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Abstract

We consider a system of semilinear partial differential equations (PDEs) with a non-
linearity depending on both the solution and its gradient. The Neumann boundary
condition depends on the solution in a nonlinear manner. The uniform ellipticity is not
required for the diffusion coefficient. We show that this problem admits a viscosity
solution which can be approximated by a penalization. The Lipschitz condition is
required for the coefficients of the diffusion part. The nonlinear part as well as the
Neumann condition are Lipschitz. Moreover, the nonlinear part is monotone in the
solution variable. Note that the existence of a viscosity solution to this problem has
been established in [13] then completed in [15]. In the present paper, we construct a
sequence of penalized systems of decoupled forward backward stochastic differential
equations (FBSDEs) then we directly show its strong convergence. This allows us
to deal with the case where the nonlinearity depends on both the solution and its
gradient. Our work extends, in particular, the result of [4] and, in some sense, those
of [1, 3]. In contrast to works [1, 3, 4], we do not pass by the weak compactness of
the laws of the stochastic system associated to our problem.
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Approximation of a degenerate semilinear PDE

1 Introduction

Let D be a regular convex, open and bounded subset of R?. We can construct a
function p € C'(R?) such that p = 0in D, p > 0 in R?\ D and p(z) = (d(x, D))? in a
neighborhood of D. On the other hand, since the domain D is smooth (say C?), it is
possible to consider an extension | € C2(R?) of the function d(-, D) defined on the
restriction to D of a neighborhood of 0D such that D and 0D are characterized by

D={zecR?:I(z) >0} and 9D = {zrecR?: I(z)=0},

and for every x € D, VI(z) coincides with the unit normal pointing toward the interior
of D (see for example [9, Remark 3.1]). In particular we may and do choose p and [ such
that

(Vi(z), 6(z)) <0, forallzeR?, (1.1)

where §(z) := Vp(z) and is called the penalization term. We have in particular

50(x) = ¢ — mp (),

where 75 is the projection operator on D. Consider the second-order differential

operator
1 *
5—52(00 () i Qg.0n; 81‘] Zb

1,7 %

where b : R — R? and ¢ : R? — R%*? are given measurable coefficients satisfying
suitable assumptions.

Our first aim is to establish the existence of a viscosity solution via penalization to
the following system of partial differential equations with nonlinear Neumann boundary
condition, defined for 1 <i<m, 0<t<T,xz € D.

‘ZZZ (t,x) + Lui(t,x) + fit, @, u(t, @), (Vuio)(t,2)) = 0,
uw(T,z) =g(z), z€D, (1.2)
%(t,x) + h(t,z,u(t,z)) =0, (t,z) € [0,T) x ID.

To this end, we consider a sequence (u") of viscosity solutions of the following semi-linear
partial differential equations (1 <¢:<m, 0<t<T, x € R%, n € IN).
8 n
ot

L(t,x) + Lul(t,z)+ fi(t,z,u"(t,x), (Vulo)(t,z))
—n(8(x), VU (t,z)) — n{d(x), Vi()) hi(t, 2, u"(t,z)) = 0, (1.3)
u(T, ) = g(a).

then we show that for each n, equation (1.3) has a viscosity solution u™ which converges
to a function u, and w is a viscosity solution to (1.2). Our method is probabilistic.

The authors of [1, 3, 4] considered the case where f does not depends on Vu. Using
the connection between backward stochastic differential equations (BSDEs) and partial
differential equations (PDEs), the convergence of u" to u has been established in [4]
for bounded and uniformly Lipschitz coefficients b and ¢. The authors of [1] extended
the result of [4] to the case where b and ¢ are bounded continuous. The case where b,
o and f are bounded measurable is considered in [3] in the framework of LP-viscosity
solution. The techniques developed in the previous works rely on tightness properties of
the associated sequence of BSDEs in the Jakubowski S-topology. The main drawback of
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this method is that it does not allow to deal with the nonlinearity f depending on Vu.
Here, our method is direct and does not pass by weak compactness properties. Usually,
when the nonlinearity f depends on the gradient of the solution, PDE techniques are
used to control the gradient Vu in order to get the convergence of the associated BSDE.
And generally, a uniform ellipticity of the diffusion is required to get a good control of
the gradient Vu, see for instance [2, 5, 6] where this method is used in homogenization
of nonlinear PDEs. Our approach is completely different: We use a purely probabilistic
method, which allows us to deal with (possibly) degenerate PDEs. The convergence of
the penalized BSDE is provided only by the convergence of the penalized forward SDE.
Our proof essentially uses [14, Proposition 6.80, Annex C]. The latter has been already
used by the authors of [15] in order to prove the continuity of the solution of a system
of SDE-BSDE in its initial data (¢, x). By bringing essential modifications in the idea
developed in [15], we prove the convergence of our sequence of penalized BSDEs.

The paper is organized as follows: Section 2 contains some facts about reflected
stochastic differential equations (SDEs) and generalized BSDEs. This mainly consists
in approximation, existence, uniqueness results and a priori estimates of the solutions.
Section 3 is devoted to the penalization of the nonlinear Neumann PDE.

2 Preliminaries and formulation of the problem

Throughout the paper, for a fixed T' > 0, (Wy;t € [0,T]) is a d’-dimensional Brownian
motion defined on a complete probability space (€2, F,P) and for every ¢ € [0,T], F! is the
o-algebra o(W,; t <r <s) VN if s >t and F! = N if s < t, where N\ is the collection of
IP-zero sets of F. For ¢ > 0, we denote by S1[0, 7] the space of continuous progressively
measurable stochastic processes X : 2 x [0,7] — R%, such that for ¢ > 0 we have

E sup |X:|? < +o0.
te[0,T]

For ¢ > 0, we denote by MZ(0,T) the space of progressively measurable stochastic
processes X : Q x [0,T] — R¢ such that:

q

T 2 T
E (/ |Xt|2dt> < +oo if ¢>0; and / | X¢|%dt < oo P —a.s. if g=0.
0 0

2.1 Penalization for reflected stochastic differential equation
Let (t,x) € [0,T] x D. The reflected SDE under consideration is

Xb% =+ / b(X") dr + / o(XE")dW, + Kb*,
t t
Kto = / VXY Ky, (2.1)
t

‘Kt’x

[t,s] :/t 1{X£’E€3D}d|Kt7x|[t,r]a S € [t,T],

where the notation |K**|, , stands for the total variation of K** on the interval [t, 5], we
denote this continuous increasing process by k%®. In particular we have

Kot = / (VI(XE"), dE57), 2.2)
t

Several authors have studied the problem of the existence of solutions of the reflected
diffusion and its approximation by solutions of equations with penalization terms, we
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refer for example to [9, 7, 18, 19, 20]. We consider the following sequence of penalized
SDEs associated with our reflected diffusion X**

Xbrn =g +/ [b(XP™™) — né(XE™™)] dr +/ o(XE5™dW,., s € [t,T). (2.3)
t t
For s € [t,T], we put

Kbom = / —nd(XLPM)dr and KL = / (VI(XLm) dRHE, (2.4)
t

t

We introduce the following assumption

(A.1) : There exist positive constants C' and p such that for every (x,y) € R%:
(@) [b(z)| + llo(z)]| < C( )
(i) [b(z) = b(y)| + llo(z) — o(y)

Remark. It's obvious that assumption (A4.1)(ii) implies (A.1)(i).

yl.

It is known that under assumption (A.1) equation (2.3) admits, for any fixed n € IN, a
unique strong solution, and we have for every ¢ > 1:

sup B sup |XD®"* +sup E sup |K”"|2q+supE|K””| | < Foo. (2.5)
n>0  se(t,T) n>0  s€(t,T)

The proof of the previous estimates can be found e.g. in [1, Lemma 3.1].
The first assertion of the following theorem is proved in [20], while the second one
follows from [18].

Theorem 2.1. Under assumption (A.1), we have
(i) the system (2.1) admits a unique solution,
(ii) foreveryl1 <g<ocand 0 < T < o0,

E| sup |XE®" — XE¥9| — 0, asn — oo,
t<s<T

the limit is uniform in (¢, z) € [0, 7] x D.
We extend the processes (X**, K**) and (X**", K»*™) to [0,¢) by putting

X0t = Xbon =g K" = Kb =0, fors € [0,t).

As a consequence of Theorem 2.1, we have the following convergence, which is estab-
lished in [4, Lemma 2.2].

Lemma 2.2. Under assumptions of Theorem 2.1, we have, for any q > 1:

(i) lim E { sup ’Kt ,T,m Kﬁ,x’Q:l —0;

n—o0 0<s<T

(i)  lim E[ sup

n—oo 0<s<T

q
] =0 forevery ¢ < C}(R?).

| exparz=e— [ o) axie
0 0

Remark 2.3. (i) Using Lemma 2.2 and the representations (2.2), (2.4), it holds that
for any ¢ > 1 and any (¢,2) € [0,T] x D

lim E sup |kL™" —kL7|7=0. (2.6)
n=Fo0  se(0,7)

(i) From [17, Corollary 2.5], it follows that for each ¢ > 1 and each (t,z) € [0,T] x D

E sup |XE*P*9+FE sup |K”|2q—|—IE|K” 7 < Foo. (2.7)
s€[0,T] s€[0,T]
EJP 27 (2022), paper 104. https://www.imstat.org/ejp

Page 4/21


https://doi.org/10.1214/22-EJP823
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Approximation of a degenerate semilinear PDE

2.2 Backward inequality

We state a lemma which is a version of [14, Proposition 6.80, Annex C]. This lemma
is essential in our proofs. We give its proof for convenience.

Lemma 2.4. Let (Y, Z) € 82,0, T] x M° . ,(0,T) satisfying

mxd’
T T
Yt:YT+/ dICT—/ Z,dW,, 0<t<T, P—as.,
t t

where K € 8, and, for almost allw € Q, K (w) € BV ([0, T]; R™) (the space of bounded
variation processes).
Assume be given

e a non-decreasing stochastic process L with Ly = 0,

e a stochastic process R whose sample paths are P-a.s. in the space BV ([0,T],R),
with RO = O,

* a continuous stochastic process V with trajectories P-a.s. in the space BV ([0,T],R),

and such that Vo = 0,
T
E| sup / eQVTdRT < 0,
s€[0,T] Js

i) (Y, dK,) < 1|Z,|]2dr + |Y,|?dV, + |Y,|dL, + dR, as measures on [0,T], with a € R,

and

(i) Esup,cp 1y eV Y, |? < +o0.

We have the following conclusion: if « < 1, then there exist positive constants Cy, Cy
and (5, depending only on «, such that

T
E| sup [eVY.]>]| +E / V|| Z, |2 dr
rel0,T] 0

T 2 T
<O Ble"TYr P 4+ O (/ eV"dLT> + C3E sup / e?VrdR,.
0 s€0,T) Js

Proof. By It6’s formula, we have

T
VY ? = |eVTYr|? — 2/ e?Vs
t

T
VRV w2 [ e,
t
T T
—/ 62V5||ZS||2d8—2/ (€YY, e¥s ZdW,)
t t

Z||?ds

T T
="y |2 + 2/ eV ((Ys, dKs) — |Ys[*dVs) —/ e?Vs
t t
T
—2/ (€YY, e¥s ZdWS).
t
Using (i) of Lemma 2.4, we get

Z||?ds <

T
ViR 1-a) [
t

T T
|eVTYT|2+2/ e?Vs (dRs + |Yi|dLy) —2/ (eVeY,, eV Z,dWy).
t t
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We consider the following sequence of stopping times

T, :=T Ainf{s > t: sup Y, — Y] —|—/ V|| Z, P dr —|—/ eV dL, > n}.
reft,s] t t

For fixed n > 1, we consider the local martingale N; := 2 [ 1j;.7,,(r)(€"" Y, V" Z,.dW,.),
s € [0, T]. Next, we show that N is a true martingale. We obviously have

7, 3
< 2F (/ 64‘4|y,|2||zr|2dr> .
t

Thanks to the definition of the stopping time T), together with the elementary inequality
Va+b < \/a+ b, we get the following estimate.
1
Tn, 2
/ e2Vr ZT||2dr>
t

Then, by the Burkholder-Davis-Gundy inequality we can deduce that the process {N;; s €
[0,7]} is a true martingale.
By the foregoing, we have

[SIE

E((N)r)

sup [e'7Y, — e V| + eV Y|
Te[t7Tn]

E((N)r)? < 2\/§]E<

< 2V2E ([e"Y;| + 1) v < 4o0.

Tn Tn
|thYt|2+(1—a)/ €2V |2, ||2ds < |eVTnYTn|2+2/ 2 (dR, + |Y.|dLs)
t t
—(N7, — Ny).

Taking expectation, it follows that
T
E |thYt|2+(1—a)/ Vs
t

T
E <|eVTn Yz, |2 + 2/ e?Vs (dR, + Ys|dLs)> . (2.8)
t

Z3|2d5> <

On the other hand, since o < 1 we deduce

T’n
E sup [V, > <E[|e"™Yy 2 +2 sup / e*VrdR,
r€[0,Th] s€[0,Th] /s

T?L
+2/ e?V=|Y,|dLs +2 sup |N,|].
0 rel0,Ty]

The Burkholder-Davis-Gundy inequality shows that

Ty Tn
E sup [V, > <E[|e"™Yr > +2 sup / e2VrdR, + 2/ e?V|Y,|dL,
rel0,Ty] s€[0,T,] Js 0

T
+2CppcE (/ 64VT}/T‘2||ZT||2dT>
0

T, Tn
<E (V™Y |>+2 sup / V" dR, + 2/ eV
s€[0,T,] /s 0

1
2

stLs>

T B
+20pncE  swp NP [z )
r€[0,Tn] 0
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where Cppg denotes the Burkholder-Davis-Gundy constant. Applying the elementary
inequality ab < Ja* 4 £b? for the last term in the right-hand side, we get

Ty Tn
E sup [V, > <E <|6VTn Yr,[*+2 sup / e2VrdR, + 2/ e2VS|YSdL5>
s 0

r€[0,Ty] s€[0,T]
ZT||2dr> .

We pass the term 1E (supre[O’Tn] e2Vr |YT|2> to the left-side of the inequality to get

Y |dLs>

1
+E< sup e?'r

T7L
5 K“‘2+2C123DG/ e?Vr
r€[0,T,] 0

T, Tn
E sup [eVY, |2 <2E | [e"™ Y7, |2 +2 sup / e2VrdR, + 2/ e?Vs
re[0,T,] s€[0,T] Js 0

T
+AC R ( / eQVT||Z,.||2dr> .
0

From inequality (2.8), we get
Vivs |2 4CJ2BDG V. 2
E sup [|e"Y,]° < 2+17 E (le"™ Y7, |?)
-«

rel0,Ty]
8C% ™
+ (4 + BDG) E sup / e2VrdR,
1-a s€(0,T,] /s

Ty
+ ) 4 4C%DG E / eQVs
l1-«a 0

Again by estimate (2.8), we have

Th
E / e2Ve
0

N——

YsldLs> : (2.9)

1 2 Tn
Zy|Pds | < -——E (" Yz, [*) + E{ sup / VR,
l-a l—a \sgpo1,)/s

2 Ty
+ E / eV
l—« 0

Combining the inequalities (2.9) and (2.10) we find

Y5|dLs> (2.10)

1 Tn
E sup [V 5B [z < (e v )

7”6[07Tn]
T, Tn
+2ulE | sup / V" dR, | +2uE / e?Vs
s€(0,T,] /s 0

YsldLs> ;

where

4C% 1
—9 BDG .
s g T G
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It follows that

1 Tn
E sup [eVY,|* + E/ 2V Z,||2dr <
rel0,Ty,]

Ty
E | ple"™Yr, > +2u sup / e dR, | +2uE [ sup e'"|Y, | / e dL,
s€[0,T,] /s rel0,Ty]

1 Tn
E sup [eVY,|* + fE/ 2V Z,||2dr <
r€[0,T] 2 Jo

s€[0,Ty, r€[0,Tx]

Tn
+ 24° < / eVTdLr>
0

T,
n 1
E (IU,|6VT71 Yr, | +2u sup / eZVTdRT> + 5]}3 sup eV |v,|?
]

2

Hence,
Ty
E sup le TY|2+E/ V|| Z,||Pdr <
r€[0,T,]
T, T, ?
E [ 2ule"™ Yz, |? +4u sup / e2VrdR, | + 44°E / eVrdL,
s€[0,T,] /s 0

Put

Ci :=2u, Cy:=4pu and Cs :=4p”.
We then have

Tn
E| sup |eVTYT|2+/ V|| Z,|Pdr | <
rel0,T,] 0

T, T
C’llE\eVT" Yr, |2 + CoE  sup / 2" dR, + O3B / eVrdL,
$€[0,T] 0

2

Letting n tends to +oo, T, increases a.s. to 7', since Esup,¢(o 1 Vr|Y,|? < 400 and
Z is in the space M? ., (0,T). We conclude by using the Beppo- Lev1 theorem for the
left-hand side term of the previous inequality, and the Lebesgue dominated convergence
theorem for the right-hand side term. O

2.3 The BSDEs associated to the nonlinear Neumann problem

We introduce the generalized BSDEs which we have to use. Let f : [0,7] x R? x R™ x
R™ 4 5 R™, h: [0,7] x R* x R — R™ and g : R? — R™ be continuous functions
satisfying the following assumptions:

(A.2): There exist C, I; positive constants and 3 < 0, iy € R such that for every ¢t € [0, T
and every (z,2',y,y,2,2') € (]Rd)2 x (R™)? x (R™*%)2 we have:

W (y—y, f(t,z,y,2) = f(t,2,y,2)) <
) [f(t,2,y,2) = f(t.2,y,2")] < lfllz =2,
i) |f(t,z,y,0)] < C( ),

(v) (y =y, h(t,2,y) — h(t,2,y")) <

V) [h(t,z,y)| < C 1+ Jyl),

EJP 27 (2022), paper 104. https://www.imstat.org/ejp
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i) |g(x)] < C(1+ |z|).

For every t € [0,7] and s € [t,T], consider the following generalized BSDEs
T
vemn — g(Xg ) 4 [ X v 20em) dr
T T

+ / h(r, XEm, ytam) gpten _ / ZEen g, (2.11)
and

T T

Ystw = g(X;“)a:) + / f(rv X7€717 Y7’t7$7 Zﬁl) dr + / h(’f’, Xﬁ7w7 YrtJ)dk?l
S . S
—/ Zb" dW,.. (2.12)

According to [12, 13], assumption (A.2) ensures the existence of unique solutions to equa-
tions (2.11) and (2.12). The solutions of equations (2.11) and (2.12) will be respectively
denoted by (Y/*", ZL®™) cpp ry and (Y7, Z07) sep 1.

Lemma 2.5. Under assumptions (A.1)(i) and (A.2), it holds that for any ¢ € [0,7],

T T

supE [ sup \YT””|2—|—/ \Yrt’f’”|2dkﬁ’””’”+/ |1 ZE=™|2dr | < +oo (2.13)

n>1 re(t,T) t t

and

q

T 2
E( sup |V +E (/ Zf"”||2dr> < 400, Vg >1. (2.14)

re(t,T) t

Proof. We prove the first assertion. It6’s formula gives

T
b [z = lgx P
T
+2/ <Yrt’m’",f(7“, Xﬁ,x,n7yvrt,r,n, Z:Z’m’n»d’l“
T T
+2 / (Y0, B, XE50, Y000 dL™ — 2 / (Ym, 255 W),
Using assumptions (A.2)(i) and (A.2)(vi), we find

T T
imn R [Nz B < 20304 X 2y [V
T

+2 thn Xrt”x’naO’Zf”Ln) - f(ra Xf,’m’n,o,o»d?"

\

ﬂ

+2 [ (Y f(r, XP,0,0))dr

42 [ (0 B XY R, X0k

T~ =
A

T T
+2 Yt x,n h ’I“ Xt x,n 0>>dkt ,T,M 2/ <Y'Tt,x,n, Z,f,’x’ndWT>
s

EJP 27 (2022), paper 104. https://www.imstat.org/ejp
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We employ hypothesis (A.2)(iii), (A.2)(iv) and (A.2)(v) to get

D/St,ac,n

T
b [Clzipar <
( T T
203U+ X ) +2pg [V P2y [ vz ar
T T
+20/ V" dr 428 / Yo Pk

T T
+2c / Y hen|gRben — / (Vmn Zhen i),

We apply the inequality ab < 1a? + 1b? for the terms 2;|Y,»*"||ZL%"| and 2C[Y,»*"| to
obtain

T
R AR
S

T T T
1
202(1+|X§””’"|2)+2w/ \Yf’“””|2dr+2li/ \Yrt’“”"|2dr+§/ |Z0"" 2 dr

T T T
+02T + / |Y735,:c,n Zdr 4 25/ |Y;,x,n|2dk£,x,7z + 20/ |}/f,x,n|dk£,x,7z
s s s

T
72/ <W’I’n,Zﬁ"z’ndWT>,

we arrange the terms and get

1

T
Yo+ 5 / 1Z7 Pdr < 2C2 + CPT + 22| X" 2

S

T T
+(1+2Mf+2l?f)/ ‘Yrt’x’”|2d7“+2/ (5|Yrt7x7n|2+c‘yrt7x,n|) dk:,x,n

S

T
9 / (YhEn Zhen iy,

Since —f3 > 0, we use the inequality 2ab < (—f)a® + % with a = |V,"*"| and b = C,
we have

1 T
yesop g [z <

S

T
207 + C°T + 2C%| X" * + (1 + 25 + 213) / Y, 2dr

S

CQ T T
_Fk;:mn + ﬁ/ |Y*Tt,x7n|2dk;5’,w,n _ 2/ <Yrt7w,n’ Zf,’LndWr).

It follows that

1
|Yst,ac,n|2 |ﬁ‘/ ‘ Tt’x’n|2dk’ﬁ’x’n - /C || Zﬁ’x’nHQdT <

C2 T
2C° 4+ C°T +2C?| X" + mk;x’" + (14 2py + 2z})/ Y Pdr
S
T
9 / (Vmn ZhEn i),
S
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By the Burkholder-Davis-Gundy inequality and the a priori estimate of solution of BSDE,
the process ([, (Y,"*™, Z-*"™dW,)) is a uniformly integrable martingale. We take expec-
tation in the previous inequality to show that

T T
z.n r.n zn 1 n
I <|Yst’ ' |2+|B|/ [V Bem 2 dfet +§/ | Z5= 2dr> <
C? T

Using estimate (2.5) and Gronwall’s inequality, we obtain

207 + C°T + 2C°E| X" +

T T
sup sup E <|Yff’3"2 —|—/ |Y,f’x’"\2dkf.’x’”+/ ||Zf.’m’”2dr> < +o00.
n>1seclt,T] s s

The Burkholder-Davis-Gundy inequality shows that

T T
supE ( sup |Y8t,aa,n 2 +/ |Y735,w,n 2dk£,w,n +/ ”Z;E,:z,n
set,T] t t

n>1

2dr> < +00.

Inequality (2.13) is proved. Using [10, Proposition A.2], we prove inequality (2.14). O

We extend the processes (Y©%" Zt:%") and (Y%, Z%%) to [0,t) as follows

yhen . —yb®r o yht .= yh* and zL0m =70 .=0, s € [0,t). (2.15)

’ S

3 Penalization of the nonlinear Neumann PDE

We divide this section into two parts. The first one concerns the convergence of the
solution of the BSDE (2.11). The second one is an application of our convergence to the
nonlinear Neumann boundary problem.

3.1 Convergence of the penalized BSDE

For (t,z) € [0,T] x D, let (Y/®", Zb™™) 1. r) and (Y2", Z1") sep0,1) be respectively,
the solutions of BSDEs (2.11) and (2.12). Our first main result is

Theorem 3.1. Let assumptions (A.1) and (A.2) hold. Then, we have the following
convergence

T
E( sup |V,/5"— Yrtxlz +/ | Z5=m — Z:’£||2d7“ — 0, asn— +oo.
rel0,T) 0

Proof. We adapt the proof of [15, Theorem 3.1] to our situation by bringing some
modifications. From now on, we omit the superscripts (¢,2), and C will denote a
nonnegative constant, which may vary from one line to another, but does not depend on
n. We shall apply Lemma 2.4 to the following BSDE

T T
Y-Vl = o) o)+ [ acr - [z - zoaw,

where
K = [f(r, XY, Z0) — f(r, X, Yy, Z,)] dr + h(r, X2, Y dED — h(r, X, Y, dk,.
EJP 27 (2022), paper 104. https://www.imstat.org/ejp
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Using (A.2)(i)-(A.2)(ii), we get forevery 0 <t < s < T,
T
/ <an_Y7’7f(r7X:rn7an7Z;l) _f(r7XT7Y'r’7ZT)>dT
’ T
= [ VXY 2 — S0, X0 Y 2
T
+/ <an_Yr‘af(ruX;l7}/’F7Z;l)_f(rvX:bayl“uZ'r‘)>dT
bT
[ Y 0 XY 2) = 0 X Yo 2,
T
< [ gl = Vi 1Yy - Vi 27 - 2] ar
’ T
+/ Y = Yol X Yo Z0) = f(r, X, Yo, Z)|dr
TS 1
< [ @G uplyy = Vi + 1127 - 2, )Par

T
[l XY Z) S0 X Ve 2
On the other hand, we have

T
/ (Y Yy, h(r, X7 YVARD — B(r, X, Y, )dk,)
° T
- / (Y7~ Yo B, X2 Y) — B, X7 Y, )y
° T
+/ <an -Y, h(?“, Xllvyr) - h(?“, X, Yr)>dkf

T
+/ Y =Y., h(r, X, Y,)(dk) — dk,))

recall that by (1.1) the process k" is increasing. Thanks to assumption (A.2)(iv), we
obtain

T
/ (Y™ — Yy, h(r, X", Y"VdE™ — h(r, X,, V) dk,)
’ T T
<5 [ 1 YRR [V = Y XY bl X )

T
+/ Y =Y, h(r, X, Y,))(dk" — dk,)

T T
< / Y — Y |lh(r, X2, Y,) — hir, X, Y,)|dk +/ (Y — Yy b, X, Y,) (dED — dky),
where the last inequality follows from the fact that 5 < 0.
By the foregoing, it holds that, for A = (I} + j15) V 13,
1
(V! =Y, dky) < 1127 = Z[Pdr + AV =Y [Pdr
+|Y;~n - YT||h<r7 X;La Y;") - h(rv XT’ YT)‘dk:}
Y =Y f(r, X Yo, Z0) = f(r, X, Yo, Z)|dr
+<an -Y, h(T7 X, YH)(dkf - dkr)
1
= sz - Z.|Pdr + NY," = Y, |?dr +|Y," — Y, |dL" + dR?,

EJP 27 (2022), paper 104. https://www.imstat.org/ejp
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where L™ and R" are defined by

dL;r”L = |f(7’7X;L,Y;~,Z»,‘) _f(raXmY;erMdT
+h(r, XM Y,) — h(r, X, Y,)|dE) (3.1)
dRY = (V" = Yo h(r, X, Y,) (R — dk,). (3.2)

Therefore, applying Lemma 2.4 with V,, = Ar, L, = L, R, = R and a = % there exist
positive constants C;, Cs and C3 such that

T
E( sup Y -V, 2| +E / ||z — Z,||2dr (3.3)
re[0,T] 0

2

T T
< C B |g(X7) — g(X7)|* + CLF </ eMde> + C3E sup / e TdR".
0 s€[0,T] /s

We shall give several auxiliary assertions ensuring that the right-hand side term of the
previous inequality converges to zero as n goes to +oc.

Lemma 3.2. Under assumptions (A.1) and (A.2)(vi), the following convergence holds
lim E (e*|g(X7) — g(X7)[*) = 0.

n—roo

Proof. Taking into account the convergence of X7 to Xr, the continuity of g, assump-
tion (A.2)(vi) together with the estimate (2.5), the result follows by using the uniform
integrability of the sequence X7. O

Lemma 3.3. Let L" be the processes given by equation (3.1). Assume that (A.1) and

(A.2) are satisfied. Then, ,
T
lim IE < / e“dL;?> =0.
n— o0 0

Proof. Using the inequality (z + y)? < 2(z% + y*) we obtain

T 2 T 2
E(/ e*"dLZf) < 9B ( / e”‘f(r,X&YmZT)—f(r,X,«,Yer)ldr>
0 0

2
T
+2E (/ eM|h(r, X", Y,) — h(r, XT.,Y,.)|dkf>
0
= I+ I3

We shall show that I and I3 tend to zero as n tends to co. Holder’s inequality leads to

Iy

2
T
2 (/ e)\r|f(T7X;L7YT‘7ZT) f(rvX'rW}/’r‘aZT‘”dT)
0

T
< 2TePTE (/ |f(r,Xﬁ,}/,.,Zr)—f(r,Xr,Y,,n,ZT.)Fdr). (3.4)
0

Again by the convergence of X" to X in each L? with respect to the uniform norm
and the continuity of f we deduce that the sequence |f(r, X", Y,, Z,) — f(r, X,, Y,, Z,)|?
converges to zero in probability, for every r € [0,T]. Since by assumptions (A.2)(ii) and
(A.2)(iii) on f we have

|f(r, X2, Y0, Zy) = f(r, Xo, Yo, Z)P < CL+ |V, P + | Ze 1), 7€ [0,T],

EJP 27 (2022), paper 104. https://www.imstat.org/ejp
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by uniform integrability argument it follows that
Elf(r, X" Y, Z,) = f(r, X, Y, Z,)*> =0, as n— +oo, r€[0,7].
Using the Lebesgue dominated convergence theorem, thanks to (2.14), we get

lim,, o IT = 0. Concerning I3, Holder’s inequality yields

Iy

2
T
2FE (/ eM|h(r, X, Y,) — h(r, XT,}/;)|dkf>
0

IN

z !
9 2T (E sup |h(r, X", Y,) — h(r, XT,YT)|4> <sup]E (k%)‘l) . (3.5)
r€[0,T] n>1

On the other hand, by the linear growth assumption on h, we have for each ¢ > 1

E sup |h(r, X, Y,) — h(r, XT,YT)|4q <COA+E sup |Y,|*).
rel0,T] ref0,T]

It follows from estimates (2.14) that the sequence of random variables

sup,.cpo,r) |h(r, X, Yy) — h(r, X, Y,)|* is uniformly integrable. Since X" converges to
X in each L for the uniform norm, we deduce that the sequence sup,.c 7 [h(r, X[, Y>) —
h(r,X,,Y,)|[* converges to zero in probability as n goes to +co. This combined with
estimate (2.5) ensures that lim, ., I3 = 0. Lemma 3.3 is proved. O

We will show an estimate for the solution Y that will be used to control the term
Esup,cpo.7) fST e**"dR". To this end, let N € N, N > T and the partition of [0, T}, r; = &
i =0,..,N. For r € [0,7], we denote ((r)) := max{r;; r; < r}. Given a continuous

stochastic process (H;),c[o,r], we define

N—-1
HTN = Z H,»,il[rhrprl)(’/‘) + HTl{T} (’I“) = H((r))
=0

Lemma 3.4. Assume (A.1) and (A.2) hold. Then, for any q €]1, 2|, there exists a positive
constant C' depending on T, q and independent of N, such that:

: g n n,N |q n c ngq %
hﬂS;l)pE /0 Y, =Y N 9(dk + dky) | < N2 +C {Ei_maXN (ki — kry_y)

=1,...,

Proof. Throughout the proof, C is a generic constant which is independent of n and N.
We write BSDE (2.11) between ((s)) and s

ey = v [ sy zar
{(s))

S

+/ h(r,Xﬁ,Y:)dkf—/ Zrdw,.
() (s))

Holder’s inequality gives

/2
SR l/ X zn)l”’“r
TN ey
s q/2 s q
n _ 1.n a/2 ) n n\|2 J1.n n
+C ks k<<s>> |h<r7XT’Yr‘)| dkr +C ZTdWT
((s)) ((s))

EJP 27 (2022), paper 104. https://www.imstat.org/ejp
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It follows that
T
E </ [y — v N (dk + dkr)> <JpN 4 g N g
0

where

s q/2
/ |f(r, X7, Y0, Zﬁ)lzdr] (dk" + dk,),
(

C T
J{L’N = E/
Na2 = o | Sisy

q/2

T s
JoN = C]E/O (k7 — ko)) </<< : |h(r, X:L,Y:L)%k:) (dk™ + dks),

q

T
JiN = C]E/ (dk™ + dky).
0

/ Zraw,
((s))
n,N

We shall estimate J;"", J5*" and J3"V. We use Hélder’s inequality to obtain

N c T ° 2
le = WE/O /<<S>> ‘f(T’,XT,YT aZr)| dr

q/2
(dk7 + dks)

q/2

C
Na/2

IN

T
B+ k) | [ 17n X0 0 200 P
0

q/2

c n P % g n n rrny|2
< v (B +k)77) 7 (B XY 2 P

By the linear growth of f in its third variable and Lipschitz continuity with respect to the
fourth argument, we get

. s T a/2
TN < o (B + k) © {148 sup VPP 27 Pdr
Na/2 rel0,T) 0

C
Na/2

where in the last line we have used inequalities (2.5), (2.7) and (2.13).
Concerning .J;' N we use Holder’s inequality, the monotonicity of £ and k and the
linear growth condition on h, to obtain

<

T s a/2
BN = CE [ (k7 k)" ( [ e Xf,YT”)Qdk?> (k7 + dk)
0 ((s))
T
<CE ( | e X&W)def)
0

q/2 N r
Z/ (K — K70 )72 (KD + k)
=1 /rie1
T q/2
<c (E | e X:zmﬁdkf)
0

_2 2

N Ti P
“F (Z/ (k2 — k{2 (dk + dks)>
i=1 Y Ti-1
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T q/2
<C (E / |a(r, Xﬁ,n">|2dk?>
0

x B <Z(k:ﬁ - kﬁi71)q/2(k?i + kri - k:}i—l - kril))
=1
T /2
<C (]E/ 1+ |K"|2dkf>
0

i=1

T q/2
<C (Ek% + lE/ |Y,?1|2dkf>
0

N 2—q
x| <Z(k;r“i - kﬁifl)q/z(k:’i + k’"i - kﬁi—l - kril))

E (Z(kg — kP )R 4k, — KD — km_l)>
i=1
Hence, by inequalities (2.5) and (2.13), we see that
2—gq
N 2—q 2
JN < OB (Z(kg — k)RR A Ky — KD — k))
i=1

Taking into account the convergence of k" to k£ (Remark 2.3 (i)), estimates (2.5) and (2.7),
we pass to the limit as n goes +oco then we use the Lebesgue dominated convergence
theorem to get

[ N 23 =
limsup J;"N < C |E (Z(k — kry )12 (K, — k:))

_ 2% Q%G

<C IE< max_(kr, km_l)q/QkT> ]
i=1,....N  ° '
_ 2g
q 2 2
<C|E max (kr, — kril)Z—qk;_q}
i=1,...,

§ 2q % _4 %

<C|E ‘_I{laxN(km - kri_l)z—q} {Ek;"]

N
For J3"", we have

q

T
N~ CE / (k" + dk,)
0

/ ZrdW,
((s))

N T S
= CEE / / Zrdw,
i=1 7 7ri—1 [/ {(s))

q
(dk™ + dks)

N q

S
< CY E sup / Zrdw,| (kP — K"+ Ky — Ky )
i1 SE€lri—1,mi] [J((s))
EJP 27 (2022), paper 104. https://www.imstat.org/ejp
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/ Zr AW,
Ti—1

i—

N
< CZ E sup
i=1

sE[ri—1,74]

Using the Burkholder-Davis-Gundy inequality, we obtain

q
2 2—q

N - 2-q
< ey (E/ Z:‘||2dr> (E(k:; — K+ ke, —km)z%q) C
i=1 Ti-1

Again by Holder’s inequality, we find

n,N
J3

IN

N ri % N >
2
C <§ :E/ ||Zf2dr> (§ :E(k;g — kI, k)>
i=1 Ti—1 =1

2—q

T % N . 2
C (]E/ ||Z?||2dr> (ZE(k;;g R 4k, —km)zq>
0 i=1

Keeping in mind inequality (2.13) and the convergence of k" to k, we pass to the limit as
n — 400, to obtain

IN

2—gq
2
. n,N 2
9 < q
57 C(-Y;E(k“ e )
N 2
q
< C (Eizﬁ)z%(k“ Ky, )7 Zl(km kr11)>
2
2
< 2—¢q
< C<E1_E§7<k“ Er, 1) k:T)
2—q
— 4
< C(Bk2) T (E.r{lax (k,, k)—)
sy .
2q N
< C(E max (kmkm_l)’é‘—q>
i=1,...,N '
This completes the proof of Lemma 3.4. O

Lemma 3.5. Let R" be the process defined by (3.2). Under assumptions (A.1) and (A.2),
the following inequality holds

T
limsupE sup / ezM’de <0.
1Js

n—00 s€l0,T

Proof. Set h, = h(r, X,,Y;) and |h|o = sup,c(o, 7] |-, then

<an - Y;“a hT‘> = <Y;~n7N - YrNa hT - h7]"V> + <YrN - Y;“a hT)
N YN )+ (=YY ).
EJP 27 (2022), paper 104. https://www.imstat.org/ejp
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sup QATan _
s€[0,T]

[
Sup/ Ar(yn Y,,,h(rXr,Y)(dk:}?dkr»)

We have

s€[0,T]

< E[((

loo + [Y]oo)|h — hN|oo + |YN - Y‘OOVL‘OO) €2>\T(k§l’ + kT)]
N

+ E sup Z <Yr7: 1 YTi—17hT1:—1> / €2Ard(k:} - kT)
s€[0,T] i=1, s<ri_1 sVri_1

T
+E (62/\Th|oo/ [y Ny (dk® + d/@) .
0

We explain briefly how to estimate the second term in the right-hand side of the previous
inequality. Using an integration by parts we find

N n:
E| sup Z (Yo =Y. hri71>/ Ard(kr — k) | =
s€1[0,T] s

i=1, s<r;—1 VTi-1
N

E sup Z <}/r7,§,1 - Y”i—l’ hTi71>
SE[O’T] i=1, s<r;_1

x <62’\”(k;‘i — k) — VTR, = Eevr, ) — / 2A(k; — kr)ez’\rdr>>

Vri—1

SE[ sup > (Voo + Vo) [hloo (26T + 20T T) sup [k7 — ki
s€[0,T] ,_ 1, s<ri_1 s€[0,T)

< 2N (1 4+ MTE <(|Y"|Oo + Y |oo) |hloo sup [k — ks|>

s€[0,T]

We comeback now to our main estimate. Let 1 < ¢ < 2. Using Holder’s inequality
repeatedly we obtain

T
E| sup / e”‘rdR? <
s€[0,T] /s

[E[e2T(1Y oo + Y ]ac)] ] B + k)] [EIR— BV

+ [B [T (kg + k)l ko)

Nl

EYY -y}

ENG

F2NePT(1 4 \T) [E [T (Y™ + |Y|oo)]2f (B[] (E

sup [k} — ko|*
s€[0,T]

. :
E [N YR + k)
0

g=1

42 []E|hgol] [E(kgk + kT)ﬂ .

(3.6)

The linear growth hypothesis on h combined with estimate (2.14) show that for every
p=>1,

EhZ =E sup |h(r, X, Y)|P <COA+E sup |Y.|P) < +oo.
’I‘E[O,T] ’I"E[O,T]
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On the other hand, we use inequalities (2.5), (2.7), (2.13) and (2.14) along with Lemma 3.4
then we pass to the limit as n goes to +oo in inequality (3.6) to get, for all N € IN*,

T
limsup IE ( sup / 62’\"de> < C (]EVL - thgo)l/‘* +C (E‘YN - Y|go)1/2
n—+o00 s€[0,T] /s

2-q71/q
C 2]
+ W + C |:E111118:N (km — k"'i—l) :| ‘| .

Since the integrands are uniformly integrable, hence passing to the limit as N — +o0,
we get the result. Lemma 3.5 is proved. O

Now, combining inequality (3.3) with Lemmas 3.2, 3.3 and 3.5, we complete the proof
of Theorem 3.1. O

3.2 Convergence of the penalized PDE

This subsection is devoted to an application of our convergence of the BSDE. Namely,
we will establish the convergence of a viscosity solution of the following systems

ou

ot

n
K3

(t,x) + Luf(t,z) + fi(t,z,u" (¢, ), (Vulo)(t,z))
— n(d(x), Vul (¢, z)) — n(d(z), VI(z))hi(t, z,u™(t,z)) = 0, 3.7
u"(T,z) =g(x),1<i<m,0<t<T,x € R necN

to a viscosity solution of a system of the form

%(t,x) + Lu;(t,x) + fi(t, z,u(t,z), (Vuo)(t,z)) =0,
1<i<m, (t,z) €[0,T) x D,
(3.8)
u(T,z) =g(z), €D,
%(t,x) + h(t,z,u(t,x)) =0, V(t,z) € [0,T) x D

Since we consider viscosity solutions, we introduce the following condition

(A.3): f;, the i-th coordinate of f, depends only on the i-th row of the matrix z.

For the sake of completeness, we recall the definition of the viscosity solution of
system (3.8).

Definition 3.6. (i) u € C([0,T] x D,R™) is called a viscosity sub solution of system
(3.8) ifu;(T,x) < gi(x), z € D, 1 <i<mand, forany1 <i <m, ¢ € C2([0,T] x
R%), and (t,z) € (0,T] x D at which u; — o has a local maximum, one has
Iy

75(1571‘) - Lso(tvx) - fi(tax7u(t7x)a (V@U)(tvx)) <0, if x € Da

min (—(?;f(tw) — Lo(t,x) — fi(t,z,ult, z), (Veo)(t, x)),

g—@(t,x) — hi(t7x,u(t,x))> <0, ifxedD.
n

(i) u € C([0,T] x D,R?) is called a viscosity super-solution of (3.8) if u;(T,z) > g;(x),
r€D,1<i<mand forany1 <i<m, ¢ € C?([0,T] x R?), and (t,z) € (0,T] x D
at which u; — ¢ has a local minimum, one has

dp

7@(1573:) - [J,D(t,l‘) - fi(tax7u(tvx)v (cha)(t,a:)) >0, if z €D,
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max (—?;f(tw) — Lo(t,x) — fi(t,z,u(t,z), (Veo)(t,z)),

fg—@(t,x) — hi(t,x,u(t,x))> >0, ifxedD.
n

(iii) v € C([0,T] x D,R™) is called a viscosity solution of system (3.8) if it is both a
viscosity sub and super-solution.
We recall the continuity of the map (¢, z) — Y;* where Y* is the solution of BSDE
(2.12). This continuity has been proved in [15].
Proposition 3.7 ([15]). Under assumptions (A.1) and (A.2), the mapping (¢, z) — Ytt’x is
continuous.

Our second main result is

Theorem 3.8. Assume (A.1), (A.2) and (A.3). There exist a sequence of continuous
functions u™ : [0,7] x RY — R™ and a function v : [0,7] x D — R™ such that: u" is
a viscosity solution to system (3.7), u is a viscosity solution to system (3.8) and the
following convergence holds for every (t,z) € [0,7] x D

ngr}rloou (t,z) = u(t,z).

Proof. We set,
u(t,x) ==Y """ and  u(t,x) = Y". (3.9)

It follows from Theorem 3.2 of [12] that »™ is a viscosity solution of PDEs (3.7). Thanks to
[15, 13], u is a viscosity solution of PDEs (3.8). Further, we have for each (¢, z) € [0,7]x D

|un(t, x) _ u(t, $)|2 _ ‘Ytt,z,n _ Y;t,w|2 <E sup ‘Yst,ac,n _ Yst,x‘2.
s€[0,7

Thanks to Theorem 3.1, we have lim,, ;o Esup,c( 7 |V — Y| = 0. It follows that,

s n _
nllglwu (t,z) = u(t, z).

The theorem is proved. O

Remark 3.9. When u is the unique viscosity solution of system (3.8), then it is con-
structible by penalization. See [14, Theorem 5.43, p 423] and [15, Theorem 5.1] for
cases where the viscosity solution of system (3.8) is unique.
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