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Abstract

We obtain a new lower bound of 0.06576 for the 1-entanglement critical probability (in
dimension 3), and prove that the critical point for the existence of a sphere surrounding
the origin and intersecting only closed bonds in Zd is greater than 1

8(d−1)
, d ≥ 3. This

substantially improves the previous lower bounds and gives the correct order of
magnitude for large d.
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1 Introduction

We start this paper by briefly and informally introducing our main theorem.
While for the bond percolation model in Z3 one generally deals with the existence

of open paths, Kantor and Hassold [13] proposed to study an alternative notion called
entanglement (a notion that comes from physics). In this paper, we follow the definition
of 1-entanglement introduced by Grimmett and Holroyd [8], which, informally, asks for
the existence of an infinite sequence of finite clusters linked like rings of a chain.

The notion of 1-entanglement is three dimensional by essence. As a natural gener-
alisation, in dimension 3 and higher, Grimmett and Holroyd introduced the concept of
sphere intersecting only closed bonds. Recall that a subset of Rd is a sphere, in the
sense of [8], if it is homeomorphic to the unit euclidean sphere Sd−1 := {(x1, . . . , xd) ∈
Rd : x2

1 + . . . x2
d = 1} and simplicial complex. Denote by S the event that there exists a

sphere intersecting only closed bonds and with the origin in its inside and put

pSc := inf{p ∈ [0, 1] such that Pp(S) = 0}

for the corresponding critical probability.
In dimension 3 the notion of sphere intersecting only closed bonds coincides with the

notion of 1-entanglement. In that case, following [8], we write p1
e := pSc (see below for an

explanation of the index 1 in such a notation).
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Entanglement percolation and spheres in Zd

Our aim in this article is to improve upon known results on pSc for all d ≥ 3, hence
including the three dimensional 1-entanglement notion.

As a first main result, we will prove the following:

Theorem 1.1. for all d ≥ 3, it holds

pSc ≥
1

8(d− 1)
. (1.1)

See Theorem 2.1 below for a more complete statement. The previous (and unique)
known lower bound on pSc is due to Grimmett and Holroyd [8] and states that pSc ≥ cd

d2

with cd ≈ 1/4 in the limit d→∞. In addition to (1.1), notice that, since an infinite cluster
prevents the existence of a sphere, pSc ≤ pc, where pc is the usual bond percolation
critical probability. Together with pc ≤ c′d/d with c′d ≈ 1/2 for d tending to infinity [10],
we thus obtain that

1

8
≤ lim inf

d→∞
dpSc ≤ lim sup

d→∞
dpSc ≤

1

2

which shows that 1/d is the correct behavior of pSc for large d. In fact, the lower bound
pSc ≥ 1/(8(d − 1)) above improves upon known results not only for large d but also for
any fixed d ≥ 3, see Remark 2.2 below.

One of the ideas of Grimmett and Holroyd in their analysis of pSc is to construct a
certain class of spheres belonging to the event S. Such spheres appear to be star-shaped,
which reveals to be too restrictive. Motivated by this observation, our approach will
consist in constructing a more refined class of spheres (not necessarily star-shaped)
belonging to S.

Specifying to the dimension d = 3, the above lower bound on pSc = p1
e leads to

p1
e ≥ 1/16 = 0.0625 which already improves upon the best known result p1

e ≥ 0, 04453 [8].
In fact, using a more careful analysis on the number of certain paths, by means of large
deviations on Markov chains, we will prove the following theorem which constitutes our
second main result:

Theorem 1.2. The 1-entanglement critical probability verifies

p1
e ≥ 0.06576.

The first lower bound on p1
e was p1

e ≥ 1/15616 [11], obtained by a nice and tricky
construction of spheres. Then Atapour and Madras [2] improved it to 1/597, by a
combinatorial argument. Finally Grimmett and Holroyd proved p1

e ≥ 0, 04453. Let us
point out that there is still a long way to go in order to obtain a lower bound close to the
expected value of p1

e. Indeed, numerical investigations indicate that pc − p1
e should be of

order 10−7 (and at least 1.8 · 10−7) [13], while pc is estimated with simulations to be near
0.248812 [15]. Therefore, one expects p1

e to be about 0.24881...
In the next section we introduce more formally the different notions of interest for

us, state a more complete theorem than Theorem 1.1 and add some more comments on
the literature.

2 Percolation, spheres, entanglement

We consider the lattice Zd, whose elements are called vertices, and pairs of vertices
of euclidean distance one are called edges. Two vertices of an edge are said to be
neighbours. For p ∈ (0, 1), in the bond percolation model on Zd, edges are open with
probability p and closed with probability 1− p, independently one of each other. For a
detailed exposition of the percolation model, we refer the reader to [6].

The terms “bond” and “edge” are very similar. However with “bond” the intention is
to insist on the topological embedding in Rd (a bond refers to the continuous segment in
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Entanglement percolation and spheres in Zd

Rd joining two neighbours of Zd), whereas an “edge” refers only to a pair of neighbours
of Zd. We will say that a bond is open or closed according to the state of its corresponding
edge.

As already mentioned, a sphere is a simplicial complex subset of Rd that is homeo-
morphic to the unit euclidean sphere Sd−1 := {(x1, . . . , xd) ∈ Rd : x2

1 + · · ·+ x2
d = 1}. A

basic example of a sphere is given by the surface of a parallepiped. The complement
of a sphere has a unique bounded component, which we call the inside of the sphere.
Spheres considered in this article will not intersect Zd. Our goal will be to select a
sphere intersecting only closed bonds.

Following [8], we set

rad[A] = sup

{
d∑
i=1

|xi|, (x1, . . . , xd) ∈ A

}

for the radius of A ⊂ Rd (understood from the origin).
We are now in position to state a more complete version of Theorem 1.1.

Theorem 2.1. For all dimension d ≥ 3, it holds

pSc ≥
1

8(d− 1)
. (2.1)

Moreover, for all p < 1
8(d−1) and all α ∈ (

√
8p(d− 1), 1), there exist C > 0 and S ∈ S such

that
Pp(rad[S] ≥ r) ≤ Cαr, ∀r > 0. (2.2)

In the next remark we compare our result to [8].

Remark 2.2. Let σ(k) be the number of self-avoiding paths with length k in Zd and
let (see e.g. [16]) µd := limk→∞ σ(k)1/k be the connective constant1 of Zd. In [8] the
authors proved (among other things) that pSc ≥ µ−2

d . Since, see for example [14, 16],
limd→∞

µd

2d = 1, their result reads as pSc ≥ 1/(4d2), asymptotically. Furthermore, the
exact lower bounds of the connective constant provided in [3], [12] and [5] for d ≤ 6,
and the trivial fact that µd ≥ d, ensure that (2.1) is actually an improvement on pSc ≥ µ−2

d

for all dimensions.

Let us briefly explain the notation p1
e for the 1-entanglement critical probability. As

already mentioned, entanglement is a notion specific to the dimension d = 3. For a
finite set of bonds there is no uncertainty, at least heuristically, about what we consider
entangled or not. But the picture get more complicated for an infinite set of bonds. In [7],
the authors define the notion of entanglement systems, which leads to a family having
two extremal elements, E0 and E1, the latter being the one considered in this article.

Given a set of edges A, denote by [A] the union of its bonds (recall that a bond refers
to the continuous segment joining the end points of the corresponding edge). A set of
edges A, finite or infinite, is said to be in E1 if there is no sphere separating [A] into
two disconnected parts. As a direct consequence of the definition we observe that a
connected sets of edges A (finite or infinite) belong to E1. See Figure 1 for an example of
set in E1 and of set not in E1.

We say that there is 1-entanglement percolation if there is an infinite set of open
edges containing the origin that is an element of E1. Hence if a sphere with the origin
in its inside intersects only closed bonds, there is no 1-entanglement percolation. Note
moreover that if there is percolation in the usual sense (i.e. an infinite path of open
edges starting from the origin), then there is also 1-entanglement percolation.

1We follow here the terminology found for exemple in [6] or [16]. Historically, the connective constant was
defined by Hammersley [9] as limk→∞(log σ(k))/k = log(µd)
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Figure 1: Left: entangled and not connected set. Right: not entangled set.

Figure 2: A set of plaquettes that is not a sphere, and how to obtain a sphere.

We end this section with a sketch of our proof.

In order to explain our main ingredient, which is based on an improvement of the
ideas from [8], we need first to introduce the notion of plaquette. A plaquette is any face
of a cube of the form x+ [− 1

2 ,
1
2 ]d with x ∈ Zd (and so is a (d− 1)-dimensional subet of

Rd). A plaquette intersects a unique bond (and is orthogonal to it), and vice versa, so
that there is a one to one correspondence between bonds and plaquettes. Based on this
correspondence, a plaquette is open/closed according to the state of its corresponding
bond.

A simple but key observation is that a sphere of closed plaquettes is necessarily
intersecting only closed bonds while the existence of a sphere intersecting only closed
bonds does not imply the existence of a sphere of closed plaquettes. To convince the
reader, one can consider, in Z3, a set consisting of the six vertices (0, 0, 0), (1, 0, 0),
(0, 1, 0), (1, 1, 0), (0, 0, 1) and (1, 1, 1), that is to say four vertices forming a square on the
first floor, and two vertices on the second floor, these two being not neighbours. If one
considers the set of plaquettes corresponding to the bonds on the outer border of this
set, one can see that this is not a sphere due to the intersection of some plaquettes on
the second floor. Nevertheless, taking a surface closer to the vertices, one could imagine
a sphere intersecting only the bonds of the outer border, as in figure 2. This type of
configurations shows that spheres of closed plaquettes are too constrained and therefore
potentially not adapted to the study of pSc .

To ensure the presence of a sphere of plaquettes, Grimmett and Holroyd [8] intro-
duced a notion of good paths. Given the sites 0 = ν0, ν1, . . . , νk of a self-avoiding path,
they called it good if, for each i satisfying ‖νi−1‖1 < ‖νi‖1, the edge 〈νi−1, νi〉 is open
(where ‖x‖1 :=

∑d
i=1 |xi| is the `1-norm). In particular a good path can move back

(according to the `1-norm) toward the origin without any constraint (and move away
from the origin through open edges).

One of the main ideas of the present article is to modify the notion of good paths,
asking for more constraints, therefore leading to a smaller family (of such good paths).
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Figure 3: Starting from (4, 2, 3), the sets of vertices potentially attained with only closed
edges: previous definition of good paths and the current one.

Instead of taking the open edges union all the oriented edges pointing “toward” 0, we
take the open edges union of the oriented edges pointing toward 0 only along the last
non-null coordinate. That is to say, the path is good (in our sense) if for each i, either
the edge 〈νi−1, νi〉 is open, or νi = νi−1 − ej(νi−1) where j is the last non-null coordinate
of νi−1 and ej(v) = sgn(vj)ej . One can see in figure 3 the difference between the two
definitions of good paths. We will show in section 3 how good paths are related to the
event S.

As this will become clear after Section 3, in order to obtain the desired lower bound
on pSc (of Theorem 2.1), one needs to bound the probability of the existence of good paths.
In particular, one needs to show that there are not too many good paths of given length.
We achieve this, by means of large deviations, in section 4, by carefully controlling the
number of closed edges in any good path.

Finally, let us mention that the method developed in section 4 yields to a closed form
lower bound on pSc in any dimension. This can however be improved numerically, a
strategy that we achieve in section 5 and that relies on the study of a Markov chain
together with the use of large deviations techniques, proving theorem 1.2. Notice that
our procedure, to improve the bound on pSc , applies to all dimensions as illustrated at
the end of the section for d = 4 and d = 5.

3 Descending sets and spheres

We define in this section a class of finite sets of Zd, which we will be able to surround
by a sphere. Roughly speaking, if x = (x1, . . . , xd) is an element of such a set, then the
segments [(x1, . . . , xi, 0, . . . , 0), (x1, . . . , xi−1, 0, . . . , 0)] will be contained also in the set.

Definition 3.1. For x in Rd \ {0}, write n(x) for the index of the last non-null coordinate
of x. For x, y ∈ Rd, write y � x if the following items hold:

• ∀i ∈ [1, d], xiyi ≥ 0

• ∀i ∈ [1, d], |yi| ≤ |xi|
• ∀i < n(y), yi = xi

We say that K ⊂ Zd is a descending set if it is a finite set containing 0, with the
property that if x ∈ K, then every y ∈ Zd with y � x lies in K.

As an example of the first notion just defined, on the right panel of figure 3, the cubes
corrrespond to all the vertices y such that y � (4, 2, 3).

We now give the adapted version of Proposition 3 of [8]:
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Proposition 3.2. Let d ≥ 2. Suppose K ⊂ Zd is a descending set. Let E be the bonds
that have one endvertex in K and the other in Kc. Then there exists a sphere (a simplicial
complex homeomorph to Sd−1) in Rd that intersects all the bonds of E , and no other one.

In order to prove this proposition, we shall use a certain homeomorphism on the
surface of a hypercube. Consider the hypercube [−1, 1]d, and enumerate its 2d faces Fi
by letting Fi = [−1, 1]i−1 × {1} × [−1, 1]d−i for i ∈ [1, d], and Fi = [−1, 1]i−d−1 × {−1} ×
[−1, 1]2d−i for i ∈ [d+ 1, 2d].

Lemma 3.3. Let Ĩ ⊂ {1, 2, . . . , d − 1, d + 1, d + 2, . . . , 2d − 1}, I = Ĩ ∪ {2d}, and J is
the complementary of I in [1, 2d]. Let G =

⋃
i∈I Fi and H =

⋃
i∈J Fi. There exists a

homeomorphism between G and H that is the identity on the intersection G ∩H.

The set G contains the face on the bottom (the 2d-th face), while H contains the
face on the top (the d-th face). Using dilations and rotations, we will use this lemma on
parallelepipeds and the other directions, not only the last one. The key element is that
there are two opposite faces such that G and H contain each one of them.

Proof. We begin with a transformation of the hypercube B = [−1, 1]d. For I as in the
lemma, x = (x1, . . . , xd) ∈ B, let

fI(x1, . . . , xd) = (g1
I (x1, xd), g

2
I (x2, xd), . . . , g

d−1
I (xd−1, xd), xd),

with, for i ∈ [1, d− 1],

giI(y, z) =



1
4 (z + 3)y if

∣∣∣∣∣∣
i ∈ I and y ≥ 0

or
i+ d ∈ I and y ≤ 0

1
4 (−z + 3)y if

∣∣∣∣∣∣
i /∈ I and y ≥ 0

or
i+ d /∈ I and y ≤ 0

For i ∈ [1, 2d], define the half-space Hi
I by

Hd
I = {x ∈ Rd such that xd ≤ 1}

H2d
I = {x ∈ Rd such that xd ≥ −1}

and for i different from d and 2d :

Hi
I = {x ∈ Rd such that xi ≤

1

4
(xd + 3)} if i ≤ d, i ∈ I

Hi
I = {x ∈ Rd such that xi−d ≥ −

1

4
(xd + 3)} if i > d, i ∈ I

Hi
I = {x ∈ Rd such that xi ≤

1

4
(−xd + 3)} if i ≤ d, i /∈ I

Hi
I = {x ∈ Rd such that xi−d ≥ −

1

4
(−xd + 3)} if i > d, i /∈ I

One can show that fI is a homeomorphism from B to B̃I =
⋂2d
i=1H

i
I . To define the inverse

application of fI , one would use 4
z+3y and 4

−z+3y in replacement of the definition of giI .

The set B̃I is a convex polyhedron. For i ∈ [1, 2d], we denote by F̃i the face of B̃I
included in Hi

I , face which can be showed to be the image of Fi by fI . For each i ∈ I, the
outer vector of F̃i points downwards according to the last coordinate, whereas, for i /∈ I,
the outer vector of F̃i points upwards. Now there is a homeomorphism from G̃ =

⋃
i∈I F̃i

to H̃ =
⋃
i/∈I F̃i, simply by taking the projection of G̃ onto H̃ along the last dimension.

This projection corresponds to the identity on the intersection G̃ ∩ H̃. Applying now the
inverse of fI , we obtain a homoemorphism between G and H which is the identity on
their intersection, as illustrated on figure 4.
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f3,4

H

G

O

(1,−1)

(−1, 1)

vertical
projection

B̃3,4

O

(1,−1)

(−0.5,−1)

(−1, 1)

f−1
3,4O O

Figure 4: Homeomorphism between two sets of faces.

Proof of Proposition 3.2. For the ease of the exposition, we restrict ourselves to the case
where K ⊂ Zd+. Define a sequence (Ki)0≤i≤d by

Ki = {x ∈ K : xj = 0 ∀j > i}. (3.1)

We will build an increasing sequence of volume (Ai)0≤i≤d such that for each i, Ai ∩Zd =

Ki. In order to achieve this, we will also use for each coordinate i two sequences
(Ki,n)n≤ni and (Ai,n)i≤ni which will be the transitions between i and i + 1. These
sequences will satisfy

Ai,n ∩Zd = Ki,n (3.2)

Ki,0 = Ki−1 (3.3)

Ai,0 = Ai−1 (3.4)

Ki,ni = Ki (3.5)

Ai,ni
= Ai (3.6)

So we have K0 = {0}, and we take

A0 = [−0.4, 0.4]d.

Note that the origin is in the interior of A0. For x ∈ Zd and i ∈ [1, d], we shall make use
of the boxes

B(x, i) = x+ [−0.4, 0.4]i−1 × [−0.6, 0.4]× [−0.4, 0.4]d−i.

We will start the following procedure with i = 1 and n = 0.
Let Ki,n and Ai,n be fixed. Define

Y = {x ∈ Ki : xi = n+ 1}.

If Y is not empty, we let
Ki,n+1 = Ki,n ∪ Y,

and
A∗i,n = Ai,n ∪ {B(x, i) for x ∈ Y }.

For x, y distinct vertices in Y , B(x, i) and B(y, i) do not intersect. Lets take Y ′ ⊂ Y ,
Y ′ 6= Y and x ∈ Y \ Y ′. The intersection between B(x, i) and Ai,n ∪ {B(y, i) for y ∈ Y ′}
is simply B(x, i)∩Ai,n. Since, by definition of a descending set, x− ei is in Ki,n, we have
B(x− ei, i) ⊂ Ai,n and

B(x, i) ∩Ai,n = x+ [−0.4, 0.4]i−1 × {−0.6} × [−0.4, 0.4]d−i,
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A0 = A1,0

A1,4 = A1 = A2,0

We do not show A1,1, . . . , A1,3

A∗2,0 A2,1

A∗2,1 = A2,2 = A2

Figure 5: Example for the sequences (Ai), (A∗i,n) and (Ai,n) in dimension two.

which is the (i+ d)th face of B(x, i). By lemma 3.3, there is a homeomorphism between
this face of B(x, i) to the union of its other faces, homeomorphism that is the identity on
the intersection of these two sets of faces. So each time we add a box B(x, i) with x ∈ Y ,
the surfaces of the sets remain homeomorph, and by iteration ∂A∗i,n is homeomorph to
∂Ai,n. However the set A∗i,n does not fill all our requirements, as its surface intersects
the bonds between neighbour vertices of Y . So we have to enhance this set before
obtaining Ai,n+1.

A representation of the set of neighbour vertices in Y is

Γ = {(x, k), x ∈ Y, k ∈ [1, i− 1] such that x+ ek ∈ Y },

where we have used the fact that for all vertex x in Y , xi is constant (and equals to n+ 1),
and xj = 0 for j > i. For (x, k) ∈ Γ, let

B(x, k, i) = x+ [−0.4, 0.4]k−1 × [0.4, 0.6]

×[−0.4, 0.4]i−k−1 × [−0.6, 0.4]× [−0.4, 0.4]d−i,

and define

Ai,n+1 = A∗i,n ∪
⋃

(x,k)∈Γ

B(x, k, i).

The box B(x, k, i) will serve as a bridge between B(x, i) and B(x + ek, i). One can see
an example of it on the fourth panel of figure 5, at the step A2,1. For (x, k), (x′, k′) two
distinct elements of Γ, B(x, k, i) and B(x′, k′, i) do not intersect. Lets take Γ′ ⊂ Γ, Γ′ 6= Γ,
(x, k) ∈ Γ \ Γ′, and define

A∗,Γ
′

i,n = A∗i,n ∪
⋃

(x′,k′)∈Γ′

B(x′, k′, i).
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Due to the preceding remark,

A∗,Γ
′

i,n ∩B(x, k, i) = A∗i,n ∩B(x, k, i)

= x+
(
[−0.4, 0.4]k−1 × [0.4, 0.6]

×[−0.4, 0.4]i−k−1 × {−0.6} × [−0.4, 0.4]d−i

∪[−0.4, 0.4]k−1 × {0.4} × [−0.4, 0.4]i−k−1

×[−0.6, 0.4]× [−0.4, 0.4]d−i

∪[−0.4, 0.4]k−1 × {0.6} × [−0.4, 0.4]i−k−1

×[−0.6, 0.4]× [−0.4, 0.4]d−i
)

The intersection was decomposed on Ai,n∩B(x, k, i), B(x, i)∩B(x, k, i) and B(x+ ek, i)∩
B(x, k, i). We can apply lemma 3.3 again, implying that the surface of A∗,Γ

′

i,n ∪B(x, k, i) is

homeomorph to A∗,Γ
′

i,n , and by iteration Ai,n+1 is homeomorph to A∗i,n.
If Y is empty, we let ni = n, and by definition of a descending set, we have indeed

Ki,ni
= Ki. If i < d, we follow the same instructions, simply incrementing i to i+ 1 and

resetting n to 0. If i = d, then the algorithm is finished. On figure 5 one can see that for
A∗i,n we add boxes around the vertices just above Ai,n, and then we fill the gapes to get
Ai,n+1.

At the end of the previous algorithm, we have that Ad contains Kd = K. Since
S1,0 = ∂A0 is homeomorph to a sphere, by an immediate recurrence S := ∂Ad is
homeomorph to a sphere. Let us consider two neighbour vertices x and y in K, take i
the smallest integer such that the two vertices are in Ki, and suppose to simplify that
the coordinates of x are smaller than the ones of y. There are three cases:

1. If xi = 0, then x ∈ Kj for a certain j < i. In this case, the boxes B(x, j) and B(y, i)

are in Ad, and the bond 〈x, y〉 is contained in the union of these two boxes.

2. If xi > 0 and xi < yi, then the boxes B(x, i) and B(y, i) are in Ad, and the bond
〈x, y〉 is contained in the union of these two boxes.

3. If xi > 0 and xi = yi, then the boxes B(x, i), B(y, i) and B(x, i, xi) are in Ad, and
the bond 〈x, y〉 is contained in the union of these three boxes.

Hence the surface of Ad does not intersect bonds relying two vertices of K. Since
d∞(Ad,K) < 1, the surface does not intersect bonds between vertices that are both
outside K. To conclude, the surface of Ad, which is homeomorph to a sphere, intersects
only bonds that have one endvertex in K and the other outside K.

4 Good paths

This section finishes the proof of theorem 2.1. We give a definition for good paths
which will generate more paths than just the open paths, and such that, according
to the previous section, the set attained from the origin will be enclosed in a sphere
intersecting only its outer bonds, these bonds being closed.

Definition 4.1. A path (0 = ν0, ν1, . . . , νk) in Zd is called a good path if for every i,
1 ≤ i ≤ k − 1, either the edge 〈νi−1, νi〉 is open, or νi � νi−1.

From this definition and proposition 3.2, we obtain as in [8]:

Lemma 4.2. Let K be the random set of vertices x such that there exists a good path
from 0 to x. If K is finite, there exists a sphere intersecting only closed bonds and
containing 0 in its inside.

Proof. By definition 4.1, all the bonds in E (as defined in proposition 3.2) are closed, and
so this lemma is a consequence of proposition 3.2.
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Proof of Theorem 2.1. Let r > 0 be an integer, and Np(r) the number of good paths that
start at 0 and end on {x ∈ Zd : ‖x‖1 = r}. Then

P (rad[K] ≥ r) ≤ Ep(Np(r)).

For any good path π with vertices 0, ν1, . . . , νn = u with ‖u‖1 = r, we say that π has
length n and we let

A = #{i : 〈νi−1, νi〉 is not descending, that is νi 6� νi−1}
B = #{i : 〈νi−1, νi〉 is descending, that is νi � νi−1}.

As n− r is even, we can let m be the integer such that n = r + 2m, and we have the
following:

A+B = n

B <
n

2
.

Remark that once we know r, m and B, the values of n and A are determined. Let M be
a large even integer to be precised later. We decompose the set of paths as follows:

E(Np(r)) ≤
∑
m≥0

M/2−1∑
i=0

∑
B≥ i

M (r+2m)

B< i+1
M (r+2m)

N(A,B)pA.

Here N(A,B) is the number of self-avoiding paths having (A,B) for characteristics.
With the second and the third summation, B runs through the interval [0, n/2[. When
B < i+1

M (r + 2m), we have

A > r + 2m− i+ 1

M
(r + 2m),

and so

pA < p(r+2m)(1− i+1
M ). (4.1)

Now to provide an upper bound on N(A,B), we simply consider the paths of length A+B

that cannot return immediately to the previous vertex (hence 2d− 1 choices after the
first) and with B descending steps, that is to say B edges 〈νi−1, νi〉 such that νi � νi−1.
Let Gn be the set of paths of length n that do not return immediately to the previous
vertex, and for α ∈ [0, 0.5], let Gn(α) the subset of Gn of the paths having at least αn
descending steps. We have

#Gn = 2d(2d)n−1 ≤ 2(2d− 1)n. (4.2)

Recall that n = A+B, so

#Gn(B/n) ≥ N(A,B). (4.3)

For a path π in Gn with vertices 0, ν1, . . . , νn, define the variables (Yi)i=1,...,n by

Yi =

{
1 if 〈νi−1, νi〉 is descending
0 otherwise.

We will always have Y1 = 0. Let another sequence of variable (Zi)i=1,...,n, independent of
the Yi’s, distributed independently according to a Bernoulli of parameter 1

2d−1 . Consider
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that π was chosen at random and uniformly in Gn. At each step after the first, the path π
has 2d− 1 equally probable possibilities, among which at most one will give a bad step.
Hence for each i in [1, n],

P (Yi = 1 | Y1, . . . , Yi−1) ≤ 1

2d− 1
.

We can use a coupling between (Yi) and (Zi) via uniform variables (as one does to
compare two binomials) and then apply the Cramer-Chernov large deviations on (Zi)

(see for example [1]). Hence, for α > 1/(2d− 1),

P

(
n∑
i=1

Yi ≥ αn

)
≤ P

(
n∑
i=1

Zi ≥ αn

)
≤ exp−nH, (4.4)

with

H = α logα+ (1− α) log(1− α) + α log(2d− 1)− (1− α) log

(
1− 1

2d− 1

)
≥ − log(2) + α log(2d− 1) + (1− α) log

(
2d− 1

2d− 2

)
= − log(2) + log(2d− 1)− (1− α) log (2d− 2) (4.5)

Using the lower bound (4.5) instead of H, inequality (4.4) stands for all α ∈ [0, 0.5] (and
is trivial for α ≤ 1/(2d− 1) since in that case the lower bound is negative). With (4.2),
this gives for all i in [0,M/2− 1],

#Gn

(
i

M

)
≤ 2n+1(2d− 2)n(1− i

M ) (4.6)

which, with (4.1) and (4.3), implies

E(Np(r)) ≤
∑
m≥0

M/2−1∑
i=0

(
1

M
(r + 2m) + 1

)
2r+2m+1

×(2d− 2)(r+2m)(1− i
M )p(r+2m)(1− i+1

M )

=
∑
m≥0

M/2−1∑
i=0

(
1

M
(r + 2m) + 1

)
2r+2m+1

×
(

(2d− 2)
M−i

M−i−1 p
)(r+2m)(1− i+1

M )

Now fix the dimension d, and take p such that p < 1
8(d−1) . Let M be an even integer

large enough such that

(2d− 2)1+ 2
M−2 <

1

4p
.

To simplify calculations, we let b = (2d− 2)1+ 2
M−2 p. We obtain

E(Np(r)) ≤
∑
m≥0

M/2−1∑
i=0

(
1

M
(r + 2m) + 1

)
2r+2m+1

×b(r+2m)(1− i+1
M )

=
∑
m≥0

(
1

M
(r + 2m) + 1

)
2r+2m+1br+2m
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×
M/2−1∑
i=0

b−(r+2m) i+1
M

≤
∑
m≥0

(
1

M
(r + 2m) + 1

)
2r+2m+1br+2mb−r/2−m

b

1− b

=
b

1− b
2r+1

∑
m≥0

(
1

M
(r + 2m) + 1

)
4mbr/2+m

For r large enough such that (2d− 2)1+ 2
r−1 < 1

4p , we can take M = r when r is even,
and M = r − 1 when r is odd, and we obtain

E(Np(r)) ≤ b
r
2 +1

1− b
2r+1 2

r − 1

∑
m≥0

(r + 2m)4mbm

=
4b

(1− b)(1− 4b)

(
1 +

1 + 4b

(r − 1)(1− 4b)

)
(2
√
b)r,

which converges exponentially fast towards 0 since we have taken b < 1
4 . This gives the

exponential bound (2.2) on the radius of the sphere of theorem 2.1. By the first Borel-
Cantelli lemma, the set of vertices attained by good paths from the origin is a.s. finite,
and we get the lower bound (2.1) on the critical point pSc with the help of lemma 4.2.

5 Improvement via large deviations on a Markov chain

Theorem 2.1 already gives as a corollary that p1
e ≥ 1/16. We can improve this lower

bound by studying more precisely the cardinal of Gn(α) with the help of a Markov chain.
Lets first define a chain with three states, W1, W2 and W3. For any site x in Zd \ {0},
we recall that its descending edge is the edge 〈x, x− sgn(xn(x))en(x)〉 (as usual n(x) is
the index of the last non-null element for x). If x = 0, there is no descending edge.
Furthermore, we call an edge e an ascending edge if −e is the descending edge of
x+ e. If n(x) 6= d, there is more than one ascending edge. Actually, all edges (and their
opposites) after en(x) are ascending edges. In particular, if x = 0, all the edges are
ascending. An edge that is neither ascending nor descending is called a neutral edge.

For an infinite immediate self-avoiding walk (Zi)i≥0, that is a path that cannot return
immediately to its previous site, with Z0 = 0, consider its ith edge ui and define (X̃i)1≤i
by

• X̃i = W1 is ui is a neutral edge.

• X̃i = W2 if ui is an ascending edge.

• X̃i = W3 if ui is the descending edge.

The sequence (X̃i) is not Markovian (one would have to add the current position of the
path to get a Markovian couple). Define now a Markov chain, denoted (Xi), also on
the three states W1, W2 and W3, and which will be related to (X̃i). The initial state X1

is taken to W2 (although it is not important), and the transition matrix of (Xi) is taken
equal to:

π =

 2d−3
2d−1

1
2d−1

1
2d−1

2d−2
2d−1

1
2d−1 0

2d−2
2d−1 0 1

2d−1


To get a better understanding of the similarity between these two chains, we describe

the general behaviour of (X̃i) when the current vertex of the path is not on the hyperplane
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xd = 0. Once in state W1, there are 2d − 3 edges that let X̃i+1 in state W1, one edge
setting X̃i+1 in state W2 and one edge setting X̃i+1 in state W3. Once in state W2, there
is one edge, the same as the preceding step, that let X̃i+1 in state W2, and 2d− 2 setting
X̃i+1 in state W1. Finally, if X̃i is in state W3, there is one edge that let X̃i+1 in state W3

and 2d− 2 edges setting X̃i+1 in state W1.

So the sequence (X̃i) seems to have the same law as (Xi). Unfortunately this is
not the case. When the last edge used by (X̃i) is −ed, that the last coordinate of the
corresponding vertex is null and the penultimate is strictly positive, there are at least
two possibilities for Xi+1 to be in state W2, namely ed−1 and −ed, and one to be in state
W3, namely −ed−1.

Hence the sequences (Xi) and (X̃i) are not identical in law, but it is possible to define
a coupling between the random path and (Xi) with the property that if X̃i is in state
W1, then Xi is in state W1 or W3, and if X̃i is in state W3, then Xi is in state W3. As a
consequence, the time spent in the state W3 is greater or equal for (Xi) than for (X̃i).

We use an i.i.d. sequence (Ui)i≥2 of uniform random variables on [0, 1]. For i ≥ 2,
we let a1(i) = P (Xi = W1 | Xi−1) and a2(i) = P (Xi = W2 | Xi−1). These quantities are
actually random variables. We recall that we had arbitrarily taken X1 = W2. Now we
apply the following rules:

• If Ui < a2(i), we set Xi in the state W2.

• If Ui ∈ [a2(i), a2(i) + a1(i)[, we set Xi in the state W1.

• Otherwise, we set Xi in the state W3.

Concerning the random path, always for i ≥ 2, we let ã1(i) = P (X̃i = W1 | Zi−2, Zi−1)

and ã2(i) = P (X̃i = W2 | Zi−2, Zi−1). We recall that Z0 = 0 and that we always have
X̃1 = W2. The path chooses for its first step a random edge taken uniformly among the
2d possibilities. For the subsequent steps, the rules are:

• If Ui < ã2(i), the path takes uniformly one of the ascending edges. This implies
that X̃i is in the state W2.

• If Ui ∈ [ã2(i), ã2(i)+ ã1(i)[, the path takes uniformly one of the neutral edges. Hence
X̃i is in the state W1.

• Otherwise the path takes the descending edge, and so X̃i is in the state W3.

In that way we have a coupling between the random path and the Markov chain (Xi).
We prove now by recurrence the two following properties: if Xi is in state W2, so is X̃i,
and if X̃i is in state W3, so is Xi. These properties are true for i = 1 since X1 and X̃1

are in state W2. Suppose they are true at step i− 1. The possible configurations for the
couple (X̃i−1, Xi−1) are (W2,W2), (W2,W1), (W2,W3), (W1,W1), (W1,W3) and (W3,W3).
In all these cases, we have a2(i) ≤ ã2(i) and a2(i) + a1(i) ≤ ã2(i) + ã1(i). So, according to
the coupling described, if Xi is in state W2, that means Ui < a2(i), and so X̃i is equally
in state W2. If X̃i is in state W3, that means Ui ≥ ã2(i) + ã1(i), and so Xi is also in state
W3, and the two properties hold by recurrence. As previously claimed, we obtained a
coupling between the path and (Xi), with (Xi) spending more time in W3 than (X̃i).

We now use large deviations techniques on the Markov chain (Xi), as explained in
sections 3.1.1 and 3.1.3 of [4]. If a path of length n coupled to the Markov chain (Xi)1≤i≤n
has at least a proportion of α descending edges, then

n∑
i=1

1Xi=W3
≥ αn.
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This event is controlled by large deviations, the rate function being the infinimum, with
respect to the parameters a, b, c and x, of the entropy of distributions of the type

q =

 a b x

b c 0

x 0 α− x


with respect to π. The matrix q is taken of this form since when π(i, j) is null, q(i, j)
must also be null, and for each j = 1, 2, 3, the sum of the j-th line must be equal to the
sum of the j-th column. As this matrix is a representation of a distribution, we have the
constraint a+ 2b+ c+x+α = 1, and all the elements of the matrix are of course positive.
The formula of the entropy is

H(q, π) =

3∑
i=1

3∑
j=1

q(i, j) log
q(i, j)

q1(i)π(i, j)
,

with q1(i) =
∑3
j=1 q(i, j). This gives

H(q, π) = a log

(
a(2d− 1)

(2d− 3)(a+ b+ x)

)
+ b log

(
b(2d− 1)

a+ b+ x

)
+x log

(
x(2d− 1)

a+ b+ x

)
+b log

(
b(2d− 1)

(b+ c)(2d− 2)

)
+ c log

(
c(2d− 1)

b+ c

)
+x log

(
x(2d− 1)

α(2d− 2)

)
+ (α− x) log

(
(α− x)(2d− 1)

α

)
.

We let σd(α) be the infinimum of these entropies, and denote σd = σd(0.5), as this
particular value will appear important. Large deviations results on Markov chains imply
that

Gn(α) ≤ 2 · (2d− 1)n · exp(−nσd(α)). (5.1)

We searched a solution for σd(α) with the three variables b, c and x, but the derivatives
yield a non-linear system of three equations with three variables, that we couldn’t solve.
It is however possible to get numerically a lower bound for σd(α).

We finish to explain now the procedure for the dimension 3. In this case, the transition
matrix is

π =

 3
5

1
5

1
5

4
5

1
5 0

4
5 0 1

5


As an example, consider the value α = 0.5. We let f(x, b, c) the function for which we

search a lower bound. For a block [x1, x2]× [b1, b2]× [c1, c2], we can get a lower bound
for f using either

• the monotony of its parts. For example x log(x) ≥ x2 log(x2) if x2 ≤ exp(−1),
x log(x) ≥ x1 log(x1) if x1 ≥ exp(−1), and x log(x) ≥ − exp(−1) in the third case;

• the value of f(x1, b1, c1) and a lower bound of the negative parts of the gradient of
f on the block;

• the value of f and its gradient at the point (x1, b1, c1), together with a lower bound
of the negative parts of the Hessian of f on the block.
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Starting with the block [0, 0.5] × [0, 0.25] × [0, 0.5] which covers the set of definition of
f , we calculate the best lower bound among the three possibilities just described. If
the lower bound is less than 0.24857770256 (a candidate value obtained with gradient
search), we split the block in two, cycling over the axes x, b and c, and we reiterate the
procedure. With this method, we effectively obtain that σ3 ≥ 0.24857770256. We note that
it is a good approximation, since we have f(0.24582, 0.035321, 0.005248) = 0.2485777026...

With (5.1), this yields

Gn(0.5) ≤ 2 · 5n exp(−0.24857770256n) ≤ 2 · 3.899546288n,

to compare with Gn(0.5) ≤ 2 · 4n of the previous section. We point out that the second
method with a lower bound on the gradient was hardly used by the algorithm. The first
method is adapted when we are near the border of the set of definition of f , whereas the
third method is adapted when we are near the optimal value.

Now we shall choose a finite strictly increasing sequence α0 = 0 < α1 < α2 < . . . <

αk = 0.5, to which we associate

L = max{5 exp(−σ3(αi−1))/(2 · 41−αi) : i ∈ [2, k]}

We build the sequence (αi) in the reverse order. So starting from 0.5, we begin with 1000

elements with a step of 10−13, then sequences of 900 elements with steps ranging from
10−12 to 10−5, and finally 81 with a step of 10−4, leading to α1 = 0.32, and we complete
with α0 = 0. With this sequence, we are able to verify for each i in [2, k], as in the case
α = 0.5, that with L0 := 0.974886571911,

σ3(αi−1) ≥ log(5/2) + (αi − 1) log(4)− log(L0), (5.2)

implying L ≤ L0. As before, this value is a good approximation of the true maximum,
since L is bounded from below by 5 exp(−σ3)/4, which is greater than 0.97488657191.
Note that when i is small, the algorithm needs coarser blocks than when i is near k (that
is to say αi near 0.5), and the maximum for the definition of L corresponds certainly to
the index k. A way to optimize the algorithm is then to remark that the partition used for
α = 0.5 is certainly sufficient for all others α. So instead of considering separately the
different αi, the algorithm seeks a partition sufficient for all the αi together.

For each i ≥ 2, inequality (5.2) implies that

5 exp(−σ3(αi−1)) ≤ L0 · 2 · 41−αi ,

and so with (5.1) and the monotony on α, for all α ∈ [αi−1, αi],

Gn(α) ≤ Gn(αi−1) ≤ 2 · (L0 · 2 · 41−αi)n ≤ 2 · (L0 · 2 · 41−α)n. (5.3)

The inequality between the first and the last member is also valid for α ∈ [α0, α1]

since Gn(α) ≤ 2 · 5n for all α, and L0 · 2 · 41−α1 > 5. Now we use (5.3) in replacement of
the bound in (4.6), so in each line 2r+2m+1 becomes 2 · (2L0)r+2m, yielding to

pe1 = pSc ≥
1

16L2
0

≥ 0.065761519632,

and theorem 1.2 is proved.
For the other dimensions, we can choose similar sequences of the αi’s to improve the

lower bound of theorem 2.1, the general formula for L being

L = max{(2d− 1) exp(−σd(αi−1))/(2 · (2d− 2)1−αi) : i ∈ [2, k]}.
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In dimension 4, we were able to obtain pSc ≥ 0.04322, and in dimension 5, pSc ≥ 0.03214, to
compare with the respective previous values of 1/24 = 0.041666 . . . and 1/32 = 0.03125.

The preceding gives improved numerically lower bounds on pSc , but not in a closed
form, about which we discuss in the following. It seems plausible that with an infinitely
small partition (αi), particularly near 0.5, the value of L would be given for “αi−1 = αi =

0.5”, that is

L =
(2d− 1) exp(−σd)

2
√

2d− 2
.

Assuming one could prove this value satisfies L < 1, and since we still have

pSc ≥
1

8(d− 1)L2
,

then the following conjecture would follow:

Conjecture 5.1. For all dimension d ≥ 3,

pSc ≥
exp(2σd)

(2d− 1)2
>

1

8(d− 1)
.

The values obtained in dimensions 3 to 5 seem to indicate that the two members on
the middle and on the right may be asymptotically equivalent.
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