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Abstract

We establish the global lower mass-bound property for the largest connected compo-
nents in the critical window for the configuration model when the degree distribution
has an infinite third moment. The scaling limit of the critical percolation clusters,
viewed as measured metric spaces, was established in our prior work with respect
to the Gromov-weak topology. Our result extends those scaling limit results to the
stronger Gromov-Hausdorff-Prokhorov topology under slightly stronger assumptions
on the degree distribution. This implies the distributional convergence of global
functionals such as the diameter of the largest critical components. Further, our result
gives a sufficient condition for compactness of the random metric spaces that arise as
scaling limits of critical clusters in the heavy-tailed regime.
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Global lower mass-bound for heavy-tailed critical configuration models

1 Introduction

Any finite, connected graph C can be viewed as a metric space with the distance
between points given by ad(·, ·) for some constant a > 0, where d(·, ·) is used as a generic
notation to denote the graph-distance (i.e., number of edges in the shortest path between
vertices). There is a natural probability measure µ associated to the metric space (C , ad)

given by µ(A) = |A|/|C | for any A ⊂ C , where |A| denotes the number of vertices in A.
We denote this metric measure space by (C , a). Fix any δ > 0 and define the δ-lower
mass of (C , a) by

m(δ) :=
infu∈C

∣∣{v ∈ C : ad(v, u) ≤ δ}
∣∣

|C |
. (1.1)

Thus, m(δ) is the least mass in any δ-neighborhood of a vertex in (C , a). For a sequence
(Cn, an)n≥1 of graphs viewed as metric measure spaces, the global lower mass-bound
property is defined as follows:

Definition 1 (Global lower mass-bound property [5]). For δ > 0, let mn(δ) denote the
δ-lower mass of (Cn, an). Then (Cn, an)n≥1 is said to satisfy the global lower mass-bound
property if and only if supn≥1 mn(δ)−1 <∞ for any δ > 0. When (Cn)n≥1 is a collection
of random graphs, (Cn, an)n≥1 is said to satisfy the global lower mass-bound property if
and only if (mn(δ)−1)n≥1 is a tight sequence of random variables for any δ > 0.

The aim of this paper is to prove the global lower mass-bound property for largest
connected components of random graphs with given degrees (configuration model) at
criticality, when the third moment of the empirical degree distribution tends to infinity
(Theorem 1.5). Informally speaking, the global lower mass-bound property ensures
that all the small neighborhoods of vertices in the ‘large’ critical component have mass
bounded away from zero, so that the component does not have any light spots and the
total mass is well-distributed over the whole component. This has several interesting
consequences in the theory of critical random graphs. Our main motivation comes from
the work of Athreya, Löhr, and Winter [5], who have shown that the global lower mass-
bound property can be used to prove Gromov-Hausdorff-Prokhorov (GHP) convergence of
random metric spaces. In a previous paper [7], we have studied the critical percolation
clusters for the configuration model in the heavy-tailed universality class. We have
proved that the ordered vector of components converges in distribution to suitable
random objects in the Gromov-weak topology. The global lower mass-bound in this paper
shows that the result of [7] in fact holds with respect to the stronger GHP-topology.
One motivating reason for proving the GHP-convergence is that it yields the scaling
limit of global functionals like the diameter of large critical components. Finding the
scaling limit for the diameter of critical components is a daunting task even for the
Erdős-Rényi random graph. Nachmias and Peres [31] estimated the tail probabilities of
the diameter, but showing a distributional convergence result was a difficult question,
until the seminal paper by Addario-Berry, Broutin and Goldschmidt [2] that proved the
GHP-convergence for critical Erdős-Rényi random graphs. As a corollary of Theorem 1.5,
we also get distributional convergence of the suitably rescaled diameter of the critical
percolation clusters in the heavy-tailed regime (Theorem 1.9), where the scaling limit
and exponents turn out to be different than those for the Erdős-Rényi case.

We will further discuss the applications and the scope of this work as well as its
technical contributions after stating our results in Section 1.3. We start by defining the
configuration model and state the precise assumptions.
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1.1 The configuration model

Consider a non-increasing sequence of degrees d = (di)i∈[n] such that `n =
∑
i∈[n] di

is even. For notational convenience, we suppress the dependence of the degree sequence
on n. The configuration model on n vertices having degree sequence d is constructed as
follows [6,11]:

Equip vertex j with dj stubs, or half-edges. Two half-edges create an edge once
they are paired. Therefore, initially we have `n =

∑
i∈[n] di half-edges. Pick any one

half-edge and pair it with another uniformly chosen half-edge from the remaining
unpaired half-edges and keep repeating the above procedure until all the unpaired
half-edges are exhausted.

Let CMn(d) denote the graph constructed by the above procedure. Note that CMn(d)

may contain self-loops or multiple edges. Given any degree sequence, let UMn(d) denote
the graph chosen uniformly at random from the collection of all simple graphs with
degree sequence d. It can be shown that the conditional law of CMn(d), conditioned on
it being simple, is the same as UMn(d) (see e.g. [23, Proposition 7.13]).

1.2 Main results

Fix a constant τ ∈ (3, 4), which will denote the power-law exponent of the asymptotic
degree distribution of CMn(d). Throughout this paper we will use the shorthand notation

α = 1/(τ − 1), ρ = (τ − 2)/(τ − 1), η = (τ − 3)/(τ − 1). (1.2)

We use the standard notation of
P−→ and

d−→ to denote convergence in probability and in
distribution, respectively. Also, we use a generic notation C to denote a positive universal
constant whose exact value may change from line to line. We use Bachmann–Landau
asymptotic notation o(·), O(·), Θ(·), ω(·), Ω(·). A sequence of events (En)n≥1 is said to
occur with high probability (whp) with respect to the probability measures (Pn)n≥1 when
Pn
(
En
)
→ 1. For (random) variables Xn and Yn, define Xn = OP(Yn) when (|Xn|/|Yn|)n≥1

is a tight sequence; Xn = oP(Yn) when Xn/Yn
P−→ 0; Xn = ΘP(Yn) if both Xn = OP(Yn)

and Yn = OP(Xn).
We first state the general assumptions that are used to prove scaling limits for critical

configuration models with heavy-tailed degree distributions as identified previously
in [7,16]:

Assumption 1.1 (General assumptions). For each n ≥ 1, let d = dn = (d1, . . . , dn) be a
degree sequence satisfying d1 ≥ d2 ≥ . . . ≥ dn. We assume the following about (dn)n≥1

as n→∞:

(i) (High-degree vertices) For each fixed i ≥ 1,

n−αdi → θi, (1.3)

where θ = (θ1, θ2, . . . ) ∈ `3↓ \ `2↓, where `p↓ := {(xi)i≥1 : x1 ≥ x2 ≥ . . . and
∑
i x

p
i <

∞}.

(ii) (Moment assumptions) Let Dn denote the degree of a typical vertex, i.e., a vertex
chosen uniformly at random from the vertex set [n], independently of CMn(d). Then,
Dn converges in distribution to some discrete random variable D and

E[Dn] =
1

n

∑
i∈[n]

di → µ := E[D], E[D2
n] =

1

n

∑
i∈[n]

d2
i → µ2 := E[D2], (1.4)

lim
K→∞

lim sup
n→∞

n−3α
n∑

i=K+1

d3
i = 0. (1.5)
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(iii) Let n1 be the number of degree-one vertices. Then n1 = Θ(n), which is equivalent
to assuming that P (D = 1) > 0.

Remark 1.2. As important examples, Assumption 1.1 was shown to hold when the
degree distribution is power-law with exponent τ ∈ (3, 4) [16, Section 2]. More precisely,
if F is a distribution function on the nonnegative integers satisfying [1 − F ](x) = (1 +

o(1))Cx−(τ−1) as x → ∞, then Assumptions 1.1(i), 1.1(ii) are satisfied when (a) di =

[1−F ]−1(i/n), and when (b) di are the order statistics of an i.i.d. sample from F (we add
a dummy half-edge to vertex 1 if

∑
i∈[n] di is odd). Assumptions 1.1(iii) is also satisfied in

these examples if F has non-zero mass at 1.

We further assume that the configuration model lies within the critical window of the
phase transition, i.e., for some λ ∈ R,

νn =

∑
i∈[n] di(di − 1)∑

i∈[n] di
= 1 + λn−η + o(n−η). (1.6)

Denote the i-th largest connected component of CMn(d) by C(i), breaking ties arbitrarily.
For each v ∈ [n] and δ > 0, let Nv(δ) denote the δnη neighborhood of v in CMn(d) in the
graph distance. For each i ≥ 1, define

mni (δ) = inf
v∈C(i)

n−ρ|Nv(δ)|. (1.7)

Our goal is to prove the global lower mass-bound property for the critical components C(i).
For CMn(d) satisfying Assumption 1.1 and (1.6), it was shown in [16, Theorem 1] that

(n−ρ|C(i)|)i≥1
d−→ (ξi)i≥1, (1.8)

with respect to the `2↓-topology, where the ξi’s are non-degenerate random variables with
support (0,∞). Therefore, it is enough to rescale by nρ in (1.7) instead of the component
sizes as given in (1.1). In order to prove tightness of mni (δ), we will need a further
technical assumption on the degrees.

Assumption 1.3. Let V ∗n be a vertex chosen in a size-biased manner with sizes being
(di/`n)i∈[n], i.e., P(V ∗n = i) = di/`n, and let D∗n be the degree of V ∗n . There exist constants
c0 > 0 and c1 > 1 such that for all n ≥ 1,

P(l < D∗n ≤ c1l) ≥
c0
lτ−2

for 1 ≤ l < d1 . (1.9)

Remark 1.4. Assumption 1.3 says that the mass distribution in the tail of D∗n is well-
behaved in the sense that we have a uniform (over n) lower bound of the form (1.9). Such
lower bounds can be used to obtain tail-bounds on the heights of branching processes;
see Proposition 4.7 below. (See also [1, Theorem 1.3].) It can be easily shown that
Assumption 1.3 holds in the examples discussed in Remark 1.2 by observing that the
size-biased distribution is a power-law with exponent τ − 1.

The following theorem is the main result of this paper:

Theorem 1.5 (Global lower mass-bound for CMn(d)). Suppose that Assumptions 1.1, 1.3
and the criticality condition (1.6) hold. Then, for each fixed i ≥ 1, (C(i), n

−η)n≥1 satisfies
the global lower mass-bound, i.e., for any δ > 0, the sequence (mni (δ)−1)n≥1 is tight.

By [24, Theorem 1.1], under the condition (1.4) in Assumption 1.1,

lim inf
n→∞

P(CMn(d) is simple) > 0. (1.10)

This immediately implies the following:
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Theorem 1.6 (Global lower mass-bound for UMn(d)). Under Assumption 1.1, 1.3 and
(1.6), the largest components of UMn(d) also satisfy the global lower mass-bound prop-
erty.

Next we state another important corollary, which says that the global lower mass-
bound property is also satisfied by critical percolation clusters in CMn(d) and UMn(d).
To this end, let us assume that

lim
n→∞

∑
i∈[n] di(di − 1)∑

i∈[n] di
= ν > 1. (1.11)

In this regime, CMn(d) is supercritical in the sense that there exists a unique giant
component whp for ν > 1, and when ν < 1, all the components have size oP(n) [26,30].
Percolation refers to deleting each edge of a graph independently with probability 1− p.
The critical window for percolation on CMn(d) in the heavy-tailed setting was studied
in [7,16], and is defined by the values of p given by

pc(λ) =
1

νn
+

λ

nη
+ o(n−η). (1.12)

Let C(i)(pc(λ)) denote the i-th largest component of the graph obtained by percolation
with probability pc(λ) on the graph CMn(d). Then the following result holds:

Theorem 1.7 (Global lower mass-bound for critical percolation). Under Assumptions 1.1(i),
1.1(ii), 1.3, (1.11) and (1.12), (C(i)(pc(λ)), n−η)n≥1 satisfies the global lower mass-bound
property, for each fixed i ≥ 1. This result also holds for percolation on UMn(d).

Let Gn denote the graph obtained by doing percolation with edge retention probability
pc(λ) (defined in (1.12)) on CMn(d). Let dp = (dpi )i∈[n] denote the degree sequence of
Gn. By [19, Lemma 3.2], the conditional law of Gn, conditionally on dp, is same as
the law of CMn(dp). Thus, Theorem 1.7 follows from Theorem 1.5 if we can show
that the percolated degree sequence dp satisfies (with possibly different parameters)
Assumptions 1.1 and 1.3 with high probability when the original degree sequence
(di)i∈[n] satisfies Assumptions 1.1(i), 1.1(ii), 1.3, and also (1.6) holds for dp if further
the percolation probability is given by (1.12). The verification of these assumptions are
provided in Section 5.

Remark 1.8. It is worthwhile to point out that Theorem 1.5 can be proved when the
C(i)’s are endowed with a more general measure rather than the counting measure.
To be precise, for any sequence of vertex weights (wv)v∈[n], the component C(i) can
be equipped with the measure µ(i)(A) =

∑
v∈A wv/

∑
v∈C(i)

wv, for any A ⊂ C(i). Then
Theorem 1.5 can also be proved using identical methods as in this paper, with the
additional assumptions that

lim
n→∞

1

`n

∑
i∈[n]

diwi = µw, max

{∑
i∈[n]

diw
2
i ,
∑
i∈[n]

d2
iwi

}
= O(n3α).

These additional assumptions are required when we apply the results from [16] (see [16,
Theorem 21]). We adopted the simpler version of the counting measure here because it
relates directly to [7, Theorem 2.1].

1.3 Discussion

Scaling limit of critical percolation clusters We write n−ηC(i)(pc(λ)) to denote the
i-th largest component of CMn(d, pc(λ)), viewed as a measured metric space with the
metric being the graph distance re-scaled by nη, and the measure being proportional
to the counting measure. Athreya, Löhr, and Winter [5] showed that the global lower
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mass-bound property forms a crucial ingredient to prove convergence of random metric
spaces such as n−ηC(i)(pc(λ)) with respect to the Gromov-Hausdorff-Prokhorov (GHP)
topology on the space of compact metric spaces. The other key ingredient is the scaling
limit for n−ηC(i)(pc(λ)) with respect to the Gromov-weak topology, which was established
in [7, Theorem 2.1]. The Gromov-weak topology is an analogue of finite-dimensional
convergence, since it considers distances between a finite number of sampled points
from the underlying metric space. Thus, global functionals such as the diameter are
not continuous with respect to this topology. Indeed, it may be the case that there is a
long path of growing length, that has asymptotically negligible mass. In our context,
the problem could arise due to paths of length much larger than nη. The global lower
mass-bound property ensures that the components have sufficient mass everywhere.
This forbids the existence of long thin paths, when the total mass of the component
converges. For this reason, Gromov-weak convergence and global lower mass-bound
together imply GHP-convergence when the support of the limiting measure is the entire
limiting space [5, Theorem 6.1]. For formal definitions of the Gromov-weak topology, and
the GHP-topology on the space of compact measured metric spcaes, we refer the reader
to [5,8,22].

Following the above discussion, the next theorem is a direct consequence of Theo-
rem 1.7, [7, Theorem 2.3] and [5, Theorem 6.1]: Let M denote the space of measured
compact metric spaces equipped with the GHP-topology, and let MN denote the product
space with the associated product topology.

Theorem 1.9 (GHP convergence of critical percolation clusters). There exists a sequence
of measured metric spaces (Mi)i≥1 = ((Mi,di, µi))i≥1 ∈ MN such that, under Assump-
tions 1.1(i), 1.1(ii), 1.3, (1.11) and (1.12), as n→∞,

(n−ηC(i)(pc(λ)))i≥1
d−→ (Mi)i≥1 in MN. (1.13)

Moreover, the results also hold for UMn(d, pc(λ)).

The exact description of the space Mi can be found in [7]. It is worthwhile mentioning
a recent work by Conchon-Kerjan and Goldschmidt [15] which is closely related to
Theorem 1.9. Conchon-Kerjan and Goldschmidt [15] deduce scaling limits for the
vector of components in GHP-topology for critical configuration models having i.i.d
power law degrees with exponent τ ∈ (3, 4). In Remarks 1.2 and 1.4, we noted that
Assumptions 1.1(i), 1.1(ii), and 1.3 hold when the degrees are i.i.d samples from a
power-law distribution with exponent τ ∈ (3, 4). Therefore, Theorem 1.9 implies that
the conditional law of (n−ηC(i)(pc(λ)))i≥1, conditioned on the i.i.d degree sequence,
converges to the law of (Mi)i≥1 in MN for almost every realization of the i.i.d degree
sequence. Hence, Theorem 1.9 gives a quenched result whereas [15] proves an annealed
result. The method of [15] relies on an alternative approach showing convergence of the
height processes corresponding to the components. The associated limiting object was
studied in [21], which interestingly turns out to have a quite different description than
those in [7,8].

Scaling limit of maximal distances For any metric space (X,d) and a point x ∈ X,
define the radius of x in X and the diameter of X by

Rad(x,X) = sup
y∈X

d(x, y) and diam(X) = sup
x∈X

Rad(x,X) = sup
x,y∈X

d(x, y). (1.14)

An important corollary of Theorem 1.9 is the convergence of the radius and the diameter
of the critical components: Let Vn,i be a uniformly chosen vertex in C(i)(pc(λ)), where
(Vn,i)i≥1 is an independent collection conditionally on (C(i)(pc(λ)))i≥1. Similarly, using
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the notation of the scaling limits in Theorem 1.9, let Vi be chosen from Mi according to
the measure µi and let (Vi)i≥1 be an independent collection conditionally on (Mi)i≥1.

Corollary 1.10 (Convergence of radius and diameter). Under Assumptions 1.1(i), 1.1(ii),
1.3, (1.11) and (1.12), as n→∞,(

n−ηRad(Vn,i,C(i)(pc(λ)))
)
i≥1

d−→ (Rad(Vi,Mi))i≥1,(
n−ηdiam(C(i)(pc(λ)))

)
i≥1

d−→ (diam(Mi))i≥1,
(1.15)

with respect to the product topology, where (Mi)i≥1 is given by Theorem 1.9. Moreover,
the result also holds for UMn(d).

Proving scaling limits for the diameter of the critical tree-like objects is often a
difficult task. In [32], Szekeres proved that, for the uniform random rooted labelled tree
on m vertices, the diameter, rescaled by

√
m, converges in distribution. Szekeres also

provided an explicit formula for the density of the limiting distribution in [32, Page 395,
(12)]. Szekeres’ method was based on generating functions. Łuczak [28] also considered
enumeration of trees with diameter�

√
m. On the other hand, Aldous [3] (see [3, Section

3.4]) noted that the GHP-convergence can be used as an effective tool to prove scaling
limit results for the diameter. This is the motivating idea behind Corollary 1.10. Aldous [3]
also raised a natural question whether it is possible to obtain an explicit formula from
a result such as Corollary 1.10. In a recent paper, Wang [33] showed that it is indeed
possible to get such a formula for the Brownian tree. In the context of Corollary 1.10, the
difficulty is two-fold: First, the critical components have surplus edges. For the scaling
limits of critical Erdős-Rényi random graphs, Miermont and Sen [29] recently gave a
breadth-first construction, which yields an alternative description of the scaling limit of
the radius function from a fixed point (rescaled by n1/3). However, the description for the
diameter and an explicit formula such as the one by Wang [33] is still an open question.
Second, the scaling limit in Corollary 1.10 is in the heavy-tailed universality class. Even
for p-trees (see [14]) that satisfy pi/(

∑
i p

2
i )

1/2 → βi > 0, with (βi)i≥1 ∈ `2↓ \ `1↓, obtaining
an explicit description for the limiting distribution of the diameter is an interesting
question.

Compactness of the limiting metric space The limiting spaces Mi are constructed
by tilting the distribution of an inhomogeneous continuum random tree (ICRT), and then
identifying a Poisson number of vertices to create cycles. This object is well-defined as a
metric measure space for θ ∈ `3↓ \ `2↓. However, it may not be compact for all θ ∈ `3↓ \ `2↓.
It is interesting to find an explicit criterion for the compactness of the limiting objects
Mi in terms of the underlying parameters.

Indeed, in the context of compactness of ICRTs, Aldous, Miermont, and Pitman [4,
Section 7] state an additional condition, which was conjectured to be necessary and
sufficient for the compactness of ICRTs. This conjectured was recently proved in [10].
In the context of critical random graphs, a recent paper by Broutin, Duquesne, and
Wang [13] shows that the following criterion, analogous to [4], is sufficient for the almost
sure compactness of Mi

1:

1Note: The condition (1.17) does not hold for all θ ∈ `3↓ \ `2↓. Indeed, take θi = i−1/2. For u ∈ (θ−1
2 ,∞), let

i0 = i0(u) be such that θ−1
i0

< u ≤ θ−1
i0+1, i.e.,

√
i0 < u ≤

√
i0 + 1. Then,

Ψθ(u) ≤ C
[ ∑
i≤i0

θi(uθi) +
∑
i>i0

θi(uθi)
2

]
= C

[
u
∑
i<u2

1

i
+ u2

∑
i≥u2

1

i3/2

]
≤ C[u log u+ u], (1.16)

and thus (1.17) cannot hold.
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∫ ∞
1

du

Ψθ(u)
<∞, where Ψθ(u) =

∑
i≥1

θi(e
−uθi − 1 + uθi). (1.17)

Our GHP convergence from Theorem 1.9 indirectly yields a sufficient condition for the
compactness of the limiting metric space almost surely, by considering an asymptotic
version of Assumption 1.3: Suppose θ ∈ `3↓ \ `2↓ and there exist constants c0 > 0 and c1 > 1

such that

xτ−2 ×
∞∑
i=1

θi1 {x < θi ≤ c1x} ≥ c0 for all x ∈ (0, θ1). (1.18)

The fact that (1.18) is a sufficient condition for the compactness of Mi follows immedi-
ately from Theorem 1.9 and the following proposition:

Proposition 1.11. Consider any θ ∈ `3↓ \ `2↓ such that (1.18) holds. Then there exists a
sequence of degree sequences satisfying Assumptions 1.1(i), 1.1(ii), 1.3, and (1.11).

We will prove Proposition 1.11 in Appendix B. A natural question is how the conditions
in (1.17) and (1.18) compare. We argue below that, in fact, (1.18) is strictly stronger
than (1.17).

Recall that C > 0 is a generic notation for a constant whose value can be different in
different expressions. We first show that (1.18) implies (1.17). Suppose θi > θi+1. Then

θτ−2
i+1

i∑
j=1

θj ≥ θτ−2
i+1

∞∑
j=1

θj · 1 {θi+1 < θj ≤ c1θi+1} ≥ c0, (1.19)

where the last step uses (1.18). Now, for u ∈ ( 1
θi
, 1
θi+1

],

Ψθ(u) ≥ C
[ i∑
k=1

uθ2
k +

∞∑
k=i+1

u2θ3
k

]
≥ Cuθi+1

i∑
k=1

θk

=
Cuθτ−2

i+1

∑i
k=1 θk

θτ−3
i+1

≥ Cuc0

θτ−3
i+1

≥ Cc0uτ−2.

(1.20)

Thus,
∫∞
θ−1
1

du
Ψθ(u) ≤ C

∫∞
θ−1
1
u−(τ−2)du <∞, since τ > 3. This yields (1.17).

To see that the implication is strict, take θi = (iα log(i+ 2))−1. Then

θτ−2
i+1

i∑
j=1

θj ≤
(
(i+ 1)α log(i+ 3)

)−(τ−2)
i∑

j=1

j−α ≤ C

logτ−2 i
, (1.21)

which tends to zero as i→∞. However, as we have seen in (1.19), (1.18) would imply
that the left side of (1.21) is bounded away from zero. Thus, (1.18) does not hold in this
case. To see that (1.17) does hold, note that θi ≥ θ′i := i−α

′
for all large enough i, where

α′ = 1
τ ′−1 and 3 < τ ′ < τ . Then (θ′i)i≥1 satisfies (1.18). Therefore, a computation similar

to (1.20) yields, for u ∈ ( 1
θi
, 1
θi+1

],

Ψθ(u) ≥ Cuθi+1

i∑
k=1

θk ≥ Cuθ′i+1

i∑
k=1

θ′k ≥
Cu

(θ′i)
τ−3

. (1.22)

Since u ≤ (i+1)α log(i+3), we can choose δ > 0 such that u1+δ ≤ Ciα′ = C/θ′i. Therefore,
Ψθ(u) ≥ Cu1+(τ−3)(1+δ). Thus, (1.17) follows.
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Proof ideas and technical motivation for this work The proof of Theorem 1.5
consists of two main steps, that form the key ideas in the argument. The first step is to
show that the neighborhoods of the high-degree vertices, called hubs, have mass ΘP(n

ρ).
Secondly, any small εnη neighborhood contains a hub with high probability. These two
facts, summarized in Propositions 2.1 and 2.2 below, together ensure that the total mass
of any neighborhood of C(i) of radius εnη is bounded away from zero. These two facts
were proved in [8] in the context of rank-one inhomogeneous random graphs. However,
the proof techniques are completely different here. The main advantage in [8] was that
the breadth-first exploration of components could be dominated by a branching process
with mixed Poisson progeny distribution that is independent of n. This allows one to use
existing literature to estimate the probabilities that a long path exists in the branching
process. However, such a technique is specific to rank-one inhomogeneous random
graphs and does not work in the cases where the above stochastic domination does not
hold. This was one of the technical motivations for this work. Moreover, the final section
contains results about exponential tail-bounds for the number of edges in large critical
components (Proposition 4.1), as well as a coupling of the neighborhood exploration with
a branching process with stochastically larger progeny distribution (Section 4.2), which
are both interesting in their own right.

Organization of this paper The rest of this paper is organized as follows: In Section 2,
we state two key propositions, the first involving the total mass of small neighborhoods,
and the second involving a bound on the diameter of a slightly subcritical CMn(d). The
proof of Theorem 1.5 is completed in Section 2. In Section 3, we derive the required
bounds on the total mass of small neighborhoods. In Section 4, we obtain bounds on
the diameter of the connected components after removing the high-degree vertices. In
Section 5, we prove Assumptions 1.1, 1.3 for the percolated degree sequence, which
allows us to conclude Theorem 1.7.

2 Proof of the global lower mass-bound

In this section, we first state the two key ingredients in Propositions 2.1 and 2.2, and
then complete the proof of Theorem 1.5. The proofs of Propositions 2.1 and 2.2 are given
in the subsequent sections. The first ingredient shows that hub i has sufficient mass
close to it with high probability:

Proposition 2.1. Assume that Assumptions 1.1 and (1.6) hold. Recall thatNv(δ) denotes
the δnη neighborhood of v. For each fixed i ≥ 1 and ε2 > 0, there exists δi,ε2 > 0 and
ni,ε2 ≥ 1 such that, for any δ ∈ (0, δi,ε2 ] and n ≥ ni,ε2 ,

P
(
|Ni(δ)| ≤ θiδnρ

)
≤ ε2

2i+1
. (2.1)

Next, we need some control on the diameter of the graph after removing the hubs.
Denote by G>Kn the graph obtained by removing the vertices [K] = {1, . . . ,K} having
the largest degrees and the edges incident to them from CMn(d). Note that G>Kn is a
configuration model conditionally on its degree sequence. Let ∆>K denote the maximum
of the diameters of the connected components of G>Kn . The following proposition shows
that, for large K, ∆>K is small with high probability:

Proposition 2.2. Assume that Assumptions 1.1, 1.3 and (1.6) hold. Then, for any
ε1, ε2 > 0, there exists K = K(ε1, ε2) and n0 = n0(ε1, ε2) such that for all n ≥ n0,

P (∆>K > ε1n
η) ≤ ε2

4
. (2.2)

We now prove Theorem 1.5 assuming Propositions 2.1 and 2.2:
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Proof of Theorem 1.5. Fix i ≥ 1 and ε1, ε2 > 0. For a component C ⊂ CMn(d), we
write ∆(C ) to denote its diameter. Let us choose K and n0 so that (2.2) holds for
all n ≥ n0. In view of Proposition 2.1, let δ0 = min{ε1, δ1,ε2 , . . . , δK,ε2}/2, and n′0 =

max{n0, n1,ε2 , . . . , nK,ε2}. Thus, for all n ≥ n′0, (2.1) is satisfied for all i ∈ [K]. Define

F1 := {∆>K < ε1n
η/2}, F2 := {∆(C(i)) > ε1n

η/2}. (2.3)

Notice that, on the event F1∩F2, it must be the case that one of the vertices in [K] belongs
to C(i), and that the union of the neighborhoods of [K] of radius dε1n

η/2e+ 1 ≈ ε1n
η/2

covers C(i). Therefore, given any vertex v ∈ C(i), Nv(ε1) contains at least one of the
neighborhoods (Nj(ε1/2))j∈[K]. This observation yields that

inf
v∈C(i)

n−ρ|Nv(ε1)| ≥ min
j∈[K]

n−ρ|Nj(ε1/2)| ≥ min
j∈[K]

n−ρ|Nj(δ0)|. (2.4)

Thus, for all n ≥ n′0,

P
(
F1 ∩ F2 ∩

{
inf

v∈C(i)

n−ρ|Nv(ε1)| ≤ θKδ0
})

≤
∑
j∈[K]

P
(
|Nj(δ)| ≤ θjδ0nρ

)
≤

K∑
j=1

ε2

2j+1
≤ ε2

2
,

(2.5)

where the one-but-last step follows from Proposition 2.1. Further, on the event F c2 ,
|Nv(ε1)| = |C(i)| for all v ∈ C(i). Moreover, using (1.8), it follows that n−ρ|C(i)| converges
in distribution to a random variable with strictly positive support. Using the Portmanteau
theorem, the above implies that for any δ′0 > 0, there exists ñ0 = ñ0(ε2, δ

′
0) such that, for

all n ≥ ñ0,

P
(
n−ρ|C(i)| ≤ δ′0

)
≤ ε2

4
. (2.6)

Therefore,

P

(
F c2 ∩

{
inf

v∈C(i)

n−ρ|Nv(ε1)| ≤ δ′0
})
≤ ε2

4
. (2.7)

Now, using (2.5) and (2.7), together with Proposition 2.2, it follows that, for any n ≥
max{n′0, ñ0}, and K chosen as above,

P

(
inf

v∈C(i)

n−ρ|Nv(ε1)| ≤ min{δ′0, θKδ0}
)
≤ ε2. (2.8)

This completes the proof of Theorem 1.5.

3 Lower bound on the total mass of neighborhoods of hubs

In this section, we prove Proposition 2.1.

Proof of Proposition 2.1. Let us denote the component of CMn(d) containing vertex i by
C (i). Consider the breadth-first exploration of C (i) starting from vertex i, given by the
following exploration algorithm [16]:

Algorithm 1 (Exploring the graph). The algorithm carries along vertices that can be
alive, active, exploring and killed, and half-edges that can be alive, active or killed. We
sequentially explore the graph as follows:

(S0) At stage l = 0, all the vertices and the half-edges are alive, and only the half-edges
associated to vertex i are active. Also, there are no exploring vertices except i.
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(S1) At each stage l, if there is an exploring vertex, take an active half-edge e of an
exploring vertex v and pair it uniformly to another alive half-edge f . Kill e, f . If
f is incident to a vertex v′ that has not been discovered before, then declare all
the half-edges incident to v′ (if any) active, except f . If degree(v′) = 1 (i.e. the
only half-edge incident to v′ is f ) then kill v′. Otherwise, declare v′ to be active
and larger than all other vertices that are alive. After killing e, if v does not have
another active half-edge, then kill v also. If there is no exploring vertex at the
beginning of stage l, we pick the oldest active half-edge, declare the corresponding
vertex to be exploring, and then execute the same process as above.

(S2) Repeat (S1) until there is no active half-edges left.

Call a vertex discovered if it is either active or killed. Let Vl denote the set of vertices
discovered up to time l and Inj (l) := 1 {j ∈ Vl}. Define the exploration process by

Sn(l) = di +
∑
j 6=i

djInj (l)− 2l = di +
∑
j 6=i

dj

(
Inj (l)− dj

`n
l

)
+

(
1

`n

∑
j 6=i

d2
j − 2

)
l. (3.1)

Note that the exploration process keeps track of the number of active half-edges. Thus,
C (i) is explored when Sn hits zero. Moreover, since one edge is explored at each step,
the hitting time of zero is the total number of edges in C (i). Define the re-scaled version
S̄n of Sn by S̄n(t) = n−αSn(btnρc). Then, by Assumption 1.1 and (1.6),

S̄n(t) = θi −
θ2
i t

µ
+ n−α

∑
j 6=i

dj

(
Inj (tnρ)− dj

`n
tnρ
)

+ λt+ o(1). (3.2)

The convergence of this exploration process was considered in [16, Theorem 8] except
for the fact that the exploration process started at zero in [16]. However, using identical
arguments to [16, Theorem 8], it can be shown that

S̄n
d−→ S∞, (3.3)

with respect to the Skorohod J1-topology, where

S∞(t) = θi −
θ2
i t

µ
+
∑
j 6=i

θj

(
Ij(t)−

θjt

µ

)
+ λt, (3.4)

with Ij(s) := 1 {ξj ≤ s} and ξj ∼ Exponential(θj/µ) independently of each other.
Let hn(u) (respectively h∞(u)) denote the first hitting time of S̄n (respectively S∞)

of u. More precisely,

hn(u) := inf
{
t : S̄n(t) ≤ u or lim

t′↗t
S̄n(t′) ≤ u

}
, (3.5)

and define h∞(u) similarly by replacing S̄n(t) by S̄∞(t). Note that, by [16, Lemma 36],
the distribution of h∞(u) does not have any atoms and therefore, for any ε2 > 0, there
exists βε2,i > 0 such that

P
(
h∞(θi/2) ≤ βε2,i

)
≤ ε2

2i+1
.

Now we use the following fact:

Fact 3.1. Let (Xn(t))t≥0
d−→ (X(t))t≥0 in Skorohod J1-topology and let h(Xn) (respec-

tively h(X)) denote the hitting time to zero of Xn (respectively X). Then,

lim inf
n→∞

P(h(Xn) > a) ≥ P(h(X) > a) for all a > 0. (3.6)
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Proof. Let (fn)n≥1 be such that h(fn) ≤ a for all n ≥ 1 and fn → f in the Skorohod J1-
topology as n→∞. Now, h(fn) ≤ a implies that inft∈[0,a] fn(t) ≤ 0. Using [34, Theorem
13.4.1], it follows that inft∈[0,a] f(t) ≤ 0 and thus h(f) ≤ a. Therefore, we have shown that
{f : h(f) ≤ a} is a closed set in the Skorohod J1-topology, and therefore {f : h(f) > a} is
an open set. The proof follows using the Portmanteau theorem [9, Theorem 2.1 (iv)].

Using (3.3) and Fact 3.1, there exists ni,ε2 ≥ 1 such that, for all n ≥ ni,ε2 ,

P(hn(θi/2) ≤ βε2,i) ≤
ε2

2i
. (3.7)

Our first goal is to show that there exists a δi,ε such that for any δ ∈ (0, δi,ε2 ],∑
k∈Ni(δ)

dk ≤ θiδnρ =⇒ hn(θi/2) ≤ βε2,i. (3.8)

Recall that Nv(δ) denotes the δnη neighborhood of v in CMn(d). To prove (3.8), let ∂(j)

denote the set of vertices at distance j from i. Let Ej1 denote the total number of edges
between vertices in ∂(j) and ∂(j − 1), and let Ej2 denote the number of edges within
the vertices in ∂(j − 1). Define Ej = Ej1 + Ej2. Fix any δ < 2βε2,i/θi. Note that if∑
k∈Ni(δ) dk ≤ θiδn

ρ, then the total number of edges in Ni(δ) is at most θiδnρ/2. Thus
there exists j ≤ δnη such that Ej ≤ θiδn

ρ/2δnη = θin
α/2. This implies that Sn must go

below θin
α/2 before exploring all the vertices in Ni(δ). This is because we are exploring

the components in a breadth-first manner and S̄n keeps track of the number of active
half-edges, which in turn are the potential connections to vertices at the next level. Since
one edge is explored in each time step, and we rescale time by nρ, this implies that

hn(θi/2) ≤ 1

2
n−ρ

∑
k∈Ni(δ)

dk ≤ θiδ/2 ≤ βε2,i. (3.9)

Therefore, for all n ≥ ni,ε2 ,

P

( ∑
k∈Ni(δ)

dk ≤ θiδnρ
)
≤ P(hn(θi/2) ≤ βε2,i) ≤

ε2

2i
. (3.10)

Finally, to conclude Proposition 2.1 from (3.10), we use the result from [16, Lemma 22]
that, for any T > 0,

sup
u≤T

∣∣∣∣ ∑
i∈[n]

Ini (unρ)− unρ
∣∣∣∣ = oP(n

ρ). (3.11)

This implies that the difference between the number of edges and the number of vertices
explored up to time unρ is oP(nρ) uniformly over u ≤ T . The proof of Proposition 2.1 now
follows.

4 Diameter after removing hubs

Throughout the remainder of the paper, we fix the convention that C,C ′, C ′′ > 0

etc. denote constants whose value can change from line to line. Recall the definition
of the graph G>Kn from Proposition 2.2. If we keep on exploring G>Kn in a breadth-first
manner using Algorithm 1 and ignore the cycles created, then we get a random tree.
The idea is to couple neighborhoods in G>Kn with a suitable branching process such that
the progeny distribution of the branching process dominates the number of children
of each vertex in the breadth-first tree. Therefore, when there is a long path in G>Kn
that makes the diameter large, that long path must be present in the branching process
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as well under the above coupling. In this way, the question about the diameter of G>Kn
reduces to the question about the height of a branching process. To estimate the height
suitably, we use a recent beautiful proof technique by Addario-Berry [1] which allows
one to relate the height of a branching process to the sum of inverses of the associated
breadth-first random walk.

In Section 4.1, we establish tail bounds for the number of edges within components.
This allows us to formulate the desired coupling in Section 4.2. In Section 4.3, we
analyze the breadth-first random walk to show that it is unlikely that the height of the
branching process is larger than εnη. These bounds are different from those derived
in [1] since our branching process depends on n and there is a joint scaling involved
between the distances and the law of the branching process.

4.1 Asymptotics for the number of edges

For a graph G, let E(G) denote the number of edges in G.

Proposition 4.1. Suppose that Assumption 1.1 and (1.6) hold. For all ε ∈ (0, 4−τ
τ−1 ), and

sufficiently large n,

P(E(C (i)) > nρ+ε) ≤ Ce−C
′nε/2 , (4.1)

for some absolute constants C,C ′ > 0 and all i ∈ [n].

The proof of Proposition 4.1 relies on concentration techniques for martingales. We
start by defining the relevant notation. Consider exploring CMn(d) with Algorithm 1,
and let the associated exploration process be defined in (3.1). Let us denote the degree
of the vertex found at step l by d(l). If no new vertex is found at step l, then d(l) = 0.
Also, let Fl denote the sigma-algebra containing all the information revealed by the
exploration process up to time l. Thus,

Sn(0) = di, and Sn(l) = Sn(l − 1) + (d(l) − 2). (4.2)

Using the Doob-Meyer decomposition, one can write

Sn(l) = Sn(0) +Mn(l) +An(l), (4.3)

where Mn is a martingale with respect to (Fl)l≥1. The drift An and the quadratic
variation 〈Mn〉 of Mn are given by

An(l) =

l∑
j=1

E
[
d(j) − 2|Fj−1

]
, 〈Mn〉(l) =

l∑
j=1

Var (d(j)|Fj−1) . (4.4)

We will show that for any ε ∈ (0, ε0), the following two lemmas hold:

Lemma 4.2. Suppose that Assumption 1.1 and (1.6) hold. For all ε ∈ (0, 4−τ
τ−1 ), and

sufficiently large n,

P(n−(α+ε)Mn(nρ+ε) > 1) ≤ Ce−C
′nε , (4.5)

for some absolute constants C,C ′ > 0.

Lemma 4.3. Suppose that Assumption 1.1 and (1.6) hold. For all fixed K ≥ 1, ε ∈
(0, 4−τ

τ−1 ), and sufficiently large n,

P

(
n−(α+ε)An(nρ+ε) ≥ −C

K∑
i=1

θ2
i

)
≤ Ce−C

′nε/2 , (4.6)

for some absolute constants C,C ′ > 0.

EJP 27 (2022), paper 103.
Page 13/29

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP821
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Global lower mass-bound for heavy-tailed critical configuration models

Proof of Proposition 4.1 subject to Lemmas 4.2, 4.3. Throughout, we write tn := nρ+ε.
Note that we can choose K ≥ 1 such that

∑K
i=1 θ

2
i is arbitrarily large since θ /∈ `2↓.

Thus, if n−(α+ε)Mn(tn) ≤ 1 and n−(α+ε)An(tn) ≤ −C
∑K
i=1 θ

2
i , then n−(α+ε)Sn(tn) < 0,

and therefore C (i) must be explored before time tn, and thus E(C (i)) ≤ tn. As a result,
Lemmas 4.2 and 4.3 together complete the proof of Proposition 4.1.

Proof of Lemma 4.2. First note that 4−τ
τ−1 + ρ = 2α < 1 and therefore tn = o(n). Thus,

uniformly over j ≤ tn,

Var (d(j)|Fj−1) ≤ E[d2
(j)|Fj−1] =

∑
j /∈Vj−1

d3
j

`n − 2j + 2
≤

∑
j∈[n] d

3
j

`n − 2tn + 2
≤ Cn3α−1, (4.7)

so that, almost surely,

〈Mn〉(tn) ≤ tnCn3α−1 = Cn2α+ε. (4.8)

Also, d(j) ≤ Cnα almost surely. We can now use Freedman’s inequality [20, Proposition
2.1] which says that if Y (k) =

∑
j≤kXj with E[Xj |Fj−1] = 0 (for some filtration (Fj)j≥1)

and P(|Xj | ≤ R, ∀j ≥ 1) = 1, then, for any a, b > 0,

P(Y (k) ≥ a, and 〈Y 〉(k) ≤ b) ≤ exp

(
−a2

2(Ra+ b)

)
. (4.9)

We apply (4.9) with a = nα+ε, b = Cn2α+ε and R = Cnα. Note that 〈Mn〉(tn) ≤ b almost
surely by (4.8). It follows that

P(Mn(tn) > nα+ε) ≤ exp

(
− n2α+2ε

2C(nαnα+ε + n2α+ε)

)
≤ Ce−C

′nε , (4.10)

and the proof follows.

Proof of Lemma 4.3. Note that

E
[
d(i) − 2|Fi−1

]
=

∑
j /∈Vi−1

d2
j

`n − 2i+ 1
− 2

=
1

`n

∑
j∈[n]

dj(dj − 2)− 1

`n

∑
j∈Vi−1

d2
j +

(2i− 1)
∑
j /∈Vi−1

d2
j

`n(`n − 2i+ 1)

≤ λn−η − 1

`n

∑
j∈Vi−1

d2
j +

(2i− 1)

(`n − 2i+ 1)2

∑
j∈[n]

d2
j + o(n−η)

(4.11)

uniformly over i ≤ tn. Therefore, for all sufficiently large n,

An(tn) =

tn∑
j=1

E
[
d(j) − 2|Fj−1

]
≤ λtnn−η −

1

`n

tn∑
i=1

∑
j∈Vi−1

d2
j +

Ct2n
`n

+ o(nα+ε)

= λnα+ε − 1

`n

tn∑
i=1

∑
j∈Vi−1

d2
j + o(nα+ε),

(4.12)

where in the second step we have used
∑
i∈[n] d

2
i /`n = O(1), and in the last step we have

used that t2n/`n = O(n2ρ+2ε−1) = o(nα+ε) for ε < 1 + α − 2ρ = 4−τ
τ−1 . Let us denote the

second term in (4.12) by (A). To analyze (A), define the event

An :=
{
∃j : dj > nα−ε/2, j /∈ Vtn/2

}
. (4.13)
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Then, for all sufficiently large n,

P(An) ≤
∑

j:dj>nα−ε/2

(
1− dj

`n − 2tn

)tn
≤ ne−Cn

ε/2

. (4.14)

On the event Acn,

(A) =
1

`n

tn∑
i=1

∑
j∈[n]

d2
j1{j ∈ Vi−1} ≥

1

`n

tn∑
i= tn

2 +1

K∑
j=1

d2
j ≥ Cnα+ε

K∑
j=1

θ2
j . (4.15)

Combining (4.12), (4.14) and (4.15) now completes the proof.

4.2 Coupling with branching processes

Recall that C (i) is the connected component in CMn(d) containing vertex i. Define
the event Kn := {E(C (i)) > nρ+ε}. Proposition 4.1 implies that the probability of Kn
happening is exponentially small in n. On the event Kcn, we can couple the breadth-first
exploration starting from vertex i with a suitable branching process. Let nk denote the
number of vertices of degree k and consider the branching process Xn(i) starting with
di individuals, and the progeny distribution ξ̄n given by

P
(
ξ̄n = k

)
= p̄k =

{
(k+1)nk+1

¯
`n

for k ≥ 1,
n1−2nρ+ε

¯
`n

for k = 0,
(4.16)

where
¯
`n = `n − 2nρ+ε. Note that, at each step of the exploration, we have at most

(k + 1)nk+1 half-edges that are incident to vertices having k further unpaired half-edges.
Further, on the event Kcn, we have at least

¯
`n choices for pairing. Therefore, the number

of active half-edges discovered at each step in the breadth-first exploration of the
neighborhoods of i is stochastically dominated by ξ̄n. This proves the next proposition,
which we state after setting up some further notation. Recall that G>i−1

n denotes the
graph obtained by deleting vertices in [i− 1] and the associated edges from CMn(d). Let
∂i(r) denote the number of vertices at distance r from vertex i in the graph G>i−1

n . Let
ξ̄n(i) denote the random variable with the distribution in (4.16) truncated in such a way
that {d1, . . . , di−1} are excluded from the support. More precisely,

P(ξ̄n(i) = k) =


0 for k > di,
(k+1)
L #{j ≥ i : dj = k + 1} for 1 ≤ k ≤ di,

n1−2nρ+ε

L for k = 0,

(4.17)

where L = `n −
∑i−1
j=1 dj is the appropriate normalizing constant. Let Xn,res(i) denote

the branching process starting with di individuals and progeny distribution ξ̄n(i) and
let ∂̄i(r) denote the number of individuals in generation r of Xn,res(i). Then the above
stochastic domination argument immediately yields the next proposition:

Proposition 4.4. Suppose that Assumption 1.1 and (1.6) hold. Let Kn be as described
in Lemma A.1 below. For all r ≥ 1, 1 ≤ i ≤ Kn, ε ∈ (0, 4−τ

τ−1 ) and n ≥ 1,

P(∂i(r) 6= ∅) ≤ P(∂̄i(r) 6= ∅) + P(E(C (i)) > nρ+ε). (4.18)

Before proceeding with the next section in which we investigate P(∂̄i(r) 6= ∅), we
estimate the expectation and variance of the progeny distribution in the branching
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process Xn,res(i) using Assumptions 1.1, 1.3, and (1.6). Using
∑
i θ

2
i =∞, we can choose

i2(λ) (depending only on λ) such that

1

µ

i2(λ)∑
i=1

θ2
i ≥ 5λ. (4.19)

Also the normalizing constant in (4.17) satisfies

L = `n(1 + o(n−η)) (4.20)

uniformly over 1 ≤ i ≤ Kn. To see this, first observe that
¯
`n = `n − 2nρ+ε = o(n−η) since

ε < 1− ρ− η = 4−τ
τ−1 . Also, 1

`n

∑
j≤i dj = O(d1Knn

−1) = o(n2α−1) = o(n−η), as Kn = o(nα)

by Assumption 1.3 and Lemma A.1 and 2α− 1 = −η. Hence, (4.20) follows. Now using
Assumption 1.1 and (1.6), note that there exists Nλ ≥ 1 such that for all n ≥ Nλ and
i2(λ) ≤ i ≤ Kn,

E
[
ξ̄n(i)

]
=

1

L

∑
j≥i

dj(dj − 1) =
1

`n

∑
j≥i

dj(dj − 1) + o(n−η)

= 1 + λn−η − 1

`n

∑
j<i

dj(dj − 1) + o(n−η)

≤ 1 + λn−η − 1

2`n

∑
j<i

d2
j + o(n−η)

≤ 1−
(
Cn−2α

∑
j<i

d2
j

)
n−η + o(n−η),

(4.21)

where the third step uses (1.6), the penultimate step uses the fact that di ≥ 2 so that∑
j<i dj ≤

∑
j<i d

2
j/2 for i ≤ Kn, and the last step uses (4.19). Thus, for n ≥ Nλ and

i2(λ) ≤ i ≤ Kn,

E
[
ξ̄n(i)

]
≤ 1− βni n−η where βni = Cn−2α

∑
j<i

d2
j . (4.22)

The estimate in (4.22) will be crucial in the next section.

4.3 Estimating heights of trees via random walks

We will prove the following theorem in this section:

Theorem 4.5. Suppose that Assumptions 1.1, 1.3, and (1.6) hold. Fix ε > 0. Then, for
all i2(λ) ≤ i ≤ Kn (where i2(λ) and Kn are given by (4.19) and Lemma A.1 respectively)
and n ≥ Nλ,

P(∂̄i(εn
η) 6= ∅) ≤ Cdi

nα
e−

εβni
2 , (4.23)

for some constant C = C(ε, λ) > 0.

Define X 1
n(i) to be the Galton-Watson tree starting with one offspring and progeny

distribution ξ̄n(i) and let ∂̄1
i (r) denote the number of individuals in generation r of X 1

n(i).
The crucial ingredient for the proof of Theorem 4.5 is the following:

Proposition 4.6. Under identical conditions as in Theorem 4.5, for all n ≥ Nλ,

P(∂̄1
i2(λ)(εn

η) 6= ∅) ≤ C

nα
, (4.24)

for some constant C = C(ε, λ) > 0.
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Proof of Theorem 4.5 using Proposition 4.6. Let Mr denote the number of children at
generation r of Xn,res(i), and note that

P(∂̄i(εn
η) 6= ∅) ≤ E[Mεnη/2]× P(∂̄1

i (εnη/2) 6= ∅). (4.25)

Now, using (4.22),

E[Mεnη/2] ≤ di(1− βni n−η)εn
η/2 ≤ die−

εβni
2 , (4.26)

and ξ̄n(i) � ξ̄n(i− 1) � · · · � ξ̄n(i2(λ)), where � denotes stochastic domination. Thus,

P(∂̄i(εn
η) 6= ∅) ≤ die−

εβni
2 × P(∂̄1

i2(λ)(εn
η/2) 6= ∅), (4.27)

and the proof of Theorem 4.5 follows using Proposition 4.6.

The rest of this section is devoted to the proof of Proposition 4.6. We leverage some
key ideas from [1]. Define the breadth-first random walk sn by sn(0) = 1 and

sn(u) = sn(u− 1) + ζu − 1, (4.28)

where (ζu)u≥1 are i.i.d. observations from the distribution of ξ̄n(i2(λ)). Let σ := inf{u :

sn(u) = 0} and for t = 0, 1, . . . , σ, define the function

Hn(t) :=

t−1∑
u=0

1

sn(u)
. (4.29)

A remarkable fact observed in [1, Proposition 1.7] states that the height of a tree with
breadth-first exploration process sn is at most 3Hn(σ). Thus Proposition 4.6 can be
concluded directly from the following estimate:

Proposition 4.7. Under identical conditions as in Theorem 4.5, for all n ≥ Nλ,

P(Hn(σ) > εnη) ≤ C

nα
, (4.30)

for some constant C = C(ε, λ) > 0.

In what follows, we fix δ > 0 such that δnα + 2 < di2(λ)/100 for all n ≥ Nλ. Define
Il := [2l−1, 2l+1) for l ≥ 1. Let Px denote the law of the random walk sn, starting from
x and satisfying the recurrence relation in (4.28). Let σnl := min{t ≥ 1 : sn(t) /∈ Il} and
rnl := min{t ≥ 1 : supx∈Il Px(σnl > t) ≤ 1/2}. We first obtain the following bound on rnl:

Lemma 4.8. Under identical conditions as in Theorem 4.5, there exists n? ≥ 1 depending
only on (di ; i ∈ [n], n ≥ 1) such that for all n ≥ n? and all l ≥ 1 satisfying 2l+1 ≤ δnα, we
have rnl ≤ C2(τ−2)l for some (sufficiently large) constant C > 0.

Proof. By (4.17), P(ξ̄n(i2(λ)) = j) = (1+o(1))P(D∗n = j+1) uniformly over 1 ≤ j ≤ di2(λ).
Thus, by Assumption 1.3,

P
( u
c1
< ξ̄n(i2(λ)) ≤ u

)
≥ Cu−(τ−2), (4.31)

for all c1 ≤ u ≤ δnα.
Next, in order to estimate σnl, we bound supx∈Il Px(sn(t) ∈ Il) using an upper bound

on Lévy’s concentration function due to Esseen [18], that we describe now. For a random
variable Z, define Lévy’s concentration function

Q(Z,L) := sup
x∈R

P(Z ∈ [x, x+ L)). (4.32)
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By [18, Theorem 3.1], for any u > 0,

Q(sn(t), u) ≤ Cu(
t× E[|ζ1 − ζ2|21 {|ζ1 − ζ2| ≤ u}]

)1/2 , (4.33)

where ζ1 and ζ2 are i.i.d. realizations from the distribution of ξ̄n(i2(λ)). To get an upper
bound on the right side of (4.33), we first observe that for any random variable Y

supported on Z≥0,

E[Y 21{Y ≤ u}] =
∑

1≤y≤u

y2P(Y = y) =
∑

1≤y≤u

∑
1≤x≤y

yP(Y = y)

=
∑

1≤x≤u

∑
x≤y≤u

yP(Y = y) ≥
∑

1≤x≤u

xP(x ≤ Y ≤ u).
(4.34)

Now, it follows from (4.17) and Assumption 1.1 (iii) that lim infn→∞P(ξ̄n(i2(λ)) =

0) > 0. Similarly, using (4.17) and Assumption 1.1 (ii), we can choose an integer j? > c1
such that lim infn→∞P

(
ξ̄n(i2(λ))− 1 = j?

)
> 0. Let n? be such that

inf
n≥n?

P
(
ξ̄n(i2(λ)) = 0

)
> 0 and inf

n≥n?
P
(
ξ̄n(i2(λ))− 1 = j?

)
> 0 . (4.35)

Then for any n ≥ n? and c1 ≤ u ≤ δnα,

E[|ζ1 − ζ2|21 {|ζ1 − ζ2| ≤ u}] ≥
∑

1≤x≤u

xP(x ≤ |ζ1 − ζ2| ≤ u)

≥
∑

1≤x≤u/c1

xP(x ≤ ζ1 ≤ u)P(ζ2 = 0) ≥ Cu4−τ ,
(4.36)

where the penultimate step uses the fact that if x ≤ ζ1 ≤ u and ζ2 = 0, then x ≤ |ζ1−ζ2| ≤
u, and the final step follows using (4.31) and the first inequality in (4.35). Thus, (4.33)
yields, for n ≥ n? and any l ≥ 1 satisfying c1 ≤ 2l+1 ≤ δnα,

sup
x∈Il

Px(σnl > t) ≤ sup
x∈Il

Px(sn(t) ∈ Il) ≤ Q(sn(t), 2l+1) ≤ C2l

(t2l(4−τ))1/2
, (4.37)

which is at most 1/2 by choosing t = C2l(τ−2) for some large constant C > 0.
Finally, for all n ≥ n? and l ≥ 1 satisfying 2l+1 < c1,

sup
x∈Il

Px(σnl > t) ≤ P
(
ξ̄n(i2(λ))− 1 6= j?

)t ≤ exp(−Ct) ,

where the last step uses the second inequality in (4.35). This in particular implies that
rnl ≤ C for all n ≥ n? and l ≥ 1 satisfying 2l+1 < c1. This completes the proof.

We now decompose the possible values of the random walk (4.28) starting from
sn(0) = 1 into different scales. Recall that Il := [2l−1, 2l+1). At each time t, the scale of
sn(t), denoted by scl(sn(t)), is an integer. Let scl(sn(0)) = 1. Suppose that scl(sn(u)) = l

for some u > 0. A change of scale occurs when sn leaves Il, i.e., at time T := inf{t > u :

sn(t) /∈ Il}, and the new scale is given by scl(sn(T )) = l′, where l′ is such that sn(T ) ∈
[2l
′−1, 2l

′
). Now, the next change of scale occurs at time T ′ := inf{t > T : sn(t) /∈ Il′}, and

the scale remains the same until T ′, i.e., scl(sn(t)) = l′ for all T ≤ t < T ′. Define

Hnl(t) :=
∑

u∈[0,t), scl(sn(u))=l

1

sn(u)
, so that Hn(t) =

∑
l≥1

Hnl(t). (4.38)
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Let Tnl(t) := #{u ∈ [0, t) : scl(sn(u)) = l}, and note that

2l−1Hnl(t) ≤ Tnl(t) ≤ 2l+1Hnl(t). (4.39)

Therefore, for any x > 0,

P
(
Hnl(σ) ≥ xrnl

2l−1

)
≤ P(Tnl(σ) ≥ xrnl). (4.40)

The next lemma estimates P(Tnl(σ) ≥ xrnl):
Lemma 4.9. For all n ≥ 1, l ≥ 1, and x > 0,

P(Tnl(σ) ≥ xrnl) ≤ C2−l−C
′x, (4.41)

for some absolute constants C,C ′ > 0.

Proof. Let us first show that for any l ≥ 2,

P(Tnl(σ) 6= 0) ≤ 2−(l−1). (4.42)

For any t ≥ 0, let Ft denote the sigma-field generated by (ζu)tu=0, where we take
ζ0 = 1. Note that if Tnl(σ) 6= 0, then sn(u) hits 2l−1 before hitting zero. For H > 1, let
γH := min{t : sn(t) ≥ H, or sn(t) = 0}. Since E[ζu − 1] < 0 by (4.22), (sn(t))t≥0 is a
supermartingale with respect to the filtration (Ft)t≥0. Consequently, an application of
the optional stopping theorem yields

HP(sn(γH) ≥ H) ≤ E[sn(γH)] ≤ E[sn(0)] = 1, (4.43)

and therefore,

P(sn(γH) ≥ H) ≤ 1

H
. (4.44)

Thus, (4.42) follows by taking H = 2l−1 together with the fact that Tnl(σ) 6= 0 implies
that sn(γH) ≥ H.

Next, we define Un(t, [a, b))–the number of upcrossings of an interval [a, b) by sn up
to time t–to be the supremum of all integers k such that there exist times (uj , tj)

k
j=1

satisfying 0 ≤ u1 < t1 < u2 < · · · < tk ≤ t, and sn(uj) < a < b ≤ sn(tj) for all j ∈ [k]. We
will use the following simple fact (see [1, Proposition 3.2]): for any positive integers
k, z, a, b with 0 < z < a < b,

Pz
(
Un(σ, [a, b)) ≥ k

)
≤
(a− 1

b

)k
. (4.45)

Next define visit(l, t) to be the number of visits to scale l upto time t, i.e., this is the
supremum over k ∈ N such that one can find (uj , tj)

k
j=1 with u1 < t1 < · · · < uk <

tk ≤ t satisfying scl(sn(uj)) 6= l but scl(sn(tj)) = l. For the random walk sn started at
sn(0) = 1, we set visit(1, 0) = 1 and visit(l, t) = 0 if sn does not enter scale l before
time t. Further, define Mnl = visit(l, σ) (the total number of visits to scale l) and
tjl = #{t < σ : scl(sn(t)) = l, visit(l, t) = j} (the time spent at scale l during the j-th visit).

Note that, if Tnl(σ) 6= 0 occurs, then Mnl ≥ 1, and Tnl(σ) =
∑Mnl

j=1 tjl. Thus, for any m ≥ 2

and x ∈ Z≥2,

P
(
Tnl(σ) > 5xrnl

)
= P

(Mnl∑
j=1

tjl > 5xrnl
)
≤ P(Mnl > m) + P

( m∑
j=1

tjl > 5xrnl
)
. (4.46)
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Now, Mnl > m implies that Tnl(σ) 6= 0, and after the first visit to scale l, the walk
comes back to scale l at least m times before hitting zero. In any of the subsequent
visits, if sn enters scale l from below (this can only happen for l ≥ 3), then that would
imply an upcrossing of the interval [2l−2, 2l−1) has taken place. Otherwise, if sn enters
scale l from above in any of the subsequent visits, then it must be the case that while
leaving the scale l during the previous visit, the walk went from scale l to a higher scale.
This yields an upcrossing of [2l, 2l+1). Therefore, for any l ≥ 3, Mnl > m implies that
Tnl(σ) 6= 0, and after the first visit to scale l and before hitting zero, either at least m/2
many upcrossings of [2l−2, 2l−1) have taken place, or at least m/2 many upcrossings of
[2l, 2l+1) have taken place. Thus, using (4.42), (4.45), and the strong Markov property,
for any l ≥ 3,

P(Mnl > m) ≤ C

2l+m/2
. (4.47)

Next, by the definition of rnl given right above Lemma 4.8, Pz(tjl > krnl) ≤
2−k for any z > 0, which implies that btjl/rnlc can be stochastically dominated by a
Geometric(1/2) random variable. Using the strong Markov property, it follows that for
any z > 0, under Pz,

∑m
j=1btjl/rnlc is stochastically dominated by

∑m
i=1 gi, where (gi)i≥1

is an i.i.d. collection of Geometric(1/2) random variables. Thus, for any z > 0,

Pz

( m∑
j=1

tjl ≥ (k +m)rnl

)
≤ Pz

( m∑
j=1

⌊ tjl
rnl

⌋
> k

)
≤ P

( m∑
i=1

gi > k

)
= P(Bin(k, 1/2) < m) ≤ e−(k−2m)2/2k,

for 2m ≤ k, where the last step follows using standard concentration inequalities such
as [27, Theorem 2.1]. Consequently, using (4.42) and the strong Markov property,
P
(∑m

j=1 tjl ≥ (k+m)rnl
)
≤ 2−(l−1) · e−(k−2m)2/2k for 2m ≤ k. Combining this with (4.46)

and (4.47), and taking k = 4x and m = x yields

P(Tnl(σ) > 5xrnl) ≤ C2−l−C
′x (4.48)

for any l ≥ 3. The proofs for l = 1 and l = 2 follow similar steps. This completes the
proof of Lemma 4.9.

We are now ready to prove Proposition 4.7.

Proof of Proposition 4.7. Recall the definition of sn from (4.28) starting from one, so
that sn(0) = 1. Fix δ > 0. We first estimate the probability of the event Bn that sn hits
δnα/2 before hitting zero. Let γ := min{t : sn(t) ≥ δnα/2, or sn(t) = 0}. By (4.44),

P(Bn) = P
(
sn(γ) ≥ δnα

2

)
≤ 2

δnα
. (4.49)

Let m := max{l ≥ 1 : 2l+1 ≤ δnα}. On Bcn, Hnl(σ) = 0 for l > m. Thus, for any sequence
of positive numbers (bl)l≥1,

P

(
Hn(σ) ≥

m∑
l=1

blrnl
2l−1

)
≤ 2

δnα
+ P

(
Hn(σ) ≥

m∑
l=1

blrnl
2l−1

, and Bcn occurs

)
≤ 2

δnα
+ P

(
Hnl(σ) ≥ blrnl

2l−1
for some 1 ≤ l ≤ m

)
.

(4.50)

Using (4.40) and Lemma 4.9, (4.50) yields

P

(
Hn(σ) ≥

m∑
l=1

blrnl
2l

)
≤ 2

δnα
+

m∑
l=1

P(Tnl(σ) ≥ blrnl) ≤
2

δnα
+ C

m∑
l=1

2−l−C
′bl . (4.51)
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Letting bl = 1
C′ (m− l + 1 + 2 log2(m− l + 1)) for 1 ≤ l ≤ m, and using Lemma 4.8,

m∑
l=1

blrnl
2l−1

≤ C
m∑
l=1

(
m− l + 1 + 2 log2(m− l + 1)

)
2l(τ−3)

= C

m∑
j=1

(j + 2 log2 j)2
(m+1)(τ−3)

2j(τ−3)
≤ C(δnα)τ−3

m∑
j=1

(j + 2 log2 j)

2j(τ−3)

≤ Cnηδτ−3,

(4.52)

where we have used
∑∞
j=1

(j+2 log2 j)

2j(τ−3) <∞ in the last step; the bound in (4.52) holds for
all n ≥ n?, where n? is as in Lemma 4.8. Also,

m∑
l=1

2−l−C
′bl =

m∑
l=1

2−(m+1)(m− l + 1)−2 ≤ 4

δnα

∞∑
l=1

1

l2
. (4.53)

Thus, the claim in Proposition 4.7 follows for n ≥ n? by combining (4.52) and (4.53)
with (4.51). We conclude that the claimed bound holds for n ≥ Nλ by choosing a larger
constant C on the right side of (4.30).

4.4 Proof of Proposition 2.2

Let us now complete the proof of Proposition 2.2 using Proposition 4.4 and Theo-
rem 4.5. We take Kn as in Lemma A.1 so that the results in Section 4.3 hold. Note
that these bounds work for i2(λ) ≤ i ≤ Kn, and we will use path counting arguments
from [7, 25] to bound the diameter for i > Kn. Define Cres(i) to be the connected
component containing vertex i in the graph G>i−1

n = CMn(d) \ [i − 1]. Note that if
∆>K > εnη, then there exists a path of length εnη in CMn(d) avoiding all the vertices
in [K]. Suppose that the minimum index among vertices on that path is i0. Then
diam(Cres(i0)) > εnη. Therefore, ∆>K > εnη implies that either there exists i ∈ (K,Kn)

satisfying diam(Cres(i)) > εnη, or diam(CMn(d) \ [Kn]) > εnη. We will use the following
lemma first to complete the proof of Proposition 2.2 and prove the lemma subsequently:

Lemma 4.10. Under Assumptions 1.1 and 1.3, for any ε > 0, limn→∞P(diam(CMn(d) \
[Kn]) > εnη) = 0, where Kn as in Lemma A.1.

Proof of Proposition 2.2. As defined earlier around (4.17), ∂i(r) denotes the number of
vertices at distance r from the vertex i in the graph G>i−1

n . Recall the definition of ∂̄ in
Proposition 4.4. Thus, Proposition 4.4 and Theorem 4.5 together with Lemma 4.10, yield
that

P (∆>K > εnη) ≤
∑

i∈(K,Kn)

P(∂̄i(εn
η/2) 6= ∅) + P(diam(CMn(d) \ [Kn]) > εnη)

≤ C
∑

i∈(K,Kn)

( di
nα

)
e−εβ

n
i /4 + o(1),

(4.54)

where the last line tends to zero if we first take n → ∞ and then take K → ∞ using
Assumption 1.3 and Lemma A.1 below. Thus the proof of Proposition 2.2 follows.

Proof of Lemma 4.10. Let d′ := (d′i ; i ∈ [n] \ [Kn]), where d′i denotes the degree of i in
CMn(d) \ [Kn]. Note that CMn(d) \ [Kn] is again distributed as a configuration model
conditionally on its degree sequence d′, with the criticality parameter

ν′n =

∑
i>Kn

d′i(d
′
i − 1)∑

i>Kn
d′i

≤
∑
i>Kn

di(di − 1)

`n − 2
∑Kn
i=1 di

≤ 1−Rnn−η, Rn = ω(log n), (4.55)
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where the penultimate step follows using d′i ≤ di and `′n :=
∑
i>Kn

d′i = `n−2
∑Kn
i=1 di, and

the last bound follows from the definition of Kn given in Lemma A.1 (ii) and an argument
identical to that in (4.21). Let P′(·) denote the probability measure conditionally on d′.
We will use path-counting techniques for subcritical configuration models. An argument
similar to the one given in [25, Lemma 6.1] shows that for any l ≥ 1, conditional on d′,
the expected number of paths of length l starting from vertex i is at most

`′nd
′
i(ν
′
n)l−1

`′n − 2l + 3
≤ `′ 2n (ν′n)l−1.

Thus, for any i > Kn,

P′(∃ path of length at least εnη from i in CMn(d) \ [Kn]) ≤ C`′ 2n
∑
l>εnη

(ν′n)l, (4.56)

Thus, for i > Kn, the probability in (4.56) is at most

Cn2(1−Rnn−η)εn
η

/(Rnn
−η) ≤ Cn2+ηe−εRn = o(1/n), (4.57)

since Rn � log n. Therefore,

P′(∃i > Kn : ∃ path of length at least εnη from i in CMn(d) \ [Kn]) = o(1), (4.58)

and the proof of Lemma 4.10 follows.

5 Verification of the assumptions for percolated degrees: Proof
of Theorem 1.7

Let Gn denote the graph obtained by performing percolation with edge retention
probability pc(λ) (defined in (1.12)) on CMn(d). Let dp = (dpi )i∈[n] denote the degree
sequence of Gn. By [19, Lemma 3.2], the law of Gn, conditionally on dp, is the same as
the law of CMn(dp). Thus, it is enough to show that if the original degree sequence
(dn , n ≥ 1) satisfies Assumptions 1.1(i), 1.1(ii) and 1.3, then we can construct (dp , n ≥ 1)

on the same probability space so that Assumption 1.1, (1.6), and Assumption 1.3 are
satisfied almost surely (with possibly different parameters), since then the claim in
Theorem 1.7 will follow from Theorem 1.5.

First, note that E[dpi ] = dipc(λ)(1 + o(1)). Also, given CMn(d), changing the status
of an edge (deleted or retained) can change dpi by at most 2 when the edge is incident
to i. There are at most di choices for such an edge. Thus, the bounded difference
inequality [27, Corollary 2.27] implies, for each fixed i ≥ 1, and for any ε > 0,

P
(
|dpi − dipc(λ)| > εdipc(λ)

)
≤ 2e−

ε2

4 dip
2
c(λ) . (5.1)

In particular, for each i ≥ 1, n−αdpi
d−→ θi/ν as n→∞, which verifies Assumption 1.1 (i).

Next, let Mp
r =

∑
i∈[n](d

p
i )r and Mr =

∑
i∈[n](di)r, where (x)r := x(x−1) · · · (x−r+1).

To verify the moment conditions in Assumption 1.1 (ii), note that (1.5) holds for dp since∑
i>K(dpi )3 ≤

∑
i>K(di)3. We will show that

Mp
1 = (1 +OP(n

−1/2))pc(λ)M1 and Mp
2 = (1 +OP(n

3α
2 −1))pc(λ)2M2. (5.2)

Using (5.2), the first and second moment assumptions in Assumption 1.1 (ii) holds for
the percolated degree sequence. The estimate (5.2) also shows that (1.6) holds. Indeed,

Mp
2

Mp
1

=
pc(λ)M2

M1
(1 +OP(n

3α
2 −1)) = 1 + νλn−η + o(n−η), (5.3)
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where the last step follows using (1.11), (1.12), and the fact that −1 + 3α/2 < −1 + 2α =

−η.
It remains to prove (5.2). Since 1

2

∑
i∈[n] d

p
i has a binomial distribution with parameter

`n/2 and pc(λ), the first asymptotics follows from Chebyshev’s inequality. For the
asymptotics of Mp

2 , we use the following construction of Gn from [19].

Algorithm 2. dp = (dpi )i∈[n] can be generated as follows:

(S0) Sample Rn ∼ Bin(`n/2, pc(λ)).

(S1) Conditionally on Rn, sample a uniform subset of 2Rn half-edges from the set of `n
half-edges. Let I(i)

j denote the indicator that j-th half-edge of i is selected. Then

dpi =
∑di
j=1 I

(i)
j for all i ∈ [n].

Using the above construction, note that

Mp
2 =

∑
i∈[n]

∑
1≤j1 6=j2≤di

I
(i)
j1
I

(i)
j2
. (5.4)

Let P1(·) = P(·|Rn) and similarly define E1[·], Var1(·), and Cov1(·, ·). Then,

E1[Mp
2 ] =

∑
i∈[n]

∑
1≤j1 6=j2≤di

P1(I
(i)
j1

= 1, I
(i)
j2

= 1) =
∑
i∈[n]

∑
1≤j1 6=j2≤di

(
`n−2

2Rn−2

)(
`n

2Rn

)
=
∑
i∈[n]

∑
1≤j1 6=j2≤di

2Rn(2Rn − 1)

`n(`n − 1)
= (1 +OP(n

−1/2))pc(λ)2M2,

(5.5)

where the last step follows using Rn = (1 +OP(n
−1/2))pc(λ)`n/2.

Next, recall that a collection of random variables (X1, . . . , Xt) is called negatively
associated if for every index set I ⊂ [k],

Cov
(
f(Xi, i ∈ I), g(Xi, i ∈ Ic)

)
≤ 0, (5.6)

for all functions f : R|I| 7→ R and g : Rt−|I| 7→ R that are component-wise non-decreasing
( [17, Definition 3]). Then, conditionally on Rn, I(i)

j , j = 1, . . . , di, i ∈ [n] are negatively
associated (cf. [17, Theorem 10]), which yields the almost sure bound

Var1(Mp
2 ) ≤

∑
i∈[n]

∑
1≤j1 6=j2≤di

Var1(I
(i)
j1
I

(i)
j2

) +
∑
i∈[n]

∑
1≤j1 6=j2≤di
1≤j3 6=j4≤di

|{j1,j2}∩{j3,j4}|=1

Cov1(I
(i)
j1
I

(i)
j2
, I

(i)
j3
I

(i)
j4

),

(5.7)

since the contribution of |{j1, j2}∩{j3, j4}| = 0 can be ignored due to negative association.

Also, Var1(I
(i)
j1
I

(i)
j2

) ≤ 1 and |Cov1(I
(i)
j1
I

(i)
j2
, I

(i)
j3
I

(i)
j4

)| ≤ (Var1(I
(i)
j1
I

(i)
j2

)Var1(I
(i)
j3
I

(i)
j4

))1/2 ≤ 1.
Therefore,

Var1(Mp
2 ) ≤

∑
i∈[n]

d2
i + 4

∑
i∈[n]

d3
i = O(n3α). (5.8)

Thus, for any A > 0,

P
(
|Mp

2 − E1[Mp
2 ]| > An3α/2

)
= E

[
P1

(
|Mp

2 − E1[Mp
2 ]| > An3α/2

)]
≤
E
[
Var1(Mp

2 )
]

A2n3α
, (5.9)

which can be made arbitrarily small by choosing A > 0 large. Thus, we conclude the
asymptotics of Mp

2 in (5.2) by using (5.5) and (5.9).

EJP 27 (2022), paper 103.
Page 23/29

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP821
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Global lower mass-bound for heavy-tailed critical configuration models

Finally, we need to show convergence in distribution of empirical measure of dp to
finish verifying Assumptions 1.1 (ii) and (iii). Let npk = #{i : dpi = k}, and np≥k =

∑
r≥k n

p
r .

It suffices to show that

np≥k
n

d−→ P(Dp ≥ k) for all k ≥ 1, (5.10)

where Dp satisfies
(
Dp | D = l

)
∼ Bin(l, 1/ν), for all l ≥ 1. Let Vn be a uniformly chosen

vertex and Dp
n = dpVn and Dn = dVn . By the construction in Algorithm 2,

P(Dp
n = k | Dn = l, Rn) =

(
l
k

)(
`n−l

2Rn−k
)(

`n
2Rn

) = (1 + o(1))

(
l

k

)(
2Rn
`n

)k(
1− 2Rn

`n

)l−k
= (1 + oP(1))

(
l

k

)(
1

ν

)k(
1− 1

ν

)l−k
,

(5.11)

where in the final step we have used that Rn = pc(λ)`n/2(1 + oP(1)) and pc(λ) = ν−1(1 +

o(1)). Thus,

E

[
npk
n

∣∣∣ Rn] = P(Dp
n = k | Rn)

d−→ P(Dp = k). (5.12)

Moreover, note that dpi =
∑di
j=1 I

(i)
j , and the definition of negative association in (5.6)

allows us to conclude negative correlation between increasing functions of I(i)
j that

depend on disjoint sets of indices. Therefore,

Var
(
np≥k | Rn

)
= Var

( ∑
i : di≥k

1{dpi≥k}
∣∣∣ Rn) ≤ ∑

i : di≥k

Var
(
1{dpi≥k} | Rn

)
≤ n, (5.13)

and thus E[Var(np≥k/n | Rn)] = O(1/n). This together with (5.12) yields (5.10).
We finally verify that Assumption 1.3 holds with high probability. Let the constants c1

and c0 be as in Assumption 1.3. Let c′1 := 9c1ν. It is enough to show that there exists a
deterministic constant c′0 > 0 such that

P
( 1

n

∑
i∈[n]

dpi 1{l < dpi ≤ c
′
1l} ≥

c′0
lτ−2

for all 1 ≤ l ≤ d1/c
′
1

)
→ 1 as n→∞. (5.14)

Write
∑
∗ for

∑
i:8l<dipc(λ)≤8c1l

. Then, for 1 ≤ l ≤ d1/c
′
1 and all large n,

1

n

∑
i∈[n]

E
[
dpi 1{l < dpi ≤ c

′
1l}
]
≥ 1

n

∑
∗ E
[
dpi 1{l < dpi ≤ c

′
1l}
]

=
1

n

∑
∗ E
[
dpi 1{l < dpi }

]
,

(5.15)

where the last step uses the fact that when dipc(λ) ≤ 8c1l, we have dpi ≤ di ≤ 8c1l/pc(λ) ≤
c′1l for all large n. Let Xi ∼ Bin(bdi/2c, pc(λ)). Then dpi is stochastically larger than Xi.
Using (5.15), we see that for 1 ≤ l ≤ d1/c

′
1 and all large n,

1

n

∑
i∈[n]

E
[
dpi 1{l < dpi ≤ c

′
1l}
]
≥ 1

n

∑
∗ E
[
Xi · 1{l < Xi}

]
≥ 1

n

∑
∗ E[Xi]P(Xi > l) ≥ 1

n

∑
∗ E[Xi]P

(
Xi ≥ bbdi/2cpc(λ)c

)
≥ 1

n

∑
∗ E[Xi] ·

1

2
≥ C

n

∑
∗ di ≥

C ′

lτ−2
,

(5.16)
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where the third step uses l < dipc(λ)/8 ≤ bbdi/2cpc(λ)c, and the final step follows using
Assumption 1.3.

Now let F1 :=
∑
i∈[n] d

p
i 1{l < dpi ≤ c′1l} and F2 := E[F1|CMn(d)]. We will apply the

bounded difference inequality from [27, Corollary 2.27]. Given the graph CMn(d), if we
keep one extra edge in the percolated graph, then F1 can change by at most 2c′1l. Thus,
for any ε > 0,

P
(
|F1 − F2| >

nε

lτ−2

∣∣∣ CMn(d)
)
≤ 2 exp

(
− n2ε2

l2(τ−2)(2c′1l)
2 · `n2

)
≤ 2e−Cε

2nl−2(τ−1)

. (5.17)

Also, we can apply concentration inequalities such as [12, Lemma 2.5] to conclude that

P
(
|F2 − E[F2]| > nε

lτ−2

)
≤ 2e−Cε

2nl−2(τ−1)

. (5.18)

Combining (5.17) and (5.18) together with (5.16) shows that there exists an ε0 > 0 such
that (5.14) holds if we replace “for all 1 ≤ l ≤ d1/c

′
1” by “for all 1 ≤ l ≤ nε0 .” For l ≥ nε0 ,

we use (5.1) together with a union bound to complete the proof of (5.14).

A A technical lemma

Lemma A.1. Let βni = n−2α
∑i−1
j=1 d

2
j . Then Assumption 1.1(i), (1.5), and Assumption 1.3

imply the following:

(i) For all ε > 0,

lim
K→∞

lim sup
n→∞

∑
i>K

( di
nα

)
× e−εβ

n
i = 0. (A.1)

(ii) There exists a sequence (Kn)n≥1 with Kn → ∞, and Kn = o(nα) such that βnKn >

log3 n for all large n.

Proof. We will use C0, C1, . . . etc. as generic notation for positive constants that do
not depend on n. Recall Assumption 1.3. Let θi,n := n−αdi, i ∈ [n]. We first claim that
Assumption 1.3 implies

min
2≤i≤n

θτ−2
i,n

i−1∑
j=1

θj,n ≥ C0. (A.2)

To see this, let 1 = i1 < i2 < i3 < . . . be the indices such that dik−1
= dik−1+1 = . . . =

dik−1 > dik for k ≥ 2. Then for k ≥ 2,

1

`n

ik−1∑
j=1

dj = P(D∗n > dik) ≥ P
(
dik < D∗n ≤ c1dik

)
≥ c0(dik)−(τ−2),

and consequently,

min
k
θτ−2
ik,n

ik−1∑
j=1

θj,n ≥ C0. (A.3)

If ik > i ≥ ik−1, then θτ−2
i,n

∑i−1
j=1 θj,n = θτ−2

ik−1,n

∑i−1
j=1 θj,n ≥ θτ−2

ik−1,n

∑ik−1−1
j=1 θj,n. Thus we

conclude (A.2) from (A.3).
Next, define

fn(x) :=

{
1

θi+1,n
, if

∑i−1
j=1 θj,n ≤ x <

∑i
j=1 θj,n for some i ∈ [n− 1],

0 , if x ≥
∑n−1
j=1 θj,n,

(A.4)
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and

gn(x) :=

{∑i
j=1 θ

2
j,n , if

∑i−1
j=1 θj,n ≤ x <

∑i
j=1 θj,n for some i ∈ [n],

0 , if x ≥
∑n
j=1 θj,n .

(A.5)

Since
∑i
j=1 θj,n ≤ 2

∑i−1
j=1 θj,n for 2 ≤ i ≤ n, we have, using (A.2), θτ−2

i+1,n

∑i−1
j=1 θj,n ≥ C0/2.

Therefore, fn(x)−(τ−2) × 2x ≥ C0 for any θ1,n ≤ x <
∑n−1
j=1 θj,n, and consequently,

fn(x) ≤ C1x
1

τ−2 for θ1,n ≤ x <
n−1∑
j=1

θj,n. (A.6)

Next, for i ∈ [n− 1],

i∑
j=1

θ2
j,n ≥

i∑
j=1

θj,nθj+1,n = θ1,nθ2,n +

∫ ∑i
j=1 θj,n

θ1,n

dx

fn(x)

≥ C2

∫ ∑i
j=1 θj,n

θ1,n

dx

x1/(τ−2)
≥ C3

( i∑
j=1

θj,n

) τ−3
τ−2

− C4.

(A.7)

Therefore,

gn(x) ≥ C3x
τ−3
τ−2 − C4 for 0 ≤ x <

n−1∑
j=1

θj,n. (A.8)

Now,

n−1∑
i=K

θi,ne−ε
∑i
j=1 θ

2
j,n =

∫ ∑n−1
j=1 θj,n∑K−1
j=1 θj,n

e−εgn(x)dx ≤ C5

∫ ∞
∑K−1
j=1 θj,n

e−εC3x
τ−3
τ−2

dx, (A.9)

and the above integral is finite for each fixed K ≥ 1. By Assumption 1.1(i),
∑K−1
j=1 θj,n →∑K−1

j=1 θj as n→∞, which diverges if we take K →∞. Thus, the proof of (A.1) follows.

We next prove Lemma A.1(ii). Let Kn := dnα/2e. Suppose that βnKn ≤ log3 n. Us-
ing (A.8), it follows that

log3 n ≥ βnKn ≥ C3

( Kn∑
j=1

θj,n

) τ−3
τ−2

− C4, (A.10)

and an application of (A.2) yields

C4 + log3 n ≥ C(θKn+1,n)−(τ−3) =⇒ θKn,n ≥
C ′

(log n)
3

τ−3

. (A.11)

Therefore,
∑Kn
i=1 θ

3
i,n ≥ C ′ 3Kn(log n)−9/(τ−3). Thus, if βnKn ≤ log3 n for infinitely many n,

then

lim inf
n→∞

n−3α
∑
i∈[n]

d3
i ≥ lim inf

n→∞

Kn∑
i=1

θ3
i,n =∞. (A.12)

On the other hand, Assumption 1.1(i) and (1.5) imply that supn n
−3α

∑
i∈[n] d

3
i <∞. This

leads to a contradiction. Thus the claim in Lemma A.1 (ii) also follows.
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B Degree sequence satisfying compactness criterion

In this section, we prove Proposition 1.11.

Proof of Proposition 1.11. Define d(1,n) := (d(1,n)

i )i∈[n] with d(1,n)

i := dnαθie for i ∈ [n]. Let
d(2,n) = (d(2,n)

i )i∈[n] be such that, for some 0 < K1 < K2 <∞,

K1

(n
i

)α
≤ d(2,n)

i ≤ K2

(n
i

)α
, for i ∈ [n], (B.1)

and Assumption 1.1(ii) and (1.11) are satisfied. The idea is to change the high-degree
vertices of d(2,n) by those of d(1,n). To this end, let

i(1,n) := max
{
i ≥ 1: d(1,n)

i ≥ (
n

log n
)α
}

and i(2,n) := max
{
i ≥ 1: d(2,n)

i ≥ (
n

log n
)α
}
.

For two finite sequences (xi) and (yj), we write Sort-Merge((xi), (yj)) as the sequence
obtained by concatenating (xi) and (yj) and then sorting the sequence in a nonincreasing
order. We define

d(n) = (d(n)

i ) := Sort-Merge
(

(d(1,n)

i )
i(1,n)

i=1 , (d(2,n)

i )ni=i(2,n)+1

)
. (B.2)

Note that i(1,n) →∞. Also,

∞ >

∞∑
i=1

θ3
i ≥

i(1,n)∑
i=1

θ3
i ≥ i(1,n)θ

3
i(1,n)

≥ i(1,n)

( 1

2 log n

)3α

, (B.3)

and therefore i(1,n) ≤ C(log n)3α. Further, it follows from (B.1) that i(2,n) ≤ K
1/α
2 (log n).

Therefore, the degree sequence in (B.2) has length n(1 + o(1)).
Since i(1,n) → ∞, Assumption 1.1 (i) is satisfied by (d(n))n≥1. Also, for each fixed

K ≥ 1,

n−3α
∑
i>K

(d(n)

i )3 ≤
∑
i>K

8θ3
i + n−3α

∑
i>K

(d(2,n)

i )3, (B.4)

and thus (1.5) holds. Next, it can be easily checked that the remaining conditions in
Assumption 1.1(ii) and (1.11) hold for (d(n))n≥1 by making use of the fact that (d(2,n))n≥1

satisfies Assumption 1.1(ii) and (1.11).
Finally we have to verify that (d(n))n≥1 satisfies Assumption 1.3. It suffices to show

that there exist C > 1 and C ′ > 0 such that for all n ≥ 1,∑
i

d(n)

i 1
{
l < d(n)

i ≤ Cl
}
≥ C ′n/lτ−2 for 1 ≤ l < d(n)

1 .

This can be proved in a straightforward way by using (1.18), (B.1), and the definition of
d(n) given in (B.2). We omit the details.
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