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Abstract

In this article we consider Wigner matrices (XN )N∈N with variance profiles which
are of the form XN (i, j) = σ(i/N, j/N)ai,j/

√
N where σ is a symmetric real positive

function of [0, 1]2, either continuous or piecewise constant and where the ai,j are
independent, centered of variance one above the diagonal. We prove a large deviation
principle for the largest eigenvalue of those matrices under the condition that they
have sharp sub-Gaussian tails and under some additional assumptions on σ. These
sub-Gaussian bounds are verified for example for Gaussian variables, Rademacher
variables or uniform variables on [−

√
3,
√
3]. This result is new even for Gaussian

entries.
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1 Introduction

One of the key results in random matrix theory is Wigner’s theorem: it establishes
the convergence of the empirical measure of the eigenvalues of Wigner matrices towards
the semi-circular measure [37]. These Wigner matrices are a model of real or complex
self-adjoint random matrices with independent centered subdiagonal entries of variance
1/N and independent centered diagonal entries of variance O(1/N). Later Füredi and
Komlós proved that the largest eigenvalue of such matrices converges almost surely
toward 2 [25] under an assumption of boundedness on the moments of the entries. This
moment hypothesis was then relaxed to an hypothesis of boundedness for the fourth
moment by Vu in [36] which was later proved to be necessary by Lee and Yin in [31].
Similar results also exist for Wishart matrices (that is matrices of the form 1

MX∗X

where X is a M ×N random matrix with i.i.d. centered entries of variance 1) and for
matrices with variance profiles (that is self-adjoint random matrices whose diagonal and
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Large deviations for matrices with variance profiles

subdiagonal entries are independent centered but whose variance of the entries may not
be constant up to a factor 1/N ). In that case the limit of the empirical measure depends
on the profile [26].

Once one knows the limits of the empirical measure and the largest eigenvalue, one
can wonder how the probability that they are away from these limits behaves. These
questions are of great importance for instance in mobile communication systems [18, 24]
and in the study of the energy landscape of disordered systems [10, 32]. In the case of
matrices from the Gaussian Orthogonal Ensemble or the Gaussian Unitary Ensemble,
thanks to the the orthogonal or unitary invariance of the distributions, the joint law of
the eigenvalues is explicitly known (see for example [33]) and the spectrum behaves like
a so-called β-ensemble. By Laplace’s principle, once one takes care of the singularities,
those formulas lead to large deviation principles both for the empirical measure [16] and
the largest eigenvalue [15].

In the case of general distributions, since eigenvalues are complicated functions of
the entries, large deviations remain mysterious. Concentration of measure results were
obtained in compactly supported and log-Sobolev settings by Guionnet and Zeitouni
[29]. Several recent breakthroughs proved large deviation principles for matrices with
entries with distributions whose tails are heavier than Gaussian both for the empirical
measure and the largest eigenvalue respectively by Bordenave and Caputo and by Augeri
[11, 19]. Those results rely on the fact that the large deviation behaviour comes from
a small number of large entries. These ideas are further generalized to the questions
of subgraphs counts and eigenvalues of random graphs in [12, 21, 17]. In the case of
sub-Gaussian entries, a large deviation principle for the largest eigenvalue of matrices
with Rademacher-distributed entries was proved by Guionnet and the author in [27]
using the asymptotics of Itzykson-Zuber integrals computed by Guionnet and Maïda
in [28]. Indeed, one obtains the large deviations by tilting the measure by spherical
integrals. Under this tilted law, the matrix is roughly distributed as a sum WN +R where
WN is a Wigner matrix and R a deterministic matrix of rank one. Then, the largest
eigenvalue of such a deformed model is well known and follows the phenomenon of
BBP transition (coined after Bai, Ben Arous and Péché who observed it in the case of
deformations of sample covariance matrices [14]). Notably the rate function for the
large deviation principle of the largest eigenvalue of a matrix with Rademacher entries
is the same as for the GOE. The crucial hypothesis verified by the Rademacher law that
assure that the upper and lower large deviations bounds both coincides with those of the
Gaussian case is the so-called sharp sub-Gaussianity. This property of the Rademacher
law is expressed in terms of its Laplace transform:

∀t ∈ R,
∫

exp(tx)dµ(x) ≤ exp(µ(x2)t2)

2

For distributions that are sub-Gaussian but not sharply so, large deviation lower
and upper bounds were also proved by Augeri, Guionnet and the author in [13] for
large values and values near the bulk of the limit measure. In this case though our rate
function near infinity can be strictly smaller to the rate function for the GOE.

Wigner’s original approach to determine the limit of the empirical measure was to
estimate the trace of moments of Wigner matrices but a more modern approach is to
estimate the resolvent (z −WN )−1 using the Schur complement formula. One then finds
that the Stieltjes transform m of the limit measure must be a solution of the so called
Dyson equation:

1

m(z)
= z −m(z),∀z ∈ C \R

with the convention that the Stieltjes transform of µ is z 7→ µ((z − x)−1). Furthermore, if

EJP 27 (2022), paper 74.
Page 2/44

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP793
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Large deviations for matrices with variance profiles

for z ∈ H+ (where H+ is {z ∈ C : =(z) > 0}) we set the condition =m(z) < 0, then the
only solution to this equation for z ∈ H+ is m(z) = (z −

√
z2 − 4)/2 which is the Stieltjes

transform of the semicircular measure
√

(4− x2)+dx/2π. In the case of matrices with
variance profiles, it can be computed again by the Schur complement formula applied on
the resolvantG(z) = (z−WN )−1, which shows that up to an error term, its diagonal terms
satisfies the following equation which admits only one solution of negative imaginary
part:

1

Gi,i(z)
= z −

∑
j

si,jGj,j(z),∀z ∈ H+

where si,j = NE[|XN (i, j)|2].
Then, using that the Stieltjes transform of the empirical measure is N−1

∑
iGi,i(z)

one can find the limit measure. This equation has been used to study those matrices
for instance by Girko in [26] by Khorunzy and Pastur in [30], Anderson and Zeitouni in
[8] and Schlyakhtenko in [34]. It was extensively studied in itself by Alt, Erdös, Ajanki,
Kreuger and Schröder in a series of articles where it is used to prove local laws and
universality of the local eigenvalue statistics both on the bulk, the cusp and the edge of
the spectrum [4, 22, 20, 1, 3, 2, 5]. One may want to look at [23] for a more thorough
review on the subject.

In this article, we will use the techniques developed in [27] and apply them to
random matrices with variance profiles to prove a large deviation principle for the
largest eigenvalue. We will place ourselves in the same context of entries with sharp
sub-Gaussian law. Such a result is new, even for matrices with Gaussian entries and once
again our rate function will not depend on the laws of the entries. We will consider a
symmetric (or Hermitian) matrix model (XN )N∈N with independent sub-diagonal entries
with a variance profile ΣN (i, j) = N1/2

√
E[|XN (i, j)|2]. We will consider a piecewise

constant case where ΣN is equal to some σk,l on squares of the form I
(N)
k × I(N)

l for

k, l = 1, ..., n where (I
(N)
k )1≤k≤n is a collection of disjoint intervals covering J1, NK and

such that I(N)
k /N converges to some non-trivial interval Ik of [0, 1]. In this case we will

define σ to be the piecewise constant function equal to σk,l on Ik × Il. We will also
consider the case of a variance profile which converges toward a continuous function
σ in the sense that limN supi,j |ΣN (i, j)− σ(i/N, j/N)| = 0. In both cases the empirical
measure converges to a measure µσ characterized by the fact that its Stieltjes transform
m is equal to m(z) =

∫ 1

0
m(x, z)dx where m is the only solution of the equation (see [26]):

1

m(x, z)
= z −

∫
σ2(y, x)m(y, z)dy,∀z ∈ H+

with the condition that =m(x, z) < 0 for for all x ∈ [0, 1], z ∈ H+. We will find then that
large deviations of the largest eigenvalue occur when we tilt our measure so that XN

has roughly the same law than X̃N + R where X̃N is a random matrix with the same
variance profile as XN and where R is deterministic and of finite rank. Since X̃N will not
be a Wigner matrix, finding the correct tilt will be more involved than in the classical
case and will require some additional hypothesis on the variance profiles in order for the
tilt to yield the desired lower bound.

First, in section 2 we will introduce the rate function and the assumption on the
variance profile we will need in order for our large deviation lower bound to coincide
with our upper bound. In sections 3 to 5 we will treat the case of matrices with piecewise
constant variance profile which bears the most similarities with the models treated in
[27]. In these sections we will insist on the differences with [27] while redirecting the
reader to it for the parts of the proofs that stay the same. We will first prove a large
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deviations upper bound using an annealed spherical integral in section 4. We will then
tilt our initial measure to prove the lower bound in section 5. There we will use the
assumption made in section 2 to prove we can find a good tilt. In section 6 we will
approximate the case of a continuous variance profile using piecewise constant ones.
We will have to prove the convergence of the rate functions of the approximations. Since
the approximations will only satisfy our lower bound up to an error term, we will also
prove that this error can ultimately be neglected. In section 7 we will illustrate the cases
where our result applies in the simple context of a piecewise constant variance profile
with four blocks. In the same section we will illustrate the limits of our approach and the
necessity to make some assumptions concerning the variance profiles, with an example
of a matrix whose variance profile does not satisfy our assumptions and such that the
rate function for the large deviations of the largest eigenvalue does not match our rate
function. Finally, in section 8 we will discuss the explicit value of the rate function and in
particular we will present a condition that when verified assures us that the rate function
does depend on the variance profile only through the limit measure of the matrix model.
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1.1 Variance profiles

In the rest of the article, a real x is said to be non-negative if x ≥ 0, R+ is the set
{x ∈ R : x ≥ 0} and R+,∗ = R+ \ {0}. Our random matrix model will be of the form
WN �ΣN , where WN is either a real or a complex Wigner matrix, ΣN is a real symmetric
matrix and � is the entrywise product. P(A), where A is a measurable space, will denote
the set of probability measures on A. We denote for n ∈ N and a set A, Sn(A) the set
of symmetric matrices with entries in A. First of all, we describe the matrices ΣN we
will be using. These matrices will converge as piecewise constant functions of [0, 1]2 to
some function σ on [0, 1]2 called the variance profile. We will consider here two cases:
the case where σ is piecewise constant and the case where it is continuous.

Piecewise constant variance profile: We consider a variance profile piecewise
constant on rectangular blocks. Let n ∈ N∗, Σ = (σi,j)i,j∈J1,nK a real symmetric n × n
matrix with non-negative coefficients and ~α = (α1, ..., αn) ∈ Rn such that for every i,
αi > 0 and α1 + ...+ αn = 1. In this context we will consider ΣN defined by block by:

ΣN (i, j) = σk,l if i ∈ I(N)
k and j ∈ I(N)

l

where for all N ∈ N, {I(N)
1 , ..., I

(N)
n } is a partition of J1, NK such that for all j ∈ J1, nK,

I
(N)
j = JaNj + 1, aNj+1K where for every N , the aNj are such that:

0 = aN1 ≤ aN2 ≤ ... ≤ aNn+1 = N

and such that for j ∈ J1, nK:

lim
N

|I(N)
j |
N

= αj

We then define (γi)1≤i≤n and (Ii)1≤i≤n by:

γ0 = 0 and ∀j 6= 0, γj :=

j∑
i=1

αi and Ii = [γi−1, γi[.

EJP 27 (2022), paper 74.
Page 4/44

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP793
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Large deviations for matrices with variance profiles

We shall also denote σ : [0, 1]2 → R+ the piecewise constant function defined by

σ(x, y) = σk,l if (x, y) ∈ Ik × Il.

This setting will be referred as the case of a piecewise constant variance profile
associated to the parameters Σ and ~α.

Continuous variance profile: In this case, we will consider a real non-negative
symmetric continuous function σ : [0, 1]2 → R+ and for every N , we will consider a
symmetric matrix with non negative entries ΣN such that the sequence ΣN satisfies:

lim
N→∞

sup
1≤i,j≤N

∣∣∣ΣN (i, j)− σ
(
i

N
,
j

N

) ∣∣∣ = 0.

In both cases, we will call σ the variance profile of the matrix model.

1.2 The generalized Wigner matrix model

For the Wigner matrix WN , we will consider two cases, a real symmetric one when
β = 1 and a complex Hermitian one when β = 2. For every N , we will consider a
family of independent random variables (a

(β)
i,j )1≤i≤j≤N such that a(β)

i,j has the distribution

µNi,j . For β = 1, a(β)
i,j is a real random variable for all i, j and for β = 2, a(β)

i,j will be a
complex random variable for i 6= j and a real random variable for i = j. These will be
the unrenormalized entries of WN . We will assume that all the µNi,j are centered:∫

xdµNi,j(x) = 0,∀1 ≤ i ≤ j ≤ N.

For β = 1 we assume that off-diagonal entries have variance 1 and diagonal entries
have variance 2:

µNi,j(x
2) =

∫
R

x2dµNi,j(x) = 1,∀1 ≤ i < j ≤ N, µNi,i(x
2) = 2, ∀1 ≤ i ≤ N .

For β = 2, if we denote x the function z 7→ <z and y the function z 7→ =z, we assume
the following conditions on the variances of the entries:

µNi,j(x
2) = µNi,j(y

2) =
1

2
, µNi,j(xy) = 0, ∀1 ≤ 1 < j ≤ N, µNi,i(x

2) = 1, ∀1 ≤ i ≤ N.

If µ is a probability measure on some Rd with a covariance matrix C, we say that µ
has a sharp sub-Gaussian Laplace transform if

∀u ∈ Rd, Tµ(u) :=

∫
Rd

exp(〈u, x〉)dµ(x) ≤ exp
〈u,Cu〉

2
.

For µ a measure on C, we can identify R2 and C and then the Laplace transform Tµ
can be expressed for z ∈ C as

Tµ(z) =

∫
C

exp(<z̄x)dµ(x).

We will need to make the following assumption on the µNi,j:

Assumption 1.1. For every N ∈ N and 1 ≤ i ≤ j ≤ N , the distribution µNi,j has sub-
Gaussian Laplace transforms.
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In particular, we can notice that in the complex case, it implies that for i 6= j, ∀z ∈ C:

TµNi,j (z) ≤ exp
( |z|2

4

)
.

Examples of distributions that satisfy this sharp sub-Gaussian bound in R are the
(centered) Gaussian laws the Rademacher laws 1

2 (δ−1 + δ1) and the uniform law on
a centered interval. On C, if X is a random variable such that <(X) and =(X) are
independent and have sharp sub-Gaussian Laplace transform, then X has a sharp
sub-Gaussian Laplace transform.

Remark 1.2. From the sharp sub-Gaussian bound, we have the following bound on the
moments of µNi,j if Assumption 1.1 is verified for β = 1 and X is a random variable of
distribution µNi,j:

E[X2k] ≤ (2k)!(TµNi,j (−1) + TµNi,j (1))/2 ≤ (2k)!eµ
N
i,j(x

2)/2

and
E[|X|2k+1] ≤ E[X2k+2]2k+1/2k+2 ≤ ((2k + 2)!eµ

N
i,j(x

2)/2)2k+1/2k+2.

We have a bound of the form:
E[|X|k] ≤ Ck!

for some universal constant C. From this bound, we have that for every δ > 0, there
exists ε > 0 that does not depend on the laws µNi,j such that for |t| ≤ ε.

TµNi,j (t) ≥ exp{
(1− δ)t2µNi,j(x2)

2
} .

We have also that the TµNi,j are uniformly C3 in a neighbourhood of the origin: for ε > 0

small enough sup|t|≤ε supi,j,N |∂3
t lnTµNi,j (t)| is finite. In the complex case, with the same

method we have a similar result, that is that for every δ > 0, there is ε > 0 such that for
every z ∈ C such that |z| ≤ ε:

TµNi,j (z) ≥ exp{ (1− δ)|z|2

4
} .

for i 6= j.

For both those cases, we will need to use concentration inequalities to ensure that
at the exponential scale we consider, the empirical measure of our matrices can be
approximated by their typical value. To this we will need this classical assumption.

Assumption 1.3. There exists a compact set K such that the support of all µNi,j is
included in K for all i, j ∈ J1, NK and all integer number N , or all µNi,j satisfy a log-
Sobolev inequality with the same constant c independent of N . In the complex case,
we will suppose also that for all (i, j), if Y is a random variable of law µi,j , there is a
complex a 6= 0 such that <(aY ) and =(aY ) are independent.

Now for β = 1 or 2 and N ∈ N, given the family (a
(β)
i,j ), we define the following Wigner

matrices:

W
(β)
N (i, j) =

{ a
(β)
i,j√
N

when i ≤ j,
a
(β)
j,i√
N

when i > j .

From these definitions we define X(β)
N a real (if β = 1) or complex (if β = 2) matrix

with variance profile ΣN as:

EJP 27 (2022), paper 74.
Page 6/44

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP793
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Large deviations for matrices with variance profiles

X
(β)
N := W

(β)
N � ΣN

where for two matrices A = (ai,j)i,j∈J1,nK, B = (bi,j)i,j∈J1,nK, A � B is the matrix
(ai,jbi,j)i,j∈J1,nK.

If A is a self-adjoint N ×N matrix, we denote λmin(A) = λ1 ≤ λ2 · · · ≤ λN = λmax(A)

its eigenvalues and µA its empirical measure:

µA =
1

N

N∑
i=1

δλi

For X(β)
N , we will abbreviate µ

X
(β)
N

in µ̂N throughout the article.

1.3 Statement of the results

First of all with this matrix model, we will state with the following theorem the
existence of a limit in probability of the empirical measure µ̂N . This limit, which depends
only on the limit σ of the variance profile is described in more detail in the Appendix A
where this theorem is proved:

Theorem 1.4. Both in the piecewise constant and in the continuous case, the empirical
measure µ̂N converges weakly in probability toward a compactly supported measure µσ
which only depends on σ.

This theorem is in fact an almost direct consequence from [26, Theorem 1.1]. It can
also be obtained in the piecewise case and in the continuous case with the additional
assumption that σ is 1/2-Hölder by applying Lemma 9.2 from [6] which itself uses
stability results for the Dyson equation. Since here the Dyson equation of our setting is
simpler, we present a more elementary proof of this result using rougher stability results
in Appendix A. We denote by rσ the rightmost point of the support of µσ. First of all, we
have the following result for the convergence of the largest eigenvalue of X(β)

N .

Theorem 1.5. Suppose that Assumption 1.1 holds. Both in the piecewise constant case
and the continuous case, we have that λmax(X

(β)
N ) converges almost surely toward rσ.

This theorem is a generalization of the result of convergence of the largest eigenvalue
toward 2 in the Wigner case which was proved by Füredi and Komlós [25] for distributions
with moments such that E[|a(β)

i,j |k] ≤ kCk for some C > 0 and then by Vu for distributions
with finite fourth moment [36]. For this result, we need only to have a bound of the
form E[|a(β)

i,j |k] ≤ rk for some sequence (rk)k∈N (this hypothesis is automatically verified
with our sharp sub-Gaussian bound). There are numerous similar results of convergence
for the largest eigenvalue in the literature for models similar to this one, unfortunately,
to the author knowledge none seem to quite correspond to the level of generality we
are going for in this paper (the most similar to our model would be Theorem 2.7 from
[7] but here we would like to allow for rectangular blocks). Therefore we will be using
here a stronger kind of results, which are the local law results from [2] (corollary 2.10)
in the case of a positive piecewise variance profile. The non-negative case as well as
the continuous case will be proven by approximation, the only technicality is to prove
that when we approximate a variance profile σ by a sequence of variance profiles (σn),
the rightmost point of the support of µσn converges toward the rightmost point of the
support of µσ (see Lemma 6.4). Although using the local law may seem excessive for the
purpose of proving the convergence of the largest eigenvalue, its anisotropic version
will end up being used in the large deviation lower bound in section 5.

For the following theorem, which states a large deviation principle for λmax(X
(β)
N ),

we will need Assumptions 2.4 and 2.8 respectively for the case of a continuous variance
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profile and for the case of a piecewise constant variance profile. These assumptions
are more thoroughly discussed in section 2. Assumption 2.8 states that the following
optimization problem for ψ ∈ P([0, 1]):

sup
ψ∈P([0,1])

{
θ2

β

∫
[0,1]2

σ2(x, y)dψ(x)dψ(y)− β

2
D(Leb||ψ)

}
has a determination of its maximum argument that is continuous in θ.

Similarly, Assumption 2.4 states that the following optimization problem for ψ ∈ (R+)n

such that
∑
ψi = 1:

sup
ψ∈(R+)n,

∑
ψi=1

θ2

β

n∑
i,j=1

σ2
i,jψiψj +

β

2

n∑
i=1

αi (logψi − logαi)


has a determination of its maximum argument that is continuous in θ. Both assumptions
are necessary to obtain the large deviation lower bound.

Theorem 1.6. Suppose Assumptions 1.1, 1.3 hold. Furthermore suppose that Assump-
tion 2.4 holds in the piecewise constant case or that Assumption 2.8 holds in the
continuous case. Then, the law of the largest eigenvalue λmax(X

(β)
N ) of X(β)

N satisfies a
large deviation principle with speed N and good rate function I(β) which is infinite on
(−∞, rσ).

In other words, for any closed subset F of R,

lim sup
N→∞

1

N
logP

(
λmax(X

(β)
N ) ∈ F

)
≤ − inf

F
I(β) ,

whereas for any open subset O of R,

lim inf
N→∞

1

N
logP

(
λmax(X

(β)
N ) ∈ O

)
≥ − inf

O
I(β) .

The same result holds for the opposite of the smallest eigenvalue −λmin(X
(1)
N ). Further-

more I(2) = 2I(1)

The rate functions I(β) are defined in section 2. Examples of variance profiles that
satisfy our Assumptions 2.4 and 2.8 are also given in section 2.

2 The rate function

We will now define the rate function I(β) in Theorem 1.6. This is in fact done the
same way as in [27] with the supremum supθ≥0(J(µσ, θ, x)− F (θ)).

In this formula, J(µσ, θ, x) is the limit of N−1 logE[exp(Nθ〈e,ANe〉)] where e is a
unitary vector taken uniformly on the sphere and AN is a sequence of matrices such that
the empirical measures converge weakly to µσ and such that the sequence of the largest
eigenvalues of AN converges to x. F (θ) is the limit of N−1 logE[exp(Nθ〈e,XNe〉)] where
the expectation is taken both in XN and e. We will first describe the quantity F (θ).

2.1 The asymptotics of the annealed spherical integral

For σ : [0, 1]2 → R+ a bounded measurable function and ψ a probability measure on
[0, 1], let us denote:

P (σ, ψ) :=

∫ 1

0

∫ 1

0

σ2(x, y)dψ(x)dψ(y)

and for θ > 0:
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Ψ(θ, σ, ψ) :=
θ2

β
P (σ, ψ)− β

2
D(Leb||ψ)

where D(.||.) is the Kullback-Leibler divergence, that is for λ, µ ∈ P([0, 1]):

D(λ||µ) =

{∫ 1

0
log
(
dλ
dµ (x)

)
dλ(x) if λ is absolutely continuous with respect to µ

+∞ if this is not the case

and Leb is the Lebesgue measure on [0, 1].
We consider here the following optimization problem with parameter θ > 0 on the set

P([0, 1]):

F (σ, θ) := sup
µ∈P([0,1])

{
θ2

β
P (σ, µ)− β

2
D(Leb||µ)

}
. (2.1)

First, let us study this problem with the following lemma:

Lemma 2.1. If σ is bounded and continuous, the supremum is achieved in (2.1). Fur-
thermore, in both the continuous and the piecewise cases, the function F is continuous
in θ.

Proof. Let us take µn a sequence of measures such that θ2

β P (σ, µn)− β
2D(Leb||µn) con-

verges toward F (σ, θ). By compactness of P([0, 1]) for the weak topology we can assume
that this sequence converges weakly to some µ. Since we assume σ continuous, P (σ, .)

is continuous for the weak topology and so, limn P (σ, µn) = P (σ, µ). Furthermore, since
(λ, µ) 7→ D(λ||µ) is lower semi-continuous, we have lim infnD(Leb||µn) ≥ D(Leb||µ) so
that

θ2

β
P (σ, µ)− β

2
D(Leb||µ) ≥ lim sup

n

{
θ2

β
P (σ, µn)− β

2
D(Leb||µn)

}
= F (σ, θ).

Furthermore, we have for every µ ∈ P([0, 1]), |Ψ(θ, σ, µ)−Ψ(θ′, σ, µ)| ≤ ||σ2||∞|θ2−θ′ 2|/β
and so |F (σ, θ)− F (σ, θ′)| ≤ ||σ2||∞|θ2 − θ′ 2|/β.

In section 4 we will prove that the following limit:

lim
N→∞

N−1 logE
e,X

(β)
N

[exp(Nθ〈e,X(β)
N e〉)] = F (σ, θ)

holds in the piecewise constant case.
In the piecewise constant case, that is when σ is defined with a matrix (σi,j)1≤i,j≤n

and parameters ~α, the optimization problem that defines F is a simpler one. Indeed, if
we denote for ~ψ = (ψ1, ..., ψn) ∈ R:

~P (σ, ψ1, ..., ψn) =

n∑
i,j=1

σ2
i,jψiψj

and

~Ψ(θ, σ, ~ψ) :=
θ2

β
~P (σ, ψ1, ..., ψn) +

β

2

(
n∑
i=1

αi logψi −
n∑
i=1

αi logαi

)
.

We have easily, replacing µ by
∑n
i=1 α

−1
i µ(Ii)LebIi that

F (σ, θ) = max
ψi≥0,

∑n
1 ψi=1

~Ψ(θ, σ, ~ψ) (2.2)

where LebIi is the Lebesgue measure restricted to the interval Ii.
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2.2 Definition of the rate functions

Now, in order to introduce our rate functions we need first to introduce the function
J . This function is linked to the asymptotics of the following spherical integrals:

IN (X, θ) = Ee[e
θN〈e,Xe〉]

where the expectation holds over e which follows the uniform measure on the sphere
SβN−1 of radius one (taken in RN when β = 1 and CN when β = 2). Denoting JN the
following quantity:

JN (X, θ) =
1

N
log IN (X, θ)

the following theorem was proved in [28]:

Theorem 2.2. [28, Theorem 6]
If (EN )N∈N is a sequence of N ×N real symmetric matrices when β = 1 and complex

Hermitian matrices when β = 2 such that:

• The sequence of the empirical measures µEN of EN weakly converges to a com-
pactly supported measure µ,

• There are two reals λmin(E), λmax(E) such that limN→∞ λmin(EN ) = λmin(E) and
limN→∞ λmax(EN ) = λmax(E),

and θ ≥ 0, then:
lim
N→∞

JN (EN , θ) = J(µ, θ, λmax(E))

The limit J is defined as follows. For a compactly supported probability measure we
define its Stieltjes transform Gµ by

Gµ(z) :=

∫
R

1

z − t
dµ(t)

We assume hereafter that µ is supported on a compact [a, b]. Then Gµ is a bijection
from R \ [a, b] to ]Gµ(a), Gµ(b)[\{0} where Gµ(a), Gµ(b) are taken as the limits of Gµ(t)

when t→ a− and t→ b+. We denote by Kµ its inverse and let Rµ(z) := Kµ(z)−1/z be its
R-transform as defined by Voiculescu in [35] (both defined on ]Gµ(a), Gµ(b)[ and Gµ(a)

and/or Gµ(b) if they are finite). Let us denote by r(µ) the right edge of the support of µ.
J is defined for any θ ≥ 0, and λ ≥ r(µ) by,

J(µ, θ, λ) := θv(θ, µ, λ)− β

2

∫
log

(
1 +

2

β
θv(θ, µ, λ)− 2

β
θy

)
dµ(y),

with

v(θ, µ, λ) :=

{
Rµ( 2

β θ), if 0 ≤ 2θ
β ≤ Gµ(λ),

λ− β
2θ , if 2θ

β > Gµ(λ),

In both the piecewise constant and the continuous case, we introduce our rate function
I(β) as

I(β)(σ, x) = −∞ for x ∈]−∞, rσ[

and

I(β)(σ, x) = max
θ≥0

(J(µσ, θ, x)− F (σ, θ))

where µσ is the limit measure of X(β)
N , our Wigner matrix whose variance profile con-

verges toward σ.
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Lemma 2.3. For β = 1, 2, I(β)(σ, .) is a good rate function. Furthermore I(2)(σ, .) =

2I(1)(σ, .)

Proof. As a supremum of continuous functions, I(β)(σ, .) is lower semi-continuous. We
want to prove that the level sets of I(β)(σ, .) that is the {x ∈ R : I(β)(σ, x) ≤ M} are
compact. It is sufficient to show that limx→+∞ I(β)(σ, x) = +∞. For any fixed θ > 0, we
have limx→∞ J(µσ, θ, x) = +∞. And so since we have I(β)(σ, x) ≥ J(µσ, θ, x) − F (σ, θ),
I(β) is a good rate function. With the change of variables θ′ = θ/2 in the case β = 2, we
have that I(2)(σ, .) = 2I(1)(σ, .).

2.3 Assumptions on the variance profile σ

In order to prove the large deviation lower bound in the piecewise constant case, we
will need the following assumption on σ:

Assumption 2.4. There exists some continuous θ 7→ (ψθi )i∈J1,nK with values in (R+)n ∩
{ψ : ψ1 + ...+ ψn = 1} such that ψθ is a maximal argument of the equation (2.2), that is:

θ2

β
~P (σ, ψθ1 , ..., ψ

θ
n) +

β

2

(
n∑
i=1

αi logψθi −
n∑
i=1

αi logαi

)
= F (σ, θ).

As a more practical example, the following assumption implies Assumption 2.4:

Assumption 2.5. The function ψ 7→ 〈ψ, σ2ψ〉 is concave on the set of ψ ∈ Rn such that∑n
i=1 ψi = 1. Equivalently, for all ψ ∈ Rn such that

∑n
i=1 ψi = 0, 〈ψ, σ2ψ〉 ≤ 0 (where σ2

is the matrix (σ2
i,j)1≤i,j≤n).

Remark 2.6. Examples of variance profiles that satisfies this assumption are the vari-
ance profiles associated to some parameters (α1, ..., αn) ∈ (R+,∗)n and σi,j = 1i 6=j (where
1i 6=j is the indicator function equal to 1 if i 6= j and 0 if i = j). In the case n = 2 this a
linearization of a Wishart matrix as in [27].

Lemma 2.7. Assumption 2.5 implies Assumption 2.4.

Proof. The function ~ψ 7→ θ2

β
~P (σ, ~ψ) + β

2

∑n
i=1 αi logψi is strictly concave and since it

tends to −∞ on the boundary of the domain, it admits a unique maximal argument ψθ

which is also the unique solution to the following critical point equation:

f(ψ) =
2θ2

β

 n∑
j=1

σ2
i,jψj


i=1,...,n

+
β

2

(
αi
ψi

)
i=1,...,n

∈ Vect(1, ..., 1)

where Vect(1, ..., 1) is the subspace of Rn spanned by the vector whose coordinates are
all 1. We now want to apply the implicit function theorem to prove that θ 7→ ψθ is analytic.
First of all, the equation above can be rewritten Πf(ψ) = 0 where Π is the orthogonal
projection on Vect(1, ..., 1)⊥.We have that for every u ∈ Rn:

∀i = 1, ..., n, (dfψ(u))i =
2θ2

β
(Su)i −

βui
2ψ2

i

.

where we denote S = (σ2
i,j)1≤i,j≤n.

It suffices to show that d(Πf)ψ(u) = Πdfψ(u) 6= 0 for u ∈ V ect(1, ..., 1)⊥, that is
dfψ(u) /∈ Vect(1, ..., 1). For such a u, we have

〈u, dfψ(u)〉 =
2θ2

β
〈u, Su〉 − β

2

n∑
j=1

u2
j

ψ2
j
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Since u ∈ Vect(1, ..., 1)⊥ we have by Assumption 2.5 〈u, Su〉 ≤ 0 and therefore
〈u, dfψ(u)〉 < 0. So dfψ(u) /∈ Vect(1, ..., 1) and we can apply the implicit function the-
orem.

Examples of variance profiles that satisfies Assumption 2.4 but not Assumption 2.5
are provided in section 7. In the same section, we will also show that without any
assumptions on σ, the method used in this article may fail as we can have a large
deviation principle but with a rate function different from I.

In the continuous case, we will need the following assumption:

Assumption 2.8. There exists some continuous θ 7→ ψθ (for the weak topology) from R+

to P([0, 1]) such that ψθ is a maximal argument of (2.1) that is:

F (σ, θ) = Ψ(θ, σ, ψθ)

As for the piecewise constant case, the following assumption implies 2.8

Assumption 2.9. The function P (σ, .) is concave on the set P([0, 1]) of probability mea-
sures on [0, 1].

Lemma 2.10. Assumption 2.9 implies 2.8.

Remark 2.11. A family of σ satisfying Assumption 2.9 is given by σ2(x, y) = |f(x) −
f(y)|+ C where f is an increasing continuous function and C ∈ R+. Indeed, if f is an
increasing and continuous function on [0, 1], there is a positive measure ν on [0, 1] such
that f(x) − f(0) =

∫ x
0
dν(t) and we have σ2(x, y) = C + |

∫ y
x
dν(t)| =

∫ 1

0
τt(x, y)dν(t) + C

where τt(x, y) = 1x≤t<y + 1y≤t<x and so

P (σ, ψ) =

∫ 1

0

P (τt, ψ)dν(t) + C.

Since P (τt, ψ) = 2ψ([0, t[)(1− ψ([0, t[), P (τt, .) is concave and so is P (σ, .).

3 Scheme of the proof

The proof of Theorem 1.6 will follow a path similar to [27] for the piecewise constant
case and then for σ continuous, we will approximate it by a sequence of piecewise
constant profiles. In the piecewise constant case, we will insist on the differences with
[27] and novelties brought by the introduction of a variance profile and we will refer
the reader to the relevant parts of [27] for further details on the proofs that stay similar.
First of all, we will prove that the sequence of distributions of the largest eigenvalue of
X

(β)
N is exponentially tight.

3.1 Exponential tightness

We will prove the following lemma of exponential tightness:

Lemma 3.1. For β = 1, 2, assume that the distribution of the entries a(β)
i,j satisfy Assump-

tion 1.1. Then:

lim
K→+∞

lim sup
N→∞

1

N
logP[λmax(X

(β)
N ) > K] = −∞.

Similar results hold for λmin(X
(β)
N ).

We will in fact prove a stronger and slightly more quantitative result that will also be
useful when we will approximate continuous variance profiles using piecewise constant
ones (we recall that � is the entrywise product of matrices):
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Lemma 3.2. Let β = 1, 2 and let us assume that the distribution of the entries a(β)
i,j

satisfy Assumption 1.1. Let AN be the following subset of symmetric matrices:

AN := {A ∈ SN (R+)|∀i, j ∈ J1, NK, A(i, j) ≤ 1}.

For every M > 0 there exists B > 0 such that:

lim sup
N

1

N
sup
A∈AN

logP[||A�W (β)
N || ≥ B] ≤ −M.

Proof. We will use a standard net argument that we recall here for the sake of complete-
ness. Let us denote:

Y
(β)
N := A�W (β)

N .

Where A ∈ AN . If RN is a 1/2-net of SβN−1 for the classical Euclidian norm, using a
classical argument (see the proof of Lemma 1.8 from [27]), we have:

P[||Y (β)
N || ≥ 4K] ≤ 9βN sup

u,v∈RN
P[〈Y (β)

N u, v〉 ≥ K]. (3.1)

We next bound the probability of deviations of 〈Y (β)
N v, u〉 by using Tchebychev’s

inequality. For θ ≥ 0 we indeed have

P[〈Y (β)
N u, v〉 ≥ K] ≤ exp{−NK}E[exp{N〈Y (β)

N u, v〉}]

≤ exp{−NK}E
[

exp
{√

N
(

2
∑
i<j

<(A(i, j)a
(β)
i,j uiv̄j)

+
∑
i

A(i, i)ai,iuivi

)}]

≤ exp{−NK} exp

 N

β
(2
∑
i<j

|ui|2|vj |2 +
∑
i

|ui|2|vi|2)

 (3.2)

≤ exp

(
N

(
1

β
−K

))
(3.3)

where we used that the entries have a sharp sub-Gaussian Laplace transform and that
|A(i, i)| ≤ 1. This complete the proof of the Lemma with (3.1).

With this result, we conclude that the sequence of the distributions of the largest
eigenvalue of X(β)

N in Lemma 3.1 is indeed exponentially tight. Therefore it is enough to
prove a weak large deviation principle. In the following we summarize the assumptions
on the distribution of the entries as follows:

Assumption 3.3. Either the µNi,j are uniformly compactly supported in the sense that
there exists a compact set K such that the support of all µNi,j is included in K, or the
µNi,j satisfy a uniform log-Sobolev inequality in the sense that there exists a constant c
independent of N such that for all smooth function f :∫

f2 log
f2

µNi,j(f
2)
dµNi,j ≤ cµNi,j(‖∇f‖22) .

Additionally, the µNi,j satisfy Assumption 1.1.
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3.2 Large deviation upper and lower bounds

To use the result of Lemma A.9 in appendix A which states convergence of the largest
eigenvalue toward the edge of the support, as well as the isotropic local laws we will
need the following positivity assumption (which is mainly technical and will be relaxed
later by approximation):

Assumption 3.4. In the piecewise constant case, ∀i, j ∈ J1, nK, σi,j > 0.

We shall first prove that we have a weak large deviation upper bound similar to
theorem 1.9 in [27]:

Theorem 3.5. Assume that we have a piecewise constant variance profile σ and that
Assumption 3.3 holds. Let β = 1, 2. Then, for any real number x,

lim
δ→0

lim sup
N→∞

1

N
logP

(∣∣∣λmax(X
(β)
N )− x

∣∣∣ ≤ δ) ≤ −I(β)(σ, x).

The lower bound will however be slightly different since we need to take into account
the error term E.

Theorem 3.6. Assume that we are in the case of a piecewise constant variance profile
σ and that assumptions 3.3 and 3.4 hold. Let E : R+ → R+ be a non-negative function.
Suppose that there exist continuous functions θ 7→ (ψE,θi )i∈[1,n] such that:

~Ψ(θ, σ, ψE,θ) ≥ F (σ, θ)− E(θ)

then, if we let Ĩ(σ, x) := supθ≥0

[
J(µσ, θ, x) − F (σ, θ) + E(θ)

]
, we have for every x ≥ rσ

and any δ > 0:

lim inf
N→∞

1

N
logP[|λmax(X

(β)
N )− x| ≤ δ] ≥ −Ĩ(σ, x).

Then, we will show that when Assumption 2.4 is verified, we can take E = 0 and
the main theorem follows. However, when we deal with the continuous case, we will
approximate σ by piecewise constant functions σn. But for σn Assumption 2.4 will be
verified only up to an error term En that can be neglected when n tends to infinity.

Proving that Lemma 3.5 is verified for x < rσ is done as in [27, Corollary 1.12]
using the following Lemma and saying that a deviation of λmax(X

(β)
N ) below rσ imply a

deviation of µ̂N (which cannot occur with probability larger than the exponential scale
we are interested in).

Lemma 3.7. Assume that the µNi,j are uniformly compactly supported or satisfy a uniform
log-Sobolev inequality. Then, for β = 1, 2, there exists some sequence ξ(N) converging
to 0 such that

lim sup
N→∞

1

N
logP (d(µ̂N , µσ) > ξ(N)) = −∞ .

with d the Dudley distance

The sequence ξ(N) in this lemma depends on the the quantities |I(N)
i |/N and on how

fast they converge to αi. The proof of this lemma is in Appendix A. The asymptotics of

JN (X, θ) =
1

N
log IN (X, θ)

are given by Theorem 2.2. We will also need the following lemma, which is a result of
continuity for the JN and where we denote by ‖A‖ the operator norm of the matrix A
given by ‖A‖ = sup‖u‖2=1 ‖Au‖2 where ‖u‖2 =

√∑
|ui|2.
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Lemma 3.8. Given µ ∈ P([0, 1]) a compactly supported probability measure, ξ : N→ R+

an arbitrary sequence tending to 0, for every θ > 0, every M > 0, every ρ ≥ r(µ) there
exists a function g : R+ → R+ going to 0 at 0 such that for any δ > 0, if we denote by BN
the set of real symmetric or complex Hermitian matrices BN such that d(µBN , µ) < ξ(N),
|λmax(BN )− ρ| < δ, and supN ||BN || ≤M , for N large enough, we have:

lim sup
N→∞

sup
BN∈BN

|JN (BN , θ)− J(µ, θ, ρ)| ≤ g(δ).

Proof. Given that x 7→ J(µ, θ, x) is continuous on [r(µ),+∞[ (for fixed θ and µ), we can
choose g(δ) > 0 such that for |ρ−ρ′| ≤ δ, |J(µ, θ, ρ)−J(µ, θ, ρ′)| ≤ g(δ)/2 and limδ→0 g(δ) =

0. Then, if we assume by the absurd that the lemma is false, there exists a sequence
of matrices (AN )N∈N such that ||AN || ≤ M , d(µAN , µσ) ≤ ξ(N), |λmax(AN )− ρ| ≤ δ and
|JN (AN , θ) − J(µ, θ, ρ)| > g(δ). But then by compactness, we can assume that up to
extraction limN→∞ λmax(AN ) = ρ′ ∈ [ρ − δ, ρ + δ], limN→∞ λmin(AN ) = ρ′′ ≥ −M and
then applying Theorem 2.2, we have that limN→∞ JN (AN , θ) = J(µσ, θ, ρ

′), implying
|J(µ, θ, ρ)− J(µ, θ, ρ′)| ≥ g(δ) which is absurd.

Using Lemma 3.1 and Lemma 3.7, and defining

AMx,δ = {X : |λmax(X)− x| < δ} ∩ {X : d(µ̂N , µσ) < ξ(N)} ∩ {X : ‖X‖ ≤M} ,

we have that for any L > 0, for M large enough and for N large enough

P
[∣∣∣λmax(X

(β)
N )− x

∣∣∣ < δ
]

= P
[
X

(β)
N ∈ AMx,δ

]
+O(e−NL) .

Therefore it is enough to study the probability of deviations on the set where JN is
continuous. The last item we need to this end is the asymptotics of the annealed version
of the spherical integral defined by

FN (θ, β) =
1

N
logE

X
(β)
N

Ee[exp(Nθ〈e,X(β)
N e〉)]

where e is a unit vector independent of X(β)
N and where we take both the expectation Ee

over e and the expectation E
X

(β)
N

over X(β)
N .

Theorem 3.9. Suppose Assumption 3.3 holds and that σ is a piecewise constant variance
profile. For β = 1, 2 and θ ≥ 0,

lim
N→∞

FN (θ, β) = F (σ, θ)

where we recall that F (σ, θ) is defined in equation (2.1).

This counterpart to [27, Theorem 1.17] will be proven in section 4. We are now in

position to get an upper bound for P
[
X

(β)
N ∈ AMx,δ

]
. In fact, using the result of Lemma 3.8,

for any θ ≥ 0,

P
[
X

(β)
N ∈ AMx,δ

]
= E

[
IN (X

(β)
N , θ)

IN (X
(β)
N , θ)

1
X

(β)
N ∈AMx,δ

]
≤ E[IN (X

(β)
N , θ)] exp{−N inf

X∈AMx,δ
JN (X, θ)}

≤ exp{N(F (σ, θ)− J(µσ, θ, x) + g(δ) + o(1))} (3.4)

(where o(1) is some quantity converging to 0 as N → +∞). Taking the log, dividing by N
and optimizing in θ ≥ 0 then gives Lemma 3.5.

To prove the complementary lower bound, we shall prove the following limit:
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Lemma 3.10. For β = 1, 2, with the assumptions and notations of Theorem 3.6, for any
x > rσ, there exists θ = θx ≥ 0 such that for any δ > 0 and N large enough,

lim inf
N→∞

1

N
log

E[1
X

(β)
N ∈AMx,δ

IN (X
(β)
N , θ)]

E[IN (X
(β)
N , θ)]

≥ −E(θx) .

This lemma is proved by showing in section 5 that the matrix whose law has been
tilted by the spherical integral is approximately a finite rank perturbation of a matrix
with the same variance profile, from which we can use the techniques developped to
study the famous BBP transition [14]. The conclusion follows since then

P
[
X

(β)
N ∈ AMx,δ

]
≥

E[1XδN∈AMx,δIN (X
(β)
N , θx)]

E[IN (X
(β)
N , θx)]

E[IN (X
(β)
N , θx)] exp{−N sup

X∈AMx,δ
JN (X, θx)}

≥ exp{N(g(δ) + F (θx, β)− E(θx)− J(µσ, θx, x) + o(1))}
≥ exp{−N(Ĩβ(x) + o(1))}

where we used Theorem 3.9 and Lemma 3.10. The Theorem 1.6 follows in the case
of piecewise constant variance profile satisfying Assumption 3.4 by noticing that if
Assumption 2.4 is verified then we can choose E = 0. We will relax the Assumption 3.4
by approximation in the same time we will treat the continuous case.

4 Proof for the asymptotics of the annealed integral in Theo-
rem 3.9

In this section we determine that the limit of FN (θ, β) is F (σ, θ) as in Theorem 3.9.
In fact, we prove the following refinement of this theorem which shows that with
our assumption of sharp sub-Gaussian tails, the vectors e that make the dominant
contributions are delocalized.

Proposition 4.1. Suppose Assumption 1.1 holds. For j ∈ J1, nK, let ψj :=
∑
i∈I(N)

j
|ei|2

and V εN = {e ∈ SβN−1 : ∀j ∈ J1, nK,∀i ∈ I(N)
j , |ei| ≤

√
ψjN

−1/4−ε}. Then, for ε ∈ (0, 1
4 ),

F (σ, θ) = lim
N→+∞

FN (θ, β)

= lim
N→∞

1

N
logEe[1e∈V εNEX(β)

N

[exp(Nθ〈e,X(β)
N e〉)]].

Proof. There again, the proof is very similar to the proof of Theorem 1.17 in [27]. By
denoting Lµ = log Tµ, we have with e ∈ SβN−1 fixed and by expanding the scalar product

〈e,X(β)
N e〉:

E
X

(β)
N

[exp(Nθ〈e,X(β)
N e〉)] = exp{

∑
i<j

LµNi,j (2ΣN (i, j)θēiej
√
N)

+
∑
i

LµNi,i(ΣN (i, i)θ|ei|2
√
N)}

≤ exp{2Nθ2

β

∑
i<j

ΣN (i, j)2|ei|2|ej |2 +
Nθ2

β

∑
i

ΣN (i, i)2|ei|4}

where we used the independence of the (a
(β)
i,j )i≤j and their sub-Gaussian character. Let

us recall ψj =
∑
i∈I(N)

j
|ei|2 and

~P (σ, ~ψ) =

n∑
i,j=1

σ2
i,jψiψj .
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We deduce:

E
X

(β)
N

[exp(Nθ〈e,X(β)
N e〉)] ≤ exp

(
N
θ2

β
~P (σ, ψ1, ..., ψn)

)
.

But since e is taken uniformly on the sphere, the vector ψ = (ψ1, ..., ψn) follows

a Dirichlet law of parameters
(
βα1N

2 , ..., βαnN2

)
+ o(N). We have the following large

deviation principle for this Dirichlet law:

Lemma 4.2. Let n ∈ N∗, and (αN )N≥0 = (α1,N , ..., αn,N )N≥0 ∈ ((R+,∗)n)N be a sequence
of vectors such that limN→∞

αN
N = (α1, ..., αn) and αi > 0 for all i ∈ J1, nK. The sequence

of Dirichlet laws DirN = Dir(α1,N , ..., αn,N ) satisfies a large deviation principle with
good rate function I(x1, ..., xn) =

∑n
i=1 αi(log xi − logαi).

Proof. We denote fN and f the functions defined on D = {x ∈ (R+,∗)n : x1 + ...+xn = 1}
by

fN (x) =
∑
i

αi,N − 1

N
log xi

f(x) =
∑
i

αi log xi.

For x ∈ D, let’s denote x̃ = (x1, ..., xn−1) and D̃ the image of D by this applica-
tion (so that D̃ = {x ∈ (R+,∗)n−1 : x1 + ... + xn−1 ≤ 1}). We have DirN (dx̃) =

Z−1
N exp(NfN (x1, ..., xn−1, (1− x1 − ...− xn−1)))dx̃ where

ZN =

∫
D̃

exp(NfN (x1, ..., xn−1, (1− x1 − ...− xn−1)))dx1...dxn−1.

We have that on every compact of D̃, fN (x̃, 1−
∑n−1
i=1 xi) converges uniformly toward

f(x̃, 1 −
∑n−1
i=1 xi) (which is continuous) and furthermore, for every M > 0 there is a

compact K of D̃ such that for N large enough fN (x̃, 1−
∑n−1
i=1 xi) ≤ −M for x /∈ K. With

both those remarks we deduce via a classical Laplace method that

lim
N→∞

1

N
logZN = max

x∈D
f(x) =

n∑
i=1

αi logαi.

Using again classical Laplace methods and the fact that x 7→ x̃ is a homeomorphism
between D and D̃, we have that the uniform convergence of fN and the continuity of
the limit f gives a weak large deviation principle with rate function f(x)−

∑n
i=1 αi logαi

and the bound outside compacts gives the exponential tightness. The large deviation
principle is proved.

Using Lemma 4.2 and Varadhan’s lemma, we have since ~P is continuous that:

lim
N→∞

1

N
logEe

[
exp

(
N
θ2

β
~P (σ, ψ1, ..., ψn)

)]
=

sup
ψ1,...,ψn∈[0,1],ψ1+...ψn=1

{2θ2

β
~P (σ, ψ1, ..., ψn)−

n∑
i=1

βαi
2

log(ψi)−
n∑
i=1

βαi
2

log(αi)
}

= F (σ, θ)

so that we have proved the following upper bound:

lim sup
N→∞

FN (θ, β) ≤ F (σ, θ). (4.1)
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For the lower bound, we then again follow [27] and we use that if e ∈ V εN then:

lim
N→+∞

sup
i,j∈J1,NK

sup
e∈V εN

|2
√
NΣN (i, j)θeiej | = 0.

We can then use the Taylor expansions of Lµi,j near 0 to prove that for any δ > 0:

Ee[EX(β)
N

[exp(Nθ〈e,Xβ
Ne〉)]] ≥ Ee[1e∈V εN e

N θ2

β
~P (σ,ψ1,...,ψn)(1−δ)] . (4.2)

We shall then use the following lemma:

Lemma 4.3. For any ε ∈ (0, 1/4) we have

lim
N→∞

Pe[e ∈ V εN ] = 1

and that the event {e ∈ V εN} is independent of the vector (ψ1, ..., ψn). As a conse-
quence, we deduce from (4.2) that for any δ > 0 and N large enough

lim inf
N→∞

FN (θ, β) ≥ lim inf
N→∞

1

N
logEe

[
exp

(
(1− δ)N θ2

β
~P (σ, ψ1, ..., ψn)

)]
.

and then we let δ tends to 0. In order to see that the event {e ∈ V εN} is independent of
ψ and to prove Lemma 4.3, we say that if we denote e(j) = (ei)i∈I(N)

j
, f (j) := e(j)/||e(j)||

is a uniform unit vector on the sphere of dimension β|I(N)
j | − 1. Furthermore all these

f (j) together with the random vector (ψ1, ..., ψn) form a family of independent variables.
Indeed, if we construct e as a renormalized standard Gaussian variable, that is e = g/||g||
then one can see that f (j) = g(j)/||g(j)|| and ψj = ||g(j)||2/||g||2 where g(j) is defined from
g the same way as e(j) is defined from e. The independence of the f (j) and ψ then comes
from a classical change of variables. We notice then that in term of the f (j), we have:

{e ∈ V εN} =

n⋂
j=1

{∀i ∈ I(N)
j , |f (j)

i | ≤ N
−1/4−ε }.

Then using the independence of the f (j):

Pe[e ∈ V εN ] =

n∏
j=1

P[∀i ∈ I(N)
j , |f (j)

i | ≤ N
−1/4−ε].

The result follows since each of these terms converges to 1.

5 Large deviation lower bound

We will now prove Theorem 3.6. For a vector e of the sphere SβN−1 and X a random
symmetric or Hermitian matrix, we denote by P(e,θ)

N the tilted probability measure
defined by:

dP
(e,θ)
N (X) =

exp(Nθ〈Xe, e〉)
E
X

(β)
N

[exp(Nθ〈X(β)
N e, e〉)]

dPN (X)

where PN is the law of X(β)
N . Let us show that we only need to prove the following

lemma:
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Lemma 5.1. Let us assume that the hypotheses of Theorem 3.6 hold. Let (δN )N∈N be
some arbitrary sequence of positive real numbers converging to 0, WN the subset of the
sphere SβN−1 defined by:

WN := {e ∈ SβN−1 : ∀i,
∣∣∣||e(i)||2 − ψE,θi

∣∣∣ ≤ δN}
where E and ψE,θ are as in the hypotheses of Theorem 3.6 and e(i) = (ej)j∈I(N)

i
is the

i-th block of entries of e. For any x ≥ rσ, there is θx such that:

lim
N→∞

inf
e∈V εN∩WN

P(e,θx)[X
(β)
N ∈ AMx,δ] = 1

where we recall that

AMx,δ = {X : |λmax(X)− x| < δ} ∩ {X : d(µ̂N , µσ) < ξ(N)} ∩ {X : ‖X‖ ≤M} .

Proof that Lemma 5.1 implies Theorem 3.6. In the rest of the proof, we will abbreviate
E
X

(β)
N

in EX . We only need to prove that if there exists E,ψE,θi that satisfy the hypotheses

of Theorem 3.6, for every x ≥ rσ, there exists θx ≥ 0 such that:

lim inf
N→∞

1

N
log

EX [1
X

(β)
N ∈AMx,δ

IN (X
(β)
N , θx)]

EX [IN (X
(β)
N , θx)]

≥ −E(θx) .

We have

EX [1
X

(β)
N ∈AMx,δ

IN (X
(β)
N , θx)] = Ee[P

(e,θx)
N [X

(β)
N ∈ AMx,δ]EX [exp(Nθx〈X(β)

N e, e〉)]].

For δ > 0, let:

W δ
N := {e ∈ SβN−1 : ∀i,

∣∣∣||e(i)||2 − ψθx,Ei

∣∣∣ ≤ δ}.
We have, using Lemma 4.2 that:

lim
δ→0

lim inf
N→∞

1

N
logP[e ∈W δ

N ] =
2

β

n∑
i=1

αi(logψθ,Ei − logαi).

Let (δN )N∈N be a sequence converging to 0 such that:

lim inf
N→∞

1

N
logP[e ∈W δN

N ] ≥ 2

β

n∑
i=1

αi(logψθx,Ei − logαi)

and let:

WN := {e ∈ SβN−1 : ∀i,
∣∣∣||e(i)||2 − ψθx,Ei

∣∣∣ ≤ δN}.
We have then, using the Taylor expansions of the LµNi,j and that δN → 0 as in

equation (4.2), the following limit uniformly in e ∈WN ∩ V εN :

lim
N→∞

sup
e∈WN∩V εN

∣∣∣ 1

N
logEX [exp(Nθx〈X(β)

N e, e〉)]]− θ2
x
~P (σ, ψE,θx)

∣∣∣ = 0.

Then we have:
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Ee[P
(e,θx)
N [X

(β)
N ∈ AMx,δ]EX [exp(Nθx〈X(β)

N e, e〉)]] ≥ Ee[1e∈V εN∩WN
P

(e,θx)
N [X

(β)
N ∈ AMx,δ]

EX [exp(Nθx〈X(β)
N e, e〉)]]

≥ Ee[1e∈V εN∩WN
P

(e,θx)
N [X

(β)
N ∈ AMx,δ]

e−Nθ
2
x
~P (σ,ψE,θx )+o(N)]

so we have that:

EX [1
X

(β)
N ∈AMx,δ

IN (X
(β)
N , θx)]

EX [IN (X
(β)
N , θx)]

≥ Ee[1e∈V εN∩WN
P(e,θx)[X

(β)
N ∈A

M
x,δ]]e

−N(θ2x
~P (σ,ψE,θx )−F (θx)+o(1))

≥ Pe[e ∈ V εN ∩WN ] inf
f∈V εN∩WN

P(f,θx)[X
(β)
N ∈ AMx,δ]

e−N(θ2x
~P (σ,ψE,θx )−F (θx)+o(1))

≥ Pe[e ∈ V εN ]Pe[e ∈WN ] inf
f∈V εN∩WN

P(f,θx)[X
(β)
N ∈ AMx,δ]

e−N(θ2x
~P (σ,ψE,θ)−F (θ)+o(1))

≥ e−N(E(θx)+o(1))

where we used that {e ∈ V εN} and {e ∈ WN} are independent (since {e ∈ V εN} only de-

pends on the f (j) andWN only depends on the ψi) and that 1
N log infe∈V εN∩WN

P(e,θx)[X
(β)
N ∈

AMx,δ] converges to 0. So we have our lower bound.

And so it remains to prove the Lemma 5.1. More precisely, we will show that for
ε ∈ ( 1

8 ,
1
4 ), for any x > rσ (the rightmost point of the support of µσ) and δ > 0 we can find

θx ≥ 0 so that for M large enough,

lim
N→∞

inf
e∈V εN∩WN

P
(e,θx)
N [X

(β)
N ∈ AMx,δ] = 1 . (5.1)

To prove (5.1), we have to show that uniformly on e ∈ V εN ∩ WN we still have that

limN→∞P
(e),θ
N [d(µ̂N , µσ) ≥ ξ(N)] = 0 and that forK large enough limN→∞P

(e,θ)
N [||X(β)

N ||≥
K] = 0. This is done as in Lemma 5.1 in [27]. Hence, the main point of the proof is to
show that:

Lemma 5.2. Pick ε ∈] 1
8 ,

1
4 [. For any x > rσ, there exists θx such that for every η > 0,

lim
N→∞

sup
e∈V εN∩WN

P
(e,θx)
N [|λmax − x| ≥ η] = 0.

Proof. For e ∈ V εN fixed, let X(e),N be a matrix with law P
(e,θ)
N . We will prove that X(e),N

can be written as an additive perturbation of a random self-adjoint matrix X̃(e),N with
independent sub-diagonal entries with the same variance profile as X(β)

N :

X(e),N = X̃(e),N + ESE∗ + ∆(e),N + Y (e),N .

Here ∆(e),N = E[X(e),N ] − ESE∗ and Y (e),N = (X(e),N − E[X(e),N ]) � (IN − V (e),N )

where for all 1 ≤ i, j ≤ N :

V
(e),N
i,j =

(1 + 1i=j,β=1)ΣN (i, j)√
NV ar(X

(e),N
i,j )

.
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The deterministic matrix S is defined by S := (σ2
i,j)1≤i,j≤n and E is the N × n matrix

defined by:

E =



0 · · · 0

e(1)
...

...
0 · · · 0

0 · · · 0
... e(2) . . .

...
0 · · · 0
...

...
. . .

...
0 0 · · ·
...

... e(n)

0 0 . . .


where we recall the the e(i) are the vectors defined by e(i) = (ej)j∈I(N)

j
. In particular, one

can notice that the entries of ESE∗ are given by (ESE∗)i,j = Σ2
N (i, j)eiēj . Furthermore

the terms ∆(e),N and Y (e),N are negligible in operator norm for large N in the sense
that:

• There is a constant C such that ||∆(e),N || ≤ CN−1/2−4ε.

• For every δ > 0:
lim

N→+∞
sup
e∈V εN

P
(e),N
N [||Y (e),N || > δ] = 0.

Those estimates revolve around the Taylor expansion of the Lµi,j and the uniform
bound on their derivatives near 0 given by Remark 1.2. Here we will only expose the
computation justifying that the entries of ∆(e),N and Y (e),N tend to 0. For how to refine
this estimates and obtain that ∆(e),N and Y (e),N are negligible in operator norm, we
refer the reader to the subsection 5.1 of [27].

We can express the density of P(e,θ)
N as the following product:

dP
(e,θ)
N

dPN
(X) =

∏
i≤j

exp(21i6=jθΣN (i, j)
√
N<(eiēja

(β)
i,j )− LµNi,j (2

1i6=jθΣN (i, j)
√
Neiēj))

where the a(β)
i,j are defined as in the introduction. Since the a(β)

i,j independent (for i ≤ j),
the entries X(e),N

i,j remain so and their mean is given by the derivative of Lµi,j :

(E[X(e),N ])i,j =
ΣN (i, j)L′

µNi,j
(2
√
NΣN (i, j)θeiēj)

√
N

=
2θ

β
Σ2
N (i, j)eiēj + δ(2ΣN (i, j)

√
Nθeiēj)

Σ3
N (i, j)Nθ2|ei|2|ej |2√

N

if i 6= j, and if i = j

(E[X(e),N ])i,i =
ΣN (i, i)L′

µNi,i
(
√
NΣN (i, i)θ|ei|2)
√
N

=
2θ

β
Σ2
N (i, i)eiēi + δ(

√
NΣN (i, i)θ|ei|2)

Σ3
N (i, i)Nθ2|ei|4√

N
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where we used that by centering and variance one, L′
µNi,j

(0) = 0, HessLµNi,j (0) = 1
β Id for

all i 6= j,N , L′′
µNi,i

(0) = 2
β for all i,N , and where

|δ(t)| ≤ 4 sup
|u|<|t|

max
i,j,N
{|L(3)

µNi,j
(u)|} .

In the complex case, the notation |L(3)| just means

|L(3)(u)| = max
|z|=1

∣∣∣ d3

dt3
L(u+ tz)t=0

∣∣∣.
Hence, we have

∆
(e),N
i,j = Σ3

N (i, j)δ(2
√
NΣN (i, j)θeiēj)

√
Nθ2|ei|2|ej |2, 1 ≤ i, j ≤ N .

Furthermore, when we identify C to R2 when X
(e),N
i,j is a complex variable the

covariance matrix of X(e),N
i,j is given by the Hessian of Lµi,j so that the variance of X(e),N

i,j

is given by the Laplacian of Lµi,j (i.e. ∂z∂z̄Lµi,j ):

V ar(X
(e),N
i,j ) =

ΣN (i, j)2

N
∂z∂z̄LµNi,j (θΣN (i, j)eiēj

√
N)

=
( 2

β

)1i=j ΣN (i, j)2

N

(
1 +
√
NΣN (i, j)|eiej |δ(θ

√
NΣN (i, j)|eiej |)

)
And so:

(IN − V (e),N )i,j = 1− 1√
1 +
√
NΣN (i, j)|eiej |δ(θ

√
NΣN (i, j)|eiej |)

So that limN→∞maxi,j(IN − V (e),N )i,j = 0.

And so, to conclude we need only to identify the limit of λmax(X̃(e),N + 2θ
β ESE

∗). The

eigenvalues of X̃(e),N + 2θ
β ESE

∗ satisfy the following equation in z

0 = det(z − X̃(e),N − 2θ

β
ESE∗) = det(z − X̃(e),N ) det(1− 2θ

β
(z − X̃(e),N )−1ESE∗)

and therefore z is an eigenvalue away from the spectrum of X̃(e),N if and only if

det(1− 2θ

β
(z − X̃(e),N )−1ESE∗) = 0.

Recall that if K is a field and A,B are two matrices respectively inMn,p(K) andMp,n(K)

then we have det(In + AB) = det(Ip + BA). Using this, we have that the preceding
equality is equivalent to

det(In − θ′E∗(z − X̃(e),N )−1ES) = 0

where θ′ = 2θ/β.

Lemma 5.3. For i, j ∈ J1, nK, η > 0, a > rσ, we have:

sup
e∈V εN∩WN

P

[
sup
z≥a

∣∣∣(E∗(z − X̃(e),N )−1ES)i,j − σ2
i,jψ

θ
jmj(z)

∣∣∣ ≥ η]→ 0.

Where m is the solution of the canonical equation Kσ and mi the value taken by m on
the interval Ii (see Appendix A for the definition of Kσ and m).
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Proof. Let GN (z) := (z − X̃(e),N )−1, MN (z) = diag(m1,N (z), ....,mN,N (z)), where mN
x :=∑N

i=1 1Nx∈]i−1,i]mi,N and mN is the solution of KσN (the canonical equation defined in
Appendix A with σN being the approximation of σ defined in Theorem A.4). If we denote
ẽk = (1

j∈I(N)
k

ej)j=1,...,N the vector e where we replaced all entries by 0 except for the

k-th block.

(E∗(z − X̃(e),N )−1ES)i,j =

n∑
k=1

(ẽi)∗GN (z)σ2
k,j ẽ

k

So since limN→∞ supe∈V εN∩WN

∣∣||ẽk||2 − ψθk∣∣ = 0 we only need to prove that for k, l ∈ J1, nK:

lim
N→∞

sup
e∈SβN−1

sup
z≥a

P[|(ẽk)∗GN (z)ẽl − δk,lmk(z)ψθk| ≥ η] = 0.

To that end, we want to apply the anisotropic local law from [2] but in order to do so,
we need to check its assumptions. (A) is verified since the variance profiles are uniformly
bounded. (B) is verified with the Assumption 3.4. (D) is verified with the sub-Gaussian
bound. To verify (C), we apply [4, Theorem 6.1]. Thanks to [2, Theorem 1.13], if we fix
some γ > 0, D > 0, ε > 0, for N large enough:

sup
e,f∈SβN−1

sup
z∈C,=z≥Nγ−1

P[|e∗GN (z)f − e∗MN (z)f | ≥ N−1/10] ≤ N−D.

Furthermore following Theorem A.9, we have that for a′ ∈]rσ, a[, D > 0, N large
enough

P[λmax(X̃(e),N ) ≥ a′] ≤ N−D.

Let e, f ∈ SβN−1 and h : z 7→ e∗GN (z)f and k : z 7→ e∗MN (z)f . On the event
{λmax(X̃(e),N ) < a′}, we have that |h(z)|, |k(z)| ≤ 1

(<z−a′) and |h′(z)|, |k′(z)| ≤ 1
(<z−a′)2 for

{z : <z > a′} and therefore, for γ < 1/10, we can in fact assume that our bound holds for
any z such that <(z) > a and in particular for z real (up to some multiplicative constant
C before the N−1/10). Let

AN := {a+ k/N : k ∈ [0, N2]}.

By union bound, we have that for N large enough:

P[ sup
z∈AN

|(e∗GN (z)f − e∗MN (z)f)| ≥ CN−1/10] ≤ N−D+2.

Combining this again with the bounds of the derivative of h and k and the bound in
modulus that is derived from the bound on λmax(X̃(e),N ), we get for some C ′ > 0:

P[sup
z>a
|e∗GN (z)f − e∗MN (z)f | ≥ C ′N−1/10] ≤ N−D+2

for N large enough. Furthermore, this bound is uniform in e and f . We then use
Theorem A.7 and the bounds one the derivatives of MN (z) the same way to conclude that
for any η > 0, for N large enough and e ∈ V εN ∩WN we have that (for N large enough):

P[sup
z>a
|(ẽk)∗(GN (z))ẽl − δk,lψθkmk(z)| ≥ η|] ≤ N−D+2

where m is the solution of Kσ and mi is the value taken by m on the interval Ii. And so
we have:

P[sup
z>a
|(E∗GN (z)SE)i,j −mj(z)σ

2
i,jψ

θ
j | > η] ≤ N−D+2 for every i, j ∈ J1, nK.
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Let’s denote D(θ, z) the diagonal n × n matrix diag(m1(z)ψθ1 , ...,mn(z)ψθn), we have
that the above limit can be rewritten SD(θ, z). From the preceding lemma we have that
for η > 0 uniformly in e ∈ SβN−1 that

P[sup
z>a
|det(In − θ′E∗(z − X̃(e),N )−1ES)− det(In − θ′SD(θ, z))| ≥ η] ≤ N−D

for N large enough.
So since limz→∞ det(In−θ′SD(θ, z)) = 1, all that remains is to solve the determinantal

equation:
det(In − θ′SD(θ, z)) = 0

and the largest solution z > rσ, if it exists, will be the the limit of λmax. We can rewrite
this equation:

det(In − θ′
√
D(θ, z)S

√
D(θ, z)) = 0. (5.2)

Let ρ(θ, z) be the largest eigenvalue of
√
D(θ, z)S

√
D(θ, z). Then, the largest z

solution of equation (5.2) is the unique solution of:

θ′ρ(θ, z) = 1 (5.3)

one ]rσ,+∞[. Indeed, with θ fixed, if θ′ρ(θ, z) = 1 then z is a solution of (5.2). Since
the z 7→ mi(z) are strictly decreasing, so is ρ(θ, .). So for z′ > z, θ′ρ(θ, z′) < 1 and so
z′ cannot be solution of (5.2) for the same θ. Similarly, if z is a solution of (5.2) then
θ′ρ(θ, z) ≥ 1. If θ′ρ(θ, z) > 1 then since z 7→ θ′ρ(θ, z) is continuous and decreasing toward
0, there exists z′ > z such that θ′ρ(θ, z′) = 1 and z′ is therefore a solution of (5.2) strictly
larger than z.

Therefore, it suffices to prove that for any x > rσ there is at least one θx such that

θ′xρ(θx, x) = 1

Here, the Assumption 2.4 is crucial. Indeed, we need this assumption to suppose that the
function θ 7→ D(θ, z) is continuous. This continuity implies the continuity of θ 7→ ρ(θ, z).
For θ = 0 the lefthand side is 0 and for θ →∞, since maxi ψ

θ
i ≥ n−1 we have that

ρ(θ, z) ≥ max
i,j

(
√
D(θ, z)S

√
D(θ, z))i,j ≥ n−1(min

i
mi(z))(min

i,j
σ2
i,j)

Therefore since M := n−1(minimi(x))(mini,j σ
2
i,j) is such that ρ(θ, x) ≥ M , we have

θ′ρ(θ, x) −→
θ→∞

+∞. By continuity, there is at least one θx such that θ′xρ(θx, x) = 1 and so

Theorem 3.6 is proved.

6 Approximation of continuous and non-negative variance pro-
files

We now choose σ : [0, 1]2 7→ R+ continuous and symmetric and consider the random

matrix model X(β)
N := ΣN �W (β)

N where

lim
N→∞

∣∣∣ΣN (i, j)− σ
(
i

N
,
j

N

) ∣∣∣ = 0

In order to prove a large deviation principle for XN , we will approximate the variance
profile by a piecewise constant σn. Namely, for n ∈ N we let σn be the following n× n
matrix:

σni,j = n2

∫ i
n

i−1
n

∫ j
n

j−1
n

σ(x, y)dxdy +
1

n+ 1
.
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The term 1/(n + 1) is here to ensure that the approximating variance profile is

positive so that Assumption 3.4 is satisfied. Let’s denote X
(β),n
N = Σ

(n)
N � W

(β)
N the

random matrix constructed with the same family of random variables a(β)
i,j but with the

piecewise constant variance profile associated with the matrix σn and the vector of
parameters ( 1

n , ...,
1
n ). Let Fn = F (σn, .), µn := µσn . We will also denote F = F (σ, .) and

I = I(β)(σ, .). Even if we suppose that Assumption 2.8 holds in the case of the continuous
variance profile σ, we don’t necessarily have Assumption 2.4 for the variance profiles
σn and so we don’t necessarily have a sharp lower bound. To this end we will need to
introduce an error term En that will be negligible as n tends to∞.

In the first subsection, we will prove that there exist for every n a function from R+

to itself En and a function θ 7→ ψθ,E
n

from R+ to {x ∈ (R+)n : x1 + ... + xn = 1} such
that:

~Ψ(σn, θ, ψθ,E
n

) = Fn(θ)− En(θ)

and such that limn→∞ supθ≥0E
n/θ2 = 0. In the second subsection, we will prove that the

upper and lower large deviation bounds we get for X(β),n
N from Theorems 3.5 and 3.6

(which will be denoted respectively I(n) and Ĩ(n)) both converges toward the rate function
defined in section 2.

6.1 Existence of an error negligible toward infinity

Lemma 6.1. Recalling the definition for F :

F (θ) = F (σ, θ) = sup
µ∈P([0,1])

{
θ2

β
P (σ, µ)− β

2
D(Leb||µ)

}
.

and recalling that Fn is defined the same way by replacing σ by σn, we have the following
limit.

lim
n→∞

sup
θ>0

|Fn(θ)− F (θ)|
θ2

= 0

Proof.∣∣∣ ∫ 1

0

∫ 1

0

(σn)2(x, y)dµ(x)dµ(y)−
∫ 1

0

∫ 1

0

σ2(x, y)dµ(x)dµ(y)
∣∣∣

≤
∫ 1

0

∫ 1

0

|(σn)2(x, y)− σ2(x, y)|dµ(x)dµ(y).

Since limn→∞ supx,y |(σn)2(x, y)−σ2(x, y)| = 0, we have limn→∞ supψ |~P (σ, ψ)−~P (σn, ψ)| =
0. The result follows easily by the definitions of Fn and F .

Lemma 6.2. Let us recall the definition of ~Ψ:

~Ψ(θ, σ, ~ψ) :=
θ2

β
~P (σ, ψ1, ..., ψn) +

β

2

(
n∑
i=1

αi logψi −
n∑
i=1

αi logαi

)

If the Assumption 2.8 is true, then for every ε > 0, there is a sequence of functions En

and continuous θ 7→ (ψθ,E
n

i )i∈[1,n] such that:

~Ψ(σn, θ, ψθ,E
n

) = Fn(θ)− En(θ)

and there is a n0 such that for n ≥ n0:

∀θ > 0, En(θ) ≤ εθ2.
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Proof. Since assumption 2.8 is verified, there is some measure valued continuous func-
tion θ 7→ ψθ such that F (θ) = θ2P (σ, ψθ)/β−βD(Leb||ψθ)/2. Let ψθ,ε := K?(ψ

θ ∗τε) where
∗ is the convolution, K? is the push-forward by the application K, τε the probability
measure whose density is a triangular function of support [−ε, ε] and K the function
defined by K(x) = x if x ∈ [0, 1], K(x) = −x if x ∈ [−1, 0] and K(x) = 2 − x if x ∈ [1, 2].
The function K is needed here in order for the support of ψθ,ε to still be [0, 1] since the
convolution with τε enlarges the support to [−ε, 1 + ε]. Let us now denote

ψθ,ε,ni := ψθ,ε
([

i− 1

n
,
i

n

])
We have that for i = 1, ..., n:

ψθ,ε,ni :=

∫
R

(1[(i−1)/n,i/n] + 1[−i/n,(1−i)/n] + 1[2−i/n,2−(1−i)/n])(x)d(ψθ ∗ τε)(x).

So for i = 1, ..., n:

ψθ,ε,ni :=

∫
R

(1[(i−1)/n,i/n] + 1[−i/n,(1−i)/n] + 1[2−i/n,2−(1−i)/n]) ∗ τε(x)dψθ(x)

Since x 7→ (1[(i−1)/n,i/n] + 1[−i/n,(1−i)/n] + 1[2−i/n,2−(1−i)/n]) ∗ τε(x) is continuous and

θ 7→ ψθ is continuous for the weak topology then θ 7→ ψθ,ε,ni is continuous for i = 1, ..., n.
Let us prove the following lemma:

Lemma 6.3. For every η > 0, there is ε > 0, n0 > 0 such that for every θ > 0, n ≥ n0

∣∣∣ n∑
i,j=1

(σni,j)
2ψθ,ε,ni ψθ,ε,nj −

∫ 1

0

∫ 1

0

σ2(x, y)dψθ(x)dψθ(y)
∣∣∣ ≤ η

and,

1

n

n∑
i

(
logψθ,ε,ni − log n

)
≥ −D(Leb||ψθ).

Proof of the lemma. Let η > 0 and let us find ε > 0 such that:

|
∫ 1

0

∫ 1

0

σ2(x, y)dψθ,ε(x)dψθ,ε(y)−
∫ 1

0

∫ 1

0

σ2(x, y)dψθ(x)dψθ(y)| ≤ η.

Let us take X,Y, Uε, Vε independent random variables of law respectively, ψθ, ψθ and
τε, τε. Then we have

|
∫ 1

0

∫ 1

0

σ2(x, y)dψθ,ε(x)dψθ,ε(y)−
∫ 1

0

∫ 1

0

σ2(x, y)dψθ(x)dψθ(y)| =

|E[σ2(K(X + Uε),K(Y + Vε))− σ2(X,Y )]|.

Using the uniform continuity of σ2, and that |K(X +Uε)−X|, |K(Y + Vε)− Y | ≤ ε almost
surely, we have that there exists an ε > 0 such that the difference is smaller than η. This
bound does not depend on θ.

Now, let us find n0 such that for n ≥ n0,

|
n∑

i,j=1

(σni,j)
2ψθ,ε,ni ψθ,ε,nj −

∫ 1

0

∫ 1

0

σ2(x, y)dψθ,ε(x)dψθ,ε(y)| ≤ η.
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We have

|
n∑

i,j=1

(σni,j)
2ψθ,ε,ni ψθ,ε,nj −

∫ 1

0

∫ 1

0

σ2(x, y)dψθ,ε(x)dψθ,ε(y)|

≤
∫ 1

0

∫ 1

0

|(σn(x, y))2 − σ2(x, y)|dψθ,ε(x)dψθ,ε(y)

where we recall that (x, y) 7→ σn(x, y) is the discretized version of σ. There again, using
the uniform continuity of σ, we have for every ε > 0 the existence of n0 such that for
n ≥ n0, for all x, y ∈ [0, 1], |(σn(x, y))2 − σ2(x, y)| ≤ η. Combining these two inequalities
we get the first point. Then let us show that:

−D(Leb||ψθ,ε) ≥ −D(Leb||ψθ).

Let fε(x) = max{0, ε−1 − ε−2|x|} and

gε(x, y) = fε(x− y) + fε(y + x) + fε(2− x+ y).

We have that:

dψθ,ε

dx
(x) =

∫
[0,1]

gε(x, y)dψθ(y).

Let us notice that
∫

[0,1]
gε(x, y)dy =

∫
[0,1]

gε(y, x)dy = 1. We have

−D(Leb||ψθ,ε) =

∫ 1

0

log

(
dψθ,ε

dx

)
dx

=

∫ 1

0

log

(∫ 1

0

gε(x, y)dψθ(y)

)
dx

≥
∫ 1

0

log

(∫ 1

0

gε(x, y)
dψθ(y)

dx
dy

)
dx

≥
∫ 1

0

∫ 1

0

gε(x, y) log

(
dψθ(y)

dx

)
dydx

≥ −D(Leb||ψθ)

where we used the concavity of log. Finally, using again the concavity, we have for every
i ∈ [1, n]

n

∫ i/n

(i−1)/n

log

(
dψθ,ε(x)

dx

)
dx ≤ log

(
n

∫ i/n

(i−1)/n

dψθ,ε(x)

dx

)
≤ log

(
nψε,θi

)
.

Summing over i gives us the result.

Thererefore, using this lemma for ε > 0, there is ε′ > 0 such that

inf
θ≥0

~Ψ(θ, σn, ψθ,ε
′,n)− F (θ)

θ2
> −ε
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for n large enough and so:

inf
θ≥0

~Ψ(θ, σn, ψθ,ε
′,n)− Fn(θ)

θ2
> −ε.

For n large enough. Therefore, taking

En(θ) := Fn(θ)− ~Ψ(θ, σn, ψθ,ε
′,n)

our result is proven.

6.2 Convergence of large deviation bounds toward the rate function

We can now introduce Inβ and Ĩnβ defined on [rσ,+∞[ the rate functions for the upper
and lower bound of the piecewise constant approximations

Inβ (x) := sup
θ≥0

[J(µσn , θ, x)− Fn(θ)]

Ĩnβ (x) := sup
θ≥0

[J(µσn , θ, x)− Fn(θ) + En(θ)] .

To prove that those two functions converge toward I(x) = I(β)(σ, .) we will need the
following result:

Lemma 6.4. We recall that by definition µn = µσn and µ = µσ. Then

lim
n→∞

µn = µ

and if we denote r(n) the upper bound of the support of µn and l(n) its lower bound, we
have:

lim
n→∞

r(n) = rσ

lim
n→∞

l(n) = lσ.

Proof. The first point is a consequence of Theorem A.5. Let ∆n
N := X

(β)
N −X(β),n

N . We

have ∆n
N := (ΣN − Σ

(n)
N )�W (β)

N . Using Lemma 3.2 and the fact that

lim sup
N

max
i,j
|(ΣN − Σ

(n)
N )i,j | −→

n→∞
0

we have that for every ε > 0 there is n0 such that for any n ≥ n0:

P[||∆n
N || > ε] −→

N→∞
0

In particular if we denote λ1,N < ... < λN,N the eigenvalues of X(β)
N and λ(n)

1,N < ... <

λ
(n)
N,N these of X(β),n

N , on the event {||∆n
N || ≤ ε} we have maxNi=1 |λi,N − λ

(n)
i,N | ≤ ε. And so,

on this event, we have that for any a ∈ R:

#{i ∈ J1, NK : λ
(n)
i,N < a− ε} ≤ #{i ∈ J1, NK : λi,N < a} ≤ #{i ∈ J1, NK : λ

(n)
i,N < a+ ε}

If we denote for t ∈ R, F (t) := µ(] − ∞, t]) and F (n)(t) := µn(] − ∞, t]), using the
convergence in probability of the eigenvalue distribution, this implies that for every t in
R:

F (n)(t− 2ε) ≤ F (t) ≤ F (n)(t+ 2ε).

This then easily implies that |r(n) − rσ| ≤ 2ε.
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This result enables us to finally prove the complete version of Theorem 1.5. Indeed
using the Theorem 3.7 we have that for every ε > 0, P[λmax(X

(β)
N ) ≤ rσ − ε] = o(e−N ).

It suffices to show that for all ε > 0, P[λmax(X
(β)
N ) ≥ rσ + ε] = O(N−2). In both the

continuous and the piecewise constant case that does not satisfy Assumption 3.4, we
can approximate σ by σn positive. And so the results of Lemma 6.4 hold, that is for n
large enough, we have r(n) ≤ rσ + ε/2. For n large enough, we have P[||∆n

N || ≥ ε/2] =

o(exp(−N)). So we have:

P[λmax(X
(β)
N ) ≥ rσ + ε] ≤ P[||∆n

N || ≥ ε/2] + P[λmax(X
(n)
N ) ≥ rσ + ε/2]

= O(N−2)

where we used Theorem A.9 for Xn
N . And so Theorem 1.5 is proved.

Lemma 6.5. • For every x > rσ, the function θ 7→ J(µn, θ, x) converges uniformly on
all compact sets of R+ towards θ 7→ J(µ, θ, x).

• For every x > rσ
Inβ (x)→ I(x)

.
Ĩnβ (x)→ I(x).

where we recall that I is equal to I(β)(σ, .).

Proof. For the first point of the lemma, let’s first prove that for every x ≥ rσ, θ 7→
J(µn, θ, x) converges uniformly on every compact towards the function θ 7→ J(µ, θ, x).
Let l < r be two reals. For µ a probability measure on R whose support is a subset of
]l, r[, let Qµ be the function defined on Dr,ε = {(θ, u) ∈ R+×]r,+∞[: 2θ

β (r− u) ≤ 1− ε} by

Qµ(θ, u) =

∫
y∈R

log

(
1 +

2θ

β
(u− y)

)
dµ(y)

Qµ is continuous in (θ, u) and for K ⊂ Dr,ε a compact we have that the function µ→ Qµ|K
mapping µ to the restriction of Qµ on K is continuous in µ for the weak topology and µ
such that their support is a subset of ]l, r[ when the arrival space is the set of functions on
K endowed with the uniform norm (this is a consequence of Ascoli’s theorem). Let x > rσ
and r, l such that l < lσ < rσ < r < x. For n large enough the support of µn is in ]l, r[. We
have that the sequence of functions θ 7→ v(θ, µn, x) converges to θ 7→ v(θ, µ, x). Indeed if
2θ
β > Gµ(x), then since limn→∞Gµn(x) = Gµ(x), 2θ

β > Gµn(x) for n large enough and the
result is immediate.

If 2θ
β < Gµ(x) then 2θ

β < Gµn(x) for n large enough. Gµn converge towards Gµ on
[r,+∞[, for ε > 0, Kµn is defined on ]0, Gµ(r)− ε] for n large enough and Kµn converges
toward Kµ and therefore Rµn( 2θ

β ) converges towards Rµ( 2θ
β ). For θ = Gµ(x) we use that

v(θ, µ, x) = Rµn( 2θ
β ) if 2θ

β ≤ Gµn(x) and v(θ, µ, x) = (x − β
2θ ) if 2θ

β ≥ Gµn(x) and that the
limits in both cases are v(θ, λ, x).

Then we have that for 2θ/β ≤ Gµ(x)

2θ

β
(r − v(θ, µ, x)) =

2θ

β
(r −Rµ(2θ/β))

=
2θ

β
(r −Kµ(β/2θ) + β/2θ)

≤ 1− 2θ

β
(r −Kµ(β/2θ)).
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Writing 2θ
β = Gµ(y) with y > x we have

2θ

β
(r − v(θ, µ, x)) ≤ 1−Gµ(y)(y − r) ≤ 1−Gµ(x)(x− r)

where we used that y 7→ Gµ(y)(y − r) is increasing.
For 2θ/β ≥ Gµ(x)

2θ

β
(r − v(θ, µ, x)) =

2θ

β
(r − x) + 1

≤ 1−Gµ(x)(x− r).

Taking ε > 0 such that ε < Gµ(x)(x − r) and using the continuity in µ of µ 7→
Gµ(x)(x− r), we have for every compact K ′ ⊂ R+ and n large enough:

sup
θ∈K′

2θ

β
(r − v(θ, µn, x)) ≤ 1− ε.

Therefore, using the convergence of v(θ, µn, x) and the uniform convergence of Qµn on
the compacts of Dr,ε, since:

J(µn, θ, x) = θv(µn, θ, x)− β

2
Qµn(θ, v(µn, θ, x))

we have that J(µn, θ, x) converges towards J(µσ, θ, x). Furthermore, since θ 7→ J(µσ, θ, x)

are continuous increasing functions, by Dini’s theorem the convergence is uniform on all
compact.

We now prove the convergence of In towards I. Let us prove that there is A > 0 and
n0 ∈ N such that for n ≥ n0 and θ > 0

Fn(θ)− En(θ) ≥ Aθ2.

We have

Fn(θ) ≥ θ2

β
P (σn, Leb)

≥ θ2

β

∫ 1

0

∫ 1

0

σ2(x, y)dxdy

and −En(θ) ≥ εθ2 for n large enough. Choosing ε <
∫ 1

0

∫ 1

0
σ2(x, y)dxdy we have our

result.
Then given that J(µn, θ, x) ≤ θmax(rn, x) we have that for any r > rσ, x > rσ, θ > 0

for n large enough:

J(µn, θ, x)− Fn(θ) + En(θ) ≤ rθx−Aθ2

Since limθ→∞ rθx− Aθ2 = −∞. and that θ 7→ J(µn, θ, x)− Fn(θ) + En(θ) converges
toward θ 7→ J(µσ, θ, x)− F (θ) on every compact of R+, we deduce that for every x > rσ:

lim
n→∞

Ĩnβ (x) = I(x)

and in the same way with En = 0:

lim
n→∞

Inβ (x) = I(x).
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6.3 Conclusion

We will now prove that the difference between X
(β),n
N and X

(β)
N is negligible at the

exponential scale.

Lemma 6.6. For every ε > 0 and every A > 0, there exists some n0 ∈ N such that for
n ≥ n0:

lim sup
N

1

N
logP[||X(β),n

N −X(β)
N || ≥ ε] ≤ −A

Proof. We can write that

X
(β),n
N −X(β)

N = ∆n
N �W

(β)
N

where

∆n
N = Σ

(n)
N − ΣN

Let

Mn := sup
i,j
|(∆n

N )i,j |

We have that:

lim
n→∞

Mn = 0

Following Lemma 3.2, we can write that for every n ∈ N, A > 0 there is B > 0 such that

lim sup
N

1

N
logP[(Mn)−1||X(β),n

N −X(β)
N || > B] ≤ −A.

For n0 ∈ N such that MnB ≤ ε for all n ≥ n0, our upper bound is verified.

Therefore, since both I(n)
β (x) and Ĩ(n)

β (x) converge toward Iβ(x), we have a weak large
deviation principle with rate function Iβ. Furthermore since we also have exponential
tightness, we have that Theorem 1.6 holds.

It only remains to relax the positivity assumption 3.4 for the piecewise constant case.

Let σ be a piecewise variance profile. We can approximate σ by σn :=
√
σ2 + 1

n+1 . We

notice then that with this choice of σn:

~Ψ(θ, σn, ~ψ) =
θ2

(n+ 1)β
+ ~Ψ(θ, σ, ~ψ)

so that if 2.4 is verified for σ, it is verified for σn. And so, as we have just done for the
continuous case, we can prove the same way that the rate functions I(σn, .) converges
to I(σ, .) and that the large deviation principle holds with I(σ, .).

7 The case of matrices with 2× 2 block variance profiles

In this section, we will discuss the case of piecewise constant variance profiles with 4
blocks (which are not necessarily of equal sizes) and determine what are the cases where
the Assumption 2.4 holds. In particular, we will provide examples where the maximum
argument of Assumption 2.4 can be taken continuous without the need for the concavity
assumption.

Let’s take a piecewise constant variance profile defined by ~α = (α, 1− α) and σ1,1 =

a, σ2,2 = b, σ1,2 = σ2,1 = c. In order to apply Theorem 1.6 we need to study the maximum
argument for θ fixed of:

ψ(x, θ) = ~Ψ(σ, θ, (x, (1−x))) =
θ2

β
[a2x2+b2(1−x)2+2c2x(1−x)]+

β

2
[α log x+(1−α) log(1−x)].
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Figure 1: Case xmin ≥ 1/2

Since we can change α in 1− α by switching a and b, we can suppose without loss of
generality that α ≤ 1/2.

We have

∂xψ(x, θ) :=
2θ2

β
[a2x− b2(1− x) + c2(1− 2x)] +

β

2

(
α

x
− 1− α

1− x

)
.

Let Φ(x, θ) := x(1− x)∂xψ(x, θ), so that Φ(., θ) vanishes at the critical points of ψ(., θ).
We have that:

Φ(x, θ) = (a2 + b2 − 2c2)
2θ2

β
x(x− xmin)(1− x) +

β

2
(α− x).

where

xmin :=
c2 − b2

2c2 − a2 − b2

xθ = argmaxx∈[0,1]ψ(x, θ).

7.1 Case with (a2 + b2 − 2c2) ≤ 0

In the case (a2 + b2 − 2c2) ≤ 0 we have the ψ(., θ) is strictly concave and therefore
θ 7→ xθ is analytical and assumption 2.4 is satisfied and the large deviation principle
applies.

From now on, we assume (a2 + b2 − 2c2) > 0.

7.2 Case xmin ≥ 1/2

We look for the zeros of Φ(., θ) in [0, 1]. To this end, we look for the intersection
points of the curve of equation y = x(1− x)(x− xmin) and the line y = Aθ(x− α) where

Aθ = β2

4θ2(a2+b2−2c2) .
We notice that there is a critical value θcrit such that for θ ≤ θcrit, there is only one

critical point xθ1 which is on ]0, 1/2[. For θ > θcrit we have the apparition of two other
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Figure 2: Case xmin ≤ α

critical points xθ2 and xθ3 that are such that 1/2 < xθ2 < xθ3 with ψ(xθ2, θ) being a local
minimum and ψ(xθ3, θ) a local maximum. For x ∈]0, 1[, we have:

ψ(x, θ)− ψ(1− x, θ) =

β

2
(1− 2α)(log(1− x)− log x) +

θ2

β
(a2 + b2 − 2c2)[(x− xmin)2 − (1− x− xmin)2].

For x < 1/2, we have ψ(x, θ) > ψ(1− x, θ) and so the absolute maximum of ψ(., θ) is
attained at x = xθ1. Furthermore, we notice the line y = Aθ(x−α) is never tangent to the

graph y = x(x − xmin)(1 − x) in the point of first coordinate xθ1, we have ∂xΦ(x
(θ)
1 , θ) 6=

0. Now using the implicit function theorem, we have θ 7→ xθ1 is analytical and so
Assumption 2.4 is verified.

7.3 Case xmin ≤ α

There is again a critical value θcrit such that for θ ≤ θcrit, there is only one critical
point xθ1 which is on ]α, 1[ and for θ > θcrit we have the apparition of two other critical
points xθ2 and xθ3 such that xθ3 < xθ2 ≤ α. We have furthermore:

ψ(x, θ)−ψ(2α−x, θ) =
β

2
[α log x−(1−α) log(1−2α+x)]+

β

2
[(1−α) log(1−x)−α log(2α−x)]

+
θ2

2
(a2 + b2 − 2c2)[(x− xmin)2 − (2α− x− xmin)2].

For x < α, ψ(x, θ) < ψ(2α−x, θ) and there the absolute maximum of ψ(., θ) is attained
on ]α, 1[, so for xθ1. Since θ 7→ xθ1 is analytical, Assumption 2.4 is verified.
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7.4 Case α = 1/2 and xmin = 1/2

Then x 7→ ψ(x, θ) is symmetrical in 1/2. Looking at the zeros of Φ(., θ) we have that if
we set θcrit := β

√
2/(a2 + b2 − 2c2) for θ ≤ θcrit there is only one zero a x = 1/2 and for

θ ≥ θcrit there is three zeros in x = 1/2 and x = 1
2 ± δ(θ) where δ(θ) = β

2θ

√
2

(a2+b2−2c2) .

Furthermore, for θ ≤ θcrit, ψ(., θ) has its maximum in x = 1/2 and for θ ≥ θcrit, ψ(., θ) has

its maximum at both points x = 1/2± δ(θ) where δ(θ) = 1
2

√
1− 2β2

θ2(a2+b2−2c2) . Therefore

the function θ 7→ 1/2 for θ ≤ θcrit and θ 7→ 1/2 + δ(θ) for θ ≥ θcrit is a continuous
determination of the maximal argument of ψ(., θ) and so Assumption 2.4 is verified and
the large deviation principle holds. This gives an example where the maximum argument
in Assumption 2.4 is neither unique nor C1 but where we can still derive a large deviation
principle.

7.5 Case xmin ∈]α, 1/2[ and pathological cases

The graph we obtain is similar to the graph of the first case. In this case, we also have
a θcrit such that for θ ≤ θcrit, there is only one critical point xθ1 which is in ]0, α[ and then
the apparition of two other critical points xθ2 and xθ3 that are such that 1/2 < xθ2 < xθ3,
ψ(xθ2, θ) being a local minimum and ψ(xθ3, θ) a local maximum. But in this case for high
values of θ, we have that the maximum is attained near 1 and so for these high values xθ3
is the maximum argument. We have a discontinuity in the maximum argument and so
Assumption 2.4 is not verified.

Let us now show that if xmin ∈]α, 1/2[ and c = 0, the largest eigenvalue satisfies a
large deviation principle but with a rate function J different from I.

Our matrix X(β)
N then looks like:(√

aαT
(β)
αN 0

0
√
b(1− α)U

(β)
(1−α)N

)

where (T
(β)
N )N and (U

(β)
N )N are independent Wigner matrices. We have:

λmax(X
(β)
N ) = max{

√
aαλmax(T

(β)
αN ),

√
b(1− α)λmax(U

(β)
(1−α)N )}.

But both these quantities satisfy large deviation principles, more precisely, if Iβ
is the rate function for the large deviation principle of [27] for a Wigner matrix,
λmax(

√
aαT

(β)
αN ) follows a large deviation principle with rate function αIβ( x√

aα
) and

λmax(
√
b(1− α)U

(β)
(1−α)N ) follows a large deviation principle with rate function (1 −

α)Iβ( x√
b(1−α)

). Now λmax(X
(β)
N ) follows a large deviation principle with rate function Jβ

which is:

Jβ(x) := min{αIβ(
x√
aα

), (1− α)Iβ(
x√

b(1− α)
)}

In particular, if we choose α, a, b such that aα > b(1 − α) and b > a, we notice that
Jβ(x) = αIβ( x√

aα
) for x near aα and Jβ(x) = (1− α)Iβ( x√

b(1−α)
) for large x. In this case

one can notice that Jβ is not a convex function and therefore cannot by obtained as
supθ{J(x, µσ, θ)− F (θ)} since it is a sup of convex functions. We have J 6= I. For c > 0

but small enough we can also conclude that the large deviation principle still does not
hold. Indeed, if we denote Ic the rate function we expect using the formula of section 2.
Since I0 still provides a large deviation upper bound, we have J ≥ I0 and so let x0 ∈ R+

such that J(x0) ≥ I0(x0) + η for some η > 0 (x0 does exists since J 6= I0). Using the same
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Figure 3: Graph of the rate function αI(x/
√
aα) and (1−α)I(x/

√
b(1− α)) with α = 2/3,

a = 3, b = 4

approximation arguments as in section 6, we have that there exists ε > 0 such that for
c < ε, Ic(x0) < I0(x0) + η/3 and:

lim
δ→0

lim sup
N

− 1

N
logP[λmax(XN )∈ [x0−δ, x0+δ]] ≥ J(x0)−η/3 ≥ I0(x0)+2η/3 ≥ Ic(x0)+η/3

Since Ic is continuous in x0, we have that there cannot be a large deviation principle
with the rate function Ic.

8 Looking for an expression of the rate function

In this section we will present a method to explicitly compute the rate function I in
the piecewise constant case under some hypothesis on the behavior of F . First, let us
describe F in a neighbourhood of θ = 0.

Theorem 8.1. Let σ be a continuous or piecewise constant variance profile, there is
θ0 > 0 such that for θ ≤ θ0:

F (σ, θ) =
β

2

∫ 2
β θ

0

R(w)dw

Where R is the R-transform of the measure µσ.

Proof. This result was proved in the case of a linearisation of a Wishart matrix in section
4.2 of [27]. For the sake of completeness, we will reproduce here this proof. For the
lower bound, we have for M > rσ and 2θ/β ≤ G(M) (where G is the Stieltjes transform
of the measure µσ):

F (σ, θ) ≥ lim inf
N→∞

1

N
EXN [1λmax(XN )<MIN (XN , θ)] ≥

β

2

∫ 2
β θ

0

R(w)dw

This is due to the fact that for 2θ/β ≤ G(x), J(θ, x, µ) = β
2

∫ 2θ
β

0 R(θ)dθ. For the upper
bound, we write:
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EXN [IN (XN , θ)] ≤
+∞∑
n=1

EXN [1(n−1)M≤λmax(XN )<nMIN (XN , θ)]

≤EXN [1λmax(XN )<MIN (XN ,θ)]+

+∞∑
n=2

EXN [1(n−1)M≤λmax(XN )<nMIN (XN, θ)]

≤ EXN [1λmax(XN )<MIN (XN , θ)] +

+∞∑
n=2

exp(−K(n− 1)M + nNMθ)

≤ EXN [1λmax(XN )<MIN (XN , θ)] + eNθM
exp(M(θ −K)N)

1− exp((Mθ −K)N)

Where we used that for N large enough, we have for every N , P[λmax(XN ) ≥ M ] ≤
exp(−KM) for some K > 0 and that for λmax(XN ) ≤ M , IN (XN , θ) ≤ eMθ. Now, by
choosing θ small enough such that (2θ −K) < 0, we have the upper bound.

The main results of this section is the following:

Theorem 8.2. If the function θ 7→ F (σ, θ) is analytic, then the R transform of µσ has an
analytic extension on R+ and then the rate function I(σ, .) only depends on µσ.

Proof. Since F (σ, .) is analytic and so is R and since we have F ′(σ, θ) = R( 2θ
β ) for small

θ, F depends only on R that is on µσ and F ′(βx2 ) extends R on R+. Then, looking at the
expression of I(σ, .), it only depends on µσ.

Remark 8.3. Without any condition on the variance profile σ, we do not have that I(σ, .)

depends only on µσ. For instance if we take XN and X ′N independent matrices both with
the same variance profile σ, α, β > 0 such that α > β and α+ β = 1, then the following
matrix has a variance profile:

YN =

(
XαN 0

0 X ′βN

)
.

And then λmax(YN ) = max(λmax(XαN ), λmax(XβN )). We have that λmax(YN ) satisfy a
large deviation principle with rate function βI(σ, .) whereas this matrix has for limit
measure µσ whatever the choice of β.

In the case of a piecewise constant variance profile, the same concavity hypothesis
as before implies the analyticity of the function F (σ, .) (this is due to the fact that with
the implicit function theorem, the maximum argument is indeed analytic in θ).

Proposition 8.4. If the Assumption 2.5 holds in the case of a piecewise constant case
then the function θ 7→ F (σ, θ) is analytic.

We will now shortly discuss how we can obtain an explicit expression of the rate
function in the context of a piecewise constant variance profile which satisfies the
hypothesis of Theorem 8.2. For this, we will need the following proposition:

Proposition 8.5. If the hypothesis of Theorem 8.2 are verified and if θ 7→ R(θ) + 1
θ is

strictly increasing on [G(rσ),+∞[, then we have:

I(σ, x) =
β

2

∫ x

rσ

(G(u)−G(u))du.

where we analytically extended R on R+, where G(rσ) = limx→r+σ G(x) and where G is

the inverse function of θ 7→ R(θ) + 1
θ on [rσ,+∞[.
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Proof. for x ≥ rσ, we have that:

J(µσ, θ, x)− F (σ, θ) =


0 for 2θ/β ≤ G(x)

θx− β
2 −

β
2

(
log
(

2θ
β

))
− β

2

∫
log(x− y)dµσ(y)− β

2

∫ 2θ
β

0 R(w)dw

for 2θ/β ≥ G(x).

Differentiating in θ, we have:

∂

∂θ

(
J(µσ, θ, x)− F (σ, θ)

)
=

{
0 for 2θ/β ≤ G(x)

x− β
2θ −R

(
2θ
β

)
for 2θ/β ≥ G(x)

.

And so, the maximum is realized for θx > βG(x)/2 such that x = β
2θx

+ R
(

2θx
β

)
. By

hypothesis, this is equivalent to θx = β
2G(x). And so we have for x > rσ

∂

∂x
I(σ, x) = θx −

β

2
G(x)

We deduce the result by integrating.

Remark 8.6. In practice, in the case of a piecewise constant variance profile the equa-
tions of section A give that G(z) is a algebraic function, that is a root of some polynomial
P (., z). So we have, for θ ≤ G(rσ), P (θ,R(θ) + θ−1) = 0. Using the analytical extension
of R on R+, this stays true for any θ > 0 and therefore P (G(z), z) = 0. So G naturally
presents itself as a conjugate root of G(z). For example, in the Wigner case we have

G(z) = z−
√
z2−4
2 and G(z) = z+

√
z2−4
2 , and we we end up with I(x) = β

2

∫ x
2

√
u2 − 4du. In

the case of the linearisation of of Wishart matrix (see section 4.2 of [27]), we have:

G(x) =
2α

1 + α

x2 + 1− α−
√

(x2 − 1− α)2 − 4α

2x
+

1− α
1 + α

1

x

and

G(x) =
2α

1 + α

x2 + 1− α+
√

(x2 − 1− α)2 − 4α

2x
+

1− α
1 + α

1

x

and so we have I(x) = βα
1+α

∫ x
rσ

√
(u2−1−α)2−4α

2u du.

A Appendix: The limit of the empirical measure

In this section, we describe the limit of the empirical measure µσ of the matrices XN .
We will also discuss the stability of this measure in function of σ. Under assumptions of
positivity for the variance profile, we will prove that the largest eigenvalue converges
toward the rightmost point of the support of µσ. We denote H+ the complex upper
half-plane {z ∈ C : =z > 0} and H− the complex lower half-plane {z ∈ C : =z < 0}.
To describe the limit of the empirical measure we need the following definition for
the so-called canonical equation (also called quadratic vector equation). The following
definition takes into account both the piecewise constant and the continuous case:

Definition A.1. Let σ : [0, 1]2 → R+ be a bounded symmetric measurable function. We
call canonical equation Kσ the following equation where m is a function from H+ into H,
where H is the set of measurable and bounded functions m from [0, 1] to H−,

1

m(z)
= z − Sm(z) (Kσ)
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.

Here S is the following kernel operator for f ∈ H:

Sf(x) :=

∫ 1

0

σ2(x, y)f(y)dy

.

If w is a function from [0, 1] to C, we denote ||w|| = supx∈[0,1] |wx|. If S is an operator
on the space of functions from [0, 1] to C, we denote ||S|| operator norm corresponding
to the previous norm. If m is a function from H+ to H, we denote mx the function
z 7→ m(z)(x). We then have the following result concerning the solution of the equation:

Theorem A.2. The equation Kσ has a unique solution m which is analytic in z. Moreover
for every x ∈ [0, 1], the function mx = m(.)(x) is the Stieltjes transform of a probability
measure px on R.

This theorem is in fact a direct application of Theorem 2.1 from [4] which states that
the equation Kσ always has a solution in a more general context where we replace [0, 1]

by a probability space X and S is a symmetric, positivity preserving operator on the
space of uniformly bounded complex functions on X.

Remark A.3. If σ is a piecewise constant variance profile with parameters α1, ..., αn and
(σi,j)1≤i,j≤n, then the solution of (Kσ) is piecewise constant on the intervals Ij . This
can be viewed directly from Kσ by noticing that Sf is always piecewise constant on the
intervals Ij .

We will denote µσ :=
∫ 1

0
pxdx where px is given by the preceding theorem. And so we

have that the Stieltjes transform of µσ is
∫ 1

0
mxdx. This measure µσ will be the limit of

the empirical measures µ̂N of the matrices X(β)
N . To prove this, we will use the following

result which is a reformulation of Girko’s result [26, Theorem 1.1].

Theorem A.4. Let us denote σN : [0, 1]2 → R+ the function (x, y) 7→ ΣN (dNxe, dNxe).
When N tends to infinity, for almost every x we have that with probability 1:

lim
N→∞

∣∣∣µ̂N (]−∞, x])−
∫ x

−∞
dµσN (x)

∣∣∣ = 0

.

Proof. First, since for all N , ΣN is bounded and since the coefficients of X(β)
N are

centered, hypothesis (1.1) and (1.2) are verified. Then, since we have a sharp sub-
Gaussian bound on the entries of X(β)

N , we can easily verify the Lindeberg’s condition
(1.3). Furthermore, since σN is piecewise constant, the solution m of KσN is piecewise
constant on the intervals [i/N, (i + 1)/N ]. Making the change of variables ci(z) =

m(2i−1)/2(z) we have that the equationKσN is equivalent, up to the sign since our Stieltjes
transform convention is different, to the matricial equation given in [26, Theorem 1.1].

And so we are left with determining the convergence of the measure µσN when N

tends to +∞. To that end, we will need the following rough stability results.

Theorem A.5. Let σ : [0, 1]2 → R+ be a bounded measurable function. For every open
neighbourhood V of µσ in P([0, 1]) for the vague topology, there is η > 0 such that
for every σ̃ bounded measurable function such that supx,y∈[0,1]2 |σ2(x, y)− σ̃2(x, y)| ≤ η,
µσ̃ ∈ V.

Proof. This proof is inspired from the proof of [1, Proposition 2.1]. We let S̃ be the kernel
operator with kernel σ̃2. Let H+

η = {z ∈ C : =z ≥ η, |z| ≤ η−1}, H−η = {z ∈ C : =z ≤
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−η, |z| ≤ η−1} and D the function defined on (H−)2 by

D(ζ, ω) =
|ζ − ω|2

=ζ=ω

then d := arcosh(1 +D) is the hyperbolic distance on H−. For u a function from H+
η to H

we let Φ(u) and Φ̃(u) be functions from H+
η to H defined as follows for z ∈ H+

η :

Φ(u)(z) :=
1

z − Su(z)

Φ̃(u)(z) :=
1

z − S̃u(z)
.

If Bη := {u : H+
η → H : supx∈[0,1],z∈H+

η
=ux(z) ≤ − η3

(2+min{||S||,||S̃||})2 , supx∈[0,1],z∈H+
η

|ux(z)| ≤ η−1}, then following the proof of [1, Proposition 2.1], if u is such that for all
z ∈ H+

η , and all x ∈ [0, 1], ux(z) ∈ H−η , then Φ(u) ∈ Bη. Then, if η < 2 + min{||S||, ||S̃||},
η3

(2+min{||S||,||S̃||})2 ≤ η, Φ maps Bη onto itself and so on for Φ̃.

For x ∈ [0, 1], z ∈ H+
η and δ ≥ supx,y |σ2(x, y)− σ̃2(x, y)|

D(Φ(u)x(z), Φ̃(u)x(z)) = D((Su)x(z)− z, (S̃u)x(z)− z)

≤ |(S − S̃)ux(z)|2

=z2

≤
δ2 supx∈[0,1] |ux(z)|2

η2

≤ δ2

η4
.

Let m be the solution of Kσ, that is the fixed point of Φ. For every n ∈ N let
v(n) = Φ̃(n)(m). We have for z ∈ H+

η :

sup
x∈[0,1]

D(mx(z), v(1)
x (z)) ≤ δ2

η4

and following again [1],

sup
x∈[0,1]

D(v(n+1)
x (z), v(n)

x (z)) = sup
x∈[0,1]

D(Φ̃(v(n))x(z), v(n)
x (z))

≤
(

1 +
η2

||S||

)−2

sup
x∈[0,1]

D(v(n)
x (z), v(n−1)

x (z))

and so we have:

sup
x∈[0,1]

D(v(n+1)
x (z), v(n)

x (z)) ≤ δ2

η4

(
1 +

η2

||S̃||

)−2n

.

And so for δ small enough, (v(n))n∈N is a Cauchy sequence for the distance
dH+

η
(u, v) = supx∈[0,1],z∈H+

η
arcosh(1 +D(ux(z), vx(z))) which is converging toward m̃

the fixed point of Φ̃ and

dH+
η

(m, m̃) ≤
+∞∑
n=0

arcosh

(
1 +

δ2

η4

(
1 +

η2

||S̃||

)−2n
)
.
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Therefore for every ε > 0 and η > 0, there is δ > 0 small enough such that
supx,y |σ2(x, y)− σ̃2(x, y)| ≤ δ implies dH+

η
(m, m̃) ≤ ε. Since a base of neighbourhood of

µσ for the vague topology is given by:

Vη := {λ ∈ P(R) : ∀z ∈ H+
η , |Gµσ (z)−Gλ(z)| ≤ η}

and because the vague topology and the weak topology are equal on the set P(R)

of probability measure on R, we have our result since Gµσ =
∫ 1

0
mxdx and Gµσ̃ =∫ 1

0
m̃xdx

Corollary A.6. In the case of a continuous variance profile σ, µ̂N converges in probability
towards µσ.

Proof. This is a consequence from Theorem A.4 and Theorem A.5 by noticing
that limN→∞ supx,y∈[0,1] |(σN )2(x, y)− σ2(x, y)| = 0.

We will also need a similar result for the piecewise constant case.

Theorem A.7. Let s = (si,j)
n
i,j=1 ∈ Sn(R+) and ~α, ~β ∈ (R+,∗)n be two vectors of positive

coordinates summing to one and let γi =
∑i
j=0 αj and γ̃i =

∑i
j=0 βj . Let σ and σ̃ and

the two piecewise constant variance profiles associated respectively with the couples
(s, ~α) and (s, ~β) and v and ṽ the solutions respectively of Kσ and Kσ̃. For i ∈ J1, nK
let also mi and m̃i be the holomorphic functions given by vx =

∑n
i=1 1γi−1≤x<γimi and

ṽx =
∑n
i=1 1γ̃i−1≤x<γ̃im̃i. Then for every η > 0 there is ε > 0 such that if supi |αi− βi| ≤ ε,

then for all z ∈ H+
η , we have supi |mi(z)− m̃i(z)| ≤ η.

Note that if we impose si,j > 0 for all i, j, this result is a particular case of Proposition
10.1 [6]. However, since we would like for si,j to be potentially 0, we present the
following proof which while not at the same level of generality and quantitative bounds
will be sufficient enough.

Proof. We use the same notations as in the previous proof. Since v is the solution of Kσ,
the mi satisfy the following system:

mi =
1

z −
∑n
j=1 αjs

2
i,jmj

,

For the m̃i, we have:

m̃i =
1

z −
∑n
j=1 βjs

2
i,jm̃j

.

For u a function from H+
η to (H−)n, we let Φ(u) and Φ̃(u) be two functions from H+

η to
(H−)n defined for z ∈ H+

η and i = 1, . . . , n by:

(Φ(u)(z))i =
1

z − (Su)i(z)

and

(Φ̃(u)(z))i =
1

z − (S̃u)i(z)

where S and S̃ are the linear applications defined by

∀i = 1, ..., n, (Su)i =

n∑
i=1

αis
2
i,juj and (S̃u)i =

n∑
i=1

βis
2
i,juj

.
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As in the previous proof, if Bη := {u : H+
η → (H−)n : supz∈H+

η
=u(z) ≤ −η3

(2+min{||S||,||S̃||})2 ,

supz∈H+
η
||u(z)|| ≤ η−1}, Φ and Φ̃ maps Bη onto itself for η small enough. For u ∈ Bη, we

have as before if δ ≥ (supi,j s
2
i,j)(supk |αk − βk|), for all i:

D(Φ(u)i(z), Φ̃(u)i(z)) ≤
|(S − S̃)(u)i(z)|

=z2

≤ δ2

η4

Then, using the same reasoning as in the previous case, we have that for every η > 0,
there is δ′ > 0 such that if supi |αi − βi| ≤ δ′ then supz∈H+

η
supi |mi(z)− m̃i(z)| ≤ η.

Remark A.8. A more elementary proof of the convergence of the measure can also
be obtained since we have bounds on the moments of the entries in our case via a
classical moments methods. Let us consider for any k ∈ N, we consider Wk the set of
words w = (w1, ..., w2k+1) on J1, k + 1K such that {w1, ..., w2k+1} = J1, k + 1K, w1 = w2k+1

and such that for any i ∈ J1, k + 1K, there is exactly one j ∈ J1, k + 1K \ {i} such that
{wi, wi+1 } = {wj , wj+1}. For such words w, we define Ew := {{wi, wi+1} : i ∈ J1, 2k+1K}.
On this set, we can define a relation of equivalence ∼ by letting w ∼ w′ if there is a
permutation f of J1, k + 1K such that f(wi) = w′i for every i. We can then defineWk an
arbitrary set of representative of Wk for the equivalence relation ∼. Then using classical
arguments for the computation of moments of µ̂N , one can see, using that the k-th
moment of the entries of X(β)

N is bounded uniformly in N , that we have that for k ≥ 0:

E[µ̂N (xk)] =
1

N
E[Tr(X

(β)
N )k] = cNk +O(N−1/2)

and

V ar(µ̂N (xk)) = O(N−1/2)

where cNk = 0 for k odd and

cN2k = N−k−1
∑
w∈Wk

N∑
i1,...,ik+1=1

pairwise distinct

∏
{k,l}∈Ew

Σ2
N (ik, il)

We redirect the reader to [9, Section 2] for instance to get an overview of such methods
in the case of classical Wigner matrices. One can then find that in the piecewise constant
case:

lim
N→∞

cN2k =
∑
w∈Wk

n∑
i1,...,ik+1=1

k+1∏
j=1

αij
∏

{k,l}∈Ew

σ2
ik,il

and in the continuous case:

lim
N→∞

cN2k =
∑
w∈Wk

∫
[0,1]k+1

∏
{k,l}∈Ew

σ2(xk, xk+1)dx1...dxl.

So if we denote ck = limN→∞ cNk , we have that in probability µ̂N converges toward a
measure µσ whose moments are the ck.

In order to apply the full results of [2], we will need the positivity assumption 3.4 for
the piecewise constant variance profile. We then have the following convergence result:
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Theorem A.9. If we are in the piecewise constant case with Assumption 3.4 satisfied,
if we let lN and rN be respectively the left and right edge of the support of µ̂N , that is
respectively the smallest eigenvalue and largest eigenvalue of X(β)

N and lσ and rσ the
left and right edges of the support of µσ, we have for every δ > 0, D > 0,

P[rN ≥ rσ + δ or lN ≤ lσ − δ] ≤ N−D

for N large enough.

Proof. This is in fact an application of corollary 1.10 from [2] which states that the
extreme eigenvalues cannot leave the neighborhood of the support of µσN where σN
is the same as in Theorem A.4. We need only to check the hypothesis (A) to (D). Up
to multiplication by a scalar, our matrix model satisfies the boundedness condition (A)
and the Assumption 3.4 gives us the positivity hypothesis (B). The sharp-sub Gaussian
hypothesis gives (D). For the boundedness condition on the Stieltjes transform (C) we
can use Theorem 6.1 from [4]. Our kernel operator S satisfy assumptions A1,A2 and
B1. Particularly we can use remark 6.2 and 6.3 to bound m respectively away and near
0. Then, we need only to prove that rσN and lσN converges toward rσ and lσ. This
can be done for instance by looking at the expression on the moments of µσN and µσ
given in Remark A.8. σN and σ are both piecewise constant functions with σ being
associated with the parameters (σi,j)i,j∈J1,nK and (αi)i∈J1,nK and σN being associated with
the parameters (σi,j)i,j∈J1,nK and (αNi )i∈J1,nK where the αNi are defined by

αNi :=
|I(N)
i |
N

where we remind that the I(N)
i are defined in subsection 1.1. Since limN→∞ αNi = αi for

any ε > 0 we have that for N large enough:

∀i ∈ J1, nK, (1− ε)αNi ≤ αi ≤ (1 + ε)αNi

Then using the formula of Remark A.8 which gives the moments of µσN and µσ in terms
of the σi,j and the αi and αNi we see that for every ε > 0, for N large enough, we have
that for every k ∈ N, (1 − ε)k+1µσN (x2k) ≤ µσ(x2k) ≤ (1 + ε)k+1µσN (x2k). We conclude
using that since the µσ and µσN are symmetric, rσN = −lσN = limk→∞ µσN (x2k)1/2k and
rσ = −lσ = limk→∞ µσ(x2k)1/2k.

B Appendix: Proof of Lemma 3.7

This section is devoted to the proof of Lemma 3.7. For this, we will use a concentration
results respectively from [29] and Theorem A.4

Theorem B.1. By [29, (Corollary 1.4 a)] (for the compact case) and [29, Corollary 1.4
b)] (for the logarithmic Sobolev case), we have for β = 1, 2, and for N large enough

lim sup
N→∞

1

N7/6
logP[d(µ̂N ,E[µ̂N ]) > N−1/6] < 0

where d is the Wasserstein distance distance defined for two measure µ, ν ∈ P(R) by

d(µ, ν) = sup
f∈FLip

∣∣∣ ∫ fdµ−
∫
fdν

∣∣∣
with FLip being the set of bounded Lipschitz real function f of R, such that ||f ||∞ +

||f ||Lip ≤ 1, where

||f ||Lip = sup
x,y∈R
x 6=y

|f(x)− f(y)|
|x− y|
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Therefore we only need to show that

lim
N→∞

d(E[µ̂N ], µσ) = 0

Using Theorem A.7, we have that limN→+∞ d(µσN , µσ) = 0 and therefore, using
Theorem A.4 we have in probability limN→+∞ d(µ̂N , µσ) = 0. From this, we can deduce
that limN→∞ d(E[µ̂N ], µσ) = 0. Indeed, if f is a continuous function bounded in absolute
norm by 1, We have in probability that limN→∞ µ̂N (f) = µσ(f) and so since |µ̂N (f)| ≤ 1,
we have limN→∞E[µ̂N ](f) = µσ(f).
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