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Abstract

We study the winding behavior of random walks on two oriented square lattices. One
common feature of these walks is that they are bound to revolve clockwise. We also
obtain quantitative results of transience/recurrence for each walk.
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1 Introduction

Spitzer’s celebrated theorem [35] states that the winding angle of a planar Brownian
motion up to time t, rescaled by 1

2 log t, has standard Cauchy as its limiting distribution.
Since then, the winding behavior of planar processes has attracted the interest of many
researchers. For the 2D simple random walk, Bélisle [2] showed that its winding angle
has the same scaling limit as the big winding angle of a 2D Brownian motion, that is,
the winding angle taking place outside a small ball centered at the origin. The latter
is determined to be asymptotically hyperbolic secant with density (1/2)sech(πu/2) in
[27, 31]. We refer to [3] for a detailed review on this topic. See also [34, 33, 7].

In a different direction, the study of random walks on oriented lattices has intensified
in the last few decades with motivations from many sources, including the Matheron-de
Marsily model of transport in porous media [24], discretized gauge theories [8, 9] and
the theory of random walks in random media [18]. Various aspects of these models are
studied (e.g. [17, 11], [16, 28, 10]) with many extensions [12, 6, 23] and connections to
other models [26, 25, 29]. Except in special cases, random walks on oriented lattices
are non-reversible and non-elliptic, which poses a unique set of challenges for analysis.
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Recurrence and windings of two revolving random walks

(a) Graph G1 (b) Graph G2

Figure 1: The graph G1 in figure (a) is transient, whereas the graph G2 in (b) is recurrent.
The arrows indicate the orientation of the corresponding edges.

(a) Random walk on G1 (b) Random walk on G2

Figure 2: Simulated trajectories of 5000 steps of the random walks on G1 and G2. Note
the different scaling of the axes.

In this paper we study the winding behavior of the random walks on two oriented
lattices G1 and G2, illustrated in Figure 1. This is of particular interest, as both random
walks are bound to revolve clockwise around the origin. After deducing the asymptotic
laws of windings, we explain how these laws are closely related to more classical ones,
such as the Spitzer’s law. For each walk, we also derive quantitative results of transience
or recurrence through our understanding of the windings.

1.1 Models and results

We give the precise definitions of G1 and G2. Define the directed graph G1 = (Z2,E1)

such that a directed edge (v, w) = ((v1, v2), (w1, w2)) ∈ E1 if and only if (w1, w2) =

(v1, v2 ± 1), or (w1, w2) = (v1 + 1, v2) and v2 = w2 ≥ 0, or (w1, w2) = (v1 − 1, v2) and
v2 = w2 < 0. The graph G2 = (V,E2) can be obtained with a slight modification of
G1 by redefining only the orientations of the edges leading out from x-axis, that is,
((v1, 0), (w1, w2)) ∈ E2 with v1 = w1 and w2 = ±1 if and only if w2 = −1 and v1 = w1 > 0,
or w2 = 1 and v1 = w1 < 0, or w2 = ±1 and v1 = w1 = 0.

Although G1 and G2 may look very similar, the random walks on them exhibit com-
pletely different behaviors. The graph G1 appeared for the first time in [8], where a proof
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Recurrence and windings of two revolving random walks

of transience was given; the graph G2 was introduced later in [26, 25] and the random
walk on it turns out to be recurrent. The recurrence of G2 follows from Corollary 4.8 in
[20], as pointed out in [5, Prop. 7.8]. Both random walks, considered at their successive
returns to the x-axis, belong to the class of 1D oscillating random walks [20, 26, 25],
with G2 critically recurrent in the class.

Run a simple random walk on G1. Let NG1
(n) be the number of windings around the

origin up to the n-th step. See (2.19) for the formal definition. Our first result is a strong
LLN for NG1

(n).

Theorem 1.1.
NG1

(n)

log n
→ 1

2π
a.s.

Note that this is in sharp contrast with the winding angle of classical 2D Brownian
motion and random walks, which have nontrivial scaling limits.

In order to prove Theorem 1.1, we obtain a local limit theorem for the return proba-
bilities on G1. More precisely, let (Mi)i≥0 be the simple random walk on G1 and let Tn
be the time just after the n-th vertical step of M . Write P0 for the law of (Mi)i≥0 starting
at the origin. Then we have the following precise asymptotics:

Theorem 1.2.

P0 (MT2n
= (0, 0)) ∼ 1

2
√
πn3/2

.

Theorem 1.2, in turn, provides a new proof of the transience, see Corollary 2.6. In
[11], similar results as Theorem 1.2 are obtained for random walks on randomly oriented
lattices.

Now consider the simple random walk on G2. To study its winding, we will focus on a
continuous-time process (Wt)t≥0 on R2, which is the scaling limit of the random walk on
G2. Starting from the negative x-axis, the process Wt drifts at unit speed to the right
while performing a reflected Brownian motion vertically, until the first time it hits the
positive x-axis, see Figure 3; then it continues analogously in the lower half plane but to
the left until hitting the negative x-axis, and keeps alternating between two possibilities.
A precise definition of Wt is given in Section 3.1.

(0,0)(-m,0) H B
1

Figure 3: Illustration of the first step of the ladder height process.

Let Nt be the winding number of Wt around the origin up to time t. As shown in
[2], the big windings of a continuous process better capture the winding behavior of
its discrete counterpart. So for ε > 0, also consider the big winding number N b

t taking
place outside a small ball of radius ε centered at the origin. The scaling limit in (1.2)
below does not depend on the choice of ε.

Theorem 1.3.
2π2Nt
log2 t

d
=⇒ ρ1 (1.1)

and
2π2N b

t

log2 t

d
=⇒

∫ ρ1

0

1{βs>0}ds (1.2)
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Recurrence and windings of two revolving random walks

as t→∞. Here βs is a standard Brownian motion and ρh represents its first hitting time
at h ∈ R.

Note that the limit in (1.2) has the same law as the hitting time of a reflected
Brownian motion at one. So unlike the Lévy distribution (1.1), the distribution in (1.2)
has sub-exponential tails. The comparison between (1.1) and (1.2) shows that it is the
small windings near the origin that give the scaling limit of Nt its heavy tails. Similar
comments were made about the planar Brownian motion in [3].

In particular, Theorem 1.3 shows that the winding and big winding numbers of Wt

grow faster than those of a planar Brownian motion. The difference results from the
fact that Wt is only allowed to wind in the clockwise direction, whereas the planar
Brownian motion chooses both directions randomly. Surprisingly, the heuristic goes
further by explaining the difference in scaling limits: the Cauchy and hyperbolic secant
distributions have the same law as the Brownian motion subordinated to an independent
random time distributed as (1.1) and (1.2) respectively. In other words, their scaling
limits are off essentially by a central limit theorem. In the same spirit, Theorem 1.1
should be compared with the law in [4].

Our last result is about the tail of return time on G2, which quantifies its recurrence.
For SRW on Z2, Dvoretzky and Erdös [14] showed that the return time to the origin
has a tail of order Θ(1/ log k). By analyzing Wt and exploiting the Lyapunov function
methodology (see e.g. [25]), we are able to prove a similar tail bound for G2. Let
(Xi, Yi)i≥0 be the simple random walk on G2. Define the return time τ+

0 := min{i ≥
1;Xi = Yi = 0}.
Theorem 1.4.

lim
k→∞

logP0(τ+
0 > k)

log log k
= −1.

In particular, this gives a new and self-contained proof of the recurrence of G2, see
Sections 3.3 and 3.4.

1.2 Organization of the paper

In Section 2, we shall analyze G1 and prove Theorems 1.1 and 1.2. We introduce
an auxiliary process (G, S) in Section 2.1 and prove a strong LLN for its winding in
Section 2.2. The auxiliary process (G, S) mimics the behavior of the random walk on G1

but has cleaner algebra. We come back to G1 in Section 2.3, proving Theorem 1.2 as well
as the transience of G1 in Corollary 2.6. Finally, in Section 2.4 we establish a comparison
between the two processes and use the LLN for (G, S) to deduce Theorem 1.1.

In Section 3, we shall study G2 and prove Theorems 1.3 and 1.4. We give a pre-
cise definition of the continuous process Wt in Section 3.1 and prove Theorem 1.3 in
Section 3.2. In Sections 3.3 and 3.4, we develop the key ingredients in the proof of
Theorem 1.4 and prove the recurrence of G2 as an application. In Section 3.5 we prove
Theorem 1.4. The most technical parts of the proofs are postponed to the appendices.

2 Random walk on G1

2.1 Auxiliary process G
The main goal of Section 2 is to prove Theorem 1.1 for the random walk on G1. We

start by introducing an analogous 2D process (G, S) with nicer algebra.

Let S be a simple random walk on Z. Recall that the graph of such a random walk
is given by the path successively connecting the sequence of vertices {(i, Si)}i≥0 on Z2,
with ei representing the line segment between (i, Si) and (i+ 1, Si+1). We define a signed
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Recurrence and windings of two revolving random walks

time process

Gn :=

n−1∑
i=0

1{ei is above x-axis} − 1{ei is below x-axis} (2.1)

to be the difference between the time spent above and below x-axis. Roughly speaking,
the simple random walk S corresponds to the vertical movement of the random walk on
G1, whereas the signed time process G mimics the horizontal counterpart.

Let NG(n) be the number of windings around the origin of the two-dimensional
process (G, S) up to time n. We state an analogue of Theorem 1.1 for NG(n). Later
in Section 2.4, we will establish a comparison between NG1(n) and NG(n) and use
Proposition 2.1 to prove Theorem 1.1. We will prove Proposition 2.1 in Section 2.2.

Proposition 2.1.
NG(n)

log n
→ 1

2π
a.s.

The following is a direct consequence of the usual Chung-Feller Theorem. See [19]
for a general introduction on the topic.

Lemma 2.2. For z ∈ {−2n,−(2n− 4), · · · , 2n− 4, 2n}, we have

P0 (G2n = z | S2n = 0) =
1

n+ 1
. (2.2)

Thus for such z,

P0 ((G2n, S2n) = (z, 0)) ∼ 1√
πn3/2

.

The probabilities vanish for other z’s.

2.2 Winding of the auxiliary walk

In this section we shall prove Proposition 2.1. We will use the following definition of
NG(2n):

NG(2n) :=
1

2

n∑
i=1

1A2i
,

where for i ∈ [1, n] we define τi := sup{t < i;S2t = 0} and

A2i := {S2τi = S2i = 0 and either G2τiG2i < 0 or G2τi = 0 and G2i > 0}.

In words, we define A2i to be the event that (G, S) just completed a half winding at the
2i-th step. If A2i occurs, we say this half winding started at the 2τi-th step. Note that
since the walk is transient by Lemma 2.2, whether we count the half windings where
G2τi = 0 or G2i = 0 wouldn’t have any impact on the asymptotics in Proposition 2.1. Also
define

Ã2i := {S2τi = S2i = 0 and G2τiG2i ≤ 0}.

More generally, we would like to consider the law P2z of (G, S), where the first
coordinate G starts at G0 = 2z. For n ≥ 1, we define Gn as in (2.1) such that Gn := Gn−1±1

with the sign depending on whether the edge en−1 is above or below x-axis. We use P
without subscript to denote P0.

Lemma 2.3. Fix z ∈ Z, i ≥ 1 and 0 ≤ k ≤ i − 1, Let m = i − k and Ik = {−k,−k +

2, · · · , k − 2, k}. Then

P2z[A2i | S2i = 0, τi = k] =
1

2(k + 1)

∣∣(−m,m) ∩ (z + Ik)
∣∣ (2.3)
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and

P2z[Ã2i | S2i = 0, τi = k] ≥ 1

2(k + 1)

∣∣[−m,m] ∩ (z + Ik)
∣∣. (2.4)

Also we have

P[S2i = 0, τi = k] ∼ 1

2πk1/2(i− k)3/2
. (2.5)

Proof. Let Uk be the discrete uniform distribution on Ik. Let X be a Rademacher
random variable independent of Uk. By (2.2) the pair (G2τi ,G2i) conditioned on the event
S2i = 0, τi = k under P2z has the same law as

(2z + 2Uk, 2z + 2Uk + 2(i− k)X) . (2.6)

Thus the probability in (2.3) is given by

P
[
|z + Uk| < i− k and X has the correct sign

]
.

This proves (2.3). Equation (2.4) can be proved similarly.
For (2.5), we simply use the Markov property and Chung-Feller Theorem.

Lemma 2.4. For i ≥ 1 and z ∈ Z, we have

P(A2i),P(Ã2i) ∼
1

πi
(2.7)

and

P2z(A2i) ≤ P0(Ã2i). (2.8)

When |z| ≥ i, we have

P2z(A2i) = 0. (2.9)

Proof. Using (2.3) and (2.5), we get

P(A2i) ∼
∑
k≤i/2

1

4πk1/2(i− k)3/2
+
∑
k>i/2

1

4πk3/2(i− k)1/2
∼ 1

πi
.

A similar calculation also works for P(Ã2i). This proves (2.7).
The inequality (2.8) follows from (2.3), (2.4) and the elementary fact that∣∣(−m,m) ∩ (z + Ik)

∣∣ ≤ ∣∣[−m,m] ∩ Ik
∣∣.

Note that the inequality in the above display would fail due to parity issue if we replaced
[−m,m] on the right-hand side by (−m,m).

When |z| ≥ i, we have (−m,m) ∩ (z + Ik) = ∅, so P2z(A2i) = 0.

We also need the following estimates, which say that a half winding starts or com-
pletes close to the origin with small probability.

Lemma 2.5. For i ≥ 1 and ` ∈ N such that i > 3`,

P
[
A2i, |G2i| < 2`

]
= O

(√ `

i3

)
. (2.10)

For 0 ≤ γ ≤ 1,

P
[
A2i, |G2τi | < 2τγi

]
= O

( 1

i3/2−γ/2

)
. (2.11)
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Proof. With the representation in (2.6), the conditional probability

P
[
A2i, |G2i| < 2` | S2i = 0, τi = k

]
is equal to

1

2(k + 1)
#
{
y ∈ Ik; |y| < i− k and (i− k)− |y| < `

}
. (2.12)

Note that the expression in (2.12) is bounded above by O((i− k)/k) ∧ O(`/k). Moreover,
if k ≤ (i− `)/2, then for any y ∈ Ik we have

(i− k)− |y| ≥ i− 2k ≥ `,

so (2.12) vanishes. Thus we get

P
[
A2i, |G2i| < 2` | S2i = 0, τi = k

]
≤


0 0 ≤ k ≤ (i− `)/2,
O(`/k) (i− `)/2 ≤ k ≤ i− `,
O((i− k)/k) i− ` ≤ k ≤ i− 1.

Combining the above estimate with (2.5) yields (2.10).
For (2.11), the representation in (2.6) gives

P
[
A2i, |G2τi | < 2τγi | S2i = 0, τi = k

]
= O(kγ−1) ∧ O((i− k)/k).

Similarly, combining the above estimate with (2.5) yields the desired bound.

Proof of Proposition 2.1. By the definition of NG(2n) and (2.7) we have

E(NG(2n)) ∼ 1

2π
log n. (2.13)

Our goal is to show
Var(NG(2n)) ≤ c log n (2.14)

for some c > 0. If both (2.13) and (2.14) are true, then a Borel-Cantelli argument
along the subsequence exp(k1+ε) would imply the desired strong LLN, thanks to the
monotonicity of NG(2n) in n.

To prove (2.14), it suffices to bound
∑n
i=1 Var(A2i) and the cross terms

n∑
i=1

i−1∑
j=1

Cov(A2j , A2i).

The former is O(log n) due to (2.7). For the cross terms, we consider two cases. Let
α = 2/3.

When 1 ≤ j ≤ αi, by the Markov property, (2.8) and (2.7) we get

Cov(A2j , A2i) = P(A2j ∩A2i)− P(A2j)P(A2i)

≤ P(A2j)P(Ã2(i−j))− P(A2j)P(A2i)

∼ O
(

1

j

( 1

i− j
− 1

i

))
= O(1/i2).

When αi < j < i, the above argument does not give us the desired bound. Instead we
use (2.9) and (2.10) to get

P(A2j ∩A2i) =
∑
|z|<i−j

P2z(A2(i−j))P[G2j = 2z |A2j ]P(A2j)

≤ P(Ã2(i−j))P
[
A2j , |G2j | < 2(i− j)

]
≤ O

(
1

i− j
·

√
i− j
j3

)
= O

(
1

i3/2(i− j)1/2

)
.
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Summing over j in both cases shows that
∑i−1
j=1 Cov(A2i, A2j) is of order O(1/i), so the

sum of all cross terms is also O(log n). This completes the proof.

2.3 Rate of decay of return probabilities

In this section we start to treat the random walk on G1 and prove Theorem 1.2 and
Corollary 2.6.

Proof of Theorem 1.2. Recall that (Mi)i≥0 is the simple random walk on G1 and Tn is
the time just after the n-th vertical step of M . Consider the subordinated process

MTn = (Ξn, Sn),

where S is the simple random walk on Z, Ξn :=
∑n−1
i=0 ξi and ξi is the signed number of

horizontal steps that M takes between the i-th and the i+ 1-th vertical step. Note that
|ξi| is a geometric random variable with parameter p = 2/3 and sgn(ξi) determined by
sgn(Si).

Define
L+

2n := |{0 ≤ j < 2n;Sj ≥ 0}|.

One can show that P0(L+
2n = k|S2n = 0) ∼ 1

2n for o(n) ≤ k ≤ 2n − 1 by decomposing
with respect to the first time that S enters the negative axis and using the generalized
Chung-Feller Theorem 2.3.1 (3) in [19]. Then

P0(Ξ2n = 0,S2n = 0) =

2n∑
k=1

P0(Ξ2n = 0, S2n = 0,L+
2n = k)

=

2n∑
k=1

P0(Ξ2n = 0 | S2n = 0,L+
2n = k)P0(A+

n = k|S2n = 0)P0(S2n = 0)

∼ 1

2
√
πn3/2

2n∑
k=1

P0(Ξ2n = 0 | S2n = 0,L+
2n = k)

=
1

2
√
πn3/2

2n∑
k=1

P(Ξ2n,k = 0), (2.15)

where Ξ2n,k :=
∑k−1
i=0 gi −

∑2n−1
i=k gi for 1 ≤ k ≤ 2n and (gi)i≥0 is a sequence of i.i.d.

geometric random variables with parameter p = 2/3 and taking values in {0, 1, 2, ...}. Let
mn,k := E(Ξ2n,k) = k − n and sn := σ2(Ξ2n,k) = 2nσ2(g1). For 0 < δ < 1/2, we split the
sum in (2.15) into two parts∑

|k−n|≤n1/2+δ

P(Ξ2n,k = 0) +
∑

|k−n|>n1/2+δ

P(Ξ2n,k = 0). (2.16)

The first term in (2.16) can be estimated by means of a local limit theorem for independent
(not necessarily identically distributed) random variables. By [30, Theorem 5] we get∑

|k−n|≤n1/2+δ

P(Ξ2n,k = 0) =
∑

|k−n|≤n1/2+δ

[
p
mn,k,sn
n (0) +O

(
1

n

)]

=
∑

|j|≤n1/2+δ

[
p0,sn
n (j) +O

(
1

n

)]
= 1 + o(1) +O

(
1

n1/2−δ

)
,

where p
mn,k,sn
n (x) = 1√

2πsn
e−

(x−mn,k)2

2sn .
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Recurrence and windings of two revolving random walks

We bound the second term in (2.16) through large deviations. For k ≥ 0 define
Ξ̂2n,k := Ξ2n,k −mn,k. We have

P
(

Ξ̂2n,k ≥ n1/2+δ
)

= inf
t>0
P(etΞ̂2n,k ≥ etn

1/2+δ

) ≤ inf
t>0

E(etΞ̂2n,k)

etn1/2+δ

= inf
t>0

(
2e−t/2

3−et

)k (
2et/2

3−e−t

)2n−k

etn1/2+δ
= O

(
e−

n2δ

3

)
, (2.17)

since by Taylor expansion
(

2e−t/2

3−et

)k (
2et/2

3−e−t

)2n−k
= 1 + 3n

4 t
2 +O(nt3). Analogously we

have

P
(

Ξ̂2n,k ≤ −n1/2+δ
)

= O
(
e−

n2δ

3

)
. (2.18)

Combining (2.17) and (2.18), we conclude∑
|k−n|>n1/2+δ

P(Ξ2n,k = 0) =
∑

|k−n|>n1/2+δ

P
(

Ξ̂2n,k = − (k − n)
)

= O
(
ne−

n2δ

3

)
.

This completes the proof of Theorem 1.2.

Corollary 2.6. The random walk on graph G1 is transient.

Proof. Theorem 1.2 implies the transience of (Ξ, S). Thus by the translational invariance
of G1 in the horizontal direction, we may find C > 0 such that

∑
nP0(Ξn = x, Sn = 0) ≤

C <∞ for every x ∈ Z. Hence∑
i

P0(Mi = 0) =
∑
n

∑
x≥0

P0(Ξn = −x, Sn = 0)(1/3)x ≤ C
∑
x≥0

(1/3)x <∞.

By examining the proof of Theorem 1.2, we are able to prove a stronger version of it
for generic z. Notice that this is an analogue of Lemma 2.2 in the setting of G1.

Theorem 2.7. For δ ∈ (0, 1/2] and z ∈ N, we have

P0(Ξ2n = z | S2n = 0)


∼ 1

2n |z| < n− n1/2+δ,

. 1
2n |z| ∈ [n− n1/2+δ, n+ n1/2+δ],

= O(e−n
2δ

) |z| > n+ n1/2+δ.

2.4 Winding of the random walk on G1

In this section we shall complete the proof of Theorem 1.1. For 1 ≤ i ≤ n, let
τi := sup{t < i;S2t = 0} and

B2i := {S2τi = S2i = 0 and either Ξ2τiΞ2i < 0 or Ξ2τi = 0 and Ξ2i > 0}.

We use the following definition of NG1
(t): for n ≥ 0 and T2n ≤ t < T2n+2,

NG1
(t) :=

1

2

n∑
i=1

1B2i
. (2.19)

Now consider the natural coupling between the vertical components of (G, S) and
MT· = (Ξ, S). We will establish a comparison between NG(2n) and NG1(T2n). To this end,
we define a series of random variables. Let

Ds := #{i ≥ 1;A2i occurs and sgn(G2τi) 6= sgn(Ξ2τi)}
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and
Dc := #{i ≥ 1;A2i occurs and sgn(G2i) 6= sgn(Ξ2i)}.

Recall the definition of L+
2n from the proof of Theorem 1.2. Let L0

2n := #{0 ≤ i <

2n;Si = 0}. Note that E(Ξ2n | L+
2n) = L+

2n − n and

G2n/2 + n ≤ L+
2n ≤ (G2n/2 + n) + L0

2n. (2.20)

For 1/2 < γ < 1, further define

(i) Nf := #{n ≥ 0;
∣∣Ξ2n − (L+

2n − n)
∣∣ ≥ nγ},

(ii) NL := #{n ≥ 0;L0
2n ≥ nγ};

(iii) Ns := #{i ≥ 1;A2i occurs and |G2τi | < 4τγi },

(iv) Nc := #{i ≥ 1;A2i occurs and |G2i| < 4iγ},

(v) Nb := Nf +NL +Ns/2 +Nc/2;

(vi) N ′s := #{i ≥ 1;B2i occurs and |Ξ2τi | < 2τγi },

(vii) N ′c := #{i ≥ 1;B2i occurs and |Ξ2i| < 2iγ},

(viii) N ′b := Nf +NL +N ′s/2 +N ′c/2.

We make the following two claims.

Lemma 2.8. NG(2n) ≤ NG1
(T2n) +Nb and NG1

(T2n) ≤ NG(2n) +N ′b.
Lemma 2.9. Nb,N ′b <∞ a.s.

Proof of Theorem 1.1. By Proposition 2.1 and the above two lemmas, we get

lim
n→∞

1

log n
NG1

(T2n) = lim
n→∞

1

log n
NG(2n) =

1

2π
a.s.

Note that T2n−n1/2+δ ≤ 3n ≤ T2n+n1/2+δ holds a.s. for large enough n and 0 < δ < 1/2.
Then Theorem 1.1 follows from the monotonicity of NG1

(n) in n, see the definition (2.19).

Proof of Lemmas 2.8. If A2i occurs but B2i does not occur, then either sgn(G2τi) 6=
sgn(Ξ2τi) or sgn(G2i) 6= sgn(Ξ2i). So we have

NG(2n) ≤ NG1(T2n) +Ds/2 +Dc/2. (2.21)

Now suppose that for some n, the events in (i) and (ii) do not happen and |G2n| ≥ 4nγ ,
then by (2.20)∣∣Ξ2n − G2n/2

∣∣ ≤ ∣∣Ξ2n − (L+
2n − n)

∣∣+
∣∣(L+

2n − n)− G2n/2
∣∣ < 2nγ ,

which implies G2n and Ξ2n must have the same sign. Thus we get

Ds ≤ Nf +NL +Ns and Dc ≤ Nf +NL +Nc

and by (2.21) we conclude that

NG(2n) ≤ NG1
(T2n) +Nf +NL +Ns/2 +Nc/2

:= NG1(T2n) +Nb.

The proof of the other inequality is similar, so we omit the details.
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To prove Lemma 2.9, we need an analogue of Lemma 2.5 for the random walk on G1.

Lemma 2.10. For i ≥ 1 and ` ∈ N such that i > 3`,

P
[
B2i, |Ξ2i| < `

]
= O

(√ `

i3

)
. (2.22)

For 0 ≤ γ ≤ 1,

P
[
B2i, |Ξ2τi | < τγi

]
= O

( 1

i3/2−γ/2

)
. (2.23)

Proof. We imitate the proof of Lemma 2.5. The conditional probability

P[B2i, |Ξ2i| < ` | S2i = 0, τi = k]. (2.24)

can be rewritten as

1

2
P
[
|Ξ2k| < |Ξ2i − Ξ2k| and |Ξ2i − Ξ2k| − |Ξ2k| < `

∣∣S2i = 0, τi = k
]
.

Note that conditioned on S2i = 0, τi = k, the law of Ξ2k is independent of Ξ2i−Ξ2k and is
close to being “uniform” in [−k, k] by Theorem 2.7. Moreover, the Chernoff bound implies
that Ξ2i − Ξ2k concentrates around sgn(S2i−1) · (i − k) with high probability. Thus we
obtain a similar bound on (2.24) as in the proof of Lemma 2.5, except that the probability
in the first case is exponentially small in i instead of being zero. This proves (2.22). The
proof of (2.23) is similar.

Proof of Lemma 2.9. All Nf , NL, Ns, Nc, N ′s, N ′c <∞ almost surely by the concentration
bound (2.17), Theorem 10.2 and its consequences in [32], estimates (2.11), (2.10), (2.23)
and (2.22) respectively. Thus Nb,N ′b <∞ a.s.

3 Random walk on G2

3.1 The continuous process Wt

We give a precise definition of the continuous-time process (Wt)t≥0 := (W
(1)
t ,W

(2)
t )t≥0

on R2, which we briefly explained in Section 1. Let m ∈ R+ and (BRt )t≥0 be a one-
dimensional reflected Brownian motion. Inductively, we define Wt together with a
sequence of stopping times (Un)n≥0. Set U0 := 0 and W0 := (−m, 0) as the initial position.
For every n ≥ 1, let

Un := min
{
t > Un−1 +

∣∣W (1)
Un−1

∣∣;BRt = 0
}

and

Wt :=

{(
t− U2n +W

(1)
U2n

, BRt
)

if t ∈ [U2n, U2n+1) for some n ≥ 0,(
− t+ U2n+1 +W

(1)
U2n+1

,−BRt
)

if t ∈ [U2n+1, U2n+2) for some n ≥ 0.

In most cases needed, it suffices to keep track of Wt at these random times Un. Thus
we define HB

n := |W (1)
Un
| and call this discrete-time process (HB

n )n≥0 with continuous state
space R+ the continuous ladder height process. Note that the ladder height process is a
Markov chain in its own right.

It is straightforward to calculate the one-step distribution of HB
n . Let Z be a standard

normal random variable and ρh an independent variable with a Lévy distribution, i.e.,
the hitting time at h > 0 for a standard Brownian motion started at the origin. Starting
from (−m, 0), the process Wt crosses the y-axis at time m with y-coordinate distributed
as
√
m|Z|. Then the process continues until hitting the positive x-axis at ρ√m|Z|. Thus by

the space-time scaling of Brownian motion (see e.g. [15] Vol.2 p.170), we have

HB
1

d
= ρ√m|Z|

d
= (
√
m|Z|)2ρ1 = mZ2ρ1, (3.1)
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with Z and ρ1 independent of each other. As a consequence, we may represent HB
n as

the product of i.i.d. random variables ηn:

HB
n := ηnH

B
n−1 = m

n∏
i=1

ηi = exp

(
logm+

n∑
i=1

log ηi

)
(3.2)

with η1
d
= Z2ρ1. Since by reflection principle ρ1

d
= 1/Z2 (see Cor.2.22 in [22]), it follows

that log η1 is symmetric and, in particular, has zero mean. This shows the recurrence
of the ladder height process (HB

n )n≥0. Indeed we have lim infn→∞HB
n = 0. This implies

that WUn is recurrent and so is the continuous process Wt. In Section 3.3, we will adapt
this argument to the discrete setting and prove the recurrence of G2.

3.2 Scaling limits of winding numbers

In this section we shall prove Theorem 1.3. First, we give rigorous definitions of Nt
and N b

t . Let

Tn :=

2n−1∑
i=0

(
HB
i +HB

i+1

)
be the time at which Wt just completed its n-th winding around the origin. We define the
winding number Nt := n if Tn ≤ t < Tn+1. Also define the big winding number

N b
t :=

1

2

2Nt−1∑
n=0

1{HBn >ε},

which counts one half of the half windings started outside a small neighborhood of the
origin with radius ε > 0.

Recall (3.2). Let

µn := max
0≤j≤2n

HB
j = m exp

(
max

0≤j≤2n

j∑
i=1

log ηi

)
.

Note that
logµn ≤ log Tn ≤ log(4n) + log µn, (3.3)

where in the second inequality, we bound each HB
i term in the definition of Tn by µn.

Also define
N ∗t := min{n ≥ 0; logµn+1 > log t}.

Since
∑j
i=1 log ηi is the sum of i.i.d. random variables with zero mean and finite variance

σ2, by applying Donsker-type theorem on the first hitting time at one, we get

2σ2N ∗t
log2 t

d
=⇒ ρ1.

The value of σ2 will be determined at the end of the proof.
We claim that for 0 < α < 1/2,

N ∗
t
/

4 log1/α t
≤ Nt ≤ N ∗t

for large enough t a.s. This would have proved (1.1). To show the claim, note that for
0 < α < 1/2, the anti-concentration bound logµn ≥ nα holds for all large n a.s. by a
Borel-Cantelli argument along the subsequence n = 2k. Thus we have N ∗t ≤ log1/α t for
all large t a.s. With this fact, the claim can be proved by a straightforward argument
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using (3.3) and the definitions of Nt and N ∗t . This completes the proof of (1.1) and a
similar argument works for (1.2).

To finish the proof, we calculate that σ2 = π2. Since η1
d
= Z2ρ1 with Z and ρ1

independent of each other and ρ1
d
= 1/Z2 by the reflection principle, we have σ2 =

Var(log η1) = 8Var(log |Z|). By direct computation, the cumulant-generating function of
log |Z| is given by

K(t) := logE[et log |Z|] = logE|Z|t = log Γ

(
t+ 1

2

)
+

log 2

2
t− log π

2
,

where t > −1 and Γ(s) is the gamma function. Using the notation of polygamma function
and its reflection formula (see e.g. 6.4.1 and 6.4.7 from [1]), we get

Var(log |Z|) = K ′′(0) =
1

4
(log Γ)′′(1/2)

=
1

4
ψ(1)(1/2) =

π2

8
.

Combining these gives us σ2 = π2.

3.3 Recurrence of G2: outline of proof

In this and the next sections we will provide a new and self-contained proof of the
recurrence of G2. Simultaneously, we will develop the key ingredients in the proof of
Theorem 1.4, which will be treated in Section 3.5.

Consider the random walk (Xi, Yi)i≥0 on G2. Most of the time we assume the random
walk starts at (X0, Y0) = (−m, 0) for some m ∈ Z+ and denote its law by Pm. Sometimes
we also want the random walk to start at (X0, Y0) = (0, h) for some h ∈ Z+, in which
case we write Ph.

Following the approach in Section 3.1, we define a sequence of stopping times (τn)n≥0

and consider the discrete ladder height process (Hn)n≥0 with state space N. Precisely,
let τ0 := 0 and for n ≥ 1,

τn := inf{i > τn−1;Yi = 0 and XiXτn−1 ≤ 0}.

Then define Hn := |Xτn |.
It is not hard to see that the process Hn is a Markov chain in its own right and has

the same recurrence property as the original chain (X,Y ). In the combinatorial setting,
however, we no longer have the exact representation as in (3.2). Instead we resort to
the more robust Lyapunov function method and consider a concave function of logH1.

In the following, we stick to the convention that logH1 = 0 when H1 = 0 for simplicity.
Using the inequality

√
1 + x ≤ 1 + 1

2x −
1
16x

2 for x ∈ [−1, 1], we have on the event
{1 ≤ H1 ≤ m2} that

√
logH1 =

√
logm+ log(H1/m) =

√
logm

√
1 +

log(H1/m)

logm

≤
√

logm

{
1 +

log(H1/m)

2 logm
− 1

16

[
log(H1/m)

logm

]2
}
.
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Taking expectation, we get

Em
√

logH1 ≤
√

logm+
Em (logH1 − logm)

2
√

logm
− Em (logH1 − logm)

2

16(logm)3/2

+
Em

[
(logH1 − logm)

2
;H1 > m2

]
16(logm)3/2

+ Em

[√
logH1;H1 > m2

]
≤
√

logm+
Em (logH1 − logm)

2
√

logm
− Em (logH1 − logm)

2

16(logm)3/2

+2Em
[
log2H1;H1 > m2

]
=:
√

logm+ ε1(m)− ε2(m) + ε3(m). (3.4)

Once we show that ε1(m)+ε3(m)� ε2(m) for large enough m, we may apply the criterion
[25, Thm.2.5.2] on the Lyapunov function

√
log x to conclude the recurrence of G2. It

remains to establish the following bounds.

Lemma 3.1. (i) For small enough δ > 0,

Em (logH1 − logm) = O
(

1

m1/2−3δ

)
. (3.5)

(ii) There exist constants c1, c2 > 0 such that for large enough m,

c1 ≤ Em (logH1 − logm)
2 ≤ c2. (3.6)

(iii) For small enough δ > 0,

ε3(m) = O
(

log2m

m1/2−4δ

)
.

3.4 Approximation estimates

We shall prove the bounds in Lemma 3.1. In all cases, the proof goes by approximating
H1 by its continuous counterpart HB

1 , using local limit theorems and Euler-Maclaurin
formulas.

We will achieve the approximation through a two-stage analysis as in (3.1). For n ≥ 1,
let

σn := inf{i > τn−1;Xi = 0}
and define Vn := |Yσn |. For m,h, l ∈ Z+, let pm,h := Pm(V1 = h) be the probability that
the random walk starting from (−m, 0) hits the y-axis at (0, h) and qh,l := Ph(H1 = l) the
probability that the random walk started at (0, h) hits the x-axis at point (l, 0). We state
two local limit theorems for pm,h and qh,l. Both proofs are standard, so we postpone
them to Appendix A.

Lemma 3.2. For small enough δ > 0,

pm,h =
1√
πm

e−
h2

4m +O

(
1√
mh2

∧ 1

m3/2
+
e−

h2

8m

m1−δ

)
and

qh,l =
h

2
√
πl3/2

e−
h2

4l +O
(

1

l3/2h
∧ h

l5/2
+

h

l2−δ
e−

h2

8l

)
.

Recall (3.1). Note that E log ρ1 = −2E(log |Z|) = γ + log 2, where γ represents the
Euler constant. Consider the following two approximation errors:

Rf (m) : = Em(log V1)− E log(
√

2m|Z|)
= Em(log V1)− (logm)/2 + γ/2
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and

Rg(h) : = Eh(logH1)− E log(h2ρ1/2)

= Eh(logH1)− 2 log h− γ.

Proposition 3.3. For small enough δ > 0,

Rf (m) = O
(

1

m1/2−3δ

)
and Rg(h) = O

(
1

h1−3δ

)
.

Proof. Let fm(x) := log(x)√
πm

e−
x2

4m and gh(x) := log x h
2
√
πx3/2 e

−h24x be two functions defined

on R+. We decompose Rf (m) and Rg(h) as follows:

Rf (m) :=

∞∑
h=1

pm,h log h−
∫ ∞

0

fm(x)dx =

∞∑
h=1

[pm,h log h− fm(h)] +

∞∑
h=m1/2+δ

fm(h)

+

m1/2+δ∑
h=1

fm(h)−
∫ m1/2+δ

1

fm(x)dx

+

(∫ m1/2+δ

1

fm(x)dx−
∫ ∞

0

fm(x)dx

)
=: I1 + I2 + I3 + I4 (3.7)

and

Rg(h) :=

∞∑
l=1

qh,l log l −
∫ ∞

0

gh(x)dx =

∞∑
l=1

[qh,l log l − gh(l)] +

h2−δ∑
l=1

gh(l)

+

( ∞∑
l=h2−δ

gh(l)−
∫ ∞
h2−δ

gh(x)dx

)
+

(∫ ∞
h2−δ

gh(x)dx−
∫ ∞

0

gh(x)dx

)
=: J1 + J2 + J3 + J4 (3.8)

for δ > 0 sufficiently small.
We deal with each term in the decomposition one by one.

(i) Thanks to Lemma 3.2 we can estimate I1:

I1 =

∞∑
h=1

log hO

(
1√
mh2

+
e−

h2

8m

m1−δ

)
= O

(
logm

m1/2−δ

)
.

Here for the second term of the summation, we use a uniform bound for all h ≤
√
m

and an integral to bound the sum for h ≥
√
m, where the error is monotone in h.

Applying a similar splitting at ` = h2, we get

J1 =

∞∑
l=1

log lO
(

1

l3/2h
+

h

l2−δ
e−

h2

8l

)
= O

(
log h

h1−2δ

)
.

(ii) For I2 and J2, an integral bound as in (i) gives

I2 = O
(
e−m

2δ
)

and J2 = O
(
e−h

δ
)
.

(iii) By applying a first-order Euler-Maclaurin approximation, we obtain that

I3 = O
(

logm

m1/2−2δ

)
and J3 = O

(
log h

h2−5δ/2

)
.

Full details are provided in Appendix B.
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(iv) Finally, direct computations show that:

I4 = O
(
1/
√
m
)

and J4 = O
(
e−ch

δ
)
.

We finish the proof of Proposition 3.3 by combining (3.7) and (3.8) with those estimate.

Proposition 3.4. For small enough δ > 0,

Varm(log V1)− Var
(

log(
√

2m|Z|)
)

= O
(

1

m1/2−3δ

)
and

Varh(logH1)− Var
(
log(h2ρ1/2)

)
= O

(
1

h1−3δ

)
.

Proof. By Proposition 3.3, it suffices to show the same estimates for

R̃f (m) := Em(log2 V1)− E log2(
√

2m|Z|)

and
R̃g(h) := Eh(log2H1)− E log2(h2ρ1/2).

This can be shown by going through almost the same proof as Proposition 3.3 but
changing log to log2.

Proof of Lemma 3.1. By Markov property,

Em log(H1/m) =Em log(V 2
1 /m) + Em log(H1/V

2
1 )

= [2Em(log V1)− logm] +

∞∑
h=1

[Eh(logH1)− 2 log h]Pm(V1 = h).

The above calculation, together with Proposition 3.3 and Lemma 3.2, proves (3.5).
To prove (3.6), by (3.5) it suffices to show that

c1 ≤ Varm(logH1) ≤ c2

for some c1, c2 > 0 and sufficiently large m. By Proposition 3.3 we have

Varm(logH1) = Varm
(
Em(logH1 | V1)

)
+ Em

(
Varm(logH1 | V1)

)
= Varm

(
2 log V1 +O(1/V 1−3δ

1 )
)

+

∞∑
h=1

Varh(logH1)Pm(V1 = h).

The above decomposition, combined with Proposition 3.4 and Lemma 3.2, proves the
desired variance bound.

For the truncation error ε3(m), we have by Lemma 3.2

ε3(m) =

∞∑
l=m2

log2 lPm(H1 = l) =

∞∑
l=m2

∞∑
h=1

pm,hqh,l log2 l

≤
∞∑

l=m2

log2 l

 ∑
h≤
√
mlδ

pm,hqh,l +
∑

h>
√
mlδ

pm,h


≤
∞∑

l=m2

log2 l

 ∑
h≤
√
mlδ

O
(

1√
m

h

l3/2

)
+O

(
e−cl

2δ
)

=

∞∑
l=m2

log2 lO
( √

m

l3/2−2δ

)
= O

(
log2m

m1/2−4δ

)
,
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where for h >
√
mlδ, we apply Chernoff bounds by viewing pm,h as the sum of m many

i.i.d random variables, each of which is distributed as the convolution of geometrically
many Bernoulli distributions.

3.5 Further consequence

Finally, we shall prove Theorem 1.4 using the results in previous sections. For x > 0,
let λx := min{n ≥ 0;Hn ≤ x}.
Lemma 3.5. For any s ∈ [0, 1/2), there exist constants x0 and c such that for x ≥ x0, we
have E(λsx) ≤ cE logH2s

0 .

Proof. Note that the key estimate (3.4) can be done for logαH1 with any 0 < α < 1. Then
the lemma follows from the proof of [25, Corollary 2.7.3].

Lemma 3.6. For any ε > 0, there exists x0 such that for x ≥ x0, we have

P

(
max
n≥0

logHn∧λx ≥ y
)
≤ E(logH0)1−ε

y1−ε

and if H0 > x a.s.

P

(
max
n≥0

logHn∧λx ≥ y
)
≥ c

y1+ε
,

where the constant c > 0 only depends on x.

Proof. The upper bound follows by applying [25, Corollary 2.4.6] to logαH1 with 0 <

α < 1. For the lower bound, note that a similar estimate as (3.4) implies the process
(logHn∧λx)α is a submartingale for 1 < α < 2 and sufficiently large x. Then the lower
bound follows from an application of optional stopping theorem, see e.g. Example 2.4.15
in [25].

Proof of Theorem 1.4. Let (Xi, Yi)i≥0 be the simple random walk on G2. For any x > 0,
let τx := min{i ≥ 0; |Xi| ≤ x, Yi = 0}.

We claim that for any ε > 0, there exist a large enough x and c1, c2 > 0 such that if
|X0| > x and Y0 = 0, then

c1(log k)−1−ε ≤ P(τx > k) ≤ c2E(log |X0|)1−ε(log k)−1+ε.

If the claim is true, then a straightforward argument shows that for any ε > 0, there
exist c1, c2 > 0 such that

c1(log k)−1−ε ≤ P0(τ+
0 > k) ≤ c2(log k)−1+ε,

which proves Theorem 1.4.
To prove the claim, define τ∗x to be the number of horizontal steps taken before τx.

Since τ∗x concentrates around 1
3τx, it suffices to prove the same bound for the tail of τ∗x .

Analogous to (3.3), we have

max
n≥0

Hn∧λx ≤ τ∗x ≤ 2λx ·max
n≥0

Hn∧λx .

Thus by Lemmas 3.5 and 3.6, for any ε > 0, there exists a large enough x and c2 > 0 such
that

P(τ∗x > k) ≤ P
(
λx > log2 k

)
+ P

(
max
n≥0

Hn∧λx >
k

log2 k

)
≤ c2E(log |X0|)1−ε(log k)−1+ε.

This proves the upper bound of the claim. The proof of the lower bound is similar.
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A Local limit theorems for pm,h and qh,l

Throughout this section we shall denote the usual one-dimensional simple random
walk on Z by S. First, we prove the local limit theorem for pm,h in Lemma 3.2.

Our approach is based on the fact that conditioned on the number of vertical steps
before hitting the y-axis, the vertical movement has the same law as S. To calculate the
probability of n vertical steps, we hope to interpret the number of vertical steps before
hitting y-axis as the sum of m many i.i.d. geometric random variables Gp,m :=

∑m
i=1 gi

with success probability p = 1/3 and support in {0, 1, 2, . . . }. The intuition is almost
correct except that on graph G2, only vertical steps are allowed at ordinate zero. For
this reason, we modify the transition probability of S by ignoring the origin as follows:
p(1,−1) = p(1, 2) = 1/2 and p(−1, 1) = p(−1,−2) = 1/2, and write S′ for the resulting
random walk. We also consider a 2D modification, the random walk (X ′i, Y

′
i )i≥0 on an

oriented graph G′2 where all the horizontal edges are to the right and all points on x-axis
are ignored. Precisely, G′2 = (V′,E′2) has vertex set V′ = Z2 \Z× {0}, and E′2 consists of
all edges leading to the nearest neighbors upward, downward and to the right. Then
the intuition of geometric random variables holds for the random walk on G′2, with the
caveat that the conditional law of vertical movements has the same law as S′. For the
process (Xi, |Yi|)i≥0 with y-coordinate taking absolute value, define p′m,h analogously as
the probability that the random walk started at (−m, 1) hits the y-axis at point (0, h) for
m,h ∈ Z+. Then

pm,h = p′m,h =

∞∑
n=h

(P1(S′n = −h) + P1(S′n = h))P(Gp,m = n)

=

∞∑
n=h

P0(Sn = −h)P(Gp,m = n) +

∞∑
n=h

P0(Sn = h− 1)P(Gp,m = n) =: p
(1)
m,h + p

(2)
m,h.

We will focus on p(1)
m,h, as p(2)

m,h can be treated analogously. Letting δ > 0, we split the sum
into two parts

p
(1)
m,h =

∑
|n−2m|≤m1/2+δ

P0(Sn = h)P(Gp,m = n) +O

 ∑
|n−2m|>m1/2+δ

P(Gp,m = n)

 ,
and notice that the second term in the above display decays exponentially fast by
Chernoff bound. Then, by applying the local limit theorem (see e.g. [21], p.36 1) to S we
obtain

p
(1)
m,h =

∑
|n−2m|≤m1/2+δ

[
pn(h) +O

(
1

m3/2

)]
P(Gp,m = n) +O(e−cm

2δ

)

=

[
p2m(h) +O

(
1

m3/2
+
e−

h2

8m

m1−δ

)] ∑
|n−2m|≤m1/2+δ

P(Gp,m = n) +O(e−cm
2δ

)

=

[
p2m(h) +O

(
1

m3/2
+
e−

h2

8m

m1−δ

)]
,

where we define pn(h) := 1√
2πn

e−
h2

2n and use the first-order approximation pn(h) =

p2m(h) +O
(
e−

h2

8m

m1−δ

)
for |n− 2m| ≤ m1/2+δ. We conclude by noting that the other bound

1This LLT and the following ones are stated for aperiodic random walks, but it is not difficult to deduce the
analogue for bipartite walks, see e.g. pp. 26-27 of the cited book.
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with an error term 1√
mh2 follows from the same proof, together with a different LLT in

[21], eq. (2.4) on p.25.

Next we prove the local limit theorem for qh,l.

Let Gp,n :=
∑n
k=1 gk, with gk’s i.i.d. geometric random variables with success proba-

bility p = 2/3 and values in {0, 1, 2...}. Decomposing and conditioning on the number of
vertical steps n, we have

qh,l =

∞∑
n=h

P0(Sn = h;Sk > 0,∀1 ≤ k ≤ n)P(Gp,n = l)

=

∞∑
n=h

h

n
P0(Sn = h)P(Gp,n = l),

by the Ballot Theorem, see e.g. [13, Thm.4.3.2]. Now let δ > 0 and split the sum into two
parts as follows

∑
|n−2l|≤l1/2+δ

h

n
P0(Sn = h)P(Gp,n = l)+O

 ∑
|n−2l|>l1/2+δ

P(Gp,n = l)

 . (A.1)

Notice that as Gp,n has a negative binomial distribution,

P(Gp,n = l) =

(
n+ l − 1

l

)
pn (1− p)l =

n

l
P(G1−p,l = n), (A.2)

so for the second term of (A.1), we have∑
|n−2l|>l1/2+δ

P(Gp,n = l) =
∑

|n−2l|>l1/2+δ

n

l
P(G1−p,l = n)

≤E
[
G1−p,l; |G1−p,l − 2l| ≥ l1/2+δ

]
= O(e−cl

2δ

),

for appropriate c > 0 by the Chernoff bound. By (A.2) again, we can rewrite the first
term of (A.1) as ∑

|n−2l|≤l1/2+δ

h

l
P0(Sn = h)P(G1−p,l = n)

and apply the local limit theorems and first order approximation as before.

B Euler-Maclaurin approximation

In this section we will apply the Euler-Maclaurin formula to bound I3 and J3 in the
proof of Proposition 3.3.

Recall that fm(x) := log(x)√
πm

e−
x2

4m and f ′m(x) =
(

1
x −

x log x
2m

)
1√
πm

e−
x2

4m . Hence, by the

Euler-Maclaurin formula

I3 ≤
(1/2+δ) log2m∑

k=0

2k+1∑
h=2k

fm(h)−
∫ 2k+1

2k
fm(x)dx


=

(1/2+δ) log2m∑
k=0

[
fm(2k) + fm(2k+1)

2
+ rk

]
= O

(
logm

m1/2−2δ

)
,
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where rk denotes the k-th error term and the last equality follows from

|rk| ≤ C2k max
2k≤x≤2k+1

|f ′m(x)| ≤C2k max
2k≤x≤2k+1

(
1

x
+
x log x

2m

)
1√
πm

e−
x2

4m

≤C2k
(

1

2k
+

2k+1(k + 1)

2m

)
1√
πm

=O
(

1√
m

+
22kk

m3/2

)
.

Let gh(x) := log x h
2
√
πx3/2 e

−h24x and g′h(x) =
(

1− 3 log x
2 + h2 log x

4x

)
h

2
√
πx5/2 e

−h24x . By the

Euler-Maclaurin formula,

J3 ≤
∞∑

k=(2−δ) log2 h

2k+1∑
l=2k

gh(l)−
∫ 2k+1

2k
gh(x)dx

 ≤ ∞∑
k=(2−δ) log2 h

[
gh(2k) + gh(2k+1)

2
+ r̃k

]

=

∞∑
k=(2−δ) log2 h

O
(

hk

23k/2
+

h3k

25k/2

)
= O

(
log h

h2− 5δ
2

)
,

where we use the fact that

|r̃k| ≤C ′2k
(

1 +
3(k + 1)

2
+
h2(k + 1)

2k+2

)
h

2
√
π25k/2

=O
(

hk

23k/2
+

h3k

25k/2

)
.
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