
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 27 (2022), article no. 73, 1–29.
ISSN: 1083-6489 https://doi.org/10.1214/22-EJP797

Sobolev regularity of occupation measures and paths,
variability and compositions*

Michael Hinz† Jonas M. Tölle‡ Lauri Viitasaari§

Abstract

We prove a result on the fractional Sobolev regularity of composition of paths of low
fractional Sobolev regularity with functions of bounded variation. The result relies on
the notion of variability, proposed by us in the previous article [43]. Here we work
under relaxed hypotheses, formulated in terms of Sobolev norms, and we can allow
discontinuous paths, which is new. The result applies to typical realizations of certain
Gaussian or Lévy processes, and we use it to show the existence of Stieltjes type
integrals involving compositions.
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1 Introduction

Let T > 0. To a Borel function X : [0, T ]→ Rn we refer as a path. Our main goal in
this article is to define compositions ϕ ◦X of paths X and functions ϕ : Rn → R, and to
provide some information on their regularity. For smooth X and ϕ one can talk about
ϕ ◦X in terms of classical calculus, and the principles involved can be generalized in
many ways; for instance, X may only be absolutely continuous and ϕ Lipschitz. Here we
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Sobolev regularity of occupation measures and paths, variability and compositions

focus on situations of low regularity, where X may be a ‘fractal’ path and ϕ is a function
of bounded variation (a BV -function); examples of paths X we can handle include typical
realizations of fractional Brownian motions or certain Lévy processes. In fact, although
our method is analytic, it works particularly well for paths of stochastic processes for
which some density information is available. For BV -functions (or Sobolev functions)
ϕ the definition of a composition ϕ ◦ X is no longer trivial: If for instance n = 1 and
ϕ = 1(1,2), then a priori ϕ is not defined at the jump sites 1 and 2, and a composition
with, say, the path X = 1[1,3) + 1[2,3) has no meaningful definition.

The usual way out is to use a suitable representative ϕ̃ of the BV - (or Sobolev) class
ϕ, which is well-defined outside a very small set N ⊂ Rn and in some sense ‘uniquely
determined’. If X does not spend positive time in N , then t 7→ ϕ(Xt) provides a correct
definition of ϕ ◦ X as an element of L1(0, T ). To ensure this we use a condition we
refer to as variability, [43, Definition 2.1]. It is a relative condition joint on X and ϕ,
although we mainly interpret it as a condition on X relative to a fixed BV -function
ϕ. To be more precise, we consider a parametrized family of conditions, namely the
finiteness of certain ‘mutual’ generalized energies of the gradient measure of ϕ and the
occupation measure of X. These conditions provide additional quantitative information
on how little time X spends around points at which ϕ has ‘irregularities’. If we also
have some knowledge about the fractional Sobolev regularity of X, then variability and
this knowledge can be combined to guarantee a certain fractional Sobolev regularity of
ϕ ◦X. This means that both the regularity of the path X and its irregularity (encoded
in the regularity of its occupation measure) may contribute to the fractional Sobolev
regularity of the composition. For the realizations X of prominent stochastic processes
results on the a.s. path regularity and the a.s. regularity of occupation measures are
well-known, see for instance [23, 32, 58, 60] respectively [6, 7, 8, 9, 10, 11, 12, 13, 14,
16, 19, 35, 36, 40, 44, 54, 55, 61, 72, 73], and we combine them to obtain a.s. results
for compositions. The regularity of compositions can then for instance be used to ensure
the existence of pathwise defined integrals, [76, 77], of compositions ϕ ◦X w.r.t. another
path Y : [0, T ]→ R of low regularity.

Well-known results on composition operators on Sobolev spaces ask for the bounded-
ness and continuity of X 7→ ϕ ◦X, seen as a nonlinear operator on one and the same
Sobolev space or between Sobolev spaces having the same smoothness parameter, and
this is possible only for functions ϕ that are at least locally Lipschitz, [5, 49, 56]. Our
composition result is different in nature: If θ ∈ (0, 1) is the order of smoothness of X, it
claims only that the composition ϕ ◦X is a member of a fractional Sobolev space of a
certain lower order β < θ of smoothness, Theorem 5.11.

In [43] we had used variability to define compositions of Hölder paths and BV -
functions. We had applied this result to ensure the existence of generalized Lebesgue-
Stieltjes integrals and to solve certain differential systems with BV -coefficients and
driven by fractional Brownian paths. Earlier results exploiting the same mechanism
can be found in [22, 33, 67, 75] and closely related results in [47]. The present article
may be seen as a continuation of our results in [43]. One goal is to point out how
variability can be discussed in terms of Sobolev regularity of measures: In [43] we
had formulated several results under the hypothesis that the measures involved are
upper (Ahlfors) regular. Here we use Sobolev norms (of small negative order), whose
finiteness may be viewed as integrated upper regularity conditions, [41], somewhat
more flexible than plain upper regularity, see Section 2. A second goal is to provide a
generalization of a key inequality, [43, Proposition 4.28], and a regularity result, [43,
Theorem 2.13 (i)]. These results had been formulated under the assumption that the
path X is Hölder continuous, as it is the case for typical paths of Gaussian processes,
cf. Example 5.14. Here we only require X to be a member of some fractional Sobolev
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space, see Theorem 5.11 and Proposition 5.18. This allows to discuss also discontinuous
paths X, such as typical realizations of Lévy processes, cf. Example 5.15. As in [43] we
use these results to show the existence of generalized Lebesgue-Stieltjes type integrals,
[76, 77], see Corollary 6.4. Because the motif is related to our arguments, we add a
further section about an inequality proved in [10], which roughly speaking restricts
the possible simultaneous regularity of a (Hölder) path and its occupation measure,
Corollary 7.4. A complete and modern discussion of these restrictions can be found in
[30, Theorem 31]. Here we simply wish to point out that the inequality in [10] does
not require local times to exist, and that for negative orders of smoothness one can
reformulate a condition used in [10] in terms of packing type measures.

The class of BV -functions is already rich enough to contain functions with disconti-
nuities, singularities or non-Lipschitz oscillations, and there is a well-developed theory
on the geometric features of BV -functions, [4, 78]. Of course it is to be expected that
the present composition results can be generalized further using a refined Fourier-
analytic approach. Important recent results close to the present article can be found in
[20, 31, 30, 38, 39]. In [30] the authors provide a comprehensive study of ρ-irregularity
from the point of view of prevalence. The notion of ρ-irregularity had been introduced in
[20], it quantifies the regularity of occupation measures in a rather complete way and has
natural consequences for the mapping properties of averaging operators, [20, 31, 39],
which are integrals of compositions involving shifted paths. In the present article we do
not aim at integrals of compositions but at compositions themselves, clearly a different
question. We also point out that ρ-irregularity is an ‘absolute’ condition on a given path
X, while variability in our sense is a condition relative to a fixed function ϕ. Certainly
ρ-irregularity can be a tool to establish variability. See Remarks 3.8 and 5.10 for further
comments.

In Section 2 we recall basic notions on potentials and energies. In Sections 3 and 4 we
collect some observations on the Sobolev regularity of occupation and gradient measures
that may typically occur in the situations we are interested in. In Section 5 we prove
our main result, Theorem 5.11 on the Sobolev regularity of compositions and provide
examples. Section 6 contains an application to the existence of integrals, Corollary 6.4,
and Section 7 the mentioned discussion of a result from [10], Corollary 7.4.

2 Riesz potentials and energies

We fix some basic notation around Sobolev spaces, energies and potentials. By

f̂(ξ) =
1

(2π)n/2

ˆ
Rn
e−ixξf(x)dx, ξ ∈ Rn,

we denote the Fourier transform f̂ of a function f ∈ L1(Rn), and as usual we use the same
symbol f̂ to denote the Fourier transform of a tempered distribution f ∈ S ′(Rn), defined
by f̂(ϕ) := f(ϕ̂), ϕ ∈ S(Rn), where S(Rn) denotes the space of Schwartz functions on
Rn. The inverse Fourier transform is denoted by f 7→ f̌ , interpreted in the respective
sense.

For any 0 < γ < n the (0,+∞]-valued function ξ 7→ |ξ|−γ is an element of S ′(Rn). Its
Fourier inverse is called the Riesz-kernel kγ of order γ on Rn. It agrees with the (0,+∞]-
valued lower semicontinuous function x 7→ c(γ, n) |x|γ−n on Rn, seen as an element of
S ′(Rn). Here c(γ, n) is a well-known constant, see [3, Section 1.2.2], [37, Section 6.1] or
[62, Section V.1]. The Riesz-potential of order 0 < γ < n of a Radon measure µ on Rn is
defined as

Uγµ(x) :=

ˆ
Rn
kγ(x− y)µ(dy), x ∈ Rn. (2.1)
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If µ(dx) = f(x)dx with some nonnegative L1
loc(Rn), then this is the Riesz-potential of f in

the function sense, [3, 46, 57, 62]. Given 1 ≤ q < +∞, 0 < γ < n and a Radon measure
µ, we define

Iγq (µ) :=

ˆ
Rn

(Uγµ)q dx. (2.2)

We refer to this quantity as the (γ, q)-energy of µ, see [3, p. 36] or [71].
If 1 < p < +∞, 1

p + 1
q = 1 and 0 < γ ≤ n

p then there is a constant c > 0, depending
only on n, p and γ, such that

c−1

ˆ
Rn

(Uγµ)q dx ≤
ˆ
Rn
Wµ
γ,p dµ ≤ c

ˆ
Rn

(Uγµ)q dx (2.3)

for any Radon measure µ on Rn. Here

Wµ
γ,p(x) :=

ˆ ∞
0

(
µ(B(x, r))

rn−γp

)q−1
dr

r
, x ∈ Rn, (2.4)

denotes the Wolff potential of µ of orders p and γ; the notation B(x, r) stands for the
open ball of radius r > 0 centered at x ∈ Rn. See [3, Theorem 4.5.4] or [41, Theorem 1].

A Radon measure µ on Rn is said to be upper d-regular if there are constants c > 0

and 0 ≤ d ≤ n such that

µ(B(x, r)) ≤ c rd, x ∈ Rn, 0 < r < 1.

Integrability conditions for (2.4) can be viewed as ‘integrated’ upper regularity conditions.
For finite measures they are implied by upper d-regularity.

Proposition 2.1. If 1 < p < +∞, 1
p + 1

q = 1, 0 < γ < n
p and µ is a finite Borel measure

which is upper d-regular with n − γp < d ≤ n, then Wµ
γ,p is bounded and in particular,

Iγq (µ) < +∞.

Proof. Under the stated hypotheses

ˆ 1

0

(
µ(B(x, r))

rn−γp

)q−1
dr

r
≤
ˆ 1

0

r(d−n+γp)(q−1) dr

r
< +∞

and ˆ ∞
1

(
µ(B(x, r))

rn−γp

)q−1
dr

r
≤ µ(Rn)

ˆ ∞
1

r(γp−n)(q−1) dr

r
< +∞.

Remark 2.2. It is well-known that if a Radon measure µ is upper d-regular, then the
Hausdorff dimension of its support suppµ is at least d, [26, 50]. A similarly ‘rigid’ upper
bound of type µ̂(ξ) ≤ c|ξ|−γ , ξ ∈ Rn, on the Fourier transform µ̂ of a finite Borel measure
µ is used to define the Fourier dimension of measures and sets. See for instance [25] or
[30, Definition 61].

For a finite Borel measure µ on Rn the finiteness of an energy of type (2.2) is
an expression of a certain Sobolev regularity. Let P(Rn) denote the collection of all
polynomials on Rn. Given α ∈ R and 1 < q < +∞, the homogeneous Sobolev space
L̇qα(Rn) is defined as the space of all equivalence classes f ∈ S ′(Rn)/P(Rn) for which
(|ξ|αf̂)∨ exists and is a member of Lq(Rn). Endowed with

‖f‖L̇qα(Rn) :=
∥∥(|ξ|αf̂)∨

∥∥
Lq(Rn)

it becomes a normed space. See [37, Definition 6.2.5]. Any finite Borel measure µ on Rn

is in S ′(Rn), and being finite, it cannot have a nonzero polynomial part.
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Corollary 2.3. Let µ be a finite Borel measure on Rn.

(i) For 0 ≤ α < n we have µ ∈ L̇q0(Rn) if and only if µ is absolutely continuous with a
density ϕ ∈ Lq(Rn) (if α = 0) respectively of form Uαϕ with some ϕ ∈ Lp(Rn) (if
0 < α < n). In this case, ‖µ‖L̇qα(Rn) = ‖ϕ‖Lq(Rn).

(ii) For −n < α < 0 we have µ ∈ L̇qα(Rn) if and only if I−αq (µ) < +∞. In this case,
‖µ‖q

L̇qα(Rn)
= I−αq (µ).

Given 1 ≤ p < +∞, γ > 0 and Radon measures µ and ν on Rn, we consider the
(γ, p)-energy of µ w.r.t. ν, defined by

ˆ
Rn

(Uγµ)pdν. (2.5)

The case p = 1 corresponds to the mutual Riesz-energy of order γ of µ and ν, see for
instance [46, Chapter 1, §4]. In the case where ν equals the n-dimensional Lebesgue
measure Ln we recover (2.2).

Proposition 2.4. Suppose that γ1, γ2 > 0, γ1 + γ2 < n and µ, ν are Radon measures.
Then for any integer p ≥ 1 we have

ˆ
Rn

(Uγ1+γ2µ)pdν =

ˆ
Rn
· · ·

ˆ
Rn

ˆ
Rn

p∏
j=1

kγ1(x− zj)ν(dx)

p∏
j=1

Uγ2µ(zj) dz1 · · · dzp.

Proof. Fubini and the convolution identity kγ1+γ2 = kγ1 ∗ kγ2 , [57, Section 25.2] or [62],
yield

(Uγ1+γ2µ(x))m =

ˆ
Rn

ˆ
Rn

(Uγ1+γ2µ(x))m−1kγ1(x− z)kγ2(z − y)µ(dy)dz

for all m ≥ 1, and iterating this identity, the result follows.

For later use we finally record a weighted version of (2.3). Let 1 < p < +∞ and
1
p + 1

q = 1. We use the notation

 
E

fdx =
1

Ln(E)

ˆ
E

f(x)dx

for E ∈ B(Rn) of positive and finite measure and f ∈ L1(E). Here the symbol B(Rn)

denotes the Borel σ-algebra and Ln, as mentioned before, the n-dimensional Lebesgue
measure. Given 1 < p < +∞, a measurable function w : Rn → [0,+∞] is called a weight
of class Ap if

sup
B

( 
B

w(x)dx

)( 
B

w(x)−
q
p dx

)p−1

< +∞, (2.6)

with the supremum taken over all open balls B ⊂ Rn, see [51, 52] or [37, 71]. A weight
w is of class Ap if and only if w−

q
p is of class Aq, [71, Remark 1.2.4].

Example 2.5. If 0 < α < nq then x 7→ |x|α−n is a weight of class Aq, see [71, Example
1.2.5].

If w ∈ Ap and 0 < γ < n
p , then there is a constant c > 1, depending only on n, p, γ and

w, such that

c−1

ˆ
Rn

(Uγµ)qw−
q
p dx ≤ n

ˆ
Rn
Wµ
γ,p,wdµ ≤ c

ˆ
Rn

(Uγµ)qw−
q
p dx, (2.7)

where

Wµ
γ,p,w(x) =

ˆ ∞
0

(
rγpµ(B(x, r))

w(B(x, r))

)q−1
dr

r
, x ∈ Rn,
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with

w(E) =

ˆ
E

w(x)dx, E ∈ B(Rn). (2.8)

See [71, Theorem 3.6.6] or [2, Theorem 3.2]. Note that for w ≡ 1 in the integral in (2.8)
we recover (2.4), up to a multiplicative constant.

Remark 2.6. The original statement in [2] is a bit more general, but (2.7) as stated here
is easy to formulate and sufficient for our needs.

3 Regularity of occupation measures

We briefly introduce occupation measures and their energies and then consider
examples. Let I ⊂ R be a Borel set and X : I → Rn a Borel function. The occupation
measure of X over I is the Borel measure µIX on Rn defined by

µIX(A) := L1(X−1(A) ∩ I), A ∈ B(Rn). (3.1)

Definition (3.1) is equivalent to the validity of the occupation time formula

ˆ
Rn
g(x)µIX(dx) =

ˆ
I

g(Xt) dt (3.2)

for all bounded Borel functions g : Rn → R. If I is bounded, then µIX is finite. If there is
a function LIX ∈ L1(Rn) such that

µIX(dx) = LIX(x)Ln(dx),

then, using terminology in a somewhat loose manner, we refer to LIX as local times of X
on I. Allowing Borel subsets E ∈ B(I) of I in (3.1) in place of I we can define occupation
measures µEX relative to subsets E and in the absolutely continuous case also local times
LEX relative to E.

Given an absolutely continuous function X : [0, T ]→ R, we denote its weak derivative
by t 7→ X ′t.

Example 3.1. If I = [0, T ] and X : I → R is Lipschitz, then for any A ⊂ R Borel we have

µIX(A) = L1((X−1(A) ∩ {X ′ = 0}) +

ˆ
A

α(y) dy

with the ‘conditional density’

α(y) =
∑

t∈{X=y}∩{X′ 6=0}

|X ′t|−1

by [27, Theorem 3.2.3 (2)]. As explained in [35, (2.3) Theorem (b)], X has local times if
and only if L1({X ′ = 0}) = 0, and in this case LIX = α L1-a.e. on R.

Using Corollary 2.3 we obtain the following.

Corollary 3.2. Let I be bounded and 1 < q < +∞.

(i) For 0 ≤ α < n we have µIX ∈ L̇qα(Rn) if and only if X has local times LIX in Lq(Rn)

(if α = 0) respectively of form LIX = Uαϕ with ϕ ∈ Lq(Rn) (if 0 < α < n).

(ii) For −n < α < 0 we have µIX ∈ L̇qα(Rn) if any only if the energy I−αq (µIX) is finite.

Remark 3.3.
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(i) Energies of occupation measures are a traditional tool to obtain lower bounds for
Hausdorff dimensions of path images X(E) and related sets, [17, 44, 53, 63, 64].

For instance, it is well known that if 0 < γ < n, µEX(Rn) > 0 and I
γ/2
2 (µEX) < +∞,

then dimH(X(E)) ≥ n − γ, see [44, Chapters 17 and 18]. A more contemporary
version of these statements can be found in [30, Theorem 30 and Section 5].

(ii) In [34] Geman considered energy integrals of local times of fields and proved
conclusions about their local growth and fluctuation. However, the energies
studied there are conceptually different from those in Corollary 3.2 (ii) in the sense
that they quantify smoothness with respect to the ‘time interval’ I and not the
‘state space’ Rn.

If X has local times in the above sense, then they are automatically integrable.
Integrability of higher order or even (essential) boundedness naturally imply Sobolev
regularity of the occupation measure. From [43, Proposition 4.14] and Proposition 2.1
we obtain the following.

Proposition 3.4. If I = [0, T ], 1 ≤ r ≤ +∞ and X admits local times LIX ∈ Lr(Rn), then
µIX is upper (n− n

r )-regular. In this case µIX ∈ L̇
q
−γ(Rn), provided that n

r <
γq
q−1 < n.

A very simple example is as follows.

Example 3.5. If I = [0, T ] and X : I → R is Lipschitz, |X ′| is bounded away from zero
L1-a.e. and X ′ changes sign only finitely many times on [0, T ], then LIX ∈ L∞(R). By
Proposition 3.4, the measure µIX is upper n-regular.

Typical realizations of certain stochastic processes provide less trivial examples.

Example 3.6.

(i) For large classes of Gaussian stochastic processes it is well-known that typical
paths X admit square integrable local times, [10, 11], [35, Sections 21 and 22].
In many cases they are Hölder continuous in space, [11, 12, 13, 54, 72, 74], [35,
Sections 26 and 27]. There are classes of Gaussian processes with differentiable
or smooth local times, see for instance [35, Section 28] or [39]. An n-dimensional
fractional Brownian motion X : I → Rn on a bounded interval I with Hurst index
0 < H < 1 and over some probability space (Ω,F ,P) has local times LIX if and only
if H < 1

n , see for instance [6, 7, 11, 12, 74] and the references cited there or [35,
Section 30]. In this case LIX is P-a.s. γ′-Hölder continuous on Rn, provided that

0 < γ′ < 1 ∧
( 1

2nH
− 1

2

)
,

see [35, (30.4) Theorem].

(ii) There are classical sufficient conditions for the existence of local times for Markov
processes X over some probability space (Ω,F ,P) and with values in R, see [36,
Theorem 1] or [35, (17.1) Theorem]. For the special case that X is a Lévy process
with symbol ψ the existence of local times LIX P-a.s. in L2(Rn) follows if

ˆ
R

Re((1 + ψ(ξ))−1)dξ < +∞,

see [16, Chapter V, Theorem 1] or [40]. The P-a.s. (joint) continuity of local
times follows for instance if the diffusion coefficient is strictly positive or the Lévy
measure ν satisfies ν(R \ {0}) = +∞, 0 is regular for {0} in the sense of Markov
processes, [18, Chapter I, Definition 11.1], and we have

∞∑
j=1

δ(2−j)
1
2 < +∞,
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where

δ(u) = sup
|x|≤u

π−1

ˆ
R

(1− cosxξ) Re((1 + ψ(ξ))−1)dξ,

see [36, Theorem 4]. For other classical results on (joint) continuity, see [8, 9, 14]
or [16, Chapter V, Theorem 15]. For a symmetric α-stable Lévy process X taking
values in R we have ψ(ξ) = c|ξ|α, ξ ∈ R. If 1 < α ≤ 2, then it has P-a.s. jointly
continuous local times, [19, 70]. A result on the existence of square integrable
local times for Feller processes can be found in [61, Theorem 1.2 and Section 3.2].

(iii) Integrability properties of local times have also been observed for deterministic
self-affine functions, see for instance [15, p. 438, Remarques].

The existence of local times, which restricts the range of possible space dimensions n
particularly heavily, is not needed to observe Sobolev regularity properties of occupation
measures.

Example 3.7.

(i) If 0 < d < n, then standard calculations show that for an n-dimensional fractional
Brownian motion X = BH over some probability space (Ω,F ,P) we have

sup
x∈Rn

E

ˆ T

0

|Xt − x|−ddt < +∞,

provided that its Hurst index H satisfies H < 1
d . See for instance [43, Example

4.22]. For such d it follows that the occupation measure of X on I = [0, T ] is P-a.s.
upper d-regular, see for instance [43, Proposition 4.12], and by Proposition 2.1
therefore µIX ∈ L̇

q
−γ(Rn) P-a.s. if 0 < n− γp < 1

H and p and q are conjugate. The
situation is consistent with the local time case H < 1

n in the sense that P-a.s.
boundedness of local times implies the P-a.s. upper n-regularity of the occupation
measure. For p = q = 2 one can, alternatively, use the fact that

E[|X(t+ τ)−X(t)|−d] ≤ c τ−dH

and follow another standard calculation to obtain

E
∥∥µIX∥∥2

L̇2
−γ(Rn)

≤ c E
ˆ T

0

ˆ T

0

|X(t)−X(τ)|2γ−n dt dτ,

which is finite if n− 2γ < 1
H , see for instance [26, Chapter 16]. Here we have used

Proposition 2.4 (with p = 1).

(ii) Suppose that X is a Lévy process with values in Rn over a probability space
(Ω,F ,P). Its Pruitt index γ0 is the supremum over all d ≥ 0 such that

E

ˆ T

0

|X(t)|−ddt < +∞,

see [55, formula (1.1) and Theorem 2] or [73, Remark 4.3]. The stationarity of
increments allows to obtain

E

ˆ T

0

ˆ T

0

|X(t)−X(τ)|2γ−n dt dτ

=

ˆ T

0

ˆ T

0

E[|X(|τ − t|)|2γ−n] dt dτ ≤ 2T

ˆ T

0

E[|X(t)|2γ−n] dt

by a similar calculation as in (i), and we observe this is finite if n − 2γ < γ0. For
such γ we then have µIX ∈ L̇2

−γ(Rn) P-a.s. In the special case that X is an isotropic
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α-stable Lévy process with 0 < α ≤ 2, we have γ0 = α ∧ n, and in the general case
we have β′∧n ≤ γ0 ≤ β, where the indices β′ and β are defined as in [17, Definition
2.1 and Section 5], see [55, Theorem 5]. Indices for Feller processes, including a
generalization of β, have been studied in [59].

Remark 3.8. In [30, Theorem 28] it is shown (in the language of ρ-irregularity and
prevalence) that the property to have quite regular occupation measures or even smooth
or analytic local times, is generic for Hölder continuous, continuous and p-integrable
paths. A main ingredient for this theorem is a precise observation of how local nonde-
terminism properties of Gaussian processes imply their irregularity, [30, Theorem 29].
Large lists of examples in the classes of Gaussian and stable processes, which naturally
include the classical examples mentioned above, may be found in [30, Sections 4.2 and
4.4 respectively 4.3]. Extreme regularization effects are observed in [39, Theorem 4].
The a.s. space-time regularity of local times of Volterra-Lévy processes is investigated in
[38, Theorem 1].

4 Regularity of gradient measures

We introduce further norms and function spaces needed later on. Let U ⊂ Rn be a
domain and ν a Radon measure on U . For m ≥ 1, 1 ≤ p < +∞ and θ ∈ (0, 1) we write

[f ]θ,p;ν =

(ˆ
U

ˆ
U

|f(x)− f(y)|p

|x− y|n+θp
ν(dx)ν(dy)

) 1
p

(4.1)

for the (θ, p)-Gagliardo seminorm of a function f ∈ L1
loc(U, ν;Rm). We denote the frac-

tional Sobolev space of all f ∈ Lp(U, ν;Rm) such that ‖f‖W θ,p(U,ν;Rm) := ‖f‖Lp(U,ν;Rm) +

[f ]θ,p is finite by W θ,p(U, ν;Rm). If ν = Ln, then we drop it from notation and simply
write [f ]θ,p and W θ,p(U ;Rm). We use the notation

[f ]θ,∞ := sup
x,y∈U, x 6=y

|f(x)− f(y)|
|x− y|θ

for the θ-Hölder seminorm. Strictly speaking, U should be part of the notation on the left-
hand side, but its choice will always be clear from the context. For the spaces Cθ(U ;Rm)

of bounded θ-Hölder continuous functions on U we write W θ,∞(U ;Rm) := Cθ(U ;Rm) in
order to keep statements of results short. We emphasize that this is not an established
standard notation. If m = 1 we omit R = Rm from notation.

By BVloc(Rn) we denote the space of functions locally of bounded variation (BVloc-
functions) on Rn, that is, functions ϕ ∈ L1

loc(Rn) whose distributional partial derivatives
Diϕ are signed Radon measures, i = 1, ..., n, [4, 78]. We write Dϕ = (D1ϕ, ...,Dnϕ) for
the Rn-valued gradient measure of a function ϕ ∈ BVloc(Rn), and ‖Dϕ‖ for the total
variation of Dϕ. If ϕ ∈ L1(Rn) and ‖Dϕ‖ (Rn) < +∞, then ϕ is said to be a function of
bounded variation (BV -function), and we denote the space of such functions by BV (Rn).

Remark 4.1. Recall that in general a BV -function does not have to be an element of
a Sobolev space W θ,p. Counterexamples are indicators of sets of finite perimeter in
higher dimensions, [4]. Functions on bounded domains U which are θ′-Hölder for some
θ′ > θ are in W θ,p(U). In general, Hölder continuous functions do not have to be BV .
Counterexamples are Weierstrass functions, [26].

If the total variation of the gradient measure ‖Dϕ‖ of a BV -function ϕ has a bounded
Riesz potential (2.1) or a finite energy (2.2), then this is just an expression of its
additional Hölder or Sobolev regularity. We state the following Proposition 4.2, along
with examples, to briefly point out that — in contrast to the boundedness condition in
(i) — integrability conditions for potentials of gradient measures as in (ii) do not force
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the function to be continuous, unless one enters the regime of Sobolev’s embedding
theorem. Proposition 4.2 will not be used in later sections.

Proposition 4.2. Let ϕ ∈ BVloc(Rn), let ν be an n-upper regular Radon measure on Rn

and s ∈ (0, 1).

(i) If supz∈Rn U
1−s ‖Dϕ‖ (z) < +∞, then ϕ has a Borel version ϕ̃ which is Hölder

continuous of order s on Rn, and

[ϕ̃]s,∞ ≤ c sup
z∈Rn

U1−s ‖Dϕ‖ (z) (4.2)

with a constant c > 0 depending only on n and s.

(ii) If 1 < p < +∞, U1−s ‖Dϕ‖ ∈ Lp(Rn, ν), then for any 0 < β < s we have

[ϕ]pβ,p;ν ≤ c
ˆ
Rn

(U1−s ‖Dϕ‖ (x))pν(dx) (4.3)

with a constant c > 0 depending only on n, s, β, p and ν. If in addition ϕ ∈ Lp(Rn, ν),
then ϕ ∈W β,p(Rn, ν). If under these assumptions we have ν = Ln and n

p < β, then
ϕ has a Borel version ϕ̃ which is Hölder of order β − n

p .

Example 4.3.

(i) Given a point a in space, let δa be the point mass measure assigning measure one to
{a}. For −∞ < a < b < +∞ we clearly have ϕ = 1(a,b) ∈ BV (R) and ‖Dϕ‖ = δa+δb.
Moreover, U1−sδa(x) = k1−s(x − a), which is in Lp(R, e−|x|dx) if sp < 1, similarly
for δa. Estimate (4.3) reproduces the well-known fact that 1(a,b) ∈W β,p(R, e−|x|dx)

if βp < 1.

(ii) The Riesz-kernel kγ itself is in L1(Rn, e−|x|dx). It is singular at the origin, but
away from the origin it is C∞. It satisfies |∂xikγ(x)| ≤ c|x|γ−n−1. Consequently
∂xikγ ∈ L1(Rn, e−|x|dx) if 1 < γ < n, and in particular kγ ∈ BVloc(Rn). It follows
that for n ≥ 2 and n

2 + s < γ < n we have U1−s ‖Dkγ‖ ∈ L2(Rn, e−|x|dx), although
kγ is not continuous on Rn.

We recall some notions needed in the proof of Proposition 4.2. Let ϕ ∈ L1
loc(Rn). If

for x ∈ Rn there is some λϕ(x) ∈ R such that

lim
r→0

1

Ln(B(x, r))

ˆ
B(x,r)

|ϕ(y)− λϕ(x)|dy = 0,

then λϕ(x) is called the approximate limit of ϕ at x. We write Sϕ for the set of points
x ∈ Rn for which this property does not hold. The set Sϕ is Borel and of zero Lebesgue
measure, [4, Proposition 3.64], and it does not depend on the choice of a representative
for ϕ, [4, p. 160]. A point x ∈ Rn \ Sϕ with ϕ(x) = λϕ(x) is called a Lebesgue point
of ϕ ∈ L1

loc(Rn). We call a Borel function ϕ̃ : Rn → R a Lebesgue representative of
ϕ ∈ L1

loc(Rn) if ϕ̃(x) = λϕ(x) for all x ∈ Rn \ Sϕ.

If ν is a Borel measure on Rn and 0 < γ < n, we write

Mγν(x) := sup
r>0

rγ−n ν(B(x, r)), x ∈ Rn, (4.4)

to denote the fractional Hardy-Littlewood maximal function of ν of order γ. It is immedi-
ate that

Mγν(x) ≤ c(γ, n)−1 Uγν(x), x ∈ Rn. (4.5)
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Proof of Proposition 4.2. Throughout the proof let ϕ denote a Lebesgue representative
of the Ln-equivalence class denoted by the same symbol. From [43, Proposition C.1]
(which itself is based on [1, Lemma 4.1] and [4, Remark 3.45]) we know that for any
Lebesgue points x, y ∈ Rn of ϕ we have

|ϕ(x)− ϕ(y)| ≤ c|x− y|s (M1−s ‖Dϕ‖ (x) +M1−s ‖Dϕ‖ (y)) (4.6)

with c > 0 depending only on n and s. Combining this with the hypothesis in statement
(i) and with (4.5), we see that ϕ is Hölder continuous of order s on Rn \ Sϕ. Hence it
extends to a Hölder continuous function on Rn, and estimate (4.2) also follows along
these arguments. To see an elementary proof of (ii), note that combining (4.6) and (4.5),
taking the p-th power, integrating with respect to |x− y|−(n+βp)ν(dx)ν(dy) and using the
symmetry of the integrand, we obtain

ˆ
Rn

ˆ
Rn

|ϕ(x)− ϕ(y)|p

|x− y|n+βp
ν(dx)ν(dy)

≤ c
ˆ
Rn

(ˆ
Rn
|x− y|−n+(s−β)pν(dy)

)(
U1−s ‖Dϕ‖ (x)

)p
ν(dx)

which shows (4.3). The second statement in (ii) is clear from the Sobolev embedding
theorem, see for instance [24].

Remark 4.4. Measures ν different from Ln in (4.1) and Proposition 4.2 were used only
to avoid integrability issues at infinite in the examples. Except for a single example
(Example 5.4 below) we will always choose ν = Ln in what follows.

5 Variability and compositions

In this section we formulate our main statement, Theorem 5.11, on the existence and
regularity of compositions of fractional Sobolev paths X with BV -functions ϕ. It involves
regularity of the path in terms of fractional Sobolev spaces and a relative diffusivity
condition for the occupation measure of the path X and the gradient measure of ϕ,
Definition 5.1. In this section we keep the interval I = [0, T ] fixed.

Recall that we refer to any Borel function X = (X1, . . . , Xn) : [0, T ]→ Rn as a path.
The following notion had been introduced in [43, Definition 2.1].

Definition 5.1. Let ϕ ∈ BV (Rn), p ∈ [1,+∞] and s ∈ (0, 1). We say that a path X :

[0, T ]→ Rn is (s, p)-variable with respect to ϕ if

ˆ
X([0,T ])

k1−s(X· − z) ‖Dϕ‖ (dz) ∈ Lp(0, T ). (5.1)

We write V (ϕ, s, p) for the class of paths X that are (s, p)-variable w.r.t. ϕ and use the
short notation V (ϕ, s) := V (ϕ, s, 1).

Remark 5.2.

(i) If X([0, T ]) is bounded, then one can define (s, p)-variability with respect to ϕ ∈
BVloc(Rn) via (5.1).

(ii) Obviously V (ϕ, s, p′) ⊂ V (ϕ, s, p) for p′ > p and V (ϕ, s′, p) ⊂ V (ϕ, s, p) for s′ > s.

(iii) It is immediate from (3.2) that X is (s, p)-variable w.r.t. ϕ if and only if the (1− s, p)-
energy (2.5) of ‖Dϕ‖ w.r.t. µIX is finite. In the case that local times exist this
happens if and only if the Riesz-potential of order 1− s of ‖Dϕ‖ is in the weighted
Lp-space on Rn with weight LIX .
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Example 5.3. If n = 1 and ϕ = 1(a,b) is as in Examples 4.3 (i), then X is (s, 1)-variable
w.r.t. ϕ if

´
R

(k1−s(y − a) + k1−s(y − b))µIX(dy) < +∞, that is, if U1−sµIX is finite at a and
b. This would imply that the upper s-density of µIX at a is zero, lim supε→0 ε

−sµIX((a −
ε, a + ε)) = 0, and similarly at b. See [4, Definition 2.55] or [50, Definition 6.8] for the
notion of upper density. Conversely, if for some s′ > s the upper s′-density of µIX at a is
finite, lim supε→0 ε

−s′µIX((a − ε, a + ε)) < +∞, and similarly at b, then U1−sµ
I
X is finite

at a and b. The path X may hit a and b, but it cannot spend any positive time at these
points, and it has to approach and leave them quickly enough.

Example 5.4. Suppose that w is a strictly positive Borel function on Rn and that X
has local times LIX ∈ Lr(Rn, wr(x)dx) for some 1 < r < +∞. Then X is (s, p)-variable
w.r.t. any ϕ ∈ BV (Rn) such that U1−s ‖Dϕ‖ ∈ Lpq(Rn, w−q(x)dx) with 1

q + 1
r = 1, as

follows from Hölder’s inequality. A similar statement also works for r = +∞ or r = 1.
If n

r < 1 − s, then U1−sµIX is uniformly bounded, as follows from Proposition 3.4 and
[43, Proposition 4.13]. In this case, the path X is (s, 1)-variable with respect to any
ϕ ∈ BV (Rn), as already observed in [43, Proposition 4.12 and Corollary 4.13].

Example 5.5. Suppose that 1 < q < +∞, 1
q + 1

r = 1 and γ1, γ2 > 0 with γ1 + γ2 = 1− s.
If ϕ ∈ BV (Rn) is such that ‖Dϕ‖ ∈ L̇q−γ1(Rn) and X is such that µIX ∈ L̇r−γ2(Rn), then
by Proposition 2.4 and Hölder’s inequality we haveˆ

Rn
U1−s ‖Dϕ‖ dµIX =

ˆ
Rn
Uγ1 ‖Dϕ‖Uγ2µIX dx ≤ ‖‖Dϕ‖‖L̇q−γ1 (Rn)

∥∥µIX∥∥L̇r−γ2 (Rn)
,

which shows that X is (s, 1)-variable with respect to ϕ. By Proposition 2.4 the (s, 2)-
variability of X w.r.t. ϕ requiresˆ

Rn

ˆ
Rn

ˆ
Rn
kγ1(y − z1)kγ1(y − z2)µIX(dy) Uγ1 ‖Dϕ‖ (z1)Uγ1 ‖Dϕ‖ (z1)dz1dz2 < +∞.

If (z1, z2) 7→
´
Rn
kγ1(y − z1)kγ1(y − z2)µIX(dy) is in Lr(R2n) and ‖Dϕ‖ ∈ L̇q−γ1(Rn), then

this is implied by Hölder’s inequality. In contrast to the local time case, the simple
application of Hölder’s inequality in the present example seem too coarse to be useful.

In cases where X is (a typical realization of) a stochastic process with suitable proba-
bility densities, these densities can be used to obtain convenient sufficient conditions for
variability in the a.s. sense.

Example 5.6. Suppose that X = BH is the n-dimensional fractional Brownian motion
BH with Hurst index 0 < H < 1. As observed in Examples 3.7 (i) its occupation measure
is upper d-regular P-a.s. if 0 < d ≤ n is such that H < 1

d . Similarly as in Examples 5.4
this implies that BH is (s, 1)-variable w.r.t. any ϕ ∈ BV (Rn) if n − 1 + s < 1

H , see [43,
Example 4.22] for details. In [43, Example 4.25] we had used that if n ≥ 2 and H > 1

n ,
then the Gaussian density satisfies

ˆ T

0

t−nH exp

(
− |y|

2

2t2H

)
dt ≤ c |y| 1H−n

with c > 0 depending only on n and H, so that for any s ∈ (0, 1) such that 1
H < n− 1 + s

we obtain

E

ˆ T

0

U1−s ‖Dϕ‖ (Xt)dt ≤ c
ˆ
Rn

ˆ
Rn
|x− y|−n+1−s|y| 1H−ndy ‖Dϕ‖ (dx)

≤ c
ˆ
Rn
|x|−n+1−s+ 1

H ‖Dϕ‖ (dx), (5.2)

where c > 0 is a constant depending only on n, H and s. If ϕ ∈ BV (Rn) makes the last
line in (5.2) finite, then P-a.s. X is (s, 1)-variable w.r.t. ϕ. This is a (negative) moment
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condition for the gradient measure, and similarly as in Example 5.3 it can be rephrased
in terms of upper density of ‖Dϕ‖ at the origin. It is a local condition and generally
easier to ensure than the global integrability or boundedness of a potential of ‖Dϕ‖. For
instance, if A ⊂ Rn is a set of finite perimeter, [4, Definition 3.35], and Ln(A) < +∞,
then ϕ = 1A is in BV (Rn) and Sϕ is its essential boundary, [4, Example 3.68]. If Sϕ has
positive distance from the origin, then (5.2) is finite for this ϕ. To discuss (s, 2)-variability
one can use a variant of (5.2): Proceeding similarly as there and using Proposition 2.4,
we see that

E

ˆ T

0

(U1−s ‖Dϕ‖ (Xt))
2dt ≤ c

ˆ
Rn

(U1−s ‖Dϕ‖ (y))2|y| 1H−ndy

= c

ˆ
Rn

ˆ
Rn

(ˆ
Rn
k1−s(z1 − y)k1−s(z2 − y)|y| 1H−ndy

)
‖Dϕ‖ (dz1) ‖Dϕ‖ (dz2). (5.3)

If ϕ ∈ BV (Rn) makes (5.3) finite, then P-a.s. X is (s, 2)-variable w.r.t. ϕ. The finiteness
of the right hand side of (5.3) is both a moment and a smoothness condition for ‖Dϕ‖.
Since w(x) = |x|1/H−n is a weight of class A2, (2.7) shows that the right hand side of

(5.3) is finite if and only if W ‖Dϕ‖1−s,2,w is in L1(Rn, ‖Dϕ‖), where

W
‖Dϕ‖
1−s,2,w(x) =

ˆ 1

0

r2(1−s) ‖Dϕ‖ (B(x, r))

w(B(x, r))

dr

r
, x ∈ Rn.

Here we have w(B(x, r)) =
´
B(0,r)

|z + x|1/H−ndz, so that on the one hand w(B(0, r)) =

c r1/H , and on the other hand w(B(x, r)) is comparable to |x|1/H−nrn on {|x| ≥ 2}. If,

for instance, ϕ is constant on B(0, 3), then W ‖Dϕ‖1−s,2,w(x) = 0 for |x| < 2, and on {|x| ≥ 2}
the quantity W ‖Dϕ‖1−s,2,w(x) is dominated by a multiple of |x|1/H−nW ‖Dϕ‖1−s,2 (x). This could be
in L1(Rn, ‖Dϕ‖) even if ϕ has singularities (of a similar type as in Example 4.3 (ii)) on
{|x| ≥ 2}.
Example 5.7. For Lévy processes (and even for some more general Markov processes)
with values in Rn calculations similar to those in Example 5.6 can be based on known
scaling properties or upper heat kernel estimates. To give a concrete example, suppose
that X is the isotropic α-stable Lévy process, where 0 < α < 2. In view of Examples 3.6
(ii) and 5.4 we may assume n ≥ 2. Writing p(t, y) for the density of Xt, we have

ˆ T

0

p(t, y)dt ≤ c |y|α−n

with a constant c > 0 depending only on n and α, and for s ∈ (0, 1) such that α < n−1 + s

also

E

ˆ T

0

U1−s ‖Dϕ‖ (Xt)dt ≤ c
ˆ
Rn
|x|−n+1−s+α ‖Dϕ‖ (dx)

with c > 0 depending only on n, α and s. If ϕ makes the right hand side finite, then X is
P-a.s. (s, 1)-variable w.r.t. ϕ. In a similar manner as before we see that X ∈ V (s, p, ϕ) is
P-a.s. if ϕ satisfies ˆ

Rn
(U1−s ‖Dϕ‖ (y))p|y|α−ndy < +∞. (5.4)

A first consequence of variability is the following, cf. [43, Lemma 2.4]. It is imme-
diate from [43, Corollary 4.4 and its proof]. Recall that we denote the approximate
discontinuity set of ϕ by Sϕ.

Proposition 5.8. Let ϕ ∈ BV (Rn), p ∈ [1,+∞], s ∈ (0, 1) and suppose that X ∈
V (ϕ, s, p). Then the set {t ∈ [0, T ] : Xt ∈ Sϕ} is of zero L1-measure, and for any two
Lebesgue representatives ϕ̃1 and ϕ̃2 of ϕ we have ϕ̃1(Xt) = ϕ̃2(Xt) for L1-a.e. t ∈ (0, T ).
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Proposition 5.8 ensures that the following definition is correct.

Definition 5.9. Let the hypotheses of Proposition 5.8 be in force. We define the compo-
sition ϕ ◦X of ϕ and X to be the L1-equivalence class on (0, T ) of

t 7→ ϕ̃(Xt),

where ϕ̃ is an arbitrary Lebesgue representative of ϕ.

Remark 5.10. The (s, p)-variability of a path X w.r.t. ϕ ∈ BV (Rn) does generally not
imply any variability of X + x w.r.t. ϕ if x ∈ Rn \ {0}. If for all x ∈ Rn the path X + x

is (s, 1)-variable w.r.t. ϕ and each ϕ ◦ (X + x) is in L1(0, T ), then with an adequate
interpretation of the integral one can view

t 7→
ˆ t

0

ϕ(Xs + ·) ds (5.5)

as an absolutely continuous BV (Rn)-valued function on [0, T ]; this involves a standard
redefinition procedure. If, on the other hand, (5.5) is an absolutely continuous BV (Rn)-
valued function, then its derivative in the L1-a.e. sense is t 7→ ϕ ◦ (Xt + ·). Although it
does not fit it rigorously, this perspective is very much related to [30, Lemma 20 iv.].

If the path X itself defines an element of some Sobolev space and it is also variable
w.r.t. ϕ, then we can exploit both these facts together to see that also ϕ ◦ X is an
element of a certain Sobolev space. This is formulated in the next theorem, which is
our main result. It generalizes [43, Theorem 2.13 (i)] in the sense that X does not
have to be Hölder continuous. In the following we consider Sobolev and Hölder spaces
over U = (0, T ) ⊂ R and use (4.1) with measure ν = L1|(0,T ). Recall that we write
W θ,∞(0, T ;Rn) := Cθ(0, T ;Rn).

Theorem 5.11. Let ϕ ∈ BV (Rn), X is a path, s, θ ∈ (0, 1), 1 ≤ p < +∞ and 1 ≤ q ≤ +∞.
Suppose that

X ∈W θ,q(0, T ;Rn) ∩ V (ϕ, s, p).

(i) If r ≥ 1 is such that 1
p + s

q ≤
1
r and β < sθ, then ϕ ◦X ∈W β,r(0, T ) and in particular,

[ϕ ◦X]β,r ≤ c [X]sθ,q ‖U1−s ‖Dϕ‖ (X·)‖Lp(0,T )

with a constant c > 0 depending only on n, s, p, q, r, θ, β and T .

(ii) If 1
p + s

q < sθ, then for any θ′ ≤ θ − 1
q we have X ∈ W θ′,∞(0, T ;Rn), and for any

β < sθ − 1
p −

s
q we have ϕ ◦X ∈W β,∞(0, T ).

Remark 5.12.

(i) For our purposes Theorem 5.11 (i) is of interest, more precisely, the case that q is
small enough to have sθ ≤ 1

p + s
q . For larger q statement (ii) tells that we implicitly

assumed that X is Hölder continuous, and this case had been discussed in [43,
Theorem 2.13 (i)]. In the limit case q = +∞ we recover [43, first part of Theorem
2.15].

(ii) If p = 1, then r ≥ 1 together with 1
p + s

q ≤
1
r forces q = +∞ and r = 1. In order to

show the Sobolev regularity of a composition ϕ ◦X involving a discontinuous path
X Theorem 5.11 therefore requires X to be (s, p)-variable w.r.t. ϕ with some p > 1.

Example 5.13. Suppose that I = [0, T ] and X : I → R is Lipschitz with |X ′| bounded
away from zero L1-a.e. and X ′ changes sign only finitely many times on [0, T ]. Let
ϕ = 1(a,b), where 0 < a < b < T . By Examples 3.5, 5.3 and 5.4 the function X is
(s, p)-variable w.r.t ϕ if sp < 1. Since we can choose q = +∞ and θ arbitrarily close to 1,
Theorem 5.11 can be used to conclude that ϕ ◦X ∈W β,r(0, T ) for any β and r such that
βr < 1, as expected.
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Example 5.14. Suppose that X = BH is an n-dimensional fractional Brownian motion
with Hurst index 0 < H < 1 and let 0 < θ < H. If n = 1, then we can find an event of
probability one on which any realization of X is θ-Hölder continuous and has bounded
local times. If I and ϕ are as in the preceding example, then we can apply Theorem 5.11
with q = +∞ and θ arbitrarily close to H. It follows that for any β and r with βr < H

the composition ϕ ◦X is in W β,r(0, T ) P-a.s. Now suppose that n ≥ 2, H > 1
n , s ∈ (0, 1)

and that ϕ ∈ BV (Rn) is a function that makes (5.2) finite. Then we can find an event of
full probability on which X is both θ-Hölder continuous and (s, 1)-variable w.r.t. ϕ, and
Theorem 5.11, applied with p = 1, q = +∞ and s as in (5.2), shows that for any β < sH

we have ϕ ◦X ∈W β,1(0, T ) P-a.s. If ϕ makes (5.3) finite, then we can apply the theorem
with p = 2 to find that for any β < sH we have ϕ ◦X ∈W β,2(0, T ) P-a.s.

Example 5.15. Suppose that I = [0, T ] and that X : I → R is a symmetric α-stable
Lévy process with 1 < α < 2. If 1 ≤ q < α and θ < 1

α , then by [23, Théorème VI.1] the
continuation by zero of X is an element of the Besov space Bθq,∞(R) P-a.s. By [68, 2.3.2,
Proposition 2 (7)] it follows that P-a.s. the continuation by zero of X is an element of
the Besov space Bθq,q(R), which coincides with W θ,q(R), see [69, Section 2.6.1] or [62,
Section V.5] and [68, Section 2.3.5]. Since X has P-a.s. locally bounded local times, it
follows that for ϕ = 1(a,b) and any β < 1

α+1 we have ϕ ◦ X ∈ W β,1(0, T ) P-a.s. To see

this, note that if p > α+1
α , then we can find some q < α such that 1

p + 1
pq < 1, and given

any s < α
α+1 we can find p satisfying the preceding and sp < 1. The same conclusion

could be reached using [58, Theorem 1.1]. A straightforward generalization to other
Lévy processes can be provided using [42, Theorems 3.2 and 3.3]. Now suppose that
0 < α < 2, α∨ 1

2 < q and 0∨ ( 1
q −1) < θ < 1

q . Then X ∈ Bθq,∞(0, T ) P-a.s. by [58, Theorem

1.1], and similarly as before this implies X ∈ W θ,q(0, T ) P-a.s. for θ in the specified
range. If in addition q > 1 and ϕ ∈ BV (R) is such that (5.4) holds with some p > q+1

q ,

then for any β < s
q we have ϕ ◦X ∈ W β,1(0, T ). We point out that the results on path

regularity in [58] and [60] apply to general Feller processes.

To prove Theorem 5.11 we begin with the following well-known and elementary
lemma.

Lemma 5.16. Let 1 ≤ q < +∞ and θ ∈ (0, 1). Then for any p ≤ q, 0 < β < θ and L1-a.e.
t ∈ [0, T ] we have [ˆ T

0

|Xt −Xτ |p

|t− τ |1+βp
dτ

] 1
p

≤ c

[ˆ T

0

|Xt −Xτ |q

|t− τ |1+θq
dτ

] 1
q

with a constant c > 0 depending only on p, q, T, β and θ. In particular, if [X]θ,q <∞, then

t 7→
ˆ T

0

|Xt −Xτ |p

|t− τ |1+βp
dτ ∈ L

q
p (0, T ).

We recall the simple arguments for the reader’s convenience.

Proof. Let p < q and set γ := 1 + (β − θ)p− p
q . Since β < θ and p < q, we have γ < q−p

q .
Now Hölder inequality implies

ˆ T

0

|Xt −Xτ |p

|t− τ |1+βp
dτ =

ˆ T

0

|t− τ |−γ |Xt −Xτ |p

|t− τ |1+βp−γ dτ

≤

(ˆ T

0

|t− τ |−γ
q
q−p dτ

) q−p
q
(ˆ T

0

|Xt −Xτ |p
q
p

|t− τ |(1+βp−γ) qp
dτ

) p
q

≤ C

(ˆ T

0

|Xt −Xτ |q

|t− τ |1+θq
dτ

) p
q

.
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This verifies the claim for p < q, while the case p = q follows directly from the observation
|t− τ |−1−βp ≤ T (θ−β)p|t− τ |−1−θp, valid for all t 6= τ .

We also recall an immediate consequence of (4.5) and (4.6). As before, the approxi-
mate discontinuity set of ϕ is denoted by Sϕ.

Proposition 5.17. Let ϕ ∈ BV (Rn) and suppose that X ∈ V (ϕ, s, 1) is a path. Then for
any t, τ ∈ [0, T ] such that Xt, Xτ /∈ Sϕ we have

|ϕ(Xt)− ϕ(Xτ )| ≤ c|Xt −Xτ |s[U1−s ‖Dϕ‖ (Xt) + U1−s ‖Dϕ‖ (Xτ )].

with a constant c > 0 depending only on n, s and p.

The following result is the multiplicative key estimate for Theorem 5.11. It is an
analog of [43, Proposition 4.28]. Instead of a Hölder seminorm of the path X used there,
it involves a Gagliardo seminorm of X, which can also be finite in the discontinuous case.

Proposition 5.18. Let ϕ ∈ BV (Rn), s, θ ∈ (0, 1), 1 ≤ p < +∞ and 1 ≤ q ≤ +∞. Suppose
that X is a path with X ∈ W θ,q(0, T ;Rn) ∩ V (ϕ, s, p). Then for any r ≥ 1 such that
1
p + s

q ≤
1
r and any β < sθ we have

[ϕ ◦X]β,r ≤ c [X]sθ,q ‖U1−s ‖Dϕ‖ (X·)‖Lp(0,T ). (5.6)

with c > 0 depending only on n, T, s, p, q, r, β and θ.

Proof. Since the case q = ∞ is already covered in [43] it suffices to consider q <

∞. Using Proposition 5.17, the symmetry of the integrand, Lemma 5.16 and Hölder
inequality we obtain

[ϕ ◦X]rβ,r =

ˆ T

0

ˆ T

0

|ϕ(Xt)− ϕ(Xτ )|r

(t− τ)1+βr
dτdt

≤ c
ˆ T

0

[U1−s ‖Dϕ‖ (Xt)]
r

ˆ T

0

|Xt −Xτ |sr

|t− τ |1+βr
dτdt

≤ c
ˆ T

0

[U1−s ‖Dϕ‖ (Xt)]
r

(ˆ T

0

|Xt −Xτ |q

|t− τ |1+θq
dτ

) sr
q

dt

≤ c

(ˆ T

0

[U1−s ‖Dϕ‖ (Xt)]
qr
q−sr dt

) q−sr
q
(ˆ T

0

ˆ T

0

|Xt −Xτ |q

|t− τ |1+θq
dτdt

) sr
q

= c ‖U1−s ‖Dϕ‖ (X·)‖r
L

qr
q−sr (0,T )

[X]srθ,q.

From 1
p + s

q ≤
1
r it follows that qr

q−sr ≤ p, and hence

‖U1−s ‖Dϕ‖ (X·)‖
L

qr
q−sr (0,T )

≤ c‖U1−s ‖Dϕ‖ (X·)‖Lp(0,T ).

To conclude the membership of ϕ ◦ X in W β,r(0, T ) it now remains to verify its
r-integrability.

Proposition 5.19. Let ϕ ∈ BV (Rn), s ∈ (0, 1), 1 ≤ p < +∞ and 1 ≤ q ≤ +∞. Suppose
that X is a path such that

X ∈ Lq(0, T ;Rn) ∩ V (ϕ, s, p).

Then for any r ≥ 1 such that 1
p + s

q ≤
1
r we have ϕ ◦X ∈ Lr(0, T ).

The argument is as in [43, Lemma 4.30].
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Proof. Again it suffices to consider the case q <∞ as q =∞ is already covered by [43,
Lemma 4.30]. By [43, Corollary 4.4] we can choose t0 ∈ [0, T ] such that Xt0 ∈ Rn \ Sϕ
and

M(t0) := max
{
|ϕ(Xt0)|, U1−s ‖Dϕ‖ (Xt0)

}
<∞.

Clearly |ϕ(Xt)|r ≤ 2r−1 [|ϕ(Xt)− ϕ(Xt0)|r + |ϕ(Xt0)|r] for L1-a.e. t ∈ [0, T ], and for t such
that Xt /∈ Sϕ Proposition 5.17 implies that

|ϕ(Xt)− ϕ(Xt0)|r ≤ c|Xt −Xt0 |sr[U1−s ‖Dϕ‖ (Xt)
r + U1−s ‖Dϕ‖ (Xt0)r]

≤ c(|Xt|sr +M(t0)sr)[U1−s ‖Dϕ‖ (Xt)
r +M(t0)r].

Since r ≤ p and rs ≤ q we therefore obtain
´ T

0
|ϕ(Xt)|rdt < +∞, provided that

ˆ T

0

|Xt|srU1−s ‖Dϕ‖ (Xt)
rdt <∞.

But the finiteness of this integral can be seen using Hölder’s inequality,

ˆ T

0

|Xt|srU1−s ‖Dϕ‖ (Xt)
rdt ≤

(ˆ T

0

U1−s ‖Dϕ‖ (Xt)
qr
q−sr dt

) q−sr
q
(ˆ T

0

|Xt|qdt

) sr
q

≤ c‖U1−s ‖Dϕ‖ (X·)‖rp‖X‖srq .

Note that the last inequality holds since qr
q−sr ≤ p. The result now follows.

We prove Theorem 5.11.

Proof of Theorem 5.11. Item (i) follows from Proposition 5.18 and Proposition 5.19.
Item (ii) then follows directly from the Sobolev embedding theorem, [24, Theorem
8.2]: Choosing r such that 1

r = 1
p + s

q and β < sθ such that rβ > 1 we obtain ϕ ◦ X ∈
W β− 1

p−
s
q ,∞(0, T ). The Hölder continuity of X follows similarly, note that θq > 1 + q

ps > 1

by the hypotheses in (ii).

6 Existence of generalized Stieltjes integrals

As an application we illustrate how Theorem 5.11 can be used to guarantee the
existence of generalized Stieltjes integrals in the sense of [76, 77].

Let T > 0, let f, g : [0, T ]→ R be Borel functions such that f is right-continuous at 0

and g left-continuous at T . Set

f0(t) = f(t)− f(0) and gT (t) = g(t)− g(T ), t ∈ [0, T ].

Let α ∈ (0, 1) and suppose that the left-sided Weyl–Marchaud derivative

Dα
0+f0(t) =

1

Γ(1− α)

(
f(t)− f(0)

tα
+ α

ˆ t

0

f(t)− f(u)

(t− u)α+1
du

)
, t ∈ (0, T ] (6.1)

of f0 of order α exists as a member of Lp(0, T ) and the right-sided Weyl–Marchaud
derivative

D1−α
T− gT (t) =

(−1)1−α

Γ(α)

(
g(t)− g(T )

(T − t)1−α + (1− α)

ˆ T

t

g(t)− g(u)

(u− t)2−α du

)
t ∈ [0, T )
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of gT of order 1−α exists as a member of Lq(0, T ), where 1
p + 1

q ≤ 1. Then the generalized
Stieltjes integral in the sense of [76], defined as

ˆ T

0

f(u)dg(u) := (−1)α
ˆ T

0

Dα
0+f0(t)D1−α

T− gT (t)dt+ f(0)(g(T )− g(0)), (6.2)

exists, and its value does not depend on the choice of α, see [76, Section 2].

Remark 6.1. If αp < 1 then the right-continuity of f at 0 can be dropped and the right
hand side in (6.2) can be replaced by (−1)α

´ T
0
Dα

0+f(t)D1−α
T− gT (t)dt. See [77].

The following is a variant of the well-known existence result for (6.2), phrased in
terms of the Sobolev spaces W γ,p(0, T ). The membership of the Borel function f0 in a
Sobolev space W γ,p(0, T ) refers to the class it defines, and similarly for gT .

Theorem 6.2. Let γ, δ ∈ (0, 1) be such that γ + δ > 1 and 1 ≤ p, q ≤ +∞ such that

1

p
+

1

q
< γ + δ. (6.3)

Suppose that f, g : [0, T ]→ R are Borel functions right- resp. left-continuous at 0 and T

and satisfying f ∈W γ,p(0, T ) and g ∈W δ,q(0, T ). Then the integral
´ T

0
f(u)dg(u), defined

as in (6.2), exists. Moreover, there is a constant c > 0 depending on p, q, γ, δ and T such
that ∣∣∣∣∣

ˆ T

0

f(u)dg(u)− f(0) (g(T )− g(0))

∣∣∣∣∣ ≤ c‖f0‖Wγ,p(0,T )‖gT ‖W δ,q(0,T ). (6.4)

Remark 6.3.

(i) By (6.3) γp ≤ 1 and δq ≤ 1 can never occur simultaneously. This forces that at least
one of the functions f or g has to be continuous, actually Hölder continuous, but
only of a very small order. A similar observation was made in [28, Theorem 4.1
and Remark 4.1], where conditions force either f or g to be Hölder continuous of
small order. If both γp > 1 and δq > 1, then both f and g are continuous and by [29,
Theorem 2] have finite 1

γ - respectively 1
δ -variation. In this case the integral above

exists as a Young integral and (6.4) implies the classical Young-Loeve estimate.

(ii) If γp < 1 then the right-continuity of f at 0 is not needed, the boundary terms on
the left hand side of (6.4) can be dropped, and f0 on the right hand side can be
replaced by f .

Combined with Theorem 5.11 we obtain the following result on the existence of
integrals for the compositions ϕ◦X, where ϕ ∈ BV (Rn), X is a path, and the composition
is understood as in Definition 5.9.

Corollary 6.4. Let ϕ ∈ BV (Rn), s, θ ∈ (0, 1), 1 ≤ p < +∞ and 1 ≤ q ≤ +∞. Suppose
that X ∈W θ,q(0, T ;Rn) ∩ V (ϕ, s, p), that X is right-continuous at 0 and ϕ is continuous
at X0. If g ∈W δ,v(0, T ) for some v ≥ 1 and δ ∈ (0, 1) such that

sθ + δ > 1 and
1

v
+

1

p
+
s

q
< sθ + δ, (6.5)

then the integral
´ T

0
ϕ(Xu)dg(u) in the sense of (6.2) exists. Moreover, it obeys the

estimate∣∣∣∣∣
ˆ T

0

ϕ(Xu)dg(u)− ϕ(X0) (g(T )− g(0))

∣∣∣∣∣
≤ c

(∥∥U1−s ‖Dϕ‖ (X·)
∥∥
Lp(0,T )

[X]sθ,q + ‖ϕ(X·)− ϕ(X0)‖Lp(0,T )

)
‖gT ‖W δ,q(0,T ). (6.6)
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Remark 6.5.

(i) Suppose that 0 = t0 < t1 < ... < tN = T is a partition of [0, T ] and that g and ϕ(X·)

are continuous at all tk. Then the above estimate, applied to the intervals [tk−1, tk]

in place of [0, T ], yields

N∑
k=1

∣∣∣∣∣
ˆ tk

tk−1

ϕ(Xu)dg(u)− ϕ(Xtk−1
) (g(tk)− g(tk−1))

∣∣∣∣∣
≤ c

N∑
k=1

(∥∥U1−s ‖Dϕ‖ (X·)
∥∥
Lp(tk−1,tk)

[X]sθ,q +
∥∥ϕ(X·)− ϕ(Xtk−1

)
∥∥
Lp(tk−1,tk)

)
×

× ‖gtk‖W δ,q(tk−1,tk).

It follows that
´ T

0
ϕ(Xu)dg(u) exists as a limit of forward Riemann-Stieltjes sums

along refining partitions for which g and ϕ(X·) are continuous at all partition points
tk.

(ii) Although (i) ensures the existence of the integral as a limit of Riemann-Stieltjes
sums in along suitable partitions, this does not work for sequences of arbitrary
partitions: Already for the one-dimensional case n = 1 and the Heaviside function
ϕ(x) = 1{x>a} it is known that ϕ(X) is of infinite p-variation for all p ≥ 1 if (and only
if) X crosses the level a infinitely often, [21, Proposition 5.0.3]. In this case the
integral does not exists as a Young integral, and one can find sequences of partitions
along which the corresponding Riemann sums do not converge. This is in line
with [28, Remark 4.1], where it was observed that integrals of Heaviside functions
do not exists as limits of arbitrary Riemann sums. Because these integrands are
discontinuous, this does not contradict well-known embeddings for the case of
continuous Sobolev functions, [29, Theorem 2]. Also the compositions we consider
above will in general not be continuous and not be of bounded p-variation for any p.

Remark 6.6. If s(θ− 1
q ) ≤ 1

p , then the continuity assumptions on X and ϕ in Corollary 6.4
can be dropped and (6.6) can be simplified.

In the following examples we silently assume that X and ϕ satisfy the continuity
assumptions of Corollary 6.4 or, alternatively, that the condition in Remark 6.6 holds.

Example 6.7. Let g ∈W δ,∞(0, T ) with some δ > 1− sθ. Then the integral
´ T

0
ϕ(Xu)dg(u)

exists, provided that X ∈W θ,q(0, T ;Rn) ∩ V (ϕ, s, p), where 1
p + s

q < sθ + δ. Corollary 6.4
generalizes [43, Theorem 2.13 (ii)] in which the case p = 1, q =∞ was covered.

Example 6.8. Let X ∈ W θ,∞(0, T ;Rn) ∩ V (ϕ, s, 2). Then ϕ ◦ X ∈ W β,2(0, T ) for any

β < sθ and consequently the integral
´ T

0
ϕ(Xu)dg(u) exists, provided that g ∈W δ,v(0, T )

with δ > 1− sθ and 1
v < sθ + δ. If δ is as in the first condition, then the second always

holds for v = 2.

Example 6.9. Suppose X ∈ W θ,q(0, T ;Rn) ∩ V (ϕ, s, p). By Theorem 5.11 we have
ϕ ◦ X ∈ W β,r(0, T ) for any β < sθ and 1

p + s
q ≤

1
r . In particular, if q = ∞, p = 2, and

sθ > 1
2 , then ϕ ◦X ∈W β,2(0, T ) for some β > 1

2 , and hence Theorem 6.2 guarantees the

existence of the integral
´ T

0
ϕ(Xu)dϕ(Xu). Note that now, by Theorem 5.11, we have

ϕ ◦ X ∈ W β,∞(0, T ) for any β < sθ − 1
2 . This means that ϕ ◦ X is forced to be Hölder

continuous, but only of a very small order.

Remark 6.10. Let F be an element of the Sobolev space W 1,1(Rn) and such that
∂kF ∈ BV (Rn) for k = 1, . . . , n. One can then follow the proof of [43, Theorem 2.14.] to
obtain

F (XT ) = F (X0) +

n∑
k=1

ˆ T

0

∂kF (Xu)dXk
u ,
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provided that for k = 1, . . . , n we have X ∈W θ,q(0, T ;Rn)∩ V (∂kF, s, p) for some θ > 1
1+s

and 1
p + 1+s

q ≤ 1. This generalizes the change of variable formula [43, Theorem 2.14.]
(which covers the case p = 1, q =∞) and can be used to construct solutions to differential
systems involving BV -coefficients as in [43, Section 3].

To prove Theorem 6.2 we use the following embedding of Hardy type.

Proposition 6.11. Suppose f : [0, T ] → R is a Borel function satisfying f ∈ W β,p(0, T )

for some β ∈ (0, 1) and p ≥ 1 such that βp 6= 1. Then there exists a constant c > 0

depending solely on β, p, and T , such that

ˆ T

0

|f(t)− f(0)|p

tβp
dt ≤ c

[ˆ T

0

ˆ T

0

|f(t)− f(u)|p

|t− u|1+βp
dudt+

ˆ T

0

|f(t)− f(0)|pdt

]
. (6.7)

Proof. In the case βp < 1 inequality (6.7) follows from [43, Lemma 4.33] and smooth
approximation by mollification. In the case βp > 1 inequality (6.7) follows using [45,
Theorem 5.9].

We prove Theorem 6.2.

Proof. Assume first that
1

p
+

1

q
≤ 1. (6.8)

Let α ∈ (1− θ, γ). By (6.2) we have∣∣∣∣∣
ˆ T

0

f(u)dg(u)− f(0)(g(T )− g(0))

∣∣∣∣∣ =

∣∣∣∣∣
ˆ T

0

Dα
0+f0(t)D1−α

T− gT (t)dt

∣∣∣∣∣ ,
and by Hölder’s inequality it suffices to show that

ˆ T

0

∣∣Dα
0+f0(t)

∣∣p dt ≤ C‖f0‖pWγ,p(0,T ) and

ˆ T

0

∣∣D1−α
T− gT (t)

∣∣q dt ≤ C‖gT ‖qW θ,q(0,T )
. (6.9)

By Lemma 5.16 we have

ˆ T

0

∣∣Dα
0+f0

∣∣p dt ≤ 2p−1

[ˆ T

0

|f(t)− f(0)|p

tαp
dt+

ˆ T

0

(ˆ T

0

|f(t)− f(τ)|
|t− τ |1+α

dτ

)p
dt

]

≤ c

[ˆ T

0

|f(t)− f(0)|p

tαp
dt+

ˆ T

0

ˆ T

0

|f(t)− f(τ)|p

|t− τ |1+γp
dτdt

]
.

If γp 6= 1, then by Proposition 6.11 we have

ˆ T

0

|f(t)− f(0)|p

tαp
dt ≤ T (γ−α)p

ˆ T

0

|f(t)− f(0)|p

tγp
dt ≤ c ‖f0‖pWγ,p(0,T ).

If γp = 1, then αp < 1 and we have ‖f0‖Wα,p(0,T ) ≤ c‖f0‖Wγ,p(0,T ), [24, Proposition 2.1],
and using Proposition 6.11 with α in place of β, we obtain

ˆ T

0

|f(t)− f(0)|p

tαp
dt ≤ c‖f0‖Wα,p(0,T ) ≤ c‖f0‖Wγ,p(0,T ).

This shows the first inequality in (6.9), the second follows by similar arguments.
Now suppose that

1 <
1

p
+

1

q
< γ + δ. (6.10)
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By the elementary continuous embedding of W γ,∞(0, T ) into W γ′,r(0, T ), valid for any
0 < γ′ < γ < 1 and 1 ≤ r < +∞, we can make γ and δ slightly smaller if necessary and
assume that both p and q are finite. Using the fact that any element of W γ,p(0, T ) can be
continued to an element of W γ,p(R), together with well-known norm equivalences, [69,
Section 2.6.1], and embeddings, [68, 2.7.1 Theorem], we may also assume that p > 1 and
q > 1, again to the cost of making γ or δ a bit smaller if necessary. Now let q′ be such
that 1

q + 1
q′ = 1. Then by the left inequality in (6.10) we have p < q′, and by the results

just cited the embedding of W γ,p(0, T ) into W γ′,q′(0, T ) with γ′ = γ− 1
p + 1

q′ is continuous.
So if f0 ∈W γ,p(0, T ), the result follows from the first part of the proof with γ′ and q′ in
place of γ and p, note that by the right inequality in (6.10) we have γ′ + δ > 1.

7 Berman’s inequality revisited

In Proposition 5.18 and in [43, Proposition 4.28] we used both the regularity of X
and the regularity of µIX . In this auxiliary section, which is independent of the preceding
sections, we briefly revisit a result due Berman [10] that provides a quantitative limitation
for the possible simultaneous regularity of a path X and its occupation measure. In
particular for low space dimensions this limitation is not too severe. Natural and far
reaching dimension-free results are provided in [30, Theorem 31 and Section 5.2].

For a function X : I → R with square integrable local times on a bounded interval
I ⊂ R Berman proved in [10, Lemma 3.1] a lower estimate for the diameter of the range
X(I) in terms of the L̇2

α(Rn)-norm of its local time with some α ≥ 0. He then used this
estimate to show that if, very roughly speaking, this norm decays fast enough as the
interval I is made smaller and smaller and the function X itself is Hölder continuous on
I of order γ ∈ (0, 1), then we must have

γ <
1

2α+ 1
. (7.1)

For α > 0, and in particular for the case α ≥ 1 of weakly differentiable local times, (7.1)
restricts the possible range of γ. However, for α = 0 condition (7.1) is no restriction on
γ ∈ (0, 1). The same is true for the case that the occupation measures have no densities,
but themselves are elements of a Sobolev space L̇2

α(Rn) of suitable negative order α < 0.
This case had not been considered in [10, Lemma 3.1], although the mechanism allows
it and the result is very natural. Before stating Berman’s inequality for occupation
measures in Corollary 7.4 below, we provide a corresponding inequality for general finite
Borel measures.

Theorem 7.1. Let

1 < p ≤ +∞ and − n

p
< α < n− n

p
. (7.2)

Then there is a constant c > 0, depending only on n, p and α, such that for any finite
Borel measure µ on Rn, any x ∈ Rn and any r > 0 we have

µ(B(x, r)) ≤ c rα+n
p ‖|ξ|αµ̂‖Lp(Rn) . (7.3)

Remark 7.2. For nonzero µ we have ‖|ξ|αµ̂‖Lp(Rn) = +∞ if 1 < p < +∞ and α ≤ −np
respectively p = +∞ and α < 0. Consequently (7.3) trivially holds for such p and α. For
p = +∞ and α = 0 it is trivial with c = (2π)n/2.

Theorem 7.1 follows by similar arguments as used in [10, p. 273-274].

Proof. Since the right hand side of (7.3) does not depend on x, we may assume that
x = 0. Let ψ ∈ C∞c (Rn) be nonnegative, with suppψ ⊂ B(0, 2) and such that ψ(x) = 1 if
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|x| ≤ 1 and set ψr(x) := ψ(xr ). Since µ ∈ S ′(Rn) and ψr ∈ S(Rn), we have

µ(B(0, r)) ≤
ˆ
Rn
ψr dµ =

ˆ
Rn
ψ̂r(ξ)µ̂(ξ) dξ ≤

(ˆ
Rn
|ξ|−αp

′∣∣ψ̂r(ξ)∣∣p′dξ) 1
p′

‖|ξ|αµ̂‖Lp(Rn) ,

where 1
p + 1

p′ = 1; the obvious modifications apply for the case p = +∞. Substituting

η = rξ and using ψ̂r(ξ) = rnψ̂(rξ), the first factor on the right hand side is seen to be

rα+n
p

(´
Rn
|η|−αp′ |ψ̂|p′ dη

)1/p′

. Since this integral converges, the result follows.

Remark 7.3.

(i) For p = 2 and α = 1 inequality (7.3) basically follows from Cauchy-Schwarz,
Poincaré’s inequality and Plancherel’s theorem, even if n = 1, 2: Suppose that µ
is absolutely continuous with density f having compact support inside B(x, r). If
‖|ξ|µ̂‖L2(Rn) is finite, then it equals ‖|∇f |‖L2(Rn) and

µ(B(x, r)) ≤ Ln(B(x, r))1/2 ‖f‖L2(B(x,r)) ≤ c r
1+n

2 ‖|ξ|µ̂‖L2(Rn) ;

if it is not finite, the inequality is true anyway.

(ii) Suppose that 1 < p < +∞ and −np < α < 0. Then for ψ as in the proof we have

|ξ|−αψ̂ ∈ S(Rn), and we obtain the well-known duality estimate

µ(B(0, r)) ≤
ˆ
Rn
ψr dµ =

ˆ
Rn

(
|ξ|−αψ̂

)∨
(x) (|ξ|αµ̂)

∨
(x)dx

≤ ‖ψr‖L̇p−α(Rn) ‖µ‖L̇p′α (Rn)
= cψ r

α+n
p ‖µ‖

L̇q
′
α (Rn)

, (7.4)

where cψ = ‖ψ‖L̇p−α(Rn) and 1
p + 1

p′ = 1. By translation invariance B(0, r) can

again be replaced by B(x, r). For 1 < p ≤ 2 we have ‖µ‖
L̇p
′
α (Rn)

≤ ‖|ξ|αµ̂‖Lp(Rn) by

Hausdorff-Young, so that (7.3) is implied by (7.4); this gives an alternative proof
of (7.3) for p and α as stated. If 2 ≤ p < +∞, then ‖|ξ|αµ̂‖Lp(Rn) ≤ ‖µ‖L̇p′α (Rn)

, in

this case (7.3) implies (7.4). Moreover, (7.4) remains valid if we allow ψ(x) ≥ 1 for
|x| ≤ 1, and taking the infimum over all such ψ, we arrive at the known inequality

µ(B(x, r)) ≤ Ċ−α,p(B(0, 1))
1
p rα+n

p ‖µ‖
L̇p
′
α (Rn)

,

where Ċ−α,p denotes the (−α, p)-Riesz capacity, see [3, Definition 2.2.6]. We point
out that for p, α and q as stated the identity

Ċ−α,p(A) = sup

{
ν(A)p

(I−αp′ (ν))p/p′
: ν nonnegative Radon measure on A

}
(7.5)

holds for any A ⊂ Rn Borel, [3, Theorems 2.2.7 and 2.5.1].

Now let I be a bounded interval and X : I → Rn a bounded path. The following
Corollary 7.4 is a low-α-version of Berman’s inequality from [10, Lemma 3.1] for Rn-
valued functions X. It follows from Theorem 7.1 with µ = µIX and r = diam(X(I)).

Corollary 7.4. Let p and α be as in (7.2). Then there is a constant K > 0, depending
only on n, p and α, such that

diam(X(I))α+n
p ≥ K L1(I)∥∥|ξ|αµ̂IX∥∥Lp(Rn)

. (7.6)
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Remark 7.5.

(i) The original version [10, Lemma 3.1] considered the case n = 1, p = 2, α ≥ 0, but
was able to allow arbitrarily large α by an integration by parts argument. We are
mainly interested in small α and therefore accept the upper bound on α.

(ii) For p = 2 and −n2 < α < 0 the square of the right hand side in (7.6) is the inverse
(−α, 2)-energy (up to the constant K2) of the normalized occupation measure; this
is similar as in Remark 7.3 (ii), see also Remark 7.6 below.

(iii) Corollary 7.4 is clearly linked with the results in [30]: Given γ, % > 0, a path X : I →
Rn is called (γ, %)-irregular if there is a constant c > 0 such that

∥∥|ξ|%µ̂JX∥∥L∞(Rn)
≤

c L1(J)γ for any subinterval J of I, see [20, Definition 1.3] or [30, Definition 2]. If
0 < γ ≤ 1, 0 < % < n and X is (γ, %)-irregular, then Corollary 7.4 with p = +∞ and
α = % yields diam(X(J)) ≥ (K/c)1/% L1(J)(1−γ)/% for each subinterval J ; this is in
line with [30], see for instance Theorem 31 there.

For any p > 0 let Vp(X, I) := limδ→0 sup∆(P)≤δ
∑N
i=1 |X(ti)−X(ti−1)|p, the supremum

taken over all partitions P of I of form a = t0 < t1 < ... < tN = b and with mesh
∆(P) := max1≤i≤N |ti − ti−1| smaller than δ. To Vp(X, I) one sometimes refers as the
limiting (strong) p-variation of X on I, see [66, Section 4] or [65]. It should not be
confused with the p-variation, which in general is larger, [48, p. 4]. If p ≥ 1 and X is
Hölder continuous of order 1

p on I, then obviously Vp(X, I) is finite.
Given 1 < p ≤ +∞, −∞ < α < n− n

p and a subinterval J of I with nonempty interior,
we set

τp,α(X, J) :=
L1(J)∥∥|ξ|αµ̂JX∥∥Lp(Rn)

.

By Remark 7.2 we have τp,α(X, J) = 0 if p < +∞ and α ≤ −np or if p = +∞ and α < 0.
For 1 < p < +∞ and −np < α < 0 we also consider

σp,α(X, J) :=
L1(J)∥∥µJX∥∥L̇p′α (Rn)

,

where 1
p + 1

p′ = 1. For p = 2 we have σ2,α = τ2,α, and we can consistently define σ2,α by
this identity for all −∞ < α < n

2 .

Remark 7.6. If σp,α(X, J) > 0, then µJX is diffuse enough to have finite (−α, p′)-energy.
In this case dimH X(J) ≥ αp+n, where dimH denotes the Hausdorff dimension, as can be
seen using standard arguments, [50, Theorem 8.5]. Note that σp,α(X, J) ≤ Ċ−α,p(X(J))

by (7.5).

The following are variants of statements from [10].

Corollary 7.7. Let p and α be as in (7.2) and q > 0.

(i) If I1, ..., IM are subintervals of I with nonempty interior, then

M∑
k=1

diam(X(Ik))(α+n
p )q ≥ Kq

M∑
k=1

τp,α(X, Ik)q ≥ KqM2∑M
k=1 τp,α(X, Ik)−q

. (7.7)

(ii) Suppose that (δm)m is a sequence of numbers δm > 0 converging to zero as m→∞
and that Im,1, ..., Im,Mm are subintervals of I of length 0 < L1(Ii) ≤ δm and with
pairwise disjoint interior. If

lim inf
m→∞

M−2
m

Mm∑
k=1

τp,α(X, Im,k)−q = 0,
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then X has infinite limiting (α+ n
p )q-variation V(α+n

p )q(X, I) = +∞ and in particular,

cannot be Hölder continuous on I of order ((α+ n
p )q)−1.

If 1 < p < +∞ and −np < α < 0, then τp,α(X, ·) can be replaced by σp,α(X, ·).

Proof. The left inequality in (7.7) is clear from (7.6), the right is just the domination of
the harmonic mean by the arithmetic mean. Statement (ii) follows from (i) since

sup
∆(P)≤2δm

∑
i

|X(ti)−X(ti−1)|(α+n
p )q ≥

Mm∑
k=1

diam(X(Im,k))(α+n
p )q.

The last statement is a consequence of (7.4).

Remark 7.8.

(i) For n = 1, p = q = 2, α ≥ 0 and with I = [0, 1], Mm = 2m and Im,k := [(k −
1)2−m, k2−m], m ≥ 1, k = 1, ..., 2m, Corollary 7.7 had been shown in [10, (4.2) and
Lemma 4.1]. See also [35, (22.8) Theorem].

(ii) If n = 1 and − 1
p < α ≤ 0, then for no q ≥ p Corollary 7.7 imposes an additional

restriction on the range of possible Hölder orders γ of X. For n ≥ 2 restrictions on
this range can be avoided if q is small enough.

(iii) Also (7.7) is linked with [30]: Suppose that 0 < γ < 1, 0 < % < n and X is (γ, %)-
irregular. Then τ∞,%(X, J) = c−1L1(J)1−γ for all subintervals J of I with nonempty
interior, where c is as in Remark 7.5 (iii). For p = +∞, α = % and q = 1

1−γ the right
inequality in (7.7) implies that whenever the I1, ..., IM form a partition of I, we
have

∑M
k=1 diam(X(Ik))%/(1−γ) ≥ c−1/(1−γ)L1(I), and consequently Vr(X, I) = +∞

for any r < %
1−γ .

Remark 7.9. If X satisfies a local Hölder condition |X(t0)−X(t)| ≤ cH(t0)|t0 − t|γ for
all t from an open interval around a point t0 ∈ I, then for any sufficiently small open
interval J containing t0 we must have

cH(t0)αp+n ≥ KpL1(J)p−γ(αp+n)∥∥|ξ|αµ̂JX∥∥pLp(Rn)

. (7.8)

If limm→∞
∥∥|ξ|αµ̂JmX ∥∥p

Lp(Rn)
= 0 along a sequence of such intervals Jm with length de-

creasing to zero, then (7.8) can hold only if γ < p
αp+n . For the absolutely continuous

case α ≥ 0 and n = 1, p = 2 this absence of local Hölder conditions of order 2
2α+n had

been shown in [10, Lemma 4.3]. Condition (7.8) has the character of a pointwise density
bound ; see [35, Sections 9-11] for an earlier discussion of this fact and [30, Theorem 63
and Corollary 65] for a modern formulation.

If we insist that I1, ..., Im should have pairwise disjoint interiors, then the right hand
side in (7.7) becomes largest if I is ‘optimally packed’. To further illustrate this aspect of
Corollary 7.7, we briefly comment on a possible view upon (7.7) from a packing measure
perspective, [50, Section 5.10], [66]. Let 1 < p ≤ +∞, −∞ < α < n− n

p and q > 0. Given
δ > 0 we define

Pp,α,q;δ(X,E) := sup
{ ∞∑
k=1

τp,α(X, Ik)q : {Ik}∞k=1 family of disjoint closed intervals

Ik ⊂ I with centers xk ∈ E and 0 < L1(Ik) ≤ δ
}

for any E ⊂ I; we use the agreement that sup ∅ = 0. Since δ 7→ Pp,α,q;δ(X,E) decreases
as δ ↓ 0, the limit Pp,α,q;0(X,E) := limδ→0 Pp,α,q;δ(X,E) exists for all E ⊂ I. Standard
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proofs show that Pp,α,q;0(X, ·) is monotone, finitely subadditive, and additive for two sets
with positive distance from each other, [50], [66]. We obviously have Pp,α,q;0(X, ∅) = 0.
Setting

Pp,α,q(X,E) := inf
{ ∞∑
i=1

Pp,α,q;0(X,Ei) : E ⊂
∞⋃
i=1

Ei

}
for any E ⊂ I, we obtain a Borel measure Pp,α,q(X, ·) on I, [50, Section 4.1], [66].

Remark 7.10. One could similarly define measures based on σp,α(X, ·). Since σp,α(X, J)

is the reciprocal of an energy, this might even be more natural for certain purposes.

The following could be seen as a reformulation of Corollary 7.7 (i) in terms of the
measures Pp,α,q(X, ·).
Corollary 7.11. Let 1 < p < +∞, −np < α < 0 and q > 0. Then for any closed subinterval

J of I we have Pp,α,q(X, J) ≤ K−q V(α+n
p )q(X, J).

Proof. We may assume that V(α+n
p )q(X, J) < +∞. Let ε > 0. Choose δε > 0 small enough

to have

S(δ) := sup
∆(P≤2δ

M∑
i=1

|X(ti)−X(ti−1)|(α+n
p )q ≤ V(α+n

p )q(X,J) + ε

for all 0 < δ < δε. Now suppose that {Ik}∞k=1 is a family of disjoint closed intervals Ik ⊂ I
with centers in J and 0 < L1(Ik) ≤ δ. Then for all finite M we have we have

M∑
k=1

σp,α(X, Ik)q ≤ K−q
M∑
k=1

diam(X(Ik))(α+n
p )q ≤ K−qS(δ)

by Corollary 7.7 (i), and since the right hand side does not depend on M , we can
replace M by∞. Taking the supremum over all such {Ik}∞k=1, we see that Pp,α,q(X, J) ≤
Pp,α,q;0(X,J) ≤ Pp,α,q;δ(X, J) ≤ K−q(V(α+n

p )q(X, J) + ε).

For continuous X, p = 2 and fixed q > 0 we can observe a well-defined discontinuity
with respect to α. Since I is a bounded interval, a continuous function X : I → Rn

is absolutely continuous on I and therefore admits a modulus of continuity ωX , more
precisely, there is a nondecreasing function ωX : [0,+∞)→ [0,+∞) such that ω(0+) =

ω(0) = 0 and we have |X(t)−X(s)| ≤ ωX(|t− s|) for all s, t ∈ I.
Lemma 7.12. Let −∞ < β < α < 0 and q > 0. Suppose that X is continuous on I and
let ωX be a modulus of continuity for X.

(i) We have σ2,β(X, J) ≤ c ωα−βσ2,α(X, J) for any nonempty open subinterval J of I;
here c > 0 is a constant depending only on n, α and β.

(ii) If E ⊂ I is such that P2,α,q(X,E) < +∞, then P2,β,q(X,E) = 0.

Proof. Statement (i) it suffices to note that diamX(J) ≤ ωX(L1(J)) and therefore
ˆ
J

ˆ
J

|X(t)−X(s)|−2α−nds dt ≤ c2ωX(L1(J))2(β−α)

ˆ
J

ˆ
J

|X(t)−X(s)|−2β−nds dt

with c > 0 depending only on α, β and n. Statement (ii) follows from (i) by the same
standard arguments as used for packing measures.

Lemma 7.12 implies that for continuous X, q > 0 and any E ⊂ I the number

indq(X,E) :=
n

2
+ sup {−∞ < α < 0 : P2,α,q(X,E) = 0}

=
n

2
+ inf {−∞ < α < 0 : P2,α,q(X,E) = +∞}
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is well-defined, and it is an element of [0, n2 ]. One could call it the occupation index of X
over E. The following is immediate from Corollary 7.11.

Corollary 7.13. Let q > 0 and suppose that X is continuous on I. If −n2 < α < 0 and J
is a closed subinterval of I such that V(α+n

2 )q(X, J) < +∞, then indq(X,J) ≥ α+ n
2 .

Remark 7.14. In view of [66, Theorem 4.1] it would be interesting to see whether one
can relate P2,α,q(X,E) and indq(X,E) with the packing measure and packing dimension
of the image X(E) of E ⊂ I under X.
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