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Abstract

In this paper, we prove a CLT for the sample canonical correlation coefficients between
two high-dimensional random vectors with finite rank correlations. More precisely,
consider two random vectors x̃ = x + Az and ỹ = y + Bz, where x ∈ Rp, y ∈ Rq

and z ∈ Rr are independent random vectors with i.i.d. entries of mean zero and
variance one, and A ∈ Rp×r and B ∈ Rq×r are two arbitrary deterministic matrices.
Given n samples of x̃ and ỹ, we stack them into two matrices X = X + AZ and
Y = Y + BZ, where X ∈ Rp×n, Y ∈ Rq×n and Z ∈ Rr×n are random matrices
with i.i.d. entries of mean zero and variance one. Let λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃r be
the largest r eigenvalues of the sample canonical correlation (SCC) matrix CXY =

(XX>)−1/2XY>(YY>)−1YX>(XX>)−1/2, and let t1 ≥ t2 ≥ · · · ≥ tr be the squares
of the population canonical correlation coefficients between x̃ and ỹ. Under certain
moment assumptions, we show that there exists a threshold tc ∈ (0, 1) such that if
ti > tc, then

√
n(λ̃i − θi) converges weakly to a centered normal distribution, where θi

is a fixed outlier location determined by ti. Our proof uses a self-adjoint linearization
of the SCC matrix and a sharp local law on the inverse of the linearized matrix.
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1 Introduction

Given two random vectors x̃ ∈ Rp and ỹ ∈ Rq, canonical correlation analysis (CCA)
has been one of the most classical methods to study the correlations between them
since the seminal work by Hotelling [24]. More precisely, CCA seeks two sequences
of orthonormal vectors, such that the projections of x̃ and ỹ onto these vectors have
maximized correlations. These correlations are referred to as canonical correlation
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CLT of sample canonical correlation coefficients

coefficients (CCCs), which can be characterized as the square roots of the eigenvalues
of the population canonical correlation (PCC) matrix

Σ̃ := Σ−1/2
xx ΣxyΣ−1

yy ΣyxΣ−1/2
xx ,

where Σxx, Σyy, Σxy and Σyx are the population covariance and cross-covariance matri-
ces defined by

Σxx := E(x̃x̃>)− (Ex̃)(Ex̃)>, Σyy := E(ỹỹ>)− (Eỹ)(Eỹ)>,

Σxy = Σ>yx := E(x̃ỹ>)− (Ex̃)(Eỹ)>.

In this paper, we consider the following standard signal-plus-noise model for x̃ and ỹ:

x̃ = x +Az, ỹ = y +Bz, (1.1)

where x ∈ Rp and y ∈ Rq are two independent noise vectors with i.i.d. entries of mean
zero and variance one, z ∈ Rr is a shared signal vector with i.i.d. entries of mean zero
and variance one (which yields a rank-r correlation), and A ∈ Rp×r and B ∈ Rq×r are
two arbitrary deterministic matrices. Under the model (1.1), the PCC matrix is given by
a rank-r matrix

Σ̃ = (Ip +AA>)−1/2AB>(Ip +BB>)−1BA>(Ip +AA>)−1/2, (1.2)

and we denote the r non-trivial eigenvalues of Σ̃ as t1 > t2 > · · · > tr > 0.
We can study Σ̃ and the population CCCs via their sample counterparts, i.e., the

sample canonical correlation (SCC) matrix and the sample CCCs. More precisely, let
(x̃i, ỹi), 1 6 i 6 n, be n i.i.d. samples of (x̃, ỹ). We stack them (as column vectors) into
two matrices

X := n−1/2
(
x̃1, x̃2, · · · , x̃n

)
= X +AZ, Y := n−1/2

(
ỹ1, ỹ2, · · · , ỹn

)
= Y +BZ, (1.3)

where n−1/2 is a convenient scaling, with which we can write the sample covariance and
cross-covariance matrices concisely as

S̃xx := XX>, S̃yy := YY>, S̃xy = S̃>yx := XY>,

and X, Y and Z are respectively p × n, q × n and r × n matrices with i.i.d. entries of
mean zero and variance n−1. Then, we define the SCC matrix as

CXY := S̃−1/2
xx S̃xyS̃

−1
yy S̃yxS̃

−1/2
xx

and denote their eigenvalues by λ̃1 > λ̃2 > · · · > λ̃p∧q > 0. The square roots of these
eigenvalues are referred to as sample canonical correlation coefficients. Equivalently,
the sample CCCs are the cosines of the principal angles between the two subspaces
spanned by the rows of X and Y, respectively. If n → ∞ while p, q and r are fixed,
it is easy to see that the SCC matrix converges to the PCC matrix almost surely by
the law of large numbers, and hence every sample CCC converges almost surely to
the corresponding population CCC. On the other hand, in this paper, we focus on the
high-dimensional setting with a low-rank signal: p/n → c1 and q/n → c2 as n → ∞ for
some constants c1 ∈ (0, 1) and c2 ∈ (0, 1 − c1), and r is a fixed integer that does not
depend on n. In this case, the behavior of the SCC matrix deviates greatly from that of
the PCC matrix.

Related work. In the null case with r = 0, the eigenvalue statistics of the SCC matrix
have been well-understood. If X and Y are Gaussian matrices, then the eigenvalues of
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CLT of sample canonical correlation coefficients

CXY reduce to those of a double Wishart matrix, which belongs to the famous Jacobi
ensemble [26]. It was shown in [40] that, almost surely, the empirical spectral distribution
(ESD) of the double Wishart matrix converges weakly to a deterministic probability
distribution (cf. (2.14) below). By analyzing the joint eigenvalue density of the Jacobi
ensemble, Johnstone [26] proved that the largest eigenvalues of double Wishart matrices
satisfy the Tracy-Widom law asymptotically. Alternatively, the Tracy-Widom law of double
Wishart matrices can also be obtained as a consequence of the results in [23] for F-type
matrices. In the general non-Gaussian case, the convergence of the ESD of CXY was
proved in [45], the CLT of the linear spectral statistics for CXY was proved in [46], and
the Tracy-Widom law of the largest eigenvalue of CXY was proved in [22] under the
assumption that the entries of x̃ and ỹ have finite moments up to any order. The moment
assumption for the Tracy-Widom law was later relaxed to the finite fourth moment
condition in [43].

Some arguments in the literature for the null case are based on the fact that the
subspaces spanned by the rows of X and Y are approximately uniformly (Haar) dis-
tributed random subspaces, which, however, does not hold for the non-null case with
r > 0. This makes the study of the non-null case more challenging. Assuming that
X and Y are both Gaussian matrices, the asymptotic behaviors of the likelihood ratio
processes of CCA under the null hypothesis of no spikes (i.e., r = 0) and the alternative
hypothesis of a single spike (i.e., r = 1) were studied in [27]. If either p or q is fixed as
n → ∞, the asymptotic distributions of the sample CCCs were derived in [21] under
the Gaussian assumption. On the other hand, if p and q are both proportional to n, the
limiting distributions of the sample CCCs have been established under the Gaussian
assumption in [4], which we discuss in more detail now.

BBP transition. SupposeX, Y and Z are independent random matrices with i.i.d. Gaussian
entries. Bao et al. [4] proved that for any 1 6 i 6 r, the behavior of λ̃i undergoes a sharp
transition across the threshold tc defined by

tc :=

√
c1c2

(1− c1)(1− c2)
. (1.4)

More precisely, the following dichotomy occurs:

(1) if ti < tc, then λ̃i sticks to the right edge λ+ (cf. (2.15) below) of the limiting bulk
eigenvalue spectrum of the SCC matrix, and n2/3(λ̃i − λ+) converges weakly to the
Tracy-Widom law;

(2) if ti > tc, then λ̃i lies around a fixed location θi ∈ (λ+, 1) (cf. (2.16) below), and
n1/2(λ̃i − θi) converges weakly to a centered normal random variable.

Following the notation in random matrix theory literature, we call λ̃i in case (2) an
outlier. The above abrupt change of the behavior of λ̃i when ti crosses tc is generally
referred to as a BBP transition, which dates back to the seminal work of Baik, Ben
Arous and Péché [2] on spiked sample covariance matrices. The phenomenon of BBP
transition has been observed in many random matrix ensembles deformed by low-
rank perturbations. Without attempting to be comprehensive, we refer the reader to
[11, 10, 18, 29, 30, 36] about deformed Wigner matrices, [1, 2, 3, 9, 19, 25, 35] about
spiked sample covariance matrices, [12, 42, 44] about spiked separable covariance
matrices, and [5, 6, 7, 13, 14, 41, 47] about several other types of deformed random
matrix ensembles. The SCC matrix CXY considered in this paper can be regarded as a
low-rank perturbation of the SCC matrix in the null case with r = 0.

Main results and basic ideas. A natural question is whether the above BBP transition
holds universally if we only assume certain moment conditions on the entries of X, Y and
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Z. Answering this question is not only theoretically interesting from the point of view of
random matrix theory, but also crucial for modern applications of CCA in e.g., statistical
learning, wireless communications, financial economics and population genetics. In this
paper, we solve this problem and prove that the BBP transition occurs as long as the
entries of X and Y satisfy the bounded (8 + ε)-th moment condition (with ε denoting an
arbitrarily small positive constant). More precisely, we obtain the following results when
ti > tc.

(i) In Theorem 2.3, assuming that the entries of X, Y and Z have bounded moments
up to any order, we prove that n1/2(λ̃i − θi) converges weakly to a centered normal
random variable.

(ii) In Theorem 2.4, we prove the CLT for λ̃i under a relaxed bounded (8+ε)-th moment
condition on the entries of X,Y and a bounded (4 + ε)-th moment condition on the
entries of Z.

On the other hand, when ti < tc, the Tracy-Widom law of n2/3(λ̃i − λ+) was proved in
[34]. For the reader’s convenience, we will state it in Theorem 2.5.

The proof in [4] depends crucially on the fact that multivariate Gaussian distributions
are rotationally invariant under orthogonal transforms, which makes it hard to be
extended to the non-Gaussian case. To circumvent this issue, we employ an entirely
different approach—a linearization method developed in [43]. More precisely, we define
a (p+ q+ 2n)× (p+ q+ 2n) random matrix H that is linear in X and Y (cf. equation (3.2)
below) and call its inverse G := H−1 as resolvent. We found that the eigenvalues of
the SCC matrix CXY are precisely the solutions to a determinant equation in terms of
a linear functional of G (cf. equation (3.4) below). Moreover, an (almost) optimal local
law for this linear functional was obtained in [43]. In [34], we obtained a large deviation
estimate on the outlier sample CCCs: if ti > tc, then λ̃i converges to θi with convergence
rate O(n−1/2+ε) (which is slightly larger than the correct order of fluctuation n−1/2).
With the local law and the large deviation estimate as main inputs, we can reduce the
problem to proving the CLT for a (different) linear functional of G, denoted by E(X,Y, Z)

(cf. Section 4.3).
The main technical part of our proof is to show that E(X,Y, Z) converges weakly to

a centered Gaussian random variable. Our basic idea is to use the classical moment
method, that is, showing that the moments of E(X,Y, Z) match those of a Gaussian
random variable asymptotically. One method to calculate the moments of E(X,Y, Z) is to
use the simple identity 1 = HG and apply a cumulant expansion formula (cf. Lemma A.1
below) to the resulting expression. However, the calculation for this strategy will be
rather tedious. Instead, we adopt a strategy in [29, 30], that is, we first prove the
CLT in an “almost Gaussian” case (i.e., a case where most of the entries of X and Y

are Gaussian), and then show that the general case is sufficiently close to the almost
Gaussian case. This strategy allows us to divide the lengthy calculation into several
parts that are more manageable. In particular, the resolvent expansion formula can be
replaced by a simpler Gaussian integration by parts formula. We refer the reader to
Section 3 for a more detailed review of our proof.

Finally, we remark that the limiting variance of n1/2(λ̃i − θi) depends on the fourth
cumulants of the entries of X, Y and Z in an intricate way, which has not been identified
in the Gaussian case. We also perform simulations to verify this deviation from the CLT
result in [4] (cf. Figure 1).

Organizations. The rest of this paper is organized as follows. In Section 2, we define
the model and state the main results, Theorem 2.3 and Theorem 2.4, on the limiting
distributions of the outlier sample CCCs. In Section 3, we introduce the linearization
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method, define the resolvent, and give a brief overview of the proof strategy for Theo-
rem 2.3 and Theorem 2.4. The proof of Theorem 2.3 will be given in Sections 4–8. In
Section 4, we use the linearization method to reduce the problem to showing a CLT for
a linear functional of the resolvent. In Section 5, we establish the CLT of the outlier
sample CCCs in an almost Gaussian case, where most of the entries of X and Y are
Gaussian. Section 6 contains the proof of Lemma 5.5, which is a key lemma for the proof
in Section 5, while Section 7 gives the proof of Theorem 6.4, which is used in the proof
of Lemma 5.5. In Section 8, we complete the proof of Theorem 2.3 by showing that
the general setting of Theorem 2.3 is close to the almost Gaussian case asymptotically.
Finally, utilizing Theorem 2.3 and a comparison argument, we complete the proof of
Theorem 2.4 in Section 9.

Conventions. For two quantities an and bn depending on n, the notation an = O(bn)

means that |an| 6 C|bn| for some constant C > 0, and an = o(bn) means that |an| 6 cn|bn|
for a positive sequence cn ↓ 0 as n → ∞. We use the notation an . bn if an = O(bn)

and the notation an ∼ bn if an = O(bn) and bn = O(an). Given a matrix A, we use
‖A‖ := ‖A‖l2→l2 to denote the operator norm, ‖A‖F to denote the Frobenius norm,
and ‖A‖max := maxi,j |Aij | to denote the maximum norm. Given a vector v = (vi)

n
i=1,

‖v‖ ≡ ‖v‖2 stands for the Euclidean norm. In this paper, we often write an identity
matrix as I or 1 without causing any confusion.

2 The model and main results

2.1 The model

In this paper, we consider the model (1.3). Here X and Y are two independent real
matrices of dimensions p × n and q × n, respectively, where the entries Xij , 1 6 i 6 p,
1 6 j 6 n, and Yij , 1 6 i 6 q, 1 6 j 6 n, are i.i.d. random variables satisfying that

EX11 = EY11 = 0, E|X11|2 = E|Y11|2 = n−1. (2.1)

Z is an r × n random matrix that is independent of X,Y and has i.i.d. entries Zij ,
1 6 i 6 r, 1 6 j 6 n, satisfying that

EZ11 = 0, E|Z11|2 = n−1. (2.2)

A and B are p× r and q × r deterministic matrices with singular value decompositions
(SVD)

A = UaΣaV
>
a =

r∑
i=1

ai u
a
i (vai )>, B = UbΣbV

>
b =

r∑
i=1

bi u
b
i (v

b
i )
>, (2.3)

where {ai} and {bi} are the singular values, {uai } and {ubi} are the left singular vectors,
{vai } and {vbi} are the right singular vectors, and we have used the matrix notations

Σa := diag (a1, · · · , ar) , Σb := diag (b1, · · · , br) , (2.4)

Ua :=
(
ua1 , · · · ,uar

)
, Va :=

(
va1 , · · · ,var

)
, Ub :=

(
ub1, · · · ,ubr

)
, Vb :=

(
vb1, · · · ,vbr

)
. (2.5)

Recall that the PCC matrix Σ̃ is given by (1.2). We assume that for some constant C > 0,

0 6 ar 6 · · · 6 a2 6 a1 6 C, 0 6 br 6 · · · 6 b2 6 b1 6 C. (2.6)

In this paper, we focus on the high-dimensional setting, that is, there exist constants c̃1
and c̃2 such that as n→∞,

c1(n) :=
p

n
→ c̃1, c2(n) :=

q

n
→ c̃2, with c̃1 + c̃2 ∈ (0, 1). (2.7)
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For simplicity of notations, we will always abbreviate c1(n) ≡ c1 and c2(n) ≡ c2 in this
paper. Without loss of generality, we assume that c1 > c2. We now summarize the above
assumptions for future reference. We will also assume a high moment condition on the
entries of X, Y and Z.

Assumption 2.1. Fix a small constant τ > 0 and a large constant C > 0.

(i) X = (Xij) and Y = (Yij) are independent p× n and q × n random matrices, whose
entries are real i.i.d. random variables satisfying (2.1) and the following high
moment condition: for any fixed k ∈ N, there is a constant µk > 0 such that(

E|X11|k
)1/k

6 µkn
−1/2,

(
E|Y11|k

)1/k
6 µkn

−1/2. (2.8)

(ii) Z = (Zij) is an r × n random matrix independent of X and Y , and its entries are
real i.i.d. random variables satisfying (2.2) and (2.8).

(iii) We assume that r 6 C and c1 = p/n, c2 = q/n satisfy that

τ 6 c2 6 c1, c1 + c2 6 1− τ. (2.9)

(iv) We consider the model in (1.3), where A and B satisfy (2.3) and (2.6).

In this paper, we will use the SCC matrix

CXY :=
(
XX>

)−1/2 (XY>) (YY>)−1 (YX>) (XX>)−1/2
, (2.10)

and the null SCC matrix
CXY := S−1/2

xx SxyS
−1
yy SyxS

−1/2
xx , (2.11)

with
Sxx := XX>, Syy := Y Y >, Sxy = S>yx := XY >. (2.12)

We will also use the following SCC and null SCC matrices:

CYX :=
(
YY>

)−1/2 (YX>) (XX>)−1 (XY>) (YY>)−1/2
, CY X = S−1/2

yy SyxS
−1
xx SxyS

−1/2
yy .

Our results can be easily extended to a more general model

X := C
1/2
1 X +AZ, Y := C

1/2
2 Y +BZ, (2.13)

with non-identity population covariance matrices C1 and C2. In fact, it is easy to see
that the eigenvalues of the SCC matrix CXY are unchanged under the non-singular

transformations X → C
−1/2
1 X and Y → C

−1/2
2 Y, which reduce (2.13) to the model (1.3)

with A and B replaced by C
−1/2
1 A and C

−1/2
2 B.

2.2 The main results

We denote the eigenvalues of the null SCC matrix CY X by λ1 > λ2 > · · · > λq > 0. It
is easy to see that CXY shares the same eigenvalues with CY X , besides the p− q more
trivial zero eigenvalues λq+1 = · · · = λp = 0. We denote the ESD of CY X by

Fn(x) :=
1

q

q∑
i=1

1λi6x.

It has been proved in [40, 45] that, almost surely, Fn converges weakly to a deterministic
probability distribution F (x) with density

f(x) =
1

2πc2

√
(λ+ − x)(x− λ−)

x(1− x)
, λ− 6 x 6 λ+, (2.14)
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where the left edge λ− and the right edge λ+ of the density are defined as

λ± :=
(√

c1(1− c2)±
√
c2(1− c1)

)2

. (2.15)

Under the setting of (1.3), we denote the eigenvalues of CXY by λ̃1 > · · · > λ̃q >
λ̃q+1 = · · · = λ̃p = 0, and the eigenvalues of the PCC matrix Σ̃ by t1 > t2 > · · · > tr >
tr+1 = · · · = tp = 0. Recall the threshold tc for BBP transition defined in (1.4). Assuming
the entries of X and Y are i.i.d. Gaussian, it was proved in [4] that for any 1 6 i 6 r, if
ti 6 tc, then λ̃i − λ+ → 0 almost surely, while if ti > tc, then λ̃i − θi → 0 almost surely,
where

θi := ti
(
1− c1 + c1t

−1
i

) (
1− c2 + c2t

−1
i

)
. (2.16)

Moreover, the limiting distributions were also identified in [4]: if ti < tc, n2/3(λ̃i − λ+)

converges to the Tracy-Widom law; if ti > tc,
√
n(λ̃i − θi) converges to a centered normal

distribution. The main purpose of this paper is to extend the CLT of the outliers to the
setting in Section 2.1, assuming only the moment conditions in (2.8) (or the weaker ones
in (2.31) below).

In [4], it was assumed that the population CCCs are either well-separate or exactly
degenerate. In this paper, however, we consider the general setting which allows for
near-degenerate outliers. For this purpose, we first introduce some new notations
following [30]. For any r × r matrix A = (Aij) and a subset of indices π ⊂ {1, · · · , r}, we
define the |π| × |π| submatrix

AJπK := (Aij)i,j∈π. (2.17)

We arrange the eigenvalues of AJπK in descending order as

µ1

(
AJπK

)
> · · · > µ|π|

(
AJπK

)
. (2.18)

We will group the near-degenerate ti-s according to the following definition.

Definition 2.2. Fix two small constants δl, δ > 0. For l ∈ {1, · · · , r} satisfying

tc + δl 6 tl 6 1− δl, (2.19)

we define the subset γ(l) 3 l as the smallest subset of {1, · · · , r} such that the following
property holds: if i, j ∈ {1, · · · , r} satisfy ti > tc and |ti − tj | 6 n−1/2+δ, then either
i, j ∈ γ(l) or i, j /∈ γ(l).

The set γ(l) in this definition can be constructed by successively choosing i ∈
{1, · · · , r} such that ti is away from the set {tj : j ∈ γ(l)} by a distance 6 n−1/2+δ,
and then adding i to γ(l). Since the number of such indices is at most r, we have that
|ti − tl| 6 rn−1/2+δ for any i ∈ γ(l). Now, we are ready to state the first main result,
which describes the joint limiting distribution of a group of near-degenerate outliers
indexed by indices in γ(l).

Theorem 2.3. Fix any 1 6 l 6 r. Suppose Assumption 2.1 holds, and there exists
a constant δl > 0 such that (2.19) holds. Define the vector of rescaled eigenvalues
ζ = (ζi)i∈γ(l), where ζi := n1/2(λ̃i − θl) for θl defined in (2.16). Let ξ = (ξi)i∈γ(l) be the
vector of the eigenvalues (in descending order) of the random |γ(l)| × |γ(l)| matrix

a(tl)
{
n1/2 [diag(t1, · · · , tr)− tl]Jγ(l)K + Υl

}
, (2.20)

where a(tl) is a function of tl defined as

a(tl) :=
(1− c1)(1− c2)

t2l
(t2l − t2c), (2.21)
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[·]Jγ(l)K is defined in (2.17) with π = γ(l), and Υl is a |γ(l)| × |γ(l)| symmetric Gaussian
random matrix, whose entries have zero mean and covariance function

E(Υl)ij(Υl)i′j′ = Cij,i′j′(tl), for (i, j), (i′, j′) ∈ γ(l)× γ(l). (2.22)

The function Cij,i′j′(tl) will be defined in equation (2.27) below. Then, for any bounded
continuous function f : R|γ(l)| → R, we have that

lim
n

[Ef(ζ)− Ef(ξ)] = 0. (2.23)

Roughly speaking, the above theorem means that the eigenvalues around λ̃l converge
in distribution to the eigenvalues of a symmetric Gaussian random matrix. The mean of
this Gaussian matrix is a diagonal matrix depending on the rescaled gaps n1/2(ti − tl),
i ∈ γ(l). We now give the explicit expressions of the covariance function. Using the
SVD (2.3), we can rewrite the PCC matrix Σ̃ in (1.2) as

Σ̃ = Ua

[
Σa

(Ir + Σ2
a)1/2

V>a Vb
Σ2
b

Ir + Σ2
b

V>b Va
Σa

(Ir + Σ2
a)1/2

]
U>a .

Hence, the matrix inside brackets has eigenvalues t1 > · · · > tr. Now, suppose we have
the following SVD

Σa
(Ir + Σ2

a)1/2
V>a Vb

Σb
(Ir + Σ2

b)
1/2

= O diag(
√
t1, · · · ,

√
tr)Õ>, (2.24)

for two r × r orthogonal matrices O and Õ. Then, for k ∈ {1, · · ·n} and i, j ∈ {1, · · · , r},
we define

Wk,ij := tl (Wa)ki (Wa)kj + tl (Wb)ki (Wb)kj

−
√
tl (Wa)ki (Wb)kj −

√
tl (Wb)ki (Wa)kj , (2.25)

where Wa and Wb are two n× r matrices defined by

Wa := Va
Σa

(Ir + Σ2
a)1/2

O, Wb := Vb
Σb

(Ir + Σ2
b)

1/2
Õ.

Moreover, we define the p× r and q × r matrices

U := Ua(Ir + Σ2
a)−1/2O, V := Ub(Ir + Σ2

b)
−1/2Õ. (2.26)

Then, the covariance function Cij,i′j′(tl) for (i, j), (i′, j′) ∈ γ(l)× γ(l) is defined as

Cij,i′j′(tl) :=
(1− tl)2t2l
t2l − t2c

(
2tl +

c1
1− c1

+
c2

1− c2

)
(δii′δjj′ + δij′δji′)

+ t2l κ
(4)
x

∑
k

UkiUki′UkjUkj′ + t2l κ
(4)
y

∑
k

VkiVki′VkjVkj′ + κ(4)
z

∑
k

Wk,ijWk,i′j′ , (2.27)

where we have introduced the notations

κ(4)
x := n2EX4

11 − 3, κ(4)
y := n2EY 4

11 − 3, κ(4)
z := n2EZ4

11 − 3, (2.28)

which are the fourth cumulants of
√
nX11,

√
nY11, and

√
nZ11.

We apply our result to the special case where the entries of X, Y and Z are
i.i.d. Gaussian random variables, and ti = tl for all i ∈ γ(l). In this case, the last
three terms in (2.27) vanish and [diag(t1, · · · , tr)− tl]Jγ(l)K = 0. Hence, by Theorem 2.3, ζ
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converges weakly to the ordered eigenvalues of a GOE (Gaussian orthogonal ensemble)
G = (gij), with independent Gaussian entries

gij = gji ∼ N (0, (1 + δij)σ
2(tl)), (2.29)

where

σ2(tl) :=
(1− c1)2(1− c2)2(1− tl)2(t2l − t2c)

t2l

(
2tl +

c1
1− c1

+
c2

1− c2

)
. (2.30)

This is in accordance with [4, Theorem 1.9].
The next theorem shows that if we assume that the population CCCs are either

well-separated or exactly degenerate (cf. condition (2.32)), then the CLT of the outlier
eigenvalues in Theorem 2.3 also holds under the relaxed moment assumption (2.31).

Theorem 2.4. Fix any 1 6 l 6 r. Suppose Assumption 2.1 holds except that (2.8) is
replaced with the following moment assumption: there exist constants c0, C0 > 0 such
that

E|
√
nX11|8+c0 6 C0, E|

√
nY11|8+c0 6 C0, E|

√
nZ11|4+c0 6 C0. (2.31)

Suppose there exists a constant δl > 0 such that (2.19) holds, and

ti = tl for i ∈ γ(l), and |ti − tl| > δl for i /∈ γ(l). (2.32)

Then, (2.23) holds for ζ and ξ defined in Theorem 2.3.

On the other hand, the limiting Tracy-Widom distribution of the extreme non-outlier
eigenvalues has been proved under a fourth moment tail assumption in [34].

Theorem 2.5 (Theorem 2.14 of [34]). Suppose Assumption 2.1 (iii)-(iv) hold. Assume
that xij = n−1/2x̂ij , yij = n−1/2ŷij and zij = n−1/2ẑij , where {x̂ij}, {ŷij} and {ẑij} are
three independent families of real i.i.d. random variables of mean zero and variance one.
Moreover, we assume the fourth moment tail condition

lim
t→∞

t4 [P (|x̂11| > t) + P (|ŷ11| > t)] = 0. (2.33)

Assume that for a fixed 0 6 r+ 6 r, the eigenvalues of Σ̃ satisfy that

lim inf
n

tr+ > tc > lim sup
n

tr++1. (2.34)

Then, we have that for any fixed k ∈ N and (s1, s2, . . . , sk) ∈ Rk,

lim
n→∞

P

(n2/3 λ̃r++i − λ+

cTW
6 si

)k
i=1

 = lim
n→∞

PGOE
[(
n2/3(λi − 2) 6 si

)k
i=1

]
, (2.35)

where

cTW :=

[
λ2

+(1− λ+)2√
c1c2(1− c1)(1− c2)

]1/3

,

and PGOE stands for the law of GOE, referring to an n × n symmetric matrix with
independent Gaussian entries of mean zero and variance n−1.

The assumption (2.34) means that ti, 1 6 i 6 r+, are supercritical spikes that lead to
outlier eigenvalues, while ti, r+ + 1 6 i 6 r, are subcritical spikes. Hence, λ̃r++i is the
i-th non-outlier eigenvalue of the SCC matrix, and (2.35) gives a complete description
of the asymptotic joint distribution of the first k non-outlier eigenvalues of CXY in
terms of the extreme eigenvalues of GOE. Taking k = 1 in (2.35) shows that the first
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(rescaled) non-outlier eigenvalue n2/3(λ̃r++1 − λ+)/cTW converges weakly to the type-1
Tracy-Widom distribution [38, 39]. For a general k ∈ N, the joint distribution of the
largest k eigenvalues of GOE can be written in terms of the Airy kernel [20].

Combining Theorems 2.3, 2.4 and 2.5, we complete the story of BBP transition for
high-dimensional CCA with finite rank correlations.

2.3 Simulations

In this subsection, we verify Theorem 2.3 with some numerical simulations. In particu-
lar, we will show that the last three terms in (2.27), which depend on the fourth cumulants
κ

(4)
x , κ(4)

y and κ
(4)
z , are necessary to match the variance of the simulated sample CCC.

For our simulations, we take the entries of X, Y and Z to be i.i.d. Rademacher random
variables (with an extra scaling n−1/2). In this setting, we have κ(4)

x = κ
(4)
y = κ

(4)
z = −2.

Moreover, we take n = 2000 and c1 = c2 = 0.2, i.e. p = q = 400, which gives tc = 0.25

by (1.4). We consider the rank-one case with r = 1 and take the matrices A and B as
A = a1u

a and B = b1u
b with a1 = b1 = 2, which gives a supercritical spike t1 = 0.64. We

consider the following two scenarios for the unit vectors ua and ub.

Scenario (a): ua and ub are standard unit vectors along the first coordinate axis in Rp

and Rq, respectively. In this case, the limiting variance of ζ1 = n1/2(λ̃1 − θ1) is given by
σ2
a := a2(t1)C11,11(t1), where C11,11(t1) is defined in (2.27):

C11,11(t1) = 2
(1− t1)2t21
t21 − t2c

(
2t1 +

c1
1− c1

+
c2

1− c2

)
− 2t21

[
1

(1 + a2
1)2

+
1

(1 + b21)2

]
− 2

[
t1

a2
1

1 + a2
1

+ t1
b21

1 + b21
− 2
√
t1

a1b1
(1 + a2

1)1/2(1 + b21)1/2

]2

.

Scenario (b): ua and ub are random unit vectors on the unit spheres Sp and Sq, respec-
tively. Then we have ‖ua‖∞ 6 n−1/2+ε and ‖ub‖∞ 6 n−1/2+ε with probability 1− o(1) for

any constant ε > 0, with which we can easily check that the κ(4)
x and κ(4)

y terms in (2.27)
are both of order O(n−1+2ε) with probability 1− o(1). Hence the limiting variance of ζ1
is given by σ2

b := a2(t1)C11,11(t1), where

C11,11(t1) = 2
(1− t1)2t21
t21 − t2c

(
2t1 +

c1
1− c1

+
c2

1− c2

)
− 2

[
t1

a2
1

1 + a2
1

+ t1
b21

1 + b21
− 2
√
t1

a1b1
(1 + a2

1)1/2(1 + b21)1/2

]2

+ O(n−1+2ε),

with probability 1− o(1).
In Figure 1, we report the simulation results based on 105 replications. We find

that the histograms match our result in Theorem 2.3 pretty well. Furthermore, it is not
surprising that the prediction (2.29) in the Gaussian setting deviates from the simulations,
which shows that the last three terms in (2.27) are necessary for non-Gaussian settings.

2.4 Relation with [34] and [43]

This paper is the third part of a series of papers with [43] and [34] being the first two
parts. The main goal of this series is to establish the BBP transition of sample CCCs in
the setting of high-dimensional CCA with finite rank correlations and without Gaussian
assumptions.

In the first part [43], we considered the null case with r = 0 and developed a
new linearization method for the study of sample CCCs. More precisely, we introduce a
(p+q+2n)×(p+q+2n) linearized matrix H(z) in terms of X, Y and a spectral parameter
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Figure 1: The histograms give the simulated first sample CCC based on 105 replications.
The red solid curves give the probability density functions (PDF) of the normal distri-
butions N (θ1, σ

2
a/n) and N (θ1, σ

2
b/n) in scenarios (a) and (b), respectively. The green

dashed curves represent the PDF of the normal distribution N (θ1, 2σ
2(t1)/n), where

σ2(t1) is defined in (2.30).

z ∈ C (cf. equation (3.2)), so that the eigenvalues of the SCC matrix are exactly the
solutions to the equation detH(z) = 0. In [43], we studied this equation through its
inverse G(z) := H(z)−1, called the resolvent. The main result of [43] is an optimal large
deviation estimate, called the anisotropic local law, on G(z) (cf. Theorem 4.8 below). As
consequences of the anisotropic local law, we also proved a sharp eigenvalue rigidity
estimate for the null SCC matrix CXY (cf. Lemma 4.5 below) and the Tracy-Widom law of
the largest eigenvalue of CXY , which is a special case of Theorem 2.5 with r = 0.

In the second part [34], we considered the model (1.3) with r > 0. In particular,
we showed that the eigenvalues λ̃i, 1 6 i 6 p ∧ q, of CXY are precisely the solutions to
a determinant equation in terms of a linear functional of G(z) and the matrices in the
SVD (2.3), see equation (3.4) below. Then, based on the anisotropic local law and the
eigenvalue rigidity estimate obtained in [43], we proved Theorem 2.5 regarding the
Tracy-Widom law of the extreme non-outlier eigenvalues. In addition, we also proved
in [34] that the outlier sample CCC λ̃i corresponding to a supercritical spike ti > tc
converges to θi with a sharp convergence rate O(n−1/2+ε) (cf. Lemma 4.3).

Finally, in this paper, we complete the theory of BBP transition for high-dimensional
non-Gaussian CCA by showing the CLT of the outlier eigenvalues, that is, Theorem 2.3
and Theorem 2.4. In the proof of these results, we first reduce the problem to proving
the CLT for a linear functional of G (cf. Proposition 4.11 and equation (4.42)) by using
the anisotropic local law, Theorem 4.8, obtained in [43] and the convergence estimate of
outlier eigenvalues, Lemma 4.3, obtained in [34]. Then, the main part of our proof is to
show that the linear functional of G converges weakly to a centered Gaussian random
matrix. Again, the anisotropic local law, Theorem 4.8, is the key tool for this proof. We
refer the reader to Section 3 for a brief overview of the proof and to Sections 4–9 for
complete details.

3 Overview of the proof

In this section, we give a brief overview of the proof for Theorem 2.3. The starting
point of our proof is the following self-adjoint linearization trick developed in [34, 43],
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that is, a λ ∈ (0, 1) is an eigenvalue of CXY if and only if the following equation holds:

det

 0

(
X 0

0 Y

)
(
X> 0

0 Y>
) (

λIn λ1/2In
λ1/2In λIn

)−1

 = 0. (3.1)

Inspired by this equation, we define the following (p+ q + 2n)× (p+ q + 2n) self-adjoint
block matrix

H(λ) ≡ H(X,Y, λ) :=

 0

(
X 0

0 Y

)
(
X> 0

0 Y >

) (
λIn λ1/2In
λ1/2In λIn

)−1

 , (3.2)

and call its inverse the resolvent :

G(λ) ≡ G(X,Y, λ) := [H(X,Y, λ)]
−1
. (3.3)

In this paper, we extend the argument λ to z ∈ C+ := {z ∈ C : Im z > 0} with z1/2 being
the branch with positive imaginary part. Similar to equation (3.1), it is not hard to see
that λ is not an eigenvalue of the null SCC matrix if and only if det [H(λ)] 6= 0. Hence,
for λ /∈ Spec(CXY ), using (1.3), (2.3), (2.4) and (2.5), we can rewrite (3.1) as

0 = det

[
1 +

(
U 0

0 V

)(
0 D
D 0

)(
U> 0

0 V>

)
G(λ)

]
= det

[
1 +

(
0 D
D 0

)(
U> 0

0 V>

)
G(λ)

(
U 0

0 V

)]
, (3.4)

where we have used the identity det(1 +M1M2) = det(1 +M2M1) for any two matrices
M1 and M2 of conformable dimensions. Here, D, U and V are 2r × 2r, (p+ q)× 2r and
2n× 2r matrices defined as

D :=

(
Σa 0

0 Σb

)
, U :=

(
Ua 0

0 Ub

)
, V :=

(
Z>Va 0

0 Z>Vb

)
.

By the anisotropic local law in Theorem 4.8, G(λ) in equation (3.4) can be replaced
by a deterministic matrix, denoted by Π(λ), up to a small error:

det

{
1 +

(
0 D
D 0

)[(
U> 0

0 V>

)
Π(λ)

(
U 0

0 V

)
+ E(λ)

]}
= 0, (3.5)

where

E(λ) :=

(
U> 0

0 V>

)
[G(λ)−Π(λ)]

(
U 0

0 V

)
.

Using the definition of Π in equation (4.14) below, we can check that if we set E(λ) = 0

in (3.5), then the resulting deterministic equation has a solution λ = θl if tl is super-
critical. Moreover, Theorem 4.8 shows that ‖E(λ)‖ 6 n−1/2+ε with high probability
(cf. Definition 4.1 (iv)) for any constant ε > 0. With this fact, we proved in [34] that
|λ̃l − θl| 6 n−1/2+ε with high probability. Thus, performing a Taylor expansion of equa-
tion (3.5) around θl, we obtain that with high probability,

det

{
1 +

(
0 D
D 0

)[(
U> 0

0 V>

)(
Π(θl) + (λ̃l − θl)Π′(θl)

)(U 0

0 V

)
+ E(θl)

]}
= O(n−1+2ε).

EJP 27 (2022), paper 86.
Page 12/71

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP814
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


CLT of sample canonical correlation coefficients

This equation suggests that the limiting distribution of n1/2(λ̃l − θl) should be determined
by that of n1/2E(θl). In fact, through calculations in Section 4.3, we find that n1/2(λ̃l − θl)
is related to a more complicated linear function of G(θl)−Π(θl) given in (4.32). We refer
the reader to Proposition 4.11 below for a precise statement.

Now, roughly speaking, our problem has been reduced to showing the CLT for a
linear function of G(θl)−Π(θl). Through a direct calculation, we can further reduce the
problem to showing the CLT of a matrix of the form (cf. equation (4.42))

Υ0 := n1/2W> [G(θl)−Π(θl)] W, (3.6)

where W is a 4r × (p + q + n) matrix independent of X and Y . To illustrate the basic
idea, we describe the strategy of the proof for the following quantity:

Υ := n1/2 w> [G(θl)−Π(θl)] w, (3.7)

where w is a (p+ q+ n)-dimensional vector independent of X and Y . In general, to show
that Υ0 in (3.6) converges weakly to a Gaussian matrix, we can adopt the Cramér-Wold
device, that is, we will show that

n1/2
∑

16i6j64r

λij(Υ0)ij

is asymptotically Gaussian for any fixed vector of parameters (λij)16i6j64r. This can be
proved using the same strategy as the proof of the CLT for Υ, which we will discuss now.

In order to prove that Υ is asymptotically Gaussian, we will show that its moments
match those of a Gaussian random variable as n→∞. It suffices to prove the zero mean
condition EΥ→ 0 and the induction relation: for any fixed integer k > 2,

EΥk = (k − 1)σ2EΥk−2 + o(1) (3.8)

for some deterministic parameter σ2, which determines the variance of the limiting
Gaussian distribution. We will describe some basic ideas for the proof of (3.8), while the
mean condition can be regarded as a special case with k = 1. Using the definition of G,
we can write that G−Π = Π

(
Π−1 −H

)
G, and hence

EΥk = n1/2EΥk−1 w>Π(θl)
[
Π−1(θl)−H(θl)

]
G(θl) w .

Using the definitions of Π (cf. equation (4.15)), we can write w>Π
(
Π−1 −H

)
Gw into a

sum of terms of three types (cf. equation (6.11) below)

Type A : w>1 G(θl) w2, Type B : w>3 J1HJ3G(θl) w2, Type C : w>5 J2HJ4G(θl) w6,

where wk, 1 6 k 6 6, are vectors that are independent of G (and whose forms are
irrelevant for our discussion below), and the matrices Jα are (p + q + n) × (p + q + n)

block identity matrices defined as

Jα :=


1α=1Ip 0 0 0

0 1α=2Iq 0 0

0 0 1α=3In 0

0 0 0 1α=4In

 , α = 1, 2, 3, 4. (3.9)

We only consider type B terms, while type C terms can be handled in exactly the
same way. We need to calculate terms of the form

n1/2E
∑

16a6p+q+2n

∑
16i6p,p+q+16µ6p+q+n

w3(i) w4(a)XiµGµaΥk−1. (3.10)
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Assume for now that the entries of X are Gaussian. Then, applying Gaussian integration
by parts to Xiµ, we obtain that

(3.10) = n1/2E
∑
a

∑
i,µ

w3(i) w4(a)
∂Gµa
∂Xiµ

Υk−1

+ (k − 1)n1/2E
∑
a

∑
i,µ

w3(i) w4(a)GµaΥk−2 ∂Υ

∂Xiµ

=: I + II.

By the definition of G, its derivative with respect to Xiµ can be evaluated as

∂Gab

∂Xiµ
= −GaiGµb −GaµGib.

We can calculate the terms I and II using this identity. Then, the resulting expressions
can be estimated using the anisotropic local law, Theorem 4.8, on G and the anisotropic
local laws on GJαG, α = 1, 2, 3, 4, which will be provided by Theorem 6.4 below. Through
our calculations, we find that the term I will cancel certain type A terms up to an o(1)

error, while the term II will contribute to the first term on the right-hand side of (3.8).
In general, when the entries of X are not Gaussian, we can replace Gaussian inte-

gration by parts by a cumulant expansion formula in Lemma A.1, with which we get an
expansion of (3.10) with higher order derivatives of GµaΥk−1. Then, we need to estimate
them using anisotropic local laws on G and GJαG. However, due to the intricate form
of G as an inverse of a 4× 4 block matrix, the estimation of first order derivative terms
is already quite complicated. The estimation of higher order derivative terms will be
even more tedious. In particular, to get the fourth cumulant terms in (2.27), we need
to study terms coming from the third order derivative of GµaΥk−1, which leads to a
much lengthier calculation than that in the Gaussian case. To have a more tractable
proof, we will adopt a strategy in [29, 30]: we first consider an almost Gaussian case
where most of the entries of X and Y are Gaussian, and then show that the general case
is sufficiently close to the almost Gaussian case in the sense of the limiting CLT of Υ0

in (3.6). The merit of this strategy is that we can divide the proof into several parts that
are relatively easier to handle, as we will explain now.

First, given the matrix W appearing in Υ0, we will construct almost Gaussian matrices
Xg and Y g by changing most entries of Xg and Y g to i.i.d. Gaussian random variables,
while keeping the rest entries unchanged. The locations of Gaussian entries depend on
the indices of “small” entries in W (see Proposition 5.1 for more details). Then, we can
define Hg, Gg and Υg

0 by replacing X and Y with Xg and Y g0 in definitions (3.2), (3.3)
and (3.6). Under this construction, we can show that Υ0 has the same asymptotic
distribution as Υg

0 through a resolvent comparison argument developed in [29, Section
7]. Since this is a relatively standard argument in the random matrix theory literature,
we will not discuss it here and refer the reader to Section 8 for more details.

Now, to conclude the proof, it remains to prove the CLT of Υg
0. We first decompose

each of Xg and Y g into several different blocks—a large block consisting of Gaussian
entries only and several small blocks that also contain non-Gaussian entries. Using the
Schur complement formula and concentration estimates for large random vectors, after
some calculations, we can rewrite Υg

0 into two parts, where one part is of the form (3.6)
with a resolvent consisting of the large Gaussian blocks in Xg and Y g, and the other
part is a quadratic form of the small blocks in Xg and Y g (see equation (5.21) below).
We have discussed the proof for the former part using Gaussian integration by parts
and local laws. On the other hand, the latter part can be handled directly using the
classical CLT. This completes the proof for the almost Gaussian case in principle, but
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the calculations of the limiting covariance functions of the two parts (cf. Sections 5.4
and 5.5) are rather tedious. However, these calculations are straightforward algebraic
calculations, and the reader can use a computer algebra system to check them.

Our main result for the almost Gaussian case is summarized in Proposition 5.1, and
its proof in Sections 5–7 constitutes the main theoretical contribution of this paper. More
precisely, Section 5 constructs the almost Gaussian setting and calculates the limiting
covariance function; Section 6 proves the CLT of (3.6) in the Gaussian case; Section 7
proves an sharp anisotropic local law on GJαG.

Finally, Theorem 2.4 follows from Theorem 2.3 combined with a comparison argu-
ment. More precisely, suppose we have two ensembles of random matrices (X,Y ) and
(X̃, Ỹ ), where X and Y satisfy the moment assumption (2.31) and X̃ and Ỹ satisfy (2.8).
Then, using the resolvent comparison method developed in [31], we can show that the
asymptotic distributions of Υ0(X,Y ) and Υ0(X̃, Ỹ ) are the same as long as the first four
moments of the X entries and Y entries match those of the X̃ entries and Ỹ entries.
In the proof of Theorem 2.3, we have shown the CLT of Υ0(X̃, Ỹ ). Together with the
comparison result, it implies that Υ0(X,Y ) satisfies the same CLT, and thus concludes
Theorem 2.4. Both the construction of (X̃, Ỹ ) according to the moment matching condi-
tions and the resolvent comparison method have been well-understood in the random
matrix theory literature. We refer the reader to Section 9 for more details.

4 Linearization method and resolvents

In this section, we reduce the study of the limiting distribution of the outliers to
proving the CLT for a matrix of the form (3.6). We first recall some (almost) sharp
convergence estimates on the sample CCCs that have been proved in [34, 43]. They will
serve as important a priori estimates for our proof.

4.1 Convergence of sample CCCs

To simplify notations, it is helpful to use the following notion of stochastic domination
introduced in [15]. It greatly simplifies the presentation by systematizing statements of
the form “ξ is bounded by ζ with high probability up to a small power of n”.

Definition 4.1 (Stochastic domination and high probability event). (i) Let

ξ =
(
ξ(n)(u) : n ∈ N, u ∈ U (n)

)
, ζ =

(
ζ(n)(u) : n ∈ N, u ∈ U (n)

)
be two families of nonnegative random variables, where U (n) is a possibly n-dependent
parameter set. We say ξ is stochastically dominated by ζ, uniformly in u, if for any small
constant ε > 0 and large constant D > 0, we have that

sup
u∈U(n)

P
[
ξ(n)(u) > nεζ(n)(u)

]
6 n−D

for large enough n > n0(ε,D), and we will use the notation ξ ≺ ζ to denote it. If a family
of complex random variables ξ satisfy |ξ| ≺ ζ, then we will also write ξ ≺ ζ or ξ = O≺(ζ).

(ii) We extend O≺(·) to matrices in the operator norm sense as follows. Let A be a family
of random matrices and ζ be a family of nonnegative random variables. Then A = O≺(ζ)

means that ‖A‖ ≺ ζ.
(iii) As a convention, for two deterministic nonnegative quantities ξ and ζ, we write ξ ≺ ζ
if and only if ξ 6 nτζ for any constant τ > 0.

(iv) We say an event Ξ holds with high probability (w.h.p.) if for any constant D > 0,
P(Ξ) > 1− n−D for large enough n. Moreover, we say Ξ holds with high probability on
an event Ω if for any constant D > 0, P(Ω \ Ξ) 6 n−D for large enough n.
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The following lemma collects some basic properties of stochastic domination ≺, which
will be used tacitly in the proof.

Lemma 4.2 (Lemma 3.2 in [8]). Let ξ and ζ be two families of nonnegative random
variables, U (n) and V (n) be two parameter sets, and C > 0 be a large constant.

(i) Suppose that ξ(u, v) ≺ ζ(u, v) uniformly in u ∈ U (n) and v ∈ V (n). If |V (n)| 6 nC ,
then

∑
v∈V (n) ξ(u, v) ≺

∑
v∈V (n) ζ(u, v) uniformly in u ∈ U (n).

(ii) If ξ1(u) ≺ ζ1(u) and ξ2(u) ≺ ζ2(u) uniformly in u ∈ U (n), then ξ1(u)ξ2(u) ≺ ζ1(u)ζ2(u)

uniformly in u ∈ U (n).

(iii) Suppose that Ψ(u) > n−C is deterministic and ξ(u) satisfies E|ξ(u)|2 6 nC for all
u ∈ U (n). Then if ξ(u) ≺ Ψ(u) uniformly in u ∈ U (n), we have that Eξ(u) ≺ Ψ(u)

uniformly in u ∈ U (n).

The following large deviation bounds on the outliers of CXY were proved in [34].

Lemma 4.3 (Theorem 2.9 of [34]). Suppose Assumption 2.1 holds. If ti > tc + n−1/3,
then we have that

|λ̃i − θi| ≺ n−1/2|ti − tc|1/2. (4.1)

On the other hand, for any i = O(1) with ti < tc + n−1/3, we have that

|λ̃i − λ+| ≺ n−2/3. (4.2)

The quantiles of the density (2.14) correspond to the classical locations of the eigen-
values of CY X .

Definition 4.4. The classical location γj of the j-th eigenvalue of CY X is defined as

γj := sup
x

{∫ +∞

x

f(t)dt >
j − 1

q

}
, (4.3)

where f is defined in (2.14). Note that we have γ1 = λ+ and λ+− γj ∼ (j/n)2/3 for j > 1.

In [43], we have proved the following eigenvalue rigidity estimate for CY X .

Lemma 4.5 (Theorem 2.5 of [43]). Suppose Assumption 2.1 holds. The eigenvalues of
the null SCC matrix CY X satisfy the following eigenvalue rigidity estimate:

|λi − γi| ≺ i−1/3n−2/3, 1 6 i 6 (1− δ)q, (4.4)

where δ > 0 is any small constant.

4.2 Local laws

In this section, we state some local laws on the resolvent that have been proved in
[34, 43]. These local laws will be important tools for our proof. We first introduce some
new notations.

Definition 4.6 (Index sets). For simplicity of notations, we define the index sets

I1 := {1, · · · , p}, I2 := {p+ 1, · · · , p+ q},
I3 := {p+ q + 1, · · · , p+ q + n}, I4 := {p+ q + n+ 1, · · · , p+ q + 2n}.

We will consistently use latin letters i, j ∈ I1 ∪I2 and greek letters µ, ν ∈ I3 ∪I4.
Moreover, we will use the notations a, b ∈ I := ∪4

i=1Ii.
Denote the averaged partial traces of the resolvent by

mα(z) :=
1

n

∑
a∈Iα

Gaa(z), α = 1, 2, 3, 4. (4.5)
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In [43], we have shown that they converge to the deterministic limits given by

m1c(z) =
−z + c1 + c2 +

√
(z − λ−)(z − λ+)

2(1− c1)z(1− z)
− c1

(1− c1)z
, (4.6)

m2c(z) =
−z + c1 + c2 +

√
(z − λ−)(z − λ+)

2(1− c2)z(1− z)
− c2

(1− c2)z
, (4.7)

m3c(z) =
1

2

[
(1− 2c1)z + c1 − c2 +

√
(z − λ−)(z − λ+)

]
, (4.8)

m4c(z) =
1

2

[
(1− 2c2)z + c2 − c1 +

√
(z − λ−)(z − λ+)

]
, (4.9)

where λ± are defined in (2.15). In [43], we also verified the following equations for mαc:

m1c = − c1
m3c

, m2c = − c2
m4c

, m3c(z)−m4c(z) = (1− z)(c1 − c2), (4.10)

m3c(z) =
1− (z − 1)m2c(z)

z−1 − [m1c(z) +m2c(z)] + (z − 1)m1c(z)m2c(z)
, (4.11)

m4c(z) =
1− (z − 1)m1c(z)

z−1 − [m1c(z) +m2c(z)] + (z − 1)m1c(z)m2c(z)
. (4.12)

One can also check them through direct calculations with (4.6)–(4.9). We also define the
function

h(z) : =
z−1/2m3c(z)

1 + (1− z)m2c(z)
=

z−1/2m4c(z)

1 + (1− z)m1c(z)

=
z1/2

2

[
−z + (2− c1 − c2) +

√
(z − λ−)(z − λ+)

]
.

(4.13)

With the above definitions, we define the matrix limit of G(z) as

Π(z) :=


(
c−1
1 m1c(z)Ip 0

0 c−1
2 m2c(z)Iq

)
0

0

(
m3c(z)In h(z)In
h(z)In m4c(z)In

)
 . (4.14)

Using (4.10)–(4.13), one can check that

Π =


(
−m3cIp 0

0 −m4cIq

)
0

0

(
zIn z1/2In
z1/2In zIn

)−1

−
(
m1cIn 0

0 m2cIn

)

−1

. (4.15)

We define two different spectral domains of z for the local laws.

Definition 4.7. Given a constant ε > 0, we define a spectral domain around the bulk
spectrum [λ−, λ+] as

S(ε) :=
{
z = E + iη : ε 6 E 6 1− ε, n−1+ε 6 η 6 ε−1

}
, (4.16)

and a spectral domain outside the bulk spectrum as

Sout(ε) :=
{
z = E + iη : λ+ + n−2/3+ε 6 E 6 1− ε, 0 6 η 6 ε−1

}
. (4.17)

The following theorem gives the anisotropic local law of G(z) on the above two
spectral domains.
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Theorem 4.8 (Anisotropic local law). Suppose Assumption 2.1 holds. For any fixed ε > 0

and deterministic unit vectors u,v ∈ CI , the following anisotropic local laws hold.

1. (Theorem 2.13 of [43]). For any z = E + iη ∈ S(ε), we have that

|〈u, G(z)v〉 − 〈u,Π(z)v〉| ≺

√
Imm3c(z)

nη
+

1

nη
, (4.18)

where the inner product is defined as 〈v,w〉 := v∗w with v∗ denoting the conjugate
transpose.

2. (Theorem 3.9 of [34]). For any z = E + iη ∈ Sout(ε), we have that

|〈u, G(z)v〉 − 〈u,Π(z)v〉| ≺ 1

n1/2(|E − λ+|+ η)1/4
. (4.19)

The above estimates (4.18) and (4.19) hold uniformly in the spectral parameter z.
Moreover, for these estimates to hold, it is not necessary to assume that the entries of
X, Y and Z are identically distributed—only independence and moment conditions are
needed.

The averaged partial traces in (4.5) satisfy stronger averaged local laws.

Theorem 4.9 (Averaged local law, Theorem 2.14 of [43]). Suppose Assumption 2.1 holds.
For any fixed ε > 0, we have that

max
α=1,2,3,4

|mα(z)−mαc(z)| ≺ (nη)−1, (4.20)

uniformly in z ∈ S(ε). Moreover, outside of the spectrum we have the stronger estimate

max
α=1,2,3,4

|mα(z)−mαc(z)| ≺
1

n(|E − λ+|+ η)
+

1

(nη)2
√
|E − λ+|+ η

, (4.21)

uniformly in z ∈ S(ε) ∩ Sout(ε).

4.3 Reduction to the law of resolvent

In this subsection, we relate the limiting law of ζ in Theorem 2.3 to that of a matrix
taking the form (3.6). Without loss of generality, we assume a slightly stronger condition
than (2.6) so that A and B are both of rank r:

0 < ar 6 · · · 6 a2 6 a1 6 C, 0 < br 6 · · · 6 b2 6 b1 6 C. (4.22)

This can be achieved by adding a small 0 < εn < e−n to each zero ai or bi. Since the
proof does not depend on the lower bounds of ar and br, we can easily extend it to the
case with zero ai’s or bi’s by taking εn → 0.

Recall that if λ ∈ (0, 1) is not in the spectrum of CXY , then it is an eigenvalue of CXY
if and only if (3.4) holds. Throughout the following discussion, we always assume that
λ ∈ Sout(ε) and λ > λ+ + ε for a small constant ε > 0. We write (3.4) as

0 = det

[(
0 D−1

D−1 0

)
+ Π4r(λ) + E4r

]
= det

[(
Π

(1)
2r D−1

D−1 Π
(2)
2r

)
+ E4r

]
, (4.23)

where Π
(1)
2r and Π

(2)
2r are 2r × 2r deterministic matrices defined as

Π
(1)
2r (λ) :=

(
c−1
1 m1c(λ)Ir 0

0 c−1
2 m2c(λ)Ir

)
, Π

(2)
2r (λ) :=

(
m3c(λ)Ir h(λ)V>a Vb

h(λ)V>b Va m4c(λ)Ir

)
,
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Π4r is a 4r × 4r deterministic matrix defined as

Π4r(λ) :=

(
Π

(1)
2r (λ) 0

0 Π
(2)
2r (λ)

)
, (4.24)

and E4r is a 4r × 4r random matrix defined as

E4r ≡

(
E(1)

2r E(3)
2r

E(4)
2r E(2)

2r

)
:=

(
U> 0

0 V>

)
(G−Π)

(
U 0

0 V

)
+

(
0 0

0 V>Π(2)V −Π
(2)
2r

)
. (4.25)

Here, E(1)
2r , E(2)

2r , E(3)
2r and E(4)

2r are the upper-left, lower-right, upper-right, and lower-left
2r × 2r blocks of E4r, and

Π(2)(λ) :=

(
m3c(λ)In h(λ)In
h(λ)In m4c(λ)In

)
is the lower-right 2n× 2n block of Π. Note Π

(2)
2r is defined such that Π

(2)
2r = E(V>Π(2)V).

Using the large deviation bounds in Lemma 5.3 below, we can obtain the following
approximate isotropic conditions for Z:

‖ZZ> − Ir‖ ≺ n−1/2, and ‖Zv‖2 ≺ n−1/2‖v‖2, (4.26)

for any deterministic vector v ∈ Cn. Using Theorem 4.8 and equation (4.26), we can
bound E4r as

‖E4r‖ ≺ n−1/2. (4.27)

Now, using the Schur complement formula, we find that (4.23) is equivalent to

det

[
Π

(2)
2r + E(2)

2r −
(
D−1 + E(4)

2r

)(
Π

(1)
2r + E(1)

2r

)−1 (
D−1 + E(3)

2r

)]
= 0.

Using (4.27) and the first two equations in (4.10), we can reduce this equation to

det

[(
m3c(λ)(Ir + Σ2

a) h(λ)ΣaV
>
a VbΣb

h(λ)ΣbV
>
b VaΣa m4c(λ)(Ir + Σ2

b)

)
+ E2r + O≺(n−1)

]
= 0, (4.28)

where E2r is a 2r × 2r random matrix defined as

E2r = DE(2)
2r D + (Π

(1)
2r )−1E(1)

2r (Π
(1)
2r )−1 − (Π

(1)
2r )−1E(3)

2r D −DE
(4)
2r (Π

(1)
2r )−1

=

(
m3cE(1)

r hE(3)
r

hE(4)
r m4cE(2)

r

)
,

with E(α)
r , α = 1, 2, 3, 4, being four r × r random matrices defined as

E(1)
r = m−1

3c ΣaV
>
a Z

(
G(33) −m3c

)
ZVaΣa + ΣaV

>
a

(
ZZ> − Ir

)
VaΣa

+m3cU
>
a (G(11) − c−1

1 m1c)Ua +
[
U>a G(13)Z

>VaΣa + ΣaV
>
a ZG(31)Ua

]
,

E(2)
r = m−1

4c ΣbV
>
b Z

(
G(44) −m4c

)
Z>VbΣb + ΣbV

>
b

(
ZZ> − Ir

)
VbΣb

+m4cU
>
b (G(22) − c−1

2 m2c)Ub +
[
U>b G(24)Z

>VbΣb + ΣbV
>
b ZG(42)Ub

]
E(3)
r = (E(4)

r )> = h−1ΣaV
>
a Z

(
G(34) − h

)
Z>VbΣb + ΣaV

>
a

(
ZZ> − Ir

)
VbΣb

+
m3cm4c

h
U>a G(12)Ub +

m3c

h
U>a G(14)Z

>VbΣb +
m4c

h
ΣaV

>
a ZG(32)Ub.
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In the above expressions, we abbreviated the Iα×Iβ block ofG by G(αβ) for α, β = 1, 2, 3, 4.
Applying the Schur complement formula once again, we obtain that (4.28) is equivalent
to

det
[
fc(λ)

(
Ir + Σ2

a

)
+ fc(λ)E(1)

r

−
(

ΣaV
>
a VbΣb + E(3)

r

) 1

Ir + Σ2
b + E(2)

r

(
ΣbV

>
b VaΣa + E(4)

r

)
+ O≺(n−1)

]
= 0,

where the function fc is defined by

fc(z) :=
m3c(z)m4c(z)

h2(z)
=
z − (c1 + c2 − 2c1c2) +

√
(z − λ−)(z − λ+)

2(1− c1)(1− c2)
. (4.29)

Using (4.27), we can check that ‖E(α)
r (λ)‖ ≺ n−1/2, α = 1, 2, 3, 4, with which we can

further reduce the above equation to

det
[
fc(λ)Ir − Σ̂aV

>
a VbΣ̂

2
bV
>
b VaΣ̂a + Er(λ) + O≺(n−1)

]
= 0, (4.30)

where we have abbreviated that

Σ̂a :=
Σa

(Ir + Σ2
a)1/2

, Σ̂b :=
Σb

(Ir + Σ2
b)

1/2
, (4.31)

and Er is a r × r random matrix defined by

Er :=fc
1

(Ir + Σ2
a)1/2

E(1)
r

1

(Ir + Σ2
a)1/2

+ Σ̂aV
>
a VbΣ̂b

1

(Ir + Σ2
b)

1/2
E(2)
r

1

(Ir + Σ2
b)

1/2
Σ̂bV

>
b VaΣ̂a

− 1

(Ir + Σ2
a)1/2

E(3)
r

1

(Ir + Σ2
b)

1/2
Σ̂bV

>
b VaΣ̂a

− Σ̂aV
>
a VbΣ̂b

1

(Ir + Σ2
b)

1/2
E(4)
r

1

(Ir + Σ2
a)1/2

.

(4.32)

Finally, with the SVD (2.24), we can rewrite the equation (4.30) as

det
[
fc(λ)Ir − diag(t1, · · · , tr) +O>Er(λ)O + O≺(n−1)

]
= 0. (4.33)

One can easily check that the following function is the inverse of fc in (4.29) when
z /∈ [λ−, λ+]:

gc(ξ) := ξ
(
1− c1 + c1ξ

−1
) (

1− c2 + c2ξ
−1
)
.

Moreover, it is easy to check that fc(λ+) = tc (recall (1.4)). Since fc(λ) is monotonically
increasing when λ > λ+, the function fc(λ)− ti = 0 has a solution in (λ+, 1) if and only if

tc = fc(λ+) < ti. (4.34)

If (4.34) holds, then ti gives rise to an outlier lying around θi = gc(ti), which ex-
plains (2.16). With a direct calculation, we can verify the following deterministic
estimates on fc and gc.

Lemma 4.10 (Lemma 4.1 of [34]). Fix a large constant C > 0. For any z ∈ D := {z ∈ C :

λ+ < Re z < C} and ξ ∈ fc(D), the following estimates hold:

|fc(z)− fc(λ+)| ∼ |z − λ+|1/2, |f ′c(z)| ∼ |z − λ+|−1/2, (4.35)

|gc(ξ)− λ+| ∼ |ξ − tc|2, |g′c(ξ)| ∼ |ξ − tc|. (4.36)

EJP 27 (2022), paper 86.
Page 20/71

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP814
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


CLT of sample canonical correlation coefficients

Now, with equation (4.33), we can prove the following proposition, which shows that
the limiting law of ζ in Theorem 2.3 is determined by the limiting law of n1/2O>Er(θl)O.
Let α : {1, · · · , γ(l)} → {1, · · · , r} be a labeling function so that λ̃α(i) is the i-th largest

value in the set {λ̃i : i ∈ γ(l)}.
Proposition 4.11 (Reduction to the law of G). Under the assumptions of Theorem 2.3,
there exists a constant ε > 0 depending on δ only such that for 1 6 i 6 |γ(l)|,∣∣∣(λ̃α(i) − θl

)
− µi

{
a(tl)

[
diag(t1, · · · , tr)− tl −O>Er(θl)O

]
Jγ(l)K

}∣∣∣ ≺ n−1/2−ε, (4.37)

where µi is the i-th eigenvalue of the |γ(l)| × |γ(l)| matrix

a(tl)
[
diag(t1, · · · , tr)− tl −O>Er(θl)O

]
Jγ(l)K

in the sense of (2.18).

Proof. By Lemma 4.3 and the condition (2.19), we have that for i ∈ γ(l), λ̃i ∈ Sout(ε) and
λ̃i > λ+ + ε with high probability for a sufficiently small constant ε > 0. Thus the above
discussion starting at (4.23) will finally lead to the equation (4.33). Armed with (4.1),
equation (4.33) and the estimates in Lemma 4.10, we can conclude the proof using the
same argument as the one for [30, Proposition 4.5]. We omit the details. In fact, one
can easily see why (4.37) holds by performing a Taylor expansion of fc(λ̃α(i)) around θl
in (4.33), and noticing that 1/f ′c(θl) = g′c(tl) = a(tl).

By Proposition 4.11, to prove Theorem 2.3, it suffices to study the CLT of n1/2O>Er(θl)O.
With a straightforward algebraic calculation, we get that

Er(θl) = E(z)
r (θl) + E(g)

r (θl), (4.38)

where

E(z)
r (θl) := fc(θl)Σ̂aV

>
a

(
ZZ> − Ir

)
VaΣ̂a

+ Σ̂aV
>
a VbΣ̂

2
bV
>
b

(
ZZ> − Ir

)
VbΣ̂

2
bV
>
b VaΣ̂a

− Σ̂aV
>
a

(
ZZ> − Ir

)
VbΣ̂

2
bV
>
b VaΣ̂a

− Σ̂aV
>
a VbΣ̂

2
bV
>
b

(
ZZ> − Ir

)
VaΣ̂a,

(4.39)

and

E(g)
r (θl) := fc(θl)m3c(θl)W

>(θl)


U>a 0 0 0

0 U>b 0 0

0 0 Z 0

0 0 0 Z

 [G(θl)−Π(θl)]

×


Ua 0 0 0

0 Ub 0 0

0 0 Z> 0

0 0 0 Z>

W(θl),

(4.40)

with W being a 4r × r matrix defined by

W(θl) :=


(Ir + Σ2

a)−1/2

−h(θl)m
−1
3c (θl)(1 + Σ2

b)
−1/2Σ̂bV

>
b VaΣ̂a

m−1
3c (θl)VaΣ̂a

−h(θl)m
−1
3c (θl)m

−1
4c (θl)VbΣ̂

2
bV
>
b VaΣ̂a

 .
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Here, the superscripts (z) and (g) indicate that we will make use of the CLT of ZZ> − Ir
and G−Π, respectively, when dealing with these two terms (4.39) and (4.40).

By classical CLT, we know that
√
n
(
ZZ> − Ir

)
⇒ G, (4.41)

where G is an r × r symmetric Gaussian matrix whose entries are independent up to
symmetry and have mean zero and variances (recall (2.28))

EG2
ij = 1, i 6= j, and EG2

ii = κ(4)
z + 2.

With this result, we immediately derive the CLT for n1/2O>E(z)
r O. Therefore, to conclude

Theorem 2.3, it remains to prove the CLT for the matrix

M0(θl) :=
√
n


U>a 0 0 0

0 U>b 0 0

0 0 Z 0

0 0 0 Z

 [G(θl)−Π(θl)]


Ua 0 0 0

0 Ub 0 0

0 0 Z> 0

0 0 0 Z>

 . (4.42)

As discussed in Section 3, we first prove the CLT forM0(θl) in an almost Gaussian case,
where most of the X and Y entries are Gaussian. Then, in Section 8, we show that the
general case in the setting of Theorem 2.3 is sufficiently close to the almost Gaussian
case, thereby completing the proof of Theorem 2.3.

5 The almost Gaussian case

In this section, we calculate the limiting distribution ofM0(θl) in the almost Gaussian
case. The extension to the general setting in Theorem 2.3 will be postponed to Section 8.
We fix a small constant τ0 > 0 in this section, and use n−τ0 as a cutoff scale in the entries
of Ua and Ub, below which the corresponding entries of X and Y are Gaussian. Our
goal is to prove the following proposition.

Proposition 5.1. Fix any 1 6 l 6 r and a sufficiently small constant τ0 > 0. Suppose
Assumption 2.1 and (2.19) hold. Suppose X and Y satisfy that for k ∈ I1,

max
16i6r

|uai (k)| 6 n−τ0 ⇒ Xkµ is Gaussian, µ ∈ I3, (5.1)

and for k ∈ I2,
max

16i6r
|ubi (k)| 6 n−τ0 ⇒ Ykµ is Gaussian, µ ∈ I4. (5.2)

Then, for any bounded continuous function f : R|γ(l)|×|γ(l)| → R, we have that

lim
n

[
Ef
((√

nO>Er(θl)O
)
Jγ(l)K

)
− Ef(Υl)

]
= 0, (5.3)

where Υl is the Gaussian random matrix defined in Theorem 2.3.

For simplicity, in the proof below we often drop the spectral parameter z = θl from
our notations. Using (4.26) and the SVD of Z, we can find an r × n partial orthogonal
matrix Z̃ such that

Z̃Z̃> = Ir, ‖Z̃ − Z‖F ≺ n−1/2. (5.4)

From (4.26) and (5.4), we also obtain the following estimate:

‖Z̃‖max 6 ‖Z>‖max + n−1/2+ε/2 6 n−1/2+ε, (5.5)

with high probability for any fixed ε > 0. Now, using (5.4) and (4.19), we get that

‖M(θl)−M0(θl)‖ ≺ n−1/2, (5.6)
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whereM is a 4r × 4r random matrix defined by

M(θl) :=
√
n


U>a 0 0 0

0 U>b 0 0

0 0 Z̃ 0

0 0 0 Z̃

 [G(θl)−Π(θl)]


Ua 0 0 0

0 Ub 0 0

0 0 Z̃> 0

0 0 0 Z̃>

 . (5.7)

Hence, to obtain the CLT ofM0(θl), it suffices to studyM(θl). For this purpose, we first
introduce the concept of minors of H and G.

Definition 5.2 (Minors). Let J and T ⊂ J be some index sets. Given any J × J matrix
A, we define the minor A(T) := (Aab : a, b ∈ J \ T) as the (J \ T) × (J \ T) matrix
obtained by removing all rows and columns indexed by T. Note that we keep the names
of indices when defining A(T), i.e. (A(T))ab = Aab for a, b /∈ T. Correspondingly, we
define the resolvent minor as G(T)(z) := [H(T)(z)]−1. For convenience, we will adopt the
convention that A(T )

ab = 0 when a ∈ T or b ∈ T. We will abbreviate that ({a}) ≡ (a) and
({a, b}) ≡ (ab).

The following large deviation bounds for linear and quadratic forms of independent
random variables were proved in proved in [16].

Lemma 5.3 (Theorem B.1 of [16]). Let (xi), (yj) be independent families of centered
independent random variables, and (Ai), (Bij) be families of deterministic complex
numbers. Suppose the entries xi, yj have variances at most n−1 and satisfy (2.8). Then,
the following large deviation bounds hold:∣∣∣∑

i

Aixi
∣∣∣ ≺ 1√

n

(∑
i

|Ai|2
)1/2

,
∣∣∣∑
i,j

xiBijyj
∣∣∣ ≺ 1

n

(∑
i,j

|Bij |2
)1/2

,

∣∣∣∑
i 6=j

xiBijxj
∣∣∣ ≺ 1

n

(∑
i 6=j

|Bij |2
)1/2

.

For convenience, we introduce the following shorthand for the equivalence relation
between two random vectors of fixed size in the sense of asymptotic distributions.

Definition 5.4. Given two sequences of random vectors An and Bn in Rk, where k ∈ N
is a fixed integer, we write An

d∼ Bn if

lim
n→∞

[Ef(An)− Ef(Bn)] = 0

for any bounded continuous function f .

In the proof, we will frequently use the following simple fact, which can be proved
using characteristic functions. Given two sequences of random vectors An and Bn,

suppose that conditioning on An, we have Bn
d∼ Dn, where Dn has an asymptotic

distribution that does not depend on An. Then, we have that

An + Bn
d∼ An +Dn, (5.8)

where on the right-hand side Dn is independent of An. One immediate use of this fact is
to decouple the randomness ofM(θl) from that of Z (and hence Z̃) as long as we can
show that conditioning on Z, the limiting distribution ofM(θl) does not depend on Z.

5.1 Step 1: RewritingM(x)

We start with some linear algebra to writeM(x) into a form that is more amenable
to our analysis. Our main tool is the rotational invariance of multivariate Gaussian
distributions.
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First, notice that since ‖uai ‖2 = 1 and ‖ubi‖2 = 1 for 1 6 i 6 r, we have∣∣∣{k : max
16i6r

|uai (k)| > n−τ0
}∣∣∣ 6 rn2τ0 ,

∣∣∣{k : max
16i6r

|ubi (k)| > n−τ0
}∣∣∣ 6 rn2τ0 . (5.9)

We permute the rows of Ua, Ub, X and Y using p× p and q × q permutation matrices P1

and P2:

M(θl) =
√
n


U>a P

>
1 0 0 0

0 U>b P
>
2 0 0

0 0 Z̃ 0

0 0 0 Z̃



P1 0 0 0

0 P2 0 0

0 0 In 0

0 0 0 In



× [G(θl)−Π(θl)]


P>1 0 0 0

0 P>2 0 0

0 0 In 0

0 0 0 In



P1Ua 0 0 0

0 P2Ub 0 0

0 0 Z̃> 0

0 0 0 Z̃>

 .

We can choose P1 and P2 such that all the “large” entries of Ua and Ub in the two sets
of (5.9) are now in the first ρ rows of P1Ua and P2Ua for some integer ρ 6 rn2τ0 . Without
loss of generality, we rename P1Ua and P2Ua as Ua and Ub. Then, we can assume that
Ua and Ub take the forms

Ua =

(
O1

O′1

)
, Ub =

(
O2

O′2

)
, (5.10)

where O1, O2 are ρ × r matrices, O′1 is a (p − ρ) × r matrix, O′2 is a (q − ρ) × r matrix,
and ‖O′1 ‖max 6 n−τ0 , ‖O′2 ‖max 6 n−τ0 . On the other hand, we have

P1 0 0 0

0 P2 0 0

0 0 In 0

0 0 0 In

 [G(θl)−Π(θl)]


P>1 0 0 0

0 P>2 0 0

0 0 In 0

0 0 0 In



=


0

(
P1X 0

0 P2Y

)
(
X>P>1 0

0 Y >P>2

) (
θlIn θ

1/2
l In

θ
1/2
l In θlIn

)−1


−1

−Π(θl).

Again, without loss of generality, we rename the permuted matrices P1X and P2Y as X
and Y . Then, because of (5.1) and (5.2), X and Y take the forms

X =

(
X1

X2

)
, Y =

(
Y1

Y2

)
,

where X1, Y1 are ρ×n matrices, X2 is a (p−ρ)×n Gaussian matrix and Y2 is a (q−ρ)×n
Gaussian matrix. Next, we rotate O′1 and O′2 using orthogonal (p − ρ) × (p − ρ) and
(q − ρ)× (q − ρ) matrices S̃1 and S̃2 so that

S̃>1 O′1 =

(
Õ′1
0

)
, S̃>2 O′2 =

(
Õ′2
0

)
,

where Õ′1 and Õ′2 are r × r matrices satisfying that

O>αOα + (O′α)>O′α = O>αOα + (Õ′α)>Õ′α = Ir, α = 1, 2. (5.11)

EJP 27 (2022), paper 86.
Page 24/71

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP814
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


CLT of sample canonical correlation coefficients

Similarly, we rotate Z̃> using an orthogonal n × n matrix S̃ = (Z̃>, S), where S is an
n× (n− r) matrix satisfying S>S = In−r and S>Z̃> = 0.

With the above notations, we can rewriteM in (5.7) as

M=
√
n


Ũ>a 0 0 0

0 Ũ>b 0 0

0 0 I> 0

0 0 0 I>




0

(
X̃ 0

0 Ỹ

)
(
X̃> 0

0 Ỹ >

) (
θlIn θ

1/2
l In

θ
1/2
l In θlIn

)−1


−1

Ũa 0 0 0

0 Ũb 0 0

0 0 I 0

0 0 0 I


−
√
nΠ2r,2r(θl), (5.12)

where Π2r,2r is a 4r × 4r matrix defined as

Π2r,2r :=


(
c−1
1 m1cIr 0

0 c−1
2 m2cIr

)
0

0

(
m3cIr hIr
hIr m4cIr

)
 , (5.13)

and we have abbreviated that

Ũa :=

O1

Õ′1
0

 , Ũb :=

O2

Õ′2
0

 , I :=

(
Ir
0

)
, X̃ :=

(
Iρ 0

0 S̃>1

)
XS̃, Ỹ :=

(
Iρ 0

0 S̃>2

)
Y S̃.

Using the rotational invariance of X2, we can write X̃ as

X̃
d
=

(
X1Z̃

>, X1S

X2

)
≡

X1Z̃
> X1S

X
(1)
L X

(1)
R

X
(2)
L X

(2)
R

 ,

where “
d
=” means “equal in distribution”, and X(1)

L , X(2)
L , X(1)

R and X(2)
R are respectively

r × r, (p− ρ− r)× r, r × (n− r) and (p− ρ− r)× (n− r) Gaussian matrices. We have a
similar decomposition for Y :

Ỹ
d
=

(
Y1Z̃

>, Y1S

Y2

)
≡

Y1Z̃
> Y1S

Y
(1)
L Y

(1)
R

Y
(2)
L Y

(2)
R

 .

For simplicity, we introduce the notations r̃ = r + ρ and

T := {1, · · · , r̃} ∪ {p+ 1, · · · , p+ r̃} ∪ {p+ q + 1, · · · , p+ q + r}
∪ {p+ q + n+ 1, · · · , p+ q + n+ r} .

Then, applying the Schur complement formula to (5.12), we obtain that

M d
=
√
n
[
O>H−1

2r̃,2r O−Π2r,2r(θl)
]
, (5.14)

where O and H2r̃,2r are (2r̃+ 2r)× 4r and (2r̃+ 2r)× (2r̃+ 2r) matrices defined as (recall
Definition 5.2)

O :=



(
O1

Õ′1

)
0 0 0

0

(
O2

Õ′2

)
0 0

0 0 Ir 0

0 0 0 Ir


,
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H2r̃,2r :=

0 · I2r̃ 0

0

(
θlIr θ

1/2
l Ir

θ
1/2
l Ir θlIr

)−1

+H1 − F>G(T)(θl)F,

and H1 and F are (2r̃ + 2r) × (2r̃ + 2r) and (p + q + 2n − 2r̃ − 2r) × (2r̃ + 2r) matrices
defined as

H1 :=


0 · I2r̃


(
X1Z̃

>

X
(1)
L

)
0

0

(
Y1Z̃

>

Y
(1)
L

)


0 0 · I2r

+ c.t.,

F :=


0 0 X

(2)
L 0

0 0 0 Y
(2)
L(

S>X>1 , (X
(1)
R )>

)
0 0 0

0
(
S>Y >1 , (Y

(1)
R )>

)
0 0

 .
Here, “c.t.” means the (conjugate) transpose of the preceding term. Using (4.15), we
can rewrite H2r̃,2r as

H2r̃,2r := Π−1
2r̃,2r +H1 +


m3cIr̃ 0 0 0

0 m4cIr̃ 0 0

0 0 m1cIr 0

0 0 0 m2cIr


− F>Π(T)F − F>(G(T) −Π(T))F, (5.15)

where Π(T) is the minor of Π as defined in Definition 5.2 and Π2r̃,2r is defined in a similar
way as (5.13):

Π2r̃,2r :=


(
c−1
1 m1cIr̃ 0

0 c−1
2 m2cIr̃

)
0

0

(
m3cIr hIr
hIr m4cIr

)
 . (5.16)

5.2 Step 2: Concentration estimates

In this step, we establish some (almost) sharp concentration estimates on the terms
in (5.15). More precisely, we claim that

F>F −


Ir̃ 0 0 0

0 Ir̃ 0 0

0 0 c1Ir 0

0 0 0 c2Ir

 = O≺(n−1/2+2τ0), (5.17)

and
F>Π(T)F − EF (F>Π(T)F ) = O≺(n−1/2+2τ0), (5.18)

where EF denotes the partial expectation over the randomness in F and conditioning on
Z. (To avoid confusion, we emphasize that the matrix S is deterministic conditioning on
Z.) Using the facts S>S = In−r and r̃ = O(n2τ0), we get that

EF

(
F>Π(T)F

)
=


m3cIr̃ 0 0 0

0 m4cIr̃ 0 0

0 0 m1cIr 0

0 0 0 m2cIr

+ O
(
n−1+2τ0

)
. (5.19)
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Both the estimates (5.17) and (5.18) follow from Lemma 5.3. We consider the terms
(X

(2)
L )>X

(2)
L , X1SS

>X>1 and X1S(X
(1)
R )> as examples, where recall that X(2)

L , X1 and

X
(1)
R are (p − r̃) × r, ρ × n and r × (n − r) random matrices with i.i.d. entries of mean

zero and variance n−1. For p+ q + 1 6 µ, ν 6 p+ q + r, we have that∣∣∣ [(X(2)
L )>X

(2)
L

]
µν
− p− r̃

n
δµν

∣∣∣ =
∣∣∣ ∑
r̃+16i6p

(
XiµXiν − n−1δµν

) ∣∣∣ ≺ O(n−1/2).

For 1 6 i 6 ρ, we have that∣∣(X1SS
>X>1

)
ii
− n−1 Tr

(
SS>

)∣∣ =
∣∣∣ ∑
µ 6=ν∈I3

XiµXiν(SS>)µν

∣∣∣+
∣∣∣ ∑
µ∈I3

(X2
iµ − n−1)(SS>)µµ

∣∣∣
≺ 1

n

( ∑
µ6=ν∈I3

[(SS>)µν ]2
)1/2

+
1

n

( ∑
µ∈I3

[(SS>)µµ]2
)1/2

6
2

n

{
Tr
[
(SS>)2

]}1/2
= O(n−1/2),

while for 1 6 i < j 6 ρ, we have that

(X1SS
>X>1 )ij =

∑
µ,ν∈I3

XiµXjν(SS>)µν ≺
1

n

( ∑
µ,ν∈I3

[(SS>)µν ]2
)1/2

=
1

n

{
Tr
[
(SS>)2

]}1/2
= O(n−1/2).

Using the fact Tr(SS>) = n− r, the above two estimates actually give the estimate∣∣(X1SS
>X>1 )ij − δij

∣∣ ≺ n−1/2, 1 6 i, j 6 ρ.

Finally, for 1 6 i 6 ρ and ρ+ 1 6 j 6 ρ+ r, we have that[
X1S(X

(1)
R )>

]
ij

=
∑

µ,ν∈I3

XiµXjνSµν ≺
1

n

( ∑
µ,ν∈I3

S2
µν

)1/2

=
1

n

[
Tr(SS>)

]1/2
= O(n−1/2).

With similar arguments as above, using Lemma 5.3, we can obtain the following concen-
tration estimates: for any constant ε > 0, with high probability,∥∥∥(X

(2)
L )>X

(2)
L − c1Ir

∥∥∥
max

6 n−1/2+ε,
∥∥∥(Y

(2)
L )>Y

(2)
L − c2Ir

∥∥∥
max

6 n−1/2+ε,∥∥X1SS
>X>1 − Iρ

∥∥
max

6 n−1/2+ε,
∥∥Y1SS

>Y >1 − Iρ
∥∥

max
6 n−1/2+ε,∥∥X1SS

>Y1

∥∥
max

6 n−1/2+ε,
∥∥∥X(1)

R (X
(1)
R )> − Ir

∥∥∥
max

6 n−1/2+ε,∥∥∥Y (1)
R (Y

(1)
R )> − Ir

∥∥∥
max

6 n−1/2+ε,
∥∥∥X(1)

R (Y
(1)
R )>

∥∥∥
max

6 n−1/2+ε,∥∥∥X1S(X
(1)
R )>

∥∥∥
max

6 n−1/2+ε,
∥∥∥X1S(Y

(1)
R )>

∥∥∥
max

6 n−1/2+ε,∥∥∥Y1S(X
(1)
R )>

∥∥∥
max

6 n−1/2+ε,
∥∥∥Y1S(Y

(1)
R )>

∥∥∥
max

6 n−1/2+ε.

(5.20)

These estimates immediately imply (5.17) and (5.18) by bounding the operator norms of
error matrices by their Frobenius norms.

By (5.17), we have that ‖F‖ = O(1) with high probability. Then, using the local
law (4.19) and the fact that F is independent of G(T), we get that∥∥∥F>(G(T) −Π(T))F

∥∥∥ 6 (2r̃ + 2r)
∥∥∥F>(G(T) −Π(T))F

∥∥∥
max
≺ n−1/2+2τ0 .

Under the moment assumption (2.8), every entry of H1 is of order O≺(n−1/2) by Markov’s
inequality, so we have that

‖H1‖ 6 (2r̃ + 2r)‖H1‖max ≺ n−1/2+2τ0 .
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Finally, by (5.18) and (5.19), we have that∥∥∥∥∥∥∥∥

m3cIr̃ 0 0 0

0 m4cIr̃ 0 0

0 0 m1cIr 0

0 0 0 m2cIr

− F>Π(T)F

∥∥∥∥∥∥∥∥ ≺ n
−1/2+2τ0 .

Hence, for M in (5.14), taking the inverse of (5.15) and performing a simple Taylor
expansion, we get that

M d
=
√
nO>Π2r̃,2r

[
−H1 + (1− EF )(F>Π(T)F ) + F>(G(T) −Π(T))F

]
Π2r̃,2r O

+ O≺(n−1/2+4τ0),
(5.21)

where we used (5.19) and O>Π2r̃,2r O = Π2r,2r. Since τ0 can be taken as small as
possible, it suffices to study the CLT of the first term in (5.21).

5.3 Step 3: CLT of the resolvent

In this step, we establish the CLT of the resolvent term
√
nF>(G(T)−Π(T))F in (5.21).

Conditioning on F , we have the following lemma, whose proof will be given in Section 6.

Lemma 5.5. Fix any F such that the estimates in (5.20) hold for a small enough constant
ε > 0. Then, we have that (recall Definition 5.4)

√
nO> F>(G(T) −Π(T))F O

d∼


a11g11 a12g12 a13g13 a14g14

a21g21 a22g22 a23g23 a24g24

a31g31 a32g32 a33g33 a34g34

a41g41 a42g42 a43g43 a44g44

 , (5.22)

where gαβ, 1 6 α 6 β 6 4, are independent Gaussian matrices satisfying the following
properties: gαβ = g>βα, 1 6 α < β 6 4, are r × r random matrices with i.i.d. Gaussian
entries (gαβ)ij ∼ N (0, 1); gαα, 1 6 α 6 4, are r × r symmetric GOE (Gaussian orthogonal
ensemble) with entries (gαα)ij ∼ N (0, 1 + δij). Moreover, the coefficients are given by

a11 := m3c

√
a2
c + c1

1− c1
+
a2
c

c1
, a12 = a21 := h

√
a2
c

c2
t2l +

a2
c + c2

1− c2
,

a13 = a31 :=

√
a2
c + c1

1− c1
, a14 = a41 :=

ac√
c1

m3c

h
, a22 := m4c

√
a2
c + c2

1− c2
+
a2
c

c2
,

a23 = a32 :=
ac√
c2

m4c

h
, a24 = a42 :=

√
a2
c + c2

1− c2
, a33 := m−1

3c

√
c1
a2
c + c1

1− c1
,

a34 = a43 :=
ac
h
, a44 := m−1

4c

√
c2
a2
c + c2

1− c2
,

(5.23)

where we have introduced the notation

a2
c :=

t2c
t2l − t2c

. (5.24)

With Lemma 5.5, we get the weak convergence
√
nO>Π2r̃,2rF

>(G(T) −Π(T))FΠ2r̃,2r O

⇒ Π2r,2r


a11g11 a12g12 a13g13 a14g14

a21g21 a22g22 a23g23 a24g24

a31g31 a32g32 a33g33 a34g34

a41g41 a42g42 a43g43 a44g44

Π2r,2r,
(5.25)

using the simple identity Π2r̃,2r O = O Π2r,2r, with Π2r,2r defined in (5.13).
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5.4 Step 4: Calculating the limiting covariances

In this step, we expand (5.21) and show a CLT for each term. The main technical
work is to calculate the limiting covariance functions. Lemma 5.5 already gives the CLT
for
√
nO>Π2r̃,2rF

>(G(T) −Π(T))FΠ2r̃,2r O. We still need to study the term

√
nO>Π2r̃,2r

[
−H1 + (1− EF )

(
F>Π(T)F

)]
Π2r̃,2r O

= Π2r,2rQ4rΠ2r,2r = Π2r,2r

(
Q1 Q3

Q4 Q2

)
Π2r,2r,

where Q4r is a 4r× 4r symmetric matrix, with Q1, Q2, Q3 and Q4 being the 2r× 2r blocks
defined by

Q1 :=

(
Q

(1)
1 Q

(3)
1

Q
(4)
1 Q

(2)
1

)
, Q2 :=

√
n

(
−m−1

3c IE(X
(2)
L )>X

(2)
L 0

0 −m−1
4c IE(Y

(2)
L )>Y

(2)
L

)
,

Q3 = Q>4 :=
√
n

(
−O>1 X1Z̃

> − (Õ′1)>X
(1)
L 0

0 −O>2 Y1Z̃
> − (Õ′2)>Y

(1)
L

)
.

Here, we have abbreviated IE := 1− EF , and the four r × r blocks of QL are defined as

Q
(1)
1 :=

√
nIE

[
m3c

(
O>1 X1S + (Õ′1)>X

(1)
R

)(
S>X>1 O1 +(X

(1)
R )>Õ′1

)]
,

Q
(2)
1 :=

√
nIE

[
m4c

(
O>2 Y1S + (Õ′2)>Y

(1)
R

)(
S>Y >1 O2 +(Y

(1)
R )>Õ′2

)]
,

Q
(3)
1 = (Q

(4)
1 )> :=

√
nIE

[
h
(
O>1 X1S + (Õ′1)>X

(1)
R

)(
S>Y >1 O2 +(Y

(1)
R )>Õ′2

)]
.

Now, using (4.40), (5.6), (5.21), (5.25) and the simple fact (5.8), we obtain that

√
nO>E(g)

r O
d∼tlm3cW

>


a11g11 a12g12 a13g13 a14g14

a21g21 a22g22 a23g23 a24g24

a31g31 a32g32 a33g33 a34g34

a41g41 a42g42 a43g43 a44g44

W + tlm3cW
>Q4rW.

(5.26)

Here, the 4r × r matrix W is defined as

W := Π2r,2rWO =


−m−1

3c W1

hm−1
3c m

−1
4c W2

t−1
l W3

hm−1
3c W4

 ,

where we have abbreviated that

W1 :=
(
Ir + Σ2

a

)−1/2O, W2 :=
(
1 + Σ2

b

)−1/2
Σ̂bV

>
b VaΣ̂aO,

W3 := tlVaΣ̂aO −VbΣ̂
2
bV
>
b VaΣ̂aO, W4 := VaΣ̂aO −VbΣ̂

2
bV
>
b VaΣ̂aO.

(5.27)

In the derivation, we also used that fc(θl) = m3c(θl)m4c(θl)/h
2(θl) = tl. Expanding (5.26),

we get that

√
nO>E(g)

r O
d∼ tlW>

1

[
a11

m3c
g11 +

√
nIE

(
O>1 X1S + (Õ′1)>X

(1)
R

)(
S>X>1 O1 +(X

(1)
R )>Õ′1

)]
W1

−
{

W>
1

[a12

h
g12 +

√
n
(
O>1 X1S + (Õ′1)>X

(1)
R

)(
S>Y >1 O2 +(Y

(1)
R )>Õ′2

)]
W2 + c.t.

}
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+ W>
2

[
a22

m4c
g22 +

√
nIE

(
O>2 Y1S + (Õ′2)>Y

(1)
R

)(
S>Y >1 O2 +(Y

(1)
R )>Õ′2

)]
W2

−
[
W>

1

(
a13g13 −

√
nO>1 X1Z̃

> −
√
n(Õ′1)>X

(1)
L

)
W3 + c.t.

]
−
[
W>

1

(m4c

h
a14g14

)
W4 + c.t.

]
+

[
W>

2

(
h

m4c
a23g23

)
W3 + c.t.

]
+
[
W>

2

(
a24g24 −

√
nO>2 Y1Z̃

> −
√
n(Õ′2)>Y

(1)
L

)
W4 + c.t.

]
+ t−1

l W>
3

(
m3ca33g33 −

√
nIE(X

(2)
L )>X

(2)
L

)
W3

+ W>
4

(
m4ca44g44 −

√
nIE(Y

(2)
L )>Y

(2)
L

)
W4 +

[
W>

3 (ha34g34) W4 + c.t.
]
, (5.28)

where recall that “c.t.” denotes the (conjugate) transpose of the preceding term. Note√
nX

(1)
L and

√
nY

(1)
L are r×r matrices with i.i.d. Gaussian entries of mean 0 and variance

1, and they are independent of all the other terms. So we rename them as two new
Gaussian matrices

g̃13 := −
√
nX

(1)
L , g̃24 := −

√
nY

(1)
L . (5.29)

Moreover, the matrices
√
nIE(X

(2)
L )>X

(2)
L and

√
nIE(Y

(2)
L )>Y

(2)
L are also independent of

all the other terms. With classical CLT, we obtain that

−
√
nIE(X

(2)
L )>X

(2)
L

d∼
√
c1g̃33, −

√
nIE(Y

(2)
L )>Y

(2)
L

d∼
√
c2g̃44, (5.30)

where g̃33 and g̃44 are r × r symmetric GOE with entries (g̃33)ij ∼ N (0, 1 + δij) and
(g̃44)ij ∼ N (0, 1 + δij).

Now, to conclude the CLT for (5.28), it remains to show the CLT for the matrix

Θ := tlW
>
1

[√
nIE

(
O>1 X1S + W̃>

1 X
(1)
R

)(
S>X>1 O1 +(X

(1)
R )>W̃1

)]
W1

−
{

W>
1

[√
n
(
O>1 X1S + W̃>

1 X
(1)
R

)(
S>Y >1 O2 +(Y

(1)
R )>W̃2

)]
W2 + c.t.

}
+ W>

2

[√
nIE

(
O>2 Y1S + W̃>

2 Y
(1)
R

)(
S>Y >1 O2 +(Y

(1)
R )>W̃2

)]
W2

+
[
W>

1

(√
nO>1 X1Z̃

>
)

W3 + c.t.
]
−
[
W>

2

(√
nO>2 Y1Z̃

>
)

W4 + c.t.
]
.

(5.31)

We decompose Θ into the sum of four matrices, Θ := Θ1 + Θ2 + Θ3 + Θ4, as follows. We
first group all terms depending on Y (1)

R into Θ1,

Θ1 := W>
2

[√
nIE(Õ′2)>Y

(1)
R (Y

(1)
R )>Õ′2 +

√
n
(
O>2 Y1S(Y

(1)
R )>Õ′2 + c.t.

)]
W2

−
[
W>

1

(√
n
(
O>1 X1S + (Õ′1)>X

(1)
R

)
(Y

(1)
R )>Õ′2

)
W2 + c.t.

]
,

all the remaining terms depending on X(1)
R into Θ2,

Θ2 := tlW
>
1

[√
nIE(Õ′1)>X

(1)
R (X

(1)
R )>Õ′1 +

√
n
(
O>1 X1S(X

(1)
R )>Õ′1 + c.t.

)]
W1

−
[
W>

2

(√
nO>2 Y1S(X

(1)
R )>Õ′1

)
W1 + c.t.

]
,

all the remaining terms depending on X1 into Θ3,

Θ3 :=
[
W>

1

(√
nO>1 X1Z̃

>
)

W3 + c.t.
]
−
[
W>

1

(√
nO>1 X1SS

>Y >1 O2

)
W2 + c.t.

]
+ tlW

>
1

[√
nIE(O>1 X1SS

>X>1 O1)
]

W1,
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and finally all the remaining terms depending on Y1 into Θ4,

Θ4 := −
[
W>

2

(√
nO>2 Y1Z̃

>
)

W4 + c.t.
]

+ W>
2

[√
nIE

(
O>2 Y1SS

>Y >1 O2

)]
W2.

Using (2.8) and Lemma 5.3, we can obtain the following large deviation estimates as
in (5.20): for any small constant ε > 0, with high probability,

‖X1Z̃
>‖max + ‖X1‖max 6 n−1/2+ε, ‖X1X

>
1 − Iρ‖max 6 n−1/2+ε, (5.32)

‖Y1Z̃
>‖max + ‖Y1‖max 6 n−1/2+ε, ‖Y1Y

>
1 − Iρ‖max 6 n−1/2+ε. (5.33)

Combining (5.32) and (5.33) with the facts SS> = In − V V > and ρ = O(n2τ0), we can
simplify Θ3 and Θ4 as

Θα = Θ′α + O≺(n−1/2+4τ0), α = 3, 4,

where

Θ′3 :=
[
W>

1

(√
nO>1 X1Z̃

>
)

W3 + c.t.
]
−
[
W>

1

(√
nO>1 X1Y

>
1 O2

)
W2 + c.t.

]
+ tlW

>
1

[√
nIE

(
O>1 X1X

>
1 O1

)]
W1,

Θ′4 := −
[
W>

2

(√
nO>2 Y1Z̃

>
)

W4 + c.t.
]

+ W>
2

[√
nIE

(
O>2 Y1Y

>
1 O2

)]
W2.

The next lemma shows that Θ1, Θ2, Θ′3, and Θ′4 are all asymptotically Gaussian. It
has several different proofs using some classical techniques for CLT. For the reader’s
convenience, we give a proof based on Stein’s method in Appendix A.

Lemma 5.6. We have the following results conditioning on Z̃ satisfying (5.5):

(i) conditioning on X1, Y1 and X
(1)
R satisfying (5.20), Θ1 is asymptotically Gaussian

with zero mean;

(ii) conditioning on X1 and Y1 satisfying (5.20), Θ2 is asymptotically Gaussian with
zero mean;

(iii) conditioning on Y1 satisfying (5.33), Θ′3 is asymptotically Gaussian with zero mean;

(iv) Θ′4 is asymptotically Gaussian with zero mean.

With Lemma 5.6, we obtain that Θ converges in distribution to a centered Gaussian
matrix. It remains to determine the covariance of this matrix. First, we calculate
the covariance for Θ1. Conditioning on X1, Y1 and X

(1)
R satisfying (5.20) and using

r̃ = O(n2τ0), we have that

(W>
2 O>2 Y1SS

>Y >1 O2 W2)ij = (W>
2 O>2 O2 W2)ij + O(n−1/2+2τ0+ε),

and [
W>

1

(
O>1 X1S + (Õ′1)>X

(1)
R

)(
S>X>1 O1 +(X

(1)
R )>Õ′1

)
W1

]
ij

= (W>
1 W1)ij + O(n−1/2+2τ0+ε).

With these two identities, we can calculate that

E
Y

(1)
R

(Θ1)ij(Θ1)i′j′

=
(
W>

2 W2

)
ii′

(W>
2 (Õ′2)>Õ′2W2)jj′ + (W>

2 (Õ′2)>Õ′2W2)ii′(W
>
2 O>2 O2 W2)jj′

+ (W>
1 W1)ii′(W

>
2 (Õ′2)>Õ′2W2)jj′ + (W>

2 (Õ′2)>Õ′2W2)ii′(W
>
1 W1)jj′
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+ (i′ ↔ j′) + O(n−1/2+2τ0+ε),

where E
Y

(1)
R

denotes the partial expectation over Y (1)
R and (i′ ↔ j′) means an expression

obtained by exchanging i′ and j′ in all the preceding terms (i.e., the first four terms
on the right-hand side). Similarly, conditioning on X1 and Y1 satisfying (5.20), we can
calculate that

E
X

(1)
R

(Θ2)ij(Θ2)i′j′

= t2l (W
>
1 W1)ii′(W

>
1 (Õ′1)>Õ′1W1)jj′ + t2l (W

>
1 (Õ′1)>Õ′1W1)ii′(W

>
1 O>1 O1 W1)jj′

+ (W>
1 (Õ′1)>Õ′1W1)ii′(W

>
2 O>2 O2 W2)jj′ + (W>

2 O>2 O2 W2)ii′(W
>
1 (Õ′1)>Õ′1W1)jj′

+ (i′ ↔ j′) + O(n−1/2+2τ0+ε).

For Θ′3 and Θ′4, the entries of X1 and Y1 are not Gaussian anymore. Hence, the covari-
ances of Θ′3 and Θ′4 will depend on the third and fourth moments of X1 and Y1. First, we
can calculate the covariance for Θ′3:

EX1(Θ′3)ij(Θ
′
3)i′j′

= (W>
1 O>1 O1 W1)ii′

[
(W>

3 Z̃ −W>
2 O>2 Y1)(Z̃>W3 − Y >1 O2 W2)

]
jj′

+
[
(W>

3 Z̃ −W>
2 O>2 Y1)(Z̃>W3 − Y >1 O2 W2)

]
ii′

(W>
1 O>1 O1 W1)jj′

+ t2l (W
>
1 O>1 O1 W1)ii′(W

>
1 O>1 O1 W1)jj′ + (i′ ↔ j′) +K3 +K4,

(5.34)

where K3 is a third moment term defined as

K3 :=
(
n3/2EX3

11

)
· tl√

n

[ ∑
16k6ρ,µ∈I3

(O1 W1)ki (O1 W1)ki′ (O1 W1)kj′

× (Z̃>W3 − Y >1 O2 W2)µj + (i↔ j)
]

+
(
n3/2EX3

11

)
· tl√

n

[ ∑
16k6ρ,µ∈I3

(O1 W1)ki (O1 W1)kj (O1 W1)ki′

× (Z̃>W3 − Y >1 O2 W2)µj′ + (i′ ↔ j′)
]
,

and K4 is a fourth cumulant term defined as (recall (2.28))

K4 := t2l κ
(4)
x

∑
16k6ρ

(O1 W1)ki (O1 W1)ki′ (O1 W1)kj (O1 W1)kj′ .

Using Lemma 5.3, we can check that

‖Y1e‖max ≺ n−1/2, for e := n−1/2(1, 1, · · · , 1)> ∈ Rn.

Applying this estiamate and (5.33), we obtain that

(W>
3 Z̃ −W>

2 O>2 Y1)(Z̃>W3 − Y >1 O2 W2)

= W>
3 W3 + W>

2 O>2 O2 W2 + O≺(n−1/2+2τ0),

and for any 1 6 i 6 r,

1√
n

∑
µ∈I3

(
Y >1 O2 W2

)
µi

= (e>Y >1 O2 W2)i = O≺(n−1/2+2τ0).
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On the other hand, using (4.26) and (5.4), we obtain that

‖Z̃e‖max 6 ‖Ze‖max + ‖(Z̃ − Z)e‖max ≺ n−1/2, (5.35)

which implies that for any 1 6 i 6 r,

1√
n

∑
µ∈I3

(Z̃>W3)µi = (e>Z̃>W3)i = O≺(n−1/2).

The above calculations show that K3 is negligible. For K4, by the assumption of Propo-
sition 5.1, we have that ‖O′1‖max 6 n−τ0 , which gives (O′1W1)ki . n−τ0 for any k. With
this fact, we obtain that∑

ρ+16k6p

(O′1W1)ki(O
′
1W1)ki′(O

′
1W1)kj(O

′
1W1)kj′

. n−2τ0
∑

ρ+16k6p

(O′1W1)ki(O
′
1W1)ki′ . n−2τ0 ,

where O′1 is defined in (5.10). Thus, we can replace O1 W1 with UaW1 in K4 up to a
negligible error. Collecting the above estimates, we can simplify (5.34) as

EX1(Θ′3)ij(Θ
′
3)i′j′

= t2l (W
>
1 O>1 O1W1)ii′(W

>
1 O>1 O1W1)jj′+(W>

1 O>1 O1W1)ii′(W
>
3 W3+W>

2 O>2 O2W2)jj′

+ (W>
3 W3 + W>

2 O>2 O2W2)ii′(W
>
1 O>1 O1W1)jj′ + (i′ ↔ j′)

+ t2l κ
(4)
x

∑
k∈I1

UkiUki′UkjUkj′ + O(n−2τ0)

with high probability, where we recall the notations in (2.26) and (5.27). With similar
calculations, we can obtain the covariance for Θ′4: with high probability,

EY1(Θ′4)ij(Θ
′
4)i′j′ = (W>

2 O>2 O2 W2)ii′(W
>
4 W4)jj′ + (W>

4 W4)ii′(W
>
2 O>2 O2 W2)jj′

+ (W>
2 O>2 O2 W2)ii′(W

>
2 O>2 O2 W2)jj′ + (i′ ↔ j′)

+ κ(4)
y

∑
k∈I2

(UbW2)ki (UbW2)ki′ (UbW2)kj (UbW2)kj′ + O(n−2τ0).

Combining all the above calculations, we have shown that Θ = Θ1 + Θ2 + Θ3 + Θ4

converges weakly to a centered Gaussian random matrix, denoted by gΘ, with covariance

E(gΘ)ij(gΘ)i′j′ (5.36)

= t2l (W
>
1 W1)ii′(W

>
1 W1)jj′ + (W>

2 W2)ii′(W
>
2 W2)jj′

+ (W>
1 W1)ii′(W

>
2 W2)jj′ + (W>

2 W2)ii′(W
>
1 W1)jj′

+ (W>
1 O>1 O1 W1)ii′

(
W>

3 W3

)
jj′

+
(
W>

3 W3

)
ii′

(W>
1 O>1 O1 W1)jj′

+ (W>
2 O>2 O2 W2)ii′(W

>
4 W4)jj′ + (W>

4 W4)ii′(W
>
2 O>2 O2 W2)jj′ + (i′ ↔ j′)

+ t2l κ
(4)
x

∑
k∈I1

UkiUki′UkjUkj′ + κ(4)
y

∑
k∈I2

(UbW2)ki (UbW2)ki′ (UbW2)kj (UbW2)kj′ .

Notice that for any i ∈ γ(l), we have that (recall (2.26) and (5.27)),

(UbW2)ki =
[√

tl + O(n−1/2+δ)
]
Vki, (5.37)

where we used the SVD (2.24) and the fact ti = tl + O(n−1/2+δ) for any i ∈ γ(l) by
Definition 2.2. Hence, up to a negligible error, the last term in (5.36) can be replaced by

κ(4)
y

∑
k∈I2

VkiVki′VkjVkj′ , for i, j, i′, j′ ∈ γ(l).
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5.5 Step 5: Concluding the proof

Finally, combing (5.28), (5.29), (5.30) and (5.36), after a straightforward algebraic cal-
culation (where a computer algebra system may help), we obtain that (

√
nO>E(g)

r O)Jγ(l)K
converges weakly to an r × r centered Gaussian matrix Υ

(g)
l with

E(Υ
(g)
l )ij(Υ

(g)
l )i′j′

= t2l

(
a2
c + c1

1− c1
+
a2
c

c1
+ 1

)
(1−A)ii′(1−A)jj′ +

(
a2
c + c2

1− c2
+
a2
c

c2
+ 1

)
Bii′Bjj′

+

(
a2
c

c2
t2l +

a2
c + c2

1− c2
+ 1

)
[(1−A)ii′Bjj′ + Bii′(1−A)jj′ ]

+

(
a2
c + c1

1− c1
+ 1

)
[(1−A)ii′(C1)jj′ + (C1)ii′(1−A)jj′ ]

+
a2
c

c1
t2l [(1−A)ii′(C2)jj′ + (C2)ii′(1−A)jj′ ]

+
a2
c

c2
[Bii′(C1)jj′ + (C1)ii′Bjj′ ] +

(
a2
c + c2

1− c2
+ 1

)
[Bii′(C2)jj′ + (C2)ii′Bjj′ ]

+ t−2
l

(
c1
a2
c + c1

1− c1
+c1

)
(C1)ii′(C1)jj′ +

(
c2
a2
c + c2

1− c2
+ c2

)
(C2)ii′(C2)jj′

+ a2
c [(C1)ii′(C2)jj′ + (C2)ii′(C1)jj′ ]

+ (i′ ↔ j′) + t2l κ
(4)
x

∑
k

UkiUki′UkjUkj′ + κ(4)
y

∑
k

VkiVki′VkjVkj′ ,

where we recall that (i′ ↔ j′) means an expression obtained by exchanging i′ and j′ in
all the preceding terms (i.e., the terms in the first seven lines), and we have introduced
the following notations:

A := 1−W>
1 W1 = O>Σ̂2

aO, B := W>
2 W2 = O>Σ̂aV

>
a VbΣ̂b

(
1 + Σ2

b

)−1
Σ̂bV

>
b VaΣ̂aO,

C1 := W>
3 W3 = t2lA+ (1− 2tl)C − B, C2 := W>

4 W4 = A− C − B, (5.38)

with C defined as

C := O>Σ̂aV
>
a VbΣ̂

2
bV
>
b VaΣ̂aO = diag(t1, · · · , tr).

Then, we plug (5.38) into E(Υ
(g)
l )ij(Υ

(g)
l )i′j′ and simplify the resulting expression. After

a straightforward algebraic calculation, we can show that

E(Υ
(g)
l )ij(Υ

(g)
l )i′j′ = δii′

[
t2l

a2
c + c1

c1(1− c1)
+

(
a2
c + 1

1− c1
(1− 2tl)−

t2l a
2
c

c1

)
C
]
jj′

+ Cii′
[(

a2
c + 1

1− c1
(1− 2tl)−

t2l a
2
c

c1

)
+

(
(1− c2)(1− 2tl)

2

c2
+

(1− c1)t2l
c1

− 2(1− 2tl)

)
a2
cC
]
jj′

− (1− 2tl) (Aii′Cjj′ + Cii′Ajj′)− (Bii′Cjj′ + Cii′Bjj′)− t2lAii′Ajj′ − Bii′Bjj′

+ (Aii′Bjj′ + Bii′Ajj′) + (i′ ↔ j′) + t2l κ
(4)
x

∑
k

UkiUki′UkjUkj′ + t2l κ
(4)
y

∑
k

VkiVki′VkjVkj′ .

On the other hand, using (4.39) and (4.41), we can check that (
√
nO>E(z)

r O)Jγ(l)K
converges weakly to an r × r centered Gaussian matrix Υ

(z)
l with (recall (2.25))

E(Υ
(z)
l )ij(Υ

(z)
l )i′j′ = (2tl − 1)Cii′Cjj′ + t2lAii′Ajj′ + Bii′Bjj′ + (1− 2tl) (Aii′Cjj′ + Cii′Ajj′)

− (Aii′Bjj′ + Bii′Ajj′) + (Bii′Cjj′ + Cii′Bjj′) + (i′ ↔ j′) + κ(4)
z

∑
k

Wk,ijWk,i′j′ .
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Then, by (5.8), we know that(√
nO>Er(θl)O

)
Jγ(l)K =

(√
nO>E(z)

r O
)
Jγ(l)K +

(√
nO>E(g)

r O
)
Jγ(l)K

converges weakly to a centered Gaussian matrix Υ̃l with covariance

E(Υ̃l)ij(Υ̃l)i′j′ = E(Υ
(z)
l )ij(Υ

(z)
l )i′j′ + E(Υ

(g)
l )ij(Υ

(g)
l )i′j′ .

Finally, using Cjj′ = tlδjj′ + O(n−1/2+δ) for j, j′ ∈ γ(l), we can check that the covariance

functions of Υ̃l are asymptotically equal to (2.27). This concludes Proposition 5.1, which
gives Theorem 2.3 in the almost Gaussian case by Proposition 4.11.

6 Proof of Lemma 5.5

In this section, we give the proof of Lemma 5.5, which, as we have seen, is a key step
in the proof of Proposition 5.1. Under the setting of Lemma 5.5, we need to study the
CLT of the matrix

Q0(θl) : =
√
nV >0

(
G(T)(θl)−Π(T)(θl)

)
V0, where V0 ≡


0 0 V1 0

0 0 0 V2

V3 0 0 0

0 V4 0 0

 := F O .

It is easy to check that the matrices V1, V2, V3 and V4 are respectively (p − r̃) × r,
(q − r̃) × r, (n − r) × r and (n − r) × r random matrices independent of G(T), and they
satisfy that with high probability,

V>1 V1 = c1Ir + O≺(n−1/2), V>2 V2 = c2Ir + O≺(n−1/2), (6.1)

V>3 V3 = Ir + O≺(n−
1
2 +2τ0), V>4 V4 = Ir + O≺(n−

1
2 +2τ0), V>3 V4 = O≺(n−

1
2 +2τ0). (6.2)

These conditions all follow from (5.20) and (5.11). For simplicity of notations, we permute
the columns of V0 and study the CLT of(

0 I2r
I2r 0

)√
nV >0 (G(T) −Π(T))V0

(
0 I2r
I2r 0

)
. (6.3)

Moreover, with a slight abuse of notation, we rename (X(T), Y (T), G(T)) as (X,Y,G) and
study the CLT of the following matrix under the conditions (6.1) and (6.2):

Q(θl) : =
√
nV > [G(X,Y, θl)−Π(θl)] V , (6.4)

where

V := V0

(
0 I2r
I2r 0

)
=


V1 0 0 0

0 V2 0 0

0 0 V3 0

0 0 0 V4

 .

Since |T| . n2τ0 , we have (n− |T|)/n = 1 + O(n−1+2τ0), where O(n−1+2τ0) is a negligible
error. Hence, without loss of generality, we still assume that the dimensions of X and Y
are p× n and q × n in order to simplify notations.

In our proof, in order to avoid singular behaviors of G on exceptional low-probability
events, we will use a regularized resolvent Ĝ(z) defined as follows.

Definition 6.1 (Regularized resolvent). For z = E + iη ∈ C+, we define the regularized
resolvent Ĝ(z) as

Ĝ(z) :=

[
H(z)− zn−10

(
Ip+q 0

0 0

)]−1

.
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The main reason for introducing the regularized resolvent is that it satisfies the
deterministic bound:

‖Ĝ(z)‖ . n10η−1, for η = Im z. (6.5)

This estimate has been proved in Lemma 3.6 of [43]. In particular, if we choose η > n−C

for a constant C > 0, then (6.5) justfies the assumption of Lemma 4.2 (iii), which will be
used in the proof when we bound expectations of polynomials of regularized resolvent
entries. With a standard perturbation argument, we can easily control the difference
between Ĝ(z) and G(z).

Claim 6.2. Suppose there exists a high probability event Ξ on which ‖G(z)‖max = O(1)

for z belonging to some subset. Then, we have that

‖G(z)− Ĝ(z)‖max 6 n−8 on Ξ. (6.6)

Proof. For t ∈ [0, 1], we define

Gt(z) :=

[
H(z)− tzn−10

(
Ip+q 0

0 0

)]−1

, with G0(z) = G(z), G1(z) = Ĝ(z).

Taking the derivative with respect to t, we immediately obtain that

∂tGt(z) = zn−10Gt(z)

(
Ip+q 0

0 0

)
Gt(z). (6.7)

Thus, applying Gronwall’s inequality to

‖Gt(z)‖max 6 ‖G(z)‖max + Cn−9

∫ t

0

‖Gs(z)‖2maxds,

we get that max06t61 ‖Gt(z)‖max = O(1) on Ξ. Then, using (6.7) again, we get (6.6).

Note that the bound (6.6) is purely deterministic on Ξ, so we do not lose any proba-
bility in this claim. Moreover, such a small error n−8 is negligible for our proof.

In the following proof, we will use the regularized resolvent Ĝ(z) with z = θl + in−4,
and prove the CLT for Q̂(z) with G(θl) replaced by Ĝ(z). The argument in the proof of
Claim 6.2 then allows us to show that Q(θl) satisfies the same asymptotic distribution.
In the proof, it is helpful to keep in mind that the bound (6.5) always holds with η = n−4,
and hence Lemma 4.2 (iii) can be applied without worry. To ease the notation, we also
introduce the following notion of generalized entries.

Definition 6.3 (Generalized entries). For v,w ∈ CI , a ∈ I and an I × I matrix A, we
shall denote

Avw := 〈v,Aw〉, Ava := 〈v,Aea〉, Aaw := 〈ea,Aw〉, (6.8)

where ea is the standard unit vector along the a-th coordinate axis.

For 1 6 a 6 4r, we denote the a-th column vector of V by va. With the Cramér-Wold
device, it suffices to prove that

Q̂Λ :=
√
n

∑
16a6b64r

λabQ̂ab =
√
n
∑
a6b

λab(Ĝ−Π)va vb

is asymptotically Gaussian for any fixed vector of parameters denoted by Λ := (λab)a6b.
By (4.19), we have the rough bound |Q̂Λ| ≺ 1. For our purpose, it suffices to show that
the moments of Q̂Λ match those of a centered Gaussian random variable asymptotically.
This follows immediately from the following claims: (i) the mean of Q̂Λ satisfies

EQ̂Λ(z) = o(1), with z = θl + in−4, (6.9)
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and (ii) for any fixed integer k > 2, we have that

EQ̂kΛ(z) = (k − 1)s2
ΛEQ̂

k−2
Λ (z) + o(1), with z = θl + in−4, (6.10)

for a deterministic parameter s2
Λ as a function of Λ. Moreover, the covariance of Q̂ is

also determined by s2
Λ.

As described in Section 3, our main tool for the proof of (6.9) and (6.10) is Gaussian
integration by parts. Using the identity ĤĜ = I and equation (4.15), we get that

Ĝ−Π = Π
(

Π−1 − Ĥ
)
Ĝ

= Π


−(m3c + zn−10)Ip 0 −X 0

0 −(m4c + zn−10)Iq 0 −Y
−X> 0 −m1cIn 0

0 −Y > 0 −m2cIn

 Ĝ. (6.11)

We first prove (6.9). With (6.11), we can write that

EQ̂Λ :=
√
n
∑
a6b

λabEQ̂ab

=
√
n
∑
a6b

λabE



−m3cIp 0 0 0

0 −m4cIq 0 0

0 0 −m1cIn 0

0 0 0 −m2cIn

 Ĝ


wa vb

−
√
n
∑
a6b

λabE


 0

(
X 0

0 Y

)
(
X> 0

0 Y >

)
0

 Ĝ


wa vb

+ O(n−9), (6.12)

where we have abbreviated wa := Π va. For the sum in line (6.12), we expand it as

E


 0

(
X 0

0 Y

)
(
X> 0

0 Y >

)
0

 Ĝ


wa vb

= −
√
nE

∑
i∈I1,µ∈I3

Xiµ

[
wa(i)Ĝµvb + wa(µ)Ĝivb

]
−
√
nE

∑
j∈I2,ν∈I4

Yjν

[
wa(j)Ĝν vb + wa(ν)Ĝj vb

]
= n−1/2E

∑
i∈I1,µ∈I3

wa(i)
[
ĜµµĜivb + ĜµiĜµvb

]
+ n−1/2E

∑
i∈I1,µ∈I3

wa(µ)
[
ĜiiĜµvb + ĜiµĜivb

]
+ n−1/2E

∑
j∈I2,ν∈I4

wa(j)
[
ĜννĜj vb + ĜνjĜν vb

]
+ n−1/2E

∑
j∈I2,ν∈I4

wa(ν)
[
ĜjjĜν vb + ĜjνĜj vb

]
, (6.13)

where in the second step we used Gaussian integration by parts with respect to Xiµ and
Yjν ,

EXiµf(Xiµ) = n−1Ef ′(Xiµ), EYjνf(Yjν) = n−1Ef ′(Yjν),
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and the identities

∂Ĝuv

∂Xiµ
= −Ĝu iĜµv − ĜuµĜiv,

∂Ĝuv

∂Yjν
= −Ĝu jĜν v − Ĝu νĜj v, (6.14)

for any vectors u,v ∈ CI . With the notations in (4.5), we can rewrite (6.13) as

(6.13) =
√
nE



m̂3Ip 0 0 0

0 m̂4Iq 0 0

0 0 m̂1In 0

0 0 0 m̂2In

 Ĝ


wa vb

+ n−1/2E
[
〈wa, J1ĜJ3Ĝvb〉+ 〈wa, J3ĜJ1Ĝvb〉

]
+ n−1/2E

[
〈wa, J2ĜJ4Ĝvb〉+ 〈wa, J4ĜJ2Ĝvb〉

]
, (6.15)

where recall that Jα is defined in (3.9). We claim that

4
max
α=1
|m̂α(z)−mαc(z)| ≺ n−2/3, (6.16)

whose proof will be postponed until we complete the proof of Lemma 5.5. Moreover,
ĜJαĜ, α = 1, 2, 3, 4, satisfy the anisotropic local laws in Theorem 6.4 below, which
implies that for any deterministic unit vectors u,v ∈ CI ,∣∣∣〈u, ĜJαĜv〉

∣∣∣ = O≺(1), α = 1, 2, 3, 4. (6.17)

Now, plugging (6.15) into (6.12) and using (6.16) and (6.17), we obtain that

EQ̂Λ = O≺(n−1/6), (6.18)

which implies (6.9).
It remains to prove (6.10). With (6.11), we expand EQ̂kΛ as

EQ̂kΛ

= E
√
n
∑
a6b

λabE

Π


−m3cIp 0 −X 0

0 −m4cIq 0 −Y
−X> 0 −m1cIn 0

0 −Y > 0 −m2cIn

 Ĝ


va vb

Q̂k−1
Λ

=
√
n
∑
a6b

λabE



−m3cIp 0 0 0

0 −m4cIq 0 0

0 0 −m1cIn 0

0 0 0 −m2cIn

 Ĝ


wa vb

Q̂k−1
Λ (6.19)

−
√
nE
∑
a6b

λab
∑

i∈I1,µ∈I3

wa(i)XiµĜµvbQ̂
k−1
Λ (6.20)

−
√
nE
∑
a6b

λab
∑

j∈I2,ν∈I4

wa(j)YjνĜν vbQ̂
k−1
Λ (6.21)

−
√
nE
∑
a6b

λab
∑

i∈I1,µ∈I3

wa(µ)XiµĜivbQ̂
k−1
Λ (6.22)

−
√
nE
∑
a6b

λab
∑

j∈I2,ν∈I4

wa(ν)YjνĜj vbQ̂
k−1
Λ + O(n−9). (6.23)

Again, we apply Gaussian integration by parts to the terms in (6.20)–(6.23). First, as
we have seen in the k = 1 case, the terms containing ∂XiµĜµvb , ∂XiµĜivb , ∂Yjν Ĝν vb
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and ∂Yjν Ĝj vb will cancel the first term in (6.19), leaving an error of order O≺(n−1/6) as
in (6.18). Thus, we get that

EQ̂kΛ

= −n−1/2
∑
a6b

λabE
∑

i∈I1,µ∈I3,
wa(i)Ĝµvb

∂Q̂k−1
Λ

∂Xiµ
−n−1/2

∑
a6b

λabE
∑

j∈I2,ν∈I4

wa(j)Ĝν vb

∂Q̂k−1
Λ

∂Yjν

− n−1/2
∑
a6b

λabE
∑

i∈I1,µ∈I3

wa(µ)Ĝivb
∂Q̂k−1

Λ

∂Xiµ
− n−1/2

∑
a6b

λabE
∑

j∈I2,ν∈I4

wa(ν)Ĝj vb
∂Q̂k−1

Λ

∂Yjν

+ O≺(n−1/6)

= −(k − 1)
∑

a6b,a′6b′

λabλa′b′E
∑

i∈I1,µ∈I3

wa(i)Ĝµvb

∂Ĝva′ vb′

∂Xiµ
Q̂k−2

Λ (6.24)

− (k − 1)
∑

a6b,a′6b′

λabλa′b′E
∑

j∈I2,ν∈I4

wa(j)Ĝν vb

∂Ĝva′ vb′

∂Yjν
Q̂k−2

Λ (6.25)

− (k − 1)
∑

a6b,a′6b′

λabλa′b′E
∑

i∈I1,µ∈I3

wa(µ)Ĝivb
∂Ĝva′ vb′

∂Xiµ
Q̂k−2

Λ (6.26)

− (k − 1)
∑

a6b,a′6b′

λabλa′b′E
∑

j∈I2,ν∈I4

wa(ν)Ĝj vb
∂Ĝva′ vb′

∂Yjν
Q̂k−2

Λ + O≺(n−1/6). (6.27)

To calculate the terms (6.24)–(6.27), we need to use the anisotropic local law of
GJαG, α = 1, 2, 3, 4. We first define the deterministic matrix limits of GJαG:

Γ(α)(z) :=


(
γ

(α)
1 (z)Ip 0

0 γ
(α)
2 (z)Iq

)
0

0

(
γ

(α)
3 (z)In hα(z)In

hα(z)In γ
(α)
4 (z)In

)
 , α = 1, 2, 3, 4, (6.28)

where the γ functions are defined by

γ
(1)
1 :=

(1− c1)−1f2
c

m2
3c(f

2
c − t2c)

, γ
(1)
2 :=

c−1
2 t2c

h2(f2
c − t2c)

, γ
(1)
3 :=

(1− c1)−1f2
c

f2
c − t2c

− 1,

γ
(1)
4 :=

c−1
2 m2

4ct
2
c

h2(f2
c − t2c)

, γ
(2)
1 :=

c−1
1 t2c

h2(f2
c − t2c)

, γ
(2)
2 :=

(1− c2)−1f2
c

m2
4c(f

2
c − t2c)

,

γ
(2)
3 :=

c−1
1 m2

3ct
2
c

h2(f2
c − t2c)

, γ
(2)
4 :=

(1− c2)−1f2
c

f2
c − t2c

− 1, γ
(3)
1 := c−1

1 γ
(1)
3 ,

γ
(3)
2 := c−1

2 γ
(2)
3 , γ

(3)
3 := c−1

1 m2
3cγ

(1)
3 , γ

(3)
4 :=

c−1
1 c−1

2 h2t2cf
2
c

f2
c − t2c

,

γ
(4)
1 := c−1

1 γ
(1)
4 , γ

(4)
2 := c−1

2 γ
(2)
4 , γ

(4)
3 := γ

(3)
4 , γ

(4)
4 := c−1

2 m2
4cγ

(2)
4 . (6.29)

On the other hand, the functions hα are defined by

hα(z) := z1/2h2(z)
{
c1γ

(α)
1 (z) [1 + (1− z)m2c(z)] + c2γ

(α)
2 (z) [1 + (1− z)m1c(z)]

}
.

Here, we recall that tc is defined in (1.4), mαc, α = 1, 2, 3, 4, are defined in (4.6)–(4.9), h
is defined in (4.13), and fc is defined in (4.29).

Theorem 6.4. Suppose Assumption 2.1 holds. For any deterministic unit vectors u,v ∈
CI , we have that

〈u, G(θl)JαG(θl) v〉 − 〈u,Γ(α)(θl) v〉 ≺ n−1/2. (6.30)
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We will prove Theorem 6.4 in Section 7. Again, by the argument in the proof of
Claim 6.2, (6.30) also holds for Ĝ(z)JαĜ(z) with z = θl + in−4. Now, we use this estimate
to calculate (6.24)–(6.27) term by term. First, for (6.24), using (6.14) we get that

−E
∑

i∈I1,µ∈I3

wa(i)Ĝµvb

∂Ĝva′ vb′

∂Xiµ
Q̂k−2

Λ = E(ĜJ3Ĝ)vb′ vb〈va,ΠJ1Ĝva′〉Q̂k−2
Λ

+ E(ĜJ3Ĝ)va′ vb〈va,ΠJ1Ĝvb′〉Q̂k−2
Λ .

(6.31)

Now, using the local law (4.19), (6.1) and the first equation in (4.10), we get that

〈va,ΠJ1Ĝva′〉 = c1
(
c−1
1 m1c

)2
δaa′116a6r + O≺(n−1/2)

= c1m
−2
3c δaa′116a6r + O≺(n−1/2).

(6.32)

Moreover, using (6.1), (6.2) and the local law for ĜJ3Ĝ in Theorem 6.4, we get that

(ĜJ3Ĝ)vb′ vb = cα(b)γ
(3)
α(b)δbb′ + O≺(n−1/2+2τ0), (6.33)

where we used the notation

α(b) := k if (k − 1)r + 1 6 b 6 kr, k = 1, 2, 3, 4,

and let ck ≡ 1 for k = 3, 4. Plugging (6.32) and (6.33) into (6.31), we get that

(6.24) = (k − 1)
∑

16a6r,a6b

c1cα(b)
λ2
ab

m2
3c

γ
(3)
α(b)(1 + δab)EQ̂

k−2
Λ + O≺(n−1/2+2τ0). (6.34)

Similarly, we can get that

(6.25) = (k − 1)
∑

r+16a62r,a6b

c2cα(b)
λ2
ab

m2
4c

γ
(4)
α(b)(1 + δab)EQ̂

k−2
Λ + O≺(n−1/2+2τ0). (6.35)

For (6.26), we have that

− E
∑

i∈I1,µ∈I3

wa(µ)Ĝivb
∂Ĝva′ vb′

∂Xiµ
Q̂k−2

Λ

= E
∑

i∈I1,µ∈I3

(ĜJ1Ĝ)vb′ vb〈va,ΠJ3Ĝva′〉Q̂k−2
Λ

+ E
∑

i∈I1,µ∈I3

(ĜJ1Ĝ)va′ vb〈va,ΠJ3Ĝvb′〉Qk−2
Λ .

(6.36)

Using (4.19) and (6.2), we get that

〈va,ΠJ3Ĝva′〉 = m2
3cδaa′12r+16a63r + h2δaa′13r+16a64r + O≺(n−1/2+2τ0). (6.37)

Using the local law for ĜJ1Ĝ in Theorem 6.4 and (6.2), we get that

(ĜJ1Ĝ)vb′ vb = γ
(1)
α(b)δbb′ + O≺(n−1/2+2τ0), for α(b) = 3, 4. (6.38)

Plugging (6.37) and (6.38) into (6.36) gives that

(6.26) = (k − 1)
∑

2r+16a63r,a6b

λ2
abm

2
3cγ

(1)
α(b)(1 + δab)EQ̂

k−2
Λ

+ (k − 1)
∑

3r+16a64r,a6b

λ2
abh

2γ
(1)
α(b)(1 + δab)EQ̂

k−2
Λ + O≺(n−1/2+2τ0).

(6.39)
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Similarly, we can get that

(6.27) = (k − 1)
∑

2r+16a63r,a6b

λ2
abh

2γ
(2)
α(b)(1 + δab)EQ̂

k−2
Λ

+ (k − 1)
∑

3r+16a64r,a6b

λ2
abm

2
4cγ

(2)
α(b)(1 + δab)EQ̂

k−2
Λ + O≺(n−1/2+τ0).

(6.40)

Combining (6.34), (6.35), (6.39) and (6.40), we obtain that

EQ̂kΛ = (k − 1)s2
ΛEQ̂

k−2
Λ + O≺(n−1/6),

where s2
Λ is a function of Λ defined by

s2
Λ :=

∑
16a6r,a6b

c1cα(b)
λ2
ab

m2
3c

γ
(3)
α(b)(1 + δab) +

∑
r+16a62r,a6b

c2cα(b)
λ2
ab

m2
4c

γ
(4)
α(b)(1 + δab)

+
∑

2r+16a63r,a6b

λ2
ab

(
m2

3cγ
(1)
α(b) + h2γ

(2)
α(b)

)
(1 + δab)

+
∑

3r+16a64r,a6b

λ2
ab

(
h2γ

(1)
α(b) +m2

4cγ
(2)
α(b)

)
(1 + δab).

This concludes (6.10). Combining (6.9) and (6.10), we have shown that Q̂Λ(z) is asymp-
totically Gaussian with zero mean, which indicates that Q̂(z) converges weakly to a
centered Gaussian matrix by the Cramér-Wold device. Then, the argument in the proof
of Claim 6.2 shows that Q(θl) converges to the same limit. Using the definitions of γ(α)

β ,
α, β = 1, 2, 3, 4, in (6.29), we obtain from s2

Λ that

√
nQ →


b11g11 b12g12 b13g13 b14g14

b21g21 b22g22 b23g23 b24g24

b31g31 b32g32 b33g33 b34g34

b41g41 b42g42 b43g43 b44g44

 , (6.41)

where gαβ are Gaussian matrices as defined in Lemma 5.5, and through direct calcula-
tions, we can check that bαβ are given by

b11 = a33, b12 = b21 = a34, b13 = b31 = a13, b14 = b41 = a23, b22 = a44,

b23 = b32 = a14, b24 = b42 = a24, b33 = a11, b34 = b43 = a12, b44 = a22.
(6.42)

In the above calculation, we also used that for z = θl + in−4,

fc(z) =
m3c(z)m4c(z)

h2(z)
= tl + O(n−4).

Finally, combining (6.41) with (6.3), we can obtain the asymptotic distribution in (5.22),
upon renaming the matrices gαβ and the coefficients bαβ . This concludes Lemma 5.5.

Before the end of this section, we give the proof of (6.16).

Proof of (6.16). By the proof of Claim 6.2, it suffices to prove the estimate for |mα(z)−
mαc(z)| for z = θl + in−4. In the following proof, we denote z0 := θl + iη0 with η0 = n−2/3.
By the averaged local law (4.21), we have

|mα(z0)−mαc(z0)| ≺ n−2/3, α = 1, 2, 3, 4, (6.43)

where we also used that κ = |θl − λ+| ∼ 1 due to (2.19). Thus, to show (6.16), it suffices
to prove that

|mαc(z)−mαc(z0)| ≺ n−2/3, (6.44)
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|mα(z)−mα(z0)| ≺ n−2/3. (6.45)

The estimate (6.44) follows directly from the definitions in (4.6)–(4.9). We still need
to prove (6.45). It follows from the spectral decomposition of the resolvent, which we
introduce next.

First, recalling the notations in (2.12), we define

H := S−1/2
xx SxyS

−1/2
yy , (6.46)

and the resolvent

R(z) :=

(
R1 −z−1/2R1H

−z−1/2H>R1 R2

)
,

where the two blocks R1 and R2 are defined as

R1(z) := (CXY − z)−1
=
(
HH> − z

)−1
, R2(z) := (CY X − z)−1

=
(
H>H− z

)−1
. (6.47)

By Theorem 2.10 of [8], we have the following bounds on the extreme eigenvalues of Sxx
and Syy:

(1−
√
c1)2 − ε 6 λp(Sxx) 6 λ1(Sxx) 6 (1 +

√
c1)2 + ε, (6.48)

(1−
√
c2)2 − ε 6 λq(Syy) 6 λ1(Syy) 6 (1 +

√
c2)2 + ε. (6.49)

Next, consider a singular value decomposition of H,

H =

q∑
k=1

√
λkξkζ

>
k , (6.50)

where λk’s are the eigenvalues of the null SCC matrix CXY , and ξk’s and ζk’s are
respectively the left and right singular vectors. Then, the singular value decomposition
R(z) is given by

R (z) =

q∑
k=1

1

λk − z

(
ξkξ
>
k −z−1/2

√
λkξkζ

>
k

−z−1/2
√
λkζkξ

>
k ζkζ

>
k

)
− 1

z

( ∑p
k=q+1 ξkξ

>
k 0

0 0

)
.

(6.51)

We denote the (I1 ∪ I2)× (I1 ∪ I2) block of G(z) by GL(z), the (I1 ∪ I2)× (I3 ∪ I4) block
by GLR(z), the (I3 ∪ I4)× (I1 ∪ I2) block by GRL(z), and the (I3 ∪ I4)× (I3 ∪ I4) block by
GR(z). Using the Schur complement formula, we can check that

GL =

(
S
−1/2
xx 0

0 S
−1/2
yy

)
R(z)

(
S
−1/2
xx 0

0 S
−1/2
yy

)
, (6.52)

GR =

(
zIn z1/2In
z1/2In zIn

)
+

(
zIn z1/2In
z1/2In zIn

)(
X> 0

0 Y >

)
GL
(
X 0

0 Y

)(
zIn z1/2In
z1/2In zIn

)
,

(6.53)

GLR(z) = −GL(z)

(
X 0

0 Y

)(
zIn z1/2In
z1/2In zIn

)
,

GRL(z) = −
(

zIn z1/2In
z1/2In zIn

)(
X> 0

0 Y >

)
GL(z).

(6.54)
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Now, we are ready to prove (6.45). We only give the proof for α = 1, and all the other
cases can be proved in exactly the same way. Using the rigidity estimate (4.4), we get
that with high probability,

min
16k6q

|λk − z| & 1, z = θl + in−4. (6.55)

Then, using (4.5), (6.51), (6.52), (6.55), and (6.48), we obtain that

|m1(z)−m1(z0)| ≺ η0

n

p∑
i=1

p∑
k=1

∣∣∣〈ei, S
−1/2
xx ξk

〉∣∣∣2 =
η0

n
Tr(S−1

xx ) ≺ η0 = n−2/3,

where ei is the standard unit vector along the i-th direction.

7 Proof of Theorem 6.4

In this section, we give the proof of Theorem 6.4. We first record the following simple
estimate, which can be verified through direct calculations using (4.6)–(4.9).

Lemma 7.1 (Lemma 3.2 of [43]). Fix any constants c, C > 0. If (2.9) holds, then for
z ∈ C+ ∩ {z : c 6 |z| 6 C} and α = 1, 2, 3, 4, the following estimates hold:

|mαc(z)| ∼ 1,
∣∣z−1 − (m1c(z) +m2c(z)) + (z − 1)m1c(z)m2c(z)

∣∣ ∼ 1. (7.1)

7.1 Resolvents and limiting laws

We begin the proof by introducing some new resolvents. With H(θl) in (3.2), we
define the following generalized resolvent

R(w) :=

H(X,Y, θl)−


w1Ip 0 0 0

0 w2Iq 0 0

0 0 w3In 0

0 0 0 w4In



−1

, (7.2)

where w = (w1, w2, w3, w4) ∈ C4
+ is a new vector of spectral parameters. Then we have

the simple identity

GJαG =
∂R(w)

∂wα

∣∣∣∣
w=0

. (7.3)

Hence, to obtain the local laws on G(θl)JαG(θl), it suffices to study the local law R(w)

for the spectral parameters w around the origin.

In the following proof, we only prove the local law for GJ1G, while the proofs for
GJαG with α = 2, 3, 4 are similar. For this purpose, it suffices to use spectral parameters
w with w2 = w3 = w4 = 0. With a slight abuse of notation, we shall prove a local law for
the resolvent

R(z, z′) :=

H(X,Y, θl)−


zIp 0 0 0

0 z′Iq 0 0

0 0 z′In 0

0 0 0 z′In



−1

, z, z′ ∈ C+. (7.4)

Similar to (4.5), we introduce the averaged partial traces

ωα(z, z′) :=
1

n

∑
a∈Iα

Raa(z, z′), α = 1, 2, 3, 4. (7.5)
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Since H is symmetric and has real eigenvalues, we immediately obtain the following
deterministic bound

‖R(z, z′)‖ 6 C

min(Im z, Im z′)
. (7.6)

Most of the time we will choose z′ = 0. But, to avoid the singular behaviours of R on
exceptional low-probability events, we sometimes will choose, say z′ = in−4, so that
‖R(z, z′)‖ = O(n4) by (7.6) and hence Lemma 4.2 (iii) can be applied.

We now describe the deterministic limit of R(z, 0). We first define the deterministic
limit (ωαc(z))

4
α=1 of (ωα(z, 0))4

α=1, as the unique solution to the following system of
self-consistent equations

c1
ω1c

= −z − ω3c, ω3c = (θl − 1)
1 + (1− θl)ω2c

[1 + (1− θl)ω1c][1 + (1− θl)ω2c]− θ−1
l

,

c2
ω2c

= −ω4c, ω4c = (θl − 1)
1 + (1− θl)ω1c

[1 + (1− θl)ω1c][1 + (1− θl)ω2c]− θ−1
l

,

(7.7)

such that Imωαc(z) > 0 whenever z ∈ C+. Moreover, we define the function

g1(z) : =
(θl − 1)θ

−1/2
l

[1 + (1− θl)ω1c(z)][1 + (1− θl)ω2c(z)]− θ−1
l

. (7.8)

Then, the matrix limit of R(z, 0) is defined by

Γ(z) :=


(
c−1
1 ω1c(z)Ip 0

0 c−1
2 ω2c(z)Iq

)
0

0

(
ω3c(z)In g1(z)In
g1(z)In ω4c(z)In

)
 . (7.9)

The following lemma gives the existence and uniqueness of the solution (ωαc(z))
4
α=1. We

postpone its proof to Appendix B.

Lemma 7.2. There exist constants c0, C0 > 0 depending only on c1, c2 and δl in (2.19)
such that the following statements hold. If |z| 6 c0, then there exists a unique solution
to (7.7) under the condition

4
max
α=1
|ωαc(z)−mαc(θl)| 6 c0. (7.10)

Moreover, the solution satisfies

4
max
α=1
|ωαc(z)−mαc(θl)| 6 C0|z|. (7.11)

We also have the following stability estimate regarding the system of equations
in (7.7), whose proof is postponed to Appendix B.

Lemma 7.3. There exist constants c0, C0 > 0 depending only on c1, c2 and δl such that
the self-consistent equations in (7.7) are stable in the following sense. Suppose |z| 6 c0
and ωα : C+ 7→ C+, α = 1, 2, 3, 4, are analytic functions of z such that

4
max
α=1
|ωα(z)−mαc(θl)| 6 c0. (7.12)

Suppose they satisfy the system of equations

c1
ω1

+ z + ω3 = E1, ω3 + (1− θl)
1 + (1− θl)ω2

[1 + (1− θl)ω1][1 + (1− θl)ω2]− θ−1
l

= E2,

c2
ω2

+ ω4 = E3, ω4 + (1− θl)
1 + (1− θl)ω1

[1 + (1− θl)ω1][1 + (1− θl)ω2]− θ−1
l

= E4,
(7.13)
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for some errors bounded as max4
α=1 |Eα| 6 δ(z), where δ(z) is a deterministic function of

z satisfying that δ(z) 6 (log n)−1. Then, we have

4
max
α=1
|ωα(z)− ωαc(z)| 6 C0δ(z). (7.14)

The following theorem gives the anisotropic local law for R(z, 0).

Theorem 7.4. Suppose Assumption 2.1 holds. Then, for any deterministic unit vectors
u,v ∈ CI , the following anisotropic local law holds uniformly in z ∈ D := {z ∈ C+ : |z| 6
(log n)−1}:

|〈u,R(z, 0)v〉 − 〈u,Γ(z)v〉| ≺ n−1/2, (7.15)

where Γ(z) is defined in (7.9).

The proof of this theorem will be given in Section 7.2 below. Now, we use it to
complete the proof of (6.30) when α = 1.

Proof of (6.30) for GJ1G. Using (7.3) and Cauchy’s integral formula, we get that

〈u, G(θl)JαG(θl) v〉 =
1

2πi

∮
C

〈u,R(w, 0) v〉
w2

dw =
1

2πi

∮
C

〈u,Γ(w) v〉
w2

dw + O≺(n−1/2)

= 〈u,Γ′(0) v〉+ O≺(n−1/2), (7.16)

where C is the contour {w ∈ C : |w| = (log n)−1} and we used (7.15) in the second
step. It remains to calculate Γ′(0), which is reduced to calculating the derivatives
ṁαc(θl) := ω′α(z = 0), α = 1, 2, 3, 4.

Using equation (7.7) and implicit differentiation, we obtain that

c−1
1 ṁ1c = m−2

3c + ṁ1c +
θ−1
l

[1 + (1− θl)m2c]2
ṁ2c, ṁ3c = m2

3c

(
c−1
1 ṁ1c −m−2

3c

)
,

c−1
2 ṁ2c = ṁ2c +

θ−1
l

[1 + (1− θl)m1c]2
ṁ1c, ṁ4c = c−1

2 ṁ2cm
2
4c.

Solving the above equations and using that (recall equation (4.13))

θ−1
l

[1 + (1− θl)m2c]2
=

h2

m2
3c

,
θ−1
l

[1 + (1− θl)m1c]2
=

h2

m2
4c

,

we get that c−1
α ṁαc = γ

(1)
α , α = 1, 2, and ṁαc = γ

(1)
α , α = 3, 4, for γ(1)

α defined in (6.29).
Moreover, we can check that g′1(0) = h1(z). Hence, we get Γ′(0) = Γ(1)(θl), which,
together with (7.16), concludes (6.30).

The proof of Theorem 6.4 for GJαG with α = 2, 3, 4 is exactly the same, except that we
need to use the following local law in Theorem 7.5. Recall the resolvent R(w1, w2, w3, w4)

defined in (7.2). We define (ωαc(w))4
α=1, as the unique solution to the following system

of self-consistent equations

c1
ω1c

= −w1 − ω3c,
c2
ω2c

= −w2 − ω4c,

ω3c = (θl − 1)
1 + (1− θl)(ω2c + w4)

[1 + (1− θl)(ω1c + w3)][1 + (1− θl)(ω2c + w4)]− θ−1
l

,

ω4c = (θl − 1)
1 + (1− θl)(ω1c + w3)

[1 + (1− θl)(ω1c + w3)][1 + (1− θl)(ω2c + w4)]− θ−1
l

,

(7.17)
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such that Imωαc(w) > 0 whenever w ∈ C4
+. Define the matrix limit of R(w) as

Γ(w) :=


(
c−1
1 ω1c(w)Ip 0

0 c−1
2 ω2c(w)Iq

)
0

0

(
ω3c(w)In g̃(w)In
g̃(w)In ω4c(w)In

)
 , (7.18)

where g̃(w) is defined by

g̃(w) : =
(θl − 1)θ

−1/2
l

[1 + (1− θl)(ω1c + w3)][1 + (1− θl)(ω2c + w4)]− θ−1
l

. (7.19)

Then, we have the following local law for R(w).

Theorem 7.5. Suppose Assumption 2.1 holds. Fix any α = 1, 2, 3, 4. For any deter-
ministic unit vectors u,v ∈ CI , the following anisotropic local law holds uniformly in
wα ∈ {wα ∈ C+ : |wα| 6 (log n)−1} if wβ = 0 for β 6= α:

|〈u,R(w)v〉 − 〈u,Γ(w)v〉| ≺ n−1/2. (7.20)

This theorem can be proved in exactly the same way as Theorem 7.4. Moreover, with
Theorem 7.5, the proof of Theorem 6.4 for GJαG, α = 2, 3, 4, is also the same as the
α = 1 case. So we omit the details for both proofs.

7.2 Proof of Theorem 7.4

In this section, we prove Theorem 7.4. We first prove the following a priori estimates
on R(z, 0). In the following proof, we will abbreviate R(z) ≡ R(z, 0).

Lemma 7.6. There exists a constant C > 0 such that the following estimates hold with
high probability:

sup
z∈D
‖R(z)‖ 6 C, (7.21)

sup
z∈D
‖R(z)−G(θl)‖ 6 C|z|. (7.22)

Proof. We denote the (I1 ∪I2)× (I1 ∪I2) block of R by RL, the (I1 ∪I2)× (I3 ∪I4) block
by RLR, the (I3 ∪ I4)× (I1 ∪ I2) block by RRL, and the (I3 ∪ I4)× (I3 ∪ I4) block by RR.
Using the Schur complement formula, we obtain that

RL =

(
R1 −θ−1/2

l R1SxyS
−1
yy

−θ−1/2
l S−1

yy SyxR1 R2

)
, (7.23)

where

R1 :=
(
SxyS

−1
yy Syx − θlSxx − z

)−1
, R2 := −θ−1

l S−1
yy + θ−1

l S−1
yy SyxR1SxyS

−1
yy .

The other three blocks are given by

RR =

(
θlIn θ

1/2
l In

θ
1/2
l In θlIn

)

+

(
θlIn θ

1/2
l In

θ
1/2
l In θlIn

)(
X> 0

0 Y >

)
RL

(
X 0

0 Y

)(
θlIn θ

1/2
l In

θ
1/2
l In θlIn

)
,

(7.24)

EJP 27 (2022), paper 86.
Page 46/71

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP814
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


CLT of sample canonical correlation coefficients

and

RLR = −RL
(
X 0

0 Y

)(
θlIn θ

1/2
l In

θ
1/2
l In θlIn

)
,

RRL = −

(
θlIn θ

1/2
l In

θ
1/2
l In θlIn

)(
X> 0

0 Y >

)
RL.

(7.25)

One can compare the above expressions with (6.52)–(6.54). With the estimates (6.48)
and (6.49), we see that it suffices to prove the following estimates for R1:

sup
z∈D
‖R1(z)‖ . 1 with high probability, (7.26)

sup
z∈D

∥∥R1(z)− G(11)(θl)
∥∥ . |z| with high probability, (7.27)

where G(11) is the I1 ×I1 block of G (as defined in Section 4.3). With H in (6.46), we can
write R1 as

R1 = S−1/2
xx

(
HH> − θl − zS−1

xx

)−1
S−1/2
xx .

By (4.4), we have that with high probability, θl−HH> is positive definite and its smallest
eigenvalue satisfies

λp(θl −HH>) > (θl − λ+)/2 & 1.

Combining this estimate with (6.48), we obtain that with high probability,

sup
z∈D
‖R1(z)‖ . 1

θl − λ+ −O((log n)−1)
. 1.

This concludes (7.26). With (7.26), we can easily conclude (7.27):∣∣〈u,R1(z) v〉 − 〈u,G(11)(θl) v〉
∣∣ = |〈u, [R1(z)−R1(0)] v〉| = |z| |〈u,R1(z)R1(0) v〉| . |z|,

with high probability.

Combining (7.22) with the local law (4.19), we immediately obtain the rough bound

max
z∈D

max
a,b∈I

|Rab(z)−Πab(θl)| 6 C(log n)−1 with high probability. (7.28)

Then, we record some useful resolvent identities in Lemma 7.7 and Lemma 7.8, which
can be proved easily using the Schur complement formula. For simplicity, we abbreviate

W :=

(
X 0

0 Y

)
. (7.29)

Lemma 7.7. We have the following resolvent identities.

(i) For i ∈ I1 ∪ I2, we have that

1

Rii
= −z1i∈I1 −

(
WR(i)W>

)
ii
. (7.30)

(ii) For i ∈ I1 ∪ I2 and a ∈ I \ {i}, we have that

Ria = −Rii
(
WR(i)

)
ia
. (7.31)

(iii) For a ∈ I and b, c ∈ I \ {a}, we have that

Rbc = R(a)
bc +

RbaRac

Raa
. (7.32)
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(iv) All of the above identities hold for R(T) instead of R for any index set T ⊂ I.

For µ, ν ∈ I3, we define the 2× 2 blocks

R[µν] :=

(
Rµν Rµν
Rµν Rµν

)
, (7.33)

where we denote µ := µ+ n and ν := ν + n. We call R[µν] a diagonal block if µ = ν, and
an off-diagonal block otherwise. For i ∈ I1, j ∈ I2 and µ ∈ I3, we define the vectors

Ri,[µ] := (Riµ,Riµ) , R[µ],i :=

(
Rµi
Rµi

)
. (7.34)

For µ ∈ I3, we denote H [µ] := H(µµ) and R[µ] := R(µµ) in the sense of Definition 5.2.
Then, we record the following resolvent identities, which again can be obtained directly
from the Schur complement formula.

Lemma 7.8. We have the following resolvent identities.

(i) For µ ∈ I3, we have that

R−1
[µµ] =

1

θl − 1

(
1 −θ−1/2

l

−θ−1/2
l 1

)
−
[
(X>R[µ]X)µµ (X>R[µ]Y )µµ
(Y >R[µ]X)µµ (Y >R[µ]Y )µµ

]
. (7.35)

(ii) For i ∈ I1 ∪ I2 and µ ∈ I3, we have that

Ri,[µ] = R>[µ],i = −
[
(R[µ]X)iµ, (R[µ]Y )iµ

]
R[µµ]. (7.36)

(iii) For µ 6= ν ∈ I3, we have that

R[µν] = −R[µµ]

[
(X>R[µ])µν (X>R[µ])µν
(Y >R[µ])µν (Y >R[µ])µν

]
= −

[
(R[ν]X)µν (R[ν]Y )µν
(R[ν]X)µν (R[ν]Y )µν

]
R[νν].

(7.37)

(iv) For µ ∈ I3 and a1, a2, b1, b2 ∈ I \ {µ, µ}, we have that(
Ra1b1 Ra1b2

Ra2b1 Ra2b2

)
=

(
R[µ]

a1b1
R[µ]

a1b2

R[µ]
a2b1

R[µ]
a2b2

)

+

(
Ra1µ Ra1µ

Ra2µ Ra2µ

)
R−1

[µµ]

(
Rµb1

Rµb2

Rµb1
Rµb2

)
.

(7.38)

Using the above tools, we now prove the following entrywise version of Theorem 7.4.

Proposition 7.9 (Entrywise local law). If Assumption 2.1 holds, then we have that

max
a,b∈I

|Rab(z, 0)− Γab(z)| ≺ n−1/2 uniformly in z ∈ D. (7.39)

For the proof of Proposition 7.9, we introduce the following Z variables

Za := (1− Ea)
(
Raa

)−1
,

where Ea[·] := E[· | H(a)], i.e., it is the partial expectation over the a-th row and column
of H. By (7.30), we have that for i ∈ Iα, α = 1, 2,

Zi = (Ei − 1)
(
WR(i)W>

)
ii

=
∑

µ,ν∈Iα+2

R(i)
µν

(
1

n
δµν −WiµWiν

)
. (7.40)
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We also introduce the matrix-valued Z variables

Z[µ] :=
(
1− E[µ]

) (
R[µµ]

)−1
, (7.41)

where E[µ][·] := E[· | H [µ]], i.e., it is the partial expectation over the µ-th and µ-th rows
and columns of H. By (7.35), we have that

Z[µ] =

[∑
i,j∈I1 R

[µ]
ij (n−1δij −XiµXjµ)

∑
i∈I1,j∈I2 R

[µ]
ij XiµYjµ∑

i∈I1,j∈I2 R
[µ]
ji XiµYjµ

∑
i,j∈I2 R

[µ]
ij (n−1δij − YiµYjµ)

]
. (7.42)

We also define the random error to control the off-diagonal entries,

Λo : = max
i 6=j∈I1∪I2

|Rij |+ max
µ6=ν∈I3

‖R[µν]‖+ max
i∈I1∪I2,µ∈I3

∥∥Ri,[µ]

∥∥ . (7.43)

Now, we claim the following large deviation estimate for the Z variables and off-diagonal
entries.

Claim 7.10. Under the setting of Theorem 7.4, we have that

Λo + |Zi|+ ‖Z[µ]‖ ≺ n−1/2. (7.44)

Proof. For i ∈ Iα, α = 1, 2, applying Lemma 5.3 to Zi in (7.40), we get that

|Zi| ≺
1

n

( ∑
µ,ν∈Iα+2

∣∣R(i)
µν

∣∣2)1/2

6
1√
n

[ 1

n

∑
µ∈Iα+2

(
R(i)(R(i))∗

)
µµ

]1/2
≺ n−1/2,

where in the last step we applied (7.21) to R(i) to get (R(i)(R(i))∗)µµ = O(1) with high
probability (noteR(i) satisfies the same assumption asR). Similarly, applying Lemma 5.3
to Z[µ] in (7.42), we obtain that

‖Z[µ]‖ ≺
1

n

( ∑
i,j∈I1∪I2

∣∣R[µ]
ij

∣∣2)1/2

=
1√
n

[ 1

n

∑
i∈I1∪I2

(
R[µ](R[µ])∗

)
ii

]1/2
≺ n−1/2. (7.45)

The proof of the off-diagonal estimate is similar. For i 6= j ∈ I1 ∪ I2, using (7.31),
Lemma 5.3 and (7.21), we obtain that

|Rij | ≺
1√
n

( ∑
µ∈I3∪I4

∣∣R(i)
µj

∣∣2)1/2

≺ n−1/2.

For µ 6= ν ∈ I3, using (7.37), Lemma 5.3 and (7.21), we obtain that

∥∥R[µν]

∥∥ ≺ 1

n

( ∑
i∈I1∪I2

∣∣R[µ]
iν

∣∣2)1/2

+
1

n

( ∑
i∈I1∪I2

∣∣R[µ]
iν

∣∣2)1/2

≺ n−1/2.

Finally, for i ∈ I1 ∪ I2 and µ ∈ I3, using (7.36), Lemma 5.3 and (7.21), we obtain that

∥∥Ri,[µ]

∥∥ ≺ 1

n

( ∑
j∈I1∪I2

∣∣R[µ]
ij

∣∣2)1/2

≺ n−1/2.

Combining the above estimates, we conclude (7.44).

A key component of the proof for Proposition 7.9 is to show that ωα, α = 1, 2, 3, 4,
satisfy the self-consistent equations in (7.13) up to some small errors |Eα| ≺ n−1/2.
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Lemma 7.11. Fix any constant ε > 0. The following estimates hold uniformly in z ∈ D:∣∣∣∣ c1ω1
+ z + ω3

∣∣∣∣ ≺ n−1/2,

∣∣∣∣ c2ω2
+ ω4

∣∣∣∣ ≺ n−1/2, (7.46)∣∣∣∣ω3 + (1− θl)
1 + (1− θl)ω2

[1 + (1− θl)ω1][1 + (1− θl)ω2]− θ−1
l

∣∣∣∣ ≺ n−1/2, (7.47)∣∣∣∣ω4 + (1− θl)
1 + (1− θl)ω1

[1 + (1− θl)ω1][1 + (1− θl)ω2]− θ−1
l

∣∣∣∣ ≺ n−1/2. (7.48)

Proof. Similar to (7.5), for i ∈ I1 ∪ I2 and µ ∈ I3, we denote

ω(i)
α :=

1

n

∑
a∈Iα

R(i)
aa , ω[µ]

α :=
1

n

∑
i∈Iα

R[µ]
aa , α = 1, 2, 3, 4.

Using (7.30) and (7.40), we get that for i ∈ I1 and j ∈ I2,

1

Rii
= −z − ω3 + εi,

1

Rjj
= −ω4 + εj , (7.49)

where

εi := Zi + ω3 − ω(i)
3 , εj := Zj + ω4 − ω(j)

4 .

On the other hand, using (7.35) and (7.41), we get that for µ ∈ I3,

R−1
[µµ] =

1

θl − 1

(
1 −θ−1/2

l

−θ−1/2
l 1

)
−
(
ω1 0

0 ω2

)
+ εµ, (7.50)

where

εµ := Zµ +

(
ω1 − ω[µ]

1 0

0 ω2 − ω[µ]
2

)
.

Now, using (7.32) and (7.44), we get that

ω3 − ω(i)
3 =

1

n

∑
µ∈I3

RµiRiµ
Rii

= O≺(n−1),

where in the second step we also used |Rii| & 1 by (7.28) and (7.1). We have similar

estimates for ω4 − ω(j)
4 , ω1 − ω[µ]

1 and ω2 − ω[µ]
2 . Together with (7.44), these estimates

give that

max
i∈I1∪I2

|εi|+ max
µ∈I3

‖εµ‖ ≺ n−1/2. (7.51)

Using the first equation in (7.49) and (7.51), we obtain that

ω1 =
1

n

∑
i∈I1

Rii =
1

n

∑
i∈I1

1

−z − ω3 + εi
=

c1
−z − ω3

+ O≺(n−1/2), (7.52)

where in the second step we used |z + ω3| & 1 with high probability by (7.28). This gives
the first equation in (7.46). Similarly, using the second equation in (7.49), we can obtain
the second equation in (7.46). With (7.28) and (7.1), we can check that∥∥∥∥∥∥

[
1

θl − 1

(
1 −θ−1/2

l

−θ−1/2
l 1

)
−
(
ω1 0

0 ω2

)]−1
∥∥∥∥∥∥ . 1 with high probability. (7.53)
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Taking the matrix inverse of (7.50) and using (7.51) and (7.53), we obtain that for µ ∈ I3,

R[µµ] =
θl − 1

[1 + (1− θl)ω1][1 + (1− θl)ω2]− θ−1
l

(
1 + (1− θl)ω2 θ

−1/2
l

θ
−1/2
l 1 + (1− θl)ω1

)
+ O≺(n−1/2).

(7.54)

After taking the average n−1
∑
µ∈I3 over the (1, 1)-th and (2, 2)-th entries of equa-

tion (7.54), we obtain the equations (7.47) and (7.48).

Combining Lemma 7.11 with Lemma 7.3, we conclude the proof of Proposition 7.9.

Proof of Proposition 7.9. We apply Lemma 7.3, where (7.12) is implied by (7.28), and
the equations in (7.13) follow from Lemma 7.11. Then, (7.14) implies that

4
max
α=1
|ωα(z)− ωαc(z)| ≺ n−1/2. (7.55)

Plugging (7.55) into (7.49) and (7.54), we then get the diagonal estimate

max
i∈I1

∣∣Rii − c−1
1 ω1c

∣∣+ max
j∈I2

∣∣Rjj − c−1
2 ω2c

∣∣+ max
µ∈I3

∥∥∥∥R[µµ] −
(
ω3c g1

g1 ω4c

)∥∥∥∥ ≺ n−1/2.

Combining it with the off-diagonal estimate in (7.44), we conclude (7.39).

Finally, we can complete the proof of Theorem 7.4 based on Proposition 7.9.

Proof of Theorem 7.4. With the entrywise local law, Proposition 7.9, the proof of (7.15)
uses a polynomialization method developed in [8]. In fact, the argument is exactly the
same as the one in Section 7 of [43]. Hence, we omit the details. However, we make one
remark that in the proof, we need to bound the high moments

E |〈u,R(z, 0)v〉 − 〈u,Γ(z)v〉|2a

for fixed large a ∈ N. So for regularity reasons, we shall use the resolvent R(z + in−4, z′)

with z′ = in−4 in order to make use of the deterministic bound (7.6) on exceptional
low-probability events, which justifies the applicability of Lemma 4.2 (iii). The structure
of the proof is as follows. First, the argument in the proof of Claim 6.2 allows us to extend
the entrywise local law (7.39) to R(z+ in−4, z′). Then, we can prove the anisotropic local
law (7.15) for R(z+ in−4, z′) using the argument in Section 7 of [43]. After that, applying
the argument in the proof of Claim 6.2 again allows us to extend the anisotropic local
law to R(z, 0).

8 Proof of Theorem 2.3

With Proposition 5.1 and Proposition 4.11, we see that (2.23) holds in the almost
Gaussian case. Hence, to conclude Theorem 2.3, it suffices to show that the general case
is sufficiently close to the almost Gaussian case regarding the outliers. In particular,
by (4.37), (4.38) and (5.6), we only need to show that the asymptotic distribution of
M(θl) in (5.7) for general X and Y is the same as that of Mg(θl) defined for almost
Gaussian X ≡ Xg and Y ≡ Y g. Corresponding to (5.1) and (5.2), we define the index set
(“s” stands for “small”)

Is :=
{
k ∈ I1 : max

16i6r
|uai (k)| 6 n−τ0

}
∪
{
k ∈ I2 : max

16i6r
|ubi (k)| 6 n−τ0

}
.
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Corresponding to (3.2) and (3.3), we define a new self-adjoint block matrix Hg and its
resolvent as

Hg(z) :=

 0

(
Xg 0

0 Y g

)
(

(Xg)> 0

0 (Y g)>

) (
zIn z1/2In
z1/2In zIn

)−1

 , Gg(z) := [Hg(z)]
−1
,

where Xg and Y g are defined through

Xg
iµ =

{
Xiµ, if i /∈ Is
g

(1)
iµ , if i ∈ Is

, Y giµ =

{
Yiµ, if i /∈ Is
g

(2)
iµ , if i ∈ Is

. (8.1)

Here, g(1)
iµ and g(2)

iµ are i.i.d. Gaussian random variables independent of (X,Y ) and with
mean zero and variance n−1. Note that Xg and Y g satisfy the setting of Proposition 5.1.

Define the set of pairs of indices

Js := {(i, µ) : i ∈ I1 ∩ Is, µ ∈ I3} ∪ {(i, µ) : i ∈ I2 ∩ Is, µ ∈ I4}.

We choose a bijective ordering map Φ on Js:

Φ : Js → {1, . . . , γmax}, γmax := |Js| = |Is| · n.

Similar to (7.29), we introduce simplified notations

W :=

(
X 0

0 Y

)
, W g :=

(
Xg 0

0 Y g

)
. (8.2)

For any 1 6 γ 6 γmax, we define the (I1 ∪ I2)× (I3 ∪ I4) matrix W {γ} such that

W
{γ}
iµ =

{
Wiµ, if Φ(i, µ) 6 γ

W g
iµ, if Φ(i, µ) > γ

, and W
{γ}
iµ = Wiµ = W g

iµ for (i, µ) /∈ Js.

Correspondingly, we define

H{γ}(z) :=

 0 W {γ}

(W {γ})>
(

zIn z1/2In
z1/2In zIn

)−1

 , G{γ} := [H{γ}(z)]−1.

Under the above definition, we have G{0} = Gg and G{γmax} = G. For Φ(i, µ) = γ, we can
write that

H{γ} = Q{γ} +WiµE
{γ}, H{γ−1} = Q{γ} +W g

iµE
{γ}, (8.3)

where E{γ} is a matrix defined by

(E{γ})ab = 1(a,b)=(i,µ) + 1(a,b)=(µ,i), (8.4)

and Q{γ} is a random matrix with zero (i, µ)-th and (µ, i)-th entries. In particular, Q{γ} is
independent of Wiµ and W g

iµ. For simplicity of notations, for any γ we denote that

T {γ} := G{γ}, S{γ} := G{γ−1}, R{γ} := (Q{γ})−1. (8.5)

Then, given any function f , we can write that

Ef (G)− Ef (Gg) =

γmax∑
γ=1

[
Ef
(
T {γ}

)
− Ef

(
S{γ}

)]
. (8.6)

EJP 27 (2022), paper 86.
Page 52/71

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP814
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


CLT of sample canonical correlation coefficients

We will estimate each term in the sum using resolvent expansions. More precisely,
by (8.3) we have that

T {γ} =
(
Q{γ} +WiµE

{γ}
)−1

=
(

1 +WiµR
{γ}E{γ}

)−1

R{γ}.

For any fixed k ∈ N, we can expand T {γ} till order k as

T {γ} =

k∑
s=0

(−Wiµ)s
(
R{γ}E{γ}

)s
R{γ} + (−Wiµ)k+1

(
R{γ}E{γ}

)k+1

T {γ}. (8.7)

We can also expand R{γ} in terms of T {γ} as

R{γ} =
(

1−WiµT
{γ}E{γ}

)−1

T {γ}

=

k∑
s=0

W s
iµ

(
T {γ}E{γ}

)s
T {γ} +W k+1

iµ

(
T {γ}E{γ}

)k+1

R{γ}.
(8.8)

We can get similar expansions for S{γ} and R{γ} by replacing (T {γ},Wiµ) with (S{γ},W g
iµ).

We will combine these resolvent expansions with the Taylor expansion of f to estimate
the right-hand side of (8.6).

In the following proof, we use the regularized resolvent Ĝ(z) in Definition 6.1 with
z = θl + in−4. We can also define Ĝg(z) and Ĝ{γ}(z) in a similar way. By (6.5), Ŝ{γ}, T̂ {γ}

and R̂{γ} satisfy the deterministic bound

max
γ

max
{
‖Ŝ{γ}(z)‖, ‖T̂ {γ}(z)‖, ‖R̂{γ}(z)‖

}
. n14. (8.9)

Again, because of this bound, Lemma 4.2 (iii) can be used tacitly, and we will not
emphasize this fact again in the following proof. Using the expansion (8.8) for a suffi-
ciently large k (for example, k = 100 will be enough), |Wiµ| ≺ n−1/2, the anisotropic local

law (4.19) for T̂ {γ}, and the bound (8.9) for R̂{γ}, we can obtain that for any deterministic
unit vectors u,v ∈ CI ,

max
γ

∣∣∣〈u,
[
R̂{γ}(z)−Π(z)

]
v
〉∣∣∣ ≺ n−1/2. (8.10)

Moreover, using the same argument as in the proof of Claim 6.2, we can easily show that

M(θl) has the same asymptotic distribution as M̂(z), (8.11)

where M̂(z) is defined as (recall the notations in (5.7))

M̂(z) :=
√
nU >

[
Ĝ(z)−Π(z)

]
U , z = θl + in−4, U :=


Ua 0 0 0

0 Ub 0 0

0 0 Z̃> 0

0 0 0 Z̃>

 .

(8.12)
By replacing Ĝ with Ĝg or Ĝ{γ}, we can also define M̂g or M̂{γ}. Then, we will use the
following comparison lemma to complete the proof of Theorem 2.3.

Lemma 8.1. Fix any γ = Φ(i, µ) with (i, µ) ∈ Js. We abbreviate

M{γ}R :=
√
nU >

[
R̂{γ}(z)−Π(z)

]
U , z = θl + in−4.

The matricesM{γ}S andM{γ}T are defined similarly by replacing R̂{γ} with Ŝ{γ} and T̂ {γ},
respectively. Let f ∈ C3

b (C4r×4r) be a function with bounded partial derivatives up to
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third order, and a ≡ an be an arbitrary deterministic sequence of 4r × 4r symmetric
matrices. Then, we have that

Ef
(
M{γ}T + a

)
= Ef

(
M{γ}R + a

)
+

4r∑
k,l=1

Q{γ}kl E
∂f

∂xkl

(
M{γ}R + a

)
+ Aγ + O≺(n−τ0Eγ),

(8.13)

Ef
(
M{γ}S + a

)
= Ef

(
M{γ}R + a

)
+ Aγ + O≺(n−τ0Eγ), (8.14)

where Aγ satisfies Aγ ≺ n−τ0 , and we denote

Q{γ}kl :=

{
−n−1

(
n3/2EX3

11

)
· (UµkUil + UikUµl) , if µ ∈ I3

−n−1
(
n3/2EY 3

11

)
· (UµkUil + UikUµl) , if µ ∈ I4

,

and

Eγ :=

4r∑
k,l=1

2∑
σ1,σ2=0

n−2+σ1/2+σ2/2|Uik|σ1 |Uµl|σ2 . (8.15)

Proof. The proof of this lemma is almost the same as the one for Lemma 7.13 of [29],
where the main inputs are the local laws (4.19) and (8.10), the simple identity (8.6), and
the resolvent expansions (8.7) and (8.8). The cosmetic modifications are mainly due to
the fact that our local law takes a different form than the one in Theorem 2.2 of [29]. So
we ignore the details.

Combining Proposition 4.11, Proposition 5.1 and Lemma 8.1, we can conclude the
proof of Theorem 2.3.

Proof of Theorem 2.3. We fix any function f ∈ C∞c (C4r×4r) and Z̃ satisfying (5.4) and
(5.5). Using (8.13) and (8.14), we get that

EX,Y f
(
M{γ}T + a

)
= EX,Y f

(
M{γ}S + a

)
+

4r∑
k,l=1

Q{γ}kl EX,Y
∂f

∂xkl

(
M{γ}R + a

)
+ O≺(n−τ0Eγ),

(8.16)

where EX,Y means the partial expectation with respect toX, Y , Xg and Y g (for simplicity,
we did not add Xg and Y g to the subscript). Since |Uµk| 6 n−1/2+ε for µ ∈ I3 ∪ I4 and
|Uil| 6 n−τ0 for i ∈ Is, it is easy to check that

‖Q{γ}‖max . min{n−3/2−τ0+ε, Eγ}, for 1 6 γ 6 γmax,

where Q{γ} is the 4r × 4r matrix with entries Q{γ}kl . Thus, for any fixed 1 6 k, l 6 4r and
1 6 γ 6 γmax, applying (8.13) with f replaced by ∂xklf , we get that

EX,Y
∂f

∂xkl

(
M{γ}R + a

)
= EX,Y

∂f

∂xkl

(
M{γ}T + a

)
+ O≺(n−τ0).

Plugging it into (8.16), we get that

EX,Y f
(
M{γ}S + a

)
= EX,Y f

(
M{γ}T + a

)
−

4r∑
k,l=1

Q{γ}kl EX,Y
∂f

∂xkl

(
M{γ}T + a

)
+ O≺(n−τ0Eγ).
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On the other hand, we have the Taylor expansion

EX,Y f
(
M{γ}T + a−Q{γ}

)
= EX,Y f

(
M{γ}T + a

)
−

4r∑
k,l=1

Q{γ}kl EX,Y
∂f

∂xkl

(
M{γ}T + a

)
+ O≺(n−τ0Eγ).

Comparing the above two equations, we get that

EX,Y f
(
M{γ}T + a−Q{γ}

)
= EX,Y f

(
M{γ}S + a

)
+ O≺(n−τ0Eγ). (8.17)

We iterate (8.17) starting at γ = 1 and a = 0 and obtain that

EX,Y f

(
M(γmax)

T −
γmax∑
γ=1

Q{γ}
)

= EX,Y f
(
M(0)

T

)
+ O≺(n−τ0), (8.18)

where we also used the bound
∑
γ Eγ = O(1), which can be verified directly using the

definition (8.15). Now, using (5.35), we can bound that

γmax∑
γ=1

Q{γ} ≺ n−1/2.

Plugging it into (8.18), we obtain that

Ef
(
M(γmax)

T

)
= Ef

(
M(0)

T

)
+ O≺(n−τ0).

This shows that M̂(z) has the same asymptotic distribution as M̂g(z) in the almost
Gaussian case. Combining this fact with (8.11), Proposition 4.11 and Proposition 5.1, we
conclude (2.23) when f is smooth. Extension to any bounded continuous f follows from
a standard argument.

9 Proof of Theorem 2.4

In this section, we present the proof of Theorem 2.4 based on a comparison with
Theorem 2.3. We first truncate the entries of X, Y and Z using the moment condi-
tion (2.31). Choose a constant cφ > 0 small enough such that (n1/4−cφ)8+c0 > n2+ε0 and
(n1/4−cφ)4+c0 > n1+ε0 for a constant ε0 > 0. Then, we introduce the following truncation
on the entries of X, Y and Z:

X ′ij = 1|Xij |6n−1/4−cφXij , Y ′ij = 1|Yij |6n−1/4−cφYij , Z ′ij = 1|Zij |6n−1/4−cφZij .

In other words, we restrict ourselves to the following event:

Ω :=

{
max
i,j
|Xij | 6 φn,max

i,j
|Yij | 6 φn,max

i,j
|Zij | 6 φn

}
, with φn := n−1/4−cφ .

Combining the condition (2.31) with Markov’s inequality and using a simple union bound,
we get that

P(X ′ 6= X,Y ′ 6= Y, Z ′ 6= Z) = O(n−ε0). (9.1)

Using (2.31) and integration by parts, it is easy to verify that

E |Xij | 1|Xij |>φn = O(n−2−ε0), E |Xij |2 1|Xij |>φn = O(n−2−ε0),

which implies
|EX ′ij | = O(n−2−ε0), E|X ′ij |2 = n−1 + O(n−2−ε0). (9.2)
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Moreover, we trivially have that

E|X ′ij |4 6 E|Xij |4 = O(n−2).

Similar estimates also hold for the entries of Y and Z. Now, we introduce the matrices

X̊ =
X ′ − EX ′

Var(X ′11)
, Y̊ =

Y ′ − EY ′

Var(Y ′11)
, Z̊ =

Z ′ − EZ ′

Var(Z ′11)
.

Note that by (9.2), we have the estimates

‖EX ′‖ = O(n−1−ε0), Var(X ′11) = n−1
[
1 + O(n−1−ε0)

]
, (9.3)

and similar estimates also hold for ‖EY ′‖, Var(Y ′11), ‖EZ ′‖ and Var(Z ′11). Now, we define
SCC matrices C̊XY and C̊XY by replacing (X,Y, Z) with (X̊, Y̊ , Z̊) in (2.10) and (2.11).
With the estimate (9.3), we can readily bound the differences between the eigenvalues
of C̊XY and those of CXY using Weyl’s inequality.

Lemma 9.1. Under the above setting, we have that

P
(∥∥∥CXY − C̊XY∥∥∥ = O

(
n−1−ε0

))
= 1−O

(
n−ε0

)
.

Proof. This lemma is an easy consequence of (9.3) and the singular value bounds in (6.48)
and (6.49) (which hold by Theorem 9.3 (iv) below). Moreover, the probability bound is
due to (9.1).

By the above lemma, it suffices to prove that Theorem 2.4 holds under the following
assumptions on (X,Y, Z), which correspond to the above setting for (X̊, Y̊ , Z̊).

Assumption 9.2. Assume that X = (Xij), Y = (Yij) and Z = (Zij) are independent
p × n, q × n and r × n matrices, whose entries are real i.i.d. random variables satisfy-
ing (2.1), (2.2), the bounded fourth moment condition

max
{
E|X11|4,E|Y11|4,E|Z11|4

}
. n−2, (9.4)

and the following bounded support condition with φn = n−1/4−cφ :

max

{
max
i,j
|Xij |,max

i,j
|Yij |,max

i,j
|Zij |

}
6 φn. (9.5)

Moreover, we assume that Assumption 2.1 (iii)–(iv) hold.

The local laws in Section 4.2 can be extended to the above setting. More precisely,
we have proved the following theorem in [34, 43].

Theorem 9.3. Suppose Assumption 9.2 holds.

(i) (Outliers: Theorem 2.9 of [34]) If ti > tc + n−1/3 + φn, then we have that

|λ̃i − θi| ≺ n−1/2|ti − tc|1/2 + φn|ti − tc|. (9.6)

On the other hand, for any i = O(1) with ti < tc + n−1/3 + φn, we have that

|λ̃i − λ+| ≺ n−2/3 + φ2
n. (9.7)

(ii) (Anisotropic local law: Theorem 3.9 of [34]) For any fixed ε > 0 and deterministic
unit vectors u,v ∈ CI , the following estimate holds for all z ∈ Sout(ε):

|〈u, G(z)v〉 − 〈u,Π(z)v〉| ≺ φn + n−1/2(κ+ η)−1/4. (9.8)
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(iii) (Eigenvalue rigidity: Theorem 2.5 of [43]) The eigenvalue rigidity estimate (4.4)
holds.

(iv) (Singular value bounds: Lemma 3.3 of [43]) For any constant ε > 0, the bounds
(6.48) and (6.49) hold with high probability.

For the above results to hold, it is not necessary to assume that the entries of X, Y
and Z are identically distributed, that is, only independence and moment conditions are
needed.

Moreover, Lemma 5.3 can also be extended.

Lemma 9.4 (Lemma 3.8 of [17]). Let (xi), (yj) be independent families of centered
independent random variables, and (Ai), (Bij) be families of deterministic complex
numbers. Suppose the entries xi, yj have variances at most n−1 and satisfy the bounded
support condition (9.5). Then, the following large deviation bounds hold:∣∣∣∑

i

Aixi
∣∣∣ ≺ φn max

i
|Ai|+

1√
n

(∑
i

|Ai|2
)1/2

,

∣∣∣∑
i,j

xiBijyj
∣∣∣ ≺ φ2

nBd + φnBo +
1

n

(∑
i 6=j

|Bij |2
)1/2

,∣∣∣∑
i

Bii|xi|2 −
∑
i

(E|xi|2)Bii
∣∣∣ ≺ φnBd,∣∣∣∑

i 6=j

xiBijxj
∣∣∣ ≺ φnBo +

1

n

(∑
i 6=j

|Bij |2
)1/2

,

where Bd := maxi |Bii| and Bo := maxi 6=j |Bij |.
Following the arguments in Section 4.3 and using Theorem 9.3, we can obtain a

similar equation as (4.33):

det
[
fc(λ)Ir − diag(t1, · · · , tr) +O>Er(λ)O + O≺(n−1 + φ2

n)
]

= 0. (9.9)

Then, using (9.9) and (9.6), as in Proposition 4.11, we can get that∣∣∣(λ̃α(i) − θl
)
− µi

{
a(tl)

[
diag(t1, · · · , tr)− tl −O>Er(θl)O

]
Jγ(l)K

]}
≺ n−1/2−ε, (9.10)

for a constant ε > 0 depending on cφ only. Again, the proof is the same as the one for
Proposition 4.5 in [30], so we omit the details. We also remark that this proof is the only
place where we need to use the well-separation condition (2.32).

With (9.9), the problem is once again reduced to showing the CLT ofM0(θl) in (4.42).
Using Lemma 9.4, we can obtain a similar estimate as in (4.26):∥∥ZZ> − Ir∥∥ ≺ φn. (9.11)

Thus, similar to (5.4), we can introduce an n× r partial orthogonal matrix Z̃ such that

Z̃Z̃> = Ir, ‖Z̃ − Z‖F ≺ φn. (9.12)

With (9.12) and (9.8), we can check that

‖M(θl)−M0(θl)‖ ≺
√
nφ2

n 6 n−2cφ ,

where the matrix M is defined in (5.7). Thus, to prove Theorem 2.4, it suffices to
prove the CLT forM(θl). As in Section 8, to avoid singular behaviors of the resolvent
on exceptional low-probability events, we will use the regularized resolvent Ĝ(z) in
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Definition 6.1 with z = θl + in−4 throughout the rest of the proof. However, for simplicity
of notations, we still use the notation G(z) to denote the regularized resolvents in the
following proof, while keeping in mind that the bound (6.5) holds for all resolvent entries
appearing below with η = n−4, and hence Lemma 4.2 (iii) can be applied without worry.
Finally, we remark that the rest of the proof will be conditional on Z and Z̃, i.e., they are
regarded as deterministic matrices unless specified otherwise.

Given any random matrices X and Y satisfying Assumption 9.2, we can construct
matrices X̃ and Ỹ , whose entries have the first four moments matching those of the
entries of X and Y , but with a smaller support n−1/2.

Lemma 9.5 (Lemma 5.1 of [32]). Suppose X, Y and Z satisfy Assumption 9.2. Then,
there exist independent random matrices X̃ = (X̃ij), Ỹ = (Ỹij) and Z̃ = (Z̃ij) satisfying
Assumption 9.2, such that the condition (9.5) holds with φn replaced by n−1/2. Moreover,
they satisfy the following moment matching conditions:

EXk
ij = EX̃k

ij , EY kij = EỸ kij , EZkij = EZ̃kij , k = 1, 2, 3, 4. (9.13)

Note that X̃, Ỹ and Z̃ satisfy the setting of Theorem 2.3. By replacing (X,Y ) with
(X̃, Ỹ ) in (3.2), (3.3) and (5.7), We can define H̃(z), G̃(z) and M̃(z). In Section 8, we
have proved the CLT for M̃(θl). The rest of the proof is devoted to showing thatM(θl)

has the same asymptotic distribution as M̃(θl).

Proposition 9.6. Suppose Assumption 9.2 holds. Let X̃ and Ỹ be two random matrices
constructed as in Lemma 9.5. Then, there exists a constant ε > 0 such that for any
function f ∈ C∞c (C4r×4r), we have

Ef (M(z)) = Ef(M̃(z)) + O(n−ε), for z = θl + in−4.

To prove this proposition, we will use the continuous comparison method introduced
in [31]. We first introduce the following interpolation between (X,Y ) and (X̃, Ỹ ).

Definition 9.7 (Interpolating matrices). Introduce the notations X0 := X̃ and X1 := X.
Let ρ0

iµ and ρ1
iµ be the laws of X̃iµ and Xiµ, respectively. For θ ∈ [0, 1], we define the

interpolated law
ρθiµ := (1− θ)ρ0

iµ + θρ1
iµ.

Let {Xθ : θ ∈ (0, 1)} be a collection of random matrices such that for any fixed θ ∈ (0, 1),
(X0, Xθ, X1) is a triple of independent I1×I3 random matrices, and the matrixXθ = (Xθ

iµ)

has law ∏
i∈I1

∏
µ∈I3

ρθiµ
(
dXθ

iµ

)
. (9.14)

Note that we do not require Xθ1 to be independent of Xθ2 for θ1 6= θ2 ∈ (0, 1). For λ ∈ R,
i ∈ I1 and µ ∈ I3, we define the matrix Xθ,λ

(iµ) through

(
Xθ,λ

(iµ)

)
jν

:=

{
Xθ
iµ, if (j, ν) 6= (i, µ)

λ, if (j, ν) = (i, µ)
. (9.15)

In a similar way, we can define a collection of random matrices {Y θ : θ ∈ [0, 1]} for
θ ∈ [0, 1] with Y 0 := Ỹ and Y 1 := Y . We require that for any fixed θ ∈ (0, 1), Y θ is
independent of (X0, Xθ, X1, Y 0, Y 1). For λ ∈ R, i ∈ I2 and µ ∈ I4, we define Y θ,λ(iµ) in the
same way as (9.15). We also introduce the resolvents

Gθ(z) := G
(
Xθ, Y θ, z

)
, Gθ,λ(iµ)(z) :=

G
(
Xθ,λ

(iµ), Y
θ, z
)
, if i ∈ I1, µ ∈ I3

G
(
Xθ, Y θ,λ(iµ), z

)
, if i ∈ I2, µ ∈ I4

.
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Using (9.14) and fundamental calculus, it is easy to derive the following basic inter-
polation formula.

Lemma 9.8. For any differentiable function F : CI1×I3 × CI2×I4 → C, we have that

d

dθ
EF (Xθ, Y θ) =

∑
i∈I1,µ∈I3

[
EF

(
X
θ,X1

iµ

(iµ) , Y θ
)
− EF

(
X
θ,X0

iµ

(iµ) , Y θ
)]

+
∑

i∈I2,µ∈I4

[
EF

(
Xθ, Y

θ,Y 1
iµ

(iµ)

)
− EF

(
Xθ, Y

θ,Y 0
iµ

(iµ)

)]
,

(9.16)

provided all the expectations exist.

We shall apply Lemma 9.8 to F (Xθ, Y θ) = f(M
(
Xθ, Y θ, z

)
) for the function f in

Proposition 9.6, where M
(
Xθ, Y θ, z

)
is defined by replacing G(z) ≡ G(X,Y, z) with

Gθ(z) ≡ G(Xθ, Y θ, z). The main work is to show the following estimate for the right-hand
side of (9.16).

Lemma 9.9. Under the assumptions of Proposition 9.6, there exists a constant ε > 0

such that∑
i∈I1

∑
µ∈I3

[
Ef

(
M
(
X
θ,X1

iµ

(iµ) , Y θ
))
− Ef

(
M
(
X
θ,X0

iµ

(iµ) , Y θ
))]

= O(n−ε), (9.17)

∑
i∈I2

∑
µ∈I4

[
Ef

(
M
(
Xθ, Y

θ,Y 1
iµ

(iµ)

))
− Ef

(
M
(
Xθ, Y

θ,Y 0
iµ

(iµ)

))]
= O(n−ε), (9.18)

for all θ ∈ [0, 1].

Combining Lemma 9.8 and Lemma 9.9, we conclude Proposition 9.6. The proof of
Lemma 9.9 is based on an expansion approach. As in (8.7) and (8.8), for any i ∈ I1,
µ ∈ I3, λ, λ′ ∈ R and K ∈ N, we have the resolvent expansion

Gθ,λ
′

(iµ) = Gθ,λ(iµ) +

K∑
k=1

(λ− λ′)kGθ,λ(iµ)

(
E{i,µ}Gθ,λ(iµ)

)k
+ (λ− λ′)K+1Gθ,λ

′

(iµ)

(
E{i,µ}Gθ,λ(iµ)

)K+1

,

(9.19)

where E{i,µ} is the matrix defined by (E{i,µ})ab = 1(a,b)=(i,µ) +1(a,b)=(µ,i) as in (8.4). With
this expansion, we can readily obtain the following estimate: if y is a random variable
satisfying |y| 6 φn, then for any deterministic unit vectors u,v ∈ CI , we have that〈

u,
[
Gθ,y(iµ)(z)−Π(z)

]
v
〉
≺ φn, for z = θl + in−4. (9.20)

In fact, to prove this estimate, we will apply the expansion (9.19) for a sufficiently large
K, say K = 100, with λ′ = y and λ = Xθ

iµ, so that Gθ,λ(iµ) = Gθ. Then, to bound the
resulting expansion on the right-hand side of (9.19), we will use y 6 φn, |Xθ

iµ| 6 φn, the
anisotropic local law (9.8) for Gθ, and the rough bound in (6.5) for Gθ,y(iµ) in the last term.

Proof Lemma 9.9. We only give the proof of (9.17), while (9.18) obviously can be proved
in the same way. For simplicity of notations, we only provide the proof for a simpler
version of (9.17),∑

i∈I1

∑
µ∈I3

[
Ef

(
M

(
X
θ,X1

iµ

(iµ) , Y θ
))
− Ef

(
M

(
X
θ,X0

iµ

(iµ) , Y θ
))]

= O(n−ε), (9.21)
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where M is defined as

M(X,Y ) :=
√
n〈u, (G(X,Y, z)−Π(z)) v〉

for some deterministic unit vectors u,v ∈ CI satisfying that

max
µ∈I3∪I4

|u(µ)| ≺ φn, max
µ∈I3∪I4

|v(µ)| ≺ φn. (9.22)

The proof for (9.17) is the same, except that we need to use multivariable Taylor expan-
sions. Here, the condition (9.22) is due to the corresponding bound on Z̃,

‖Z̃‖max 6 ‖Z̃ − Z‖max + ‖Z̃‖max ≺ φn

by (9.12) and the bounded support condition in (9.5).
In the following proof, for simplicity of notations, we fix a θ ∈ [0, 1] and denote

M(iµ)(λ) := M(Xθ,λ
(iµ)) while ignoring Y θ from the argument. Recall that φn = n−1/4−cφ .

Using (9.19) with K = 9 and the local law (9.20), we get that for a random variable y
satisfying |y| 6 φn,

M(iµ)(y)−M(iµ)(0) =

9∑
k=1

n1/2(−y)kxk(i, µ) + O≺(n−2−10cφ), (9.23)

where
xk(i, µ) :=

〈
u, Gθ,0(iµ)

(
E{i,µ}Gθ,0(iµ)

)k
v
〉
.

By (9.20), we have xk(i, µ) ≺ 1 for k > 1. On the other hand, for k = 1, using (9.20)
and (9.22), we can get a better bound

x1(i, µ) =
〈

u, Gθ,0(iµ)E
{i,µ}Gθ,0(iµ) v

〉
=
〈

u,ΠE{i,µ}Π v
〉

+ O≺(φn) ≺ φn. (9.24)

Combining this bound with |y| 6 φn, we immediately obtain from (9.23) the rough bound

M(iµ)(y)−M(iµ)(0) ≺ n1/2φ2
n 6 n−2cφ . (9.25)

Now, fix an integer K > 1/cφ. Using (9.23) and (9.25), the Taylor expansion of f up
to the K-th order gives that for α ∈ {0, 1},

Ef
(
M(iµ)(X

α
iµ)
)
− Ef

(
M(iµ)(0)

)
=

K∑
k=1

E
f (k)

(
M(iµ)(0)

)
k!

[
9∑
l=1

n1/2(−Xα
iµ)lxl(i, µ)

]k
+ O≺

(
n−2−2cφ

)
=

K∑
k=1

K+2k∑
s=1

∗∑
s

nk/2E(−Xα
iµ)sE

f (k)
(
M(iµ)(0)

)
k!

k∏
l=1

xsl(i, µ) + O≺
(
n−2−2cφ

)
,

where
∑∗

s means the sum over s = (s1, · · · , sk) ∈ Nk satisfying

1 6 si 6 9,

k∑
l=1

l · sl = s. (9.26)

Here, for the terms with s > K + 2k, we have nk/2E(−Xα
iµ)s 6 n−2−2cφ , so they are

included into the error. Now, using the moment matching condition (9.13), we get that

∣∣Ef (M(iµ)(X
1
iµ)
)
− Ef

(
M(iµ)(X

0
iµ)
)∣∣ ≺ K∑

k=1

K+2k∑
s=5

∗∑
s

nk/2−2φs−4
n E

∣∣∣ k∏
l=1

xsl(i, µ)
∣∣∣+ n−2−2cφ ,
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where we used that E|Xα
iµ|s 6 φs−4

n E|Xα
iµ|4 . φs−4

n n−2 for s > 5. Thus, to show (9.21),
we only need to prove that for any fixed s > 5 and s ∈ Nk satisfying (9.26),

∑
i∈I1

∑
µ∈I3

nk/2−2φs−4
n E

∣∣∣ k∏
l=1

xsl(i, µ)
∣∣∣ ≺ n−ε (9.27)

for some constant ε > 0. For the proof of (9.27), we will consider three different cases.

Case 1: Suppose sl > 2 for all l = 1, · · · , k. Then, we have s > max{2k, 5} and

nk/2−2φs−4
n = n−2+k/2−(s−4)/4n−(s−4)cφ 6 n−1−cφ . (9.28)

On the other hand, using (9.19) with K = 0 and (9.20), we get that∣∣〈ei, Gθ,0(iµ) u
〉∣∣ 6 ∣∣Gθiu∣∣+

∣∣Xθ
iµ

∣∣ (∣∣〈ei, Gθ,0(iµ)ei
〉∣∣ ∣∣Gθµu

∣∣+
∣∣〈ei, Gθ,0(iµ)eµ

〉∣∣ ∣∣Gθiu∣∣ )
≺
∣∣Gθiu∣∣+ φn

∣∣Gθµu

∣∣ . (9.29)

Similarly, we have that ∣∣〈eµ, Gθ,0(iµ) u
〉∣∣ ≺ ∣∣Gθµu

∣∣+ φn
∣∣Gθiu∣∣ . (9.30)

Inserting (9.29) and (9.30) into the definition of xl(i, µ), we immediately get that

|xl(i, µ)| ≺
∣∣Gθiu∣∣2 +

∣∣Gθiv∣∣2 +
∣∣Gθµu

∣∣2 +
∣∣Gθµv

∣∣2 , l > 1. (9.31)

We claim that for any deterministic unit vector u ∈ CI ,∑
i∈I1

∣∣Gθiu∣∣2 ≺ 1,
∑
µ∈I3

∣∣Gθµu

∣∣2 ≺ 1. (9.32)

We postpone its proof until we complete the proof of Lemma 9.9. Combining (9.28), (9.31)
and (9.32), we can bound that

∑
i∈I1

∑
µ∈I3

nk/2−2φs−4
n E

∣∣∣ k∏
l=1

xsl(i, µ)
∣∣∣

≺
∑
i∈I1

∑
µ∈I3

n−1−cφ
(∣∣Gθiu∣∣2 +

∣∣Gθiv∣∣2 +
∣∣Gθµu

∣∣2 +
∣∣Gθµv

∣∣2) ≺ n−cφ .
Case 2: Suppose there are at least two l’s such that sl = 1. Without loss of generality, we
assume that s1 = s2 = · · · = sj = 1 for some 2 6 j 6 k. Then, we have s > max{2k− j, 5},
which gives that

nk/2−2φs−4
n E

∣∣∣ k∏
l=1

xsl(i, µ)
∣∣∣ ≺ nk/2−2φs−4

n φj−2
n |x1(i, µ)|2 6 n−1/2−cφ |x1(i, µ)|2, (9.33)

where in the second step we used

nk/2−2φs+j−6
n = n−2+k/2−(s+j−6)/4n−(s+j−6)cφ 6 n−1/2−cφ .

Applying (9.29) and (9.30) to (9.24), we can bound that

|x1(i, µ)| ≺
(∣∣Gθiu∣∣+ φn

∣∣Gθµu

∣∣) (∣∣Gθµv

∣∣+ φn
∣∣Gθiv∣∣)+

(∣∣Gθµu

∣∣+ φn
∣∣Gθiu∣∣) (∣∣Gθiv∣∣+ φn

∣∣Gθµv

∣∣)
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.
∣∣Gθiu∣∣ ∣∣Gθµv

∣∣+
∣∣Gθµu

∣∣ ∣∣Gθiv∣∣+ φn

(∣∣Gθiu∣∣2 +
∣∣Gθiv∣∣2 +

∣∣Gθµu

∣∣2 +
∣∣Gθµv

∣∣2) .
(9.34)

Now, using (9.32) and (9.34), we get that∑
i∈I1

∑
µ∈I3

|x1(i, µ)|2

≺
∑
i∈I1

∑
µ∈I3

[∣∣Gθiu∣∣2 ∣∣Gθµv

∣∣2 +
∣∣Gθµu

∣∣2 ∣∣Gθiv∣∣2 + φ2
n

(∣∣Gθiu∣∣4 +
∣∣Gθiv∣∣4 +

∣∣Gθµu

∣∣4 +
∣∣Gθµv

∣∣4)]
≺ 1 + nφ2

n.

Combining this bound with (9.33), we get that

∑
i∈I1

∑
µ∈I3

nk/2−2φs−4
n E

∣∣∣ k∏
l=1

xsl(i, µ)
∣∣∣ ≺ n−1/2−cφ · nφ2

n 6 n−3cφ .

Case 3: Finally, suppose there is only one l such that sl = 1. Without loss of generality,
we assume that s1 = 1 and sl > 2 for l = 2, · · · , k. Thus, we have s > max{2k − 1, 5},
which gives that

nk/2−2φs−4
n E

∣∣∣ k∏
l=1

xsl(i, µ)
∣∣∣

≺ nk/2−2φs−4
n |x1(i, µ)|

(∣∣Gθiu∣∣2 +
∣∣Gθiv∣∣2 +

∣∣Gθµu

∣∣2 +
∣∣Gθµv

∣∣2)
6 n−3/4−cφ

(∣∣Gθiu∣∣ ∣∣Gθµv

∣∣+
∣∣Gθµu

∣∣ ∣∣Gθiv∣∣) (∣∣Gθiu∣∣2 +
∣∣Gθiv∣∣2 +

∣∣Gθµu

∣∣2 +
∣∣Gθµv

∣∣2)
+ n−3/4−cφφn

(∣∣Gθiu∣∣4 +
∣∣Gθiv∣∣4 +

∣∣Gθµu

∣∣4 +
∣∣Gθµv

∣∣4) , (9.35)

where in the first step we used (9.31), and in the second step we used (9.34) and

nk/2−2φs−4
n = n−2+k/2−(s−4)/4n−(s−4)cφ 6 n−3/4−cφ .

Applying (9.32) and Cauchy-Schwarz inequality to (9.35), we get that

∑
i∈I1

∑
µ∈I3

nk/2−2φs−4
n E

∣∣∣ k∏
l=1

xsl(i, µ)
∣∣∣ ≺ n−2cφ .

Combining the above three cases, we conclude (9.27) with ε = cφ, which further
implies (9.21). With similar arguments, we can conclude (9.17) and (9.18).

Proof of (9.32). (9.32) is a simple corollary of the spectral decomposition of the re-
solvent in (6.51). Using the rigidity estimate (4.4) given by Theorem 9.3 (iii), we get
that

min
16k6p

|λk − z| & 1, for z = θl + in−4. (9.36)

Combining it with the SVD (6.51), we see that ‖R(z)‖ = O(1) with high probability.
Then, using (6.52)–(6.54) and (6.48)–(6.49) given by Theorem 9.3 (iv), we obtain that
‖G(z)‖ = O(1) with high probability. Thus, we have that for any unit vector u ∈ CI ,∑

a∈I
|Gau|2 6 ‖GG∗‖ = O(1) with high probability, (9.37)
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where G∗ denotes the conjugate transpose of G. If G ≡ Ĝ is the regularized resolvent,
then we can apply Claim 6.2 to get that∑

a∈I

∣∣∣Ĝau

∣∣∣2 = O(1) with high probability.

The above argument also works for the resolvent Gθ, which concludes (9.32).

Finally, we can complete the proof of Theorem 2.4 using Proposition 9.6.

Proof of Theorem 2.4. First, suppose X, Y and Z satisfy Assumption 9.2, and let X̃, Ỹ
and Z̃ be random matrices constructed in Lemma 9.5. Then, Theorem 2.4 holds for the
SCC matrix defined with (X̃, Ỹ , Z̃), because they satisfy the assumptions of Theorem 2.3.
By Proposition 9.6 (recall that it is proved for the regularized resolvents following the
convention stated above Lemma 9.5), we have that

M̂(z)
d∼ ̂̃M(z).

By the argument in the proof of Claim 6.2, this implies thatM(θl) and M̃(θl) also have
the same asymptotic distribution. Moreover, by classical CLT, the asymptotic distribution
of
√
n
(
ZZ> − Ir

)
is still given by (4.41), which only depends on the first four moments

of Z entries. Hence, by (9.10), we can conclude Theorem 2.4 for the SCC matrix defined
with (X,Y, Z) satisfying Assumption 9.2. Finally, using the cut-off argument at the
beginning of this section and Lemma 9.1, we conclude Theorem 2.4.

A Proof of Lemma 5.6

In this section, we provide a proof of Lemma 5.6 using the Stein’s method and
cumulant expansions. With a slight abuse of notation, we consider the following r × r
matrix

Q :=
√
nU>Y V +

√
nV >Y >U +

√
nO>(1− E)(Y Y >)O,

where Y is a ρ× n random matrix with i.i.d. entries satisfying (2.1) and (2.8), U and O
are two ρ× r deterministic matrices satisfying ‖U‖ 6 1 and ‖O‖ 6 1, and V is an n× r
deterministic matrix satisfying ‖V ‖ 6 1 and

‖V ‖max 6 n−c (A.1)

for some constant 0 < c < 1/2. Moreover, we assume that r = O(1) and ρ = O(nτ ) for a
small enough constant τ > 0. Then, we claim that Q is asymptotically Gaussian with zero
mean. Note that the items (i)–(iv) of Lemma 5.6 all follow from this general claim. In
particular, if the entries of Y are i.i.d. Gaussian, then the condition (A.1) is not necessary,
because we can rotate V as Y V 7→ (Y On)(O>n V ), where the orthogonal matrix On is
chosen such that (A.1) holds for O>n V and the distribution of Y is unchanged: Y On

d
= Y .

It is trivial to see that EQ = 0. To show that Q is asymptotically Gaussian, with the
Cramér-Wold device, we need to prove that

QΛ :=
∑
a6b

λabQab

is asymptotically Gaussian for any fixed vector of parameters denoted by Λ := (λab)a6b.
For this purpose, we use the Stein’s method [37], i.e. we will show that for any f ∈
C∞c (R),

EQΛf(QΛ) = s2
ΛEf

′(QΛ) + o(1) (A.2)
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for some deterministic parameter s2
Λ. This gives the CLT for

√
n
∑
a6b λabQab, which

implies that Q converges weakly to a centered Gaussian matrix, whose covariances can
be determined through s2

Λ.
For simplicity, we denote X :=

√
nY , such that the entries of X are i.i.d. random

variables with mean zero and variance one. Moreover, for any fixed l ∈ N, there is a
constant µl > 0 such that

E|X11|l 6 µl. (A.3)

We will prove (A.2) with the following cumulant expansion formula, whose proof can be
found in [33, Proposition 3.1] and [28, Section II].

Lemma A.1. Let f ∈ Cl+1(R) for some fixed l ∈ N. Suppose ξ is a centered random
variable whose first l + 2 moments are finite. Let κk(ξ) be the k-th cumulant of ξ. Then,
we have that

E[ξf(ξ)] =

l∑
k=1

κk+1(ξ)

k!
Ef (k)(ξ) + El, (A.4)

where the error term satisfies that for any χ > 0,

|El| 6 ClE
[
|ξ|l+2

] ∑
|t|6χ

|f (l+1)(t)|+ ClE
[
|ξ|l+21(|ξ| > χ)

]∑
t∈R
|f (l+1)(t)|. (A.5)

We now expand the left-hand side of (A.2) as

EQΛf(QΛ) = E
∑
a6b

λab
∑

16i6ρ,16µ6n

Xiµ(UiaVµb + UibVµa)f(QΛ)

+ E
∑
a6b

λab
∑

16i,j6ρ

1√
n

∑
16µ6n

(XiµXjµ − δij)OiaOjbf(QΛ). (A.6)

We first study the first term on the right-hand side of (A.6). For any fixed a 6 b, we apply
the expansion (A.4) with ξ = Xiµ and l = 2 to get that

∑
16i6ρ,16µ6n

UiaVµbEXiµ [Xiµf(QΛ)] =
∑

16i6ρ,16µ6n

UiaVµbEXiµ

[
∂QΛ

∂Xiµ
f ′(QΛ)

]

+
κ3

2

∑
16i6ρ,16µ6n

UiaVµbEXiµ

2
∑
a′6b′

λa′b′
Oia′Oib′√

n
f ′(QΛ) +

(
∂QΛ

∂Xiµ

)2

f ′′(QΛ)


+ E2(Xiµ), (A.7)

where κ3 ≡ κ3(Xiµ) is the third cumulant of Xiµ, E2(Xiµ) satisfies (A.5) for the function
f(QΛ(Xiµ)), and

∂QΛ

∂Xiµ
=
∑
a′6b′

λa′b′

(Uia′Vµb′ + Uib′Vµa′) +
∑

16j6ρ

Xjµ√
n

(Oia′Ojb′ +Oja′Oib′)

 ≺ n−c. (A.8)

Here, we used (A.1) in the second step. The expectation of the first term on the right-hand
side of (A.7) is

E
∑

16i6ρ,16µ6n

UiaVµb
∂QΛ

∂Xiµ
f ′(QΛ)

=
∑
a′6b′

λa′b′
∑

16i6ρ,16µ6n

UiaVµb(Uia′Vµb′ + Uib′Vµa′)Ef
′(QΛ) + O≺(n−1/2+τ ), (A.9)
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where we used Lemma 5.3 to bound that∣∣∣ ∑
16µ6n

n−1/2VµbXjµ

∣∣∣ ≺ n−1/2
(∑

µ

|Vµb|2
)1/2

6 n−1/2. (A.10)

Next, using (A.8) and ρ = O(nτ ), we can bound that

E
∑

16i6ρ,16µ6n

UiaVµb

(
∂QΛ

∂Xiµ

)2

f ′′(QΛ)

≺ n−c
∑
a′6b′

∑
16i6ρ,16µ6n

|Uia||Vµb|(|Uia′ ||Vµb′ |+ |Uib′ ||Vµa′ |)

+ n−c
∑
a′6b′

∑
16i,j6ρ,16µ6n

|Uia||Vµb|
1√
n

= O(n−c+τ/2), (A.11)

where we used Cauchy-Schwarz inequality in the second step. Finally, we bound E2 by
taking χ = nε for a small constant ε > 0. We need to bound

∂3f(QΛ)

∂X3
iµ

= 4
∑
a′6b′

λa′b′
Oia′Oib′√

n

∂QΛ

∂Xiµ
f ′′(QΛ) +

(
∂QΛ

∂Xiµ

)3

f ′′′(QΛ).

Using the compact support condition of f , it is easy to check that

sup
|Xiµ|6nε

∣∣∣∣∣∂3f(QΛ)

∂X3
iµ

∣∣∣∣∣ . ∑
a6b

1√
n

(
nε√
n

+

∑
j 6=i |Xjµ|√

n
+ |Vµa|+ |Vµb|

)

+
∑
a6b

(
nε√
n

+

∑
j 6=i |Xjµ|√

n
+ |Vµa|+ |Vµb|

)3

,

and

sup
Xiµ∈R

∣∣∣∣∣∂3f(QΛ)

∂X3
iµ

∣∣∣∣∣ = O(1).

On the other hand, applying Markov’s inequality to (A.3), we obtain the bound

E
[
|Xiµ|41(|Xiµ| > nε)

]
6 n−D for any constant D > 0.

Combining the above three estimates, we obtain that

|E2(Xiµ)| . E
∑

16i6ρ,16µ6n

|Uia| |Vµb|
∑
a′6b′

1√
n

(
nε√
n

+

∑
j 6=i |Xjµ|√

n
+ |Vµa′ |+ |Vµb′ |

)

+ E
∑

16i6ρ,16µ6n

|Uia| |Vµb|
∑
a′6b′

(
nε√
n

+

∑
j 6=i |Xjµ|√

n
+ |Vµa′ |+ |Vµb′ |

)3

+ n−D

. n−2c+τ/2, (A.12)

where we used (A.1) in the second step. Now, plugging (A.9), (A.11) and (A.12) into (A.7),
we obtain that

E
∑

16i6r,16µ6n

UiaVµbXiµf(QΛ)

=
∑
a′6b′

λa′b′
∑

16i6ρ,16µ6n

UiaVµb(Uia′Vµb′ + Uib′Vµa′)Ef
′(QΛ)
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+ κ3

∑
a′6b′

λa′b′
∑

16i6ρ,16µ6n

UiaVµb
Oia′Oib′√

n
Ef ′(QΛ) + O(n−c+τ/2). (A.13)

Then, we calculate the second term on the right-hand side of (A.6). For any a 6 b, we
need to study ∑

16i,j6ρ,16µ6n

1√
n
OiaOjbEXiµ [(XiµXjµ − δij)f(QΛ)] .

We only consider the hardest case with i = j, and the i 6= j case can be handled in a
similar way. For any fixed 1 6 i 6 ρ, we apply the expansion (A.4) with ξ = Xiµ and l = 3

to get that∑
16µ6n

1√
n
EXiµ [XiµXiµf(QΛ)− f(QΛ)] =

1√
n

∑
16µ6n

EXiµXiµ
∂QΛ

∂Xiµ
f ′(QΛ)

+
κ3

2
√
n

∑
16µ6n

EXiµ

[
2
∂QΛ

∂Xiµ
f ′(QΛ) + CiXiµf

′(QΛ) +Xiµ

(
∂QΛ

∂Xiµ

)2

f ′′(QΛ)

]

+
κ4

6
√
n

∑
16µ6n

EXiµ

[
3Cif

′(QΛ) + 3

(
∂QΛ

∂Xiµ

)2

f ′′(QΛ) + 3CiXiµ
∂QΛ

∂Xiµ
f ′′(QΛ)

]

+
κ4

6
√
n

∑
16µ6n

EXiµ

[
Xiµ

(
∂QΛ

∂Xiµ

)3

f ′′′(QΛ)

]
+ E3(Xiµ), (A.14)

where κ4 ≡ κ4(Xiµ) is the fourth cumulant of Xiµ, E3(Xiµ) satisfies (A.5) for the function
Xiµf(QΛ(Xiµ)), and we have abbreviated that

Ci :=
∂2QΛ

∂X2
iµ

= 2
∑
a′6b′

λa′b′
Oia′Oib′√

n
= O(n−1/2). (A.15)

Using (A.8), we can bound that

1√
n

∑
16µ6n

(
∂QΛ

∂Xiµ

)2

f ′′(QΛ) ≺ n−c
∑
a′6b′

λa′b′
1√
n

∑
µ

(
|Vµa′ |+ |Vµb′ |+ n−1/2+τ

)
. n−c+τ .

Similarly, we can get the bounds

1√
n

∑
16µ6n

Xiµ

(
∂QΛ

∂Xiµ

)2

f ′′(QΛ) ≺ n−c+τ , 1√
n

∑
16µ6n

Xiµ

(
∂QΛ

∂Xiµ

)3

f ′′′(QΛ) ≺ n−2c+τ ,

1√
n

∑
16µ6n

CiXiµ
∂QΛ

∂Xiµ
f ′′(QΛ) ≺ n−1/2+τ .

On the other hand, with Lemma 5.3, we obtain the estimates

1

n

∑
µ

XiµXjµ = δij + O≺(n−1/2),
1√
n

∑
16µ6n

Xiµ ≺ n−1/2.

Using these two estimates and (A.10), we get that

1√
n

∑
16µ6n

Xiµ
∂QΛ

∂Xiµ
f ′(QΛ)

=
∑
a′6b′

λa′b′
∑

16j6ρ

(
1

n

∑
µ

XiµXjµ

)
(Oia′Ojb′ +Oja′Oib′) f

′(QΛ) + O≺(n−1/2)
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= 2
∑
a′6b′

λa′b′Oia′Oib′f
′(QΛ) + O≺(n−1/2);

1√
n

∑
16µ6n

∂QΛ

∂Xiµ
f ′(QΛ)

=
∑
a′6b′

λa′b′

 1√
n

∑
µ

(Uia′Vµb′ + Uib′Vµa′) +
∑

16j6r

1

n

∑
µ

Xjµ(Oia′Ojb′ +Oja′Oib′)


=
∑
a′6b′

λa′b′
1√
n

∑
µ

(Uia′Vµb′ + Uib′Vµa′) + O≺(n−1/2);

1√
n

∑
16µ6n

CiXiµf
′(QΛ) = O≺(n−1/2).

Finally, E3(Xiµ) can be estimated in a similar way as E2(Xiµ), EE3(Xiµ) 6 n−c. We omit
the details of its proof. Combining the above estimates and using Lemma 4.2 (iii), we
obtain that∑

16i,j6ρ,16µ6n

1√
n
OiaOjbE [(XiµXjµ − δij)f(QΛ)] = s2

iEf
′(QΛ) + O≺(n−c+2τ )

for a deterministic s2
i . Combining this equation with (A.13), we obtain (A.2), which

concludes Lemma 5.6.

B Proof of Lemma 7.2 and Lemma 7.3

The proofs of Lemma 7.2 and Lemma 7.3 are standard applications of the contraction
principle.

Proof of Lemma 7.2. We abbreviate mαc ≡ mαc(θl) and εα(z) := ωαc(z) −mαc(θl) with
|εα| 6 c̃ for a sufficiently small constant c̃ > 0. From (7.7), we obtain the following
equations for (ω1c, ω2c):

c1
ω1c

= −z + (1− θl)
1 + (1− θl)ω2c

[1 + (1− θl)ω1c][1 + (1− θl)ω2c]− θ−1
l

,

c2
ω2c

= (1− θl)
1 + (1− θl)ω1c

[1 + (1− θl)ω1c][1 + (1− θl)ω2c]− θ−1
l

.

(B.1)

On the other hand, using (4.10)–(4.12), we can check that m1c(θl) and m2c(θl) satisfy the
following equations:

c1
m1c(θl)

= (1− θl)
1 + (1− θl)m2c(θl)

[1 + (1− θl)m1c(θl)][1 + (1− θl)m2c(θl)]− θ−1
l

,

c2
m2c(θl)

= (1− θl)
1 + (1− θl)m1c(θl)

[1 + (1− θl)m1c(θl)][1 + (1− θl)m2c(θl)]− θ−1
l

.

(B.2)

Subtract (B.2) from (B.1), we get that

c1ε1

(m1c + ε1)m1c
= z +

(1− θl)2[g(m2c + ε2)g(m2c)ε1 + θ−1
l ε2]

[g(m1c + ε1)g(m2c + ε2)− θ−1
l ][g(m1c)g(m2c)− θ−1

l ]
,

c2ε2

(m2c + ε2)m2c
=

(1− θl)2[g(m1c + ε1)g(m1c)ε2 + θ−1
l ε1]

[g(m1c + ε1)g(m2c + ε2)− θ−1
l ][g(m1c)g(m2c)− θ−1

l ]
,

(B.3)
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where we have abbreviated g(x) := 1 + (1− θl)x. Inspired by the above equations, we

define iteratively a sequence of vectors ε(k) = (ε
(k)
1 , ε

(k)
2 ) ∈ C2 such that ε(0) = 0 ∈ C2,

and{
c1
m2

1c

− (1− θl)2g(m2c)
2

[g(m1c)g(m2c)− θ−1
l ]2

}
ε

(k+1)
1 −

(1− θl)2θ−1
l

[g(m1c)g(m2c)− θ−1
l ]2

ε
(k+1)
2

= z +
c1(ε

(k)
1 )2

m2
1c(m1c + ε

(k)
1 )

+
(1− θl)2

g(m1c)g(m2c)− θ−1
l

{
g(m2c + ε

(k)
2 )g(m2c)ε

(k)
1 + θ−1

l ε
(k)
2

g(m1c + ε
(k)
1 )g(m2c + ε

(k)
2 )− θ−1

l

−
g(m2c)

2ε
(k)
1 + θ−1

l ε
(k)
2

g(m1c)g(m2c)− θ−1
l

}
,{

c2
m2

2c

− (1− θl)2g(m1c)
2

[g(m1c)g(m2c)− θ−1
l ]2

}
ε

(k+1)
2 −

(1− θl)2θ−1
l

[g(m1c)g(m2c)− θ−1
l ]2

ε
(k+1)
1

=
c2(ε

(k)
2 )2

m2
2c(m2c + ε

(k)
2 )

+
(1− θl)2

g(m1c)g(m2c)− θ−1
l

{
g(m1c + ε

(k)
1 )g(m1c)ε

(k)
2 + θ−1

l ε
(k)
1

g(m1c + ε
(k)
1 )g(m2c + ε

(k)
2 )− θ−1

l

−
g(m1c)

2ε
(k)
2 + θ−1

l ε
(k)
1

g(m1c)g(m2c)− θ−1
l

}
.

In other words, the above two equations define a mapping f : `∞(Z2)→ `∞(Z2), so that

ε(k+1) = f(ε(k)), f(x) := S−1

(
z

0

)
+ S−1e(x), (B.4)

where

S :=

 c1
m2

1c
− θ2l (1−θl)2

(1−tl)2 g(m2c)
2 − (1−θl)2θl

(1−tl)2

− (1−θl)2θl
(1−tl)2

c2
m2

2c
− θ2l (1−θl)2

(1−tl)2 g(m1c)
2

 ,
and

e(x) :=

 c1x
2
1

m2
1c(m1c+x1)

− θl(1−θl)2
1−tl

{
g(m2c+x2)g(m2c)x1+θ−1

l x2

g(m1c+x1)g(m2c+x2)−θ−1
l

− g(m2c)
2x1+θ−1

l x2

g(m1c)g(m2c)−θ−1
l

}
c2x

2
2

m2
2c(m2c+x2)

− θl(1−θl)2
1−tl

{
g(m1c+x1)g(m1c)x2+θ−1

l x1

g(m1c+x1)g(m2c+x2)−θ−1
l

− g(m1c)
2x2+θ−1

l x1

g(m1c)g(m2c)−θ−1
l

} .
Here, we have used θlg(m1c)g(m2c) = fc(θl) = tl (which follows from (4.13) and (4.29))
to simplify the expressions a little bit.

With a direct calculation, we can check that under (2.19), there exist constants
c̃, C̃ > 0 depending only on c1, c2 and δl such that

‖S−1‖`∞→`∞ 6 C̃, and ‖e(x)‖∞ 6 C̃‖x‖2∞ for ‖x‖∞ 6 c̃. (B.5)

With (B.5), it is easy to check that there exists a sufficiently small constant τ > 0

depending only on C̃, such that f is a self-mapping

f : Br (`∞(Z2))→ Br (`∞(Z2)) , Br (`∞(Z2)) := {x ∈ `∞(Z2) : ‖x‖∞ 6 r},

as long as r 6 τ and |z| 6 cτ for some constant cτ > 0 depending only on c1, c2, δl and τ .
Now, it suffices to prove that h restricted to Br (`∞(Z2)) is a contraction, which implies
that ε := limk→∞ ε

(k) exists and is a unique solution to (B.3) subject to the condition
‖ε‖∞ 6 r.

From the iteration relation (B.4), using (B.5), we obtain that

ε(k+1) − ε(k) = S−1
[
e(ε(k))− e(ε(k−1))

]
6 C̃

∥∥∥e(ε(k))− e(ε(k−1))
∥∥∥
∞
. (B.6)
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From the expression of e, we see that as long as r is chosen to be sufficiently small
compared to θ−1

l − g(m1c)g(m2c) = (1− tl)θ−1
l , then∥∥∥e(ε(k))− e(ε(k−1))

∥∥∥
∞

6 C
(
‖ε(k)‖∞ + ‖ε(k−1)‖∞

)
‖ε(k) − ε(k−1)‖∞

for some constant C > 0 depending only on c1, c2 and δl. Thus, we can choose a
sufficiently small constant 0 < r 6 min{τ, (2C)−1} such that Cr 6 1/2. Then, f is indeed
a contraction mapping on Br (`∞(Z2)), which proves both the existence and uniqueness
of the solution to (B.3) if we choose c0 in (7.10) as c0 = min{cτ , r}. After obtaining
ω1c = m1c + ε1 and ω2c = m2c + ε2, we can define ω3c and ω4c using the first and third
equations in (7.7).

Note that with (B.5) and ε(0) = 0, we get from (B.4) that ‖ε(1)‖∞ 6 C̃|z|. Then, with
the contraction property of f , we get that

‖ε‖∞ 6
∞∑
k=0

‖ε(k+1) − ε(k)‖∞ 6 2C̃|z|.

This gives the bound (7.11) for ω1c and ω2c. Then, using the first and third equations
in (7.7), we immediately obtain the bound (7.11) for ω3c and ω4c as long as c0 is sufficiently
small.

Proof of Lemma 7.3. As in the proof of Lemma 7.2, we subtract the equations (7.13)
from (7.7), and consider the contraction principle for the functions εα(z) := ωα(z)−ωαc(z).
We omit the details.
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