′−sφ− PN,α

t−s φ‖q
≤ C7 |t′ − t| max

0≤|β|≤2
‖∂βPN,α

t−s φ‖q

≤ C7 |t′ − t| e−µ(t−s) max
0≤|β|≤2

‖∂βφ‖q,

where we have used (3.21) in the last line. This proves the first part of (3.27) with

C6 = C7 max
q∈{1,2}

max
0≤|β|≤2

‖∂βφ‖q . (3.30)

The second part is proved in exactly the same way. We can thus combine Theorem 3.7
with (3.29) and (3.30) to obtain

E

[
sup

t∈[0,T ]

∣∣〈ZN
t , φ〉

∣∣2]1/2 ≤
(
2CT C2

(
C2

5 + C2
6

))1/2
≤ C8 max

q∈{1,2}
max

0≤|β|≤2
‖∂βφ‖q ,

for some C8 > 0 for all N ≥ 1, T > 0 and φ ∈ S(Rd × [0, 1]). Then by the definition of the
metric d in (1.2) and that of ZN , we have

E

[
sup

t∈[0,T ]

d(ρN
t , λ)

]
≤ C8

(NηN )1/2

∞∑
n=1

1

2n
max

q∈{1,2}
max

0≤|β|≤2
‖∂βφn‖q .

But recall from (1.4) that ‖∂βφn‖q ≤ C1 for all n ≥ 1, q ∈ {1, 2} and β ∈ Nd with
0 ≤ |β| ≤ 2. Hence

E

[
sup

t∈[0,T ]

d(ρN
t , λ)

]
≤ C8C1

(NηN )1/2
,

and Proposition 3.6 is proved.
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Note that, in passing, we have also proved the following.

Lemma 3.8 (Tightness). For any φ ∈ S(Rd × [0, 1]), the sequence of processes

{(〈ZN
t , φ〉, t ≥ 0), N ≥ 1}

is tight in D(R+,R).

3.6 Convergence of the martingale measures

The aim of this subsection is to prove the following result.

Lemma 3.9 (Convergence of the martingale measures). The sequence of martingale
measures (MN , N ≥ 1) converges in distribution in D(R+,S ′(Rd× [0, 1])) to a continuous
martingale measureM such that, for any φ ∈ S(Rd × [0, 1]),

〈M(φ)〉t = t 〈Qα, φ⊗ φ〉.

Lemma 3.9 will result from the following, which we prove below.

Lemma 3.10. For any φ ∈ S(Rd × [0, 1]),

sup
t≥0

∣∣MN
t (φ)−MN

t−(φ)
∣∣ −→
N→∞

0 almost surely. (3.31)

Furthermore, for any t ≥ 0,〈
MN (φ)

〉
t
−→
N→∞

t 〈Qα, φ⊗ φ〉 in probability, (3.32)

where Qα is defined in (2.10) in the stable case and Q2 = Q is defined in (2.4) in the
fixed radius case.

Let us show how this implies Lemma 3.9.

Proof of Lemma 3.9. Lemma 3.10, together with Theorem C.1 (in Appendix C) implies
that, for all φ ∈ S(Rd× [0, 1]), (MN

t (φ), t ≥ 0) converges to (Mt(φ), t ≥ 0) in distribution in
D(R+,R). The sequence (MN , N ≥ 1) is thus tight in D(R+,S ′(Rd × [0, 1])) by Mitoma’s
theorem (Theorem D.1 in Appendix D).

Also, by polarisation, we can recover 〈MN (φi),M
N (φj)〉t from 〈MN (φi + φj)〉t and

〈MN (φi − φj)〉t, and Theorem C.1 is also satisfied by vectors of the form(
MN

t (φ1), . . . ,M
N
t (φk)

)
t≥0

.

As a result,MN satisfies the assumptions of Theorem 3.2, and the sequence (MN , N ≥ 1)

converges in distribution toM in D(R+,S ′(Rd × [0, 1])).

We now turn to the proof of Lemma 3.10.

Proof of Lemma 3.10. We first find a bound on the jumps of (MN
t (φ), t ≥ 0), i.e. (3.31).

By the definition ofMN in Proposition 3.1,

MN
t (φ)−MN

t−(φ) = (NηN )1/2
(
〈ρN

t , φ〉 − 〈ρN
t− , φ〉

)
= (NηN )1/2

(
〈ρNNt/δαN

, φN 〉 − 〈ρN(Nt/δαN )− , φN 〉
)
,

using the notation introduced in (3.12). By Definition 1.1, if (t, x0, r) ∈ Π,

∣∣〈ρNt , φN 〉 − 〈ρNt− , φN 〉
∣∣ ≤ sup

k0∈[0,1]

∣∣∣∣∣
∫
Rd×[0,1]

φN (x, k)uN1|x−x0|<r(δk0(dk)− ρNt−(x, dk))dx

∣∣∣∣∣
≤ 2uN

∫
Rd

δdN sup
k∈[0,1]

|φ(δNx, k)|1|x−x0|<rdx. (3.33)
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By the Cauchy-Schwarz inequality,∫
Rd

δdN sup
k∈[0,1]

|φ(δNx, k)|1|x−x0|<rdx ≤ V 1/2
r

(∫
Rd

δ2dN sup
k∈[0,1]

|φ(δNx, k)|2 dx

)1/2

≤ δ
d/2
N V 1/2

r ‖φ‖2.

Hence in the fixed radius case,

sup
t≥0

∣∣MN
t (φ)−MN

t−(φ)
∣∣ ≤ 2uV

1/2
R N−1/2η

1/2
N δ

d/2
N ‖φ‖2

≤ 2uV
1/2
R N−1/2δN ‖φ‖2 −→

N→∞
0.

In the stable case, we use 1|x−x0|<r ≤ 1 to obtain∫
Rd

δdN sup
k∈[0,1]

|φ(δNx, k)|1|x−x0|<rdx ≤ ‖φ‖1

and so

sup
t≥0

∣∣MN
t (φ)−MN

t−(φ)
∣∣ ≤ 2uN−1/2‖φ‖1 −→

N→∞
0.

This proves (3.31). For the rest of the proof of Lemma 3.10, we treat the fixed radius
case and the stable case separately.

Recall that 〈
MN (φ)

〉
t
= u2

∫ t

0

〈ηNΓνN
α (ρN

s ), φ⊗ φ〉ds.

In the fixed radius case, this is〈
MN (φ)

〉
t
= u2δ−2d

N

∫ t

0

〈ΓδNR(ρN
s ), φ⊗ φ〉ds, (3.34)

where we define Γr(ρ) as in (3.5) with ν = δr. Given the definition of [ρ]r in (3.4), we see
that 〈Γr(ρ), φ⊗ φ〉 contains four terms. The first one is∫

(Rd)2

∫
B(x1,r)∩B(x2,r)

1

Vr

∫
B(y,r)

∫
[0,1]

φ(x1, k)φ(x2, k)ρ(z, dk)dzdydx1dx2

= V 2
r

∫
Rd×[0,1]

φ(y, k, r)2
1

Vr

∫
B(y,r)

ρ(z, dk)dzdy.

Introducing the notation

ρr(x, dk) :=
1

Vr

∫
B(x,r)

ρ(z, dk)dz,

this takes the form

V 2
r 〈ρr, φ(·, r)2〉.

The second term in 〈Γr(ρ), φ⊗ φ〉 is∫
(Rd)2

∫
B(x1,r)∩B(x2,r)

1

Vr

∫
B(y,r)

∫
[0,1]2

φ(x1, k1)φ(x2, k2)ρ(x1, dk1)ρ(z, dk2)dzdydx1dx2

=

∫
Rd

(∫
B(y,r)×[0,1]

φ(x1, k1)ρ(x1, dk1)dx1

×
∫
[0,1]

∫
B(y,r)

φ(x2, k2)dx2
1

Vr

∫
B(y,r)

ρ(z, dk2)dz

)
dy. (3.35)
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Now note that∣∣∣∣∣
∫
B(y,r)×[0,1]

(φ(x1, k1)− φ(y, k1))ρ(x1, dk1)dx1

∣∣∣∣∣ ≤ rVr max
|β|=1

‖∂βφ‖∞.

Thus, if one replaces φ(xi, ki) by φ(y, ki) in (3.35), the difference between the two
expressions is at most

2rV 2
r max

|β|=1
‖∂βφ‖∞‖φ‖1.

After this substitution, (3.35) becomes

V 2
r

∫
Rd×[0,1]2

φ(y, k1)φ(y, k2)ρr(y, dk1)ρr(y, dk2)dy =: 〈ρr · ρr, φ⊗ φ〉,

setting

ρr · ρr(y, dk1dk2) := ρr(y, dk1)ρr(y, dk2).

We also note that the same reasoning applies to the last two terms in 〈Γr(ρ), φ ⊗ φ〉,
modulo the sign in the front. It follows that∣∣〈Γr(ρ), φ⊗ φ〉 − V 2

r

[
〈ρr, φ2〉 − 〈ρr · ρr, φ⊗ φ〉

]∣∣ ≤ 8rV 2
r max

|β|=1
‖∂βφ‖∞‖φ‖1.

Coming back to (3.34), this implies∣∣∣∣〈MN (φ)
〉
t
− u2V 2

R

∫ t

0

[
〈(ρN

s )δNR, φ
2〉 − 〈(ρN

s )δNR · (ρN
s )δNR, φ⊗ φ〉

]
ds

∣∣∣∣
≤ 8t u2V 2

R RδN max
|β|=1

‖∂βφ‖∞ ‖φ‖1,

which vanishes as N → ∞. By Proposition 3.6, (ρN
t , t ∈ [0, T ]) converges in probability

to λ as N → ∞. It follows that ((ρN
t )δNR, t ≥ 0) converges to the same limit and that

〈(ρN
s )δNR · (ρN

s )δNR, φ⊗ φ〉 −→
N→∞

∫
Rd

(∫
[0,1]

φ(x, k)dk

)2

dx

in probability, uniformly for s ∈ [0, t]. As a result, recalling (2.4), for any t ≥ 0,〈
MN (φ)

〉
t
−→
N→∞

〈Q, φ⊗ φ〉 t

in probability. Lemma 3.10 is then proved in the fixed radius case.
In the stable case, by the definition of νNα ,

〈
MN (φ)

〉
t
= u2

∫ t

0

∫ ∞

1

〈ΓδNr(ρN
s ), φ⊗ φ〉δ−(α+d)

N

dr

r1+α+d
ds

= u2
∫ t

0

∫ ∞

δN

〈Γr(ρN
s ), φ⊗ φ〉 dr

r1+α+d
ds.

Recall from (3.16) that

|〈Γr(ρ), φ⊗ φ〉| ≤ 4

∫
(Rd)2

V2,r(x, y) sup
k∈[0,1]

|φ(x, k)| sup
k∈[0,1]

|φ(y, k)| dxdy

≤ 4V 2
r ‖φ‖22 .
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It follows that ∫ t

0

∫ δN

0

〈Γr(ρN
s ), φ ⊗ φ〉 dr

r1+α+d
ds −→

N→∞
0,

almost surely. We then prove that∫ t

0

∫ ∞

0

〈Γr(ρN
s ), φ⊗ φ〉 dr

r1+α+d
ds −→

N→∞

∫ t

0

∫ ∞

0

〈Γr(λ), φ⊗ φ〉 dr

r1+α+d
ds (3.36)

in probability. To do this, we first show that the integrand converges. From the definition
of Γr(ρ), we can write,

〈Γr(ρ), φ⊗ φ〉 = V 2
r 〈ρ, (φ)2(·, r)〉 − 〈ρ⊗ ρ,Ψr〉

where

Ψr(x1, x2, k1, k2) = φ(x1, k1)

∫
B(x1,r)∩B(x2,r)

φ(y, k2, r)dy

+ φ(x2, k2)

∫
B(x1,r)∩B(x2,r)

φ(y, k1, r)dy − φ(x1, k2)φ(x2, k2).

By Proposition 3.6, ρN
s converges to λ in the vague topology in probability and uniformly

for s ∈ [0, t]. Hence ρN
s ⊗ ρN

s converges in the same sense to λ ⊗ λ as N → ∞. As a
consequence, for any r > 0,∫ t

0

〈Γr(ρN
s ), φ⊗ φ〉ds −→

N→∞

∫ t

0

〈Γr(λ), φ⊗ φ〉ds

in probability. Then, by the bound on (3.16), we can use dominated convergence to
obtain (3.36). To conclude, we note that

Γr(λ)(x1, x2, dk1dk2) = V2,r(x1, x2) [dk1δk1
(dk2)− dk1dk2] .

Integrating over r, and recalling from (2.8) that

Kα(x, y) =

∫ ∞

0

V2,r(x, y)
dr

rd+α+1
,

we see that

u2
∫ ∞

0

〈Γr(λ), φ⊗ φ〉 dr

r1+α+d
= 〈Qα, φ⊗ φ〉.

This concludes the proof of Lemma 3.10.

3.7 Proof of the central limit theorems

Let us now prove Theorem 2.1 and 2.3, applying Theorem 3.2 to (ZN , N ≥ 1).

Proof of Theorem 2.1 and 2.3. Firstly, condition i ) of Theorem 3.2 is satisfied by ZN

by Lemma 3.8. To check condition ii ), let φ1, . . . , φp be elements of S(Rd × [0, 1]) and
t1, . . . , tp ∈ [0, T ]. We shall apply Proposition E.1, with

fNi (s, x, k) = 1s≤ti P
N,α
ti−sφi(x, k), fi(s, x, k) = 1s≤ti P

(α)
ti−sφi(x, k).

Then, by (3.9),

MN
T (fNi ) = 〈ZN

ti , φi〉, MT (fi) = 〈Zti , φi〉,
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where (Zt, t ≥ 0) is defined by

〈Zt, φ〉 :=
∫
[0,t]×Rd×[0,1]

P
(α)
t−sφ(x, k)M(ds dx dk). (3.37)

By Theorem 5.1 in [Wal86], (Zt, t ≥ 0) is the unique solution in D(R+,S ′(Rd × [0, 1])) to
the stochastic partial differential equation (2.3) in the fixed radius case and (2.9) in the
stable case. The assumptions of Proposition E.1 are then straightforward to check with
the help of Lemma 3.5 and Lemma 3.9. This yields the convergence(

〈ZN
t1 , φ1〉, . . . , 〈Z

N
tp , φp〉

)
−→

(
〈Zt1 , φ1〉, . . . , 〈Ztp , φp〉

)
, (3.38)

in distribution as N → ∞. Hence, by Theorem 3.2, there exists a process (Z̃t, t ∈ [0, T ])

with sample paths in D(R+,S ′(Rd × [0, 1])) such that ZN converges to Z̃ in distribution.
By (3.38), for any φ1, . . . , φp and t1, . . . , tp as above,(

〈Z̃t1 , φ1〉, . . . , 〈Z̃tp , φp〉
)
=d

(
〈Zt1 , φ1〉, . . . , 〈Ztp , φp〉

)
,

where =d stands for equality in distribution. It follows that Z̃ =d Z, and we conclude
that ZN converges in distribution to Z.

3.8 Proof of the central limit theorem in the non-stationary regime with gen-
eral mutation mechanism

Let us finish this section by outlining the main adaptations needed to prove Theo-
rem 2.8. Recall that, between reproduction events,

ρNt (x, ·) = T ∗
µN (t−s)ρ

N
s (x, ·).

As a result, adapting the proof of Proposition 3.3, we obtain

〈ρNt , φ〉 = 〈ρN0 , φ〉+
∫ t

0

{
µN 〈ρNs ,Gφ〉+ uN

∫ ∞

0

Vr〈ρNs , φ(·, r)− φ〉να(dr)
}
ds+MN

t (φ),

and (MN
t (φ), t ≥ 0) is a square-integrable martingale with predictable variation process

〈MN (φ)〉t = u2N

∫ t

0

〈Γνα(ρNs ), φ⊗ φ〉ds.

Since G does not act on the space variable, we have

Gφ(δN ·, ·) = (Gφ)(δN ·, ·).

As a result, for the rescaled process ρN
t , using the notation (3.12) from Section 3.2,

〈ρN
t , φ〉 = 〈ρN

0 , φ〉+
∫ t

0

〈ρN
s , µGφ+ uLN,αφ〉ds+MN

Nt/δαN
(φN ). (3.39)

We now let (PN,α
t , t ≥ 0) be the semigroup acting on continuous and bounded functions

on Rd × [0, 1] defined by

PN,α
t φ(x, k) := E(x,k)

[
φ(XN,α

t ,Kt)
]
,

where XN,α and K are two independent Markov processes taking values respectively
in Rd and [0, 1] and with generators uLN,α and µG, and E(x,k) [·] denotes the expectation
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with repect to their joint distribution, with the initial condition XN,α
0 = x and K0 = k. We

then define

pN
t (x, dk) := (PN,α

t )∗ρN
0 (x, dk). (3.40)

With this definition, for any φ ∈ S(Rd × [0, 1]),

〈pN
t , φ〉 = 〈ρN

0 , φ〉+
∫ t

0

〈pN
s , µGφ+ uLN,αφ〉ds.

Subtracting this to (3.39) and multiplying by (NηN )1/2 yields

〈ZN
t , φ〉 =

∫ t

0

〈ZN
s , µGφ+ uLN,αφ〉ds+MN

t (φ),

where we have setMN
t (φ) = (NηN )1/2MN

Nt/δαN
(φN ). The predictable variation ofMN (φ)

is unchanged and is given by (3.14).
Lemma 3.4 does not require any modification, and we can adapt the proof of

Lemma 4.1 to obtain the following, where (P
(α)
t , t ≥ 0) now denotes the semigroup

acting on measurable and bounded functions on Rd × [0, 1] generated by µG + uDα.

Lemma 3.11. For any φ ∈ S(Rd × [0, 1]), t ≥ 0, N ≥ 1 and q ≥ 1,

‖PN,α
t φ‖q ≤ ‖φ‖q.

Moreover, for any β ∈ Nd,

‖∂βPN,α
t φ‖q ≤ ‖∂βφ‖q,

and there exists a constant C3 > 0 such that, for all N ≥ 1 and t ≥ 0,

‖PN,α
t φ− P

(α)
t φ‖q ≤ C3 t (δN )γ max

0≤|β|≤4
‖∂βφ‖q,

where γ = 2 in the fixed radius case and γ = 2− α in the stable case.

With this result, and noting that the definition of p(α) in (2.16) is equivalent to

p
(α)
t (x, dk) = (P

(α)
t )∗ρ0(x, dk),

we obtain the following.

Proposition 3.12. Under the assumptions of Theorem 2.8, for any T > 0,

lim
N→∞

E

[
sup

t∈[0,T ]

d(pN
t ,p

(α)
t )

]
= 0.

Furthermore, if

sup
x∈Rd

dTV (ρ
N
0 (x, ·),ρ0(x, ·)) ≤ C(δN )γ ,

almost surely for some constant C > 0 where γ = 2 in the fixed radius case and γ = 2−α
in the stable case and dV T denotes the total variation distance, then for any T > 0 there
exists another constant, still denoted C > 0, such that, almost surely

sup
t∈[0,T ]

d(pN
t ,p

(α)
t ) ≤ C(δN )γ .
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Proof. By the definition of the distance d in (1.2),

d(pN
t ,p

(α)
t ) =

∞∑
n=1

1

2n

∣∣∣〈pN
t , φn〉 − 〈p(α)

t , φn〉
∣∣∣ .

Then, by the definition of pN
t in (3.40) and that of p(α)

t in (2.16),∣∣∣〈pN
t , φn〉 − 〈p(α)

t , φn〉
∣∣∣ ≤ ∣∣∣〈ρN

0 , P
N,α
t φn − P

(α)
t φn〉

∣∣∣+ ∣∣∣〈ρN
0 , P

(α)
t φn〉 − 〈ρ0, P

(α)
t φn〉

∣∣∣ .
For the first term on the right, we use the definition of the norm ‖ · ‖q, Lemma 3.11 and
(1.4) to obtain ∣∣∣〈ρN

0 , P
N,α
t φn − P

(α)
t φn〉

∣∣∣ ≤ ‖PN,α
t φn − P

(α)
t φn‖1

≤ C3 t (δN )γC1.

For the second term, we note that∣∣∣〈ρN
0 , P

(α)
t φn〉 − 〈ρ0, P

(α)
t φn〉

∣∣∣ ≤ 2‖P (α)
t φn‖1

≤ 2C1,

using Lemma 3.11 and (1.4). As a result, for any ε > 0,

E

[
sup

t∈[0,T ]

d(pN
t ,p

(α)
t )

]
≤ C3C1 t (δN )γ + ε

+ 2C1

∞∑
n=1

1

2n
P

(
sup

t∈[0,T ]

∣∣∣〈ρN
0 , P

(α)
t φn〉 − 〈ρ0, P

(α)
t φn〉

∣∣∣ > ε

)
.

In addition, since ρN
0 converges weakly to ρ0 in probability and P (α)

t φn is continuous and
bounded, for any ε > 0, as N → ∞,

P

(
sup

t∈[0,T ]

∣∣∣〈ρN
0 , P

(α)
t φn〉 − 〈ρ0, P

(α)
t φn〉

∣∣∣ > ε

)
→ 0,

for each n ≥ 1. Hence, by dominated convergence,

lim sup
N→∞

E

[
sup

t∈[0,T ]

d(pN
t ,p

(α)
t )

]
≤ ε,

and the conclusion follows by letting ε→ 0. The second part of the statement is trivial
since ∣∣∣〈ρN

0 , P
(α)
t φn〉 − 〈ρ0, P

(α)
t φn〉

∣∣∣ ≤ sup
x∈Rd

dTV (ρ
N
0 (x, ·),ρ0(x, ·)) ‖P (α)

t φn‖1.

This concludes the proof of Proposition 3.12.

We can then use Theorem 3.7 as in the proof of Proposition 3.6 to obtain

E

[
sup

t∈[0,T ]

d(ρN
t ,p

N
t )

]
≤ C

(NηN )1/2
,

for some C > 0, and (2.17) follows from the above combined with Proposition 3.12.
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The convergence of the sequence of martingale measures (MN , N ≥ 1) is identical to

the proof of Lemma 3.9, replacing the convergence of ρN
t to p

(α)
t instead of λ and noting

that (2.18) coincides with

u2
∫ t

0

∫ ∞

0

〈Γr(p(α)
s ), φ⊗ φ〉 dr

r1+d+α
ds.

The convergence of the sequence (ZN , N ≥ 1) then follows exactly as in the stationary
setting. This concludes the proof of Theorem 2.8.

4 Derivation of the Wright-Malécot formula

The aim of this section is to prove Theorem 2.4. Recall that

PN
t (φ, ψ) = E

[〈
ρN
t ⊗ ρN

t , (φ⊗ ψ)1∆
〉]
,

where φ : Rd → R+ and ψ : Rd → R+ are two smooth and compactly supported
probability density functions and

1∆(k1, k2) = 1k1=k2
.

Since the Lebesgue measure of {(k1, k2) ∈ [0, 1]2 : k1 = k2} is zero, 〈λ⊗λ, (φ⊗ψ)1∆〉 = 0

and this is equivalent to

PN
t (φ, ψ) = (NηN )−1E

[〈
ZN
t ⊗ ZN

t , (φ⊗ ψ)1∆
〉]
. (4.1)

But, by Theorem 2.1 and Theorem 2.3, we have the following.

Lemma 4.1. For any fixed t ≥ 0, and φ, ψ satisfying the assumptions of Theorem 2.4,

lim
N→∞

(NηN )PN
t (φ, ψ) = E [〈Zt ⊗ Zt, (φ⊗ ψ)1∆〉] , (4.2)

where (Zt, t ≥ 0) solves (2.3) in the fixed radius case and (2.9) in the stable case.

We prove Lemma 4.1 below, but first we make the following observation. By the
definition of Zt and (3.37), for any φ ∈ S(Rd×[0, 1]), 〈Zt, φ〉 is a Gaussian random variable
with mean zero and variance∫ t

0

〈Qα,
(
P (α)
s φ

)
⊗
(
P (α)
s φ

)
〉 ds.

Using Lemma 3.4 and Lemma 3.5, we see that, as t→ ∞, this converges to

〈Q(∞)
α , φ⊗ φ〉 :=

∫ +∞

0

〈Qα,
(
P (α)
s φ

)
⊗
(
P (α)
s φ

)
〉 ds. (4.3)

Hence 〈Zt, φ〉 → 〈Z, φ〉 in distribution as t→ ∞, where Z is a Gaussian random field on

Rd × [0, 1] with covariation measure Q(∞)
α . It is straightforward to extend this to vectors

of the form (〈Zt, φ1〉, . . . , 〈Zt, φk〉) to obtain the following result.

Corollary 4.2. Let (Zt, t ≥ 0) solve either (2.3) or (2.9). Then, as t→ ∞, Zt converges in
distribution in S ′(Rd × [0, 1]) to a Gaussian random field, denoted by Z, with covariation

measure Q(∞)
α , defined by (4.3).

The proof of Theorem 2.4 then goes along the same lines.

Proof of Theorem 2.4. From (3.37), we see that

E [〈Zt ⊗ Zt, (φ⊗ ψ)1∆〉] =
∫ t

0

〈Qα,
(
P (α)
s φ

)
⊗
(
P (α)
s ψ

)
1∆〉 ds,
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where we have used the fact that, if Ψ(x, k) = φ(x)h(k), then

P (α)
s Ψ(x, k) = (P (α)

s φ(x))h(k).

Since |1∆| ≤ 1, we can again use Lemma 3.4 and Lemma 3.5 to show that the above
expression converges to

〈Q(∞)
α , (φ⊗ ψ)1∆〉 =

∫ +∞

0

〈Qα,
(
P (α)
s φ

)
⊗
(
P (α)
s ψ

)
1∆〉 ds,

as t → ∞. To conclude, we need to show that the right-hand-side coincides with the
expressions given in the statement of Theorem 2.4.

Let us first do so in the fixed radius case. Recalling the notation (2.15), by the
definition of P (α)

t , for any φ ∈ S(Rd × [0, 1]),

P
(2)
t φ(x, k) = e−µt

∫
Rd

G
(2)
ut (x− y)φ(y, k)dy.

Also recall that, by (2.4),

Q(dx1dk1dx2dk2) = dx1δx1
(dx2) (dk1δk1

(dk2)− dk1dk2) .

As a result, using the convolution rule for Gaussian kernels,

〈Q(∞)
2 , (φ⊗ ψ)1∆〉 = u2V 2

R

∫ ∞

0

∫
(Rd)2

e−2µsG2us(x− y)φ(x)ψ(y)dxdyds.

Then, using [Erd54, p. 146, Eq. 29], for α, p > 0,∫ ∞

0

e−pttν−1e−α/4tdt = 2

(
α

4p

)ν/2

Kν (
√
αp) ,

and this yields (2.13).
In the stable case, similarly,

P
(α)
t φ(x, k) = e−µt

∫
Rd

G
(α)
ut (x− y)φ(y, k)dy,

where G(α)
t was defined in (2.12). Recalling the definition of Qα in (2.10), we obtain

〈Q(∞)
α , (φ⊗ ψ)1∆〉

= u2
∫
(Rd)4

∫ ∞

0

e−2µsG(α)
us (x1 − y1)G

(α)
us (x2 − y2)dsKα(x1, x2)φ(y1)ψ(y2)dx1dx2dy1dy2.

We then use the fact that, from the α-stability property of Dα,

G
(α)
t (x) = λ−d/αG

(α)
t/λ(λ

−1/αx), ∀λ > 0,

and simple changes of variables to obtain (2.14).

We now prove Lemma 4.1.

Proof of Lemma 4.1. By (4.1), (3.9) and Proposition 3.1,

NηN PN
t (φ, ψ) = E

[
u2
∫ t

0

〈ηNΓνN
α (ρN

s ),
(
PN,α
t−s φ

)
⊗
(
PN,α
t−s ψ

)
1∆〉ds

]
.

EJP 27 (2022), paper 106.
Page 34/41

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP827
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


SPDEs describing neutral genetic diversity

Combining Lemma 3.4 and Lemma 3.5, we see that there exists a constant C > 0

(depending on φ and ψ) such that∣∣∣〈ηNΓνN
α (ρN

s ),
(
PN,α
t−s φ

)
⊗
(
PN,α
t−s ψ

)
1∆〉 − 〈ηNΓνN

α (ρN
s ),

(
P

(α)
t−sφ

)
⊗
(
P

(α)
t−sψ

)
1∆〉

∣∣∣
≤ C(δN )γ(t− s)e−2µ(t−s).

Furthermore, we can easily adapt the proof of Lemma 3.9 to show that, for any t ≥ 0,

u2
∫ t

0

〈ηNΓνN
α (ρN

s ),
(
P

(α)
t−sφ

)
⊗
(
P

(α)
t−sψ

)
1∆〉ds −→

N→∞

∫ t

0

〈Qα,
(
P (α)
s φ

)
⊗
(
P (α)
s ψ

)
1∆〉ds,

in probability. Then using Lemma 3.4 and Lemma 3.5 again, we can apply the dominated
convergence theorem to show that this convergence holds in expectation. This proves

lim
N→∞

NηN PN
t (φ, ψ) =

∫ t

0

〈Qα,
(
P (α)
s φ

)
⊗
(
P (α)
s ψ

)
1∆〉ds.

The result then follows from (3.37) and the definition of the martingale measureM .

Supplementary Material

Appendix A Wiener processes on Rd × [0, 1]

Recall the definition of Q in (2.4):

Q(dx1dk1dx2dk2) = u2V 2
Rdx1δx1(dx2) (dk1δk1(dk2)− dk1dk2) .

Proposition A.1. There exists a Wiener process (W (t), t ≥ 0) taking values in D(R+,
S ′(Rd × [0, 1])) such that, for all φ, ψ ∈ S(Rd × [0, 1]),

E [〈W (t), φ〉〈W (s), ψ〉] = t ∧ s 〈Q, φ⊗ ψ〉.

Proof. By the definition of Q, for any φ ∈ L2(Rd × [0, 1]),

〈Q, φ⊗ φ〉 = u2V 2
R

∫
Rd×[0,1]

(
φ(x, k)−

∫
[0,1]

φ(x, k′)dk′

)2

dxdk ≥ 0.

The corresponding (self-adjoint) covariance operator Q̂ is then given by

Q̂φ(x, k) = u2V 2
R

(
φ(x, k)−

∫
[0,1]

φ(x, k′)dk′

)
,

and the reproducing kernel of (W (t), t ≥ 0) is given by{
φ ∈ L2(Rd × [0, 1]) :

∫
[0,1]

φ(x, k)dk = 0 for all x ∈ Rd

}
.

Then, by Proposition I.4.7 in [PZ14], if (ei, i ≥ 1) is a complete orthonormal basis of
L2(Rd × [0, 1]) and if (βi, i ≥ 1) is a sequence of independent standard Brownian motions,
then

W (t) =
∑
i≥1

βi(t) Q̂1/2ei

defines a S ′(Rd × [0, 1])-valued Wiener process with covariance Q. This concludes the
proof of Proposition A.1.
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Note that it is easy to construct a complete orthonormal basis (ei, i ≥ 1) on which Q̂ is
diagonal, simply by taking it of the form ei,j = fi ⊗ gj where (fi, i ≥ 1) (resp. (gj , j ≥ 1))
is a complete orthonormal basis of L2(Rd) (resp. of L2([0, 1])) and with g1 = 1.

Proposition A.1 is extended in a straightforward manner to Wiener process with
spatial correlations as follows. Recall from (2.10) that, for α ∈ (0, 2 ∧ d),

Qα(dx1dk1dx2dk2) = u2
Cd,α

‖x1 − x2‖α
dx1dx2(dk1δk1(dk2)− dk1dk2).

Proposition A.2. For any α ∈ (0, 2 ∧ d), there exists a Wiener process (W (t), t ≥ 0)

taking values in D([0, T ],S ′(Rd × [0, 1])) such that, for all φ, ψ ∈ S(Rd × [0, 1]),

E [〈W (t), φ〉〈W (s), ψ〉] = t ∧ s 〈Qα, φ⊗ ψ〉.

The proof is identical to that of Proposition A.1 and is omitted.

Appendix B Approximating the Laplacian and the fractional
Laplacian

The following was proved in [FP17, Proposition A.2] for functions defined on Rd and
is easily generalised to functions defined on Rd × [0, 1].

Proposition B.1. Let φ : Rd × [0, 1] → R be twice continuously differentiable with
respect to the space variable and suppose that ‖∂βφ‖q < ∞ for 0 ≤ |β| ≤ 2 for some
1 ≤ q ≤ ∞. Then, for all r > 0,∥∥φ(·, r)− φ

∥∥
q
≤ d

2
r2 max

|β|=2
‖∂βφ‖q .

If in addition φ admits continuous and ‖ · ‖q-bounded spatial derivatives of order up to
four, ∥∥∥∥φ(·, r)− φ− r2

d+ 2
∆φ

∥∥∥∥
q

≤ d3

3
r4 max

|β|=4
‖∂βφ‖q . (B.1)

In addition, the following was proved in [FP17, Proposition A.3] for functions defined
on Rd and is likewise easily generalised to functions defined on Rd × [0, 1] (in [FP17], the
result is stated with q ∈ {1,∞} but the proof also applies to 1 ≤ q ≤ ∞).

Proposition B.2. For α ∈ (0, d ∧ 2), let LN,α be the operator defined in (3.2). Let
φ : Rd × [0, 1] → R be twice continuously differentiable and suppose that ‖∂βφ‖q <∞ for
all 0 ≤ |β| ≤ 2 for some 1 ≤ q ≤ ∞. Then, for all α ∈ (0, 2 ∧ d), there exists constants
C9, C10 > 0 which do not depend on φ such that, for all N ≥ 1,∥∥LN,αφ

∥∥
q
≤ C9

(
‖φ‖q + max

|β|=2
‖∂βφ‖q

)
,

and ∥∥LN,αφ−Dαφ
∥∥
q
≤ C10(δN )2−α max

|β|=2
‖∂βφ‖q . (B.2)

Appendix C Martingale convergence theorem

Here we recall the following result, which can be found in [JS03].

Theorem C.1 (Theorem VIII 3.11 in [JS03]). Suppose that (Xt, t ≥ 0), Xt = (X1
t , . . . , X

d
t )

is a continuous d-dimensional Gaussian martingale and that for each n ≥ 1, (Xn
t , t ≥ 0)

is a càdlàg, locally square-integrable d-dimensional martingale such that:
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i) supt≥0

∣∣Xn
t −Xn

t−

∣∣ is bounded uniformly for n ≥ 1 and converges in probability to 0
as n→ ∞,

ii) for each t ∈ Q, 〈Xn,i, Xn,j〉t −→
n→∞

〈Xi, Xj〉t in probability.

Then Xn converges to X in distribution in D(R+,R
d).

Appendix D Mitoma’s theorem

The following result is due to Mitoma [Mit83, Theorem 4.1], and can also be found in
[Wal86, Theorem 6.13].

Theorem D.1 (Mitoma’s theorem). Let (XN
t , t ∈ [0, T ]) be a sequence of processes

whose sample paths are in D([0, T ],S ′(Rd × [0, 1])) almost surely. Then the sequence
{XN , N ≥ 1} is tight if and only if, for each φ ∈ S(Rd× [0, 1]), the sequence of real-valued
processes {(〈XN

t , φ〉, t ∈ [0, T ]), N ≥ 1} is tight in D([0, T ],R).

Appendix E Convergence of convolution integrals

Let us first give the proof of Theorem 3.7, which is adapted from that of Theorem 7.13
in [Wal86].

Proof of Theorem 3.7. We first extend ψN to R+ ×R+ ×Rd × [0, 1] by setting, for s > t,

ψN
s,t = ψN

t,t.

Then the extended ψN still satisfies i) -iii) with the obvious modifications (in particular
replacing e−µ(t−s) by e−µmax(t−s,0) in the right-hand-sides in (3.26) and (3.27)). Then fix
T > 0 and define, for t ∈ [0, T ],

V N
t =

∫
[0,T ]×Rd×[0,1]

ψN
s,t(x, k)M

N (dsdxdk).

Then, by (3.25) and (3.27), for t, t′ ∈ [0, T ],

E
[∣∣V N

t′ − V N
t

∣∣2] ≤ C2

∫ T

0

k∑
q=1

∥∥ψN
s,t′ − ψN

s,t

∥∥2
q
ds

≤ kC2C
2
6

∫ T

0

e−2µ(t∧t′−s)+ |t′ − t|2 ds

≤ kC2C
2
6T |t′ − t|2 .

Then, by Kolmogorov’s continuity criterion [Wal86, Corollary 1.2], for all N ≥ 1 and for
any β ∈ (0, 1/2), there exists a random variable YN > 0 such that, for all t, t′ ∈ [0, T ],∣∣V N

t′ − V N
t

∣∣ ≤ YN |t′ − t|β almost surely (E.1)

and, for all N ≥ 1,

E
[
Y 2
N

]
≤ C11kC2C

2
6T,

for some constant C11 > 0.
Let (FN

t , t ≥ 0) denote the natural filtration associated to the martingale measure
MN . Then

UN
t = E

[
V N
t

∣∣ FN
t

]
.
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It follows that, for all t ∈ [0, T ],

∣∣UN
t

∣∣ ≤ E[ sup
s∈[0,T ]

∣∣V N
s

∣∣ ∣∣∣∣∣ FN
t

]
.

Noting that the right hand side is a local martingale, we can apply Doob’s maximal
inequality to write

E

[
sup

t∈[0,T ]

∣∣UN
t

∣∣2] ≤ 4E

E[ sup
s∈[0,T ]

∣∣V N
s

∣∣ ∣∣∣∣∣ FN
T

]2
≤ 4E

[
sup

t∈[0,T ]

∣∣V N
t

∣∣2] . (E.2)

We then use (E.1) to obtain

sup
t∈[0,T ]

∣∣V N
t

∣∣ ≤ YNT
β +

∣∣V N
0

∣∣ .
But, from (3.25) and (3.26),

E
[∣∣V N

0

∣∣2] ≤ C2

∫ T

0

k∑
q=1

∥∥ψN
s,0

∥∥2
q
ds

≤ C2TkC
2
5 .

From which it follows (together with (E.1)) that

E

[
sup

t∈[0,T ]

∣∣V N
t

∣∣2]1/2 ≤ (kC2T )
1/2
(
(C11)

1/2C6T
β + C5

)
.

Together with (E.2), this concludes the proof of (3.28).
It remains to prove the tightness of the sequence (UN , N ≥ 1) in D(R+,R). To to

this, we use Aldous’ criterion [Ald78] as stated for processes indexed by R+ in [JS03,
Theorem VI 4.5]. More precisely, we check that the following two conditions are satisfied.
For T > 0, let T N

T denote the set of all FN -stopping times that are bounded by T .

i) For all T ∈ N∗, ε > 0, there exist N0 ∈ N∗, K ∈ R+ such that

N ≥ N0 =⇒ P

(
sup

t∈[0,T ]

∣∣UN
t

∣∣ > K

)
≤ ε.

ii) For all T ∈ N∗, ε > 0,

lim
θ↓0

lim sup
N→∞

sup
S1,S2∈T N

T :S1≤S2≤S1+θ

P
(∣∣UN

S2
− UN

S1

∣∣ > ε
)
= 0.

Condition i) clearly follows from (3.28) and the Markov inequality. To prove ii), let S1

and S2 be two stopping times in T N
T such that S1 ≤ S2 ≤ S1+ θ. By the optional sampling

theorem,

UN
S2

− UN
S1

= E
[
V N
S2

∣∣ FN
S2

]
− E

[
V N
S1

∣∣ FN
S1

]
= E

[
V N
S2

− V N
S1

∣∣ FN
S2

]
+ E

[
V N
S1

∣∣ FN
S2

]
− E

[
V N
S1

∣∣ FN
S1

]
. (E.3)
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By (E.1), ∣∣V N
S2

− V N
S1

∣∣ ≤ YNθ
β .

On the other hand, by the definition of V N ,

E
[
V N
S1

∣∣ FN
S2

]
− E

[
V N
S1

∣∣ FN
S1

]
=

∫
[S1,S2]×Rd×[0,1]

ψN
s,S1

(x, k)MN (dsdxdk).

Note that s > S1 in the integral, so the integrand is always ψN
S1,S1

(x, k). Using (3.25) and
(3.26), we then have

E
[∣∣E [V N

S1

∣∣ FN
S2

]
− E

[
V N
S1

∣∣ FN
S1

]∣∣2] ≤ C2θE

[
k∑

q=1

∥∥ψN
S1,S1

∥∥2
q

]
≤ C2C

2
5kθ.

Coming back to (E.3), we have shown that there exists a constant C12 > 0 such that, for
all N ≥ 1,

E
[∣∣UN

S2
− UN

S1

∣∣2]1/2 ≤ C12

(
θβ + θ1/2

)
.

And ii) follows, concluding the proof of Theorem 3.7.

The following result is adapted in the same way from Proposition 7.12 in [Wal86],
and we omit its proof.

Proposition E.1. Let (MN , N ≥ 1) be a sequence of worthy martingale measures on
Rd× [0, 1] with dominating measures (KN , N ≥ 1), and which converges in distribution to
M in D([0, T ],S ′(Rd × [0, 1])). Suppose that the dominating measures KN satisfy (3.25)
for some constant C2 which does not depend on N . Let (fNi , 1 ≤ i ≤ p,N ≥ 1) be a
collection of deterministic real-valued functions on [0, T ]×Rd × [0, 1] such that

i) for each N ≥ 1, 1 ≤ i ≤ p and s ∈ [0, T ], fNi (s, ·) ∈ S(Rd × [0, 1]),

ii) supN≥1 sups∈[0,T ] ‖fNi (s, ·)‖q < +∞, for q ∈ [1, k] and 1 ≤ i ≤ p,

iii) there exist fi : [0, T ]×Rd × [0, 1] → R, 1 ≤ i ≤ p, such that, for any q ∈ [1, k],

lim
N→∞

sup
s∈[0,T ]

‖fNi (s, ·)− fi(s, ·)‖q = 0.

Then, lettingMN
t (fNi ) =

∫
[0,t]×Rd×[0,1]

fNi (s, x, k)MN (ds dx dk),

(
MN

t (fN1 ), . . . ,MN
t (fNp )

)
t∈[0,T ]

−→
N→∞

(Mt(f1), . . . ,Mt(fp))t∈[0,T ]

in distribution in D([0, T ],Rp), whereMt(fi) =
∫
[0,t]×Rd×[0,1]

fi(s, x, k)M(ds dx dk).

Remark E.2. In [Wal86, Proposition 7.12], the convergence of MN (fNi ) is stated in
D([0, T ], S ′(Rd)), and the fNi are not assumed to take values in S(Rd). Since the
statement is proved by integrating against a test function in S(Rd), the content of the
statement is essentially identical.
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